os_solaris_x86.cpp revision 12469:c7a256349729
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "os_share_solaris.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/atomic.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/thread.inline.hpp"
52#include "runtime/timer.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <setjmp.h>
62# include <errno.h>
63# include <dlfcn.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <thread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/filio.h>
71# include <sys/utsname.h>
72# include <sys/systeminfo.h>
73# include <sys/socket.h>
74# include <sys/trap.h>
75# include <sys/lwp.h>
76# include <poll.h>
77# include <sys/lwp.h>
78# include <procfs.h>     //  see comment in <sys/procfs.h>
79
80#ifndef AMD64
81// QQQ seems useless at this point
82# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
83#endif // AMD64
84# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
85
86
87#define MAX_PATH (2 * K)
88
89// Minimum usable stack sizes required to get to user code. Space for
90// HotSpot guard pages is added later.
91#ifdef _LP64
92size_t os::Posix::_compiler_thread_min_stack_allowed = 202 * K;
93size_t os::Posix::_java_thread_min_stack_allowed = 48 * K;
94size_t os::Posix::_vm_internal_thread_min_stack_allowed = 224 * K;
95#else
96size_t os::Posix::_compiler_thread_min_stack_allowed = 32 * K;
97size_t os::Posix::_java_thread_min_stack_allowed = 32 * K;
98size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
99#endif // _LP64
100
101#ifdef AMD64
102#define REG_SP REG_RSP
103#define REG_PC REG_RIP
104#define REG_FP REG_RBP
105#else
106#define REG_SP UESP
107#define REG_PC EIP
108#define REG_FP EBP
109// 4900493 counter to prevent runaway LDTR refresh attempt
110
111static volatile int ldtr_refresh = 0;
112// the libthread instruction that faults because of the stale LDTR
113
114static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
115                       };
116#endif // AMD64
117
118char* os::non_memory_address_word() {
119  // Must never look like an address returned by reserve_memory,
120  // even in its subfields (as defined by the CPU immediate fields,
121  // if the CPU splits constants across multiple instructions).
122  return (char*) -1;
123}
124
125//
126// Validate a ucontext retrieved from walking a uc_link of a ucontext.
127// There are issues with libthread giving out uc_links for different threads
128// on the same uc_link chain and bad or circular links.
129//
130bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
131  if (valid >= suspect ||
132      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
133      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
134      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
135    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
136    return false;
137  }
138
139  if (thread->is_Java_thread()) {
140    if (!valid_stack_address(thread, (address)suspect)) {
141      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
142      return false;
143    }
144    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
145      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
146      return false;
147    }
148  }
149  return true;
150}
151
152// We will only follow one level of uc_link since there are libthread
153// issues with ucontext linking and it is better to be safe and just
154// let caller retry later.
155const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
156  const ucontext_t *uc) {
157
158  const ucontext_t *retuc = NULL;
159
160  if (uc != NULL) {
161    if (uc->uc_link == NULL) {
162      // cannot validate without uc_link so accept current ucontext
163      retuc = uc;
164    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
165      // first ucontext is valid so try the next one
166      uc = uc->uc_link;
167      if (uc->uc_link == NULL) {
168        // cannot validate without uc_link so accept current ucontext
169        retuc = uc;
170      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
171        // the ucontext one level down is also valid so return it
172        retuc = uc;
173      }
174    }
175  }
176  return retuc;
177}
178
179// Assumes ucontext is valid
180ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
181  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
182}
183
184void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
185  uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
186}
187
188// Assumes ucontext is valid
189intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
190  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
191}
192
193// Assumes ucontext is valid
194intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
195  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
196}
197
198address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
199  return (address) uc->uc_mcontext.gregs[REG_PC];
200}
201
202// For Forte Analyzer AsyncGetCallTrace profiling support - thread
203// is currently interrupted by SIGPROF.
204//
205// The difference between this and os::fetch_frame_from_context() is that
206// here we try to skip nested signal frames.
207// This method is also used for stack overflow signal handling.
208ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
209  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
210
211  assert(thread != NULL, "just checking");
212  assert(ret_sp != NULL, "just checking");
213  assert(ret_fp != NULL, "just checking");
214
215  const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
216  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
217}
218
219ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
220                    intptr_t** ret_sp, intptr_t** ret_fp) {
221
222  ExtendedPC  epc;
223  const ucontext_t *uc = (const ucontext_t*)ucVoid;
224
225  if (uc != NULL) {
226    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
227    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
228    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
229  } else {
230    // construct empty ExtendedPC for return value checking
231    epc = ExtendedPC(NULL);
232    if (ret_sp) *ret_sp = (intptr_t *)NULL;
233    if (ret_fp) *ret_fp = (intptr_t *)NULL;
234  }
235
236  return epc;
237}
238
239frame os::fetch_frame_from_context(const void* ucVoid) {
240  intptr_t* sp;
241  intptr_t* fp;
242  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
243  return frame(sp, fp, epc.pc());
244}
245
246frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
247  intptr_t* sp;
248  intptr_t* fp;
249  ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
250  return frame(sp, fp, epc.pc());
251}
252
253bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
254 address pc = (address) os::Solaris::ucontext_get_pc(uc);
255  if (Interpreter::contains(pc)) {
256    // interpreter performs stack banging after the fixed frame header has
257    // been generated while the compilers perform it before. To maintain
258    // semantic consistency between interpreted and compiled frames, the
259    // method returns the Java sender of the current frame.
260    *fr = os::fetch_frame_from_ucontext(thread, uc);
261    if (!fr->is_first_java_frame()) {
262      // get_frame_at_stack_banging_point() is only called when we
263      // have well defined stacks so java_sender() calls do not need
264      // to assert safe_for_sender() first.
265      *fr = fr->java_sender();
266    }
267  } else {
268    // more complex code with compiled code
269    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
270    CodeBlob* cb = CodeCache::find_blob(pc);
271    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
272      // Not sure where the pc points to, fallback to default
273      // stack overflow handling
274      return false;
275    } else {
276      // in compiled code, the stack banging is performed just after the return pc
277      // has been pushed on the stack
278      intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
279      intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
280      *fr = frame(sp + 1, fp, (address)*sp);
281      if (!fr->is_java_frame()) {
282        // See java_sender() comment above.
283        *fr = fr->java_sender();
284      }
285    }
286  }
287  assert(fr->is_java_frame(), "Safety check");
288  return true;
289}
290
291frame os::get_sender_for_C_frame(frame* fr) {
292  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
293}
294
295extern "C" intptr_t *_get_current_sp();  // in .il file
296
297address os::current_stack_pointer() {
298  return (address)_get_current_sp();
299}
300
301extern "C" intptr_t *_get_current_fp();  // in .il file
302
303frame os::current_frame() {
304  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
305  // fp is for os::current_frame. We want the fp for our caller.
306  frame myframe((intptr_t*)os::current_stack_pointer(),
307                (intptr_t*)fp,
308                CAST_FROM_FN_PTR(address, os::current_frame));
309  frame caller_frame = os::get_sender_for_C_frame(&myframe);
310
311  if (os::is_first_C_frame(&caller_frame)) {
312    // stack is not walkable
313    frame ret; // This will be a null useless frame
314    return ret;
315  } else {
316    // return frame for our caller's caller
317    return os::get_sender_for_C_frame(&caller_frame);
318  }
319}
320
321#ifndef AMD64
322
323// Detecting SSE support by OS
324// From solaris_i486.s
325extern "C" bool sse_check();
326extern "C" bool sse_unavailable();
327
328enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
329static int sse_status = SSE_UNKNOWN;
330
331
332static void  check_for_sse_support() {
333  if (!VM_Version::supports_sse()) {
334    sse_status = SSE_NOT_SUPPORTED;
335    return;
336  }
337  // looking for _sse_hw in libc.so, if it does not exist or
338  // the value (int) is 0, OS has no support for SSE
339  int *sse_hwp;
340  void *h;
341
342  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
343    //open failed, presume no support for SSE
344    sse_status = SSE_NOT_SUPPORTED;
345    return;
346  }
347  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
348    sse_status = SSE_NOT_SUPPORTED;
349  } else if (*sse_hwp == 0) {
350    sse_status = SSE_NOT_SUPPORTED;
351  }
352  dlclose(h);
353
354  if (sse_status == SSE_UNKNOWN) {
355    bool (*try_sse)() = (bool (*)())sse_check;
356    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
357  }
358
359}
360
361#endif // AMD64
362
363bool os::supports_sse() {
364#ifdef AMD64
365  return true;
366#else
367  if (sse_status == SSE_UNKNOWN)
368    check_for_sse_support();
369  return sse_status == SSE_SUPPORTED;
370#endif // AMD64
371}
372
373bool os::is_allocatable(size_t bytes) {
374#ifdef AMD64
375  return true;
376#else
377
378  if (bytes < 2 * G) {
379    return true;
380  }
381
382  char* addr = reserve_memory(bytes, NULL);
383
384  if (addr != NULL) {
385    release_memory(addr, bytes);
386  }
387
388  return addr != NULL;
389#endif // AMD64
390
391}
392
393extern "C" JNIEXPORT int
394JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
395                          int abort_if_unrecognized) {
396  ucontext_t* uc = (ucontext_t*) ucVoid;
397
398#ifndef AMD64
399  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
400    // the SSE instruction faulted. supports_sse() need return false.
401    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
402    return true;
403  }
404#endif // !AMD64
405
406  Thread* t = Thread::current_or_null_safe();
407
408  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
409  // (no destructors can be run)
410  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
411
412  SignalHandlerMark shm(t);
413
414  if(sig == SIGPIPE || sig == SIGXFSZ) {
415    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
416      return true;
417    } else {
418      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
419      return true;
420    }
421  }
422
423  JavaThread* thread = NULL;
424  VMThread* vmthread = NULL;
425
426  if (os::Solaris::signal_handlers_are_installed) {
427    if (t != NULL ){
428      if(t->is_Java_thread()) {
429        thread = (JavaThread*)t;
430      }
431      else if(t->is_VM_thread()){
432        vmthread = (VMThread *)t;
433      }
434    }
435  }
436
437  if (sig == os::Solaris::SIGasync()) {
438    if(thread || vmthread){
439      OSThread::SR_handler(t, uc);
440      return true;
441    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
442      return true;
443    } else {
444      // If os::Solaris::SIGasync not chained, and this is a non-vm and
445      // non-java thread
446      return true;
447    }
448  }
449
450  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
451    // can't decode this kind of signal
452    info = NULL;
453  } else {
454    assert(sig == info->si_signo, "bad siginfo");
455  }
456
457  // decide if this trap can be handled by a stub
458  address stub = NULL;
459
460  address pc          = NULL;
461
462  //%note os_trap_1
463  if (info != NULL && uc != NULL && thread != NULL) {
464    // factor me: getPCfromContext
465    pc = (address) uc->uc_mcontext.gregs[REG_PC];
466
467    if (StubRoutines::is_safefetch_fault(pc)) {
468      os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
469      return true;
470    }
471
472    // Handle ALL stack overflow variations here
473    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
474      address addr = (address) info->si_addr;
475      if (thread->in_stack_yellow_reserved_zone(addr)) {
476        if (thread->thread_state() == _thread_in_Java) {
477          if (thread->in_stack_reserved_zone(addr)) {
478            frame fr;
479            if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
480              assert(fr.is_java_frame(), "Must be Java frame");
481              frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
482              if (activation.sp() != NULL) {
483                thread->disable_stack_reserved_zone();
484                if (activation.is_interpreted_frame()) {
485                  thread->set_reserved_stack_activation((address)(
486                    activation.fp() + frame::interpreter_frame_initial_sp_offset));
487                } else {
488                  thread->set_reserved_stack_activation((address)activation.unextended_sp());
489                }
490                return true;
491              }
492            }
493          }
494          // Throw a stack overflow exception.  Guard pages will be reenabled
495          // while unwinding the stack.
496          thread->disable_stack_yellow_reserved_zone();
497          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
498        } else {
499          // Thread was in the vm or native code.  Return and try to finish.
500          thread->disable_stack_yellow_reserved_zone();
501          return true;
502        }
503      } else if (thread->in_stack_red_zone(addr)) {
504        // Fatal red zone violation.  Disable the guard pages and fall through
505        // to handle_unexpected_exception way down below.
506        thread->disable_stack_red_zone();
507        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
508      }
509    }
510
511    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
512      // Verify that OS save/restore AVX registers.
513      stub = VM_Version::cpuinfo_cont_addr();
514    }
515
516    if (thread->thread_state() == _thread_in_vm) {
517      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
518        address next_pc = Assembler::locate_next_instruction(pc);
519        stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
520      }
521    }
522
523    if (thread->thread_state() == _thread_in_Java) {
524      // Support Safepoint Polling
525      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
526        stub = SharedRuntime::get_poll_stub(pc);
527      }
528      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
529        // BugId 4454115: A read from a MappedByteBuffer can fault
530        // here if the underlying file has been truncated.
531        // Do not crash the VM in such a case.
532        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
533        if (cb != NULL) {
534          CompiledMethod* nm = cb->as_compiled_method_or_null();
535          if (nm != NULL && nm->has_unsafe_access()) {
536            address next_pc = Assembler::locate_next_instruction(pc);
537            stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
538          }
539        }
540      }
541      else
542      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
543        // integer divide by zero
544        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
545      }
546#ifndef AMD64
547      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
548        // floating-point divide by zero
549        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
550      }
551      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
552        // The encoding of D2I in i486.ad can cause an exception prior
553        // to the fist instruction if there was an invalid operation
554        // pending. We want to dismiss that exception. From the win_32
555        // side it also seems that if it really was the fist causing
556        // the exception that we do the d2i by hand with different
557        // rounding. Seems kind of weird. QQQ TODO
558        // Note that we take the exception at the NEXT floating point instruction.
559        if (pc[0] == 0xDB) {
560            assert(pc[0] == 0xDB, "not a FIST opcode");
561            assert(pc[1] == 0x14, "not a FIST opcode");
562            assert(pc[2] == 0x24, "not a FIST opcode");
563            return true;
564        } else {
565            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
566            assert(pc[-2] == 0x14, "not an flt invalid opcode");
567            assert(pc[-1] == 0x24, "not an flt invalid opcode");
568        }
569      }
570      else if (sig == SIGFPE ) {
571        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
572      }
573#endif // !AMD64
574
575        // QQQ It doesn't seem that we need to do this on x86 because we should be able
576        // to return properly from the handler without this extra stuff on the back side.
577
578      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
579        // Determination of interpreter/vtable stub/compiled code null exception
580        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
581      }
582    }
583
584    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
585    // and the heap gets shrunk before the field access.
586    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
587      address addr = JNI_FastGetField::find_slowcase_pc(pc);
588      if (addr != (address)-1) {
589        stub = addr;
590      }
591    }
592
593    // Check to see if we caught the safepoint code in the
594    // process of write protecting the memory serialization page.
595    // It write enables the page immediately after protecting it
596    // so we can just return to retry the write.
597    if ((sig == SIGSEGV) &&
598        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
599      // Block current thread until the memory serialize page permission restored.
600      os::block_on_serialize_page_trap();
601      return true;
602    }
603  }
604
605  // Execution protection violation
606  //
607  // Preventative code for future versions of Solaris which may
608  // enable execution protection when running the 32-bit VM on AMD64.
609  //
610  // This should be kept as the last step in the triage.  We don't
611  // have a dedicated trap number for a no-execute fault, so be
612  // conservative and allow other handlers the first shot.
613  //
614  // Note: We don't test that info->si_code == SEGV_ACCERR here.
615  // this si_code is so generic that it is almost meaningless; and
616  // the si_code for this condition may change in the future.
617  // Furthermore, a false-positive should be harmless.
618  if (UnguardOnExecutionViolation > 0 &&
619      (sig == SIGSEGV || sig == SIGBUS) &&
620      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
621    int page_size = os::vm_page_size();
622    address addr = (address) info->si_addr;
623    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
624    // Make sure the pc and the faulting address are sane.
625    //
626    // If an instruction spans a page boundary, and the page containing
627    // the beginning of the instruction is executable but the following
628    // page is not, the pc and the faulting address might be slightly
629    // different - we still want to unguard the 2nd page in this case.
630    //
631    // 15 bytes seems to be a (very) safe value for max instruction size.
632    bool pc_is_near_addr =
633      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
634    bool instr_spans_page_boundary =
635      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
636                       (intptr_t) page_size) > 0);
637
638    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
639      static volatile address last_addr =
640        (address) os::non_memory_address_word();
641
642      // In conservative mode, don't unguard unless the address is in the VM
643      if (addr != last_addr &&
644          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
645
646        // Make memory rwx and retry
647        address page_start =
648          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
649        bool res = os::protect_memory((char*) page_start, page_size,
650                                      os::MEM_PROT_RWX);
651
652        log_debug(os)("Execution protection violation "
653                      "at " INTPTR_FORMAT
654                      ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
655                      p2i(page_start), (res ? "success" : "failed"), errno);
656        stub = pc;
657
658        // Set last_addr so if we fault again at the same address, we don't end
659        // up in an endless loop.
660        //
661        // There are two potential complications here.  Two threads trapping at
662        // the same address at the same time could cause one of the threads to
663        // think it already unguarded, and abort the VM.  Likely very rare.
664        //
665        // The other race involves two threads alternately trapping at
666        // different addresses and failing to unguard the page, resulting in
667        // an endless loop.  This condition is probably even more unlikely than
668        // the first.
669        //
670        // Although both cases could be avoided by using locks or thread local
671        // last_addr, these solutions are unnecessary complication: this
672        // handler is a best-effort safety net, not a complete solution.  It is
673        // disabled by default and should only be used as a workaround in case
674        // we missed any no-execute-unsafe VM code.
675
676        last_addr = addr;
677      }
678    }
679  }
680
681  if (stub != NULL) {
682    // save all thread context in case we need to restore it
683
684    if (thread != NULL) thread->set_saved_exception_pc(pc);
685    // 12/02/99: On Sparc it appears that the full context is also saved
686    // but as yet, no one looks at or restores that saved context
687    os::Solaris::ucontext_set_pc(uc, stub);
688    return true;
689  }
690
691  // signal-chaining
692  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
693    return true;
694  }
695
696#ifndef AMD64
697  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
698  // Handle an undefined selector caused by an attempt to assign
699  // fs in libthread getipriptr(). With the current libthread design every 512
700  // thread creations the LDT for a private thread data structure is extended
701  // and thre is a hazard that and another thread attempting a thread creation
702  // will use a stale LDTR that doesn't reflect the structure's growth,
703  // causing a GP fault.
704  // Enforce the probable limit of passes through here to guard against an
705  // infinite loop if some other move to fs caused the GP fault. Note that
706  // this loop counter is ultimately a heuristic as it is possible for
707  // more than one thread to generate this fault at a time in an MP system.
708  // In the case of the loop count being exceeded or if the poll fails
709  // just fall through to a fatal error.
710  // If there is some other source of T_GPFLT traps and the text at EIP is
711  // unreadable this code will loop infinitely until the stack is exausted.
712  // The key to diagnosis in this case is to look for the bottom signal handler
713  // frame.
714
715  if(! IgnoreLibthreadGPFault) {
716    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
717      const unsigned char *p =
718                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
719
720      // Expected instruction?
721
722      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
723
724        Atomic::inc(&ldtr_refresh);
725
726        // Infinite loop?
727
728        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
729
730          // No, force scheduling to get a fresh view of the LDTR
731
732          if(poll(NULL, 0, 10) == 0) {
733
734            // Retry the move
735
736            return false;
737          }
738        }
739      }
740    }
741  }
742#endif // !AMD64
743
744  if (!abort_if_unrecognized) {
745    // caller wants another chance, so give it to him
746    return false;
747  }
748
749  if (!os::Solaris::libjsig_is_loaded) {
750    struct sigaction oldAct;
751    sigaction(sig, (struct sigaction *)0, &oldAct);
752    if (oldAct.sa_sigaction != signalHandler) {
753      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
754                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
755      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
756    }
757  }
758
759  if (pc == NULL && uc != NULL) {
760    pc = (address) uc->uc_mcontext.gregs[REG_PC];
761  }
762
763  // unmask current signal
764  sigset_t newset;
765  sigemptyset(&newset);
766  sigaddset(&newset, sig);
767  sigprocmask(SIG_UNBLOCK, &newset, NULL);
768
769  // Determine which sort of error to throw.  Out of swap may signal
770  // on the thread stack, which could get a mapping error when touched.
771  address addr = (address) info->si_addr;
772  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
773    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
774  }
775
776  VMError::report_and_die(t, sig, pc, info, ucVoid);
777
778  ShouldNotReachHere();
779  return false;
780}
781
782void os::print_context(outputStream *st, const void *context) {
783  if (context == NULL) return;
784
785  const ucontext_t *uc = (const ucontext_t*)context;
786  st->print_cr("Registers:");
787#ifdef AMD64
788  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
789  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
790  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
791  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
792  st->cr();
793  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
794  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
795  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
796  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
797  st->cr();
798  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
799  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
800  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
801  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
802  st->cr();
803  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
804  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
805  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
806  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
807  st->cr();
808  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
809  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
810#else
811  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
812  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
813  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
814  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
815  st->cr();
816  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
817  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
818  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
819  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
820  st->cr();
821  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
822  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
823#endif // AMD64
824  st->cr();
825  st->cr();
826
827  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
828  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
829  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
830  st->cr();
831
832  // Note: it may be unsafe to inspect memory near pc. For example, pc may
833  // point to garbage if entry point in an nmethod is corrupted. Leave
834  // this at the end, and hope for the best.
835  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
836  address pc = epc.pc();
837  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
838  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
839}
840
841void os::print_register_info(outputStream *st, const void *context) {
842  if (context == NULL) return;
843
844  const ucontext_t *uc = (const ucontext_t*)context;
845
846  st->print_cr("Register to memory mapping:");
847  st->cr();
848
849  // this is horrendously verbose but the layout of the registers in the
850  // context does not match how we defined our abstract Register set, so
851  // we can't just iterate through the gregs area
852
853  // this is only for the "general purpose" registers
854
855#ifdef AMD64
856  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
857  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
858  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
859  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
860  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
861  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
862  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
863  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
864  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
865  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
866  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
867  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
868  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
869  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
870  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
871  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
872#else
873  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
874  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
875  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
876  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
877  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
878  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
879  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
880  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
881#endif
882
883  st->cr();
884}
885
886
887#ifdef AMD64
888void os::Solaris::init_thread_fpu_state(void) {
889  // Nothing to do
890}
891#else
892// From solaris_i486.s
893extern "C" void fixcw();
894
895void os::Solaris::init_thread_fpu_state(void) {
896  // Set fpu to 53 bit precision. This happens too early to use a stub.
897  fixcw();
898}
899
900// These routines are the initial value of atomic_xchg_entry(),
901// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
902// until initialization is complete.
903// TODO - replace with .il implementation when compiler supports it.
904
905typedef jint  xchg_func_t        (jint,  volatile jint*);
906typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
907typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
908typedef jint  add_func_t         (jint,  volatile jint*);
909
910jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
911  // try to use the stub:
912  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
913
914  if (func != NULL) {
915    os::atomic_xchg_func = func;
916    return (*func)(exchange_value, dest);
917  }
918  assert(Threads::number_of_threads() == 0, "for bootstrap only");
919
920  jint old_value = *dest;
921  *dest = exchange_value;
922  return old_value;
923}
924
925jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
926  // try to use the stub:
927  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
928
929  if (func != NULL) {
930    os::atomic_cmpxchg_func = func;
931    return (*func)(exchange_value, dest, compare_value);
932  }
933  assert(Threads::number_of_threads() == 0, "for bootstrap only");
934
935  jint old_value = *dest;
936  if (old_value == compare_value)
937    *dest = exchange_value;
938  return old_value;
939}
940
941jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
942  // try to use the stub:
943  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
944
945  if (func != NULL) {
946    os::atomic_cmpxchg_long_func = func;
947    return (*func)(exchange_value, dest, compare_value);
948  }
949  assert(Threads::number_of_threads() == 0, "for bootstrap only");
950
951  jlong old_value = *dest;
952  if (old_value == compare_value)
953    *dest = exchange_value;
954  return old_value;
955}
956
957jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
958  // try to use the stub:
959  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
960
961  if (func != NULL) {
962    os::atomic_add_func = func;
963    return (*func)(add_value, dest);
964  }
965  assert(Threads::number_of_threads() == 0, "for bootstrap only");
966
967  return (*dest) += add_value;
968}
969
970xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
971cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
972cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
973add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
974
975extern "C" void _solaris_raw_setup_fpu(address ptr);
976void os::setup_fpu() {
977  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
978  _solaris_raw_setup_fpu(fpu_cntrl);
979}
980#endif // AMD64
981
982#ifndef PRODUCT
983void os::verify_stack_alignment() {
984#ifdef AMD64
985  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
986#endif
987}
988#endif
989
990int os::extra_bang_size_in_bytes() {
991  // JDK-8050147 requires the full cache line bang for x86.
992  return VM_Version::L1_line_size();
993}
994