os_solaris_x86.cpp revision 10835:a6b1b83401c7
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "mutex_solaris.inline.hpp"
37#include "os_share_solaris.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/atomic.inline.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/frame.inline.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/osThread.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/thread.inline.hpp"
53#include "runtime/timer.hpp"
54#include "utilities/events.hpp"
55#include "utilities/vmError.hpp"
56
57// put OS-includes here
58# include <sys/types.h>
59# include <sys/mman.h>
60# include <pthread.h>
61# include <signal.h>
62# include <setjmp.h>
63# include <errno.h>
64# include <dlfcn.h>
65# include <stdio.h>
66# include <unistd.h>
67# include <sys/resource.h>
68# include <thread.h>
69# include <sys/stat.h>
70# include <sys/time.h>
71# include <sys/filio.h>
72# include <sys/utsname.h>
73# include <sys/systeminfo.h>
74# include <sys/socket.h>
75# include <sys/trap.h>
76# include <sys/lwp.h>
77# include <pwd.h>
78# include <poll.h>
79# include <sys/lwp.h>
80# include <procfs.h>     //  see comment in <sys/procfs.h>
81
82#ifndef AMD64
83// QQQ seems useless at this point
84# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
85#endif // AMD64
86# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
87
88
89#define MAX_PATH (2 * K)
90
91// Minimum stack size for the VM.  It's easier to document a constant value
92// but it's different for x86 and sparc because the page sizes are different.
93#ifdef AMD64
94size_t os::Solaris::min_stack_allowed = 224*K;
95#define REG_SP REG_RSP
96#define REG_PC REG_RIP
97#define REG_FP REG_RBP
98#else
99size_t os::Solaris::min_stack_allowed = 64*K;
100#define REG_SP UESP
101#define REG_PC EIP
102#define REG_FP EBP
103// 4900493 counter to prevent runaway LDTR refresh attempt
104
105static volatile int ldtr_refresh = 0;
106// the libthread instruction that faults because of the stale LDTR
107
108static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
109                       };
110#endif // AMD64
111
112char* os::non_memory_address_word() {
113  // Must never look like an address returned by reserve_memory,
114  // even in its subfields (as defined by the CPU immediate fields,
115  // if the CPU splits constants across multiple instructions).
116  return (char*) -1;
117}
118
119//
120// Validate a ucontext retrieved from walking a uc_link of a ucontext.
121// There are issues with libthread giving out uc_links for different threads
122// on the same uc_link chain and bad or circular links.
123//
124bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
125  if (valid >= suspect ||
126      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
127      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
128      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
129    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
130    return false;
131  }
132
133  if (thread->is_Java_thread()) {
134    if (!valid_stack_address(thread, (address)suspect)) {
135      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
136      return false;
137    }
138    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
139      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
140      return false;
141    }
142  }
143  return true;
144}
145
146// We will only follow one level of uc_link since there are libthread
147// issues with ucontext linking and it is better to be safe and just
148// let caller retry later.
149const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
150  const ucontext_t *uc) {
151
152  const ucontext_t *retuc = NULL;
153
154  if (uc != NULL) {
155    if (uc->uc_link == NULL) {
156      // cannot validate without uc_link so accept current ucontext
157      retuc = uc;
158    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
159      // first ucontext is valid so try the next one
160      uc = uc->uc_link;
161      if (uc->uc_link == NULL) {
162        // cannot validate without uc_link so accept current ucontext
163        retuc = uc;
164      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
165        // the ucontext one level down is also valid so return it
166        retuc = uc;
167      }
168    }
169  }
170  return retuc;
171}
172
173// Assumes ucontext is valid
174ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
175  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
176}
177
178void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
179  uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
180}
181
182// Assumes ucontext is valid
183intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
184  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
185}
186
187// Assumes ucontext is valid
188intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
189  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
190}
191
192address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
193  return (address) uc->uc_mcontext.gregs[REG_PC];
194}
195
196// For Forte Analyzer AsyncGetCallTrace profiling support - thread
197// is currently interrupted by SIGPROF.
198//
199// The difference between this and os::fetch_frame_from_context() is that
200// here we try to skip nested signal frames.
201// This method is also used for stack overflow signal handling.
202ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
203  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
204
205  assert(thread != NULL, "just checking");
206  assert(ret_sp != NULL, "just checking");
207  assert(ret_fp != NULL, "just checking");
208
209  const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
210  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
211}
212
213ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
214                    intptr_t** ret_sp, intptr_t** ret_fp) {
215
216  ExtendedPC  epc;
217  const ucontext_t *uc = (const ucontext_t*)ucVoid;
218
219  if (uc != NULL) {
220    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
221    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
222    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
223  } else {
224    // construct empty ExtendedPC for return value checking
225    epc = ExtendedPC(NULL);
226    if (ret_sp) *ret_sp = (intptr_t *)NULL;
227    if (ret_fp) *ret_fp = (intptr_t *)NULL;
228  }
229
230  return epc;
231}
232
233frame os::fetch_frame_from_context(const void* ucVoid) {
234  intptr_t* sp;
235  intptr_t* fp;
236  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
237  return frame(sp, fp, epc.pc());
238}
239
240frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
241  intptr_t* sp;
242  intptr_t* fp;
243  ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
244  return frame(sp, fp, epc.pc());
245}
246
247bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
248 address pc = (address) os::Solaris::ucontext_get_pc(uc);
249  if (Interpreter::contains(pc)) {
250    // interpreter performs stack banging after the fixed frame header has
251    // been generated while the compilers perform it before. To maintain
252    // semantic consistency between interpreted and compiled frames, the
253    // method returns the Java sender of the current frame.
254    *fr = os::fetch_frame_from_ucontext(thread, uc);
255    if (!fr->is_first_java_frame()) {
256      assert(fr->safe_for_sender(thread), "Safety check");
257      *fr = fr->java_sender();
258    }
259  } else {
260    // more complex code with compiled code
261    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
262    CodeBlob* cb = CodeCache::find_blob(pc);
263    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
264      // Not sure where the pc points to, fallback to default
265      // stack overflow handling
266      return false;
267    } else {
268      // in compiled code, the stack banging is performed just after the return pc
269      // has been pushed on the stack
270      intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
271      intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
272      *fr = frame(sp + 1, fp, (address)*sp);
273      if (!fr->is_java_frame()) {
274        assert(fr->safe_for_sender(thread), "Safety check");
275        *fr = fr->java_sender();
276      }
277    }
278  }
279  assert(fr->is_java_frame(), "Safety check");
280  return true;
281}
282
283frame os::get_sender_for_C_frame(frame* fr) {
284  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
285}
286
287extern "C" intptr_t *_get_current_sp();  // in .il file
288
289address os::current_stack_pointer() {
290  return (address)_get_current_sp();
291}
292
293extern "C" intptr_t *_get_current_fp();  // in .il file
294
295frame os::current_frame() {
296  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
297  frame myframe((intptr_t*)os::current_stack_pointer(),
298                (intptr_t*)fp,
299                CAST_FROM_FN_PTR(address, os::current_frame));
300  if (os::is_first_C_frame(&myframe)) {
301    // stack is not walkable
302    frame ret; // This will be a null useless frame
303    return ret;
304  } else {
305    return os::get_sender_for_C_frame(&myframe);
306  }
307}
308
309#ifndef AMD64
310
311// Detecting SSE support by OS
312// From solaris_i486.s
313extern "C" bool sse_check();
314extern "C" bool sse_unavailable();
315
316enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
317static int sse_status = SSE_UNKNOWN;
318
319
320static void  check_for_sse_support() {
321  if (!VM_Version::supports_sse()) {
322    sse_status = SSE_NOT_SUPPORTED;
323    return;
324  }
325  // looking for _sse_hw in libc.so, if it does not exist or
326  // the value (int) is 0, OS has no support for SSE
327  int *sse_hwp;
328  void *h;
329
330  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
331    //open failed, presume no support for SSE
332    sse_status = SSE_NOT_SUPPORTED;
333    return;
334  }
335  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
336    sse_status = SSE_NOT_SUPPORTED;
337  } else if (*sse_hwp == 0) {
338    sse_status = SSE_NOT_SUPPORTED;
339  }
340  dlclose(h);
341
342  if (sse_status == SSE_UNKNOWN) {
343    bool (*try_sse)() = (bool (*)())sse_check;
344    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
345  }
346
347}
348
349#endif // AMD64
350
351bool os::supports_sse() {
352#ifdef AMD64
353  return true;
354#else
355  if (sse_status == SSE_UNKNOWN)
356    check_for_sse_support();
357  return sse_status == SSE_SUPPORTED;
358#endif // AMD64
359}
360
361bool os::is_allocatable(size_t bytes) {
362#ifdef AMD64
363  return true;
364#else
365
366  if (bytes < 2 * G) {
367    return true;
368  }
369
370  char* addr = reserve_memory(bytes, NULL);
371
372  if (addr != NULL) {
373    release_memory(addr, bytes);
374  }
375
376  return addr != NULL;
377#endif // AMD64
378
379}
380
381extern "C" JNIEXPORT int
382JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
383                          int abort_if_unrecognized) {
384  ucontext_t* uc = (ucontext_t*) ucVoid;
385
386#ifndef AMD64
387  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
388    // the SSE instruction faulted. supports_sse() need return false.
389    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
390    return true;
391  }
392#endif // !AMD64
393
394  Thread* t = Thread::current_or_null_safe();
395
396  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
397  // (no destructors can be run)
398  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
399
400  SignalHandlerMark shm(t);
401
402  if(sig == SIGPIPE || sig == SIGXFSZ) {
403    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
404      return true;
405    } else {
406      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
407      return true;
408    }
409  }
410
411  JavaThread* thread = NULL;
412  VMThread* vmthread = NULL;
413
414  if (os::Solaris::signal_handlers_are_installed) {
415    if (t != NULL ){
416      if(t->is_Java_thread()) {
417        thread = (JavaThread*)t;
418      }
419      else if(t->is_VM_thread()){
420        vmthread = (VMThread *)t;
421      }
422    }
423  }
424
425  if (sig == os::Solaris::SIGasync()) {
426    if(thread || vmthread){
427      OSThread::SR_handler(t, uc);
428      return true;
429    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
430      return true;
431    } else {
432      // If os::Solaris::SIGasync not chained, and this is a non-vm and
433      // non-java thread
434      return true;
435    }
436  }
437
438  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
439    // can't decode this kind of signal
440    info = NULL;
441  } else {
442    assert(sig == info->si_signo, "bad siginfo");
443  }
444
445  // decide if this trap can be handled by a stub
446  address stub = NULL;
447
448  address pc          = NULL;
449
450  //%note os_trap_1
451  if (info != NULL && uc != NULL && thread != NULL) {
452    // factor me: getPCfromContext
453    pc = (address) uc->uc_mcontext.gregs[REG_PC];
454
455    if (StubRoutines::is_safefetch_fault(pc)) {
456      os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
457      return true;
458    }
459
460    // Handle ALL stack overflow variations here
461    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
462      address addr = (address) info->si_addr;
463      if (thread->in_stack_yellow_reserved_zone(addr)) {
464        if (thread->thread_state() == _thread_in_Java) {
465          if (thread->in_stack_reserved_zone(addr)) {
466            frame fr;
467            if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
468              assert(fr.is_java_frame(), "Must be Java frame");
469              frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
470              if (activation.sp() != NULL) {
471                thread->disable_stack_reserved_zone();
472                if (activation.is_interpreted_frame()) {
473                  thread->set_reserved_stack_activation((address)(
474                    activation.fp() + frame::interpreter_frame_initial_sp_offset));
475                } else {
476                  thread->set_reserved_stack_activation((address)activation.unextended_sp());
477                }
478                return true;
479              }
480            }
481          }
482          // Throw a stack overflow exception.  Guard pages will be reenabled
483          // while unwinding the stack.
484          thread->disable_stack_yellow_reserved_zone();
485          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
486        } else {
487          // Thread was in the vm or native code.  Return and try to finish.
488          thread->disable_stack_yellow_reserved_zone();
489          return true;
490        }
491      } else if (thread->in_stack_red_zone(addr)) {
492        // Fatal red zone violation.  Disable the guard pages and fall through
493        // to handle_unexpected_exception way down below.
494        thread->disable_stack_red_zone();
495        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
496      }
497    }
498
499    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
500      // Verify that OS save/restore AVX registers.
501      stub = VM_Version::cpuinfo_cont_addr();
502    }
503
504    if (thread->thread_state() == _thread_in_vm) {
505      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
506        stub = StubRoutines::handler_for_unsafe_access();
507      }
508    }
509
510    if (thread->thread_state() == _thread_in_Java) {
511      // Support Safepoint Polling
512      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
513        stub = SharedRuntime::get_poll_stub(pc);
514      }
515      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
516        // BugId 4454115: A read from a MappedByteBuffer can fault
517        // here if the underlying file has been truncated.
518        // Do not crash the VM in such a case.
519        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
520        if (cb != NULL) {
521          nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
522          if (nm != NULL && nm->has_unsafe_access()) {
523            stub = StubRoutines::handler_for_unsafe_access();
524          }
525        }
526      }
527      else
528      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
529        // integer divide by zero
530        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
531      }
532#ifndef AMD64
533      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
534        // floating-point divide by zero
535        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
536      }
537      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
538        // The encoding of D2I in i486.ad can cause an exception prior
539        // to the fist instruction if there was an invalid operation
540        // pending. We want to dismiss that exception. From the win_32
541        // side it also seems that if it really was the fist causing
542        // the exception that we do the d2i by hand with different
543        // rounding. Seems kind of weird. QQQ TODO
544        // Note that we take the exception at the NEXT floating point instruction.
545        if (pc[0] == 0xDB) {
546            assert(pc[0] == 0xDB, "not a FIST opcode");
547            assert(pc[1] == 0x14, "not a FIST opcode");
548            assert(pc[2] == 0x24, "not a FIST opcode");
549            return true;
550        } else {
551            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
552            assert(pc[-2] == 0x14, "not an flt invalid opcode");
553            assert(pc[-1] == 0x24, "not an flt invalid opcode");
554        }
555      }
556      else if (sig == SIGFPE ) {
557        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
558      }
559#endif // !AMD64
560
561        // QQQ It doesn't seem that we need to do this on x86 because we should be able
562        // to return properly from the handler without this extra stuff on the back side.
563
564      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
565        // Determination of interpreter/vtable stub/compiled code null exception
566        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
567      }
568    }
569
570    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
571    // and the heap gets shrunk before the field access.
572    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
573      address addr = JNI_FastGetField::find_slowcase_pc(pc);
574      if (addr != (address)-1) {
575        stub = addr;
576      }
577    }
578
579    // Check to see if we caught the safepoint code in the
580    // process of write protecting the memory serialization page.
581    // It write enables the page immediately after protecting it
582    // so we can just return to retry the write.
583    if ((sig == SIGSEGV) &&
584        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
585      // Block current thread until the memory serialize page permission restored.
586      os::block_on_serialize_page_trap();
587      return true;
588    }
589  }
590
591  // Execution protection violation
592  //
593  // Preventative code for future versions of Solaris which may
594  // enable execution protection when running the 32-bit VM on AMD64.
595  //
596  // This should be kept as the last step in the triage.  We don't
597  // have a dedicated trap number for a no-execute fault, so be
598  // conservative and allow other handlers the first shot.
599  //
600  // Note: We don't test that info->si_code == SEGV_ACCERR here.
601  // this si_code is so generic that it is almost meaningless; and
602  // the si_code for this condition may change in the future.
603  // Furthermore, a false-positive should be harmless.
604  if (UnguardOnExecutionViolation > 0 &&
605      (sig == SIGSEGV || sig == SIGBUS) &&
606      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
607    int page_size = os::vm_page_size();
608    address addr = (address) info->si_addr;
609    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
610    // Make sure the pc and the faulting address are sane.
611    //
612    // If an instruction spans a page boundary, and the page containing
613    // the beginning of the instruction is executable but the following
614    // page is not, the pc and the faulting address might be slightly
615    // different - we still want to unguard the 2nd page in this case.
616    //
617    // 15 bytes seems to be a (very) safe value for max instruction size.
618    bool pc_is_near_addr =
619      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
620    bool instr_spans_page_boundary =
621      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
622                       (intptr_t) page_size) > 0);
623
624    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
625      static volatile address last_addr =
626        (address) os::non_memory_address_word();
627
628      // In conservative mode, don't unguard unless the address is in the VM
629      if (addr != last_addr &&
630          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
631
632        // Make memory rwx and retry
633        address page_start =
634          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
635        bool res = os::protect_memory((char*) page_start, page_size,
636                                      os::MEM_PROT_RWX);
637
638        log_debug(os)("Execution protection violation "
639                      "at " INTPTR_FORMAT
640                      ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
641                      p2i(page_start), (res ? "success" : "failed"), errno);
642        stub = pc;
643
644        // Set last_addr so if we fault again at the same address, we don't end
645        // up in an endless loop.
646        //
647        // There are two potential complications here.  Two threads trapping at
648        // the same address at the same time could cause one of the threads to
649        // think it already unguarded, and abort the VM.  Likely very rare.
650        //
651        // The other race involves two threads alternately trapping at
652        // different addresses and failing to unguard the page, resulting in
653        // an endless loop.  This condition is probably even more unlikely than
654        // the first.
655        //
656        // Although both cases could be avoided by using locks or thread local
657        // last_addr, these solutions are unnecessary complication: this
658        // handler is a best-effort safety net, not a complete solution.  It is
659        // disabled by default and should only be used as a workaround in case
660        // we missed any no-execute-unsafe VM code.
661
662        last_addr = addr;
663      }
664    }
665  }
666
667  if (stub != NULL) {
668    // save all thread context in case we need to restore it
669
670    if (thread != NULL) thread->set_saved_exception_pc(pc);
671    // 12/02/99: On Sparc it appears that the full context is also saved
672    // but as yet, no one looks at or restores that saved context
673    os::Solaris::ucontext_set_pc(uc, stub);
674    return true;
675  }
676
677  // signal-chaining
678  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
679    return true;
680  }
681
682#ifndef AMD64
683  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
684  // Handle an undefined selector caused by an attempt to assign
685  // fs in libthread getipriptr(). With the current libthread design every 512
686  // thread creations the LDT for a private thread data structure is extended
687  // and thre is a hazard that and another thread attempting a thread creation
688  // will use a stale LDTR that doesn't reflect the structure's growth,
689  // causing a GP fault.
690  // Enforce the probable limit of passes through here to guard against an
691  // infinite loop if some other move to fs caused the GP fault. Note that
692  // this loop counter is ultimately a heuristic as it is possible for
693  // more than one thread to generate this fault at a time in an MP system.
694  // In the case of the loop count being exceeded or if the poll fails
695  // just fall through to a fatal error.
696  // If there is some other source of T_GPFLT traps and the text at EIP is
697  // unreadable this code will loop infinitely until the stack is exausted.
698  // The key to diagnosis in this case is to look for the bottom signal handler
699  // frame.
700
701  if(! IgnoreLibthreadGPFault) {
702    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
703      const unsigned char *p =
704                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
705
706      // Expected instruction?
707
708      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
709
710        Atomic::inc(&ldtr_refresh);
711
712        // Infinite loop?
713
714        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
715
716          // No, force scheduling to get a fresh view of the LDTR
717
718          if(poll(NULL, 0, 10) == 0) {
719
720            // Retry the move
721
722            return false;
723          }
724        }
725      }
726    }
727  }
728#endif // !AMD64
729
730  if (!abort_if_unrecognized) {
731    // caller wants another chance, so give it to him
732    return false;
733  }
734
735  if (!os::Solaris::libjsig_is_loaded) {
736    struct sigaction oldAct;
737    sigaction(sig, (struct sigaction *)0, &oldAct);
738    if (oldAct.sa_sigaction != signalHandler) {
739      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
740                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
741      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
742    }
743  }
744
745  if (pc == NULL && uc != NULL) {
746    pc = (address) uc->uc_mcontext.gregs[REG_PC];
747  }
748
749  // unmask current signal
750  sigset_t newset;
751  sigemptyset(&newset);
752  sigaddset(&newset, sig);
753  sigprocmask(SIG_UNBLOCK, &newset, NULL);
754
755  // Determine which sort of error to throw.  Out of swap may signal
756  // on the thread stack, which could get a mapping error when touched.
757  address addr = (address) info->si_addr;
758  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
759    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
760  }
761
762  VMError::report_and_die(t, sig, pc, info, ucVoid);
763
764  ShouldNotReachHere();
765  return false;
766}
767
768void os::print_context(outputStream *st, const void *context) {
769  if (context == NULL) return;
770
771  const ucontext_t *uc = (const ucontext_t*)context;
772  st->print_cr("Registers:");
773#ifdef AMD64
774  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
775  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
776  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
777  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
778  st->cr();
779  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
780  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
781  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
782  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
783  st->cr();
784  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
785  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
786  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
787  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
788  st->cr();
789  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
790  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
791  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
792  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
793  st->cr();
794  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
795  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
796#else
797  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
798  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
799  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
800  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
801  st->cr();
802  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
803  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
804  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
805  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
806  st->cr();
807  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
808  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
809#endif // AMD64
810  st->cr();
811  st->cr();
812
813  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
814  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
815  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
816  st->cr();
817
818  // Note: it may be unsafe to inspect memory near pc. For example, pc may
819  // point to garbage if entry point in an nmethod is corrupted. Leave
820  // this at the end, and hope for the best.
821  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
822  address pc = epc.pc();
823  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
824  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
825}
826
827void os::print_register_info(outputStream *st, const void *context) {
828  if (context == NULL) return;
829
830  const ucontext_t *uc = (const ucontext_t*)context;
831
832  st->print_cr("Register to memory mapping:");
833  st->cr();
834
835  // this is horrendously verbose but the layout of the registers in the
836  // context does not match how we defined our abstract Register set, so
837  // we can't just iterate through the gregs area
838
839  // this is only for the "general purpose" registers
840
841#ifdef AMD64
842  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
843  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
844  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
845  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
846  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
847  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
848  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
849  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
850  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
851  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
852  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
853  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
854  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
855  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
856  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
857  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
858#else
859  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
860  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
861  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
862  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
863  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
864  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
865  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
866  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
867#endif
868
869  st->cr();
870}
871
872
873#ifdef AMD64
874void os::Solaris::init_thread_fpu_state(void) {
875  // Nothing to do
876}
877#else
878// From solaris_i486.s
879extern "C" void fixcw();
880
881void os::Solaris::init_thread_fpu_state(void) {
882  // Set fpu to 53 bit precision. This happens too early to use a stub.
883  fixcw();
884}
885
886// These routines are the initial value of atomic_xchg_entry(),
887// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
888// until initialization is complete.
889// TODO - replace with .il implementation when compiler supports it.
890
891typedef jint  xchg_func_t        (jint,  volatile jint*);
892typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
893typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
894typedef jint  add_func_t         (jint,  volatile jint*);
895
896jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
897  // try to use the stub:
898  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
899
900  if (func != NULL) {
901    os::atomic_xchg_func = func;
902    return (*func)(exchange_value, dest);
903  }
904  assert(Threads::number_of_threads() == 0, "for bootstrap only");
905
906  jint old_value = *dest;
907  *dest = exchange_value;
908  return old_value;
909}
910
911jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
912  // try to use the stub:
913  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
914
915  if (func != NULL) {
916    os::atomic_cmpxchg_func = func;
917    return (*func)(exchange_value, dest, compare_value);
918  }
919  assert(Threads::number_of_threads() == 0, "for bootstrap only");
920
921  jint old_value = *dest;
922  if (old_value == compare_value)
923    *dest = exchange_value;
924  return old_value;
925}
926
927jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
928  // try to use the stub:
929  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
930
931  if (func != NULL) {
932    os::atomic_cmpxchg_long_func = func;
933    return (*func)(exchange_value, dest, compare_value);
934  }
935  assert(Threads::number_of_threads() == 0, "for bootstrap only");
936
937  jlong old_value = *dest;
938  if (old_value == compare_value)
939    *dest = exchange_value;
940  return old_value;
941}
942
943jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
944  // try to use the stub:
945  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
946
947  if (func != NULL) {
948    os::atomic_add_func = func;
949    return (*func)(add_value, dest);
950  }
951  assert(Threads::number_of_threads() == 0, "for bootstrap only");
952
953  return (*dest) += add_value;
954}
955
956xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
957cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
958cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
959add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
960
961extern "C" void _solaris_raw_setup_fpu(address ptr);
962void os::setup_fpu() {
963  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
964  _solaris_raw_setup_fpu(fpu_cntrl);
965}
966#endif // AMD64
967
968#ifndef PRODUCT
969void os::verify_stack_alignment() {
970#ifdef AMD64
971  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
972#endif
973}
974#endif
975
976int os::extra_bang_size_in_bytes() {
977  // JDK-8050147 requires the full cache line bang for x86.
978  return VM_Version::L1_line_size();
979}
980