os_linux_zero.cpp revision 9651:f7dc8eebc3f5
1/*
2 * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2007, 2008, 2009, 2010 Red Hat, Inc.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26// no precompiled headers
27#include "assembler_zero.inline.hpp"
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "mutex_linux.inline.hpp"
37#include "nativeInst_zero.hpp"
38#include "os_share_linux.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/frame.inline.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/osThread.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/thread.inline.hpp"
53#include "runtime/timer.hpp"
54#include "utilities/events.hpp"
55#include "utilities/vmError.hpp"
56
57// See stubGenerator_zero.cpp
58#include <setjmp.h>
59extern sigjmp_buf* get_jmp_buf_for_continuation();
60
61address os::current_stack_pointer() {
62  // return the address of the current function
63  return (address)__builtin_frame_address(0);
64}
65
66frame os::get_sender_for_C_frame(frame* fr) {
67  ShouldNotCallThis();
68}
69
70frame os::current_frame() {
71  // The only thing that calls this is the stack printing code in
72  // VMError::report:
73  //   - Step 110 (printing stack bounds) uses the sp in the frame
74  //     to determine the amount of free space on the stack.  We
75  //     set the sp to a close approximation of the real value in
76  //     order to allow this step to complete.
77  //   - Step 120 (printing native stack) tries to walk the stack.
78  //     The frame we create has a NULL pc, which is ignored as an
79  //     invalid frame.
80  frame dummy = frame();
81  dummy.set_sp((intptr_t *) current_stack_pointer());
82  return dummy;
83}
84
85char* os::non_memory_address_word() {
86  // Must never look like an address returned by reserve_memory,
87  // even in its subfields (as defined by the CPU immediate fields,
88  // if the CPU splits constants across multiple instructions).
89#ifdef SPARC
90  // On SPARC, 0 != %hi(any real address), because there is no
91  // allocation in the first 1Kb of the virtual address space.
92  return (char *) 0;
93#else
94  // This is the value for x86; works pretty well for PPC too.
95  return (char *) -1;
96#endif // SPARC
97}
98
99void os::initialize_thread(Thread * thr){
100  // Nothing to do.
101}
102
103address os::Linux::ucontext_get_pc(ucontext_t* uc) {
104  ShouldNotCallThis();
105}
106
107void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
108  ShouldNotCallThis();
109}
110
111ExtendedPC os::fetch_frame_from_context(void* ucVoid,
112                                        intptr_t** ret_sp,
113                                        intptr_t** ret_fp) {
114  ShouldNotCallThis();
115}
116
117frame os::fetch_frame_from_context(void* ucVoid) {
118  ShouldNotCallThis();
119}
120
121extern "C" JNIEXPORT int
122JVM_handle_linux_signal(int sig,
123                        siginfo_t* info,
124                        void* ucVoid,
125                        int abort_if_unrecognized) {
126  ucontext_t* uc = (ucontext_t*) ucVoid;
127
128  Thread* t = Thread::current_or_null_safe();
129
130  SignalHandlerMark shm(t);
131
132  // handle SafeFetch faults
133  if (sig == SIGSEGV || sig == SIGBUS) {
134    sigjmp_buf* const pjb = get_jmp_buf_for_continuation();
135    if (pjb) {
136      siglongjmp(*pjb, 1);
137    }
138  }
139
140  // Note: it's not uncommon that JNI code uses signal/sigset to
141  // install then restore certain signal handler (e.g. to temporarily
142  // block SIGPIPE, or have a SIGILL handler when detecting CPU
143  // type). When that happens, JVM_handle_linux_signal() might be
144  // invoked with junk info/ucVoid. To avoid unnecessary crash when
145  // libjsig is not preloaded, try handle signals that do not require
146  // siginfo/ucontext first.
147
148  if (sig == SIGPIPE || sig == SIGXFSZ) {
149    // allow chained handler to go first
150    if (os::Linux::chained_handler(sig, info, ucVoid)) {
151      return true;
152    } else {
153      if (PrintMiscellaneous && (WizardMode || Verbose)) {
154        char buf[64];
155        warning("Ignoring %s - see bugs 4229104 or 646499219",
156                os::exception_name(sig, buf, sizeof(buf)));
157      }
158      return true;
159    }
160  }
161
162  JavaThread* thread = NULL;
163  VMThread* vmthread = NULL;
164  if (os::Linux::signal_handlers_are_installed) {
165    if (t != NULL ){
166      if(t->is_Java_thread()) {
167        thread = (JavaThread*)t;
168      }
169      else if(t->is_VM_thread()){
170        vmthread = (VMThread *)t;
171      }
172    }
173  }
174
175  if (info != NULL && thread != NULL) {
176    // Handle ALL stack overflow variations here
177    if (sig == SIGSEGV) {
178      address addr = (address) info->si_addr;
179
180      // check if fault address is within thread stack
181      if (addr < thread->stack_base() &&
182          addr >= thread->stack_base() - thread->stack_size()) {
183        // stack overflow
184        if (thread->in_stack_yellow_zone(addr)) {
185          thread->disable_stack_yellow_zone();
186          ShouldNotCallThis();
187        }
188        else if (thread->in_stack_red_zone(addr)) {
189          thread->disable_stack_red_zone();
190          ShouldNotCallThis();
191        }
192        else {
193          // Accessing stack address below sp may cause SEGV if
194          // current thread has MAP_GROWSDOWN stack. This should
195          // only happen when current thread was created by user
196          // code with MAP_GROWSDOWN flag and then attached to VM.
197          // See notes in os_linux.cpp.
198          if (thread->osthread()->expanding_stack() == 0) {
199            thread->osthread()->set_expanding_stack();
200            if (os::Linux::manually_expand_stack(thread, addr)) {
201              thread->osthread()->clear_expanding_stack();
202              return true;
203            }
204            thread->osthread()->clear_expanding_stack();
205          }
206          else {
207            fatal("recursive segv. expanding stack.");
208          }
209        }
210      }
211    }
212
213    /*if (thread->thread_state() == _thread_in_Java) {
214      ShouldNotCallThis();
215    }
216    else*/ if (thread->thread_state() == _thread_in_vm &&
217               sig == SIGBUS && thread->doing_unsafe_access()) {
218      ShouldNotCallThis();
219    }
220
221    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC
222    // kicks in and the heap gets shrunk before the field access.
223    /*if (sig == SIGSEGV || sig == SIGBUS) {
224      address addr = JNI_FastGetField::find_slowcase_pc(pc);
225      if (addr != (address)-1) {
226        stub = addr;
227      }
228    }*/
229
230    // Check to see if we caught the safepoint code in the process
231    // of write protecting the memory serialization page.  It write
232    // enables the page immediately after protecting it so we can
233    // just return to retry the write.
234    if (sig == SIGSEGV &&
235        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
236      // Block current thread until permission is restored.
237      os::block_on_serialize_page_trap();
238      return true;
239    }
240  }
241
242  // signal-chaining
243  if (os::Linux::chained_handler(sig, info, ucVoid)) {
244     return true;
245  }
246
247  if (!abort_if_unrecognized) {
248    // caller wants another chance, so give it to him
249    return false;
250  }
251
252#ifndef PRODUCT
253  if (sig == SIGSEGV) {
254    fatal("\n#"
255          "\n#    /--------------------\\"
256          "\n#    | segmentation fault |"
257          "\n#    \\---\\ /--------------/"
258          "\n#        /"
259          "\n#    [-]        |\\_/|    "
260          "\n#    (+)=C      |o o|__  "
261          "\n#    | |        =-*-=__\\ "
262          "\n#    OOO        c_c_(___)");
263  }
264#endif // !PRODUCT
265
266  const char *fmt = "caught unhandled signal %d";
267  char buf[64];
268
269  sprintf(buf, fmt, sig);
270  fatal(buf);
271}
272
273void os::Linux::init_thread_fpu_state(void) {
274  // Nothing to do
275}
276
277int os::Linux::get_fpu_control_word() {
278  ShouldNotCallThis();
279}
280
281void os::Linux::set_fpu_control_word(int fpu) {
282  ShouldNotCallThis();
283}
284
285bool os::is_allocatable(size_t bytes) {
286#ifdef _LP64
287  return true;
288#else
289  if (bytes < 2 * G) {
290    return true;
291  }
292
293  char* addr = reserve_memory(bytes, NULL);
294
295  if (addr != NULL) {
296    release_memory(addr, bytes);
297  }
298
299  return addr != NULL;
300#endif // _LP64
301}
302
303///////////////////////////////////////////////////////////////////////////////
304// thread stack
305
306size_t os::Linux::min_stack_allowed = 64 * K;
307
308size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
309#ifdef _LP64
310  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
311#else
312  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
313#endif // _LP64
314  return s;
315}
316
317size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
318  // Only enable glibc guard pages for non-Java threads
319  // (Java threads have HotSpot guard pages)
320  return (thr_type == java_thread ? 0 : page_size());
321}
322
323static void current_stack_region(address *bottom, size_t *size) {
324  pthread_attr_t attr;
325  int res = pthread_getattr_np(pthread_self(), &attr);
326  if (res != 0) {
327    if (res == ENOMEM) {
328      vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
329    }
330    else {
331      fatal("pthread_getattr_np failed with errno = %d", res);
332    }
333  }
334
335  address stack_bottom;
336  size_t stack_bytes;
337  res = pthread_attr_getstack(&attr, (void **) &stack_bottom, &stack_bytes);
338  if (res != 0) {
339    fatal("pthread_attr_getstack failed with errno = %d", res);
340  }
341  address stack_top = stack_bottom + stack_bytes;
342
343  // The block of memory returned by pthread_attr_getstack() includes
344  // guard pages where present.  We need to trim these off.
345  size_t page_bytes = os::Linux::page_size();
346  assert(((intptr_t) stack_bottom & (page_bytes - 1)) == 0, "unaligned stack");
347
348  size_t guard_bytes;
349  res = pthread_attr_getguardsize(&attr, &guard_bytes);
350  if (res != 0) {
351    fatal("pthread_attr_getguardsize failed with errno = %d", res);
352  }
353  int guard_pages = align_size_up(guard_bytes, page_bytes) / page_bytes;
354  assert(guard_bytes == guard_pages * page_bytes, "unaligned guard");
355
356#ifdef IA64
357  // IA64 has two stacks sharing the same area of memory, a normal
358  // stack growing downwards and a register stack growing upwards.
359  // Guard pages, if present, are in the centre.  This code splits
360  // the stack in two even without guard pages, though in theory
361  // there's nothing to stop us allocating more to the normal stack
362  // or more to the register stack if one or the other were found
363  // to grow faster.
364  int total_pages = align_size_down(stack_bytes, page_bytes) / page_bytes;
365  stack_bottom += (total_pages - guard_pages) / 2 * page_bytes;
366#endif // IA64
367
368  stack_bottom += guard_bytes;
369
370  pthread_attr_destroy(&attr);
371
372  // The initial thread has a growable stack, and the size reported
373  // by pthread_attr_getstack is the maximum size it could possibly
374  // be given what currently mapped.  This can be huge, so we cap it.
375  if (os::Linux::is_initial_thread()) {
376    stack_bytes = stack_top - stack_bottom;
377
378    if (stack_bytes > JavaThread::stack_size_at_create())
379      stack_bytes = JavaThread::stack_size_at_create();
380
381    stack_bottom = stack_top - stack_bytes;
382  }
383
384  assert(os::current_stack_pointer() >= stack_bottom, "should do");
385  assert(os::current_stack_pointer() < stack_top, "should do");
386
387  *bottom = stack_bottom;
388  *size = stack_top - stack_bottom;
389}
390
391address os::current_stack_base() {
392  address bottom;
393  size_t size;
394  current_stack_region(&bottom, &size);
395  return bottom + size;
396}
397
398size_t os::current_stack_size() {
399  // stack size includes normal stack and HotSpot guard pages
400  address bottom;
401  size_t size;
402  current_stack_region(&bottom, &size);
403  return size;
404}
405
406/////////////////////////////////////////////////////////////////////////////
407// helper functions for fatal error handler
408
409void os::print_context(outputStream* st, void* context) {
410  ShouldNotCallThis();
411}
412
413void os::print_register_info(outputStream *st, void *context) {
414  ShouldNotCallThis();
415}
416
417/////////////////////////////////////////////////////////////////////////////
418// Stubs for things that would be in linux_zero.s if it existed.
419// You probably want to disassemble these monkeys to check they're ok.
420
421extern "C" {
422  int SpinPause() {
423  }
424
425
426  void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
427    if (from > to) {
428      jshort *end = from + count;
429      while (from < end)
430        *(to++) = *(from++);
431    }
432    else if (from < to) {
433      jshort *end = from;
434      from += count - 1;
435      to   += count - 1;
436      while (from >= end)
437        *(to--) = *(from--);
438    }
439  }
440  void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
441    if (from > to) {
442      jint *end = from + count;
443      while (from < end)
444        *(to++) = *(from++);
445    }
446    else if (from < to) {
447      jint *end = from;
448      from += count - 1;
449      to   += count - 1;
450      while (from >= end)
451        *(to--) = *(from--);
452    }
453  }
454  void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
455    if (from > to) {
456      jlong *end = from + count;
457      while (from < end)
458        os::atomic_copy64(from++, to++);
459    }
460    else if (from < to) {
461      jlong *end = from;
462      from += count - 1;
463      to   += count - 1;
464      while (from >= end)
465        os::atomic_copy64(from--, to--);
466    }
467  }
468
469  void _Copy_arrayof_conjoint_bytes(HeapWord* from,
470                                    HeapWord* to,
471                                    size_t    count) {
472    memmove(to, from, count);
473  }
474  void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
475                                      HeapWord* to,
476                                      size_t    count) {
477    memmove(to, from, count * 2);
478  }
479  void _Copy_arrayof_conjoint_jints(HeapWord* from,
480                                    HeapWord* to,
481                                    size_t    count) {
482    memmove(to, from, count * 4);
483  }
484  void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
485                                     HeapWord* to,
486                                     size_t    count) {
487    memmove(to, from, count * 8);
488  }
489};
490
491/////////////////////////////////////////////////////////////////////////////
492// Implementations of atomic operations not supported by processors.
493//  -- http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Atomic-Builtins.html
494
495#ifndef _LP64
496extern "C" {
497  long long unsigned int __sync_val_compare_and_swap_8(
498    volatile void *ptr,
499    long long unsigned int oldval,
500    long long unsigned int newval) {
501    ShouldNotCallThis();
502  }
503};
504#endif // !_LP64
505
506#ifndef PRODUCT
507void os::verify_stack_alignment() {
508}
509#endif
510
511int os::extra_bang_size_in_bytes() {
512  // Zero does not require an additional stack banging.
513  return 0;
514}
515