os_linux_zero.cpp revision 1887:828eafbd85cc
1/*
2 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2007, 2008, 2009, 2010 Red Hat, Inc.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26// no precompiled headers
27#include "assembler_zero.inline.hpp"
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "mutex_linux.inline.hpp"
37#include "nativeInst_zero.hpp"
38#include "os_share_linux.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/frame.inline.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/osThread.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/timer.hpp"
53#include "thread_linux.inline.hpp"
54#include "utilities/events.hpp"
55#include "utilities/vmError.hpp"
56#ifdef COMPILER1
57#include "c1/c1_Runtime1.hpp"
58#endif
59#ifdef COMPILER2
60#include "opto/runtime.hpp"
61#endif
62
63address os::current_stack_pointer() {
64  address dummy = (address) &dummy;
65  return dummy;
66}
67
68frame os::get_sender_for_C_frame(frame* fr) {
69  ShouldNotCallThis();
70}
71
72frame os::current_frame() {
73  // The only thing that calls this is the stack printing code in
74  // VMError::report:
75  //   - Step 110 (printing stack bounds) uses the sp in the frame
76  //     to determine the amount of free space on the stack.  We
77  //     set the sp to a close approximation of the real value in
78  //     order to allow this step to complete.
79  //   - Step 120 (printing native stack) tries to walk the stack.
80  //     The frame we create has a NULL pc, which is ignored as an
81  //     invalid frame.
82  frame dummy = frame();
83  dummy.set_sp((intptr_t *) current_stack_pointer());
84  return dummy;
85}
86
87char* os::non_memory_address_word() {
88  // Must never look like an address returned by reserve_memory,
89  // even in its subfields (as defined by the CPU immediate fields,
90  // if the CPU splits constants across multiple instructions).
91#ifdef SPARC
92  // On SPARC, 0 != %hi(any real address), because there is no
93  // allocation in the first 1Kb of the virtual address space.
94  return (char *) 0;
95#else
96  // This is the value for x86; works pretty well for PPC too.
97  return (char *) -1;
98#endif // SPARC
99}
100
101void os::initialize_thread() {
102  // Nothing to do.
103}
104
105address os::Linux::ucontext_get_pc(ucontext_t* uc) {
106  ShouldNotCallThis();
107}
108
109ExtendedPC os::fetch_frame_from_context(void* ucVoid,
110                                        intptr_t** ret_sp,
111                                        intptr_t** ret_fp) {
112  ShouldNotCallThis();
113}
114
115frame os::fetch_frame_from_context(void* ucVoid) {
116  ShouldNotCallThis();
117}
118
119extern "C" int
120JVM_handle_linux_signal(int sig,
121                        siginfo_t* info,
122                        void* ucVoid,
123                        int abort_if_unrecognized) {
124  ucontext_t* uc = (ucontext_t*) ucVoid;
125
126  Thread* t = ThreadLocalStorage::get_thread_slow();
127
128  SignalHandlerMark shm(t);
129
130  // Note: it's not uncommon that JNI code uses signal/sigset to
131  // install then restore certain signal handler (e.g. to temporarily
132  // block SIGPIPE, or have a SIGILL handler when detecting CPU
133  // type). When that happens, JVM_handle_linux_signal() might be
134  // invoked with junk info/ucVoid. To avoid unnecessary crash when
135  // libjsig is not preloaded, try handle signals that do not require
136  // siginfo/ucontext first.
137
138  if (sig == SIGPIPE || sig == SIGXFSZ) {
139    // allow chained handler to go first
140    if (os::Linux::chained_handler(sig, info, ucVoid)) {
141      return true;
142    } else {
143      if (PrintMiscellaneous && (WizardMode || Verbose)) {
144        char buf[64];
145        warning("Ignoring %s - see bugs 4229104 or 646499219",
146                os::exception_name(sig, buf, sizeof(buf)));
147      }
148      return true;
149    }
150  }
151
152  JavaThread* thread = NULL;
153  VMThread* vmthread = NULL;
154  if (os::Linux::signal_handlers_are_installed) {
155    if (t != NULL ){
156      if(t->is_Java_thread()) {
157        thread = (JavaThread*)t;
158      }
159      else if(t->is_VM_thread()){
160        vmthread = (VMThread *)t;
161      }
162    }
163  }
164
165  if (info != NULL && thread != NULL) {
166    // Handle ALL stack overflow variations here
167    if (sig == SIGSEGV) {
168      address addr = (address) info->si_addr;
169
170      // check if fault address is within thread stack
171      if (addr < thread->stack_base() &&
172          addr >= thread->stack_base() - thread->stack_size()) {
173        // stack overflow
174        if (thread->in_stack_yellow_zone(addr)) {
175          thread->disable_stack_yellow_zone();
176          ShouldNotCallThis();
177        }
178        else if (thread->in_stack_red_zone(addr)) {
179          thread->disable_stack_red_zone();
180          ShouldNotCallThis();
181        }
182        else {
183          // Accessing stack address below sp may cause SEGV if
184          // current thread has MAP_GROWSDOWN stack. This should
185          // only happen when current thread was created by user
186          // code with MAP_GROWSDOWN flag and then attached to VM.
187          // See notes in os_linux.cpp.
188          if (thread->osthread()->expanding_stack() == 0) {
189            thread->osthread()->set_expanding_stack();
190            if (os::Linux::manually_expand_stack(thread, addr)) {
191              thread->osthread()->clear_expanding_stack();
192              return true;
193            }
194            thread->osthread()->clear_expanding_stack();
195          }
196          else {
197            fatal("recursive segv. expanding stack.");
198          }
199        }
200      }
201    }
202
203    /*if (thread->thread_state() == _thread_in_Java) {
204      ShouldNotCallThis();
205    }
206    else*/ if (thread->thread_state() == _thread_in_vm &&
207               sig == SIGBUS && thread->doing_unsafe_access()) {
208      ShouldNotCallThis();
209    }
210
211    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC
212    // kicks in and the heap gets shrunk before the field access.
213    /*if (sig == SIGSEGV || sig == SIGBUS) {
214      address addr = JNI_FastGetField::find_slowcase_pc(pc);
215      if (addr != (address)-1) {
216        stub = addr;
217      }
218    }*/
219
220    // Check to see if we caught the safepoint code in the process
221    // of write protecting the memory serialization page.  It write
222    // enables the page immediately after protecting it so we can
223    // just return to retry the write.
224    if (sig == SIGSEGV &&
225        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
226      // Block current thread until permission is restored.
227      os::block_on_serialize_page_trap();
228      return true;
229    }
230  }
231
232  // signal-chaining
233  if (os::Linux::chained_handler(sig, info, ucVoid)) {
234     return true;
235  }
236
237  if (!abort_if_unrecognized) {
238    // caller wants another chance, so give it to him
239    return false;
240  }
241
242#ifndef PRODUCT
243  if (sig == SIGSEGV) {
244    fatal("\n#"
245          "\n#    /--------------------\\"
246          "\n#    | segmentation fault |"
247          "\n#    \\---\\ /--------------/"
248          "\n#        /"
249          "\n#    [-]        |\\_/|    "
250          "\n#    (+)=C      |o o|__  "
251          "\n#    | |        =-*-=__\\ "
252          "\n#    OOO        c_c_(___)");
253  }
254#endif // !PRODUCT
255
256  const char *fmt = "caught unhandled signal %d";
257  char buf[64];
258
259  sprintf(buf, fmt, sig);
260  fatal(buf);
261}
262
263void os::Linux::init_thread_fpu_state(void) {
264  // Nothing to do
265}
266
267int os::Linux::get_fpu_control_word() {
268  ShouldNotCallThis();
269}
270
271void os::Linux::set_fpu_control_word(int fpu) {
272  ShouldNotCallThis();
273}
274
275bool os::is_allocatable(size_t bytes) {
276#ifdef _LP64
277  return true;
278#else
279  if (bytes < 2 * G) {
280    return true;
281  }
282
283  char* addr = reserve_memory(bytes, NULL);
284
285  if (addr != NULL) {
286    release_memory(addr, bytes);
287  }
288
289  return addr != NULL;
290#endif // _LP64
291}
292
293///////////////////////////////////////////////////////////////////////////////
294// thread stack
295
296size_t os::Linux::min_stack_allowed = 64 * K;
297
298bool os::Linux::supports_variable_stack_size() {
299  return true;
300}
301
302size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
303#ifdef _LP64
304  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
305#else
306  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
307#endif // _LP64
308  return s;
309}
310
311size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
312  // Only enable glibc guard pages for non-Java threads
313  // (Java threads have HotSpot guard pages)
314  return (thr_type == java_thread ? 0 : page_size());
315}
316
317static void current_stack_region(address *bottom, size_t *size) {
318  pthread_attr_t attr;
319  int res = pthread_getattr_np(pthread_self(), &attr);
320  if (res != 0) {
321    if (res == ENOMEM) {
322      vm_exit_out_of_memory(0, "pthread_getattr_np");
323    }
324    else {
325      fatal(err_msg("pthread_getattr_np failed with errno = %d", res));
326    }
327  }
328
329  address stack_bottom;
330  size_t stack_bytes;
331  res = pthread_attr_getstack(&attr, (void **) &stack_bottom, &stack_bytes);
332  if (res != 0) {
333    fatal(err_msg("pthread_attr_getstack failed with errno = %d", res));
334  }
335  address stack_top = stack_bottom + stack_bytes;
336
337  // The block of memory returned by pthread_attr_getstack() includes
338  // guard pages where present.  We need to trim these off.
339  size_t page_bytes = os::Linux::page_size();
340  assert(((intptr_t) stack_bottom & (page_bytes - 1)) == 0, "unaligned stack");
341
342  size_t guard_bytes;
343  res = pthread_attr_getguardsize(&attr, &guard_bytes);
344  if (res != 0) {
345    fatal(err_msg("pthread_attr_getguardsize failed with errno = %d", res));
346  }
347  int guard_pages = align_size_up(guard_bytes, page_bytes) / page_bytes;
348  assert(guard_bytes == guard_pages * page_bytes, "unaligned guard");
349
350#ifdef IA64
351  // IA64 has two stacks sharing the same area of memory, a normal
352  // stack growing downwards and a register stack growing upwards.
353  // Guard pages, if present, are in the centre.  This code splits
354  // the stack in two even without guard pages, though in theory
355  // there's nothing to stop us allocating more to the normal stack
356  // or more to the register stack if one or the other were found
357  // to grow faster.
358  int total_pages = align_size_down(stack_bytes, page_bytes) / page_bytes;
359  stack_bottom += (total_pages - guard_pages) / 2 * page_bytes;
360#endif // IA64
361
362  stack_bottom += guard_bytes;
363
364  pthread_attr_destroy(&attr);
365
366  // The initial thread has a growable stack, and the size reported
367  // by pthread_attr_getstack is the maximum size it could possibly
368  // be given what currently mapped.  This can be huge, so we cap it.
369  if (os::Linux::is_initial_thread()) {
370    stack_bytes = stack_top - stack_bottom;
371
372    if (stack_bytes > JavaThread::stack_size_at_create())
373      stack_bytes = JavaThread::stack_size_at_create();
374
375    stack_bottom = stack_top - stack_bytes;
376  }
377
378  assert(os::current_stack_pointer() >= stack_bottom, "should do");
379  assert(os::current_stack_pointer() < stack_top, "should do");
380
381  *bottom = stack_bottom;
382  *size = stack_top - stack_bottom;
383}
384
385address os::current_stack_base() {
386  address bottom;
387  size_t size;
388  current_stack_region(&bottom, &size);
389  return bottom + size;
390}
391
392size_t os::current_stack_size() {
393  // stack size includes normal stack and HotSpot guard pages
394  address bottom;
395  size_t size;
396  current_stack_region(&bottom, &size);
397  return size;
398}
399
400/////////////////////////////////////////////////////////////////////////////
401// helper functions for fatal error handler
402
403void os::print_context(outputStream* st, void* context) {
404  ShouldNotCallThis();
405}
406
407void os::print_register_info(outputStream *st, void *context) {
408  ShouldNotCallThis();
409}
410
411/////////////////////////////////////////////////////////////////////////////
412// Stubs for things that would be in linux_zero.s if it existed.
413// You probably want to disassemble these monkeys to check they're ok.
414
415extern "C" {
416  int SpinPause() {
417  }
418
419  int SafeFetch32(int *adr, int errValue) {
420    int value = errValue;
421    value = *adr;
422    return value;
423  }
424  intptr_t SafeFetchN(intptr_t *adr, intptr_t errValue) {
425    intptr_t value = errValue;
426    value = *adr;
427    return value;
428  }
429
430  void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
431    if (from > to) {
432      jshort *end = from + count;
433      while (from < end)
434        *(to++) = *(from++);
435    }
436    else if (from < to) {
437      jshort *end = from;
438      from += count - 1;
439      to   += count - 1;
440      while (from >= end)
441        *(to--) = *(from--);
442    }
443  }
444  void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
445    if (from > to) {
446      jint *end = from + count;
447      while (from < end)
448        *(to++) = *(from++);
449    }
450    else if (from < to) {
451      jint *end = from;
452      from += count - 1;
453      to   += count - 1;
454      while (from >= end)
455        *(to--) = *(from--);
456    }
457  }
458  void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
459    if (from > to) {
460      jlong *end = from + count;
461      while (from < end)
462        os::atomic_copy64(from++, to++);
463    }
464    else if (from < to) {
465      jlong *end = from;
466      from += count - 1;
467      to   += count - 1;
468      while (from >= end)
469        os::atomic_copy64(from--, to--);
470    }
471  }
472
473  void _Copy_arrayof_conjoint_bytes(HeapWord* from,
474                                    HeapWord* to,
475                                    size_t    count) {
476    memmove(to, from, count);
477  }
478  void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
479                                      HeapWord* to,
480                                      size_t    count) {
481    memmove(to, from, count * 2);
482  }
483  void _Copy_arrayof_conjoint_jints(HeapWord* from,
484                                    HeapWord* to,
485                                    size_t    count) {
486    memmove(to, from, count * 4);
487  }
488  void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
489                                     HeapWord* to,
490                                     size_t    count) {
491    memmove(to, from, count * 8);
492  }
493};
494
495/////////////////////////////////////////////////////////////////////////////
496// Implementations of atomic operations not supported by processors.
497//  -- http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Atomic-Builtins.html
498
499#ifndef _LP64
500extern "C" {
501  long long unsigned int __sync_val_compare_and_swap_8(
502    volatile void *ptr,
503    long long unsigned int oldval,
504    long long unsigned int newval) {
505    ShouldNotCallThis();
506  }
507};
508#endif // !_LP64
509