os_linux_x86.cpp revision 9651:f7dc8eebc3f5
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "os_share_linux.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "services/memTracker.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdlib.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <pthread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/utsname.h>
71# include <sys/socket.h>
72# include <sys/wait.h>
73# include <pwd.h>
74# include <poll.h>
75# include <ucontext.h>
76# include <fpu_control.h>
77
78#ifdef AMD64
79#define REG_SP REG_RSP
80#define REG_PC REG_RIP
81#define REG_FP REG_RBP
82#define SPELL_REG_SP "rsp"
83#define SPELL_REG_FP "rbp"
84#else
85#define REG_SP REG_UESP
86#define REG_PC REG_EIP
87#define REG_FP REG_EBP
88#define SPELL_REG_SP "esp"
89#define SPELL_REG_FP "ebp"
90#endif // AMD64
91
92address os::current_stack_pointer() {
93#ifdef SPARC_WORKS
94  register void *esp;
95  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
96  return (address) ((char*)esp + sizeof(long)*2);
97#elif defined(__clang__)
98  intptr_t* esp;
99  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
100  return (address) esp;
101#else
102  register void *esp __asm__ (SPELL_REG_SP);
103  return (address) esp;
104#endif
105}
106
107char* os::non_memory_address_word() {
108  // Must never look like an address returned by reserve_memory,
109  // even in its subfields (as defined by the CPU immediate fields,
110  // if the CPU splits constants across multiple instructions).
111
112  return (char*) -1;
113}
114
115void os::initialize_thread(Thread* thr) {
116// Nothing to do.
117}
118
119address os::Linux::ucontext_get_pc(ucontext_t * uc) {
120  return (address)uc->uc_mcontext.gregs[REG_PC];
121}
122
123void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
124  uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
125}
126
127intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
128  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
129}
130
131intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
132  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
133}
134
135// For Forte Analyzer AsyncGetCallTrace profiling support - thread
136// is currently interrupted by SIGPROF.
137// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
138// frames. Currently we don't do that on Linux, so it's the same as
139// os::fetch_frame_from_context().
140ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
141  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
142
143  assert(thread != NULL, "just checking");
144  assert(ret_sp != NULL, "just checking");
145  assert(ret_fp != NULL, "just checking");
146
147  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
148}
149
150ExtendedPC os::fetch_frame_from_context(void* ucVoid,
151                    intptr_t** ret_sp, intptr_t** ret_fp) {
152
153  ExtendedPC  epc;
154  ucontext_t* uc = (ucontext_t*)ucVoid;
155
156  if (uc != NULL) {
157    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
158    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
159    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
160  } else {
161    // construct empty ExtendedPC for return value checking
162    epc = ExtendedPC(NULL);
163    if (ret_sp) *ret_sp = (intptr_t *)NULL;
164    if (ret_fp) *ret_fp = (intptr_t *)NULL;
165  }
166
167  return epc;
168}
169
170frame os::fetch_frame_from_context(void* ucVoid) {
171  intptr_t* sp;
172  intptr_t* fp;
173  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
174  return frame(sp, fp, epc.pc());
175}
176
177// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
178// turned off by -fomit-frame-pointer,
179frame os::get_sender_for_C_frame(frame* fr) {
180  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
181}
182
183intptr_t* _get_previous_fp() {
184#ifdef SPARC_WORKS
185  register intptr_t **ebp;
186  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
187#elif defined(__clang__)
188  intptr_t **ebp;
189  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
190#else
191  register intptr_t **ebp __asm__ (SPELL_REG_FP);
192#endif
193  return (intptr_t*) *ebp;   // we want what it points to.
194}
195
196
197frame os::current_frame() {
198  intptr_t* fp = _get_previous_fp();
199  frame myframe((intptr_t*)os::current_stack_pointer(),
200                (intptr_t*)fp,
201                CAST_FROM_FN_PTR(address, os::current_frame));
202  if (os::is_first_C_frame(&myframe)) {
203    // stack is not walkable
204    return frame();
205  } else {
206    return os::get_sender_for_C_frame(&myframe);
207  }
208}
209
210// Utility functions
211
212// From IA32 System Programming Guide
213enum {
214  trap_page_fault = 0xE
215};
216
217extern "C" JNIEXPORT int
218JVM_handle_linux_signal(int sig,
219                        siginfo_t* info,
220                        void* ucVoid,
221                        int abort_if_unrecognized) {
222  ucontext_t* uc = (ucontext_t*) ucVoid;
223
224  Thread* t = Thread::current_or_null_safe();
225
226  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
227  // (no destructors can be run)
228  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
229
230  SignalHandlerMark shm(t);
231
232  // Note: it's not uncommon that JNI code uses signal/sigset to install
233  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
234  // or have a SIGILL handler when detecting CPU type). When that happens,
235  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
236  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
237  // that do not require siginfo/ucontext first.
238
239  if (sig == SIGPIPE || sig == SIGXFSZ) {
240    // allow chained handler to go first
241    if (os::Linux::chained_handler(sig, info, ucVoid)) {
242      return true;
243    } else {
244      if (PrintMiscellaneous && (WizardMode || Verbose)) {
245        char buf[64];
246        warning("Ignoring %s - see bugs 4229104 or 646499219",
247                os::exception_name(sig, buf, sizeof(buf)));
248      }
249      return true;
250    }
251  }
252
253  JavaThread* thread = NULL;
254  VMThread* vmthread = NULL;
255  if (os::Linux::signal_handlers_are_installed) {
256    if (t != NULL ){
257      if(t->is_Java_thread()) {
258        thread = (JavaThread*)t;
259      }
260      else if(t->is_VM_thread()){
261        vmthread = (VMThread *)t;
262      }
263    }
264  }
265/*
266  NOTE: does not seem to work on linux.
267  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
268    // can't decode this kind of signal
269    info = NULL;
270  } else {
271    assert(sig == info->si_signo, "bad siginfo");
272  }
273*/
274  // decide if this trap can be handled by a stub
275  address stub = NULL;
276
277  address pc          = NULL;
278
279  //%note os_trap_1
280  if (info != NULL && uc != NULL && thread != NULL) {
281    pc = (address) os::Linux::ucontext_get_pc(uc);
282
283    if (StubRoutines::is_safefetch_fault(pc)) {
284      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
285      return 1;
286    }
287
288#ifndef AMD64
289    // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
290    // This can happen in any running code (currently more frequently in
291    // interpreter code but has been seen in compiled code)
292    if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
293      fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
294            "to unstable signal handling in this distribution.");
295    }
296#endif // AMD64
297
298    // Handle ALL stack overflow variations here
299    if (sig == SIGSEGV) {
300      address addr = (address) info->si_addr;
301
302      // check if fault address is within thread stack
303      if (addr < thread->stack_base() &&
304          addr >= thread->stack_base() - thread->stack_size()) {
305        // stack overflow
306        if (thread->in_stack_yellow_zone(addr)) {
307          thread->disable_stack_yellow_zone();
308          if (thread->thread_state() == _thread_in_Java) {
309            // Throw a stack overflow exception.  Guard pages will be reenabled
310            // while unwinding the stack.
311            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
312          } else {
313            // Thread was in the vm or native code.  Return and try to finish.
314            return 1;
315          }
316        } else if (thread->in_stack_red_zone(addr)) {
317          // Fatal red zone violation.  Disable the guard pages and fall through
318          // to handle_unexpected_exception way down below.
319          thread->disable_stack_red_zone();
320          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
321
322          // This is a likely cause, but hard to verify. Let's just print
323          // it as a hint.
324          tty->print_raw_cr("Please check if any of your loaded .so files has "
325                            "enabled executable stack (see man page execstack(8))");
326        } else {
327          // Accessing stack address below sp may cause SEGV if current
328          // thread has MAP_GROWSDOWN stack. This should only happen when
329          // current thread was created by user code with MAP_GROWSDOWN flag
330          // and then attached to VM. See notes in os_linux.cpp.
331          if (thread->osthread()->expanding_stack() == 0) {
332             thread->osthread()->set_expanding_stack();
333             if (os::Linux::manually_expand_stack(thread, addr)) {
334               thread->osthread()->clear_expanding_stack();
335               return 1;
336             }
337             thread->osthread()->clear_expanding_stack();
338          } else {
339             fatal("recursive segv. expanding stack.");
340          }
341        }
342      }
343    }
344
345    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
346      // Verify that OS save/restore AVX registers.
347      stub = VM_Version::cpuinfo_cont_addr();
348    }
349
350    if (thread->thread_state() == _thread_in_Java) {
351      // Java thread running in Java code => find exception handler if any
352      // a fault inside compiled code, the interpreter, or a stub
353
354      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
355        stub = SharedRuntime::get_poll_stub(pc);
356      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
357        // BugId 4454115: A read from a MappedByteBuffer can fault
358        // here if the underlying file has been truncated.
359        // Do not crash the VM in such a case.
360        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
361        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
362        if (nm != NULL && nm->has_unsafe_access()) {
363          stub = StubRoutines::handler_for_unsafe_access();
364        }
365      }
366      else
367
368#ifdef AMD64
369      if (sig == SIGFPE  &&
370          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
371        stub =
372          SharedRuntime::
373          continuation_for_implicit_exception(thread,
374                                              pc,
375                                              SharedRuntime::
376                                              IMPLICIT_DIVIDE_BY_ZERO);
377#else
378      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
379        // HACK: si_code does not work on linux 2.2.12-20!!!
380        int op = pc[0];
381        if (op == 0xDB) {
382          // FIST
383          // TODO: The encoding of D2I in i486.ad can cause an exception
384          // prior to the fist instruction if there was an invalid operation
385          // pending. We want to dismiss that exception. From the win_32
386          // side it also seems that if it really was the fist causing
387          // the exception that we do the d2i by hand with different
388          // rounding. Seems kind of weird.
389          // NOTE: that we take the exception at the NEXT floating point instruction.
390          assert(pc[0] == 0xDB, "not a FIST opcode");
391          assert(pc[1] == 0x14, "not a FIST opcode");
392          assert(pc[2] == 0x24, "not a FIST opcode");
393          return true;
394        } else if (op == 0xF7) {
395          // IDIV
396          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
397        } else {
398          // TODO: handle more cases if we are using other x86 instructions
399          //   that can generate SIGFPE signal on linux.
400          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
401          fatal("please update this code.");
402        }
403#endif // AMD64
404      } else if (sig == SIGSEGV &&
405               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
406          // Determination of interpreter/vtable stub/compiled code null exception
407          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
408      }
409    } else if (thread->thread_state() == _thread_in_vm &&
410               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
411               thread->doing_unsafe_access()) {
412        stub = StubRoutines::handler_for_unsafe_access();
413    }
414
415    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
416    // and the heap gets shrunk before the field access.
417    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
418      address addr = JNI_FastGetField::find_slowcase_pc(pc);
419      if (addr != (address)-1) {
420        stub = addr;
421      }
422    }
423
424    // Check to see if we caught the safepoint code in the
425    // process of write protecting the memory serialization page.
426    // It write enables the page immediately after protecting it
427    // so we can just return to retry the write.
428    if ((sig == SIGSEGV) &&
429        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
430      // Block current thread until the memory serialize page permission restored.
431      os::block_on_serialize_page_trap();
432      return true;
433    }
434  }
435
436#ifndef AMD64
437  // Execution protection violation
438  //
439  // This should be kept as the last step in the triage.  We don't
440  // have a dedicated trap number for a no-execute fault, so be
441  // conservative and allow other handlers the first shot.
442  //
443  // Note: We don't test that info->si_code == SEGV_ACCERR here.
444  // this si_code is so generic that it is almost meaningless; and
445  // the si_code for this condition may change in the future.
446  // Furthermore, a false-positive should be harmless.
447  if (UnguardOnExecutionViolation > 0 &&
448      (sig == SIGSEGV || sig == SIGBUS) &&
449      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
450    int page_size = os::vm_page_size();
451    address addr = (address) info->si_addr;
452    address pc = os::Linux::ucontext_get_pc(uc);
453    // Make sure the pc and the faulting address are sane.
454    //
455    // If an instruction spans a page boundary, and the page containing
456    // the beginning of the instruction is executable but the following
457    // page is not, the pc and the faulting address might be slightly
458    // different - we still want to unguard the 2nd page in this case.
459    //
460    // 15 bytes seems to be a (very) safe value for max instruction size.
461    bool pc_is_near_addr =
462      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
463    bool instr_spans_page_boundary =
464      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
465                       (intptr_t) page_size) > 0);
466
467    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
468      static volatile address last_addr =
469        (address) os::non_memory_address_word();
470
471      // In conservative mode, don't unguard unless the address is in the VM
472      if (addr != last_addr &&
473          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
474
475        // Set memory to RWX and retry
476        address page_start =
477          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
478        bool res = os::protect_memory((char*) page_start, page_size,
479                                      os::MEM_PROT_RWX);
480
481        if (PrintMiscellaneous && Verbose) {
482          char buf[256];
483          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
484                       "at " INTPTR_FORMAT
485                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
486                       page_start, (res ? "success" : "failed"), errno);
487          tty->print_raw_cr(buf);
488        }
489        stub = pc;
490
491        // Set last_addr so if we fault again at the same address, we don't end
492        // up in an endless loop.
493        //
494        // There are two potential complications here.  Two threads trapping at
495        // the same address at the same time could cause one of the threads to
496        // think it already unguarded, and abort the VM.  Likely very rare.
497        //
498        // The other race involves two threads alternately trapping at
499        // different addresses and failing to unguard the page, resulting in
500        // an endless loop.  This condition is probably even more unlikely than
501        // the first.
502        //
503        // Although both cases could be avoided by using locks or thread local
504        // last_addr, these solutions are unnecessary complication: this
505        // handler is a best-effort safety net, not a complete solution.  It is
506        // disabled by default and should only be used as a workaround in case
507        // we missed any no-execute-unsafe VM code.
508
509        last_addr = addr;
510      }
511    }
512  }
513#endif // !AMD64
514
515  if (stub != NULL) {
516    // save all thread context in case we need to restore it
517    if (thread != NULL) thread->set_saved_exception_pc(pc);
518
519    os::Linux::ucontext_set_pc(uc, stub);
520    return true;
521  }
522
523  // signal-chaining
524  if (os::Linux::chained_handler(sig, info, ucVoid)) {
525     return true;
526  }
527
528  if (!abort_if_unrecognized) {
529    // caller wants another chance, so give it to him
530    return false;
531  }
532
533  if (pc == NULL && uc != NULL) {
534    pc = os::Linux::ucontext_get_pc(uc);
535  }
536
537  // unmask current signal
538  sigset_t newset;
539  sigemptyset(&newset);
540  sigaddset(&newset, sig);
541  sigprocmask(SIG_UNBLOCK, &newset, NULL);
542
543  VMError::report_and_die(t, sig, pc, info, ucVoid);
544
545  ShouldNotReachHere();
546  return true; // Mute compiler
547}
548
549void os::Linux::init_thread_fpu_state(void) {
550#ifndef AMD64
551  // set fpu to 53 bit precision
552  set_fpu_control_word(0x27f);
553#endif // !AMD64
554}
555
556int os::Linux::get_fpu_control_word(void) {
557#ifdef AMD64
558  return 0;
559#else
560  int fpu_control;
561  _FPU_GETCW(fpu_control);
562  return fpu_control & 0xffff;
563#endif // AMD64
564}
565
566void os::Linux::set_fpu_control_word(int fpu_control) {
567#ifndef AMD64
568  _FPU_SETCW(fpu_control);
569#endif // !AMD64
570}
571
572// Check that the linux kernel version is 2.4 or higher since earlier
573// versions do not support SSE without patches.
574bool os::supports_sse() {
575#ifdef AMD64
576  return true;
577#else
578  struct utsname uts;
579  if( uname(&uts) != 0 ) return false; // uname fails?
580  char *minor_string;
581  int major = strtol(uts.release,&minor_string,10);
582  int minor = strtol(minor_string+1,NULL,10);
583  bool result = (major > 2 || (major==2 && minor >= 4));
584#ifndef PRODUCT
585  if (PrintMiscellaneous && Verbose) {
586    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
587               major,minor, result ? "DOES" : "does NOT");
588  }
589#endif
590  return result;
591#endif // AMD64
592}
593
594bool os::is_allocatable(size_t bytes) {
595#ifdef AMD64
596  // unused on amd64?
597  return true;
598#else
599
600  if (bytes < 2 * G) {
601    return true;
602  }
603
604  char* addr = reserve_memory(bytes, NULL);
605
606  if (addr != NULL) {
607    release_memory(addr, bytes);
608  }
609
610  return addr != NULL;
611#endif // AMD64
612}
613
614////////////////////////////////////////////////////////////////////////////////
615// thread stack
616
617#ifdef AMD64
618size_t os::Linux::min_stack_allowed  = 64 * K;
619#else
620size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
621#endif // AMD64
622
623// return default stack size for thr_type
624size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
625  // default stack size (compiler thread needs larger stack)
626#ifdef AMD64
627  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
628#else
629  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
630#endif // AMD64
631  return s;
632}
633
634size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
635  // Creating guard page is very expensive. Java thread has HotSpot
636  // guard page, only enable glibc guard page for non-Java threads.
637  return (thr_type == java_thread ? 0 : page_size());
638}
639
640// Java thread:
641//
642//   Low memory addresses
643//    +------------------------+
644//    |                        |\  JavaThread created by VM does not have glibc
645//    |    glibc guard page    | - guard, attached Java thread usually has
646//    |                        |/  1 page glibc guard.
647// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
648//    |                        |\
649//    |  HotSpot Guard Pages   | - red and yellow pages
650//    |                        |/
651//    +------------------------+ JavaThread::stack_yellow_zone_base()
652//    |                        |\
653//    |      Normal Stack      | -
654//    |                        |/
655// P2 +------------------------+ Thread::stack_base()
656//
657// Non-Java thread:
658//
659//   Low memory addresses
660//    +------------------------+
661//    |                        |\
662//    |  glibc guard page      | - usually 1 page
663//    |                        |/
664// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
665//    |                        |\
666//    |      Normal Stack      | -
667//    |                        |/
668// P2 +------------------------+ Thread::stack_base()
669//
670// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
671//    pthread_attr_getstack()
672
673static void current_stack_region(address * bottom, size_t * size) {
674  if (os::Linux::is_initial_thread()) {
675     // initial thread needs special handling because pthread_getattr_np()
676     // may return bogus value.
677     *bottom = os::Linux::initial_thread_stack_bottom();
678     *size   = os::Linux::initial_thread_stack_size();
679  } else {
680     pthread_attr_t attr;
681
682     int rslt = pthread_getattr_np(pthread_self(), &attr);
683
684     // JVM needs to know exact stack location, abort if it fails
685     if (rslt != 0) {
686       if (rslt == ENOMEM) {
687         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
688       } else {
689         fatal("pthread_getattr_np failed with errno = %d", rslt);
690       }
691     }
692
693     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
694         fatal("Can not locate current stack attributes!");
695     }
696
697     pthread_attr_destroy(&attr);
698
699  }
700  assert(os::current_stack_pointer() >= *bottom &&
701         os::current_stack_pointer() < *bottom + *size, "just checking");
702}
703
704address os::current_stack_base() {
705  address bottom;
706  size_t size;
707  current_stack_region(&bottom, &size);
708  return (bottom + size);
709}
710
711size_t os::current_stack_size() {
712  // stack size includes normal stack and HotSpot guard pages
713  address bottom;
714  size_t size;
715  current_stack_region(&bottom, &size);
716  return size;
717}
718
719/////////////////////////////////////////////////////////////////////////////
720// helper functions for fatal error handler
721
722void os::print_context(outputStream *st, void *context) {
723  if (context == NULL) return;
724
725  ucontext_t *uc = (ucontext_t*)context;
726  st->print_cr("Registers:");
727#ifdef AMD64
728  st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
729  st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
730  st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
731  st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
732  st->cr();
733  st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
734  st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
735  st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
736  st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
737  st->cr();
738  st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
739  st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
740  st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
741  st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
742  st->cr();
743  st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
744  st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
745  st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
746  st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
747  st->cr();
748  st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
749  st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
750  st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
751  st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
752  st->cr();
753  st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
754#else
755  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
756  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
757  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
758  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
759  st->cr();
760  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
761  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
762  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
763  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
764  st->cr();
765  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
766  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
767  st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
768#endif // AMD64
769  st->cr();
770  st->cr();
771
772  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
773  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
774  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
775  st->cr();
776
777  // Note: it may be unsafe to inspect memory near pc. For example, pc may
778  // point to garbage if entry point in an nmethod is corrupted. Leave
779  // this at the end, and hope for the best.
780  address pc = os::Linux::ucontext_get_pc(uc);
781  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
782  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
783}
784
785void os::print_register_info(outputStream *st, void *context) {
786  if (context == NULL) return;
787
788  ucontext_t *uc = (ucontext_t*)context;
789
790  st->print_cr("Register to memory mapping:");
791  st->cr();
792
793  // this is horrendously verbose but the layout of the registers in the
794  // context does not match how we defined our abstract Register set, so
795  // we can't just iterate through the gregs area
796
797  // this is only for the "general purpose" registers
798
799#ifdef AMD64
800  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
801  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
802  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
803  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
804  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
805  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
806  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
807  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
808  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
809  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
810  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
811  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
812  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
813  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
814  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
815  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
816#else
817  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
818  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
819  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
820  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
821  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
822  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
823  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
824  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
825#endif // AMD64
826
827  st->cr();
828}
829
830void os::setup_fpu() {
831#ifndef AMD64
832  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
833  __asm__ volatile (  "fldcw (%0)" :
834                      : "r" (fpu_cntrl) : "memory");
835#endif // !AMD64
836}
837
838#ifndef PRODUCT
839void os::verify_stack_alignment() {
840#ifdef AMD64
841  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
842#endif
843}
844#endif
845
846
847/*
848 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
849 * updates (JDK-8023956).
850 */
851void os::workaround_expand_exec_shield_cs_limit() {
852#if defined(IA32)
853  size_t page_size = os::vm_page_size();
854  /*
855   * Take the highest VA the OS will give us and exec
856   *
857   * Although using -(pagesz) as mmap hint works on newer kernel as you would
858   * think, older variants affected by this work-around don't (search forward only).
859   *
860   * On the affected distributions, we understand the memory layout to be:
861   *
862   *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
863   *
864   * A few pages south main stack will do it.
865   *
866   * If we are embedded in an app other than launcher (initial != main stack),
867   * we don't have much control or understanding of the address space, just let it slide.
868   */
869  char* hint = (char*) (Linux::initial_thread_stack_bottom() -
870                        ((StackYellowPages + StackRedPages + 1) * page_size));
871  char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
872  if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
873    return; // No matter, we tried, best effort.
874  }
875
876  MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
877
878  if (PrintMiscellaneous && (Verbose || WizardMode)) {
879     tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
880  }
881
882  // Some code to exec: the 'ret' instruction
883  codebuf[0] = 0xC3;
884
885  // Call the code in the codebuf
886  __asm__ volatile("call *%0" : : "r"(codebuf));
887
888  // keep the page mapped so CS limit isn't reduced.
889#endif
890}
891
892int os::extra_bang_size_in_bytes() {
893  // JDK-8050147 requires the full cache line bang for x86.
894  return VM_Version::L1_line_size();
895}
896