os_linux_x86.cpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "os_share_linux.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "services/memTracker.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdlib.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <pthread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/utsname.h>
71# include <sys/socket.h>
72# include <sys/wait.h>
73# include <pwd.h>
74# include <poll.h>
75# include <ucontext.h>
76# include <fpu_control.h>
77
78#ifdef AMD64
79#define REG_SP REG_RSP
80#define REG_PC REG_RIP
81#define REG_FP REG_RBP
82#define SPELL_REG_SP "rsp"
83#define SPELL_REG_FP "rbp"
84#else
85#define REG_SP REG_UESP
86#define REG_PC REG_EIP
87#define REG_FP REG_EBP
88#define SPELL_REG_SP "esp"
89#define SPELL_REG_FP "ebp"
90#endif // AMD64
91
92PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
93
94address os::current_stack_pointer() {
95#ifdef SPARC_WORKS
96  register void *esp;
97  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
98  return (address) ((char*)esp + sizeof(long)*2);
99#elif defined(__clang__)
100  intptr_t* esp;
101  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
102  return (address) esp;
103#else
104  register void *esp __asm__ (SPELL_REG_SP);
105  return (address) esp;
106#endif
107}
108
109char* os::non_memory_address_word() {
110  // Must never look like an address returned by reserve_memory,
111  // even in its subfields (as defined by the CPU immediate fields,
112  // if the CPU splits constants across multiple instructions).
113
114  return (char*) -1;
115}
116
117void os::initialize_thread(Thread* thr) {
118// Nothing to do.
119}
120
121address os::Linux::ucontext_get_pc(ucontext_t * uc) {
122  return (address)uc->uc_mcontext.gregs[REG_PC];
123}
124
125void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
126  uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
127}
128
129intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
130  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
131}
132
133intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
134  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
135}
136
137// For Forte Analyzer AsyncGetCallTrace profiling support - thread
138// is currently interrupted by SIGPROF.
139// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
140// frames. Currently we don't do that on Linux, so it's the same as
141// os::fetch_frame_from_context().
142ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
143  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
144
145  assert(thread != NULL, "just checking");
146  assert(ret_sp != NULL, "just checking");
147  assert(ret_fp != NULL, "just checking");
148
149  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
150}
151
152ExtendedPC os::fetch_frame_from_context(void* ucVoid,
153                    intptr_t** ret_sp, intptr_t** ret_fp) {
154
155  ExtendedPC  epc;
156  ucontext_t* uc = (ucontext_t*)ucVoid;
157
158  if (uc != NULL) {
159    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
160    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
161    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
162  } else {
163    // construct empty ExtendedPC for return value checking
164    epc = ExtendedPC(NULL);
165    if (ret_sp) *ret_sp = (intptr_t *)NULL;
166    if (ret_fp) *ret_fp = (intptr_t *)NULL;
167  }
168
169  return epc;
170}
171
172frame os::fetch_frame_from_context(void* ucVoid) {
173  intptr_t* sp;
174  intptr_t* fp;
175  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
176  return frame(sp, fp, epc.pc());
177}
178
179// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
180// turned off by -fomit-frame-pointer,
181frame os::get_sender_for_C_frame(frame* fr) {
182  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
183}
184
185intptr_t* _get_previous_fp() {
186#ifdef SPARC_WORKS
187  register intptr_t **ebp;
188  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
189#elif defined(__clang__)
190  intptr_t **ebp;
191  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
192#else
193  register intptr_t **ebp __asm__ (SPELL_REG_FP);
194#endif
195  return (intptr_t*) *ebp;   // we want what it points to.
196}
197
198
199frame os::current_frame() {
200  intptr_t* fp = _get_previous_fp();
201  frame myframe((intptr_t*)os::current_stack_pointer(),
202                (intptr_t*)fp,
203                CAST_FROM_FN_PTR(address, os::current_frame));
204  if (os::is_first_C_frame(&myframe)) {
205    // stack is not walkable
206    return frame();
207  } else {
208    return os::get_sender_for_C_frame(&myframe);
209  }
210}
211
212// Utility functions
213
214// From IA32 System Programming Guide
215enum {
216  trap_page_fault = 0xE
217};
218
219extern "C" JNIEXPORT int
220JVM_handle_linux_signal(int sig,
221                        siginfo_t* info,
222                        void* ucVoid,
223                        int abort_if_unrecognized) {
224  ucontext_t* uc = (ucontext_t*) ucVoid;
225
226  Thread* t = ThreadLocalStorage::get_thread_slow();
227
228  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
229  // (no destructors can be run)
230  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
231
232  SignalHandlerMark shm(t);
233
234  // Note: it's not uncommon that JNI code uses signal/sigset to install
235  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
236  // or have a SIGILL handler when detecting CPU type). When that happens,
237  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
238  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
239  // that do not require siginfo/ucontext first.
240
241  if (sig == SIGPIPE || sig == SIGXFSZ) {
242    // allow chained handler to go first
243    if (os::Linux::chained_handler(sig, info, ucVoid)) {
244      return true;
245    } else {
246      if (PrintMiscellaneous && (WizardMode || Verbose)) {
247        char buf[64];
248        warning("Ignoring %s - see bugs 4229104 or 646499219",
249                os::exception_name(sig, buf, sizeof(buf)));
250      }
251      return true;
252    }
253  }
254
255  JavaThread* thread = NULL;
256  VMThread* vmthread = NULL;
257  if (os::Linux::signal_handlers_are_installed) {
258    if (t != NULL ){
259      if(t->is_Java_thread()) {
260        thread = (JavaThread*)t;
261      }
262      else if(t->is_VM_thread()){
263        vmthread = (VMThread *)t;
264      }
265    }
266  }
267/*
268  NOTE: does not seem to work on linux.
269  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
270    // can't decode this kind of signal
271    info = NULL;
272  } else {
273    assert(sig == info->si_signo, "bad siginfo");
274  }
275*/
276  // decide if this trap can be handled by a stub
277  address stub = NULL;
278
279  address pc          = NULL;
280
281  //%note os_trap_1
282  if (info != NULL && uc != NULL && thread != NULL) {
283    pc = (address) os::Linux::ucontext_get_pc(uc);
284
285    if (StubRoutines::is_safefetch_fault(pc)) {
286      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
287      return 1;
288    }
289
290#ifndef AMD64
291    // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
292    // This can happen in any running code (currently more frequently in
293    // interpreter code but has been seen in compiled code)
294    if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
295      fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
296            "to unstable signal handling in this distribution.");
297    }
298#endif // AMD64
299
300    // Handle ALL stack overflow variations here
301    if (sig == SIGSEGV) {
302      address addr = (address) info->si_addr;
303
304      // check if fault address is within thread stack
305      if (addr < thread->stack_base() &&
306          addr >= thread->stack_base() - thread->stack_size()) {
307        // stack overflow
308        if (thread->in_stack_yellow_zone(addr)) {
309          thread->disable_stack_yellow_zone();
310          if (thread->thread_state() == _thread_in_Java) {
311            // Throw a stack overflow exception.  Guard pages will be reenabled
312            // while unwinding the stack.
313            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
314          } else {
315            // Thread was in the vm or native code.  Return and try to finish.
316            return 1;
317          }
318        } else if (thread->in_stack_red_zone(addr)) {
319          // Fatal red zone violation.  Disable the guard pages and fall through
320          // to handle_unexpected_exception way down below.
321          thread->disable_stack_red_zone();
322          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
323
324          // This is a likely cause, but hard to verify. Let's just print
325          // it as a hint.
326          tty->print_raw_cr("Please check if any of your loaded .so files has "
327                            "enabled executable stack (see man page execstack(8))");
328        } else {
329          // Accessing stack address below sp may cause SEGV if current
330          // thread has MAP_GROWSDOWN stack. This should only happen when
331          // current thread was created by user code with MAP_GROWSDOWN flag
332          // and then attached to VM. See notes in os_linux.cpp.
333          if (thread->osthread()->expanding_stack() == 0) {
334             thread->osthread()->set_expanding_stack();
335             if (os::Linux::manually_expand_stack(thread, addr)) {
336               thread->osthread()->clear_expanding_stack();
337               return 1;
338             }
339             thread->osthread()->clear_expanding_stack();
340          } else {
341             fatal("recursive segv. expanding stack.");
342          }
343        }
344      }
345    }
346
347    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
348      // Verify that OS save/restore AVX registers.
349      stub = VM_Version::cpuinfo_cont_addr();
350    }
351
352    if (thread->thread_state() == _thread_in_Java) {
353      // Java thread running in Java code => find exception handler if any
354      // a fault inside compiled code, the interpreter, or a stub
355
356      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
357        stub = SharedRuntime::get_poll_stub(pc);
358      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
359        // BugId 4454115: A read from a MappedByteBuffer can fault
360        // here if the underlying file has been truncated.
361        // Do not crash the VM in such a case.
362        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
363        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
364        if (nm != NULL && nm->has_unsafe_access()) {
365          stub = StubRoutines::handler_for_unsafe_access();
366        }
367      }
368      else
369
370#ifdef AMD64
371      if (sig == SIGFPE  &&
372          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
373        stub =
374          SharedRuntime::
375          continuation_for_implicit_exception(thread,
376                                              pc,
377                                              SharedRuntime::
378                                              IMPLICIT_DIVIDE_BY_ZERO);
379#else
380      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
381        // HACK: si_code does not work on linux 2.2.12-20!!!
382        int op = pc[0];
383        if (op == 0xDB) {
384          // FIST
385          // TODO: The encoding of D2I in i486.ad can cause an exception
386          // prior to the fist instruction if there was an invalid operation
387          // pending. We want to dismiss that exception. From the win_32
388          // side it also seems that if it really was the fist causing
389          // the exception that we do the d2i by hand with different
390          // rounding. Seems kind of weird.
391          // NOTE: that we take the exception at the NEXT floating point instruction.
392          assert(pc[0] == 0xDB, "not a FIST opcode");
393          assert(pc[1] == 0x14, "not a FIST opcode");
394          assert(pc[2] == 0x24, "not a FIST opcode");
395          return true;
396        } else if (op == 0xF7) {
397          // IDIV
398          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
399        } else {
400          // TODO: handle more cases if we are using other x86 instructions
401          //   that can generate SIGFPE signal on linux.
402          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
403          fatal("please update this code.");
404        }
405#endif // AMD64
406      } else if (sig == SIGSEGV &&
407               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
408          // Determination of interpreter/vtable stub/compiled code null exception
409          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
410      }
411    } else if (thread->thread_state() == _thread_in_vm &&
412               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
413               thread->doing_unsafe_access()) {
414        stub = StubRoutines::handler_for_unsafe_access();
415    }
416
417    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
418    // and the heap gets shrunk before the field access.
419    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
420      address addr = JNI_FastGetField::find_slowcase_pc(pc);
421      if (addr != (address)-1) {
422        stub = addr;
423      }
424    }
425
426    // Check to see if we caught the safepoint code in the
427    // process of write protecting the memory serialization page.
428    // It write enables the page immediately after protecting it
429    // so we can just return to retry the write.
430    if ((sig == SIGSEGV) &&
431        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
432      // Block current thread until the memory serialize page permission restored.
433      os::block_on_serialize_page_trap();
434      return true;
435    }
436  }
437
438#ifndef AMD64
439  // Execution protection violation
440  //
441  // This should be kept as the last step in the triage.  We don't
442  // have a dedicated trap number for a no-execute fault, so be
443  // conservative and allow other handlers the first shot.
444  //
445  // Note: We don't test that info->si_code == SEGV_ACCERR here.
446  // this si_code is so generic that it is almost meaningless; and
447  // the si_code for this condition may change in the future.
448  // Furthermore, a false-positive should be harmless.
449  if (UnguardOnExecutionViolation > 0 &&
450      (sig == SIGSEGV || sig == SIGBUS) &&
451      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
452    int page_size = os::vm_page_size();
453    address addr = (address) info->si_addr;
454    address pc = os::Linux::ucontext_get_pc(uc);
455    // Make sure the pc and the faulting address are sane.
456    //
457    // If an instruction spans a page boundary, and the page containing
458    // the beginning of the instruction is executable but the following
459    // page is not, the pc and the faulting address might be slightly
460    // different - we still want to unguard the 2nd page in this case.
461    //
462    // 15 bytes seems to be a (very) safe value for max instruction size.
463    bool pc_is_near_addr =
464      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
465    bool instr_spans_page_boundary =
466      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
467                       (intptr_t) page_size) > 0);
468
469    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
470      static volatile address last_addr =
471        (address) os::non_memory_address_word();
472
473      // In conservative mode, don't unguard unless the address is in the VM
474      if (addr != last_addr &&
475          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
476
477        // Set memory to RWX and retry
478        address page_start =
479          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
480        bool res = os::protect_memory((char*) page_start, page_size,
481                                      os::MEM_PROT_RWX);
482
483        if (PrintMiscellaneous && Verbose) {
484          char buf[256];
485          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
486                       "at " INTPTR_FORMAT
487                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
488                       page_start, (res ? "success" : "failed"), errno);
489          tty->print_raw_cr(buf);
490        }
491        stub = pc;
492
493        // Set last_addr so if we fault again at the same address, we don't end
494        // up in an endless loop.
495        //
496        // There are two potential complications here.  Two threads trapping at
497        // the same address at the same time could cause one of the threads to
498        // think it already unguarded, and abort the VM.  Likely very rare.
499        //
500        // The other race involves two threads alternately trapping at
501        // different addresses and failing to unguard the page, resulting in
502        // an endless loop.  This condition is probably even more unlikely than
503        // the first.
504        //
505        // Although both cases could be avoided by using locks or thread local
506        // last_addr, these solutions are unnecessary complication: this
507        // handler is a best-effort safety net, not a complete solution.  It is
508        // disabled by default and should only be used as a workaround in case
509        // we missed any no-execute-unsafe VM code.
510
511        last_addr = addr;
512      }
513    }
514  }
515#endif // !AMD64
516
517  if (stub != NULL) {
518    // save all thread context in case we need to restore it
519    if (thread != NULL) thread->set_saved_exception_pc(pc);
520
521    os::Linux::ucontext_set_pc(uc, stub);
522    return true;
523  }
524
525  // signal-chaining
526  if (os::Linux::chained_handler(sig, info, ucVoid)) {
527     return true;
528  }
529
530  if (!abort_if_unrecognized) {
531    // caller wants another chance, so give it to him
532    return false;
533  }
534
535  if (pc == NULL && uc != NULL) {
536    pc = os::Linux::ucontext_get_pc(uc);
537  }
538
539  // unmask current signal
540  sigset_t newset;
541  sigemptyset(&newset);
542  sigaddset(&newset, sig);
543  sigprocmask(SIG_UNBLOCK, &newset, NULL);
544
545  VMError::report_and_die(t, sig, pc, info, ucVoid);
546
547  ShouldNotReachHere();
548  return true; // Mute compiler
549}
550
551void os::Linux::init_thread_fpu_state(void) {
552#ifndef AMD64
553  // set fpu to 53 bit precision
554  set_fpu_control_word(0x27f);
555#endif // !AMD64
556}
557
558int os::Linux::get_fpu_control_word(void) {
559#ifdef AMD64
560  return 0;
561#else
562  int fpu_control;
563  _FPU_GETCW(fpu_control);
564  return fpu_control & 0xffff;
565#endif // AMD64
566}
567
568void os::Linux::set_fpu_control_word(int fpu_control) {
569#ifndef AMD64
570  _FPU_SETCW(fpu_control);
571#endif // !AMD64
572}
573
574// Check that the linux kernel version is 2.4 or higher since earlier
575// versions do not support SSE without patches.
576bool os::supports_sse() {
577#ifdef AMD64
578  return true;
579#else
580  struct utsname uts;
581  if( uname(&uts) != 0 ) return false; // uname fails?
582  char *minor_string;
583  int major = strtol(uts.release,&minor_string,10);
584  int minor = strtol(minor_string+1,NULL,10);
585  bool result = (major > 2 || (major==2 && minor >= 4));
586#ifndef PRODUCT
587  if (PrintMiscellaneous && Verbose) {
588    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
589               major,minor, result ? "DOES" : "does NOT");
590  }
591#endif
592  return result;
593#endif // AMD64
594}
595
596bool os::is_allocatable(size_t bytes) {
597#ifdef AMD64
598  // unused on amd64?
599  return true;
600#else
601
602  if (bytes < 2 * G) {
603    return true;
604  }
605
606  char* addr = reserve_memory(bytes, NULL);
607
608  if (addr != NULL) {
609    release_memory(addr, bytes);
610  }
611
612  return addr != NULL;
613#endif // AMD64
614}
615
616////////////////////////////////////////////////////////////////////////////////
617// thread stack
618
619#ifdef AMD64
620size_t os::Linux::min_stack_allowed  = 64 * K;
621#else
622size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
623#endif // AMD64
624
625// return default stack size for thr_type
626size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
627  // default stack size (compiler thread needs larger stack)
628#ifdef AMD64
629  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
630#else
631  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
632#endif // AMD64
633  return s;
634}
635
636size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
637  // Creating guard page is very expensive. Java thread has HotSpot
638  // guard page, only enable glibc guard page for non-Java threads.
639  return (thr_type == java_thread ? 0 : page_size());
640}
641
642// Java thread:
643//
644//   Low memory addresses
645//    +------------------------+
646//    |                        |\  JavaThread created by VM does not have glibc
647//    |    glibc guard page    | - guard, attached Java thread usually has
648//    |                        |/  1 page glibc guard.
649// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
650//    |                        |\
651//    |  HotSpot Guard Pages   | - red and yellow pages
652//    |                        |/
653//    +------------------------+ JavaThread::stack_yellow_zone_base()
654//    |                        |\
655//    |      Normal Stack      | -
656//    |                        |/
657// P2 +------------------------+ Thread::stack_base()
658//
659// Non-Java thread:
660//
661//   Low memory addresses
662//    +------------------------+
663//    |                        |\
664//    |  glibc guard page      | - usually 1 page
665//    |                        |/
666// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
667//    |                        |\
668//    |      Normal Stack      | -
669//    |                        |/
670// P2 +------------------------+ Thread::stack_base()
671//
672// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
673//    pthread_attr_getstack()
674
675static void current_stack_region(address * bottom, size_t * size) {
676  if (os::Linux::is_initial_thread()) {
677     // initial thread needs special handling because pthread_getattr_np()
678     // may return bogus value.
679     *bottom = os::Linux::initial_thread_stack_bottom();
680     *size   = os::Linux::initial_thread_stack_size();
681  } else {
682     pthread_attr_t attr;
683
684     int rslt = pthread_getattr_np(pthread_self(), &attr);
685
686     // JVM needs to know exact stack location, abort if it fails
687     if (rslt != 0) {
688       if (rslt == ENOMEM) {
689         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
690       } else {
691         fatal("pthread_getattr_np failed with errno = %d", rslt);
692       }
693     }
694
695     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
696         fatal("Can not locate current stack attributes!");
697     }
698
699     pthread_attr_destroy(&attr);
700
701  }
702  assert(os::current_stack_pointer() >= *bottom &&
703         os::current_stack_pointer() < *bottom + *size, "just checking");
704}
705
706address os::current_stack_base() {
707  address bottom;
708  size_t size;
709  current_stack_region(&bottom, &size);
710  return (bottom + size);
711}
712
713size_t os::current_stack_size() {
714  // stack size includes normal stack and HotSpot guard pages
715  address bottom;
716  size_t size;
717  current_stack_region(&bottom, &size);
718  return size;
719}
720
721/////////////////////////////////////////////////////////////////////////////
722// helper functions for fatal error handler
723
724void os::print_context(outputStream *st, void *context) {
725  if (context == NULL) return;
726
727  ucontext_t *uc = (ucontext_t*)context;
728  st->print_cr("Registers:");
729#ifdef AMD64
730  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
731  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
732  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
733  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
734  st->cr();
735  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
736  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
737  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
738  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
739  st->cr();
740  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
741  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
742  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
743  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
744  st->cr();
745  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
746  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
747  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
748  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
749  st->cr();
750  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
751  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
752  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
753  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
754  st->cr();
755  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
756#else
757  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
758  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
759  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
760  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
761  st->cr();
762  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
763  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
764  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
765  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
766  st->cr();
767  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
768  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
769  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
770#endif // AMD64
771  st->cr();
772  st->cr();
773
774  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
775  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
776  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
777  st->cr();
778
779  // Note: it may be unsafe to inspect memory near pc. For example, pc may
780  // point to garbage if entry point in an nmethod is corrupted. Leave
781  // this at the end, and hope for the best.
782  address pc = os::Linux::ucontext_get_pc(uc);
783  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
784  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
785}
786
787void os::print_register_info(outputStream *st, void *context) {
788  if (context == NULL) return;
789
790  ucontext_t *uc = (ucontext_t*)context;
791
792  st->print_cr("Register to memory mapping:");
793  st->cr();
794
795  // this is horrendously verbose but the layout of the registers in the
796  // context does not match how we defined our abstract Register set, so
797  // we can't just iterate through the gregs area
798
799  // this is only for the "general purpose" registers
800
801#ifdef AMD64
802  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
803  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
804  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
805  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
806  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
807  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
808  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
809  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
810  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
811  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
812  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
813  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
814  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
815  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
816  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
817  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
818#else
819  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
820  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
821  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
822  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
823  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
824  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
825  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
826  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
827#endif // AMD64
828
829  st->cr();
830}
831
832void os::setup_fpu() {
833#ifndef AMD64
834  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
835  __asm__ volatile (  "fldcw (%0)" :
836                      : "r" (fpu_cntrl) : "memory");
837#endif // !AMD64
838}
839
840#ifndef PRODUCT
841void os::verify_stack_alignment() {
842#ifdef AMD64
843  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
844#endif
845}
846#endif
847
848
849/*
850 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
851 * updates (JDK-8023956).
852 */
853void os::workaround_expand_exec_shield_cs_limit() {
854#if defined(IA32)
855  size_t page_size = os::vm_page_size();
856  /*
857   * Take the highest VA the OS will give us and exec
858   *
859   * Although using -(pagesz) as mmap hint works on newer kernel as you would
860   * think, older variants affected by this work-around don't (search forward only).
861   *
862   * On the affected distributions, we understand the memory layout to be:
863   *
864   *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
865   *
866   * A few pages south main stack will do it.
867   *
868   * If we are embedded in an app other than launcher (initial != main stack),
869   * we don't have much control or understanding of the address space, just let it slide.
870   */
871  char* hint = (char*) (Linux::initial_thread_stack_bottom() -
872                        ((StackYellowPages + StackRedPages + 1) * page_size));
873  char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
874  if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
875    return; // No matter, we tried, best effort.
876  }
877
878  MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
879
880  if (PrintMiscellaneous && (Verbose || WizardMode)) {
881     tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
882  }
883
884  // Some code to exec: the 'ret' instruction
885  codebuf[0] = 0xC3;
886
887  // Call the code in the codebuf
888  __asm__ volatile("call *%0" : : "r"(codebuf));
889
890  // keep the page mapped so CS limit isn't reduced.
891#endif
892}
893
894int os::extra_bang_size_in_bytes() {
895  // JDK-8050147 requires the full cache line bang for x86.
896  return VM_Version::L1_line_size();
897}
898