os_linux_x86.cpp revision 7426:0f6100dde08e
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "os_share_linux.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "services/memTracker.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdlib.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <pthread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/utsname.h>
71# include <sys/socket.h>
72# include <sys/wait.h>
73# include <pwd.h>
74# include <poll.h>
75# include <ucontext.h>
76# include <fpu_control.h>
77
78#ifdef AMD64
79#define REG_SP REG_RSP
80#define REG_PC REG_RIP
81#define REG_FP REG_RBP
82#define SPELL_REG_SP "rsp"
83#define SPELL_REG_FP "rbp"
84#else
85#define REG_SP REG_UESP
86#define REG_PC REG_EIP
87#define REG_FP REG_EBP
88#define SPELL_REG_SP "esp"
89#define SPELL_REG_FP "ebp"
90#endif // AMD64
91
92PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
93
94address os::current_stack_pointer() {
95#ifdef SPARC_WORKS
96  register void *esp;
97  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
98  return (address) ((char*)esp + sizeof(long)*2);
99#elif defined(__clang__)
100  intptr_t* esp;
101  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
102  return (address) esp;
103#else
104  register void *esp __asm__ (SPELL_REG_SP);
105  return (address) esp;
106#endif
107}
108
109char* os::non_memory_address_word() {
110  // Must never look like an address returned by reserve_memory,
111  // even in its subfields (as defined by the CPU immediate fields,
112  // if the CPU splits constants across multiple instructions).
113
114  return (char*) -1;
115}
116
117void os::initialize_thread(Thread* thr) {
118// Nothing to do.
119}
120
121address os::Linux::ucontext_get_pc(ucontext_t * uc) {
122  return (address)uc->uc_mcontext.gregs[REG_PC];
123}
124
125intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
126  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
127}
128
129intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
130  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
131}
132
133// For Forte Analyzer AsyncGetCallTrace profiling support - thread
134// is currently interrupted by SIGPROF.
135// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
136// frames. Currently we don't do that on Linux, so it's the same as
137// os::fetch_frame_from_context().
138ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
139  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
140
141  assert(thread != NULL, "just checking");
142  assert(ret_sp != NULL, "just checking");
143  assert(ret_fp != NULL, "just checking");
144
145  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
146}
147
148ExtendedPC os::fetch_frame_from_context(void* ucVoid,
149                    intptr_t** ret_sp, intptr_t** ret_fp) {
150
151  ExtendedPC  epc;
152  ucontext_t* uc = (ucontext_t*)ucVoid;
153
154  if (uc != NULL) {
155    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
156    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
157    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
158  } else {
159    // construct empty ExtendedPC for return value checking
160    epc = ExtendedPC(NULL);
161    if (ret_sp) *ret_sp = (intptr_t *)NULL;
162    if (ret_fp) *ret_fp = (intptr_t *)NULL;
163  }
164
165  return epc;
166}
167
168frame os::fetch_frame_from_context(void* ucVoid) {
169  intptr_t* sp;
170  intptr_t* fp;
171  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
172  return frame(sp, fp, epc.pc());
173}
174
175// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
176// turned off by -fomit-frame-pointer,
177frame os::get_sender_for_C_frame(frame* fr) {
178  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
179}
180
181intptr_t* _get_previous_fp() {
182#ifdef SPARC_WORKS
183  register intptr_t **ebp;
184  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
185#elif defined(__clang__)
186  intptr_t **ebp;
187  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
188#else
189  register intptr_t **ebp __asm__ (SPELL_REG_FP);
190#endif
191  return (intptr_t*) *ebp;   // we want what it points to.
192}
193
194
195frame os::current_frame() {
196  intptr_t* fp = _get_previous_fp();
197  frame myframe((intptr_t*)os::current_stack_pointer(),
198                (intptr_t*)fp,
199                CAST_FROM_FN_PTR(address, os::current_frame));
200  if (os::is_first_C_frame(&myframe)) {
201    // stack is not walkable
202    return frame();
203  } else {
204    return os::get_sender_for_C_frame(&myframe);
205  }
206}
207
208// Utility functions
209
210// From IA32 System Programming Guide
211enum {
212  trap_page_fault = 0xE
213};
214
215extern "C" JNIEXPORT int
216JVM_handle_linux_signal(int sig,
217                        siginfo_t* info,
218                        void* ucVoid,
219                        int abort_if_unrecognized) {
220  ucontext_t* uc = (ucontext_t*) ucVoid;
221
222  Thread* t = ThreadLocalStorage::get_thread_slow();
223
224  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
225  // (no destructors can be run)
226  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
227
228  SignalHandlerMark shm(t);
229
230  // Note: it's not uncommon that JNI code uses signal/sigset to install
231  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
232  // or have a SIGILL handler when detecting CPU type). When that happens,
233  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
234  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
235  // that do not require siginfo/ucontext first.
236
237  if (sig == SIGPIPE || sig == SIGXFSZ) {
238    // allow chained handler to go first
239    if (os::Linux::chained_handler(sig, info, ucVoid)) {
240      return true;
241    } else {
242      if (PrintMiscellaneous && (WizardMode || Verbose)) {
243        char buf[64];
244        warning("Ignoring %s - see bugs 4229104 or 646499219",
245                os::exception_name(sig, buf, sizeof(buf)));
246      }
247      return true;
248    }
249  }
250
251  JavaThread* thread = NULL;
252  VMThread* vmthread = NULL;
253  if (os::Linux::signal_handlers_are_installed) {
254    if (t != NULL ){
255      if(t->is_Java_thread()) {
256        thread = (JavaThread*)t;
257      }
258      else if(t->is_VM_thread()){
259        vmthread = (VMThread *)t;
260      }
261    }
262  }
263/*
264  NOTE: does not seem to work on linux.
265  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
266    // can't decode this kind of signal
267    info = NULL;
268  } else {
269    assert(sig == info->si_signo, "bad siginfo");
270  }
271*/
272  // decide if this trap can be handled by a stub
273  address stub = NULL;
274
275  address pc          = NULL;
276
277  //%note os_trap_1
278  if (info != NULL && uc != NULL && thread != NULL) {
279    pc = (address) os::Linux::ucontext_get_pc(uc);
280
281    if (StubRoutines::is_safefetch_fault(pc)) {
282      uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
283      return 1;
284    }
285
286#ifndef AMD64
287    // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
288    // This can happen in any running code (currently more frequently in
289    // interpreter code but has been seen in compiled code)
290    if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
291      fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
292            "to unstable signal handling in this distribution.");
293    }
294#endif // AMD64
295
296    // Handle ALL stack overflow variations here
297    if (sig == SIGSEGV) {
298      address addr = (address) info->si_addr;
299
300      // check if fault address is within thread stack
301      if (addr < thread->stack_base() &&
302          addr >= thread->stack_base() - thread->stack_size()) {
303        // stack overflow
304        if (thread->in_stack_yellow_zone(addr)) {
305          thread->disable_stack_yellow_zone();
306          if (thread->thread_state() == _thread_in_Java) {
307            // Throw a stack overflow exception.  Guard pages will be reenabled
308            // while unwinding the stack.
309            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
310          } else {
311            // Thread was in the vm or native code.  Return and try to finish.
312            return 1;
313          }
314        } else if (thread->in_stack_red_zone(addr)) {
315          // Fatal red zone violation.  Disable the guard pages and fall through
316          // to handle_unexpected_exception way down below.
317          thread->disable_stack_red_zone();
318          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
319
320          // This is a likely cause, but hard to verify. Let's just print
321          // it as a hint.
322          tty->print_raw_cr("Please check if any of your loaded .so files has "
323                            "enabled executable stack (see man page execstack(8))");
324        } else {
325          // Accessing stack address below sp may cause SEGV if current
326          // thread has MAP_GROWSDOWN stack. This should only happen when
327          // current thread was created by user code with MAP_GROWSDOWN flag
328          // and then attached to VM. See notes in os_linux.cpp.
329          if (thread->osthread()->expanding_stack() == 0) {
330             thread->osthread()->set_expanding_stack();
331             if (os::Linux::manually_expand_stack(thread, addr)) {
332               thread->osthread()->clear_expanding_stack();
333               return 1;
334             }
335             thread->osthread()->clear_expanding_stack();
336          } else {
337             fatal("recursive segv. expanding stack.");
338          }
339        }
340      }
341    }
342
343    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
344      // Verify that OS save/restore AVX registers.
345      stub = VM_Version::cpuinfo_cont_addr();
346    }
347
348    if (thread->thread_state() == _thread_in_Java) {
349      // Java thread running in Java code => find exception handler if any
350      // a fault inside compiled code, the interpreter, or a stub
351
352      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
353        stub = SharedRuntime::get_poll_stub(pc);
354      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
355        // BugId 4454115: A read from a MappedByteBuffer can fault
356        // here if the underlying file has been truncated.
357        // Do not crash the VM in such a case.
358        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
359        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
360        if (nm != NULL && nm->has_unsafe_access()) {
361          stub = StubRoutines::handler_for_unsafe_access();
362        }
363      }
364      else
365
366#ifdef AMD64
367      if (sig == SIGFPE  &&
368          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
369        stub =
370          SharedRuntime::
371          continuation_for_implicit_exception(thread,
372                                              pc,
373                                              SharedRuntime::
374                                              IMPLICIT_DIVIDE_BY_ZERO);
375#else
376      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
377        // HACK: si_code does not work on linux 2.2.12-20!!!
378        int op = pc[0];
379        if (op == 0xDB) {
380          // FIST
381          // TODO: The encoding of D2I in i486.ad can cause an exception
382          // prior to the fist instruction if there was an invalid operation
383          // pending. We want to dismiss that exception. From the win_32
384          // side it also seems that if it really was the fist causing
385          // the exception that we do the d2i by hand with different
386          // rounding. Seems kind of weird.
387          // NOTE: that we take the exception at the NEXT floating point instruction.
388          assert(pc[0] == 0xDB, "not a FIST opcode");
389          assert(pc[1] == 0x14, "not a FIST opcode");
390          assert(pc[2] == 0x24, "not a FIST opcode");
391          return true;
392        } else if (op == 0xF7) {
393          // IDIV
394          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
395        } else {
396          // TODO: handle more cases if we are using other x86 instructions
397          //   that can generate SIGFPE signal on linux.
398          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
399          fatal("please update this code.");
400        }
401#endif // AMD64
402      } else if (sig == SIGSEGV &&
403               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
404          // Determination of interpreter/vtable stub/compiled code null exception
405          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
406      }
407    } else if (thread->thread_state() == _thread_in_vm &&
408               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
409               thread->doing_unsafe_access()) {
410        stub = StubRoutines::handler_for_unsafe_access();
411    }
412
413    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
414    // and the heap gets shrunk before the field access.
415    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
416      address addr = JNI_FastGetField::find_slowcase_pc(pc);
417      if (addr != (address)-1) {
418        stub = addr;
419      }
420    }
421
422    // Check to see if we caught the safepoint code in the
423    // process of write protecting the memory serialization page.
424    // It write enables the page immediately after protecting it
425    // so we can just return to retry the write.
426    if ((sig == SIGSEGV) &&
427        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
428      // Block current thread until the memory serialize page permission restored.
429      os::block_on_serialize_page_trap();
430      return true;
431    }
432  }
433
434#ifndef AMD64
435  // Execution protection violation
436  //
437  // This should be kept as the last step in the triage.  We don't
438  // have a dedicated trap number for a no-execute fault, so be
439  // conservative and allow other handlers the first shot.
440  //
441  // Note: We don't test that info->si_code == SEGV_ACCERR here.
442  // this si_code is so generic that it is almost meaningless; and
443  // the si_code for this condition may change in the future.
444  // Furthermore, a false-positive should be harmless.
445  if (UnguardOnExecutionViolation > 0 &&
446      (sig == SIGSEGV || sig == SIGBUS) &&
447      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
448    int page_size = os::vm_page_size();
449    address addr = (address) info->si_addr;
450    address pc = os::Linux::ucontext_get_pc(uc);
451    // Make sure the pc and the faulting address are sane.
452    //
453    // If an instruction spans a page boundary, and the page containing
454    // the beginning of the instruction is executable but the following
455    // page is not, the pc and the faulting address might be slightly
456    // different - we still want to unguard the 2nd page in this case.
457    //
458    // 15 bytes seems to be a (very) safe value for max instruction size.
459    bool pc_is_near_addr =
460      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
461    bool instr_spans_page_boundary =
462      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
463                       (intptr_t) page_size) > 0);
464
465    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
466      static volatile address last_addr =
467        (address) os::non_memory_address_word();
468
469      // In conservative mode, don't unguard unless the address is in the VM
470      if (addr != last_addr &&
471          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
472
473        // Set memory to RWX and retry
474        address page_start =
475          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
476        bool res = os::protect_memory((char*) page_start, page_size,
477                                      os::MEM_PROT_RWX);
478
479        if (PrintMiscellaneous && Verbose) {
480          char buf[256];
481          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
482                       "at " INTPTR_FORMAT
483                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
484                       page_start, (res ? "success" : "failed"), errno);
485          tty->print_raw_cr(buf);
486        }
487        stub = pc;
488
489        // Set last_addr so if we fault again at the same address, we don't end
490        // up in an endless loop.
491        //
492        // There are two potential complications here.  Two threads trapping at
493        // the same address at the same time could cause one of the threads to
494        // think it already unguarded, and abort the VM.  Likely very rare.
495        //
496        // The other race involves two threads alternately trapping at
497        // different addresses and failing to unguard the page, resulting in
498        // an endless loop.  This condition is probably even more unlikely than
499        // the first.
500        //
501        // Although both cases could be avoided by using locks or thread local
502        // last_addr, these solutions are unnecessary complication: this
503        // handler is a best-effort safety net, not a complete solution.  It is
504        // disabled by default and should only be used as a workaround in case
505        // we missed any no-execute-unsafe VM code.
506
507        last_addr = addr;
508      }
509    }
510  }
511#endif // !AMD64
512
513  if (stub != NULL) {
514    // save all thread context in case we need to restore it
515    if (thread != NULL) thread->set_saved_exception_pc(pc);
516
517    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
518    return true;
519  }
520
521  // signal-chaining
522  if (os::Linux::chained_handler(sig, info, ucVoid)) {
523     return true;
524  }
525
526  if (!abort_if_unrecognized) {
527    // caller wants another chance, so give it to him
528    return false;
529  }
530
531  if (pc == NULL && uc != NULL) {
532    pc = os::Linux::ucontext_get_pc(uc);
533  }
534
535  // unmask current signal
536  sigset_t newset;
537  sigemptyset(&newset);
538  sigaddset(&newset, sig);
539  sigprocmask(SIG_UNBLOCK, &newset, NULL);
540
541  VMError err(t, sig, pc, info, ucVoid);
542  err.report_and_die();
543
544  ShouldNotReachHere();
545  return true; // Mute compiler
546}
547
548void os::Linux::init_thread_fpu_state(void) {
549#ifndef AMD64
550  // set fpu to 53 bit precision
551  set_fpu_control_word(0x27f);
552#endif // !AMD64
553}
554
555int os::Linux::get_fpu_control_word(void) {
556#ifdef AMD64
557  return 0;
558#else
559  int fpu_control;
560  _FPU_GETCW(fpu_control);
561  return fpu_control & 0xffff;
562#endif // AMD64
563}
564
565void os::Linux::set_fpu_control_word(int fpu_control) {
566#ifndef AMD64
567  _FPU_SETCW(fpu_control);
568#endif // !AMD64
569}
570
571// Check that the linux kernel version is 2.4 or higher since earlier
572// versions do not support SSE without patches.
573bool os::supports_sse() {
574#ifdef AMD64
575  return true;
576#else
577  struct utsname uts;
578  if( uname(&uts) != 0 ) return false; // uname fails?
579  char *minor_string;
580  int major = strtol(uts.release,&minor_string,10);
581  int minor = strtol(minor_string+1,NULL,10);
582  bool result = (major > 2 || (major==2 && minor >= 4));
583#ifndef PRODUCT
584  if (PrintMiscellaneous && Verbose) {
585    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
586               major,minor, result ? "DOES" : "does NOT");
587  }
588#endif
589  return result;
590#endif // AMD64
591}
592
593bool os::is_allocatable(size_t bytes) {
594#ifdef AMD64
595  // unused on amd64?
596  return true;
597#else
598
599  if (bytes < 2 * G) {
600    return true;
601  }
602
603  char* addr = reserve_memory(bytes, NULL);
604
605  if (addr != NULL) {
606    release_memory(addr, bytes);
607  }
608
609  return addr != NULL;
610#endif // AMD64
611}
612
613////////////////////////////////////////////////////////////////////////////////
614// thread stack
615
616#ifdef AMD64
617size_t os::Linux::min_stack_allowed  = 64 * K;
618
619// amd64: pthread on amd64 is always in floating stack mode
620bool os::Linux::supports_variable_stack_size() {  return true; }
621#else
622size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
623
624#ifdef __GNUC__
625#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
626#endif
627
628// Test if pthread library can support variable thread stack size. LinuxThreads
629// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
630// in floating stack mode and NPTL support variable stack size.
631bool os::Linux::supports_variable_stack_size() {
632  if (os::Linux::is_NPTL()) {
633     // NPTL, yes
634     return true;
635
636  } else {
637    // Note: We can't control default stack size when creating a thread.
638    // If we use non-default stack size (pthread_attr_setstacksize), both
639    // floating stack and non-floating stack LinuxThreads will return the
640    // same value. This makes it impossible to implement this function by
641    // detecting thread stack size directly.
642    //
643    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
644    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
645    // %gs (either as LDT selector or GDT selector, depending on kernel)
646    // to access thread specific data.
647    //
648    // Note that %gs is a reserved glibc register since early 2001, so
649    // applications are not allowed to change its value (Ulrich Drepper from
650    // Redhat confirmed that all known offenders have been modified to use
651    // either %fs or TSD). In the worst case scenario, when VM is embedded in
652    // a native application that plays with %gs, we might see non-zero %gs
653    // even LinuxThreads is running in fixed stack mode. As the result, we'll
654    // return true and skip _thread_safety_check(), so we may not be able to
655    // detect stack-heap collisions. But otherwise it's harmless.
656    //
657#ifdef __GNUC__
658    return (GET_GS() != 0);
659#else
660    return false;
661#endif
662  }
663}
664#endif // AMD64
665
666// return default stack size for thr_type
667size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
668  // default stack size (compiler thread needs larger stack)
669#ifdef AMD64
670  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
671#else
672  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
673#endif // AMD64
674  return s;
675}
676
677size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
678  // Creating guard page is very expensive. Java thread has HotSpot
679  // guard page, only enable glibc guard page for non-Java threads.
680  return (thr_type == java_thread ? 0 : page_size());
681}
682
683// Java thread:
684//
685//   Low memory addresses
686//    +------------------------+
687//    |                        |\  JavaThread created by VM does not have glibc
688//    |    glibc guard page    | - guard, attached Java thread usually has
689//    |                        |/  1 page glibc guard.
690// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
691//    |                        |\
692//    |  HotSpot Guard Pages   | - red and yellow pages
693//    |                        |/
694//    +------------------------+ JavaThread::stack_yellow_zone_base()
695//    |                        |\
696//    |      Normal Stack      | -
697//    |                        |/
698// P2 +------------------------+ Thread::stack_base()
699//
700// Non-Java thread:
701//
702//   Low memory addresses
703//    +------------------------+
704//    |                        |\
705//    |  glibc guard page      | - usually 1 page
706//    |                        |/
707// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
708//    |                        |\
709//    |      Normal Stack      | -
710//    |                        |/
711// P2 +------------------------+ Thread::stack_base()
712//
713// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
714//    pthread_attr_getstack()
715
716static void current_stack_region(address * bottom, size_t * size) {
717  if (os::Linux::is_initial_thread()) {
718     // initial thread needs special handling because pthread_getattr_np()
719     // may return bogus value.
720     *bottom = os::Linux::initial_thread_stack_bottom();
721     *size   = os::Linux::initial_thread_stack_size();
722  } else {
723     pthread_attr_t attr;
724
725     int rslt = pthread_getattr_np(pthread_self(), &attr);
726
727     // JVM needs to know exact stack location, abort if it fails
728     if (rslt != 0) {
729       if (rslt == ENOMEM) {
730         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
731       } else {
732         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
733       }
734     }
735
736     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
737         fatal("Can not locate current stack attributes!");
738     }
739
740     pthread_attr_destroy(&attr);
741
742  }
743  assert(os::current_stack_pointer() >= *bottom &&
744         os::current_stack_pointer() < *bottom + *size, "just checking");
745}
746
747address os::current_stack_base() {
748  address bottom;
749  size_t size;
750  current_stack_region(&bottom, &size);
751  return (bottom + size);
752}
753
754size_t os::current_stack_size() {
755  // stack size includes normal stack and HotSpot guard pages
756  address bottom;
757  size_t size;
758  current_stack_region(&bottom, &size);
759  return size;
760}
761
762/////////////////////////////////////////////////////////////////////////////
763// helper functions for fatal error handler
764
765void os::print_context(outputStream *st, void *context) {
766  if (context == NULL) return;
767
768  ucontext_t *uc = (ucontext_t*)context;
769  st->print_cr("Registers:");
770#ifdef AMD64
771  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
772  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
773  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
774  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
775  st->cr();
776  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
777  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
778  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
779  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
780  st->cr();
781  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
782  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
783  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
784  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
785  st->cr();
786  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
787  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
788  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
789  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
790  st->cr();
791  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
792  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
793  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
794  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
795  st->cr();
796  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
797#else
798  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
799  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
800  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
801  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
802  st->cr();
803  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
804  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
805  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
806  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
807  st->cr();
808  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
809  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
810  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
811#endif // AMD64
812  st->cr();
813  st->cr();
814
815  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
816  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
817  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
818  st->cr();
819
820  // Note: it may be unsafe to inspect memory near pc. For example, pc may
821  // point to garbage if entry point in an nmethod is corrupted. Leave
822  // this at the end, and hope for the best.
823  address pc = os::Linux::ucontext_get_pc(uc);
824  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
825  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
826}
827
828void os::print_register_info(outputStream *st, void *context) {
829  if (context == NULL) return;
830
831  ucontext_t *uc = (ucontext_t*)context;
832
833  st->print_cr("Register to memory mapping:");
834  st->cr();
835
836  // this is horrendously verbose but the layout of the registers in the
837  // context does not match how we defined our abstract Register set, so
838  // we can't just iterate through the gregs area
839
840  // this is only for the "general purpose" registers
841
842#ifdef AMD64
843  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
844  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
845  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
846  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
847  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
848  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
849  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
850  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
851  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
852  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
853  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
854  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
855  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
856  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
857  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
858  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
859#else
860  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
861  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
862  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
863  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
864  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
865  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
866  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
867  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
868#endif // AMD64
869
870  st->cr();
871}
872
873void os::setup_fpu() {
874#ifndef AMD64
875  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
876  __asm__ volatile (  "fldcw (%0)" :
877                      : "r" (fpu_cntrl) : "memory");
878#endif // !AMD64
879}
880
881#ifndef PRODUCT
882void os::verify_stack_alignment() {
883#ifdef AMD64
884  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
885#endif
886}
887#endif
888
889
890/*
891 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
892 * updates (JDK-8023956).
893 */
894void os::workaround_expand_exec_shield_cs_limit() {
895#if defined(IA32)
896  size_t page_size = os::vm_page_size();
897  /*
898   * Take the highest VA the OS will give us and exec
899   *
900   * Although using -(pagesz) as mmap hint works on newer kernel as you would
901   * think, older variants affected by this work-around don't (search forward only).
902   *
903   * On the affected distributions, we understand the memory layout to be:
904   *
905   *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
906   *
907   * A few pages south main stack will do it.
908   *
909   * If we are embedded in an app other than launcher (initial != main stack),
910   * we don't have much control or understanding of the address space, just let it slide.
911   */
912  char* hint = (char*) (Linux::initial_thread_stack_bottom() -
913                        ((StackYellowPages + StackRedPages + 1) * page_size));
914  char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
915  if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
916    return; // No matter, we tried, best effort.
917  }
918
919  MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
920
921  if (PrintMiscellaneous && (Verbose || WizardMode)) {
922     tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
923  }
924
925  // Some code to exec: the 'ret' instruction
926  codebuf[0] = 0xC3;
927
928  // Call the code in the codebuf
929  __asm__ volatile("call *%0" : : "r"(codebuf));
930
931  // keep the page mapped so CS limit isn't reduced.
932#endif
933}
934
935int os::extra_bang_size_in_bytes() {
936  // JDK-8050147 requires the full cache line bang for x86.
937  return VM_Version::L1_line_size();
938}
939