os_linux_x86.cpp revision 6178:8867fec28aa1
12786Ssos/*
22786Ssos * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
32786Ssos * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
42786Ssos *
52786Ssos * This code is free software; you can redistribute it and/or modify it
62786Ssos * under the terms of the GNU General Public License version 2 only, as
72786Ssos * published by the Free Software Foundation.
82786Ssos *
92786Ssos * This code is distributed in the hope that it will be useful, but WITHOUT
102786Ssos * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
112786Ssos * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
122786Ssos * version 2 for more details (a copy is included in the LICENSE file that
132786Ssos * accompanied this code).
142786Ssos *
152786Ssos * You should have received a copy of the GNU General Public License version
162786Ssos * 2 along with this work; if not, write to the Free Software Foundation,
172786Ssos * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
182786Ssos *
197420Ssos * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
202786Ssos * or visit www.oracle.com if you need additional information or have any
212786Ssos * questions.
222786Ssos *
232786Ssos */
242786Ssos
252786Ssos// no precompiled headers
262786Ssos#include "asm/macroAssembler.hpp"
272786Ssos#include "classfile/classLoader.hpp"
282786Ssos#include "classfile/systemDictionary.hpp"
292786Ssos#include "classfile/vmSymbols.hpp"
302786Ssos#include "code/icBuffer.hpp"
312786Ssos#include "code/vtableStubs.hpp"
322786Ssos#include "interpreter/interpreter.hpp"
332786Ssos#include "jvm_linux.h"
342786Ssos#include "memory/allocation.inline.hpp"
352786Ssos#include "mutex_linux.inline.hpp"
362786Ssos#include "os_share_linux.hpp"
372786Ssos#include "prims/jniFastGetField.hpp"
382786Ssos#include "prims/jvm.h"
392786Ssos#include "prims/jvm_misc.hpp"
402786Ssos#include "runtime/arguments.hpp"
412786Ssos#include "runtime/extendedPC.hpp"
422786Ssos#include "runtime/frame.inline.hpp"
432786Ssos#include "runtime/interfaceSupport.hpp"
442786Ssos#include "runtime/java.hpp"
452786Ssos#include "runtime/javaCalls.hpp"
462786Ssos#include "runtime/mutexLocker.hpp"
472786Ssos#include "runtime/osThread.hpp"
482786Ssos#include "runtime/sharedRuntime.hpp"
492786Ssos#include "runtime/stubRoutines.hpp"
502786Ssos#include "runtime/thread.inline.hpp"
512786Ssos#include "runtime/timer.hpp"
522786Ssos#include "services/memTracker.hpp"
532786Ssos#include "utilities/events.hpp"
542786Ssos#include "utilities/vmError.hpp"
552786Ssos
562786Ssos// put OS-includes here
572786Ssos# include <sys/types.h>
582786Ssos# include <sys/mman.h>
592786Ssos# include <pthread.h>
602786Ssos# include <signal.h>
612786Ssos# include <errno.h>
626851Ssos# include <dlfcn.h>
632786Ssos# include <stdlib.h>
642786Ssos# include <stdio.h>
652786Ssos# include <unistd.h>
662786Ssos# include <sys/resource.h>
672786Ssos# include <pthread.h>
682786Ssos# include <sys/stat.h>
692786Ssos# include <sys/time.h>
702786Ssos# include <sys/utsname.h>
712786Ssos# include <sys/socket.h>
722786Ssos# include <sys/wait.h>
732786Ssos# include <pwd.h>
742786Ssos# include <poll.h>
752786Ssos# include <ucontext.h>
762786Ssos# include <fpu_control.h>
772786Ssos
782786Ssos#ifdef AMD64
792786Ssos#define REG_SP REG_RSP
802786Ssos#define REG_PC REG_RIP
815994Ssos#define REG_FP REG_RBP
822786Ssos#define SPELL_REG_SP "rsp"
832786Ssos#define SPELL_REG_FP "rbp"
842786Ssos#else
852786Ssos#define REG_SP REG_UESP
862786Ssos#define REG_PC REG_EIP
872786Ssos#define REG_FP REG_EBP
886045Ssos#define SPELL_REG_SP "esp"
892786Ssos#define SPELL_REG_FP "ebp"
902786Ssos#endif // AMD64
912786Ssos
922786Ssosaddress os::current_stack_pointer() {
932786Ssos#ifdef SPARC_WORKS
9418194Ssos  register void *esp;
952786Ssos  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
962786Ssos  return (address) ((char*)esp + sizeof(long)*2);
972786Ssos#elif defined(__clang__)
982786Ssos  intptr_t* esp;
992786Ssos  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
1002786Ssos  return (address) esp;
1012786Ssos#else
1022786Ssos  register void *esp __asm__ (SPELL_REG_SP);
1032786Ssos  return (address) esp;
1042786Ssos#endif
1052786Ssos}
1062786Ssos
1072786Ssoschar* os::non_memory_address_word() {
1086851Ssos  // Must never look like an address returned by reserve_memory,
1092786Ssos  // even in its subfields (as defined by the CPU immediate fields,
1106851Ssos  // if the CPU splits constants across multiple instructions).
1116851Ssos
1126851Ssos  return (char*) -1;
113}
114
115void os::initialize_thread(Thread* thr) {
116// Nothing to do.
117}
118
119address os::Linux::ucontext_get_pc(ucontext_t * uc) {
120  return (address)uc->uc_mcontext.gregs[REG_PC];
121}
122
123intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
124  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
125}
126
127intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
128  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
129}
130
131// For Forte Analyzer AsyncGetCallTrace profiling support - thread
132// is currently interrupted by SIGPROF.
133// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
134// frames. Currently we don't do that on Linux, so it's the same as
135// os::fetch_frame_from_context().
136ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
137  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
138
139  assert(thread != NULL, "just checking");
140  assert(ret_sp != NULL, "just checking");
141  assert(ret_fp != NULL, "just checking");
142
143  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
144}
145
146ExtendedPC os::fetch_frame_from_context(void* ucVoid,
147                    intptr_t** ret_sp, intptr_t** ret_fp) {
148
149  ExtendedPC  epc;
150  ucontext_t* uc = (ucontext_t*)ucVoid;
151
152  if (uc != NULL) {
153    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
154    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
155    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
156  } else {
157    // construct empty ExtendedPC for return value checking
158    epc = ExtendedPC(NULL);
159    if (ret_sp) *ret_sp = (intptr_t *)NULL;
160    if (ret_fp) *ret_fp = (intptr_t *)NULL;
161  }
162
163  return epc;
164}
165
166frame os::fetch_frame_from_context(void* ucVoid) {
167  intptr_t* sp;
168  intptr_t* fp;
169  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
170  return frame(sp, fp, epc.pc());
171}
172
173// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
174// turned off by -fomit-frame-pointer,
175frame os::get_sender_for_C_frame(frame* fr) {
176  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
177}
178
179intptr_t* _get_previous_fp() {
180#ifdef SPARC_WORKS
181  register intptr_t **ebp;
182  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
183#elif defined(__clang__)
184  intptr_t **ebp;
185  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
186#else
187  register intptr_t **ebp __asm__ (SPELL_REG_FP);
188#endif
189  return (intptr_t*) *ebp;   // we want what it points to.
190}
191
192
193frame os::current_frame() {
194  intptr_t* fp = _get_previous_fp();
195  frame myframe((intptr_t*)os::current_stack_pointer(),
196                (intptr_t*)fp,
197                CAST_FROM_FN_PTR(address, os::current_frame));
198  if (os::is_first_C_frame(&myframe)) {
199    // stack is not walkable
200    return frame();
201  } else {
202    return os::get_sender_for_C_frame(&myframe);
203  }
204}
205
206// Utility functions
207
208// From IA32 System Programming Guide
209enum {
210  trap_page_fault = 0xE
211};
212
213extern "C" JNIEXPORT int
214JVM_handle_linux_signal(int sig,
215                        siginfo_t* info,
216                        void* ucVoid,
217                        int abort_if_unrecognized) {
218  ucontext_t* uc = (ucontext_t*) ucVoid;
219
220  Thread* t = ThreadLocalStorage::get_thread_slow();
221
222  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
223  // (no destructors can be run)
224  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
225
226  SignalHandlerMark shm(t);
227
228  // Note: it's not uncommon that JNI code uses signal/sigset to install
229  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
230  // or have a SIGILL handler when detecting CPU type). When that happens,
231  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
232  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
233  // that do not require siginfo/ucontext first.
234
235  if (sig == SIGPIPE || sig == SIGXFSZ) {
236    // allow chained handler to go first
237    if (os::Linux::chained_handler(sig, info, ucVoid)) {
238      return true;
239    } else {
240      if (PrintMiscellaneous && (WizardMode || Verbose)) {
241        char buf[64];
242        warning("Ignoring %s - see bugs 4229104 or 646499219",
243                os::exception_name(sig, buf, sizeof(buf)));
244      }
245      return true;
246    }
247  }
248
249  JavaThread* thread = NULL;
250  VMThread* vmthread = NULL;
251  if (os::Linux::signal_handlers_are_installed) {
252    if (t != NULL ){
253      if(t->is_Java_thread()) {
254        thread = (JavaThread*)t;
255      }
256      else if(t->is_VM_thread()){
257        vmthread = (VMThread *)t;
258      }
259    }
260  }
261/*
262  NOTE: does not seem to work on linux.
263  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
264    // can't decode this kind of signal
265    info = NULL;
266  } else {
267    assert(sig == info->si_signo, "bad siginfo");
268  }
269*/
270  // decide if this trap can be handled by a stub
271  address stub = NULL;
272
273  address pc          = NULL;
274
275  //%note os_trap_1
276  if (info != NULL && uc != NULL && thread != NULL) {
277    pc = (address) os::Linux::ucontext_get_pc(uc);
278
279    if (StubRoutines::is_safefetch_fault(pc)) {
280      uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
281      return 1;
282    }
283
284#ifndef AMD64
285    // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
286    // This can happen in any running code (currently more frequently in
287    // interpreter code but has been seen in compiled code)
288    if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
289      fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
290            "to unstable signal handling in this distribution.");
291    }
292#endif // AMD64
293
294    // Handle ALL stack overflow variations here
295    if (sig == SIGSEGV) {
296      address addr = (address) info->si_addr;
297
298      // check if fault address is within thread stack
299      if (addr < thread->stack_base() &&
300          addr >= thread->stack_base() - thread->stack_size()) {
301        // stack overflow
302        if (thread->in_stack_yellow_zone(addr)) {
303          thread->disable_stack_yellow_zone();
304          if (thread->thread_state() == _thread_in_Java) {
305            // Throw a stack overflow exception.  Guard pages will be reenabled
306            // while unwinding the stack.
307            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
308          } else {
309            // Thread was in the vm or native code.  Return and try to finish.
310            return 1;
311          }
312        } else if (thread->in_stack_red_zone(addr)) {
313          // Fatal red zone violation.  Disable the guard pages and fall through
314          // to handle_unexpected_exception way down below.
315          thread->disable_stack_red_zone();
316          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
317
318          // This is a likely cause, but hard to verify. Let's just print
319          // it as a hint.
320          tty->print_raw_cr("Please check if any of your loaded .so files has "
321                            "enabled executable stack (see man page execstack(8))");
322        } else {
323          // Accessing stack address below sp may cause SEGV if current
324          // thread has MAP_GROWSDOWN stack. This should only happen when
325          // current thread was created by user code with MAP_GROWSDOWN flag
326          // and then attached to VM. See notes in os_linux.cpp.
327          if (thread->osthread()->expanding_stack() == 0) {
328             thread->osthread()->set_expanding_stack();
329             if (os::Linux::manually_expand_stack(thread, addr)) {
330               thread->osthread()->clear_expanding_stack();
331               return 1;
332             }
333             thread->osthread()->clear_expanding_stack();
334          } else {
335             fatal("recursive segv. expanding stack.");
336          }
337        }
338      }
339    }
340
341    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
342      // Verify that OS save/restore AVX registers.
343      stub = VM_Version::cpuinfo_cont_addr();
344    }
345
346    if (thread->thread_state() == _thread_in_Java) {
347      // Java thread running in Java code => find exception handler if any
348      // a fault inside compiled code, the interpreter, or a stub
349
350      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
351        stub = SharedRuntime::get_poll_stub(pc);
352      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
353        // BugId 4454115: A read from a MappedByteBuffer can fault
354        // here if the underlying file has been truncated.
355        // Do not crash the VM in such a case.
356        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
357        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
358        if (nm != NULL && nm->has_unsafe_access()) {
359          stub = StubRoutines::handler_for_unsafe_access();
360        }
361      }
362      else
363
364#ifdef AMD64
365      if (sig == SIGFPE  &&
366          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
367        stub =
368          SharedRuntime::
369          continuation_for_implicit_exception(thread,
370                                              pc,
371                                              SharedRuntime::
372                                              IMPLICIT_DIVIDE_BY_ZERO);
373#else
374      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
375        // HACK: si_code does not work on linux 2.2.12-20!!!
376        int op = pc[0];
377        if (op == 0xDB) {
378          // FIST
379          // TODO: The encoding of D2I in i486.ad can cause an exception
380          // prior to the fist instruction if there was an invalid operation
381          // pending. We want to dismiss that exception. From the win_32
382          // side it also seems that if it really was the fist causing
383          // the exception that we do the d2i by hand with different
384          // rounding. Seems kind of weird.
385          // NOTE: that we take the exception at the NEXT floating point instruction.
386          assert(pc[0] == 0xDB, "not a FIST opcode");
387          assert(pc[1] == 0x14, "not a FIST opcode");
388          assert(pc[2] == 0x24, "not a FIST opcode");
389          return true;
390        } else if (op == 0xF7) {
391          // IDIV
392          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
393        } else {
394          // TODO: handle more cases if we are using other x86 instructions
395          //   that can generate SIGFPE signal on linux.
396          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
397          fatal("please update this code.");
398        }
399#endif // AMD64
400      } else if (sig == SIGSEGV &&
401               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
402          // Determination of interpreter/vtable stub/compiled code null exception
403          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
404      }
405    } else if (thread->thread_state() == _thread_in_vm &&
406               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
407               thread->doing_unsafe_access()) {
408        stub = StubRoutines::handler_for_unsafe_access();
409    }
410
411    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
412    // and the heap gets shrunk before the field access.
413    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
414      address addr = JNI_FastGetField::find_slowcase_pc(pc);
415      if (addr != (address)-1) {
416        stub = addr;
417      }
418    }
419
420    // Check to see if we caught the safepoint code in the
421    // process of write protecting the memory serialization page.
422    // It write enables the page immediately after protecting it
423    // so we can just return to retry the write.
424    if ((sig == SIGSEGV) &&
425        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
426      // Block current thread until the memory serialize page permission restored.
427      os::block_on_serialize_page_trap();
428      return true;
429    }
430  }
431
432#ifndef AMD64
433  // Execution protection violation
434  //
435  // This should be kept as the last step in the triage.  We don't
436  // have a dedicated trap number for a no-execute fault, so be
437  // conservative and allow other handlers the first shot.
438  //
439  // Note: We don't test that info->si_code == SEGV_ACCERR here.
440  // this si_code is so generic that it is almost meaningless; and
441  // the si_code for this condition may change in the future.
442  // Furthermore, a false-positive should be harmless.
443  if (UnguardOnExecutionViolation > 0 &&
444      (sig == SIGSEGV || sig == SIGBUS) &&
445      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
446    int page_size = os::vm_page_size();
447    address addr = (address) info->si_addr;
448    address pc = os::Linux::ucontext_get_pc(uc);
449    // Make sure the pc and the faulting address are sane.
450    //
451    // If an instruction spans a page boundary, and the page containing
452    // the beginning of the instruction is executable but the following
453    // page is not, the pc and the faulting address might be slightly
454    // different - we still want to unguard the 2nd page in this case.
455    //
456    // 15 bytes seems to be a (very) safe value for max instruction size.
457    bool pc_is_near_addr =
458      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
459    bool instr_spans_page_boundary =
460      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
461                       (intptr_t) page_size) > 0);
462
463    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
464      static volatile address last_addr =
465        (address) os::non_memory_address_word();
466
467      // In conservative mode, don't unguard unless the address is in the VM
468      if (addr != last_addr &&
469          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
470
471        // Set memory to RWX and retry
472        address page_start =
473          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
474        bool res = os::protect_memory((char*) page_start, page_size,
475                                      os::MEM_PROT_RWX);
476
477        if (PrintMiscellaneous && Verbose) {
478          char buf[256];
479          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
480                       "at " INTPTR_FORMAT
481                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
482                       page_start, (res ? "success" : "failed"), errno);
483          tty->print_raw_cr(buf);
484        }
485        stub = pc;
486
487        // Set last_addr so if we fault again at the same address, we don't end
488        // up in an endless loop.
489        //
490        // There are two potential complications here.  Two threads trapping at
491        // the same address at the same time could cause one of the threads to
492        // think it already unguarded, and abort the VM.  Likely very rare.
493        //
494        // The other race involves two threads alternately trapping at
495        // different addresses and failing to unguard the page, resulting in
496        // an endless loop.  This condition is probably even more unlikely than
497        // the first.
498        //
499        // Although both cases could be avoided by using locks or thread local
500        // last_addr, these solutions are unnecessary complication: this
501        // handler is a best-effort safety net, not a complete solution.  It is
502        // disabled by default and should only be used as a workaround in case
503        // we missed any no-execute-unsafe VM code.
504
505        last_addr = addr;
506      }
507    }
508  }
509#endif // !AMD64
510
511  if (stub != NULL) {
512    // save all thread context in case we need to restore it
513    if (thread != NULL) thread->set_saved_exception_pc(pc);
514
515    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
516    return true;
517  }
518
519  // signal-chaining
520  if (os::Linux::chained_handler(sig, info, ucVoid)) {
521     return true;
522  }
523
524  if (!abort_if_unrecognized) {
525    // caller wants another chance, so give it to him
526    return false;
527  }
528
529  if (pc == NULL && uc != NULL) {
530    pc = os::Linux::ucontext_get_pc(uc);
531  }
532
533  // unmask current signal
534  sigset_t newset;
535  sigemptyset(&newset);
536  sigaddset(&newset, sig);
537  sigprocmask(SIG_UNBLOCK, &newset, NULL);
538
539  VMError err(t, sig, pc, info, ucVoid);
540  err.report_and_die();
541
542  ShouldNotReachHere();
543}
544
545void os::Linux::init_thread_fpu_state(void) {
546#ifndef AMD64
547  // set fpu to 53 bit precision
548  set_fpu_control_word(0x27f);
549#endif // !AMD64
550}
551
552int os::Linux::get_fpu_control_word(void) {
553#ifdef AMD64
554  return 0;
555#else
556  int fpu_control;
557  _FPU_GETCW(fpu_control);
558  return fpu_control & 0xffff;
559#endif // AMD64
560}
561
562void os::Linux::set_fpu_control_word(int fpu_control) {
563#ifndef AMD64
564  _FPU_SETCW(fpu_control);
565#endif // !AMD64
566}
567
568// Check that the linux kernel version is 2.4 or higher since earlier
569// versions do not support SSE without patches.
570bool os::supports_sse() {
571#ifdef AMD64
572  return true;
573#else
574  struct utsname uts;
575  if( uname(&uts) != 0 ) return false; // uname fails?
576  char *minor_string;
577  int major = strtol(uts.release,&minor_string,10);
578  int minor = strtol(minor_string+1,NULL,10);
579  bool result = (major > 2 || (major==2 && minor >= 4));
580#ifndef PRODUCT
581  if (PrintMiscellaneous && Verbose) {
582    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
583               major,minor, result ? "DOES" : "does NOT");
584  }
585#endif
586  return result;
587#endif // AMD64
588}
589
590bool os::is_allocatable(size_t bytes) {
591#ifdef AMD64
592  // unused on amd64?
593  return true;
594#else
595
596  if (bytes < 2 * G) {
597    return true;
598  }
599
600  char* addr = reserve_memory(bytes, NULL);
601
602  if (addr != NULL) {
603    release_memory(addr, bytes);
604  }
605
606  return addr != NULL;
607#endif // AMD64
608}
609
610////////////////////////////////////////////////////////////////////////////////
611// thread stack
612
613#ifdef AMD64
614size_t os::Linux::min_stack_allowed  = 64 * K;
615
616// amd64: pthread on amd64 is always in floating stack mode
617bool os::Linux::supports_variable_stack_size() {  return true; }
618#else
619size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
620
621#ifdef __GNUC__
622#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
623#endif
624
625// Test if pthread library can support variable thread stack size. LinuxThreads
626// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
627// in floating stack mode and NPTL support variable stack size.
628bool os::Linux::supports_variable_stack_size() {
629  if (os::Linux::is_NPTL()) {
630     // NPTL, yes
631     return true;
632
633  } else {
634    // Note: We can't control default stack size when creating a thread.
635    // If we use non-default stack size (pthread_attr_setstacksize), both
636    // floating stack and non-floating stack LinuxThreads will return the
637    // same value. This makes it impossible to implement this function by
638    // detecting thread stack size directly.
639    //
640    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
641    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
642    // %gs (either as LDT selector or GDT selector, depending on kernel)
643    // to access thread specific data.
644    //
645    // Note that %gs is a reserved glibc register since early 2001, so
646    // applications are not allowed to change its value (Ulrich Drepper from
647    // Redhat confirmed that all known offenders have been modified to use
648    // either %fs or TSD). In the worst case scenario, when VM is embedded in
649    // a native application that plays with %gs, we might see non-zero %gs
650    // even LinuxThreads is running in fixed stack mode. As the result, we'll
651    // return true and skip _thread_safety_check(), so we may not be able to
652    // detect stack-heap collisions. But otherwise it's harmless.
653    //
654#ifdef __GNUC__
655    return (GET_GS() != 0);
656#else
657    return false;
658#endif
659  }
660}
661#endif // AMD64
662
663// return default stack size for thr_type
664size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
665  // default stack size (compiler thread needs larger stack)
666#ifdef AMD64
667  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
668#else
669  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
670#endif // AMD64
671  return s;
672}
673
674size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
675  // Creating guard page is very expensive. Java thread has HotSpot
676  // guard page, only enable glibc guard page for non-Java threads.
677  return (thr_type == java_thread ? 0 : page_size());
678}
679
680// Java thread:
681//
682//   Low memory addresses
683//    +------------------------+
684//    |                        |\  JavaThread created by VM does not have glibc
685//    |    glibc guard page    | - guard, attached Java thread usually has
686//    |                        |/  1 page glibc guard.
687// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
688//    |                        |\
689//    |  HotSpot Guard Pages   | - red and yellow pages
690//    |                        |/
691//    +------------------------+ JavaThread::stack_yellow_zone_base()
692//    |                        |\
693//    |      Normal Stack      | -
694//    |                        |/
695// P2 +------------------------+ Thread::stack_base()
696//
697// Non-Java thread:
698//
699//   Low memory addresses
700//    +------------------------+
701//    |                        |\
702//    |  glibc guard page      | - usually 1 page
703//    |                        |/
704// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
705//    |                        |\
706//    |      Normal Stack      | -
707//    |                        |/
708// P2 +------------------------+ Thread::stack_base()
709//
710// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
711//    pthread_attr_getstack()
712
713static void current_stack_region(address * bottom, size_t * size) {
714  if (os::Linux::is_initial_thread()) {
715     // initial thread needs special handling because pthread_getattr_np()
716     // may return bogus value.
717     *bottom = os::Linux::initial_thread_stack_bottom();
718     *size   = os::Linux::initial_thread_stack_size();
719  } else {
720     pthread_attr_t attr;
721
722     int rslt = pthread_getattr_np(pthread_self(), &attr);
723
724     // JVM needs to know exact stack location, abort if it fails
725     if (rslt != 0) {
726       if (rslt == ENOMEM) {
727         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
728       } else {
729         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
730       }
731     }
732
733     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
734         fatal("Can not locate current stack attributes!");
735     }
736
737     pthread_attr_destroy(&attr);
738
739  }
740  assert(os::current_stack_pointer() >= *bottom &&
741         os::current_stack_pointer() < *bottom + *size, "just checking");
742}
743
744address os::current_stack_base() {
745  address bottom;
746  size_t size;
747  current_stack_region(&bottom, &size);
748  return (bottom + size);
749}
750
751size_t os::current_stack_size() {
752  // stack size includes normal stack and HotSpot guard pages
753  address bottom;
754  size_t size;
755  current_stack_region(&bottom, &size);
756  return size;
757}
758
759/////////////////////////////////////////////////////////////////////////////
760// helper functions for fatal error handler
761
762void os::print_context(outputStream *st, void *context) {
763  if (context == NULL) return;
764
765  ucontext_t *uc = (ucontext_t*)context;
766  st->print_cr("Registers:");
767#ifdef AMD64
768  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
769  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
770  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
771  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
772  st->cr();
773  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
774  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
775  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
776  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
777  st->cr();
778  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
779  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
780  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
781  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
782  st->cr();
783  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
784  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
785  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
786  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
787  st->cr();
788  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
789  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
790  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
791  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
792  st->cr();
793  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
794#else
795  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
796  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
797  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
798  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
799  st->cr();
800  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
801  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
802  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
803  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
804  st->cr();
805  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
806  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
807  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
808#endif // AMD64
809  st->cr();
810  st->cr();
811
812  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
813  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
814  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
815  st->cr();
816
817  // Note: it may be unsafe to inspect memory near pc. For example, pc may
818  // point to garbage if entry point in an nmethod is corrupted. Leave
819  // this at the end, and hope for the best.
820  address pc = os::Linux::ucontext_get_pc(uc);
821  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
822  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
823}
824
825void os::print_register_info(outputStream *st, void *context) {
826  if (context == NULL) return;
827
828  ucontext_t *uc = (ucontext_t*)context;
829
830  st->print_cr("Register to memory mapping:");
831  st->cr();
832
833  // this is horrendously verbose but the layout of the registers in the
834  // context does not match how we defined our abstract Register set, so
835  // we can't just iterate through the gregs area
836
837  // this is only for the "general purpose" registers
838
839#ifdef AMD64
840  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
841  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
842  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
843  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
844  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
845  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
846  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
847  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
848  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
849  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
850  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
851  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
852  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
853  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
854  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
855  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
856#else
857  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
858  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
859  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
860  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
861  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
862  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
863  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
864  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
865#endif // AMD64
866
867  st->cr();
868}
869
870void os::setup_fpu() {
871#ifndef AMD64
872  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
873  __asm__ volatile (  "fldcw (%0)" :
874                      : "r" (fpu_cntrl) : "memory");
875#endif // !AMD64
876}
877
878#ifndef PRODUCT
879void os::verify_stack_alignment() {
880#ifdef AMD64
881  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
882#endif
883}
884#endif
885
886
887/*
888 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
889 * updates (JDK-8023956).
890 */
891void os::workaround_expand_exec_shield_cs_limit() {
892#if defined(IA32)
893  size_t page_size = os::vm_page_size();
894  /*
895   * Take the highest VA the OS will give us and exec
896   *
897   * Although using -(pagesz) as mmap hint works on newer kernel as you would
898   * think, older variants affected by this work-around don't (search forward only).
899   *
900   * On the affected distributions, we understand the memory layout to be:
901   *
902   *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
903   *
904   * A few pages south main stack will do it.
905   *
906   * If we are embedded in an app other than launcher (initial != main stack),
907   * we don't have much control or understanding of the address space, just let it slide.
908   */
909  char* hint = (char*) (Linux::initial_thread_stack_bottom() -
910                        ((StackYellowPages + StackRedPages + 1) * page_size));
911  char* codebuf = os::reserve_memory(page_size, hint);
912  if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
913    return; // No matter, we tried, best effort.
914  }
915
916  MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
917
918  if (PrintMiscellaneous && (Verbose || WizardMode)) {
919     tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
920  }
921
922  // Some code to exec: the 'ret' instruction
923  codebuf[0] = 0xC3;
924
925  // Call the code in the codebuf
926  __asm__ volatile("call *%0" : : "r"(codebuf));
927
928  // keep the page mapped so CS limit isn't reduced.
929#endif
930}
931