os_linux_x86.cpp revision 5346:899ecf76b570
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "os_share_linux.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <errno.h>
61# include <dlfcn.h>
62# include <stdlib.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <pthread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/utsname.h>
70# include <sys/socket.h>
71# include <sys/wait.h>
72# include <pwd.h>
73# include <poll.h>
74# include <ucontext.h>
75# include <fpu_control.h>
76
77#ifdef AMD64
78#define REG_SP REG_RSP
79#define REG_PC REG_RIP
80#define REG_FP REG_RBP
81#define SPELL_REG_SP "rsp"
82#define SPELL_REG_FP "rbp"
83#else
84#define REG_SP REG_UESP
85#define REG_PC REG_EIP
86#define REG_FP REG_EBP
87#define SPELL_REG_SP "esp"
88#define SPELL_REG_FP "ebp"
89#endif // AMD64
90
91address os::current_stack_pointer() {
92#ifdef SPARC_WORKS
93  register void *esp;
94  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
95  return (address) ((char*)esp + sizeof(long)*2);
96#elif defined(__clang__)
97  intptr_t* esp;
98  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
99  return (address) esp;
100#else
101  register void *esp __asm__ (SPELL_REG_SP);
102  return (address) esp;
103#endif
104}
105
106char* os::non_memory_address_word() {
107  // Must never look like an address returned by reserve_memory,
108  // even in its subfields (as defined by the CPU immediate fields,
109  // if the CPU splits constants across multiple instructions).
110
111  return (char*) -1;
112}
113
114void os::initialize_thread(Thread* thr) {
115// Nothing to do.
116}
117
118address os::Linux::ucontext_get_pc(ucontext_t * uc) {
119  return (address)uc->uc_mcontext.gregs[REG_PC];
120}
121
122intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
123  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
124}
125
126intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
127  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
128}
129
130// For Forte Analyzer AsyncGetCallTrace profiling support - thread
131// is currently interrupted by SIGPROF.
132// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
133// frames. Currently we don't do that on Linux, so it's the same as
134// os::fetch_frame_from_context().
135ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
136  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
137
138  assert(thread != NULL, "just checking");
139  assert(ret_sp != NULL, "just checking");
140  assert(ret_fp != NULL, "just checking");
141
142  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
143}
144
145ExtendedPC os::fetch_frame_from_context(void* ucVoid,
146                    intptr_t** ret_sp, intptr_t** ret_fp) {
147
148  ExtendedPC  epc;
149  ucontext_t* uc = (ucontext_t*)ucVoid;
150
151  if (uc != NULL) {
152    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
153    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
154    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
155  } else {
156    // construct empty ExtendedPC for return value checking
157    epc = ExtendedPC(NULL);
158    if (ret_sp) *ret_sp = (intptr_t *)NULL;
159    if (ret_fp) *ret_fp = (intptr_t *)NULL;
160  }
161
162  return epc;
163}
164
165frame os::fetch_frame_from_context(void* ucVoid) {
166  intptr_t* sp;
167  intptr_t* fp;
168  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
169  return frame(sp, fp, epc.pc());
170}
171
172// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
173// turned off by -fomit-frame-pointer,
174frame os::get_sender_for_C_frame(frame* fr) {
175  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
176}
177
178intptr_t* _get_previous_fp() {
179#ifdef SPARC_WORKS
180  register intptr_t **ebp;
181  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
182#elif defined(__clang__)
183  intptr_t **ebp;
184  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
185#else
186  register intptr_t **ebp __asm__ (SPELL_REG_FP);
187#endif
188  return (intptr_t*) *ebp;   // we want what it points to.
189}
190
191
192frame os::current_frame() {
193  intptr_t* fp = _get_previous_fp();
194  frame myframe((intptr_t*)os::current_stack_pointer(),
195                (intptr_t*)fp,
196                CAST_FROM_FN_PTR(address, os::current_frame));
197  if (os::is_first_C_frame(&myframe)) {
198    // stack is not walkable
199    return frame();
200  } else {
201    return os::get_sender_for_C_frame(&myframe);
202  }
203}
204
205// Utility functions
206
207// From IA32 System Programming Guide
208enum {
209  trap_page_fault = 0xE
210};
211
212extern "C" JNIEXPORT int
213JVM_handle_linux_signal(int sig,
214                        siginfo_t* info,
215                        void* ucVoid,
216                        int abort_if_unrecognized) {
217  ucontext_t* uc = (ucontext_t*) ucVoid;
218
219  Thread* t = ThreadLocalStorage::get_thread_slow();
220
221  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
222  // (no destructors can be run)
223  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
224
225  SignalHandlerMark shm(t);
226
227  // Note: it's not uncommon that JNI code uses signal/sigset to install
228  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
229  // or have a SIGILL handler when detecting CPU type). When that happens,
230  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
231  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
232  // that do not require siginfo/ucontext first.
233
234  if (sig == SIGPIPE || sig == SIGXFSZ) {
235    // allow chained handler to go first
236    if (os::Linux::chained_handler(sig, info, ucVoid)) {
237      return true;
238    } else {
239      if (PrintMiscellaneous && (WizardMode || Verbose)) {
240        char buf[64];
241        warning("Ignoring %s - see bugs 4229104 or 646499219",
242                os::exception_name(sig, buf, sizeof(buf)));
243      }
244      return true;
245    }
246  }
247
248  JavaThread* thread = NULL;
249  VMThread* vmthread = NULL;
250  if (os::Linux::signal_handlers_are_installed) {
251    if (t != NULL ){
252      if(t->is_Java_thread()) {
253        thread = (JavaThread*)t;
254      }
255      else if(t->is_VM_thread()){
256        vmthread = (VMThread *)t;
257      }
258    }
259  }
260/*
261  NOTE: does not seem to work on linux.
262  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
263    // can't decode this kind of signal
264    info = NULL;
265  } else {
266    assert(sig == info->si_signo, "bad siginfo");
267  }
268*/
269  // decide if this trap can be handled by a stub
270  address stub = NULL;
271
272  address pc          = NULL;
273
274  //%note os_trap_1
275  if (info != NULL && uc != NULL && thread != NULL) {
276    pc = (address) os::Linux::ucontext_get_pc(uc);
277
278    if (StubRoutines::is_safefetch_fault(pc)) {
279      uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
280      return 1;
281    }
282
283#ifndef AMD64
284    // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
285    // This can happen in any running code (currently more frequently in
286    // interpreter code but has been seen in compiled code)
287    if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
288      fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
289            "to unstable signal handling in this distribution.");
290    }
291#endif // AMD64
292
293    // Handle ALL stack overflow variations here
294    if (sig == SIGSEGV) {
295      address addr = (address) info->si_addr;
296
297      // check if fault address is within thread stack
298      if (addr < thread->stack_base() &&
299          addr >= thread->stack_base() - thread->stack_size()) {
300        // stack overflow
301        if (thread->in_stack_yellow_zone(addr)) {
302          thread->disable_stack_yellow_zone();
303          if (thread->thread_state() == _thread_in_Java) {
304            // Throw a stack overflow exception.  Guard pages will be reenabled
305            // while unwinding the stack.
306            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
307          } else {
308            // Thread was in the vm or native code.  Return and try to finish.
309            return 1;
310          }
311        } else if (thread->in_stack_red_zone(addr)) {
312          // Fatal red zone violation.  Disable the guard pages and fall through
313          // to handle_unexpected_exception way down below.
314          thread->disable_stack_red_zone();
315          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
316
317          // This is a likely cause, but hard to verify. Let's just print
318          // it as a hint.
319          tty->print_raw_cr("Please check if any of your loaded .so files has "
320                            "enabled executable stack (see man page execstack(8))");
321        } else {
322          // Accessing stack address below sp may cause SEGV if current
323          // thread has MAP_GROWSDOWN stack. This should only happen when
324          // current thread was created by user code with MAP_GROWSDOWN flag
325          // and then attached to VM. See notes in os_linux.cpp.
326          if (thread->osthread()->expanding_stack() == 0) {
327             thread->osthread()->set_expanding_stack();
328             if (os::Linux::manually_expand_stack(thread, addr)) {
329               thread->osthread()->clear_expanding_stack();
330               return 1;
331             }
332             thread->osthread()->clear_expanding_stack();
333          } else {
334             fatal("recursive segv. expanding stack.");
335          }
336        }
337      }
338    }
339
340    if (thread->thread_state() == _thread_in_Java) {
341      // Java thread running in Java code => find exception handler if any
342      // a fault inside compiled code, the interpreter, or a stub
343
344      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
345        stub = SharedRuntime::get_poll_stub(pc);
346      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
347        // BugId 4454115: A read from a MappedByteBuffer can fault
348        // here if the underlying file has been truncated.
349        // Do not crash the VM in such a case.
350        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
351        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
352        if (nm != NULL && nm->has_unsafe_access()) {
353          stub = StubRoutines::handler_for_unsafe_access();
354        }
355      }
356      else
357
358#ifdef AMD64
359      if (sig == SIGFPE  &&
360          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
361        stub =
362          SharedRuntime::
363          continuation_for_implicit_exception(thread,
364                                              pc,
365                                              SharedRuntime::
366                                              IMPLICIT_DIVIDE_BY_ZERO);
367#else
368      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
369        // HACK: si_code does not work on linux 2.2.12-20!!!
370        int op = pc[0];
371        if (op == 0xDB) {
372          // FIST
373          // TODO: The encoding of D2I in i486.ad can cause an exception
374          // prior to the fist instruction if there was an invalid operation
375          // pending. We want to dismiss that exception. From the win_32
376          // side it also seems that if it really was the fist causing
377          // the exception that we do the d2i by hand with different
378          // rounding. Seems kind of weird.
379          // NOTE: that we take the exception at the NEXT floating point instruction.
380          assert(pc[0] == 0xDB, "not a FIST opcode");
381          assert(pc[1] == 0x14, "not a FIST opcode");
382          assert(pc[2] == 0x24, "not a FIST opcode");
383          return true;
384        } else if (op == 0xF7) {
385          // IDIV
386          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
387        } else {
388          // TODO: handle more cases if we are using other x86 instructions
389          //   that can generate SIGFPE signal on linux.
390          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
391          fatal("please update this code.");
392        }
393#endif // AMD64
394      } else if (sig == SIGSEGV &&
395               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
396          // Determination of interpreter/vtable stub/compiled code null exception
397          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
398      }
399    } else if (thread->thread_state() == _thread_in_vm &&
400               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
401               thread->doing_unsafe_access()) {
402        stub = StubRoutines::handler_for_unsafe_access();
403    }
404
405    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
406    // and the heap gets shrunk before the field access.
407    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
408      address addr = JNI_FastGetField::find_slowcase_pc(pc);
409      if (addr != (address)-1) {
410        stub = addr;
411      }
412    }
413
414    // Check to see if we caught the safepoint code in the
415    // process of write protecting the memory serialization page.
416    // It write enables the page immediately after protecting it
417    // so we can just return to retry the write.
418    if ((sig == SIGSEGV) &&
419        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
420      // Block current thread until the memory serialize page permission restored.
421      os::block_on_serialize_page_trap();
422      return true;
423    }
424  }
425
426#ifndef AMD64
427  // Execution protection violation
428  //
429  // This should be kept as the last step in the triage.  We don't
430  // have a dedicated trap number for a no-execute fault, so be
431  // conservative and allow other handlers the first shot.
432  //
433  // Note: We don't test that info->si_code == SEGV_ACCERR here.
434  // this si_code is so generic that it is almost meaningless; and
435  // the si_code for this condition may change in the future.
436  // Furthermore, a false-positive should be harmless.
437  if (UnguardOnExecutionViolation > 0 &&
438      (sig == SIGSEGV || sig == SIGBUS) &&
439      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
440    int page_size = os::vm_page_size();
441    address addr = (address) info->si_addr;
442    address pc = os::Linux::ucontext_get_pc(uc);
443    // Make sure the pc and the faulting address are sane.
444    //
445    // If an instruction spans a page boundary, and the page containing
446    // the beginning of the instruction is executable but the following
447    // page is not, the pc and the faulting address might be slightly
448    // different - we still want to unguard the 2nd page in this case.
449    //
450    // 15 bytes seems to be a (very) safe value for max instruction size.
451    bool pc_is_near_addr =
452      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
453    bool instr_spans_page_boundary =
454      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
455                       (intptr_t) page_size) > 0);
456
457    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
458      static volatile address last_addr =
459        (address) os::non_memory_address_word();
460
461      // In conservative mode, don't unguard unless the address is in the VM
462      if (addr != last_addr &&
463          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
464
465        // Set memory to RWX and retry
466        address page_start =
467          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
468        bool res = os::protect_memory((char*) page_start, page_size,
469                                      os::MEM_PROT_RWX);
470
471        if (PrintMiscellaneous && Verbose) {
472          char buf[256];
473          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
474                       "at " INTPTR_FORMAT
475                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
476                       page_start, (res ? "success" : "failed"), errno);
477          tty->print_raw_cr(buf);
478        }
479        stub = pc;
480
481        // Set last_addr so if we fault again at the same address, we don't end
482        // up in an endless loop.
483        //
484        // There are two potential complications here.  Two threads trapping at
485        // the same address at the same time could cause one of the threads to
486        // think it already unguarded, and abort the VM.  Likely very rare.
487        //
488        // The other race involves two threads alternately trapping at
489        // different addresses and failing to unguard the page, resulting in
490        // an endless loop.  This condition is probably even more unlikely than
491        // the first.
492        //
493        // Although both cases could be avoided by using locks or thread local
494        // last_addr, these solutions are unnecessary complication: this
495        // handler is a best-effort safety net, not a complete solution.  It is
496        // disabled by default and should only be used as a workaround in case
497        // we missed any no-execute-unsafe VM code.
498
499        last_addr = addr;
500      }
501    }
502  }
503#endif // !AMD64
504
505  if (stub != NULL) {
506    // save all thread context in case we need to restore it
507    if (thread != NULL) thread->set_saved_exception_pc(pc);
508
509    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
510    return true;
511  }
512
513  // signal-chaining
514  if (os::Linux::chained_handler(sig, info, ucVoid)) {
515     return true;
516  }
517
518  if (!abort_if_unrecognized) {
519    // caller wants another chance, so give it to him
520    return false;
521  }
522
523  if (pc == NULL && uc != NULL) {
524    pc = os::Linux::ucontext_get_pc(uc);
525  }
526
527  // unmask current signal
528  sigset_t newset;
529  sigemptyset(&newset);
530  sigaddset(&newset, sig);
531  sigprocmask(SIG_UNBLOCK, &newset, NULL);
532
533  VMError err(t, sig, pc, info, ucVoid);
534  err.report_and_die();
535
536  ShouldNotReachHere();
537}
538
539void os::Linux::init_thread_fpu_state(void) {
540#ifndef AMD64
541  // set fpu to 53 bit precision
542  set_fpu_control_word(0x27f);
543#endif // !AMD64
544}
545
546int os::Linux::get_fpu_control_word(void) {
547#ifdef AMD64
548  return 0;
549#else
550  int fpu_control;
551  _FPU_GETCW(fpu_control);
552  return fpu_control & 0xffff;
553#endif // AMD64
554}
555
556void os::Linux::set_fpu_control_word(int fpu_control) {
557#ifndef AMD64
558  _FPU_SETCW(fpu_control);
559#endif // !AMD64
560}
561
562// Check that the linux kernel version is 2.4 or higher since earlier
563// versions do not support SSE without patches.
564bool os::supports_sse() {
565#ifdef AMD64
566  return true;
567#else
568  struct utsname uts;
569  if( uname(&uts) != 0 ) return false; // uname fails?
570  char *minor_string;
571  int major = strtol(uts.release,&minor_string,10);
572  int minor = strtol(minor_string+1,NULL,10);
573  bool result = (major > 2 || (major==2 && minor >= 4));
574#ifndef PRODUCT
575  if (PrintMiscellaneous && Verbose) {
576    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
577               major,minor, result ? "DOES" : "does NOT");
578  }
579#endif
580  return result;
581#endif // AMD64
582}
583
584bool os::is_allocatable(size_t bytes) {
585#ifdef AMD64
586  // unused on amd64?
587  return true;
588#else
589
590  if (bytes < 2 * G) {
591    return true;
592  }
593
594  char* addr = reserve_memory(bytes, NULL);
595
596  if (addr != NULL) {
597    release_memory(addr, bytes);
598  }
599
600  return addr != NULL;
601#endif // AMD64
602}
603
604////////////////////////////////////////////////////////////////////////////////
605// thread stack
606
607#ifdef AMD64
608size_t os::Linux::min_stack_allowed  = 64 * K;
609
610// amd64: pthread on amd64 is always in floating stack mode
611bool os::Linux::supports_variable_stack_size() {  return true; }
612#else
613size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
614
615#ifdef __GNUC__
616#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
617#endif
618
619// Test if pthread library can support variable thread stack size. LinuxThreads
620// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
621// in floating stack mode and NPTL support variable stack size.
622bool os::Linux::supports_variable_stack_size() {
623  if (os::Linux::is_NPTL()) {
624     // NPTL, yes
625     return true;
626
627  } else {
628    // Note: We can't control default stack size when creating a thread.
629    // If we use non-default stack size (pthread_attr_setstacksize), both
630    // floating stack and non-floating stack LinuxThreads will return the
631    // same value. This makes it impossible to implement this function by
632    // detecting thread stack size directly.
633    //
634    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
635    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
636    // %gs (either as LDT selector or GDT selector, depending on kernel)
637    // to access thread specific data.
638    //
639    // Note that %gs is a reserved glibc register since early 2001, so
640    // applications are not allowed to change its value (Ulrich Drepper from
641    // Redhat confirmed that all known offenders have been modified to use
642    // either %fs or TSD). In the worst case scenario, when VM is embedded in
643    // a native application that plays with %gs, we might see non-zero %gs
644    // even LinuxThreads is running in fixed stack mode. As the result, we'll
645    // return true and skip _thread_safety_check(), so we may not be able to
646    // detect stack-heap collisions. But otherwise it's harmless.
647    //
648#ifdef __GNUC__
649    return (GET_GS() != 0);
650#else
651    return false;
652#endif
653  }
654}
655#endif // AMD64
656
657// return default stack size for thr_type
658size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
659  // default stack size (compiler thread needs larger stack)
660#ifdef AMD64
661  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
662#else
663  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
664#endif // AMD64
665  return s;
666}
667
668size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
669  // Creating guard page is very expensive. Java thread has HotSpot
670  // guard page, only enable glibc guard page for non-Java threads.
671  return (thr_type == java_thread ? 0 : page_size());
672}
673
674// Java thread:
675//
676//   Low memory addresses
677//    +------------------------+
678//    |                        |\  JavaThread created by VM does not have glibc
679//    |    glibc guard page    | - guard, attached Java thread usually has
680//    |                        |/  1 page glibc guard.
681// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
682//    |                        |\
683//    |  HotSpot Guard Pages   | - red and yellow pages
684//    |                        |/
685//    +------------------------+ JavaThread::stack_yellow_zone_base()
686//    |                        |\
687//    |      Normal Stack      | -
688//    |                        |/
689// P2 +------------------------+ Thread::stack_base()
690//
691// Non-Java thread:
692//
693//   Low memory addresses
694//    +------------------------+
695//    |                        |\
696//    |  glibc guard page      | - usually 1 page
697//    |                        |/
698// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
699//    |                        |\
700//    |      Normal Stack      | -
701//    |                        |/
702// P2 +------------------------+ Thread::stack_base()
703//
704// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
705//    pthread_attr_getstack()
706
707static void current_stack_region(address * bottom, size_t * size) {
708  if (os::Linux::is_initial_thread()) {
709     // initial thread needs special handling because pthread_getattr_np()
710     // may return bogus value.
711     *bottom = os::Linux::initial_thread_stack_bottom();
712     *size   = os::Linux::initial_thread_stack_size();
713  } else {
714     pthread_attr_t attr;
715
716     int rslt = pthread_getattr_np(pthread_self(), &attr);
717
718     // JVM needs to know exact stack location, abort if it fails
719     if (rslt != 0) {
720       if (rslt == ENOMEM) {
721         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
722       } else {
723         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
724       }
725     }
726
727     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
728         fatal("Can not locate current stack attributes!");
729     }
730
731     pthread_attr_destroy(&attr);
732
733  }
734  assert(os::current_stack_pointer() >= *bottom &&
735         os::current_stack_pointer() < *bottom + *size, "just checking");
736}
737
738address os::current_stack_base() {
739  address bottom;
740  size_t size;
741  current_stack_region(&bottom, &size);
742  return (bottom + size);
743}
744
745size_t os::current_stack_size() {
746  // stack size includes normal stack and HotSpot guard pages
747  address bottom;
748  size_t size;
749  current_stack_region(&bottom, &size);
750  return size;
751}
752
753/////////////////////////////////////////////////////////////////////////////
754// helper functions for fatal error handler
755
756void os::print_context(outputStream *st, void *context) {
757  if (context == NULL) return;
758
759  ucontext_t *uc = (ucontext_t*)context;
760  st->print_cr("Registers:");
761#ifdef AMD64
762  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
763  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
764  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
765  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
766  st->cr();
767  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
768  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
769  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
770  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
771  st->cr();
772  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
773  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
774  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
775  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
776  st->cr();
777  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
778  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
779  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
780  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
781  st->cr();
782  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
783  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
784  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
785  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
786  st->cr();
787  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
788#else
789  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
790  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
791  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
792  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
793  st->cr();
794  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
795  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
796  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
797  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
798  st->cr();
799  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
800  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
801  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
802#endif // AMD64
803  st->cr();
804  st->cr();
805
806  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
807  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
808  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
809  st->cr();
810
811  // Note: it may be unsafe to inspect memory near pc. For example, pc may
812  // point to garbage if entry point in an nmethod is corrupted. Leave
813  // this at the end, and hope for the best.
814  address pc = os::Linux::ucontext_get_pc(uc);
815  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
816  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
817}
818
819void os::print_register_info(outputStream *st, void *context) {
820  if (context == NULL) return;
821
822  ucontext_t *uc = (ucontext_t*)context;
823
824  st->print_cr("Register to memory mapping:");
825  st->cr();
826
827  // this is horrendously verbose but the layout of the registers in the
828  // context does not match how we defined our abstract Register set, so
829  // we can't just iterate through the gregs area
830
831  // this is only for the "general purpose" registers
832
833#ifdef AMD64
834  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
835  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
836  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
837  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
838  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
839  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
840  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
841  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
842  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
843  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
844  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
845  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
846  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
847  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
848  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
849  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
850#else
851  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
852  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
853  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
854  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
855  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
856  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
857  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
858  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
859#endif // AMD64
860
861  st->cr();
862}
863
864void os::setup_fpu() {
865#ifndef AMD64
866  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
867  __asm__ volatile (  "fldcw (%0)" :
868                      : "r" (fpu_cntrl) : "memory");
869#endif // !AMD64
870}
871
872#ifndef PRODUCT
873void os::verify_stack_alignment() {
874#ifdef AMD64
875  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
876#endif
877}
878#endif
879
880
881/*
882 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
883 * updates (JDK-8023956).
884 */
885void os::workaround_expand_exec_shield_cs_limit() {
886#if defined(IA32)
887  size_t page_size = os::vm_page_size();
888  /*
889   * Take the highest VA the OS will give us and exec
890   *
891   * Although using -(pagesz) as mmap hint works on newer kernel as you would
892   * think, older variants affected by this work-around don't (search forward only).
893   *
894   * On the affected distributions, we understand the memory layout to be:
895   *
896   *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
897   *
898   * A few pages south main stack will do it.
899   *
900   * If we are embedded in an app other than launcher (initial != main stack),
901   * we don't have much control or understanding of the address space, just let it slide.
902   */
903  char* hint = (char*) (Linux::initial_thread_stack_bottom() -
904                        ((StackYellowPages + StackRedPages + 1) * page_size));
905  char* codebuf = os::reserve_memory(page_size, hint);
906  if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
907    return; // No matter, we tried, best effort.
908  }
909  if (PrintMiscellaneous && (Verbose || WizardMode)) {
910     tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
911  }
912
913  // Some code to exec: the 'ret' instruction
914  codebuf[0] = 0xC3;
915
916  // Call the code in the codebuf
917  __asm__ volatile("call *%0" : : "r"(codebuf));
918
919  // keep the page mapped so CS limit isn't reduced.
920#endif
921}
922