os_linux_x86.cpp revision 4795:2cb5d5f6d5e5
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "os_share_linux.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <errno.h>
61# include <dlfcn.h>
62# include <stdlib.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <pthread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/utsname.h>
70# include <sys/socket.h>
71# include <sys/wait.h>
72# include <pwd.h>
73# include <poll.h>
74# include <ucontext.h>
75# include <fpu_control.h>
76
77#ifdef AMD64
78#define REG_SP REG_RSP
79#define REG_PC REG_RIP
80#define REG_FP REG_RBP
81#define SPELL_REG_SP "rsp"
82#define SPELL_REG_FP "rbp"
83#else
84#define REG_SP REG_UESP
85#define REG_PC REG_EIP
86#define REG_FP REG_EBP
87#define SPELL_REG_SP "esp"
88#define SPELL_REG_FP "ebp"
89#endif // AMD64
90
91address os::current_stack_pointer() {
92#ifdef SPARC_WORKS
93  register void *esp;
94  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
95  return (address) ((char*)esp + sizeof(long)*2);
96#elif defined(__clang__)
97  intptr_t* esp;
98  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
99  return (address) esp;
100#else
101  register void *esp __asm__ (SPELL_REG_SP);
102  return (address) esp;
103#endif
104}
105
106char* os::non_memory_address_word() {
107  // Must never look like an address returned by reserve_memory,
108  // even in its subfields (as defined by the CPU immediate fields,
109  // if the CPU splits constants across multiple instructions).
110
111  return (char*) -1;
112}
113
114void os::initialize_thread(Thread* thr) {
115// Nothing to do.
116}
117
118address os::Linux::ucontext_get_pc(ucontext_t * uc) {
119  return (address)uc->uc_mcontext.gregs[REG_PC];
120}
121
122intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
123  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
124}
125
126intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
127  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
128}
129
130// For Forte Analyzer AsyncGetCallTrace profiling support - thread
131// is currently interrupted by SIGPROF.
132// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
133// frames. Currently we don't do that on Linux, so it's the same as
134// os::fetch_frame_from_context().
135ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
136  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
137
138  assert(thread != NULL, "just checking");
139  assert(ret_sp != NULL, "just checking");
140  assert(ret_fp != NULL, "just checking");
141
142  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
143}
144
145ExtendedPC os::fetch_frame_from_context(void* ucVoid,
146                    intptr_t** ret_sp, intptr_t** ret_fp) {
147
148  ExtendedPC  epc;
149  ucontext_t* uc = (ucontext_t*)ucVoid;
150
151  if (uc != NULL) {
152    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
153    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
154    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
155  } else {
156    // construct empty ExtendedPC for return value checking
157    epc = ExtendedPC(NULL);
158    if (ret_sp) *ret_sp = (intptr_t *)NULL;
159    if (ret_fp) *ret_fp = (intptr_t *)NULL;
160  }
161
162  return epc;
163}
164
165frame os::fetch_frame_from_context(void* ucVoid) {
166  intptr_t* sp;
167  intptr_t* fp;
168  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
169  return frame(sp, fp, epc.pc());
170}
171
172// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
173// turned off by -fomit-frame-pointer,
174frame os::get_sender_for_C_frame(frame* fr) {
175  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
176}
177
178intptr_t* _get_previous_fp() {
179#ifdef SPARC_WORKS
180  register intptr_t **ebp;
181  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
182#elif defined(__clang__)
183  intptr_t **ebp;
184  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
185#else
186  register intptr_t **ebp __asm__ (SPELL_REG_FP);
187#endif
188  return (intptr_t*) *ebp;   // we want what it points to.
189}
190
191
192frame os::current_frame() {
193  intptr_t* fp = _get_previous_fp();
194  frame myframe((intptr_t*)os::current_stack_pointer(),
195                (intptr_t*)fp,
196                CAST_FROM_FN_PTR(address, os::current_frame));
197  if (os::is_first_C_frame(&myframe)) {
198    // stack is not walkable
199    return frame();
200  } else {
201    return os::get_sender_for_C_frame(&myframe);
202  }
203}
204
205// Utility functions
206
207// From IA32 System Programming Guide
208enum {
209  trap_page_fault = 0xE
210};
211
212extern "C" void Fetch32PFI () ;
213extern "C" void Fetch32Resume () ;
214#ifdef AMD64
215extern "C" void FetchNPFI () ;
216extern "C" void FetchNResume () ;
217#endif // AMD64
218
219extern "C" JNIEXPORT int
220JVM_handle_linux_signal(int sig,
221                        siginfo_t* info,
222                        void* ucVoid,
223                        int abort_if_unrecognized) {
224  ucontext_t* uc = (ucontext_t*) ucVoid;
225
226  Thread* t = ThreadLocalStorage::get_thread_slow();
227
228  SignalHandlerMark shm(t);
229
230  // Note: it's not uncommon that JNI code uses signal/sigset to install
231  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
232  // or have a SIGILL handler when detecting CPU type). When that happens,
233  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
234  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
235  // that do not require siginfo/ucontext first.
236
237  if (sig == SIGPIPE || sig == SIGXFSZ) {
238    // allow chained handler to go first
239    if (os::Linux::chained_handler(sig, info, ucVoid)) {
240      return true;
241    } else {
242      if (PrintMiscellaneous && (WizardMode || Verbose)) {
243        char buf[64];
244        warning("Ignoring %s - see bugs 4229104 or 646499219",
245                os::exception_name(sig, buf, sizeof(buf)));
246      }
247      return true;
248    }
249  }
250
251  JavaThread* thread = NULL;
252  VMThread* vmthread = NULL;
253  if (os::Linux::signal_handlers_are_installed) {
254    if (t != NULL ){
255      if(t->is_Java_thread()) {
256        thread = (JavaThread*)t;
257      }
258      else if(t->is_VM_thread()){
259        vmthread = (VMThread *)t;
260      }
261    }
262  }
263/*
264  NOTE: does not seem to work on linux.
265  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
266    // can't decode this kind of signal
267    info = NULL;
268  } else {
269    assert(sig == info->si_signo, "bad siginfo");
270  }
271*/
272  // decide if this trap can be handled by a stub
273  address stub = NULL;
274
275  address pc          = NULL;
276
277  //%note os_trap_1
278  if (info != NULL && uc != NULL && thread != NULL) {
279    pc = (address) os::Linux::ucontext_get_pc(uc);
280
281    if (pc == (address) Fetch32PFI) {
282       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
283       return 1 ;
284    }
285#ifdef AMD64
286    if (pc == (address) FetchNPFI) {
287       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
288       return 1 ;
289    }
290#endif // AMD64
291
292    // Handle ALL stack overflow variations here
293    if (sig == SIGSEGV) {
294      address addr = (address) info->si_addr;
295
296      // check if fault address is within thread stack
297      if (addr < thread->stack_base() &&
298          addr >= thread->stack_base() - thread->stack_size()) {
299        // stack overflow
300        if (thread->in_stack_yellow_zone(addr)) {
301          thread->disable_stack_yellow_zone();
302          if (thread->thread_state() == _thread_in_Java) {
303            // Throw a stack overflow exception.  Guard pages will be reenabled
304            // while unwinding the stack.
305            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
306          } else {
307            // Thread was in the vm or native code.  Return and try to finish.
308            return 1;
309          }
310        } else if (thread->in_stack_red_zone(addr)) {
311          // Fatal red zone violation.  Disable the guard pages and fall through
312          // to handle_unexpected_exception way down below.
313          thread->disable_stack_red_zone();
314          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
315
316          // This is a likely cause, but hard to verify. Let's just print
317          // it as a hint.
318          tty->print_raw_cr("Please check if any of your loaded .so files has "
319                            "enabled executable stack (see man page execstack(8))");
320        } else {
321          // Accessing stack address below sp may cause SEGV if current
322          // thread has MAP_GROWSDOWN stack. This should only happen when
323          // current thread was created by user code with MAP_GROWSDOWN flag
324          // and then attached to VM. See notes in os_linux.cpp.
325          if (thread->osthread()->expanding_stack() == 0) {
326             thread->osthread()->set_expanding_stack();
327             if (os::Linux::manually_expand_stack(thread, addr)) {
328               thread->osthread()->clear_expanding_stack();
329               return 1;
330             }
331             thread->osthread()->clear_expanding_stack();
332          } else {
333             fatal("recursive segv. expanding stack.");
334          }
335        }
336      }
337    }
338
339    if (thread->thread_state() == _thread_in_Java) {
340      // Java thread running in Java code => find exception handler if any
341      // a fault inside compiled code, the interpreter, or a stub
342
343      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
344        stub = SharedRuntime::get_poll_stub(pc);
345      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
346        // BugId 4454115: A read from a MappedByteBuffer can fault
347        // here if the underlying file has been truncated.
348        // Do not crash the VM in such a case.
349        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
350        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
351        if (nm != NULL && nm->has_unsafe_access()) {
352          stub = StubRoutines::handler_for_unsafe_access();
353        }
354      }
355      else
356
357#ifdef AMD64
358      if (sig == SIGFPE  &&
359          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
360        stub =
361          SharedRuntime::
362          continuation_for_implicit_exception(thread,
363                                              pc,
364                                              SharedRuntime::
365                                              IMPLICIT_DIVIDE_BY_ZERO);
366#else
367      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
368        // HACK: si_code does not work on linux 2.2.12-20!!!
369        int op = pc[0];
370        if (op == 0xDB) {
371          // FIST
372          // TODO: The encoding of D2I in i486.ad can cause an exception
373          // prior to the fist instruction if there was an invalid operation
374          // pending. We want to dismiss that exception. From the win_32
375          // side it also seems that if it really was the fist causing
376          // the exception that we do the d2i by hand with different
377          // rounding. Seems kind of weird.
378          // NOTE: that we take the exception at the NEXT floating point instruction.
379          assert(pc[0] == 0xDB, "not a FIST opcode");
380          assert(pc[1] == 0x14, "not a FIST opcode");
381          assert(pc[2] == 0x24, "not a FIST opcode");
382          return true;
383        } else if (op == 0xF7) {
384          // IDIV
385          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
386        } else {
387          // TODO: handle more cases if we are using other x86 instructions
388          //   that can generate SIGFPE signal on linux.
389          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
390          fatal("please update this code.");
391        }
392#endif // AMD64
393      } else if (sig == SIGSEGV &&
394               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
395          // Determination of interpreter/vtable stub/compiled code null exception
396          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
397      }
398    } else if (thread->thread_state() == _thread_in_vm &&
399               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
400               thread->doing_unsafe_access()) {
401        stub = StubRoutines::handler_for_unsafe_access();
402    }
403
404    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
405    // and the heap gets shrunk before the field access.
406    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
407      address addr = JNI_FastGetField::find_slowcase_pc(pc);
408      if (addr != (address)-1) {
409        stub = addr;
410      }
411    }
412
413    // Check to see if we caught the safepoint code in the
414    // process of write protecting the memory serialization page.
415    // It write enables the page immediately after protecting it
416    // so we can just return to retry the write.
417    if ((sig == SIGSEGV) &&
418        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
419      // Block current thread until the memory serialize page permission restored.
420      os::block_on_serialize_page_trap();
421      return true;
422    }
423  }
424
425#ifndef AMD64
426  // Execution protection violation
427  //
428  // This should be kept as the last step in the triage.  We don't
429  // have a dedicated trap number for a no-execute fault, so be
430  // conservative and allow other handlers the first shot.
431  //
432  // Note: We don't test that info->si_code == SEGV_ACCERR here.
433  // this si_code is so generic that it is almost meaningless; and
434  // the si_code for this condition may change in the future.
435  // Furthermore, a false-positive should be harmless.
436  if (UnguardOnExecutionViolation > 0 &&
437      (sig == SIGSEGV || sig == SIGBUS) &&
438      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
439    int page_size = os::vm_page_size();
440    address addr = (address) info->si_addr;
441    address pc = os::Linux::ucontext_get_pc(uc);
442    // Make sure the pc and the faulting address are sane.
443    //
444    // If an instruction spans a page boundary, and the page containing
445    // the beginning of the instruction is executable but the following
446    // page is not, the pc and the faulting address might be slightly
447    // different - we still want to unguard the 2nd page in this case.
448    //
449    // 15 bytes seems to be a (very) safe value for max instruction size.
450    bool pc_is_near_addr =
451      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
452    bool instr_spans_page_boundary =
453      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
454                       (intptr_t) page_size) > 0);
455
456    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
457      static volatile address last_addr =
458        (address) os::non_memory_address_word();
459
460      // In conservative mode, don't unguard unless the address is in the VM
461      if (addr != last_addr &&
462          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
463
464        // Set memory to RWX and retry
465        address page_start =
466          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
467        bool res = os::protect_memory((char*) page_start, page_size,
468                                      os::MEM_PROT_RWX);
469
470        if (PrintMiscellaneous && Verbose) {
471          char buf[256];
472          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
473                       "at " INTPTR_FORMAT
474                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
475                       page_start, (res ? "success" : "failed"), errno);
476          tty->print_raw_cr(buf);
477        }
478        stub = pc;
479
480        // Set last_addr so if we fault again at the same address, we don't end
481        // up in an endless loop.
482        //
483        // There are two potential complications here.  Two threads trapping at
484        // the same address at the same time could cause one of the threads to
485        // think it already unguarded, and abort the VM.  Likely very rare.
486        //
487        // The other race involves two threads alternately trapping at
488        // different addresses and failing to unguard the page, resulting in
489        // an endless loop.  This condition is probably even more unlikely than
490        // the first.
491        //
492        // Although both cases could be avoided by using locks or thread local
493        // last_addr, these solutions are unnecessary complication: this
494        // handler is a best-effort safety net, not a complete solution.  It is
495        // disabled by default and should only be used as a workaround in case
496        // we missed any no-execute-unsafe VM code.
497
498        last_addr = addr;
499      }
500    }
501  }
502#endif // !AMD64
503
504  if (stub != NULL) {
505    // save all thread context in case we need to restore it
506    if (thread != NULL) thread->set_saved_exception_pc(pc);
507
508    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
509    return true;
510  }
511
512  // signal-chaining
513  if (os::Linux::chained_handler(sig, info, ucVoid)) {
514     return true;
515  }
516
517  if (!abort_if_unrecognized) {
518    // caller wants another chance, so give it to him
519    return false;
520  }
521
522  if (pc == NULL && uc != NULL) {
523    pc = os::Linux::ucontext_get_pc(uc);
524  }
525
526  // unmask current signal
527  sigset_t newset;
528  sigemptyset(&newset);
529  sigaddset(&newset, sig);
530  sigprocmask(SIG_UNBLOCK, &newset, NULL);
531
532  VMError err(t, sig, pc, info, ucVoid);
533  err.report_and_die();
534
535  ShouldNotReachHere();
536}
537
538void os::Linux::init_thread_fpu_state(void) {
539#ifndef AMD64
540  // set fpu to 53 bit precision
541  set_fpu_control_word(0x27f);
542#endif // !AMD64
543}
544
545int os::Linux::get_fpu_control_word(void) {
546#ifdef AMD64
547  return 0;
548#else
549  int fpu_control;
550  _FPU_GETCW(fpu_control);
551  return fpu_control & 0xffff;
552#endif // AMD64
553}
554
555void os::Linux::set_fpu_control_word(int fpu_control) {
556#ifndef AMD64
557  _FPU_SETCW(fpu_control);
558#endif // !AMD64
559}
560
561// Check that the linux kernel version is 2.4 or higher since earlier
562// versions do not support SSE without patches.
563bool os::supports_sse() {
564#ifdef AMD64
565  return true;
566#else
567  struct utsname uts;
568  if( uname(&uts) != 0 ) return false; // uname fails?
569  char *minor_string;
570  int major = strtol(uts.release,&minor_string,10);
571  int minor = strtol(minor_string+1,NULL,10);
572  bool result = (major > 2 || (major==2 && minor >= 4));
573#ifndef PRODUCT
574  if (PrintMiscellaneous && Verbose) {
575    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
576               major,minor, result ? "DOES" : "does NOT");
577  }
578#endif
579  return result;
580#endif // AMD64
581}
582
583bool os::is_allocatable(size_t bytes) {
584#ifdef AMD64
585  // unused on amd64?
586  return true;
587#else
588
589  if (bytes < 2 * G) {
590    return true;
591  }
592
593  char* addr = reserve_memory(bytes, NULL);
594
595  if (addr != NULL) {
596    release_memory(addr, bytes);
597  }
598
599  return addr != NULL;
600#endif // AMD64
601}
602
603////////////////////////////////////////////////////////////////////////////////
604// thread stack
605
606#ifdef AMD64
607size_t os::Linux::min_stack_allowed  = 64 * K;
608
609// amd64: pthread on amd64 is always in floating stack mode
610bool os::Linux::supports_variable_stack_size() {  return true; }
611#else
612size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
613
614#ifdef __GNUC__
615#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
616#endif
617
618// Test if pthread library can support variable thread stack size. LinuxThreads
619// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
620// in floating stack mode and NPTL support variable stack size.
621bool os::Linux::supports_variable_stack_size() {
622  if (os::Linux::is_NPTL()) {
623     // NPTL, yes
624     return true;
625
626  } else {
627    // Note: We can't control default stack size when creating a thread.
628    // If we use non-default stack size (pthread_attr_setstacksize), both
629    // floating stack and non-floating stack LinuxThreads will return the
630    // same value. This makes it impossible to implement this function by
631    // detecting thread stack size directly.
632    //
633    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
634    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
635    // %gs (either as LDT selector or GDT selector, depending on kernel)
636    // to access thread specific data.
637    //
638    // Note that %gs is a reserved glibc register since early 2001, so
639    // applications are not allowed to change its value (Ulrich Drepper from
640    // Redhat confirmed that all known offenders have been modified to use
641    // either %fs or TSD). In the worst case scenario, when VM is embedded in
642    // a native application that plays with %gs, we might see non-zero %gs
643    // even LinuxThreads is running in fixed stack mode. As the result, we'll
644    // return true and skip _thread_safety_check(), so we may not be able to
645    // detect stack-heap collisions. But otherwise it's harmless.
646    //
647#ifdef __GNUC__
648    return (GET_GS() != 0);
649#else
650    return false;
651#endif
652  }
653}
654#endif // AMD64
655
656// return default stack size for thr_type
657size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
658  // default stack size (compiler thread needs larger stack)
659#ifdef AMD64
660  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
661#else
662  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
663#endif // AMD64
664  return s;
665}
666
667size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
668  // Creating guard page is very expensive. Java thread has HotSpot
669  // guard page, only enable glibc guard page for non-Java threads.
670  return (thr_type == java_thread ? 0 : page_size());
671}
672
673// Java thread:
674//
675//   Low memory addresses
676//    +------------------------+
677//    |                        |\  JavaThread created by VM does not have glibc
678//    |    glibc guard page    | - guard, attached Java thread usually has
679//    |                        |/  1 page glibc guard.
680// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
681//    |                        |\
682//    |  HotSpot Guard Pages   | - red and yellow pages
683//    |                        |/
684//    +------------------------+ JavaThread::stack_yellow_zone_base()
685//    |                        |\
686//    |      Normal Stack      | -
687//    |                        |/
688// P2 +------------------------+ Thread::stack_base()
689//
690// Non-Java thread:
691//
692//   Low memory addresses
693//    +------------------------+
694//    |                        |\
695//    |  glibc guard page      | - usually 1 page
696//    |                        |/
697// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
698//    |                        |\
699//    |      Normal Stack      | -
700//    |                        |/
701// P2 +------------------------+ Thread::stack_base()
702//
703// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
704//    pthread_attr_getstack()
705
706static void current_stack_region(address * bottom, size_t * size) {
707  if (os::Linux::is_initial_thread()) {
708     // initial thread needs special handling because pthread_getattr_np()
709     // may return bogus value.
710     *bottom = os::Linux::initial_thread_stack_bottom();
711     *size   = os::Linux::initial_thread_stack_size();
712  } else {
713     pthread_attr_t attr;
714
715     int rslt = pthread_getattr_np(pthread_self(), &attr);
716
717     // JVM needs to know exact stack location, abort if it fails
718     if (rslt != 0) {
719       if (rslt == ENOMEM) {
720         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
721       } else {
722         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
723       }
724     }
725
726     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
727         fatal("Can not locate current stack attributes!");
728     }
729
730     pthread_attr_destroy(&attr);
731
732  }
733  assert(os::current_stack_pointer() >= *bottom &&
734         os::current_stack_pointer() < *bottom + *size, "just checking");
735}
736
737address os::current_stack_base() {
738  address bottom;
739  size_t size;
740  current_stack_region(&bottom, &size);
741  return (bottom + size);
742}
743
744size_t os::current_stack_size() {
745  // stack size includes normal stack and HotSpot guard pages
746  address bottom;
747  size_t size;
748  current_stack_region(&bottom, &size);
749  return size;
750}
751
752/////////////////////////////////////////////////////////////////////////////
753// helper functions for fatal error handler
754
755void os::print_context(outputStream *st, void *context) {
756  if (context == NULL) return;
757
758  ucontext_t *uc = (ucontext_t*)context;
759  st->print_cr("Registers:");
760#ifdef AMD64
761  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
762  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
763  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
764  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
765  st->cr();
766  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
767  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
768  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
769  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
770  st->cr();
771  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
772  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
773  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
774  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
775  st->cr();
776  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
777  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
778  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
779  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
780  st->cr();
781  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
782  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
783  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
784  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
785  st->cr();
786  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
787#else
788  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
789  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
790  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
791  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
792  st->cr();
793  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
794  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
795  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
796  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
797  st->cr();
798  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
799  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
800  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
801#endif // AMD64
802  st->cr();
803  st->cr();
804
805  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
806  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
807  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
808  st->cr();
809
810  // Note: it may be unsafe to inspect memory near pc. For example, pc may
811  // point to garbage if entry point in an nmethod is corrupted. Leave
812  // this at the end, and hope for the best.
813  address pc = os::Linux::ucontext_get_pc(uc);
814  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
815  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
816}
817
818void os::print_register_info(outputStream *st, void *context) {
819  if (context == NULL) return;
820
821  ucontext_t *uc = (ucontext_t*)context;
822
823  st->print_cr("Register to memory mapping:");
824  st->cr();
825
826  // this is horrendously verbose but the layout of the registers in the
827  // context does not match how we defined our abstract Register set, so
828  // we can't just iterate through the gregs area
829
830  // this is only for the "general purpose" registers
831
832#ifdef AMD64
833  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
834  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
835  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
836  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
837  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
838  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
839  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
840  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
841  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
842  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
843  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
844  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
845  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
846  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
847  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
848  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
849#else
850  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
851  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
852  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
853  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
854  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
855  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
856  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
857  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
858#endif // AMD64
859
860  st->cr();
861}
862
863void os::setup_fpu() {
864#ifndef AMD64
865  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
866  __asm__ volatile (  "fldcw (%0)" :
867                      : "r" (fpu_cntrl) : "memory");
868#endif // !AMD64
869}
870
871#ifndef PRODUCT
872void os::verify_stack_alignment() {
873#ifdef AMD64
874  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
875#endif
876}
877#endif
878