os_linux_x86.cpp revision 477:24fda36852ce
1/*
2 * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// do not include  precompiled  header file
26# include "incls/_os_linux_x86.cpp.incl"
27
28// put OS-includes here
29# include <sys/types.h>
30# include <sys/mman.h>
31# include <pthread.h>
32# include <signal.h>
33# include <errno.h>
34# include <dlfcn.h>
35# include <stdlib.h>
36# include <stdio.h>
37# include <unistd.h>
38# include <sys/resource.h>
39# include <pthread.h>
40# include <sys/stat.h>
41# include <sys/time.h>
42# include <sys/utsname.h>
43# include <sys/socket.h>
44# include <sys/wait.h>
45# include <pwd.h>
46# include <poll.h>
47# include <ucontext.h>
48# include <fpu_control.h>
49
50#ifdef AMD64
51#define REG_SP REG_RSP
52#define REG_PC REG_RIP
53#define REG_FP REG_RBP
54#define SPELL_REG_SP "rsp"
55#define SPELL_REG_FP "rbp"
56#else
57#define REG_SP REG_UESP
58#define REG_PC REG_EIP
59#define REG_FP REG_EBP
60#define SPELL_REG_SP "esp"
61#define SPELL_REG_FP "ebp"
62#endif // AMD64
63
64address os::current_stack_pointer() {
65#ifdef SPARC_WORKS
66  register void *esp;
67  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
68  return (address) ((char*)esp + sizeof(long)*2);
69#else
70  register void *esp __asm__ (SPELL_REG_SP);
71  return (address) esp;
72#endif
73}
74
75char* os::non_memory_address_word() {
76  // Must never look like an address returned by reserve_memory,
77  // even in its subfields (as defined by the CPU immediate fields,
78  // if the CPU splits constants across multiple instructions).
79
80  return (char*) -1;
81}
82
83void os::initialize_thread() {
84// Nothing to do.
85}
86
87address os::Linux::ucontext_get_pc(ucontext_t * uc) {
88  return (address)uc->uc_mcontext.gregs[REG_PC];
89}
90
91intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
92  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
93}
94
95intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
96  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
97}
98
99// For Forte Analyzer AsyncGetCallTrace profiling support - thread
100// is currently interrupted by SIGPROF.
101// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
102// frames. Currently we don't do that on Linux, so it's the same as
103// os::fetch_frame_from_context().
104ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
105  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
106
107  assert(thread != NULL, "just checking");
108  assert(ret_sp != NULL, "just checking");
109  assert(ret_fp != NULL, "just checking");
110
111  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
112}
113
114ExtendedPC os::fetch_frame_from_context(void* ucVoid,
115                    intptr_t** ret_sp, intptr_t** ret_fp) {
116
117  ExtendedPC  epc;
118  ucontext_t* uc = (ucontext_t*)ucVoid;
119
120  if (uc != NULL) {
121    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
122    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
123    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
124  } else {
125    // construct empty ExtendedPC for return value checking
126    epc = ExtendedPC(NULL);
127    if (ret_sp) *ret_sp = (intptr_t *)NULL;
128    if (ret_fp) *ret_fp = (intptr_t *)NULL;
129  }
130
131  return epc;
132}
133
134frame os::fetch_frame_from_context(void* ucVoid) {
135  intptr_t* sp;
136  intptr_t* fp;
137  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
138  return frame(sp, fp, epc.pc());
139}
140
141// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
142// turned off by -fomit-frame-pointer,
143frame os::get_sender_for_C_frame(frame* fr) {
144  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
145}
146
147intptr_t* _get_previous_fp() {
148#ifdef SPARC_WORKS
149  register intptr_t **ebp;
150  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
151#else
152  register intptr_t **ebp __asm__ (SPELL_REG_FP);
153#endif
154  return (intptr_t*) *ebp;   // we want what it points to.
155}
156
157
158frame os::current_frame() {
159  intptr_t* fp = _get_previous_fp();
160  frame myframe((intptr_t*)os::current_stack_pointer(),
161                (intptr_t*)fp,
162                CAST_FROM_FN_PTR(address, os::current_frame));
163  if (os::is_first_C_frame(&myframe)) {
164    // stack is not walkable
165    return frame(NULL, NULL, NULL);
166  } else {
167    return os::get_sender_for_C_frame(&myframe);
168  }
169}
170
171// Utility functions
172
173// From IA32 System Programming Guide
174enum {
175  trap_page_fault = 0xE
176};
177
178extern "C" void Fetch32PFI () ;
179extern "C" void Fetch32Resume () ;
180#ifdef AMD64
181extern "C" void FetchNPFI () ;
182extern "C" void FetchNResume () ;
183#endif // AMD64
184
185extern "C" int
186JVM_handle_linux_signal(int sig,
187                        siginfo_t* info,
188                        void* ucVoid,
189                        int abort_if_unrecognized) {
190  ucontext_t* uc = (ucontext_t*) ucVoid;
191
192  Thread* t = ThreadLocalStorage::get_thread_slow();
193
194  SignalHandlerMark shm(t);
195
196  // Note: it's not uncommon that JNI code uses signal/sigset to install
197  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
198  // or have a SIGILL handler when detecting CPU type). When that happens,
199  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
200  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
201  // that do not require siginfo/ucontext first.
202
203  if (sig == SIGPIPE || sig == SIGXFSZ) {
204    // allow chained handler to go first
205    if (os::Linux::chained_handler(sig, info, ucVoid)) {
206      return true;
207    } else {
208      if (PrintMiscellaneous && (WizardMode || Verbose)) {
209        char buf[64];
210        warning("Ignoring %s - see bugs 4229104 or 646499219",
211                os::exception_name(sig, buf, sizeof(buf)));
212      }
213      return true;
214    }
215  }
216
217  JavaThread* thread = NULL;
218  VMThread* vmthread = NULL;
219  if (os::Linux::signal_handlers_are_installed) {
220    if (t != NULL ){
221      if(t->is_Java_thread()) {
222        thread = (JavaThread*)t;
223      }
224      else if(t->is_VM_thread()){
225        vmthread = (VMThread *)t;
226      }
227    }
228  }
229/*
230  NOTE: does not seem to work on linux.
231  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
232    // can't decode this kind of signal
233    info = NULL;
234  } else {
235    assert(sig == info->si_signo, "bad siginfo");
236  }
237*/
238  // decide if this trap can be handled by a stub
239  address stub = NULL;
240
241  address pc          = NULL;
242
243  //%note os_trap_1
244  if (info != NULL && uc != NULL && thread != NULL) {
245    pc = (address) os::Linux::ucontext_get_pc(uc);
246
247    if (pc == (address) Fetch32PFI) {
248       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
249       return 1 ;
250    }
251#ifdef AMD64
252    if (pc == (address) FetchNPFI) {
253       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
254       return 1 ;
255    }
256#endif // AMD64
257
258    // Handle ALL stack overflow variations here
259    if (sig == SIGSEGV) {
260      address addr = (address) info->si_addr;
261
262      // check if fault address is within thread stack
263      if (addr < thread->stack_base() &&
264          addr >= thread->stack_base() - thread->stack_size()) {
265        // stack overflow
266        if (thread->in_stack_yellow_zone(addr)) {
267          thread->disable_stack_yellow_zone();
268          if (thread->thread_state() == _thread_in_Java) {
269            // Throw a stack overflow exception.  Guard pages will be reenabled
270            // while unwinding the stack.
271            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
272          } else {
273            // Thread was in the vm or native code.  Return and try to finish.
274            return 1;
275          }
276        } else if (thread->in_stack_red_zone(addr)) {
277          // Fatal red zone violation.  Disable the guard pages and fall through
278          // to handle_unexpected_exception way down below.
279          thread->disable_stack_red_zone();
280          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
281        } else {
282          // Accessing stack address below sp may cause SEGV if current
283          // thread has MAP_GROWSDOWN stack. This should only happen when
284          // current thread was created by user code with MAP_GROWSDOWN flag
285          // and then attached to VM. See notes in os_linux.cpp.
286          if (thread->osthread()->expanding_stack() == 0) {
287             thread->osthread()->set_expanding_stack();
288             if (os::Linux::manually_expand_stack(thread, addr)) {
289               thread->osthread()->clear_expanding_stack();
290               return 1;
291             }
292             thread->osthread()->clear_expanding_stack();
293          } else {
294             fatal("recursive segv. expanding stack.");
295          }
296        }
297      }
298    }
299
300    if (thread->thread_state() == _thread_in_Java) {
301      // Java thread running in Java code => find exception handler if any
302      // a fault inside compiled code, the interpreter, or a stub
303
304      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
305        stub = SharedRuntime::get_poll_stub(pc);
306      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
307        // BugId 4454115: A read from a MappedByteBuffer can fault
308        // here if the underlying file has been truncated.
309        // Do not crash the VM in such a case.
310        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
311        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
312        if (nm != NULL && nm->has_unsafe_access()) {
313          stub = StubRoutines::handler_for_unsafe_access();
314        }
315      }
316      else
317
318#ifdef AMD64
319      if (sig == SIGFPE  &&
320          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
321        stub =
322          SharedRuntime::
323          continuation_for_implicit_exception(thread,
324                                              pc,
325                                              SharedRuntime::
326                                              IMPLICIT_DIVIDE_BY_ZERO);
327#else
328      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
329        // HACK: si_code does not work on linux 2.2.12-20!!!
330        int op = pc[0];
331        if (op == 0xDB) {
332          // FIST
333          // TODO: The encoding of D2I in i486.ad can cause an exception
334          // prior to the fist instruction if there was an invalid operation
335          // pending. We want to dismiss that exception. From the win_32
336          // side it also seems that if it really was the fist causing
337          // the exception that we do the d2i by hand with different
338          // rounding. Seems kind of weird.
339          // NOTE: that we take the exception at the NEXT floating point instruction.
340          assert(pc[0] == 0xDB, "not a FIST opcode");
341          assert(pc[1] == 0x14, "not a FIST opcode");
342          assert(pc[2] == 0x24, "not a FIST opcode");
343          return true;
344        } else if (op == 0xF7) {
345          // IDIV
346          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
347        } else {
348          // TODO: handle more cases if we are using other x86 instructions
349          //   that can generate SIGFPE signal on linux.
350          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
351          fatal("please update this code.");
352        }
353#endif // AMD64
354      } else if (sig == SIGSEGV &&
355               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
356          // Determination of interpreter/vtable stub/compiled code null exception
357          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
358      }
359    } else if (thread->thread_state() == _thread_in_vm &&
360               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
361               thread->doing_unsafe_access()) {
362        stub = StubRoutines::handler_for_unsafe_access();
363    }
364
365    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
366    // and the heap gets shrunk before the field access.
367    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
368      address addr = JNI_FastGetField::find_slowcase_pc(pc);
369      if (addr != (address)-1) {
370        stub = addr;
371      }
372    }
373
374    // Check to see if we caught the safepoint code in the
375    // process of write protecting the memory serialization page.
376    // It write enables the page immediately after protecting it
377    // so we can just return to retry the write.
378    if ((sig == SIGSEGV) &&
379        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
380      // Block current thread until the memory serialize page permission restored.
381      os::block_on_serialize_page_trap();
382      return true;
383    }
384  }
385
386#ifndef AMD64
387  // Execution protection violation
388  //
389  // This should be kept as the last step in the triage.  We don't
390  // have a dedicated trap number for a no-execute fault, so be
391  // conservative and allow other handlers the first shot.
392  //
393  // Note: We don't test that info->si_code == SEGV_ACCERR here.
394  // this si_code is so generic that it is almost meaningless; and
395  // the si_code for this condition may change in the future.
396  // Furthermore, a false-positive should be harmless.
397  if (UnguardOnExecutionViolation > 0 &&
398      (sig == SIGSEGV || sig == SIGBUS) &&
399      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
400    int page_size = os::vm_page_size();
401    address addr = (address) info->si_addr;
402    address pc = os::Linux::ucontext_get_pc(uc);
403    // Make sure the pc and the faulting address are sane.
404    //
405    // If an instruction spans a page boundary, and the page containing
406    // the beginning of the instruction is executable but the following
407    // page is not, the pc and the faulting address might be slightly
408    // different - we still want to unguard the 2nd page in this case.
409    //
410    // 15 bytes seems to be a (very) safe value for max instruction size.
411    bool pc_is_near_addr =
412      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
413    bool instr_spans_page_boundary =
414      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
415                       (intptr_t) page_size) > 0);
416
417    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
418      static volatile address last_addr =
419        (address) os::non_memory_address_word();
420
421      // In conservative mode, don't unguard unless the address is in the VM
422      if (addr != last_addr &&
423          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
424
425        // Set memory to RWX and retry
426        address page_start =
427          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
428        bool res = os::protect_memory((char*) page_start, page_size,
429                                      os::MEM_PROT_RWX);
430
431        if (PrintMiscellaneous && Verbose) {
432          char buf[256];
433          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
434                       "at " INTPTR_FORMAT
435                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
436                       page_start, (res ? "success" : "failed"), errno);
437          tty->print_raw_cr(buf);
438        }
439        stub = pc;
440
441        // Set last_addr so if we fault again at the same address, we don't end
442        // up in an endless loop.
443        //
444        // There are two potential complications here.  Two threads trapping at
445        // the same address at the same time could cause one of the threads to
446        // think it already unguarded, and abort the VM.  Likely very rare.
447        //
448        // The other race involves two threads alternately trapping at
449        // different addresses and failing to unguard the page, resulting in
450        // an endless loop.  This condition is probably even more unlikely than
451        // the first.
452        //
453        // Although both cases could be avoided by using locks or thread local
454        // last_addr, these solutions are unnecessary complication: this
455        // handler is a best-effort safety net, not a complete solution.  It is
456        // disabled by default and should only be used as a workaround in case
457        // we missed any no-execute-unsafe VM code.
458
459        last_addr = addr;
460      }
461    }
462  }
463#endif // !AMD64
464
465  if (stub != NULL) {
466    // save all thread context in case we need to restore it
467    if (thread != NULL) thread->set_saved_exception_pc(pc);
468
469    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
470    return true;
471  }
472
473  // signal-chaining
474  if (os::Linux::chained_handler(sig, info, ucVoid)) {
475     return true;
476  }
477
478  if (!abort_if_unrecognized) {
479    // caller wants another chance, so give it to him
480    return false;
481  }
482
483  if (pc == NULL && uc != NULL) {
484    pc = os::Linux::ucontext_get_pc(uc);
485  }
486
487  // unmask current signal
488  sigset_t newset;
489  sigemptyset(&newset);
490  sigaddset(&newset, sig);
491  sigprocmask(SIG_UNBLOCK, &newset, NULL);
492
493  VMError err(t, sig, pc, info, ucVoid);
494  err.report_and_die();
495
496  ShouldNotReachHere();
497}
498
499void os::Linux::init_thread_fpu_state(void) {
500#ifndef AMD64
501  // set fpu to 53 bit precision
502  set_fpu_control_word(0x27f);
503#endif // !AMD64
504}
505
506int os::Linux::get_fpu_control_word(void) {
507#ifdef AMD64
508  return 0;
509#else
510  int fpu_control;
511  _FPU_GETCW(fpu_control);
512  return fpu_control & 0xffff;
513#endif // AMD64
514}
515
516void os::Linux::set_fpu_control_word(int fpu_control) {
517#ifndef AMD64
518  _FPU_SETCW(fpu_control);
519#endif // !AMD64
520}
521
522// Check that the linux kernel version is 2.4 or higher since earlier
523// versions do not support SSE without patches.
524bool os::supports_sse() {
525#ifdef AMD64
526  return true;
527#else
528  struct utsname uts;
529  if( uname(&uts) != 0 ) return false; // uname fails?
530  char *minor_string;
531  int major = strtol(uts.release,&minor_string,10);
532  int minor = strtol(minor_string+1,NULL,10);
533  bool result = (major > 2 || (major==2 && minor >= 4));
534#ifndef PRODUCT
535  if (PrintMiscellaneous && Verbose) {
536    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
537               major,minor, result ? "DOES" : "does NOT");
538  }
539#endif
540  return result;
541#endif // AMD64
542}
543
544bool os::is_allocatable(size_t bytes) {
545#ifdef AMD64
546  // unused on amd64?
547  return true;
548#else
549
550  if (bytes < 2 * G) {
551    return true;
552  }
553
554  char* addr = reserve_memory(bytes, NULL);
555
556  if (addr != NULL) {
557    release_memory(addr, bytes);
558  }
559
560  return addr != NULL;
561#endif // AMD64
562}
563
564////////////////////////////////////////////////////////////////////////////////
565// thread stack
566
567#ifdef AMD64
568size_t os::Linux::min_stack_allowed  = 64 * K;
569
570// amd64: pthread on amd64 is always in floating stack mode
571bool os::Linux::supports_variable_stack_size() {  return true; }
572#else
573size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
574
575#ifdef __GNUC__
576#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
577#endif
578
579// Test if pthread library can support variable thread stack size. LinuxThreads
580// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
581// in floating stack mode and NPTL support variable stack size.
582bool os::Linux::supports_variable_stack_size() {
583  if (os::Linux::is_NPTL()) {
584     // NPTL, yes
585     return true;
586
587  } else {
588    // Note: We can't control default stack size when creating a thread.
589    // If we use non-default stack size (pthread_attr_setstacksize), both
590    // floating stack and non-floating stack LinuxThreads will return the
591    // same value. This makes it impossible to implement this function by
592    // detecting thread stack size directly.
593    //
594    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
595    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
596    // %gs (either as LDT selector or GDT selector, depending on kernel)
597    // to access thread specific data.
598    //
599    // Note that %gs is a reserved glibc register since early 2001, so
600    // applications are not allowed to change its value (Ulrich Drepper from
601    // Redhat confirmed that all known offenders have been modified to use
602    // either %fs or TSD). In the worst case scenario, when VM is embedded in
603    // a native application that plays with %gs, we might see non-zero %gs
604    // even LinuxThreads is running in fixed stack mode. As the result, we'll
605    // return true and skip _thread_safety_check(), so we may not be able to
606    // detect stack-heap collisions. But otherwise it's harmless.
607    //
608#ifdef __GNUC__
609    return (GET_GS() != 0);
610#else
611    return false;
612#endif
613  }
614}
615#endif // AMD64
616
617// return default stack size for thr_type
618size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
619  // default stack size (compiler thread needs larger stack)
620#ifdef AMD64
621  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
622#else
623  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
624#endif // AMD64
625  return s;
626}
627
628size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
629  // Creating guard page is very expensive. Java thread has HotSpot
630  // guard page, only enable glibc guard page for non-Java threads.
631  return (thr_type == java_thread ? 0 : page_size());
632}
633
634// Java thread:
635//
636//   Low memory addresses
637//    +------------------------+
638//    |                        |\  JavaThread created by VM does not have glibc
639//    |    glibc guard page    | - guard, attached Java thread usually has
640//    |                        |/  1 page glibc guard.
641// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
642//    |                        |\
643//    |  HotSpot Guard Pages   | - red and yellow pages
644//    |                        |/
645//    +------------------------+ JavaThread::stack_yellow_zone_base()
646//    |                        |\
647//    |      Normal Stack      | -
648//    |                        |/
649// P2 +------------------------+ Thread::stack_base()
650//
651// Non-Java thread:
652//
653//   Low memory addresses
654//    +------------------------+
655//    |                        |\
656//    |  glibc guard page      | - usually 1 page
657//    |                        |/
658// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
659//    |                        |\
660//    |      Normal Stack      | -
661//    |                        |/
662// P2 +------------------------+ Thread::stack_base()
663//
664// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
665//    pthread_attr_getstack()
666
667static void current_stack_region(address * bottom, size_t * size) {
668  if (os::Linux::is_initial_thread()) {
669     // initial thread needs special handling because pthread_getattr_np()
670     // may return bogus value.
671     *bottom = os::Linux::initial_thread_stack_bottom();
672     *size   = os::Linux::initial_thread_stack_size();
673  } else {
674     pthread_attr_t attr;
675
676     int rslt = pthread_getattr_np(pthread_self(), &attr);
677
678     // JVM needs to know exact stack location, abort if it fails
679     if (rslt != 0) {
680       if (rslt == ENOMEM) {
681         vm_exit_out_of_memory(0, "pthread_getattr_np");
682       } else {
683         fatal1("pthread_getattr_np failed with errno = %d", rslt);
684       }
685     }
686
687     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
688         fatal("Can not locate current stack attributes!");
689     }
690
691     pthread_attr_destroy(&attr);
692
693  }
694  assert(os::current_stack_pointer() >= *bottom &&
695         os::current_stack_pointer() < *bottom + *size, "just checking");
696}
697
698address os::current_stack_base() {
699  address bottom;
700  size_t size;
701  current_stack_region(&bottom, &size);
702  return (bottom + size);
703}
704
705size_t os::current_stack_size() {
706  // stack size includes normal stack and HotSpot guard pages
707  address bottom;
708  size_t size;
709  current_stack_region(&bottom, &size);
710  return size;
711}
712
713/////////////////////////////////////////////////////////////////////////////
714// helper functions for fatal error handler
715
716void os::print_context(outputStream *st, void *context) {
717  if (context == NULL) return;
718
719  ucontext_t *uc = (ucontext_t*)context;
720  st->print_cr("Registers:");
721#ifdef AMD64
722  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
723  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
724  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
725  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
726  st->cr();
727  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
728  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
729  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
730  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
731  st->cr();
732  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
733  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
734  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
735  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
736  st->cr();
737  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
738  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
739  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
740  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
741  st->cr();
742  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
743  st->print(", EFL=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
744  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
745  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
746  st->cr();
747  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
748#else
749  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
750  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
751  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
752  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
753  st->cr();
754  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
755  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
756  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
757  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
758  st->cr();
759  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
760  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
761  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
762#endif // AMD64
763  st->cr();
764  st->cr();
765
766  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
767  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
768  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
769  st->cr();
770
771  // Note: it may be unsafe to inspect memory near pc. For example, pc may
772  // point to garbage if entry point in an nmethod is corrupted. Leave
773  // this at the end, and hope for the best.
774  address pc = os::Linux::ucontext_get_pc(uc);
775  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
776  print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
777}
778
779void os::setup_fpu() {
780#ifndef AMD64
781  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
782  __asm__ volatile (  "fldcw (%0)" :
783                      : "r" (fpu_cntrl) : "memory");
784#endif // !AMD64
785}
786