os_linux_x86.cpp revision 4558:746b070f5022
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "os_share_linux.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <errno.h>
61# include <dlfcn.h>
62# include <stdlib.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <pthread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/utsname.h>
70# include <sys/socket.h>
71# include <sys/wait.h>
72# include <pwd.h>
73# include <poll.h>
74# include <ucontext.h>
75# include <fpu_control.h>
76
77#ifdef AMD64
78#define REG_SP REG_RSP
79#define REG_PC REG_RIP
80#define REG_FP REG_RBP
81#define SPELL_REG_SP "rsp"
82#define SPELL_REG_FP "rbp"
83#else
84#define REG_SP REG_UESP
85#define REG_PC REG_EIP
86#define REG_FP REG_EBP
87#define SPELL_REG_SP "esp"
88#define SPELL_REG_FP "ebp"
89#endif // AMD64
90
91address os::current_stack_pointer() {
92#ifdef SPARC_WORKS
93  register void *esp;
94  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
95  return (address) ((char*)esp + sizeof(long)*2);
96#else
97  register void *esp __asm__ (SPELL_REG_SP);
98  return (address) esp;
99#endif
100}
101
102char* os::non_memory_address_word() {
103  // Must never look like an address returned by reserve_memory,
104  // even in its subfields (as defined by the CPU immediate fields,
105  // if the CPU splits constants across multiple instructions).
106
107  return (char*) -1;
108}
109
110void os::initialize_thread(Thread* thr) {
111// Nothing to do.
112}
113
114address os::Linux::ucontext_get_pc(ucontext_t * uc) {
115  return (address)uc->uc_mcontext.gregs[REG_PC];
116}
117
118intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
119  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
120}
121
122intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
123  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
124}
125
126// For Forte Analyzer AsyncGetCallTrace profiling support - thread
127// is currently interrupted by SIGPROF.
128// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
129// frames. Currently we don't do that on Linux, so it's the same as
130// os::fetch_frame_from_context().
131ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
132  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
133
134  assert(thread != NULL, "just checking");
135  assert(ret_sp != NULL, "just checking");
136  assert(ret_fp != NULL, "just checking");
137
138  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
139}
140
141ExtendedPC os::fetch_frame_from_context(void* ucVoid,
142                    intptr_t** ret_sp, intptr_t** ret_fp) {
143
144  ExtendedPC  epc;
145  ucontext_t* uc = (ucontext_t*)ucVoid;
146
147  if (uc != NULL) {
148    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
149    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
150    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
151  } else {
152    // construct empty ExtendedPC for return value checking
153    epc = ExtendedPC(NULL);
154    if (ret_sp) *ret_sp = (intptr_t *)NULL;
155    if (ret_fp) *ret_fp = (intptr_t *)NULL;
156  }
157
158  return epc;
159}
160
161frame os::fetch_frame_from_context(void* ucVoid) {
162  intptr_t* sp;
163  intptr_t* fp;
164  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
165  return frame(sp, fp, epc.pc());
166}
167
168// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
169// turned off by -fomit-frame-pointer,
170frame os::get_sender_for_C_frame(frame* fr) {
171  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
172}
173
174intptr_t* _get_previous_fp() {
175#ifdef SPARC_WORKS
176  register intptr_t **ebp;
177  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
178#else
179  register intptr_t **ebp __asm__ (SPELL_REG_FP);
180#endif
181  return (intptr_t*) *ebp;   // we want what it points to.
182}
183
184
185frame os::current_frame() {
186  intptr_t* fp = _get_previous_fp();
187  frame myframe((intptr_t*)os::current_stack_pointer(),
188                (intptr_t*)fp,
189                CAST_FROM_FN_PTR(address, os::current_frame));
190  if (os::is_first_C_frame(&myframe)) {
191    // stack is not walkable
192    return frame();
193  } else {
194    return os::get_sender_for_C_frame(&myframe);
195  }
196}
197
198// Utility functions
199
200// From IA32 System Programming Guide
201enum {
202  trap_page_fault = 0xE
203};
204
205extern "C" void Fetch32PFI () ;
206extern "C" void Fetch32Resume () ;
207#ifdef AMD64
208extern "C" void FetchNPFI () ;
209extern "C" void FetchNResume () ;
210#endif // AMD64
211
212extern "C" JNIEXPORT int
213JVM_handle_linux_signal(int sig,
214                        siginfo_t* info,
215                        void* ucVoid,
216                        int abort_if_unrecognized) {
217  ucontext_t* uc = (ucontext_t*) ucVoid;
218
219  Thread* t = ThreadLocalStorage::get_thread_slow();
220
221  SignalHandlerMark shm(t);
222
223  // Note: it's not uncommon that JNI code uses signal/sigset to install
224  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
225  // or have a SIGILL handler when detecting CPU type). When that happens,
226  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
227  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
228  // that do not require siginfo/ucontext first.
229
230  if (sig == SIGPIPE || sig == SIGXFSZ) {
231    // allow chained handler to go first
232    if (os::Linux::chained_handler(sig, info, ucVoid)) {
233      return true;
234    } else {
235      if (PrintMiscellaneous && (WizardMode || Verbose)) {
236        char buf[64];
237        warning("Ignoring %s - see bugs 4229104 or 646499219",
238                os::exception_name(sig, buf, sizeof(buf)));
239      }
240      return true;
241    }
242  }
243
244  JavaThread* thread = NULL;
245  VMThread* vmthread = NULL;
246  if (os::Linux::signal_handlers_are_installed) {
247    if (t != NULL ){
248      if(t->is_Java_thread()) {
249        thread = (JavaThread*)t;
250      }
251      else if(t->is_VM_thread()){
252        vmthread = (VMThread *)t;
253      }
254    }
255  }
256/*
257  NOTE: does not seem to work on linux.
258  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
259    // can't decode this kind of signal
260    info = NULL;
261  } else {
262    assert(sig == info->si_signo, "bad siginfo");
263  }
264*/
265  // decide if this trap can be handled by a stub
266  address stub = NULL;
267
268  address pc          = NULL;
269
270  //%note os_trap_1
271  if (info != NULL && uc != NULL && thread != NULL) {
272    pc = (address) os::Linux::ucontext_get_pc(uc);
273
274    if (pc == (address) Fetch32PFI) {
275       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
276       return 1 ;
277    }
278#ifdef AMD64
279    if (pc == (address) FetchNPFI) {
280       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
281       return 1 ;
282    }
283#endif // AMD64
284
285    // Handle ALL stack overflow variations here
286    if (sig == SIGSEGV) {
287      address addr = (address) info->si_addr;
288
289      // check if fault address is within thread stack
290      if (addr < thread->stack_base() &&
291          addr >= thread->stack_base() - thread->stack_size()) {
292        // stack overflow
293        if (thread->in_stack_yellow_zone(addr)) {
294          thread->disable_stack_yellow_zone();
295          if (thread->thread_state() == _thread_in_Java) {
296            // Throw a stack overflow exception.  Guard pages will be reenabled
297            // while unwinding the stack.
298            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
299          } else {
300            // Thread was in the vm or native code.  Return and try to finish.
301            return 1;
302          }
303        } else if (thread->in_stack_red_zone(addr)) {
304          // Fatal red zone violation.  Disable the guard pages and fall through
305          // to handle_unexpected_exception way down below.
306          thread->disable_stack_red_zone();
307          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
308
309          // This is a likely cause, but hard to verify. Let's just print
310          // it as a hint.
311          tty->print_raw_cr("Please check if any of your loaded .so files has "
312                            "enabled executable stack (see man page execstack(8))");
313        } else {
314          // Accessing stack address below sp may cause SEGV if current
315          // thread has MAP_GROWSDOWN stack. This should only happen when
316          // current thread was created by user code with MAP_GROWSDOWN flag
317          // and then attached to VM. See notes in os_linux.cpp.
318          if (thread->osthread()->expanding_stack() == 0) {
319             thread->osthread()->set_expanding_stack();
320             if (os::Linux::manually_expand_stack(thread, addr)) {
321               thread->osthread()->clear_expanding_stack();
322               return 1;
323             }
324             thread->osthread()->clear_expanding_stack();
325          } else {
326             fatal("recursive segv. expanding stack.");
327          }
328        }
329      }
330    }
331
332    if (thread->thread_state() == _thread_in_Java) {
333      // Java thread running in Java code => find exception handler if any
334      // a fault inside compiled code, the interpreter, or a stub
335
336      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
337        stub = SharedRuntime::get_poll_stub(pc);
338      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
339        // BugId 4454115: A read from a MappedByteBuffer can fault
340        // here if the underlying file has been truncated.
341        // Do not crash the VM in such a case.
342        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
343        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
344        if (nm != NULL && nm->has_unsafe_access()) {
345          stub = StubRoutines::handler_for_unsafe_access();
346        }
347      }
348      else
349
350#ifdef AMD64
351      if (sig == SIGFPE  &&
352          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
353        stub =
354          SharedRuntime::
355          continuation_for_implicit_exception(thread,
356                                              pc,
357                                              SharedRuntime::
358                                              IMPLICIT_DIVIDE_BY_ZERO);
359#else
360      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
361        // HACK: si_code does not work on linux 2.2.12-20!!!
362        int op = pc[0];
363        if (op == 0xDB) {
364          // FIST
365          // TODO: The encoding of D2I in i486.ad can cause an exception
366          // prior to the fist instruction if there was an invalid operation
367          // pending. We want to dismiss that exception. From the win_32
368          // side it also seems that if it really was the fist causing
369          // the exception that we do the d2i by hand with different
370          // rounding. Seems kind of weird.
371          // NOTE: that we take the exception at the NEXT floating point instruction.
372          assert(pc[0] == 0xDB, "not a FIST opcode");
373          assert(pc[1] == 0x14, "not a FIST opcode");
374          assert(pc[2] == 0x24, "not a FIST opcode");
375          return true;
376        } else if (op == 0xF7) {
377          // IDIV
378          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
379        } else {
380          // TODO: handle more cases if we are using other x86 instructions
381          //   that can generate SIGFPE signal on linux.
382          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
383          fatal("please update this code.");
384        }
385#endif // AMD64
386      } else if (sig == SIGSEGV &&
387               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
388          // Determination of interpreter/vtable stub/compiled code null exception
389          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
390      }
391    } else if (thread->thread_state() == _thread_in_vm &&
392               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
393               thread->doing_unsafe_access()) {
394        stub = StubRoutines::handler_for_unsafe_access();
395    }
396
397    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
398    // and the heap gets shrunk before the field access.
399    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
400      address addr = JNI_FastGetField::find_slowcase_pc(pc);
401      if (addr != (address)-1) {
402        stub = addr;
403      }
404    }
405
406    // Check to see if we caught the safepoint code in the
407    // process of write protecting the memory serialization page.
408    // It write enables the page immediately after protecting it
409    // so we can just return to retry the write.
410    if ((sig == SIGSEGV) &&
411        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
412      // Block current thread until the memory serialize page permission restored.
413      os::block_on_serialize_page_trap();
414      return true;
415    }
416  }
417
418#ifndef AMD64
419  // Execution protection violation
420  //
421  // This should be kept as the last step in the triage.  We don't
422  // have a dedicated trap number for a no-execute fault, so be
423  // conservative and allow other handlers the first shot.
424  //
425  // Note: We don't test that info->si_code == SEGV_ACCERR here.
426  // this si_code is so generic that it is almost meaningless; and
427  // the si_code for this condition may change in the future.
428  // Furthermore, a false-positive should be harmless.
429  if (UnguardOnExecutionViolation > 0 &&
430      (sig == SIGSEGV || sig == SIGBUS) &&
431      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
432    int page_size = os::vm_page_size();
433    address addr = (address) info->si_addr;
434    address pc = os::Linux::ucontext_get_pc(uc);
435    // Make sure the pc and the faulting address are sane.
436    //
437    // If an instruction spans a page boundary, and the page containing
438    // the beginning of the instruction is executable but the following
439    // page is not, the pc and the faulting address might be slightly
440    // different - we still want to unguard the 2nd page in this case.
441    //
442    // 15 bytes seems to be a (very) safe value for max instruction size.
443    bool pc_is_near_addr =
444      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
445    bool instr_spans_page_boundary =
446      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
447                       (intptr_t) page_size) > 0);
448
449    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
450      static volatile address last_addr =
451        (address) os::non_memory_address_word();
452
453      // In conservative mode, don't unguard unless the address is in the VM
454      if (addr != last_addr &&
455          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
456
457        // Set memory to RWX and retry
458        address page_start =
459          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
460        bool res = os::protect_memory((char*) page_start, page_size,
461                                      os::MEM_PROT_RWX);
462
463        if (PrintMiscellaneous && Verbose) {
464          char buf[256];
465          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
466                       "at " INTPTR_FORMAT
467                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
468                       page_start, (res ? "success" : "failed"), errno);
469          tty->print_raw_cr(buf);
470        }
471        stub = pc;
472
473        // Set last_addr so if we fault again at the same address, we don't end
474        // up in an endless loop.
475        //
476        // There are two potential complications here.  Two threads trapping at
477        // the same address at the same time could cause one of the threads to
478        // think it already unguarded, and abort the VM.  Likely very rare.
479        //
480        // The other race involves two threads alternately trapping at
481        // different addresses and failing to unguard the page, resulting in
482        // an endless loop.  This condition is probably even more unlikely than
483        // the first.
484        //
485        // Although both cases could be avoided by using locks or thread local
486        // last_addr, these solutions are unnecessary complication: this
487        // handler is a best-effort safety net, not a complete solution.  It is
488        // disabled by default and should only be used as a workaround in case
489        // we missed any no-execute-unsafe VM code.
490
491        last_addr = addr;
492      }
493    }
494  }
495#endif // !AMD64
496
497  if (stub != NULL) {
498    // save all thread context in case we need to restore it
499    if (thread != NULL) thread->set_saved_exception_pc(pc);
500
501    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
502    return true;
503  }
504
505  // signal-chaining
506  if (os::Linux::chained_handler(sig, info, ucVoid)) {
507     return true;
508  }
509
510  if (!abort_if_unrecognized) {
511    // caller wants another chance, so give it to him
512    return false;
513  }
514
515  if (pc == NULL && uc != NULL) {
516    pc = os::Linux::ucontext_get_pc(uc);
517  }
518
519  // unmask current signal
520  sigset_t newset;
521  sigemptyset(&newset);
522  sigaddset(&newset, sig);
523  sigprocmask(SIG_UNBLOCK, &newset, NULL);
524
525  VMError err(t, sig, pc, info, ucVoid);
526  err.report_and_die();
527
528  ShouldNotReachHere();
529}
530
531void os::Linux::init_thread_fpu_state(void) {
532#ifndef AMD64
533  // set fpu to 53 bit precision
534  set_fpu_control_word(0x27f);
535#endif // !AMD64
536}
537
538int os::Linux::get_fpu_control_word(void) {
539#ifdef AMD64
540  return 0;
541#else
542  int fpu_control;
543  _FPU_GETCW(fpu_control);
544  return fpu_control & 0xffff;
545#endif // AMD64
546}
547
548void os::Linux::set_fpu_control_word(int fpu_control) {
549#ifndef AMD64
550  _FPU_SETCW(fpu_control);
551#endif // !AMD64
552}
553
554// Check that the linux kernel version is 2.4 or higher since earlier
555// versions do not support SSE without patches.
556bool os::supports_sse() {
557#ifdef AMD64
558  return true;
559#else
560  struct utsname uts;
561  if( uname(&uts) != 0 ) return false; // uname fails?
562  char *minor_string;
563  int major = strtol(uts.release,&minor_string,10);
564  int minor = strtol(minor_string+1,NULL,10);
565  bool result = (major > 2 || (major==2 && minor >= 4));
566#ifndef PRODUCT
567  if (PrintMiscellaneous && Verbose) {
568    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
569               major,minor, result ? "DOES" : "does NOT");
570  }
571#endif
572  return result;
573#endif // AMD64
574}
575
576bool os::is_allocatable(size_t bytes) {
577#ifdef AMD64
578  // unused on amd64?
579  return true;
580#else
581
582  if (bytes < 2 * G) {
583    return true;
584  }
585
586  char* addr = reserve_memory(bytes, NULL);
587
588  if (addr != NULL) {
589    release_memory(addr, bytes);
590  }
591
592  return addr != NULL;
593#endif // AMD64
594}
595
596////////////////////////////////////////////////////////////////////////////////
597// thread stack
598
599#ifdef AMD64
600size_t os::Linux::min_stack_allowed  = 64 * K;
601
602// amd64: pthread on amd64 is always in floating stack mode
603bool os::Linux::supports_variable_stack_size() {  return true; }
604#else
605size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
606
607#ifdef __GNUC__
608#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
609#endif
610
611// Test if pthread library can support variable thread stack size. LinuxThreads
612// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
613// in floating stack mode and NPTL support variable stack size.
614bool os::Linux::supports_variable_stack_size() {
615  if (os::Linux::is_NPTL()) {
616     // NPTL, yes
617     return true;
618
619  } else {
620    // Note: We can't control default stack size when creating a thread.
621    // If we use non-default stack size (pthread_attr_setstacksize), both
622    // floating stack and non-floating stack LinuxThreads will return the
623    // same value. This makes it impossible to implement this function by
624    // detecting thread stack size directly.
625    //
626    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
627    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
628    // %gs (either as LDT selector or GDT selector, depending on kernel)
629    // to access thread specific data.
630    //
631    // Note that %gs is a reserved glibc register since early 2001, so
632    // applications are not allowed to change its value (Ulrich Drepper from
633    // Redhat confirmed that all known offenders have been modified to use
634    // either %fs or TSD). In the worst case scenario, when VM is embedded in
635    // a native application that plays with %gs, we might see non-zero %gs
636    // even LinuxThreads is running in fixed stack mode. As the result, we'll
637    // return true and skip _thread_safety_check(), so we may not be able to
638    // detect stack-heap collisions. But otherwise it's harmless.
639    //
640#ifdef __GNUC__
641    return (GET_GS() != 0);
642#else
643    return false;
644#endif
645  }
646}
647#endif // AMD64
648
649// return default stack size for thr_type
650size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
651  // default stack size (compiler thread needs larger stack)
652#ifdef AMD64
653  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
654#else
655  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
656#endif // AMD64
657  return s;
658}
659
660size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
661  // Creating guard page is very expensive. Java thread has HotSpot
662  // guard page, only enable glibc guard page for non-Java threads.
663  return (thr_type == java_thread ? 0 : page_size());
664}
665
666// Java thread:
667//
668//   Low memory addresses
669//    +------------------------+
670//    |                        |\  JavaThread created by VM does not have glibc
671//    |    glibc guard page    | - guard, attached Java thread usually has
672//    |                        |/  1 page glibc guard.
673// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
674//    |                        |\
675//    |  HotSpot Guard Pages   | - red and yellow pages
676//    |                        |/
677//    +------------------------+ JavaThread::stack_yellow_zone_base()
678//    |                        |\
679//    |      Normal Stack      | -
680//    |                        |/
681// P2 +------------------------+ Thread::stack_base()
682//
683// Non-Java thread:
684//
685//   Low memory addresses
686//    +------------------------+
687//    |                        |\
688//    |  glibc guard page      | - usually 1 page
689//    |                        |/
690// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
691//    |                        |\
692//    |      Normal Stack      | -
693//    |                        |/
694// P2 +------------------------+ Thread::stack_base()
695//
696// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
697//    pthread_attr_getstack()
698
699static void current_stack_region(address * bottom, size_t * size) {
700  if (os::Linux::is_initial_thread()) {
701     // initial thread needs special handling because pthread_getattr_np()
702     // may return bogus value.
703     *bottom = os::Linux::initial_thread_stack_bottom();
704     *size   = os::Linux::initial_thread_stack_size();
705  } else {
706     pthread_attr_t attr;
707
708     int rslt = pthread_getattr_np(pthread_self(), &attr);
709
710     // JVM needs to know exact stack location, abort if it fails
711     if (rslt != 0) {
712       if (rslt == ENOMEM) {
713         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
714       } else {
715         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
716       }
717     }
718
719     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
720         fatal("Can not locate current stack attributes!");
721     }
722
723     pthread_attr_destroy(&attr);
724
725  }
726  assert(os::current_stack_pointer() >= *bottom &&
727         os::current_stack_pointer() < *bottom + *size, "just checking");
728}
729
730address os::current_stack_base() {
731  address bottom;
732  size_t size;
733  current_stack_region(&bottom, &size);
734  return (bottom + size);
735}
736
737size_t os::current_stack_size() {
738  // stack size includes normal stack and HotSpot guard pages
739  address bottom;
740  size_t size;
741  current_stack_region(&bottom, &size);
742  return size;
743}
744
745/////////////////////////////////////////////////////////////////////////////
746// helper functions for fatal error handler
747
748void os::print_context(outputStream *st, void *context) {
749  if (context == NULL) return;
750
751  ucontext_t *uc = (ucontext_t*)context;
752  st->print_cr("Registers:");
753#ifdef AMD64
754  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
755  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
756  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
757  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
758  st->cr();
759  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
760  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
761  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
762  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
763  st->cr();
764  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
765  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
766  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
767  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
768  st->cr();
769  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
770  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
771  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
772  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
773  st->cr();
774  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
775  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
776  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
777  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
778  st->cr();
779  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
780#else
781  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
782  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
783  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
784  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
785  st->cr();
786  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
787  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
788  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
789  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
790  st->cr();
791  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
792  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
793  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
794#endif // AMD64
795  st->cr();
796  st->cr();
797
798  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
799  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
800  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
801  st->cr();
802
803  // Note: it may be unsafe to inspect memory near pc. For example, pc may
804  // point to garbage if entry point in an nmethod is corrupted. Leave
805  // this at the end, and hope for the best.
806  address pc = os::Linux::ucontext_get_pc(uc);
807  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
808  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
809}
810
811void os::print_register_info(outputStream *st, void *context) {
812  if (context == NULL) return;
813
814  ucontext_t *uc = (ucontext_t*)context;
815
816  st->print_cr("Register to memory mapping:");
817  st->cr();
818
819  // this is horrendously verbose but the layout of the registers in the
820  // context does not match how we defined our abstract Register set, so
821  // we can't just iterate through the gregs area
822
823  // this is only for the "general purpose" registers
824
825#ifdef AMD64
826  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
827  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
828  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
829  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
830  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
831  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
832  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
833  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
834  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
835  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
836  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
837  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
838  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
839  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
840  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
841  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
842#else
843  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
844  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
845  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
846  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
847  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
848  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
849  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
850  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
851#endif // AMD64
852
853  st->cr();
854}
855
856void os::setup_fpu() {
857#ifndef AMD64
858  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
859  __asm__ volatile (  "fldcw (%0)" :
860                      : "r" (fpu_cntrl) : "memory");
861#endif // !AMD64
862}
863
864#ifndef PRODUCT
865void os::verify_stack_alignment() {
866#ifdef AMD64
867  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
868#endif
869}
870#endif
871