os_linux_x86.cpp revision 3864:f34d701e952e
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "assembler_x86.inline.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "nativeInst_x86.hpp"
37#include "os_share_linux.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/thread.inline.hpp"
52#include "runtime/timer.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdlib.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <pthread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/utsname.h>
71# include <sys/socket.h>
72# include <sys/wait.h>
73# include <pwd.h>
74# include <poll.h>
75# include <ucontext.h>
76# include <fpu_control.h>
77
78#ifdef AMD64
79#define REG_SP REG_RSP
80#define REG_PC REG_RIP
81#define REG_FP REG_RBP
82#define SPELL_REG_SP "rsp"
83#define SPELL_REG_FP "rbp"
84#else
85#define REG_SP REG_UESP
86#define REG_PC REG_EIP
87#define REG_FP REG_EBP
88#define SPELL_REG_SP "esp"
89#define SPELL_REG_FP "ebp"
90#endif // AMD64
91
92address os::current_stack_pointer() {
93#ifdef SPARC_WORKS
94  register void *esp;
95  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
96  return (address) ((char*)esp + sizeof(long)*2);
97#else
98  register void *esp __asm__ (SPELL_REG_SP);
99  return (address) esp;
100#endif
101}
102
103char* os::non_memory_address_word() {
104  // Must never look like an address returned by reserve_memory,
105  // even in its subfields (as defined by the CPU immediate fields,
106  // if the CPU splits constants across multiple instructions).
107
108  return (char*) -1;
109}
110
111void os::initialize_thread(Thread* thr) {
112// Nothing to do.
113}
114
115address os::Linux::ucontext_get_pc(ucontext_t * uc) {
116  return (address)uc->uc_mcontext.gregs[REG_PC];
117}
118
119intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
120  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
121}
122
123intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
124  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
125}
126
127// For Forte Analyzer AsyncGetCallTrace profiling support - thread
128// is currently interrupted by SIGPROF.
129// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
130// frames. Currently we don't do that on Linux, so it's the same as
131// os::fetch_frame_from_context().
132ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
133  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
134
135  assert(thread != NULL, "just checking");
136  assert(ret_sp != NULL, "just checking");
137  assert(ret_fp != NULL, "just checking");
138
139  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
140}
141
142ExtendedPC os::fetch_frame_from_context(void* ucVoid,
143                    intptr_t** ret_sp, intptr_t** ret_fp) {
144
145  ExtendedPC  epc;
146  ucontext_t* uc = (ucontext_t*)ucVoid;
147
148  if (uc != NULL) {
149    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
150    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
151    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
152  } else {
153    // construct empty ExtendedPC for return value checking
154    epc = ExtendedPC(NULL);
155    if (ret_sp) *ret_sp = (intptr_t *)NULL;
156    if (ret_fp) *ret_fp = (intptr_t *)NULL;
157  }
158
159  return epc;
160}
161
162frame os::fetch_frame_from_context(void* ucVoid) {
163  intptr_t* sp;
164  intptr_t* fp;
165  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
166  return frame(sp, fp, epc.pc());
167}
168
169// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
170// turned off by -fomit-frame-pointer,
171frame os::get_sender_for_C_frame(frame* fr) {
172  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
173}
174
175intptr_t* _get_previous_fp() {
176#ifdef SPARC_WORKS
177  register intptr_t **ebp;
178  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
179#else
180  register intptr_t **ebp __asm__ (SPELL_REG_FP);
181#endif
182  return (intptr_t*) *ebp;   // we want what it points to.
183}
184
185
186frame os::current_frame() {
187  intptr_t* fp = _get_previous_fp();
188  frame myframe((intptr_t*)os::current_stack_pointer(),
189                (intptr_t*)fp,
190                CAST_FROM_FN_PTR(address, os::current_frame));
191  if (os::is_first_C_frame(&myframe)) {
192    // stack is not walkable
193    return frame(NULL, NULL, NULL);
194  } else {
195    return os::get_sender_for_C_frame(&myframe);
196  }
197}
198
199// Utility functions
200
201// From IA32 System Programming Guide
202enum {
203  trap_page_fault = 0xE
204};
205
206extern "C" void Fetch32PFI () ;
207extern "C" void Fetch32Resume () ;
208#ifdef AMD64
209extern "C" void FetchNPFI () ;
210extern "C" void FetchNResume () ;
211#endif // AMD64
212
213extern "C" JNIEXPORT int
214JVM_handle_linux_signal(int sig,
215                        siginfo_t* info,
216                        void* ucVoid,
217                        int abort_if_unrecognized) {
218  ucontext_t* uc = (ucontext_t*) ucVoid;
219
220  Thread* t = ThreadLocalStorage::get_thread_slow();
221
222  SignalHandlerMark shm(t);
223
224  // Note: it's not uncommon that JNI code uses signal/sigset to install
225  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
226  // or have a SIGILL handler when detecting CPU type). When that happens,
227  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
228  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
229  // that do not require siginfo/ucontext first.
230
231  if (sig == SIGPIPE || sig == SIGXFSZ) {
232    // allow chained handler to go first
233    if (os::Linux::chained_handler(sig, info, ucVoid)) {
234      return true;
235    } else {
236      if (PrintMiscellaneous && (WizardMode || Verbose)) {
237        char buf[64];
238        warning("Ignoring %s - see bugs 4229104 or 646499219",
239                os::exception_name(sig, buf, sizeof(buf)));
240      }
241      return true;
242    }
243  }
244
245  JavaThread* thread = NULL;
246  VMThread* vmthread = NULL;
247  if (os::Linux::signal_handlers_are_installed) {
248    if (t != NULL ){
249      if(t->is_Java_thread()) {
250        thread = (JavaThread*)t;
251      }
252      else if(t->is_VM_thread()){
253        vmthread = (VMThread *)t;
254      }
255    }
256  }
257/*
258  NOTE: does not seem to work on linux.
259  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
260    // can't decode this kind of signal
261    info = NULL;
262  } else {
263    assert(sig == info->si_signo, "bad siginfo");
264  }
265*/
266  // decide if this trap can be handled by a stub
267  address stub = NULL;
268
269  address pc          = NULL;
270
271  //%note os_trap_1
272  if (info != NULL && uc != NULL && thread != NULL) {
273    pc = (address) os::Linux::ucontext_get_pc(uc);
274
275    if (pc == (address) Fetch32PFI) {
276       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
277       return 1 ;
278    }
279#ifdef AMD64
280    if (pc == (address) FetchNPFI) {
281       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
282       return 1 ;
283    }
284#endif // AMD64
285
286    // Handle ALL stack overflow variations here
287    if (sig == SIGSEGV) {
288      address addr = (address) info->si_addr;
289
290      // check if fault address is within thread stack
291      if (addr < thread->stack_base() &&
292          addr >= thread->stack_base() - thread->stack_size()) {
293        // stack overflow
294        if (thread->in_stack_yellow_zone(addr)) {
295          thread->disable_stack_yellow_zone();
296          if (thread->thread_state() == _thread_in_Java) {
297            // Throw a stack overflow exception.  Guard pages will be reenabled
298            // while unwinding the stack.
299            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
300          } else {
301            // Thread was in the vm or native code.  Return and try to finish.
302            return 1;
303          }
304        } else if (thread->in_stack_red_zone(addr)) {
305          // Fatal red zone violation.  Disable the guard pages and fall through
306          // to handle_unexpected_exception way down below.
307          thread->disable_stack_red_zone();
308          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
309        } else {
310          // Accessing stack address below sp may cause SEGV if current
311          // thread has MAP_GROWSDOWN stack. This should only happen when
312          // current thread was created by user code with MAP_GROWSDOWN flag
313          // and then attached to VM. See notes in os_linux.cpp.
314          if (thread->osthread()->expanding_stack() == 0) {
315             thread->osthread()->set_expanding_stack();
316             if (os::Linux::manually_expand_stack(thread, addr)) {
317               thread->osthread()->clear_expanding_stack();
318               return 1;
319             }
320             thread->osthread()->clear_expanding_stack();
321          } else {
322             fatal("recursive segv. expanding stack.");
323          }
324        }
325      }
326    }
327
328    if (thread->thread_state() == _thread_in_Java) {
329      // Java thread running in Java code => find exception handler if any
330      // a fault inside compiled code, the interpreter, or a stub
331
332      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
333        stub = SharedRuntime::get_poll_stub(pc);
334      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
335        // BugId 4454115: A read from a MappedByteBuffer can fault
336        // here if the underlying file has been truncated.
337        // Do not crash the VM in such a case.
338        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
339        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
340        if (nm != NULL && nm->has_unsafe_access()) {
341          stub = StubRoutines::handler_for_unsafe_access();
342        }
343      }
344      else
345
346#ifdef AMD64
347      if (sig == SIGFPE  &&
348          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
349        stub =
350          SharedRuntime::
351          continuation_for_implicit_exception(thread,
352                                              pc,
353                                              SharedRuntime::
354                                              IMPLICIT_DIVIDE_BY_ZERO);
355#else
356      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
357        // HACK: si_code does not work on linux 2.2.12-20!!!
358        int op = pc[0];
359        if (op == 0xDB) {
360          // FIST
361          // TODO: The encoding of D2I in i486.ad can cause an exception
362          // prior to the fist instruction if there was an invalid operation
363          // pending. We want to dismiss that exception. From the win_32
364          // side it also seems that if it really was the fist causing
365          // the exception that we do the d2i by hand with different
366          // rounding. Seems kind of weird.
367          // NOTE: that we take the exception at the NEXT floating point instruction.
368          assert(pc[0] == 0xDB, "not a FIST opcode");
369          assert(pc[1] == 0x14, "not a FIST opcode");
370          assert(pc[2] == 0x24, "not a FIST opcode");
371          return true;
372        } else if (op == 0xF7) {
373          // IDIV
374          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
375        } else {
376          // TODO: handle more cases if we are using other x86 instructions
377          //   that can generate SIGFPE signal on linux.
378          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
379          fatal("please update this code.");
380        }
381#endif // AMD64
382      } else if (sig == SIGSEGV &&
383               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
384          // Determination of interpreter/vtable stub/compiled code null exception
385          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
386      }
387    } else if (thread->thread_state() == _thread_in_vm &&
388               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
389               thread->doing_unsafe_access()) {
390        stub = StubRoutines::handler_for_unsafe_access();
391    }
392
393    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
394    // and the heap gets shrunk before the field access.
395    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
396      address addr = JNI_FastGetField::find_slowcase_pc(pc);
397      if (addr != (address)-1) {
398        stub = addr;
399      }
400    }
401
402    // Check to see if we caught the safepoint code in the
403    // process of write protecting the memory serialization page.
404    // It write enables the page immediately after protecting it
405    // so we can just return to retry the write.
406    if ((sig == SIGSEGV) &&
407        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
408      // Block current thread until the memory serialize page permission restored.
409      os::block_on_serialize_page_trap();
410      return true;
411    }
412  }
413
414#ifndef AMD64
415  // Execution protection violation
416  //
417  // This should be kept as the last step in the triage.  We don't
418  // have a dedicated trap number for a no-execute fault, so be
419  // conservative and allow other handlers the first shot.
420  //
421  // Note: We don't test that info->si_code == SEGV_ACCERR here.
422  // this si_code is so generic that it is almost meaningless; and
423  // the si_code for this condition may change in the future.
424  // Furthermore, a false-positive should be harmless.
425  if (UnguardOnExecutionViolation > 0 &&
426      (sig == SIGSEGV || sig == SIGBUS) &&
427      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
428    int page_size = os::vm_page_size();
429    address addr = (address) info->si_addr;
430    address pc = os::Linux::ucontext_get_pc(uc);
431    // Make sure the pc and the faulting address are sane.
432    //
433    // If an instruction spans a page boundary, and the page containing
434    // the beginning of the instruction is executable but the following
435    // page is not, the pc and the faulting address might be slightly
436    // different - we still want to unguard the 2nd page in this case.
437    //
438    // 15 bytes seems to be a (very) safe value for max instruction size.
439    bool pc_is_near_addr =
440      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
441    bool instr_spans_page_boundary =
442      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
443                       (intptr_t) page_size) > 0);
444
445    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
446      static volatile address last_addr =
447        (address) os::non_memory_address_word();
448
449      // In conservative mode, don't unguard unless the address is in the VM
450      if (addr != last_addr &&
451          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
452
453        // Set memory to RWX and retry
454        address page_start =
455          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
456        bool res = os::protect_memory((char*) page_start, page_size,
457                                      os::MEM_PROT_RWX);
458
459        if (PrintMiscellaneous && Verbose) {
460          char buf[256];
461          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
462                       "at " INTPTR_FORMAT
463                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
464                       page_start, (res ? "success" : "failed"), errno);
465          tty->print_raw_cr(buf);
466        }
467        stub = pc;
468
469        // Set last_addr so if we fault again at the same address, we don't end
470        // up in an endless loop.
471        //
472        // There are two potential complications here.  Two threads trapping at
473        // the same address at the same time could cause one of the threads to
474        // think it already unguarded, and abort the VM.  Likely very rare.
475        //
476        // The other race involves two threads alternately trapping at
477        // different addresses and failing to unguard the page, resulting in
478        // an endless loop.  This condition is probably even more unlikely than
479        // the first.
480        //
481        // Although both cases could be avoided by using locks or thread local
482        // last_addr, these solutions are unnecessary complication: this
483        // handler is a best-effort safety net, not a complete solution.  It is
484        // disabled by default and should only be used as a workaround in case
485        // we missed any no-execute-unsafe VM code.
486
487        last_addr = addr;
488      }
489    }
490  }
491#endif // !AMD64
492
493  if (stub != NULL) {
494    // save all thread context in case we need to restore it
495    if (thread != NULL) thread->set_saved_exception_pc(pc);
496
497    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
498    return true;
499  }
500
501  // signal-chaining
502  if (os::Linux::chained_handler(sig, info, ucVoid)) {
503     return true;
504  }
505
506  if (!abort_if_unrecognized) {
507    // caller wants another chance, so give it to him
508    return false;
509  }
510
511  if (pc == NULL && uc != NULL) {
512    pc = os::Linux::ucontext_get_pc(uc);
513  }
514
515  // unmask current signal
516  sigset_t newset;
517  sigemptyset(&newset);
518  sigaddset(&newset, sig);
519  sigprocmask(SIG_UNBLOCK, &newset, NULL);
520
521  VMError err(t, sig, pc, info, ucVoid);
522  err.report_and_die();
523
524  ShouldNotReachHere();
525}
526
527void os::Linux::init_thread_fpu_state(void) {
528#ifndef AMD64
529  // set fpu to 53 bit precision
530  set_fpu_control_word(0x27f);
531#endif // !AMD64
532}
533
534int os::Linux::get_fpu_control_word(void) {
535#ifdef AMD64
536  return 0;
537#else
538  int fpu_control;
539  _FPU_GETCW(fpu_control);
540  return fpu_control & 0xffff;
541#endif // AMD64
542}
543
544void os::Linux::set_fpu_control_word(int fpu_control) {
545#ifndef AMD64
546  _FPU_SETCW(fpu_control);
547#endif // !AMD64
548}
549
550// Check that the linux kernel version is 2.4 or higher since earlier
551// versions do not support SSE without patches.
552bool os::supports_sse() {
553#ifdef AMD64
554  return true;
555#else
556  struct utsname uts;
557  if( uname(&uts) != 0 ) return false; // uname fails?
558  char *minor_string;
559  int major = strtol(uts.release,&minor_string,10);
560  int minor = strtol(minor_string+1,NULL,10);
561  bool result = (major > 2 || (major==2 && minor >= 4));
562#ifndef PRODUCT
563  if (PrintMiscellaneous && Verbose) {
564    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
565               major,minor, result ? "DOES" : "does NOT");
566  }
567#endif
568  return result;
569#endif // AMD64
570}
571
572bool os::is_allocatable(size_t bytes) {
573#ifdef AMD64
574  // unused on amd64?
575  return true;
576#else
577
578  if (bytes < 2 * G) {
579    return true;
580  }
581
582  char* addr = reserve_memory(bytes, NULL);
583
584  if (addr != NULL) {
585    release_memory(addr, bytes);
586  }
587
588  return addr != NULL;
589#endif // AMD64
590}
591
592////////////////////////////////////////////////////////////////////////////////
593// thread stack
594
595#ifdef AMD64
596size_t os::Linux::min_stack_allowed  = 64 * K;
597
598// amd64: pthread on amd64 is always in floating stack mode
599bool os::Linux::supports_variable_stack_size() {  return true; }
600#else
601size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
602
603#ifdef __GNUC__
604#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
605#endif
606
607// Test if pthread library can support variable thread stack size. LinuxThreads
608// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
609// in floating stack mode and NPTL support variable stack size.
610bool os::Linux::supports_variable_stack_size() {
611  if (os::Linux::is_NPTL()) {
612     // NPTL, yes
613     return true;
614
615  } else {
616    // Note: We can't control default stack size when creating a thread.
617    // If we use non-default stack size (pthread_attr_setstacksize), both
618    // floating stack and non-floating stack LinuxThreads will return the
619    // same value. This makes it impossible to implement this function by
620    // detecting thread stack size directly.
621    //
622    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
623    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
624    // %gs (either as LDT selector or GDT selector, depending on kernel)
625    // to access thread specific data.
626    //
627    // Note that %gs is a reserved glibc register since early 2001, so
628    // applications are not allowed to change its value (Ulrich Drepper from
629    // Redhat confirmed that all known offenders have been modified to use
630    // either %fs or TSD). In the worst case scenario, when VM is embedded in
631    // a native application that plays with %gs, we might see non-zero %gs
632    // even LinuxThreads is running in fixed stack mode. As the result, we'll
633    // return true and skip _thread_safety_check(), so we may not be able to
634    // detect stack-heap collisions. But otherwise it's harmless.
635    //
636#ifdef __GNUC__
637    return (GET_GS() != 0);
638#else
639    return false;
640#endif
641  }
642}
643#endif // AMD64
644
645// return default stack size for thr_type
646size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
647  // default stack size (compiler thread needs larger stack)
648#ifdef AMD64
649  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
650#else
651  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
652#endif // AMD64
653  return s;
654}
655
656size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
657  // Creating guard page is very expensive. Java thread has HotSpot
658  // guard page, only enable glibc guard page for non-Java threads.
659  return (thr_type == java_thread ? 0 : page_size());
660}
661
662// Java thread:
663//
664//   Low memory addresses
665//    +------------------------+
666//    |                        |\  JavaThread created by VM does not have glibc
667//    |    glibc guard page    | - guard, attached Java thread usually has
668//    |                        |/  1 page glibc guard.
669// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
670//    |                        |\
671//    |  HotSpot Guard Pages   | - red and yellow pages
672//    |                        |/
673//    +------------------------+ JavaThread::stack_yellow_zone_base()
674//    |                        |\
675//    |      Normal Stack      | -
676//    |                        |/
677// P2 +------------------------+ Thread::stack_base()
678//
679// Non-Java thread:
680//
681//   Low memory addresses
682//    +------------------------+
683//    |                        |\
684//    |  glibc guard page      | - usually 1 page
685//    |                        |/
686// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
687//    |                        |\
688//    |      Normal Stack      | -
689//    |                        |/
690// P2 +------------------------+ Thread::stack_base()
691//
692// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
693//    pthread_attr_getstack()
694
695static void current_stack_region(address * bottom, size_t * size) {
696  if (os::Linux::is_initial_thread()) {
697     // initial thread needs special handling because pthread_getattr_np()
698     // may return bogus value.
699     *bottom = os::Linux::initial_thread_stack_bottom();
700     *size   = os::Linux::initial_thread_stack_size();
701  } else {
702     pthread_attr_t attr;
703
704     int rslt = pthread_getattr_np(pthread_self(), &attr);
705
706     // JVM needs to know exact stack location, abort if it fails
707     if (rslt != 0) {
708       if (rslt == ENOMEM) {
709         vm_exit_out_of_memory(0, "pthread_getattr_np");
710       } else {
711         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
712       }
713     }
714
715     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
716         fatal("Can not locate current stack attributes!");
717     }
718
719     pthread_attr_destroy(&attr);
720
721  }
722  assert(os::current_stack_pointer() >= *bottom &&
723         os::current_stack_pointer() < *bottom + *size, "just checking");
724}
725
726address os::current_stack_base() {
727  address bottom;
728  size_t size;
729  current_stack_region(&bottom, &size);
730  return (bottom + size);
731}
732
733size_t os::current_stack_size() {
734  // stack size includes normal stack and HotSpot guard pages
735  address bottom;
736  size_t size;
737  current_stack_region(&bottom, &size);
738  return size;
739}
740
741/////////////////////////////////////////////////////////////////////////////
742// helper functions for fatal error handler
743
744void os::print_context(outputStream *st, void *context) {
745  if (context == NULL) return;
746
747  ucontext_t *uc = (ucontext_t*)context;
748  st->print_cr("Registers:");
749#ifdef AMD64
750  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
751  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
752  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
753  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
754  st->cr();
755  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
756  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
757  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
758  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
759  st->cr();
760  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
761  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
762  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
763  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
764  st->cr();
765  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
766  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
767  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
768  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
769  st->cr();
770  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
771  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
772  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
773  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
774  st->cr();
775  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
776#else
777  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
778  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
779  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
780  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
781  st->cr();
782  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
783  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
784  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
785  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
786  st->cr();
787  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
788  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
789  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
790#endif // AMD64
791  st->cr();
792  st->cr();
793
794  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
795  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
796  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
797  st->cr();
798
799  // Note: it may be unsafe to inspect memory near pc. For example, pc may
800  // point to garbage if entry point in an nmethod is corrupted. Leave
801  // this at the end, and hope for the best.
802  address pc = os::Linux::ucontext_get_pc(uc);
803  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
804  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
805}
806
807void os::print_register_info(outputStream *st, void *context) {
808  if (context == NULL) return;
809
810  ucontext_t *uc = (ucontext_t*)context;
811
812  st->print_cr("Register to memory mapping:");
813  st->cr();
814
815  // this is horrendously verbose but the layout of the registers in the
816  // context does not match how we defined our abstract Register set, so
817  // we can't just iterate through the gregs area
818
819  // this is only for the "general purpose" registers
820
821#ifdef AMD64
822  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
823  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
824  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
825  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
826  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
827  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
828  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
829  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
830  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
831  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
832  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
833  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
834  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
835  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
836  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
837  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
838#else
839  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
840  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
841  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
842  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
843  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
844  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
845  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
846  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
847#endif // AMD64
848
849  st->cr();
850}
851
852void os::setup_fpu() {
853#ifndef AMD64
854  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
855  __asm__ volatile (  "fldcw (%0)" :
856                      : "r" (fpu_cntrl) : "memory");
857#endif // !AMD64
858}
859
860#ifndef PRODUCT
861void os::verify_stack_alignment() {
862#ifdef AMD64
863  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
864#endif
865}
866#endif
867