os_linux_x86.cpp revision 1887:828eafbd85cc
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "assembler_x86.inline.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "nativeInst_x86.hpp"
37#include "os_share_linux.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/timer.hpp"
52#include "thread_linux.inline.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55#ifdef COMPILER1
56#include "c1/c1_Runtime1.hpp"
57#endif
58#ifdef COMPILER2
59#include "opto/runtime.hpp"
60#endif
61
62// put OS-includes here
63# include <sys/types.h>
64# include <sys/mman.h>
65# include <pthread.h>
66# include <signal.h>
67# include <errno.h>
68# include <dlfcn.h>
69# include <stdlib.h>
70# include <stdio.h>
71# include <unistd.h>
72# include <sys/resource.h>
73# include <pthread.h>
74# include <sys/stat.h>
75# include <sys/time.h>
76# include <sys/utsname.h>
77# include <sys/socket.h>
78# include <sys/wait.h>
79# include <pwd.h>
80# include <poll.h>
81# include <ucontext.h>
82# include <fpu_control.h>
83
84#ifdef AMD64
85#define REG_SP REG_RSP
86#define REG_PC REG_RIP
87#define REG_FP REG_RBP
88#define SPELL_REG_SP "rsp"
89#define SPELL_REG_FP "rbp"
90#else
91#define REG_SP REG_UESP
92#define REG_PC REG_EIP
93#define REG_FP REG_EBP
94#define SPELL_REG_SP "esp"
95#define SPELL_REG_FP "ebp"
96#endif // AMD64
97
98address os::current_stack_pointer() {
99#ifdef SPARC_WORKS
100  register void *esp;
101  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
102  return (address) ((char*)esp + sizeof(long)*2);
103#else
104  register void *esp __asm__ (SPELL_REG_SP);
105  return (address) esp;
106#endif
107}
108
109char* os::non_memory_address_word() {
110  // Must never look like an address returned by reserve_memory,
111  // even in its subfields (as defined by the CPU immediate fields,
112  // if the CPU splits constants across multiple instructions).
113
114  return (char*) -1;
115}
116
117void os::initialize_thread() {
118// Nothing to do.
119}
120
121address os::Linux::ucontext_get_pc(ucontext_t * uc) {
122  return (address)uc->uc_mcontext.gregs[REG_PC];
123}
124
125intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
126  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
127}
128
129intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
130  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
131}
132
133// For Forte Analyzer AsyncGetCallTrace profiling support - thread
134// is currently interrupted by SIGPROF.
135// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
136// frames. Currently we don't do that on Linux, so it's the same as
137// os::fetch_frame_from_context().
138ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
139  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
140
141  assert(thread != NULL, "just checking");
142  assert(ret_sp != NULL, "just checking");
143  assert(ret_fp != NULL, "just checking");
144
145  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
146}
147
148ExtendedPC os::fetch_frame_from_context(void* ucVoid,
149                    intptr_t** ret_sp, intptr_t** ret_fp) {
150
151  ExtendedPC  epc;
152  ucontext_t* uc = (ucontext_t*)ucVoid;
153
154  if (uc != NULL) {
155    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
156    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
157    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
158  } else {
159    // construct empty ExtendedPC for return value checking
160    epc = ExtendedPC(NULL);
161    if (ret_sp) *ret_sp = (intptr_t *)NULL;
162    if (ret_fp) *ret_fp = (intptr_t *)NULL;
163  }
164
165  return epc;
166}
167
168frame os::fetch_frame_from_context(void* ucVoid) {
169  intptr_t* sp;
170  intptr_t* fp;
171  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
172  return frame(sp, fp, epc.pc());
173}
174
175// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
176// turned off by -fomit-frame-pointer,
177frame os::get_sender_for_C_frame(frame* fr) {
178  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
179}
180
181intptr_t* _get_previous_fp() {
182#ifdef SPARC_WORKS
183  register intptr_t **ebp;
184  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
185#else
186  register intptr_t **ebp __asm__ (SPELL_REG_FP);
187#endif
188  return (intptr_t*) *ebp;   // we want what it points to.
189}
190
191
192frame os::current_frame() {
193  intptr_t* fp = _get_previous_fp();
194  frame myframe((intptr_t*)os::current_stack_pointer(),
195                (intptr_t*)fp,
196                CAST_FROM_FN_PTR(address, os::current_frame));
197  if (os::is_first_C_frame(&myframe)) {
198    // stack is not walkable
199    return frame(NULL, NULL, NULL);
200  } else {
201    return os::get_sender_for_C_frame(&myframe);
202  }
203}
204
205// Utility functions
206
207// From IA32 System Programming Guide
208enum {
209  trap_page_fault = 0xE
210};
211
212extern "C" void Fetch32PFI () ;
213extern "C" void Fetch32Resume () ;
214#ifdef AMD64
215extern "C" void FetchNPFI () ;
216extern "C" void FetchNResume () ;
217#endif // AMD64
218
219extern "C" int
220JVM_handle_linux_signal(int sig,
221                        siginfo_t* info,
222                        void* ucVoid,
223                        int abort_if_unrecognized) {
224  ucontext_t* uc = (ucontext_t*) ucVoid;
225
226  Thread* t = ThreadLocalStorage::get_thread_slow();
227
228  SignalHandlerMark shm(t);
229
230  // Note: it's not uncommon that JNI code uses signal/sigset to install
231  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
232  // or have a SIGILL handler when detecting CPU type). When that happens,
233  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
234  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
235  // that do not require siginfo/ucontext first.
236
237  if (sig == SIGPIPE || sig == SIGXFSZ) {
238    // allow chained handler to go first
239    if (os::Linux::chained_handler(sig, info, ucVoid)) {
240      return true;
241    } else {
242      if (PrintMiscellaneous && (WizardMode || Verbose)) {
243        char buf[64];
244        warning("Ignoring %s - see bugs 4229104 or 646499219",
245                os::exception_name(sig, buf, sizeof(buf)));
246      }
247      return true;
248    }
249  }
250
251  JavaThread* thread = NULL;
252  VMThread* vmthread = NULL;
253  if (os::Linux::signal_handlers_are_installed) {
254    if (t != NULL ){
255      if(t->is_Java_thread()) {
256        thread = (JavaThread*)t;
257      }
258      else if(t->is_VM_thread()){
259        vmthread = (VMThread *)t;
260      }
261    }
262  }
263/*
264  NOTE: does not seem to work on linux.
265  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
266    // can't decode this kind of signal
267    info = NULL;
268  } else {
269    assert(sig == info->si_signo, "bad siginfo");
270  }
271*/
272  // decide if this trap can be handled by a stub
273  address stub = NULL;
274
275  address pc          = NULL;
276
277  //%note os_trap_1
278  if (info != NULL && uc != NULL && thread != NULL) {
279    pc = (address) os::Linux::ucontext_get_pc(uc);
280
281    if (pc == (address) Fetch32PFI) {
282       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
283       return 1 ;
284    }
285#ifdef AMD64
286    if (pc == (address) FetchNPFI) {
287       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
288       return 1 ;
289    }
290#endif // AMD64
291
292    // Handle ALL stack overflow variations here
293    if (sig == SIGSEGV) {
294      address addr = (address) info->si_addr;
295
296      // check if fault address is within thread stack
297      if (addr < thread->stack_base() &&
298          addr >= thread->stack_base() - thread->stack_size()) {
299        // stack overflow
300        if (thread->in_stack_yellow_zone(addr)) {
301          thread->disable_stack_yellow_zone();
302          if (thread->thread_state() == _thread_in_Java) {
303            // Throw a stack overflow exception.  Guard pages will be reenabled
304            // while unwinding the stack.
305            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
306          } else {
307            // Thread was in the vm or native code.  Return and try to finish.
308            return 1;
309          }
310        } else if (thread->in_stack_red_zone(addr)) {
311          // Fatal red zone violation.  Disable the guard pages and fall through
312          // to handle_unexpected_exception way down below.
313          thread->disable_stack_red_zone();
314          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
315        } else {
316          // Accessing stack address below sp may cause SEGV if current
317          // thread has MAP_GROWSDOWN stack. This should only happen when
318          // current thread was created by user code with MAP_GROWSDOWN flag
319          // and then attached to VM. See notes in os_linux.cpp.
320          if (thread->osthread()->expanding_stack() == 0) {
321             thread->osthread()->set_expanding_stack();
322             if (os::Linux::manually_expand_stack(thread, addr)) {
323               thread->osthread()->clear_expanding_stack();
324               return 1;
325             }
326             thread->osthread()->clear_expanding_stack();
327          } else {
328             fatal("recursive segv. expanding stack.");
329          }
330        }
331      }
332    }
333
334    if (thread->thread_state() == _thread_in_Java) {
335      // Java thread running in Java code => find exception handler if any
336      // a fault inside compiled code, the interpreter, or a stub
337
338      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
339        stub = SharedRuntime::get_poll_stub(pc);
340      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
341        // BugId 4454115: A read from a MappedByteBuffer can fault
342        // here if the underlying file has been truncated.
343        // Do not crash the VM in such a case.
344        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
345        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
346        if (nm != NULL && nm->has_unsafe_access()) {
347          stub = StubRoutines::handler_for_unsafe_access();
348        }
349      }
350      else
351
352#ifdef AMD64
353      if (sig == SIGFPE  &&
354          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
355        stub =
356          SharedRuntime::
357          continuation_for_implicit_exception(thread,
358                                              pc,
359                                              SharedRuntime::
360                                              IMPLICIT_DIVIDE_BY_ZERO);
361#else
362      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
363        // HACK: si_code does not work on linux 2.2.12-20!!!
364        int op = pc[0];
365        if (op == 0xDB) {
366          // FIST
367          // TODO: The encoding of D2I in i486.ad can cause an exception
368          // prior to the fist instruction if there was an invalid operation
369          // pending. We want to dismiss that exception. From the win_32
370          // side it also seems that if it really was the fist causing
371          // the exception that we do the d2i by hand with different
372          // rounding. Seems kind of weird.
373          // NOTE: that we take the exception at the NEXT floating point instruction.
374          assert(pc[0] == 0xDB, "not a FIST opcode");
375          assert(pc[1] == 0x14, "not a FIST opcode");
376          assert(pc[2] == 0x24, "not a FIST opcode");
377          return true;
378        } else if (op == 0xF7) {
379          // IDIV
380          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
381        } else {
382          // TODO: handle more cases if we are using other x86 instructions
383          //   that can generate SIGFPE signal on linux.
384          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
385          fatal("please update this code.");
386        }
387#endif // AMD64
388      } else if (sig == SIGSEGV &&
389               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
390          // Determination of interpreter/vtable stub/compiled code null exception
391          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
392      }
393    } else if (thread->thread_state() == _thread_in_vm &&
394               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
395               thread->doing_unsafe_access()) {
396        stub = StubRoutines::handler_for_unsafe_access();
397    }
398
399    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
400    // and the heap gets shrunk before the field access.
401    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
402      address addr = JNI_FastGetField::find_slowcase_pc(pc);
403      if (addr != (address)-1) {
404        stub = addr;
405      }
406    }
407
408    // Check to see if we caught the safepoint code in the
409    // process of write protecting the memory serialization page.
410    // It write enables the page immediately after protecting it
411    // so we can just return to retry the write.
412    if ((sig == SIGSEGV) &&
413        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
414      // Block current thread until the memory serialize page permission restored.
415      os::block_on_serialize_page_trap();
416      return true;
417    }
418  }
419
420#ifndef AMD64
421  // Execution protection violation
422  //
423  // This should be kept as the last step in the triage.  We don't
424  // have a dedicated trap number for a no-execute fault, so be
425  // conservative and allow other handlers the first shot.
426  //
427  // Note: We don't test that info->si_code == SEGV_ACCERR here.
428  // this si_code is so generic that it is almost meaningless; and
429  // the si_code for this condition may change in the future.
430  // Furthermore, a false-positive should be harmless.
431  if (UnguardOnExecutionViolation > 0 &&
432      (sig == SIGSEGV || sig == SIGBUS) &&
433      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
434    int page_size = os::vm_page_size();
435    address addr = (address) info->si_addr;
436    address pc = os::Linux::ucontext_get_pc(uc);
437    // Make sure the pc and the faulting address are sane.
438    //
439    // If an instruction spans a page boundary, and the page containing
440    // the beginning of the instruction is executable but the following
441    // page is not, the pc and the faulting address might be slightly
442    // different - we still want to unguard the 2nd page in this case.
443    //
444    // 15 bytes seems to be a (very) safe value for max instruction size.
445    bool pc_is_near_addr =
446      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
447    bool instr_spans_page_boundary =
448      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
449                       (intptr_t) page_size) > 0);
450
451    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
452      static volatile address last_addr =
453        (address) os::non_memory_address_word();
454
455      // In conservative mode, don't unguard unless the address is in the VM
456      if (addr != last_addr &&
457          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
458
459        // Set memory to RWX and retry
460        address page_start =
461          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
462        bool res = os::protect_memory((char*) page_start, page_size,
463                                      os::MEM_PROT_RWX);
464
465        if (PrintMiscellaneous && Verbose) {
466          char buf[256];
467          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
468                       "at " INTPTR_FORMAT
469                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
470                       page_start, (res ? "success" : "failed"), errno);
471          tty->print_raw_cr(buf);
472        }
473        stub = pc;
474
475        // Set last_addr so if we fault again at the same address, we don't end
476        // up in an endless loop.
477        //
478        // There are two potential complications here.  Two threads trapping at
479        // the same address at the same time could cause one of the threads to
480        // think it already unguarded, and abort the VM.  Likely very rare.
481        //
482        // The other race involves two threads alternately trapping at
483        // different addresses and failing to unguard the page, resulting in
484        // an endless loop.  This condition is probably even more unlikely than
485        // the first.
486        //
487        // Although both cases could be avoided by using locks or thread local
488        // last_addr, these solutions are unnecessary complication: this
489        // handler is a best-effort safety net, not a complete solution.  It is
490        // disabled by default and should only be used as a workaround in case
491        // we missed any no-execute-unsafe VM code.
492
493        last_addr = addr;
494      }
495    }
496  }
497#endif // !AMD64
498
499  if (stub != NULL) {
500    // save all thread context in case we need to restore it
501    if (thread != NULL) thread->set_saved_exception_pc(pc);
502
503    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
504    return true;
505  }
506
507  // signal-chaining
508  if (os::Linux::chained_handler(sig, info, ucVoid)) {
509     return true;
510  }
511
512  if (!abort_if_unrecognized) {
513    // caller wants another chance, so give it to him
514    return false;
515  }
516
517  if (pc == NULL && uc != NULL) {
518    pc = os::Linux::ucontext_get_pc(uc);
519  }
520
521  // unmask current signal
522  sigset_t newset;
523  sigemptyset(&newset);
524  sigaddset(&newset, sig);
525  sigprocmask(SIG_UNBLOCK, &newset, NULL);
526
527  VMError err(t, sig, pc, info, ucVoid);
528  err.report_and_die();
529
530  ShouldNotReachHere();
531}
532
533void os::Linux::init_thread_fpu_state(void) {
534#ifndef AMD64
535  // set fpu to 53 bit precision
536  set_fpu_control_word(0x27f);
537#endif // !AMD64
538}
539
540int os::Linux::get_fpu_control_word(void) {
541#ifdef AMD64
542  return 0;
543#else
544  int fpu_control;
545  _FPU_GETCW(fpu_control);
546  return fpu_control & 0xffff;
547#endif // AMD64
548}
549
550void os::Linux::set_fpu_control_word(int fpu_control) {
551#ifndef AMD64
552  _FPU_SETCW(fpu_control);
553#endif // !AMD64
554}
555
556// Check that the linux kernel version is 2.4 or higher since earlier
557// versions do not support SSE without patches.
558bool os::supports_sse() {
559#ifdef AMD64
560  return true;
561#else
562  struct utsname uts;
563  if( uname(&uts) != 0 ) return false; // uname fails?
564  char *minor_string;
565  int major = strtol(uts.release,&minor_string,10);
566  int minor = strtol(minor_string+1,NULL,10);
567  bool result = (major > 2 || (major==2 && minor >= 4));
568#ifndef PRODUCT
569  if (PrintMiscellaneous && Verbose) {
570    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
571               major,minor, result ? "DOES" : "does NOT");
572  }
573#endif
574  return result;
575#endif // AMD64
576}
577
578bool os::is_allocatable(size_t bytes) {
579#ifdef AMD64
580  // unused on amd64?
581  return true;
582#else
583
584  if (bytes < 2 * G) {
585    return true;
586  }
587
588  char* addr = reserve_memory(bytes, NULL);
589
590  if (addr != NULL) {
591    release_memory(addr, bytes);
592  }
593
594  return addr != NULL;
595#endif // AMD64
596}
597
598////////////////////////////////////////////////////////////////////////////////
599// thread stack
600
601#ifdef AMD64
602size_t os::Linux::min_stack_allowed  = 64 * K;
603
604// amd64: pthread on amd64 is always in floating stack mode
605bool os::Linux::supports_variable_stack_size() {  return true; }
606#else
607size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
608
609#ifdef __GNUC__
610#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
611#endif
612
613// Test if pthread library can support variable thread stack size. LinuxThreads
614// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
615// in floating stack mode and NPTL support variable stack size.
616bool os::Linux::supports_variable_stack_size() {
617  if (os::Linux::is_NPTL()) {
618     // NPTL, yes
619     return true;
620
621  } else {
622    // Note: We can't control default stack size when creating a thread.
623    // If we use non-default stack size (pthread_attr_setstacksize), both
624    // floating stack and non-floating stack LinuxThreads will return the
625    // same value. This makes it impossible to implement this function by
626    // detecting thread stack size directly.
627    //
628    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
629    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
630    // %gs (either as LDT selector or GDT selector, depending on kernel)
631    // to access thread specific data.
632    //
633    // Note that %gs is a reserved glibc register since early 2001, so
634    // applications are not allowed to change its value (Ulrich Drepper from
635    // Redhat confirmed that all known offenders have been modified to use
636    // either %fs or TSD). In the worst case scenario, when VM is embedded in
637    // a native application that plays with %gs, we might see non-zero %gs
638    // even LinuxThreads is running in fixed stack mode. As the result, we'll
639    // return true and skip _thread_safety_check(), so we may not be able to
640    // detect stack-heap collisions. But otherwise it's harmless.
641    //
642#ifdef __GNUC__
643    return (GET_GS() != 0);
644#else
645    return false;
646#endif
647  }
648}
649#endif // AMD64
650
651// return default stack size for thr_type
652size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
653  // default stack size (compiler thread needs larger stack)
654#ifdef AMD64
655  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
656#else
657  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
658#endif // AMD64
659  return s;
660}
661
662size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
663  // Creating guard page is very expensive. Java thread has HotSpot
664  // guard page, only enable glibc guard page for non-Java threads.
665  return (thr_type == java_thread ? 0 : page_size());
666}
667
668// Java thread:
669//
670//   Low memory addresses
671//    +------------------------+
672//    |                        |\  JavaThread created by VM does not have glibc
673//    |    glibc guard page    | - guard, attached Java thread usually has
674//    |                        |/  1 page glibc guard.
675// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
676//    |                        |\
677//    |  HotSpot Guard Pages   | - red and yellow pages
678//    |                        |/
679//    +------------------------+ JavaThread::stack_yellow_zone_base()
680//    |                        |\
681//    |      Normal Stack      | -
682//    |                        |/
683// P2 +------------------------+ Thread::stack_base()
684//
685// Non-Java thread:
686//
687//   Low memory addresses
688//    +------------------------+
689//    |                        |\
690//    |  glibc guard page      | - usually 1 page
691//    |                        |/
692// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
693//    |                        |\
694//    |      Normal Stack      | -
695//    |                        |/
696// P2 +------------------------+ Thread::stack_base()
697//
698// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
699//    pthread_attr_getstack()
700
701static void current_stack_region(address * bottom, size_t * size) {
702  if (os::Linux::is_initial_thread()) {
703     // initial thread needs special handling because pthread_getattr_np()
704     // may return bogus value.
705     *bottom = os::Linux::initial_thread_stack_bottom();
706     *size   = os::Linux::initial_thread_stack_size();
707  } else {
708     pthread_attr_t attr;
709
710     int rslt = pthread_getattr_np(pthread_self(), &attr);
711
712     // JVM needs to know exact stack location, abort if it fails
713     if (rslt != 0) {
714       if (rslt == ENOMEM) {
715         vm_exit_out_of_memory(0, "pthread_getattr_np");
716       } else {
717         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
718       }
719     }
720
721     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
722         fatal("Can not locate current stack attributes!");
723     }
724
725     pthread_attr_destroy(&attr);
726
727  }
728  assert(os::current_stack_pointer() >= *bottom &&
729         os::current_stack_pointer() < *bottom + *size, "just checking");
730}
731
732address os::current_stack_base() {
733  address bottom;
734  size_t size;
735  current_stack_region(&bottom, &size);
736  return (bottom + size);
737}
738
739size_t os::current_stack_size() {
740  // stack size includes normal stack and HotSpot guard pages
741  address bottom;
742  size_t size;
743  current_stack_region(&bottom, &size);
744  return size;
745}
746
747/////////////////////////////////////////////////////////////////////////////
748// helper functions for fatal error handler
749
750void os::print_context(outputStream *st, void *context) {
751  if (context == NULL) return;
752
753  ucontext_t *uc = (ucontext_t*)context;
754  st->print_cr("Registers:");
755#ifdef AMD64
756  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
757  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
758  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
759  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
760  st->cr();
761  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
762  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
763  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
764  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
765  st->cr();
766  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
767  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
768  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
769  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
770  st->cr();
771  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
772  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
773  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
774  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
775  st->cr();
776  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
777  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
778  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
779  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
780  st->cr();
781  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
782#else
783  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
784  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
785  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
786  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
787  st->cr();
788  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
789  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
790  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
791  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
792  st->cr();
793  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
794  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
795  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
796#endif // AMD64
797  st->cr();
798  st->cr();
799
800  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
801  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
802  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
803  st->cr();
804
805  // Note: it may be unsafe to inspect memory near pc. For example, pc may
806  // point to garbage if entry point in an nmethod is corrupted. Leave
807  // this at the end, and hope for the best.
808  address pc = os::Linux::ucontext_get_pc(uc);
809  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
810  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
811}
812
813void os::print_register_info(outputStream *st, void *context) {
814  if (context == NULL) return;
815
816  ucontext_t *uc = (ucontext_t*)context;
817
818  st->print_cr("Register to memory mapping:");
819  st->cr();
820
821  // this is horrendously verbose but the layout of the registers in the
822  // context does not match how we defined our abstract Register set, so
823  // we can't just iterate through the gregs area
824
825  // this is only for the "general purpose" registers
826
827#ifdef AMD64
828  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
829  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
830  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
831  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
832  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
833  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
834  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
835  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
836  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
837  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
838  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
839  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
840  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
841  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
842  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
843  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
844#else
845  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
846  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
847  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
848  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
849  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
850  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
851  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
852  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
853#endif // AMD64
854
855  st->cr();
856}
857
858void os::setup_fpu() {
859#ifndef AMD64
860  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
861  __asm__ volatile (  "fldcw (%0)" :
862                      : "r" (fpu_cntrl) : "memory");
863#endif // !AMD64
864}
865