os_linux_x86.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "assembler_x86.inline.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "nativeInst_x86.hpp"
37#include "os_share_linux.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/hpi.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/osThread.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/timer.hpp"
53#include "thread_linux.inline.hpp"
54#include "utilities/events.hpp"
55#include "utilities/vmError.hpp"
56#ifdef COMPILER1
57#include "c1/c1_Runtime1.hpp"
58#endif
59#ifdef COMPILER2
60#include "opto/runtime.hpp"
61#endif
62
63// put OS-includes here
64# include <sys/types.h>
65# include <sys/mman.h>
66# include <pthread.h>
67# include <signal.h>
68# include <errno.h>
69# include <dlfcn.h>
70# include <stdlib.h>
71# include <stdio.h>
72# include <unistd.h>
73# include <sys/resource.h>
74# include <pthread.h>
75# include <sys/stat.h>
76# include <sys/time.h>
77# include <sys/utsname.h>
78# include <sys/socket.h>
79# include <sys/wait.h>
80# include <pwd.h>
81# include <poll.h>
82# include <ucontext.h>
83# include <fpu_control.h>
84
85#ifdef AMD64
86#define REG_SP REG_RSP
87#define REG_PC REG_RIP
88#define REG_FP REG_RBP
89#define SPELL_REG_SP "rsp"
90#define SPELL_REG_FP "rbp"
91#else
92#define REG_SP REG_UESP
93#define REG_PC REG_EIP
94#define REG_FP REG_EBP
95#define SPELL_REG_SP "esp"
96#define SPELL_REG_FP "ebp"
97#endif // AMD64
98
99address os::current_stack_pointer() {
100#ifdef SPARC_WORKS
101  register void *esp;
102  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
103  return (address) ((char*)esp + sizeof(long)*2);
104#else
105  register void *esp __asm__ (SPELL_REG_SP);
106  return (address) esp;
107#endif
108}
109
110char* os::non_memory_address_word() {
111  // Must never look like an address returned by reserve_memory,
112  // even in its subfields (as defined by the CPU immediate fields,
113  // if the CPU splits constants across multiple instructions).
114
115  return (char*) -1;
116}
117
118void os::initialize_thread() {
119// Nothing to do.
120}
121
122address os::Linux::ucontext_get_pc(ucontext_t * uc) {
123  return (address)uc->uc_mcontext.gregs[REG_PC];
124}
125
126intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
127  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
128}
129
130intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
131  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
132}
133
134// For Forte Analyzer AsyncGetCallTrace profiling support - thread
135// is currently interrupted by SIGPROF.
136// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
137// frames. Currently we don't do that on Linux, so it's the same as
138// os::fetch_frame_from_context().
139ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
140  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
141
142  assert(thread != NULL, "just checking");
143  assert(ret_sp != NULL, "just checking");
144  assert(ret_fp != NULL, "just checking");
145
146  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
147}
148
149ExtendedPC os::fetch_frame_from_context(void* ucVoid,
150                    intptr_t** ret_sp, intptr_t** ret_fp) {
151
152  ExtendedPC  epc;
153  ucontext_t* uc = (ucontext_t*)ucVoid;
154
155  if (uc != NULL) {
156    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
157    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
158    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
159  } else {
160    // construct empty ExtendedPC for return value checking
161    epc = ExtendedPC(NULL);
162    if (ret_sp) *ret_sp = (intptr_t *)NULL;
163    if (ret_fp) *ret_fp = (intptr_t *)NULL;
164  }
165
166  return epc;
167}
168
169frame os::fetch_frame_from_context(void* ucVoid) {
170  intptr_t* sp;
171  intptr_t* fp;
172  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
173  return frame(sp, fp, epc.pc());
174}
175
176// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
177// turned off by -fomit-frame-pointer,
178frame os::get_sender_for_C_frame(frame* fr) {
179  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
180}
181
182intptr_t* _get_previous_fp() {
183#ifdef SPARC_WORKS
184  register intptr_t **ebp;
185  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
186#else
187  register intptr_t **ebp __asm__ (SPELL_REG_FP);
188#endif
189  return (intptr_t*) *ebp;   // we want what it points to.
190}
191
192
193frame os::current_frame() {
194  intptr_t* fp = _get_previous_fp();
195  frame myframe((intptr_t*)os::current_stack_pointer(),
196                (intptr_t*)fp,
197                CAST_FROM_FN_PTR(address, os::current_frame));
198  if (os::is_first_C_frame(&myframe)) {
199    // stack is not walkable
200    return frame(NULL, NULL, NULL);
201  } else {
202    return os::get_sender_for_C_frame(&myframe);
203  }
204}
205
206// Utility functions
207
208// From IA32 System Programming Guide
209enum {
210  trap_page_fault = 0xE
211};
212
213extern "C" void Fetch32PFI () ;
214extern "C" void Fetch32Resume () ;
215#ifdef AMD64
216extern "C" void FetchNPFI () ;
217extern "C" void FetchNResume () ;
218#endif // AMD64
219
220extern "C" int
221JVM_handle_linux_signal(int sig,
222                        siginfo_t* info,
223                        void* ucVoid,
224                        int abort_if_unrecognized) {
225  ucontext_t* uc = (ucontext_t*) ucVoid;
226
227  Thread* t = ThreadLocalStorage::get_thread_slow();
228
229  SignalHandlerMark shm(t);
230
231  // Note: it's not uncommon that JNI code uses signal/sigset to install
232  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
233  // or have a SIGILL handler when detecting CPU type). When that happens,
234  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
235  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
236  // that do not require siginfo/ucontext first.
237
238  if (sig == SIGPIPE || sig == SIGXFSZ) {
239    // allow chained handler to go first
240    if (os::Linux::chained_handler(sig, info, ucVoid)) {
241      return true;
242    } else {
243      if (PrintMiscellaneous && (WizardMode || Verbose)) {
244        char buf[64];
245        warning("Ignoring %s - see bugs 4229104 or 646499219",
246                os::exception_name(sig, buf, sizeof(buf)));
247      }
248      return true;
249    }
250  }
251
252  JavaThread* thread = NULL;
253  VMThread* vmthread = NULL;
254  if (os::Linux::signal_handlers_are_installed) {
255    if (t != NULL ){
256      if(t->is_Java_thread()) {
257        thread = (JavaThread*)t;
258      }
259      else if(t->is_VM_thread()){
260        vmthread = (VMThread *)t;
261      }
262    }
263  }
264/*
265  NOTE: does not seem to work on linux.
266  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
267    // can't decode this kind of signal
268    info = NULL;
269  } else {
270    assert(sig == info->si_signo, "bad siginfo");
271  }
272*/
273  // decide if this trap can be handled by a stub
274  address stub = NULL;
275
276  address pc          = NULL;
277
278  //%note os_trap_1
279  if (info != NULL && uc != NULL && thread != NULL) {
280    pc = (address) os::Linux::ucontext_get_pc(uc);
281
282    if (pc == (address) Fetch32PFI) {
283       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
284       return 1 ;
285    }
286#ifdef AMD64
287    if (pc == (address) FetchNPFI) {
288       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
289       return 1 ;
290    }
291#endif // AMD64
292
293    // Handle ALL stack overflow variations here
294    if (sig == SIGSEGV) {
295      address addr = (address) info->si_addr;
296
297      // check if fault address is within thread stack
298      if (addr < thread->stack_base() &&
299          addr >= thread->stack_base() - thread->stack_size()) {
300        // stack overflow
301        if (thread->in_stack_yellow_zone(addr)) {
302          thread->disable_stack_yellow_zone();
303          if (thread->thread_state() == _thread_in_Java) {
304            // Throw a stack overflow exception.  Guard pages will be reenabled
305            // while unwinding the stack.
306            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
307          } else {
308            // Thread was in the vm or native code.  Return and try to finish.
309            return 1;
310          }
311        } else if (thread->in_stack_red_zone(addr)) {
312          // Fatal red zone violation.  Disable the guard pages and fall through
313          // to handle_unexpected_exception way down below.
314          thread->disable_stack_red_zone();
315          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
316        } else {
317          // Accessing stack address below sp may cause SEGV if current
318          // thread has MAP_GROWSDOWN stack. This should only happen when
319          // current thread was created by user code with MAP_GROWSDOWN flag
320          // and then attached to VM. See notes in os_linux.cpp.
321          if (thread->osthread()->expanding_stack() == 0) {
322             thread->osthread()->set_expanding_stack();
323             if (os::Linux::manually_expand_stack(thread, addr)) {
324               thread->osthread()->clear_expanding_stack();
325               return 1;
326             }
327             thread->osthread()->clear_expanding_stack();
328          } else {
329             fatal("recursive segv. expanding stack.");
330          }
331        }
332      }
333    }
334
335    if (thread->thread_state() == _thread_in_Java) {
336      // Java thread running in Java code => find exception handler if any
337      // a fault inside compiled code, the interpreter, or a stub
338
339      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
340        stub = SharedRuntime::get_poll_stub(pc);
341      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
342        // BugId 4454115: A read from a MappedByteBuffer can fault
343        // here if the underlying file has been truncated.
344        // Do not crash the VM in such a case.
345        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
346        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
347        if (nm != NULL && nm->has_unsafe_access()) {
348          stub = StubRoutines::handler_for_unsafe_access();
349        }
350      }
351      else
352
353#ifdef AMD64
354      if (sig == SIGFPE  &&
355          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
356        stub =
357          SharedRuntime::
358          continuation_for_implicit_exception(thread,
359                                              pc,
360                                              SharedRuntime::
361                                              IMPLICIT_DIVIDE_BY_ZERO);
362#else
363      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
364        // HACK: si_code does not work on linux 2.2.12-20!!!
365        int op = pc[0];
366        if (op == 0xDB) {
367          // FIST
368          // TODO: The encoding of D2I in i486.ad can cause an exception
369          // prior to the fist instruction if there was an invalid operation
370          // pending. We want to dismiss that exception. From the win_32
371          // side it also seems that if it really was the fist causing
372          // the exception that we do the d2i by hand with different
373          // rounding. Seems kind of weird.
374          // NOTE: that we take the exception at the NEXT floating point instruction.
375          assert(pc[0] == 0xDB, "not a FIST opcode");
376          assert(pc[1] == 0x14, "not a FIST opcode");
377          assert(pc[2] == 0x24, "not a FIST opcode");
378          return true;
379        } else if (op == 0xF7) {
380          // IDIV
381          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
382        } else {
383          // TODO: handle more cases if we are using other x86 instructions
384          //   that can generate SIGFPE signal on linux.
385          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
386          fatal("please update this code.");
387        }
388#endif // AMD64
389      } else if (sig == SIGSEGV &&
390               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
391          // Determination of interpreter/vtable stub/compiled code null exception
392          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
393      }
394    } else if (thread->thread_state() == _thread_in_vm &&
395               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
396               thread->doing_unsafe_access()) {
397        stub = StubRoutines::handler_for_unsafe_access();
398    }
399
400    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
401    // and the heap gets shrunk before the field access.
402    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
403      address addr = JNI_FastGetField::find_slowcase_pc(pc);
404      if (addr != (address)-1) {
405        stub = addr;
406      }
407    }
408
409    // Check to see if we caught the safepoint code in the
410    // process of write protecting the memory serialization page.
411    // It write enables the page immediately after protecting it
412    // so we can just return to retry the write.
413    if ((sig == SIGSEGV) &&
414        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
415      // Block current thread until the memory serialize page permission restored.
416      os::block_on_serialize_page_trap();
417      return true;
418    }
419  }
420
421#ifndef AMD64
422  // Execution protection violation
423  //
424  // This should be kept as the last step in the triage.  We don't
425  // have a dedicated trap number for a no-execute fault, so be
426  // conservative and allow other handlers the first shot.
427  //
428  // Note: We don't test that info->si_code == SEGV_ACCERR here.
429  // this si_code is so generic that it is almost meaningless; and
430  // the si_code for this condition may change in the future.
431  // Furthermore, a false-positive should be harmless.
432  if (UnguardOnExecutionViolation > 0 &&
433      (sig == SIGSEGV || sig == SIGBUS) &&
434      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
435    int page_size = os::vm_page_size();
436    address addr = (address) info->si_addr;
437    address pc = os::Linux::ucontext_get_pc(uc);
438    // Make sure the pc and the faulting address are sane.
439    //
440    // If an instruction spans a page boundary, and the page containing
441    // the beginning of the instruction is executable but the following
442    // page is not, the pc and the faulting address might be slightly
443    // different - we still want to unguard the 2nd page in this case.
444    //
445    // 15 bytes seems to be a (very) safe value for max instruction size.
446    bool pc_is_near_addr =
447      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
448    bool instr_spans_page_boundary =
449      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
450                       (intptr_t) page_size) > 0);
451
452    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
453      static volatile address last_addr =
454        (address) os::non_memory_address_word();
455
456      // In conservative mode, don't unguard unless the address is in the VM
457      if (addr != last_addr &&
458          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
459
460        // Set memory to RWX and retry
461        address page_start =
462          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
463        bool res = os::protect_memory((char*) page_start, page_size,
464                                      os::MEM_PROT_RWX);
465
466        if (PrintMiscellaneous && Verbose) {
467          char buf[256];
468          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
469                       "at " INTPTR_FORMAT
470                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
471                       page_start, (res ? "success" : "failed"), errno);
472          tty->print_raw_cr(buf);
473        }
474        stub = pc;
475
476        // Set last_addr so if we fault again at the same address, we don't end
477        // up in an endless loop.
478        //
479        // There are two potential complications here.  Two threads trapping at
480        // the same address at the same time could cause one of the threads to
481        // think it already unguarded, and abort the VM.  Likely very rare.
482        //
483        // The other race involves two threads alternately trapping at
484        // different addresses and failing to unguard the page, resulting in
485        // an endless loop.  This condition is probably even more unlikely than
486        // the first.
487        //
488        // Although both cases could be avoided by using locks or thread local
489        // last_addr, these solutions are unnecessary complication: this
490        // handler is a best-effort safety net, not a complete solution.  It is
491        // disabled by default and should only be used as a workaround in case
492        // we missed any no-execute-unsafe VM code.
493
494        last_addr = addr;
495      }
496    }
497  }
498#endif // !AMD64
499
500  if (stub != NULL) {
501    // save all thread context in case we need to restore it
502    if (thread != NULL) thread->set_saved_exception_pc(pc);
503
504    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
505    return true;
506  }
507
508  // signal-chaining
509  if (os::Linux::chained_handler(sig, info, ucVoid)) {
510     return true;
511  }
512
513  if (!abort_if_unrecognized) {
514    // caller wants another chance, so give it to him
515    return false;
516  }
517
518  if (pc == NULL && uc != NULL) {
519    pc = os::Linux::ucontext_get_pc(uc);
520  }
521
522  // unmask current signal
523  sigset_t newset;
524  sigemptyset(&newset);
525  sigaddset(&newset, sig);
526  sigprocmask(SIG_UNBLOCK, &newset, NULL);
527
528  VMError err(t, sig, pc, info, ucVoid);
529  err.report_and_die();
530
531  ShouldNotReachHere();
532}
533
534void os::Linux::init_thread_fpu_state(void) {
535#ifndef AMD64
536  // set fpu to 53 bit precision
537  set_fpu_control_word(0x27f);
538#endif // !AMD64
539}
540
541int os::Linux::get_fpu_control_word(void) {
542#ifdef AMD64
543  return 0;
544#else
545  int fpu_control;
546  _FPU_GETCW(fpu_control);
547  return fpu_control & 0xffff;
548#endif // AMD64
549}
550
551void os::Linux::set_fpu_control_word(int fpu_control) {
552#ifndef AMD64
553  _FPU_SETCW(fpu_control);
554#endif // !AMD64
555}
556
557// Check that the linux kernel version is 2.4 or higher since earlier
558// versions do not support SSE without patches.
559bool os::supports_sse() {
560#ifdef AMD64
561  return true;
562#else
563  struct utsname uts;
564  if( uname(&uts) != 0 ) return false; // uname fails?
565  char *minor_string;
566  int major = strtol(uts.release,&minor_string,10);
567  int minor = strtol(minor_string+1,NULL,10);
568  bool result = (major > 2 || (major==2 && minor >= 4));
569#ifndef PRODUCT
570  if (PrintMiscellaneous && Verbose) {
571    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
572               major,minor, result ? "DOES" : "does NOT");
573  }
574#endif
575  return result;
576#endif // AMD64
577}
578
579bool os::is_allocatable(size_t bytes) {
580#ifdef AMD64
581  // unused on amd64?
582  return true;
583#else
584
585  if (bytes < 2 * G) {
586    return true;
587  }
588
589  char* addr = reserve_memory(bytes, NULL);
590
591  if (addr != NULL) {
592    release_memory(addr, bytes);
593  }
594
595  return addr != NULL;
596#endif // AMD64
597}
598
599////////////////////////////////////////////////////////////////////////////////
600// thread stack
601
602#ifdef AMD64
603size_t os::Linux::min_stack_allowed  = 64 * K;
604
605// amd64: pthread on amd64 is always in floating stack mode
606bool os::Linux::supports_variable_stack_size() {  return true; }
607#else
608size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
609
610#ifdef __GNUC__
611#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
612#endif
613
614// Test if pthread library can support variable thread stack size. LinuxThreads
615// in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
616// in floating stack mode and NPTL support variable stack size.
617bool os::Linux::supports_variable_stack_size() {
618  if (os::Linux::is_NPTL()) {
619     // NPTL, yes
620     return true;
621
622  } else {
623    // Note: We can't control default stack size when creating a thread.
624    // If we use non-default stack size (pthread_attr_setstacksize), both
625    // floating stack and non-floating stack LinuxThreads will return the
626    // same value. This makes it impossible to implement this function by
627    // detecting thread stack size directly.
628    //
629    // An alternative approach is to check %gs. Fixed-stack LinuxThreads
630    // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
631    // %gs (either as LDT selector or GDT selector, depending on kernel)
632    // to access thread specific data.
633    //
634    // Note that %gs is a reserved glibc register since early 2001, so
635    // applications are not allowed to change its value (Ulrich Drepper from
636    // Redhat confirmed that all known offenders have been modified to use
637    // either %fs or TSD). In the worst case scenario, when VM is embedded in
638    // a native application that plays with %gs, we might see non-zero %gs
639    // even LinuxThreads is running in fixed stack mode. As the result, we'll
640    // return true and skip _thread_safety_check(), so we may not be able to
641    // detect stack-heap collisions. But otherwise it's harmless.
642    //
643#ifdef __GNUC__
644    return (GET_GS() != 0);
645#else
646    return false;
647#endif
648  }
649}
650#endif // AMD64
651
652// return default stack size for thr_type
653size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
654  // default stack size (compiler thread needs larger stack)
655#ifdef AMD64
656  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
657#else
658  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
659#endif // AMD64
660  return s;
661}
662
663size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
664  // Creating guard page is very expensive. Java thread has HotSpot
665  // guard page, only enable glibc guard page for non-Java threads.
666  return (thr_type == java_thread ? 0 : page_size());
667}
668
669// Java thread:
670//
671//   Low memory addresses
672//    +------------------------+
673//    |                        |\  JavaThread created by VM does not have glibc
674//    |    glibc guard page    | - guard, attached Java thread usually has
675//    |                        |/  1 page glibc guard.
676// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
677//    |                        |\
678//    |  HotSpot Guard Pages   | - red and yellow pages
679//    |                        |/
680//    +------------------------+ JavaThread::stack_yellow_zone_base()
681//    |                        |\
682//    |      Normal Stack      | -
683//    |                        |/
684// P2 +------------------------+ Thread::stack_base()
685//
686// Non-Java thread:
687//
688//   Low memory addresses
689//    +------------------------+
690//    |                        |\
691//    |  glibc guard page      | - usually 1 page
692//    |                        |/
693// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
694//    |                        |\
695//    |      Normal Stack      | -
696//    |                        |/
697// P2 +------------------------+ Thread::stack_base()
698//
699// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
700//    pthread_attr_getstack()
701
702static void current_stack_region(address * bottom, size_t * size) {
703  if (os::Linux::is_initial_thread()) {
704     // initial thread needs special handling because pthread_getattr_np()
705     // may return bogus value.
706     *bottom = os::Linux::initial_thread_stack_bottom();
707     *size   = os::Linux::initial_thread_stack_size();
708  } else {
709     pthread_attr_t attr;
710
711     int rslt = pthread_getattr_np(pthread_self(), &attr);
712
713     // JVM needs to know exact stack location, abort if it fails
714     if (rslt != 0) {
715       if (rslt == ENOMEM) {
716         vm_exit_out_of_memory(0, "pthread_getattr_np");
717       } else {
718         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
719       }
720     }
721
722     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
723         fatal("Can not locate current stack attributes!");
724     }
725
726     pthread_attr_destroy(&attr);
727
728  }
729  assert(os::current_stack_pointer() >= *bottom &&
730         os::current_stack_pointer() < *bottom + *size, "just checking");
731}
732
733address os::current_stack_base() {
734  address bottom;
735  size_t size;
736  current_stack_region(&bottom, &size);
737  return (bottom + size);
738}
739
740size_t os::current_stack_size() {
741  // stack size includes normal stack and HotSpot guard pages
742  address bottom;
743  size_t size;
744  current_stack_region(&bottom, &size);
745  return size;
746}
747
748/////////////////////////////////////////////////////////////////////////////
749// helper functions for fatal error handler
750
751void os::print_context(outputStream *st, void *context) {
752  if (context == NULL) return;
753
754  ucontext_t *uc = (ucontext_t*)context;
755  st->print_cr("Registers:");
756#ifdef AMD64
757  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
758  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
759  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
760  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
761  st->cr();
762  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
763  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
764  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
765  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
766  st->cr();
767  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
768  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
769  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
770  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
771  st->cr();
772  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
773  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
774  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
775  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
776  st->cr();
777  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
778  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
779  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
780  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
781  st->cr();
782  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
783#else
784  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
785  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
786  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
787  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
788  st->cr();
789  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
790  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
791  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
792  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
793  st->cr();
794  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
795  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
796  st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
797#endif // AMD64
798  st->cr();
799  st->cr();
800
801  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
802  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
803  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
804  st->cr();
805
806  // Note: it may be unsafe to inspect memory near pc. For example, pc may
807  // point to garbage if entry point in an nmethod is corrupted. Leave
808  // this at the end, and hope for the best.
809  address pc = os::Linux::ucontext_get_pc(uc);
810  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
811  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
812}
813
814void os::print_register_info(outputStream *st, void *context) {
815  if (context == NULL) return;
816
817  ucontext_t *uc = (ucontext_t*)context;
818
819  st->print_cr("Register to memory mapping:");
820  st->cr();
821
822  // this is horrendously verbose but the layout of the registers in the
823  // context does not match how we defined our abstract Register set, so
824  // we can't just iterate through the gregs area
825
826  // this is only for the "general purpose" registers
827
828#ifdef AMD64
829  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
830  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
831  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
832  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
833  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
834  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
835  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
836  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
837  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
838  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
839  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
840  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
841  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
842  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
843  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
844  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
845#else
846  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
847  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
848  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
849  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
850  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
851  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
852  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
853  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
854#endif // AMD64
855
856  st->cr();
857}
858
859void os::setup_fpu() {
860#ifndef AMD64
861  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
862  __asm__ volatile (  "fldcw (%0)" :
863                      : "r" (fpu_cntrl) : "memory");
864#endif // !AMD64
865}
866