os_linux_x86.cpp revision 13249:a2753984d2c1
1131826Sharti/*
2131826Sharti * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3131826Sharti * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4131826Sharti *
5131826Sharti * This code is free software; you can redistribute it and/or modify it
6131826Sharti * under the terms of the GNU General Public License version 2 only, as
7131826Sharti * published by the Free Software Foundation.
8131826Sharti *
9131826Sharti * This code is distributed in the hope that it will be useful, but WITHOUT
10131826Sharti * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11131826Sharti * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12131826Sharti * version 2 for more details (a copy is included in the LICENSE file that
13131826Sharti * accompanied this code).
14131826Sharti *
15131826Sharti * You should have received a copy of the GNU General Public License version
16131826Sharti * 2 along with this work; if not, write to the Free Software Foundation,
17131826Sharti * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18131826Sharti *
19131826Sharti * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20131826Sharti * or visit www.oracle.com if you need additional information or have any
21131826Sharti * questions.
22131826Sharti *
23131826Sharti */
24131826Sharti
25131826Sharti// no precompiled headers
26131826Sharti#include "asm/macroAssembler.hpp"
27131826Sharti#include "classfile/classLoader.hpp"
28131826Sharti#include "classfile/systemDictionary.hpp"
29131826Sharti#include "classfile/vmSymbols.hpp"
30131826Sharti#include "code/codeCache.hpp"
31131826Sharti#include "code/icBuffer.hpp"
32131826Sharti#include "code/vtableStubs.hpp"
33131826Sharti#include "interpreter/interpreter.hpp"
34131826Sharti#include "jvm_linux.h"
35131826Sharti#include "memory/allocation.inline.hpp"
36131826Sharti#include "os_share_linux.hpp"
37131826Sharti#include "prims/jniFastGetField.hpp"
38131826Sharti#include "prims/jvm.h"
39131826Sharti#include "prims/jvm_misc.hpp"
40131826Sharti#include "runtime/arguments.hpp"
41131826Sharti#include "runtime/extendedPC.hpp"
42131826Sharti#include "runtime/frame.inline.hpp"
43131826Sharti#include "runtime/interfaceSupport.hpp"
44131826Sharti#include "runtime/java.hpp"
45131826Sharti#include "runtime/javaCalls.hpp"
46131826Sharti#include "runtime/mutexLocker.hpp"
47131826Sharti#include "runtime/osThread.hpp"
48131826Sharti#include "runtime/sharedRuntime.hpp"
49131826Sharti#include "runtime/stubRoutines.hpp"
50131826Sharti#include "runtime/thread.inline.hpp"
51131826Sharti#include "runtime/timer.hpp"
52131826Sharti#include "services/memTracker.hpp"
53131826Sharti#include "utilities/align.hpp"
54131826Sharti#include "utilities/events.hpp"
55131826Sharti#include "utilities/vmError.hpp"
56131826Sharti
57131826Sharti// put OS-includes here
58131826Sharti# include <sys/types.h>
59131826Sharti# include <sys/mman.h>
60131826Sharti# include <pthread.h>
61131826Sharti# include <signal.h>
62131826Sharti# include <errno.h>
63131826Sharti# include <dlfcn.h>
64131826Sharti# include <stdlib.h>
65131826Sharti# include <stdio.h>
66131826Sharti# include <unistd.h>
67131826Sharti# include <sys/resource.h>
68131826Sharti# include <pthread.h>
69131826Sharti# include <sys/stat.h>
70131826Sharti# include <sys/time.h>
71131826Sharti# include <sys/utsname.h>
72131826Sharti# include <sys/socket.h>
73131826Sharti# include <sys/wait.h>
74131826Sharti# include <pwd.h>
75131826Sharti# include <poll.h>
76131826Sharti# include <ucontext.h>
77131826Sharti#ifndef AMD64
78131826Sharti# include <fpu_control.h>
79131826Sharti#endif
80131826Sharti
81131826Sharti#ifdef AMD64
82131826Sharti#define REG_SP REG_RSP
83131826Sharti#define REG_PC REG_RIP
84131826Sharti#define REG_FP REG_RBP
85131826Sharti#define SPELL_REG_SP "rsp"
86131826Sharti#define SPELL_REG_FP "rbp"
87131826Sharti#else
88131826Sharti#define REG_SP REG_UESP
89131826Sharti#define REG_PC REG_EIP
90131826Sharti#define REG_FP REG_EBP
91131826Sharti#define SPELL_REG_SP "esp"
92131826Sharti#define SPELL_REG_FP "ebp"
93131826Sharti#endif // AMD64
94131826Sharti
95131826Shartiaddress os::current_stack_pointer() {
96131826Sharti#ifdef SPARC_WORKS
97131826Sharti  register void *esp;
98131826Sharti  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
99131826Sharti  return (address) ((char*)esp + sizeof(long)*2);
100131826Sharti#elif defined(__clang__)
101131826Sharti  intptr_t* esp;
102131826Sharti  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
103131826Sharti  return (address) esp;
104131826Sharti#else
105131826Sharti  register void *esp __asm__ (SPELL_REG_SP);
106131826Sharti  return (address) esp;
107131826Sharti#endif
108131826Sharti}
109131826Sharti
110131826Shartichar* os::non_memory_address_word() {
111131826Sharti  // Must never look like an address returned by reserve_memory,
112131826Sharti  // even in its subfields (as defined by the CPU immediate fields,
113131826Sharti  // if the CPU splits constants across multiple instructions).
114131826Sharti
115131826Sharti  return (char*) -1;
116131826Sharti}
117131826Sharti
118131826Shartivoid os::initialize_thread(Thread* thr) {
119131826Sharti// Nothing to do.
120131826Sharti}
121131826Sharti
122131826Shartiaddress os::Linux::ucontext_get_pc(const ucontext_t * uc) {
123131826Sharti  return (address)uc->uc_mcontext.gregs[REG_PC];
124131826Sharti}
125131826Sharti
126131826Shartivoid os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
127131826Sharti  uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
128131826Sharti}
129131826Sharti
130131826Shartiintptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
131131826Sharti  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
132131826Sharti}
133131826Sharti
134131826Shartiintptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
135131826Sharti  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
136131826Sharti}
137131826Sharti
138131826Sharti// For Forte Analyzer AsyncGetCallTrace profiling support - thread
139131826Sharti// is currently interrupted by SIGPROF.
140131826Sharti// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
141131826Sharti// frames. Currently we don't do that on Linux, so it's the same as
142131826Sharti// os::fetch_frame_from_context().
143131826Sharti// This method is also used for stack overflow signal handling.
144131826ShartiExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
145131826Sharti  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
146131826Sharti
147131826Sharti  assert(thread != NULL, "just checking");
148131826Sharti  assert(ret_sp != NULL, "just checking");
149131826Sharti  assert(ret_fp != NULL, "just checking");
150131826Sharti
151131826Sharti  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
152131826Sharti}
153131826Sharti
154131826ShartiExtendedPC os::fetch_frame_from_context(const void* ucVoid,
155131826Sharti                    intptr_t** ret_sp, intptr_t** ret_fp) {
156131826Sharti
157131826Sharti  ExtendedPC  epc;
158131826Sharti  const ucontext_t* uc = (const ucontext_t*)ucVoid;
159131826Sharti
160131826Sharti  if (uc != NULL) {
161131826Sharti    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
162131826Sharti    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
163131826Sharti    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
164131826Sharti  } else {
165131826Sharti    // construct empty ExtendedPC for return value checking
166131826Sharti    epc = ExtendedPC(NULL);
167131826Sharti    if (ret_sp) *ret_sp = (intptr_t *)NULL;
168131826Sharti    if (ret_fp) *ret_fp = (intptr_t *)NULL;
169131826Sharti  }
170131826Sharti
171131826Sharti  return epc;
172131826Sharti}
173131826Sharti
174131826Shartiframe os::fetch_frame_from_context(const void* ucVoid) {
175131826Sharti  intptr_t* sp;
176131826Sharti  intptr_t* fp;
177131826Sharti  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
178131826Sharti  return frame(sp, fp, epc.pc());
179131826Sharti}
180131826Sharti
181131826Shartiframe os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
182131826Sharti  intptr_t* sp;
183131826Sharti  intptr_t* fp;
184131826Sharti  ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
185131826Sharti  return frame(sp, fp, epc.pc());
186131826Sharti}
187131826Sharti
188131826Shartibool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
189131826Sharti  address pc = (address) os::Linux::ucontext_get_pc(uc);
190131826Sharti  if (Interpreter::contains(pc)) {
191131826Sharti    // interpreter performs stack banging after the fixed frame header has
192131826Sharti    // been generated while the compilers perform it before. To maintain
193131826Sharti    // semantic consistency between interpreted and compiled frames, the
194131826Sharti    // method returns the Java sender of the current frame.
195131826Sharti    *fr = os::fetch_frame_from_ucontext(thread, uc);
196131826Sharti    if (!fr->is_first_java_frame()) {
197131826Sharti      // get_frame_at_stack_banging_point() is only called when we
198131826Sharti      // have well defined stacks so java_sender() calls do not need
199131826Sharti      // to assert safe_for_sender() first.
200131826Sharti      *fr = fr->java_sender();
201131826Sharti    }
202131826Sharti  } else {
203131826Sharti    // more complex code with compiled code
204131826Sharti    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
205131826Sharti    CodeBlob* cb = CodeCache::find_blob(pc);
206131826Sharti    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
207131826Sharti      // Not sure where the pc points to, fallback to default
208131826Sharti      // stack overflow handling
209131826Sharti      return false;
210131826Sharti    } else {
211131826Sharti      // in compiled code, the stack banging is performed just after the return pc
212131826Sharti      // has been pushed on the stack
213131826Sharti      intptr_t* fp = os::Linux::ucontext_get_fp(uc);
214131826Sharti      intptr_t* sp = os::Linux::ucontext_get_sp(uc);
215131826Sharti      *fr = frame(sp + 1, fp, (address)*sp);
216131826Sharti      if (!fr->is_java_frame()) {
217131826Sharti        assert(!fr->is_first_frame(), "Safety check");
218131826Sharti        // See java_sender() comment above.
219131826Sharti        *fr = fr->java_sender();
220131826Sharti      }
221131826Sharti    }
222131826Sharti  }
223131826Sharti  assert(fr->is_java_frame(), "Safety check");
224131826Sharti  return true;
225131826Sharti}
226131826Sharti
227131826Sharti// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
228131826Sharti// turned off by -fomit-frame-pointer,
229131826Shartiframe os::get_sender_for_C_frame(frame* fr) {
230131826Sharti  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
231131826Sharti}
232131826Sharti
233131826Shartiintptr_t* _get_previous_fp() {
234131826Sharti#ifdef SPARC_WORKS
235131826Sharti  register intptr_t **ebp;
236131826Sharti  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
237131826Sharti#elif defined(__clang__)
238131826Sharti  intptr_t **ebp;
239131826Sharti  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
240131826Sharti#else
241131826Sharti  register intptr_t **ebp __asm__ (SPELL_REG_FP);
242131826Sharti#endif
243131826Sharti  // ebp is for this frame (_get_previous_fp). We want the ebp for the
244131826Sharti  // caller of os::current_frame*(), so go up two frames. However, for
245131826Sharti  // optimized builds, _get_previous_fp() will be inlined, so only go
246131826Sharti  // up 1 frame in that case.
247131826Sharti#ifdef _NMT_NOINLINE_
248131826Sharti  return **(intptr_t***)ebp;
249131826Sharti#else
250131826Sharti  return *ebp;
251131826Sharti#endif
252131826Sharti}
253131826Sharti
254131826Sharti
255131826Shartiframe os::current_frame() {
256131826Sharti  intptr_t* fp = _get_previous_fp();
257131826Sharti  frame myframe((intptr_t*)os::current_stack_pointer(),
258131826Sharti                (intptr_t*)fp,
259131826Sharti                CAST_FROM_FN_PTR(address, os::current_frame));
260131826Sharti  if (os::is_first_C_frame(&myframe)) {
261131826Sharti    // stack is not walkable
262131826Sharti    return frame();
263131826Sharti  } else {
264131826Sharti    return os::get_sender_for_C_frame(&myframe);
265131826Sharti  }
266131826Sharti}
267131826Sharti
268131826Sharti// Utility functions
269131826Sharti
270131826Sharti// From IA32 System Programming Guide
271131826Shartienum {
272131826Sharti  trap_page_fault = 0xE
273131826Sharti};
274131826Sharti
275131826Shartiextern "C" JNIEXPORT int
276131826ShartiJVM_handle_linux_signal(int sig,
277131826Sharti                        siginfo_t* info,
278131826Sharti                        void* ucVoid,
279131826Sharti                        int abort_if_unrecognized) {
280131826Sharti  ucontext_t* uc = (ucontext_t*) ucVoid;
281131826Sharti
282131826Sharti  Thread* t = Thread::current_or_null_safe();
283131826Sharti
284131826Sharti  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
285131826Sharti  // (no destructors can be run)
286131826Sharti  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
287131826Sharti
288131826Sharti  SignalHandlerMark shm(t);
289131826Sharti
290131826Sharti  // Note: it's not uncommon that JNI code uses signal/sigset to install
291131826Sharti  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
292  // or have a SIGILL handler when detecting CPU type). When that happens,
293  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
294  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
295  // that do not require siginfo/ucontext first.
296
297  if (sig == SIGPIPE || sig == SIGXFSZ) {
298    // allow chained handler to go first
299    if (os::Linux::chained_handler(sig, info, ucVoid)) {
300      return true;
301    } else {
302      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
303      return true;
304    }
305  }
306
307  JavaThread* thread = NULL;
308  VMThread* vmthread = NULL;
309  if (os::Linux::signal_handlers_are_installed) {
310    if (t != NULL ){
311      if(t->is_Java_thread()) {
312        thread = (JavaThread*)t;
313      }
314      else if(t->is_VM_thread()){
315        vmthread = (VMThread *)t;
316      }
317    }
318  }
319/*
320  NOTE: does not seem to work on linux.
321  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
322    // can't decode this kind of signal
323    info = NULL;
324  } else {
325    assert(sig == info->si_signo, "bad siginfo");
326  }
327*/
328  // decide if this trap can be handled by a stub
329  address stub = NULL;
330
331  address pc          = NULL;
332
333  //%note os_trap_1
334  if (info != NULL && uc != NULL && thread != NULL) {
335    pc = (address) os::Linux::ucontext_get_pc(uc);
336
337    if (StubRoutines::is_safefetch_fault(pc)) {
338      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
339      return 1;
340    }
341
342#ifndef AMD64
343    // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
344    // This can happen in any running code (currently more frequently in
345    // interpreter code but has been seen in compiled code)
346    if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
347      fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
348            "to unstable signal handling in this distribution.");
349    }
350#endif // AMD64
351
352    // Handle ALL stack overflow variations here
353    if (sig == SIGSEGV) {
354      address addr = (address) info->si_addr;
355
356      // check if fault address is within thread stack
357      if (thread->on_local_stack(addr)) {
358        // stack overflow
359        if (thread->in_stack_yellow_reserved_zone(addr)) {
360          if (thread->thread_state() == _thread_in_Java) {
361            if (thread->in_stack_reserved_zone(addr)) {
362              frame fr;
363              if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
364                assert(fr.is_java_frame(), "Must be a Java frame");
365                frame activation =
366                  SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
367                if (activation.sp() != NULL) {
368                  thread->disable_stack_reserved_zone();
369                  if (activation.is_interpreted_frame()) {
370                    thread->set_reserved_stack_activation((address)(
371                      activation.fp() + frame::interpreter_frame_initial_sp_offset));
372                  } else {
373                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
374                  }
375                  return 1;
376                }
377              }
378            }
379            // Throw a stack overflow exception.  Guard pages will be reenabled
380            // while unwinding the stack.
381            thread->disable_stack_yellow_reserved_zone();
382            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
383          } else {
384            // Thread was in the vm or native code.  Return and try to finish.
385            thread->disable_stack_yellow_reserved_zone();
386            return 1;
387          }
388        } else if (thread->in_stack_red_zone(addr)) {
389          // Fatal red zone violation.  Disable the guard pages and fall through
390          // to handle_unexpected_exception way down below.
391          thread->disable_stack_red_zone();
392          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
393
394          // This is a likely cause, but hard to verify. Let's just print
395          // it as a hint.
396          tty->print_raw_cr("Please check if any of your loaded .so files has "
397                            "enabled executable stack (see man page execstack(8))");
398        } else {
399          // Accessing stack address below sp may cause SEGV if current
400          // thread has MAP_GROWSDOWN stack. This should only happen when
401          // current thread was created by user code with MAP_GROWSDOWN flag
402          // and then attached to VM. See notes in os_linux.cpp.
403          if (thread->osthread()->expanding_stack() == 0) {
404             thread->osthread()->set_expanding_stack();
405             if (os::Linux::manually_expand_stack(thread, addr)) {
406               thread->osthread()->clear_expanding_stack();
407               return 1;
408             }
409             thread->osthread()->clear_expanding_stack();
410          } else {
411             fatal("recursive segv. expanding stack.");
412          }
413        }
414      }
415    }
416
417    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
418      // Verify that OS save/restore AVX registers.
419      stub = VM_Version::cpuinfo_cont_addr();
420    }
421
422    if (thread->thread_state() == _thread_in_Java) {
423      // Java thread running in Java code => find exception handler if any
424      // a fault inside compiled code, the interpreter, or a stub
425
426      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
427        stub = SharedRuntime::get_poll_stub(pc);
428      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
429        // BugId 4454115: A read from a MappedByteBuffer can fault
430        // here if the underlying file has been truncated.
431        // Do not crash the VM in such a case.
432        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
433        CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
434        if (nm != NULL && nm->has_unsafe_access()) {
435          address next_pc = Assembler::locate_next_instruction(pc);
436          stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
437        }
438      }
439      else
440
441#ifdef AMD64
442      if (sig == SIGFPE  &&
443          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
444        stub =
445          SharedRuntime::
446          continuation_for_implicit_exception(thread,
447                                              pc,
448                                              SharedRuntime::
449                                              IMPLICIT_DIVIDE_BY_ZERO);
450#else
451      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
452        // HACK: si_code does not work on linux 2.2.12-20!!!
453        int op = pc[0];
454        if (op == 0xDB) {
455          // FIST
456          // TODO: The encoding of D2I in i486.ad can cause an exception
457          // prior to the fist instruction if there was an invalid operation
458          // pending. We want to dismiss that exception. From the win_32
459          // side it also seems that if it really was the fist causing
460          // the exception that we do the d2i by hand with different
461          // rounding. Seems kind of weird.
462          // NOTE: that we take the exception at the NEXT floating point instruction.
463          assert(pc[0] == 0xDB, "not a FIST opcode");
464          assert(pc[1] == 0x14, "not a FIST opcode");
465          assert(pc[2] == 0x24, "not a FIST opcode");
466          return true;
467        } else if (op == 0xF7) {
468          // IDIV
469          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
470        } else {
471          // TODO: handle more cases if we are using other x86 instructions
472          //   that can generate SIGFPE signal on linux.
473          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
474          fatal("please update this code.");
475        }
476#endif // AMD64
477      } else if (sig == SIGSEGV &&
478               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
479          // Determination of interpreter/vtable stub/compiled code null exception
480          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
481      }
482    } else if (thread->thread_state() == _thread_in_vm &&
483               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
484               thread->doing_unsafe_access()) {
485        address next_pc = Assembler::locate_next_instruction(pc);
486        stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
487    }
488
489    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
490    // and the heap gets shrunk before the field access.
491    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
492      address addr = JNI_FastGetField::find_slowcase_pc(pc);
493      if (addr != (address)-1) {
494        stub = addr;
495      }
496    }
497
498    // Check to see if we caught the safepoint code in the
499    // process of write protecting the memory serialization page.
500    // It write enables the page immediately after protecting it
501    // so we can just return to retry the write.
502    if ((sig == SIGSEGV) &&
503        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
504      // Block current thread until the memory serialize page permission restored.
505      os::block_on_serialize_page_trap();
506      return true;
507    }
508  }
509
510#ifndef AMD64
511  // Execution protection violation
512  //
513  // This should be kept as the last step in the triage.  We don't
514  // have a dedicated trap number for a no-execute fault, so be
515  // conservative and allow other handlers the first shot.
516  //
517  // Note: We don't test that info->si_code == SEGV_ACCERR here.
518  // this si_code is so generic that it is almost meaningless; and
519  // the si_code for this condition may change in the future.
520  // Furthermore, a false-positive should be harmless.
521  if (UnguardOnExecutionViolation > 0 &&
522      (sig == SIGSEGV || sig == SIGBUS) &&
523      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
524    int page_size = os::vm_page_size();
525    address addr = (address) info->si_addr;
526    address pc = os::Linux::ucontext_get_pc(uc);
527    // Make sure the pc and the faulting address are sane.
528    //
529    // If an instruction spans a page boundary, and the page containing
530    // the beginning of the instruction is executable but the following
531    // page is not, the pc and the faulting address might be slightly
532    // different - we still want to unguard the 2nd page in this case.
533    //
534    // 15 bytes seems to be a (very) safe value for max instruction size.
535    bool pc_is_near_addr =
536      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
537    bool instr_spans_page_boundary =
538      (align_down((intptr_t) pc ^ (intptr_t) addr,
539                       (intptr_t) page_size) > 0);
540
541    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
542      static volatile address last_addr =
543        (address) os::non_memory_address_word();
544
545      // In conservative mode, don't unguard unless the address is in the VM
546      if (addr != last_addr &&
547          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
548
549        // Set memory to RWX and retry
550        address page_start = align_down(addr, page_size);
551        bool res = os::protect_memory((char*) page_start, page_size,
552                                      os::MEM_PROT_RWX);
553
554        log_debug(os)("Execution protection violation "
555                      "at " INTPTR_FORMAT
556                      ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
557                      p2i(page_start), (res ? "success" : "failed"), errno);
558        stub = pc;
559
560        // Set last_addr so if we fault again at the same address, we don't end
561        // up in an endless loop.
562        //
563        // There are two potential complications here.  Two threads trapping at
564        // the same address at the same time could cause one of the threads to
565        // think it already unguarded, and abort the VM.  Likely very rare.
566        //
567        // The other race involves two threads alternately trapping at
568        // different addresses and failing to unguard the page, resulting in
569        // an endless loop.  This condition is probably even more unlikely than
570        // the first.
571        //
572        // Although both cases could be avoided by using locks or thread local
573        // last_addr, these solutions are unnecessary complication: this
574        // handler is a best-effort safety net, not a complete solution.  It is
575        // disabled by default and should only be used as a workaround in case
576        // we missed any no-execute-unsafe VM code.
577
578        last_addr = addr;
579      }
580    }
581  }
582#endif // !AMD64
583
584  if (stub != NULL) {
585    // save all thread context in case we need to restore it
586    if (thread != NULL) thread->set_saved_exception_pc(pc);
587
588    os::Linux::ucontext_set_pc(uc, stub);
589    return true;
590  }
591
592  // signal-chaining
593  if (os::Linux::chained_handler(sig, info, ucVoid)) {
594     return true;
595  }
596
597  if (!abort_if_unrecognized) {
598    // caller wants another chance, so give it to him
599    return false;
600  }
601
602  if (pc == NULL && uc != NULL) {
603    pc = os::Linux::ucontext_get_pc(uc);
604  }
605
606  // unmask current signal
607  sigset_t newset;
608  sigemptyset(&newset);
609  sigaddset(&newset, sig);
610  sigprocmask(SIG_UNBLOCK, &newset, NULL);
611
612  VMError::report_and_die(t, sig, pc, info, ucVoid);
613
614  ShouldNotReachHere();
615  return true; // Mute compiler
616}
617
618void os::Linux::init_thread_fpu_state(void) {
619#ifndef AMD64
620  // set fpu to 53 bit precision
621  set_fpu_control_word(0x27f);
622#endif // !AMD64
623}
624
625int os::Linux::get_fpu_control_word(void) {
626#ifdef AMD64
627  return 0;
628#else
629  int fpu_control;
630  _FPU_GETCW(fpu_control);
631  return fpu_control & 0xffff;
632#endif // AMD64
633}
634
635void os::Linux::set_fpu_control_word(int fpu_control) {
636#ifndef AMD64
637  _FPU_SETCW(fpu_control);
638#endif // !AMD64
639}
640
641// Check that the linux kernel version is 2.4 or higher since earlier
642// versions do not support SSE without patches.
643bool os::supports_sse() {
644#ifdef AMD64
645  return true;
646#else
647  struct utsname uts;
648  if( uname(&uts) != 0 ) return false; // uname fails?
649  char *minor_string;
650  int major = strtol(uts.release,&minor_string,10);
651  int minor = strtol(minor_string+1,NULL,10);
652  bool result = (major > 2 || (major==2 && minor >= 4));
653  log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
654               major,minor, result ? "DOES" : "does NOT");
655  return result;
656#endif // AMD64
657}
658
659bool os::is_allocatable(size_t bytes) {
660#ifdef AMD64
661  // unused on amd64?
662  return true;
663#else
664
665  if (bytes < 2 * G) {
666    return true;
667  }
668
669  char* addr = reserve_memory(bytes, NULL);
670
671  if (addr != NULL) {
672    release_memory(addr, bytes);
673  }
674
675  return addr != NULL;
676#endif // AMD64
677}
678
679////////////////////////////////////////////////////////////////////////////////
680// thread stack
681
682// Minimum usable stack sizes required to get to user code. Space for
683// HotSpot guard pages is added later.
684size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K;
685size_t os::Posix::_java_thread_min_stack_allowed = 40 * K;
686#ifdef _LP64
687size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
688#else
689size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
690#endif // _LP64
691
692// return default stack size for thr_type
693size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
694  // default stack size (compiler thread needs larger stack)
695#ifdef AMD64
696  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
697#else
698  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
699#endif // AMD64
700  return s;
701}
702
703/////////////////////////////////////////////////////////////////////////////
704// helper functions for fatal error handler
705
706void os::print_context(outputStream *st, const void *context) {
707  if (context == NULL) return;
708
709  const ucontext_t *uc = (const ucontext_t*)context;
710  st->print_cr("Registers:");
711#ifdef AMD64
712  st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
713  st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
714  st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
715  st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
716  st->cr();
717  st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
718  st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
719  st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
720  st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
721  st->cr();
722  st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
723  st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
724  st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
725  st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
726  st->cr();
727  st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
728  st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
729  st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
730  st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
731  st->cr();
732  st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
733  st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
734  st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
735  st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
736  st->cr();
737  st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
738#else
739  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
740  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
741  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
742  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
743  st->cr();
744  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
745  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
746  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
747  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
748  st->cr();
749  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
750  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
751  st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
752#endif // AMD64
753  st->cr();
754  st->cr();
755
756  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
757  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
758  print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
759  st->cr();
760
761  // Note: it may be unsafe to inspect memory near pc. For example, pc may
762  // point to garbage if entry point in an nmethod is corrupted. Leave
763  // this at the end, and hope for the best.
764  address pc = os::Linux::ucontext_get_pc(uc);
765  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
766  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
767}
768
769void os::print_register_info(outputStream *st, const void *context) {
770  if (context == NULL) return;
771
772  const ucontext_t *uc = (const ucontext_t*)context;
773
774  st->print_cr("Register to memory mapping:");
775  st->cr();
776
777  // this is horrendously verbose but the layout of the registers in the
778  // context does not match how we defined our abstract Register set, so
779  // we can't just iterate through the gregs area
780
781  // this is only for the "general purpose" registers
782
783#ifdef AMD64
784  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
785  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
786  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
787  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
788  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
789  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
790  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
791  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
792  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
793  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
794  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
795  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
796  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
797  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
798  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
799  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
800#else
801  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
802  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
803  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
804  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
805  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
806  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
807  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
808  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
809#endif // AMD64
810
811  st->cr();
812}
813
814void os::setup_fpu() {
815#ifndef AMD64
816  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
817  __asm__ volatile (  "fldcw (%0)" :
818                      : "r" (fpu_cntrl) : "memory");
819#endif // !AMD64
820}
821
822#ifndef PRODUCT
823void os::verify_stack_alignment() {
824#ifdef AMD64
825  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
826#endif
827}
828#endif
829
830
831/*
832 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
833 * updates (JDK-8023956).
834 */
835void os::workaround_expand_exec_shield_cs_limit() {
836#if defined(IA32)
837  size_t page_size = os::vm_page_size();
838  /*
839   * Take the highest VA the OS will give us and exec
840   *
841   * Although using -(pagesz) as mmap hint works on newer kernel as you would
842   * think, older variants affected by this work-around don't (search forward only).
843   *
844   * On the affected distributions, we understand the memory layout to be:
845   *
846   *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
847   *
848   * A few pages south main stack will do it.
849   *
850   * If we are embedded in an app other than launcher (initial != main stack),
851   * we don't have much control or understanding of the address space, just let it slide.
852   */
853  char* hint = (char*)(Linux::initial_thread_stack_bottom() -
854                       (JavaThread::stack_guard_zone_size() + page_size));
855  char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
856  if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
857    return; // No matter, we tried, best effort.
858  }
859
860  MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
861
862  log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
863
864  // Some code to exec: the 'ret' instruction
865  codebuf[0] = 0xC3;
866
867  // Call the code in the codebuf
868  __asm__ volatile("call *%0" : : "r"(codebuf));
869
870  // keep the page mapped so CS limit isn't reduced.
871#endif
872}
873
874int os::extra_bang_size_in_bytes() {
875  // JDK-8050147 requires the full cache line bang for x86.
876  return VM_Version::L1_line_size();
877}
878