os_linux_x86.cpp revision 12468:548cb3b7b713
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "os_share_linux.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "services/memTracker.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdlib.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <pthread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/utsname.h>
71# include <sys/socket.h>
72# include <sys/wait.h>
73# include <pwd.h>
74# include <poll.h>
75# include <ucontext.h>
76# include <fpu_control.h>
77
78#ifdef AMD64
79#define REG_SP REG_RSP
80#define REG_PC REG_RIP
81#define REG_FP REG_RBP
82#define SPELL_REG_SP "rsp"
83#define SPELL_REG_FP "rbp"
84#else
85#define REG_SP REG_UESP
86#define REG_PC REG_EIP
87#define REG_FP REG_EBP
88#define SPELL_REG_SP "esp"
89#define SPELL_REG_FP "ebp"
90#endif // AMD64
91
92address os::current_stack_pointer() {
93#ifdef SPARC_WORKS
94  register void *esp;
95  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
96  return (address) ((char*)esp + sizeof(long)*2);
97#elif defined(__clang__)
98  intptr_t* esp;
99  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
100  return (address) esp;
101#else
102  register void *esp __asm__ (SPELL_REG_SP);
103  return (address) esp;
104#endif
105}
106
107char* os::non_memory_address_word() {
108  // Must never look like an address returned by reserve_memory,
109  // even in its subfields (as defined by the CPU immediate fields,
110  // if the CPU splits constants across multiple instructions).
111
112  return (char*) -1;
113}
114
115void os::initialize_thread(Thread* thr) {
116// Nothing to do.
117}
118
119address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
120  return (address)uc->uc_mcontext.gregs[REG_PC];
121}
122
123void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
124  uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
125}
126
127intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
128  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
129}
130
131intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
132  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
133}
134
135// For Forte Analyzer AsyncGetCallTrace profiling support - thread
136// is currently interrupted by SIGPROF.
137// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
138// frames. Currently we don't do that on Linux, so it's the same as
139// os::fetch_frame_from_context().
140// This method is also used for stack overflow signal handling.
141ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
142  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
143
144  assert(thread != NULL, "just checking");
145  assert(ret_sp != NULL, "just checking");
146  assert(ret_fp != NULL, "just checking");
147
148  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
149}
150
151ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
152                    intptr_t** ret_sp, intptr_t** ret_fp) {
153
154  ExtendedPC  epc;
155  const ucontext_t* uc = (const ucontext_t*)ucVoid;
156
157  if (uc != NULL) {
158    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
159    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
160    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
161  } else {
162    // construct empty ExtendedPC for return value checking
163    epc = ExtendedPC(NULL);
164    if (ret_sp) *ret_sp = (intptr_t *)NULL;
165    if (ret_fp) *ret_fp = (intptr_t *)NULL;
166  }
167
168  return epc;
169}
170
171frame os::fetch_frame_from_context(const void* ucVoid) {
172  intptr_t* sp;
173  intptr_t* fp;
174  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
175  return frame(sp, fp, epc.pc());
176}
177
178frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
179  intptr_t* sp;
180  intptr_t* fp;
181  ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
182  return frame(sp, fp, epc.pc());
183}
184
185bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
186  address pc = (address) os::Linux::ucontext_get_pc(uc);
187  if (Interpreter::contains(pc)) {
188    // interpreter performs stack banging after the fixed frame header has
189    // been generated while the compilers perform it before. To maintain
190    // semantic consistency between interpreted and compiled frames, the
191    // method returns the Java sender of the current frame.
192    *fr = os::fetch_frame_from_ucontext(thread, uc);
193    if (!fr->is_first_java_frame()) {
194      // get_frame_at_stack_banging_point() is only called when we
195      // have well defined stacks so java_sender() calls do not need
196      // to assert safe_for_sender() first.
197      *fr = fr->java_sender();
198    }
199  } else {
200    // more complex code with compiled code
201    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
202    CodeBlob* cb = CodeCache::find_blob(pc);
203    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
204      // Not sure where the pc points to, fallback to default
205      // stack overflow handling
206      return false;
207    } else {
208      // in compiled code, the stack banging is performed just after the return pc
209      // has been pushed on the stack
210      intptr_t* fp = os::Linux::ucontext_get_fp(uc);
211      intptr_t* sp = os::Linux::ucontext_get_sp(uc);
212      *fr = frame(sp + 1, fp, (address)*sp);
213      if (!fr->is_java_frame()) {
214        assert(!fr->is_first_frame(), "Safety check");
215        // See java_sender() comment above.
216        *fr = fr->java_sender();
217      }
218    }
219  }
220  assert(fr->is_java_frame(), "Safety check");
221  return true;
222}
223
224// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
225// turned off by -fomit-frame-pointer,
226frame os::get_sender_for_C_frame(frame* fr) {
227  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
228}
229
230intptr_t* _get_previous_fp() {
231#ifdef SPARC_WORKS
232  register intptr_t **ebp;
233  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
234#elif defined(__clang__)
235  intptr_t **ebp;
236  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
237#else
238  register intptr_t **ebp __asm__ (SPELL_REG_FP);
239#endif
240  // ebp is for this frame (_get_previous_fp). We want the ebp for the
241  // caller of os::current_frame*(), so go up two frames. However, for
242  // optimized builds, _get_previous_fp() will be inlined, so only go
243  // up 1 frame in that case.
244#ifdef _NMT_NOINLINE_
245  return **(intptr_t***)ebp;
246#else
247  return *ebp;
248#endif
249}
250
251
252frame os::current_frame() {
253  intptr_t* fp = _get_previous_fp();
254  frame myframe((intptr_t*)os::current_stack_pointer(),
255                (intptr_t*)fp,
256                CAST_FROM_FN_PTR(address, os::current_frame));
257  if (os::is_first_C_frame(&myframe)) {
258    // stack is not walkable
259    return frame();
260  } else {
261    return os::get_sender_for_C_frame(&myframe);
262  }
263}
264
265// Utility functions
266
267// From IA32 System Programming Guide
268enum {
269  trap_page_fault = 0xE
270};
271
272extern "C" JNIEXPORT int
273JVM_handle_linux_signal(int sig,
274                        siginfo_t* info,
275                        void* ucVoid,
276                        int abort_if_unrecognized) {
277  ucontext_t* uc = (ucontext_t*) ucVoid;
278
279  Thread* t = Thread::current_or_null_safe();
280
281  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
282  // (no destructors can be run)
283  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
284
285  SignalHandlerMark shm(t);
286
287  // Note: it's not uncommon that JNI code uses signal/sigset to install
288  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
289  // or have a SIGILL handler when detecting CPU type). When that happens,
290  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
291  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
292  // that do not require siginfo/ucontext first.
293
294  if (sig == SIGPIPE || sig == SIGXFSZ) {
295    // allow chained handler to go first
296    if (os::Linux::chained_handler(sig, info, ucVoid)) {
297      return true;
298    } else {
299      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
300      return true;
301    }
302  }
303
304  JavaThread* thread = NULL;
305  VMThread* vmthread = NULL;
306  if (os::Linux::signal_handlers_are_installed) {
307    if (t != NULL ){
308      if(t->is_Java_thread()) {
309        thread = (JavaThread*)t;
310      }
311      else if(t->is_VM_thread()){
312        vmthread = (VMThread *)t;
313      }
314    }
315  }
316/*
317  NOTE: does not seem to work on linux.
318  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
319    // can't decode this kind of signal
320    info = NULL;
321  } else {
322    assert(sig == info->si_signo, "bad siginfo");
323  }
324*/
325  // decide if this trap can be handled by a stub
326  address stub = NULL;
327
328  address pc          = NULL;
329
330  //%note os_trap_1
331  if (info != NULL && uc != NULL && thread != NULL) {
332    pc = (address) os::Linux::ucontext_get_pc(uc);
333
334    if (StubRoutines::is_safefetch_fault(pc)) {
335      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
336      return 1;
337    }
338
339#ifndef AMD64
340    // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
341    // This can happen in any running code (currently more frequently in
342    // interpreter code but has been seen in compiled code)
343    if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
344      fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
345            "to unstable signal handling in this distribution.");
346    }
347#endif // AMD64
348
349    // Handle ALL stack overflow variations here
350    if (sig == SIGSEGV) {
351      address addr = (address) info->si_addr;
352
353      // check if fault address is within thread stack
354      if (thread->on_local_stack(addr)) {
355        // stack overflow
356        if (thread->in_stack_yellow_reserved_zone(addr)) {
357          if (thread->thread_state() == _thread_in_Java) {
358            if (thread->in_stack_reserved_zone(addr)) {
359              frame fr;
360              if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
361                assert(fr.is_java_frame(), "Must be a Java frame");
362                frame activation =
363                  SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
364                if (activation.sp() != NULL) {
365                  thread->disable_stack_reserved_zone();
366                  if (activation.is_interpreted_frame()) {
367                    thread->set_reserved_stack_activation((address)(
368                      activation.fp() + frame::interpreter_frame_initial_sp_offset));
369                  } else {
370                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
371                  }
372                  return 1;
373                }
374              }
375            }
376            // Throw a stack overflow exception.  Guard pages will be reenabled
377            // while unwinding the stack.
378            thread->disable_stack_yellow_reserved_zone();
379            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
380          } else {
381            // Thread was in the vm or native code.  Return and try to finish.
382            thread->disable_stack_yellow_reserved_zone();
383            return 1;
384          }
385        } else if (thread->in_stack_red_zone(addr)) {
386          // Fatal red zone violation.  Disable the guard pages and fall through
387          // to handle_unexpected_exception way down below.
388          thread->disable_stack_red_zone();
389          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
390
391          // This is a likely cause, but hard to verify. Let's just print
392          // it as a hint.
393          tty->print_raw_cr("Please check if any of your loaded .so files has "
394                            "enabled executable stack (see man page execstack(8))");
395        } else {
396          // Accessing stack address below sp may cause SEGV if current
397          // thread has MAP_GROWSDOWN stack. This should only happen when
398          // current thread was created by user code with MAP_GROWSDOWN flag
399          // and then attached to VM. See notes in os_linux.cpp.
400          if (thread->osthread()->expanding_stack() == 0) {
401             thread->osthread()->set_expanding_stack();
402             if (os::Linux::manually_expand_stack(thread, addr)) {
403               thread->osthread()->clear_expanding_stack();
404               return 1;
405             }
406             thread->osthread()->clear_expanding_stack();
407          } else {
408             fatal("recursive segv. expanding stack.");
409          }
410        }
411      }
412    }
413
414    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
415      // Verify that OS save/restore AVX registers.
416      stub = VM_Version::cpuinfo_cont_addr();
417    }
418
419    if (thread->thread_state() == _thread_in_Java) {
420      // Java thread running in Java code => find exception handler if any
421      // a fault inside compiled code, the interpreter, or a stub
422
423      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
424        stub = SharedRuntime::get_poll_stub(pc);
425      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
426        // BugId 4454115: A read from a MappedByteBuffer can fault
427        // here if the underlying file has been truncated.
428        // Do not crash the VM in such a case.
429        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
430        CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
431        if (nm != NULL && nm->has_unsafe_access()) {
432          address next_pc = Assembler::locate_next_instruction(pc);
433          stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
434        }
435      }
436      else
437
438#ifdef AMD64
439      if (sig == SIGFPE  &&
440          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
441        stub =
442          SharedRuntime::
443          continuation_for_implicit_exception(thread,
444                                              pc,
445                                              SharedRuntime::
446                                              IMPLICIT_DIVIDE_BY_ZERO);
447#else
448      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
449        // HACK: si_code does not work on linux 2.2.12-20!!!
450        int op = pc[0];
451        if (op == 0xDB) {
452          // FIST
453          // TODO: The encoding of D2I in i486.ad can cause an exception
454          // prior to the fist instruction if there was an invalid operation
455          // pending. We want to dismiss that exception. From the win_32
456          // side it also seems that if it really was the fist causing
457          // the exception that we do the d2i by hand with different
458          // rounding. Seems kind of weird.
459          // NOTE: that we take the exception at the NEXT floating point instruction.
460          assert(pc[0] == 0xDB, "not a FIST opcode");
461          assert(pc[1] == 0x14, "not a FIST opcode");
462          assert(pc[2] == 0x24, "not a FIST opcode");
463          return true;
464        } else if (op == 0xF7) {
465          // IDIV
466          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
467        } else {
468          // TODO: handle more cases if we are using other x86 instructions
469          //   that can generate SIGFPE signal on linux.
470          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
471          fatal("please update this code.");
472        }
473#endif // AMD64
474      } else if (sig == SIGSEGV &&
475               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
476          // Determination of interpreter/vtable stub/compiled code null exception
477          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
478      }
479    } else if (thread->thread_state() == _thread_in_vm &&
480               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
481               thread->doing_unsafe_access()) {
482        address next_pc = Assembler::locate_next_instruction(pc);
483        stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
484    }
485
486    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
487    // and the heap gets shrunk before the field access.
488    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
489      address addr = JNI_FastGetField::find_slowcase_pc(pc);
490      if (addr != (address)-1) {
491        stub = addr;
492      }
493    }
494
495    // Check to see if we caught the safepoint code in the
496    // process of write protecting the memory serialization page.
497    // It write enables the page immediately after protecting it
498    // so we can just return to retry the write.
499    if ((sig == SIGSEGV) &&
500        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
501      // Block current thread until the memory serialize page permission restored.
502      os::block_on_serialize_page_trap();
503      return true;
504    }
505  }
506
507#ifndef AMD64
508  // Execution protection violation
509  //
510  // This should be kept as the last step in the triage.  We don't
511  // have a dedicated trap number for a no-execute fault, so be
512  // conservative and allow other handlers the first shot.
513  //
514  // Note: We don't test that info->si_code == SEGV_ACCERR here.
515  // this si_code is so generic that it is almost meaningless; and
516  // the si_code for this condition may change in the future.
517  // Furthermore, a false-positive should be harmless.
518  if (UnguardOnExecutionViolation > 0 &&
519      (sig == SIGSEGV || sig == SIGBUS) &&
520      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
521    int page_size = os::vm_page_size();
522    address addr = (address) info->si_addr;
523    address pc = os::Linux::ucontext_get_pc(uc);
524    // Make sure the pc and the faulting address are sane.
525    //
526    // If an instruction spans a page boundary, and the page containing
527    // the beginning of the instruction is executable but the following
528    // page is not, the pc and the faulting address might be slightly
529    // different - we still want to unguard the 2nd page in this case.
530    //
531    // 15 bytes seems to be a (very) safe value for max instruction size.
532    bool pc_is_near_addr =
533      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
534    bool instr_spans_page_boundary =
535      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
536                       (intptr_t) page_size) > 0);
537
538    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
539      static volatile address last_addr =
540        (address) os::non_memory_address_word();
541
542      // In conservative mode, don't unguard unless the address is in the VM
543      if (addr != last_addr &&
544          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
545
546        // Set memory to RWX and retry
547        address page_start =
548          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
549        bool res = os::protect_memory((char*) page_start, page_size,
550                                      os::MEM_PROT_RWX);
551
552        log_debug(os)("Execution protection violation "
553                      "at " INTPTR_FORMAT
554                      ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
555                      p2i(page_start), (res ? "success" : "failed"), errno);
556        stub = pc;
557
558        // Set last_addr so if we fault again at the same address, we don't end
559        // up in an endless loop.
560        //
561        // There are two potential complications here.  Two threads trapping at
562        // the same address at the same time could cause one of the threads to
563        // think it already unguarded, and abort the VM.  Likely very rare.
564        //
565        // The other race involves two threads alternately trapping at
566        // different addresses and failing to unguard the page, resulting in
567        // an endless loop.  This condition is probably even more unlikely than
568        // the first.
569        //
570        // Although both cases could be avoided by using locks or thread local
571        // last_addr, these solutions are unnecessary complication: this
572        // handler is a best-effort safety net, not a complete solution.  It is
573        // disabled by default and should only be used as a workaround in case
574        // we missed any no-execute-unsafe VM code.
575
576        last_addr = addr;
577      }
578    }
579  }
580#endif // !AMD64
581
582  if (stub != NULL) {
583    // save all thread context in case we need to restore it
584    if (thread != NULL) thread->set_saved_exception_pc(pc);
585
586    os::Linux::ucontext_set_pc(uc, stub);
587    return true;
588  }
589
590  // signal-chaining
591  if (os::Linux::chained_handler(sig, info, ucVoid)) {
592     return true;
593  }
594
595  if (!abort_if_unrecognized) {
596    // caller wants another chance, so give it to him
597    return false;
598  }
599
600  if (pc == NULL && uc != NULL) {
601    pc = os::Linux::ucontext_get_pc(uc);
602  }
603
604  // unmask current signal
605  sigset_t newset;
606  sigemptyset(&newset);
607  sigaddset(&newset, sig);
608  sigprocmask(SIG_UNBLOCK, &newset, NULL);
609
610  VMError::report_and_die(t, sig, pc, info, ucVoid);
611
612  ShouldNotReachHere();
613  return true; // Mute compiler
614}
615
616void os::Linux::init_thread_fpu_state(void) {
617#ifndef AMD64
618  // set fpu to 53 bit precision
619  set_fpu_control_word(0x27f);
620#endif // !AMD64
621}
622
623int os::Linux::get_fpu_control_word(void) {
624#ifdef AMD64
625  return 0;
626#else
627  int fpu_control;
628  _FPU_GETCW(fpu_control);
629  return fpu_control & 0xffff;
630#endif // AMD64
631}
632
633void os::Linux::set_fpu_control_word(int fpu_control) {
634#ifndef AMD64
635  _FPU_SETCW(fpu_control);
636#endif // !AMD64
637}
638
639// Check that the linux kernel version is 2.4 or higher since earlier
640// versions do not support SSE without patches.
641bool os::supports_sse() {
642#ifdef AMD64
643  return true;
644#else
645  struct utsname uts;
646  if( uname(&uts) != 0 ) return false; // uname fails?
647  char *minor_string;
648  int major = strtol(uts.release,&minor_string,10);
649  int minor = strtol(minor_string+1,NULL,10);
650  bool result = (major > 2 || (major==2 && minor >= 4));
651  log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
652               major,minor, result ? "DOES" : "does NOT");
653  return result;
654#endif // AMD64
655}
656
657bool os::is_allocatable(size_t bytes) {
658#ifdef AMD64
659  // unused on amd64?
660  return true;
661#else
662
663  if (bytes < 2 * G) {
664    return true;
665  }
666
667  char* addr = reserve_memory(bytes, NULL);
668
669  if (addr != NULL) {
670    release_memory(addr, bytes);
671  }
672
673  return addr != NULL;
674#endif // AMD64
675}
676
677////////////////////////////////////////////////////////////////////////////////
678// thread stack
679
680#ifdef AMD64
681size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
682size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
683size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
684#else
685size_t os::Posix::_compiler_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
686size_t os::Posix::_java_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
687size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
688#endif // AMD64
689
690// return default stack size for thr_type
691size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
692  // default stack size (compiler thread needs larger stack)
693#ifdef AMD64
694  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
695#else
696  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
697#endif // AMD64
698  return s;
699}
700
701/////////////////////////////////////////////////////////////////////////////
702// helper functions for fatal error handler
703
704void os::print_context(outputStream *st, const void *context) {
705  if (context == NULL) return;
706
707  const ucontext_t *uc = (const ucontext_t*)context;
708  st->print_cr("Registers:");
709#ifdef AMD64
710  st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
711  st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
712  st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
713  st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
714  st->cr();
715  st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
716  st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
717  st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
718  st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
719  st->cr();
720  st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
721  st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
722  st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
723  st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
724  st->cr();
725  st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
726  st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
727  st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
728  st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
729  st->cr();
730  st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
731  st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
732  st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
733  st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
734  st->cr();
735  st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
736#else
737  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
738  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
739  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
740  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
741  st->cr();
742  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
743  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
744  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
745  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
746  st->cr();
747  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
748  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
749  st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
750#endif // AMD64
751  st->cr();
752  st->cr();
753
754  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
755  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
756  print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
757  st->cr();
758
759  // Note: it may be unsafe to inspect memory near pc. For example, pc may
760  // point to garbage if entry point in an nmethod is corrupted. Leave
761  // this at the end, and hope for the best.
762  address pc = os::Linux::ucontext_get_pc(uc);
763  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
764  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
765}
766
767void os::print_register_info(outputStream *st, const void *context) {
768  if (context == NULL) return;
769
770  const ucontext_t *uc = (const ucontext_t*)context;
771
772  st->print_cr("Register to memory mapping:");
773  st->cr();
774
775  // this is horrendously verbose but the layout of the registers in the
776  // context does not match how we defined our abstract Register set, so
777  // we can't just iterate through the gregs area
778
779  // this is only for the "general purpose" registers
780
781#ifdef AMD64
782  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
783  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
784  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
785  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
786  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
787  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
788  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
789  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
790  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
791  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
792  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
793  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
794  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
795  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
796  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
797  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
798#else
799  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
800  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
801  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
802  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
803  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
804  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
805  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
806  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
807#endif // AMD64
808
809  st->cr();
810}
811
812void os::setup_fpu() {
813#ifndef AMD64
814  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
815  __asm__ volatile (  "fldcw (%0)" :
816                      : "r" (fpu_cntrl) : "memory");
817#endif // !AMD64
818}
819
820#ifndef PRODUCT
821void os::verify_stack_alignment() {
822#ifdef AMD64
823  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
824#endif
825}
826#endif
827
828
829/*
830 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
831 * updates (JDK-8023956).
832 */
833void os::workaround_expand_exec_shield_cs_limit() {
834#if defined(IA32)
835  size_t page_size = os::vm_page_size();
836  /*
837   * Take the highest VA the OS will give us and exec
838   *
839   * Although using -(pagesz) as mmap hint works on newer kernel as you would
840   * think, older variants affected by this work-around don't (search forward only).
841   *
842   * On the affected distributions, we understand the memory layout to be:
843   *
844   *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
845   *
846   * A few pages south main stack will do it.
847   *
848   * If we are embedded in an app other than launcher (initial != main stack),
849   * we don't have much control or understanding of the address space, just let it slide.
850   */
851  char* hint = (char*)(Linux::initial_thread_stack_bottom() -
852                       (JavaThread::stack_guard_zone_size() + page_size));
853  char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
854  if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
855    return; // No matter, we tried, best effort.
856  }
857
858  MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
859
860  log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
861
862  // Some code to exec: the 'ret' instruction
863  codebuf[0] = 0xC3;
864
865  // Call the code in the codebuf
866  __asm__ volatile("call *%0" : : "r"(codebuf));
867
868  // keep the page mapped so CS limit isn't reduced.
869#endif
870}
871
872int os::extra_bang_size_in_bytes() {
873  // JDK-8050147 requires the full cache line bang for x86.
874  return VM_Version::L1_line_size();
875}
876