os_linux_sparc.cpp revision 7996:3eb61269f421
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_linux.inline.hpp"
36#include "nativeInst_sparc.hpp"
37#include "os_share_linux.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/thread.inline.hpp"
52#include "runtime/timer.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// Linux/Sparc has rather obscure naming of registers in sigcontext
57// different between 32 and 64 bits
58#ifdef _LP64
59#define SIG_PC(x) ((x)->sigc_regs.tpc)
60#define SIG_NPC(x) ((x)->sigc_regs.tnpc)
61#define SIG_REGS(x) ((x)->sigc_regs)
62#else
63#define SIG_PC(x) ((x)->si_regs.pc)
64#define SIG_NPC(x) ((x)->si_regs.npc)
65#define SIG_REGS(x) ((x)->si_regs)
66#endif
67
68// those are to reference registers in sigcontext
69enum {
70  CON_G0 = 0,
71  CON_G1,
72  CON_G2,
73  CON_G3,
74  CON_G4,
75  CON_G5,
76  CON_G6,
77  CON_G7,
78  CON_O0,
79  CON_O1,
80  CON_O2,
81  CON_O3,
82  CON_O4,
83  CON_O5,
84  CON_O6,
85  CON_O7,
86};
87
88// For Forte Analyzer AsyncGetCallTrace profiling support - thread is
89// currently interrupted by SIGPROF.
90// os::Solaris::fetch_frame_from_ucontext() tries to skip nested
91// signal frames. Currently we don't do that on Linux, so it's the
92// same as os::fetch_frame_from_context().
93ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
94                                                ucontext_t* uc,
95                                                intptr_t** ret_sp,
96                                                intptr_t** ret_fp) {
97  assert(thread != NULL, "just checking");
98  assert(ret_sp != NULL, "just checking");
99  assert(ret_fp != NULL, "just checking");
100
101  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
102}
103
104ExtendedPC os::fetch_frame_from_context(void* ucVoid,
105                                        intptr_t** ret_sp,
106                                        intptr_t** ret_fp) {
107  ucontext_t* uc = (ucontext_t*) ucVoid;
108  ExtendedPC  epc;
109
110  if (uc != NULL) {
111    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
112    if (ret_sp) {
113      *ret_sp = os::Linux::ucontext_get_sp(uc);
114    }
115    if (ret_fp) {
116      *ret_fp = (intptr_t*)NULL;
117    }
118  } else {
119    // construct empty ExtendedPC for return value checking
120    epc = ExtendedPC(NULL);
121    if (ret_sp) {
122      *ret_sp = (intptr_t*) NULL;
123    }
124    if (ret_fp) {
125      *ret_fp = (intptr_t*) NULL;
126    }
127  }
128
129  return epc;
130}
131
132frame os::fetch_frame_from_context(void* ucVoid) {
133  intptr_t* sp;
134  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, NULL);
135  return frame(sp, frame::unpatchable, epc.pc());
136}
137
138frame os::get_sender_for_C_frame(frame* fr) {
139  return frame(fr->sender_sp(), frame::unpatchable, fr->sender_pc());
140}
141
142frame os::current_frame() {
143  intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
144  frame myframe(sp, frame::unpatchable,
145                CAST_FROM_FN_PTR(address, os::current_frame));
146  if (os::is_first_C_frame(&myframe)) {
147    // stack is not walkable
148    return frame(NULL, frame::unpatchable, NULL);
149  } else {
150    return os::get_sender_for_C_frame(&myframe);
151  }
152}
153
154address os::current_stack_pointer() {
155  register void *sp __asm__ ("sp");
156  return (address)sp;
157}
158
159static void current_stack_region(address* bottom, size_t* size) {
160  if (os::Linux::is_initial_thread()) {
161    // initial thread needs special handling because pthread_getattr_np()
162    // may return bogus value.
163    *bottom = os::Linux::initial_thread_stack_bottom();
164    *size = os::Linux::initial_thread_stack_size();
165  } else {
166    pthread_attr_t attr;
167
168    int rslt = pthread_getattr_np(pthread_self(), &attr);
169
170    // JVM needs to know exact stack location, abort if it fails
171    if (rslt != 0) {
172      if (rslt == ENOMEM) {
173        vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
174      } else {
175        fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
176      }
177    }
178
179    if (pthread_attr_getstack(&attr, (void**)bottom, size) != 0) {
180      fatal("Can not locate current stack attributes!");
181    }
182
183    pthread_attr_destroy(&attr);
184  }
185  assert(os::current_stack_pointer() >= *bottom &&
186         os::current_stack_pointer() < *bottom + *size, "just checking");
187}
188
189address os::current_stack_base() {
190  address bottom;
191  size_t size;
192  current_stack_region(&bottom, &size);
193  return bottom + size;
194}
195
196size_t os::current_stack_size() {
197  // stack size includes normal stack and HotSpot guard pages
198  address bottom;
199  size_t size;
200  current_stack_region(&bottom, &size);
201  return size;
202}
203
204char* os::non_memory_address_word() {
205  // Must never look like an address returned by reserve_memory,
206  // even in its subfields (as defined by the CPU immediate fields,
207  // if the CPU splits constants across multiple instructions).
208  // On SPARC, 0 != %hi(any real address), because there is no
209  // allocation in the first 1Kb of the virtual address space.
210  return (char*) 0;
211}
212
213void os::initialize_thread(Thread* thr) {}
214
215void os::print_context(outputStream *st, void *context) {
216  if (context == NULL) return;
217
218  ucontext_t* uc = (ucontext_t*)context;
219  sigcontext* sc = (sigcontext*)context;
220  st->print_cr("Registers:");
221
222  st->print_cr(" G1=" INTPTR_FORMAT " G2=" INTPTR_FORMAT
223               " G3=" INTPTR_FORMAT " G4=" INTPTR_FORMAT,
224               SIG_REGS(sc).u_regs[CON_G1],
225               SIG_REGS(sc).u_regs[CON_G2],
226               SIG_REGS(sc).u_regs[CON_G3],
227               SIG_REGS(sc).u_regs[CON_G4]);
228  st->print_cr(" G5=" INTPTR_FORMAT " G6=" INTPTR_FORMAT
229               " G7=" INTPTR_FORMAT " Y=0x%x",
230               SIG_REGS(sc).u_regs[CON_G5],
231               SIG_REGS(sc).u_regs[CON_G6],
232               SIG_REGS(sc).u_regs[CON_G7],
233               SIG_REGS(sc).y);
234  st->print_cr(" O0=" INTPTR_FORMAT " O1=" INTPTR_FORMAT
235               " O2=" INTPTR_FORMAT " O3=" INTPTR_FORMAT,
236               SIG_REGS(sc).u_regs[CON_O0],
237               SIG_REGS(sc).u_regs[CON_O1],
238               SIG_REGS(sc).u_regs[CON_O2],
239               SIG_REGS(sc).u_regs[CON_O3]);
240  st->print_cr(" O4=" INTPTR_FORMAT " O5=" INTPTR_FORMAT
241               " O6=" INTPTR_FORMAT " O7=" INTPTR_FORMAT,
242               SIG_REGS(sc).u_regs[CON_O4],
243               SIG_REGS(sc).u_regs[CON_O5],
244               SIG_REGS(sc).u_regs[CON_O6],
245               SIG_REGS(sc).u_regs[CON_O7]);
246
247
248  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
249  st->print_cr(" L0=" INTPTR_FORMAT " L1=" INTPTR_FORMAT
250               " L2=" INTPTR_FORMAT " L3=" INTPTR_FORMAT,
251               sp[L0->sp_offset_in_saved_window()],
252               sp[L1->sp_offset_in_saved_window()],
253               sp[L2->sp_offset_in_saved_window()],
254               sp[L3->sp_offset_in_saved_window()]);
255  st->print_cr(" L4=" INTPTR_FORMAT " L5=" INTPTR_FORMAT
256               " L6=" INTPTR_FORMAT " L7=" INTPTR_FORMAT,
257               sp[L4->sp_offset_in_saved_window()],
258               sp[L5->sp_offset_in_saved_window()],
259               sp[L6->sp_offset_in_saved_window()],
260               sp[L7->sp_offset_in_saved_window()]);
261  st->print_cr(" I0=" INTPTR_FORMAT " I1=" INTPTR_FORMAT
262               " I2=" INTPTR_FORMAT " I3=" INTPTR_FORMAT,
263               sp[I0->sp_offset_in_saved_window()],
264               sp[I1->sp_offset_in_saved_window()],
265               sp[I2->sp_offset_in_saved_window()],
266               sp[I3->sp_offset_in_saved_window()]);
267  st->print_cr(" I4=" INTPTR_FORMAT " I5=" INTPTR_FORMAT
268               " I6=" INTPTR_FORMAT " I7=" INTPTR_FORMAT,
269               sp[I4->sp_offset_in_saved_window()],
270               sp[I5->sp_offset_in_saved_window()],
271               sp[I6->sp_offset_in_saved_window()],
272               sp[I7->sp_offset_in_saved_window()]);
273
274  st->print_cr(" PC=" INTPTR_FORMAT " nPC=" INTPTR_FORMAT,
275               SIG_PC(sc),
276               SIG_NPC(sc));
277  st->cr();
278  st->cr();
279
280  st->print_cr("Top of Stack: (sp=" INTPTR_FORMAT ")", p2i(sp));
281  print_hex_dump(st, (address)sp, (address)(sp + 32), sizeof(intptr_t));
282  st->cr();
283
284  // Note: it may be unsafe to inspect memory near pc. For example, pc may
285  // point to garbage if entry point in an nmethod is corrupted. Leave
286  // this at the end, and hope for the best.
287  address pc = os::Linux::ucontext_get_pc(uc);
288  st->print_cr("Instructions: (pc=" INTPTR_FORMAT ")", p2i(pc));
289  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
290}
291
292
293void os::print_register_info(outputStream *st, void *context) {
294  if (context == NULL) return;
295
296  ucontext_t *uc = (ucontext_t*)context;
297  sigcontext* sc = (sigcontext*)context;
298  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
299
300  st->print_cr("Register to memory mapping:");
301  st->cr();
302
303  // this is only for the "general purpose" registers
304  st->print("G1="); print_location(st, SIG_REGS(sc).u_regs[CON_G1]);
305  st->print("G2="); print_location(st, SIG_REGS(sc).u_regs[CON_G2]);
306  st->print("G3="); print_location(st, SIG_REGS(sc).u_regs[CON_G3]);
307  st->print("G4="); print_location(st, SIG_REGS(sc).u_regs[CON_G4]);
308  st->print("G5="); print_location(st, SIG_REGS(sc).u_regs[CON_G5]);
309  st->print("G6="); print_location(st, SIG_REGS(sc).u_regs[CON_G6]);
310  st->print("G7="); print_location(st, SIG_REGS(sc).u_regs[CON_G7]);
311  st->cr();
312
313  st->print("O0="); print_location(st, SIG_REGS(sc).u_regs[CON_O0]);
314  st->print("O1="); print_location(st, SIG_REGS(sc).u_regs[CON_O1]);
315  st->print("O2="); print_location(st, SIG_REGS(sc).u_regs[CON_O2]);
316  st->print("O3="); print_location(st, SIG_REGS(sc).u_regs[CON_O3]);
317  st->print("O4="); print_location(st, SIG_REGS(sc).u_regs[CON_O4]);
318  st->print("O5="); print_location(st, SIG_REGS(sc).u_regs[CON_O5]);
319  st->print("O6="); print_location(st, SIG_REGS(sc).u_regs[CON_O6]);
320  st->print("O7="); print_location(st, SIG_REGS(sc).u_regs[CON_O7]);
321  st->cr();
322
323  st->print("L0="); print_location(st, sp[L0->sp_offset_in_saved_window()]);
324  st->print("L1="); print_location(st, sp[L1->sp_offset_in_saved_window()]);
325  st->print("L2="); print_location(st, sp[L2->sp_offset_in_saved_window()]);
326  st->print("L3="); print_location(st, sp[L3->sp_offset_in_saved_window()]);
327  st->print("L4="); print_location(st, sp[L4->sp_offset_in_saved_window()]);
328  st->print("L5="); print_location(st, sp[L5->sp_offset_in_saved_window()]);
329  st->print("L6="); print_location(st, sp[L6->sp_offset_in_saved_window()]);
330  st->print("L7="); print_location(st, sp[L7->sp_offset_in_saved_window()]);
331  st->cr();
332
333  st->print("I0="); print_location(st, sp[I0->sp_offset_in_saved_window()]);
334  st->print("I1="); print_location(st, sp[I1->sp_offset_in_saved_window()]);
335  st->print("I2="); print_location(st, sp[I2->sp_offset_in_saved_window()]);
336  st->print("I3="); print_location(st, sp[I3->sp_offset_in_saved_window()]);
337  st->print("I4="); print_location(st, sp[I4->sp_offset_in_saved_window()]);
338  st->print("I5="); print_location(st, sp[I5->sp_offset_in_saved_window()]);
339  st->print("I6="); print_location(st, sp[I6->sp_offset_in_saved_window()]);
340  st->print("I7="); print_location(st, sp[I7->sp_offset_in_saved_window()]);
341  st->cr();
342}
343
344
345address os::Linux::ucontext_get_pc(ucontext_t* uc) {
346  return (address) SIG_PC((sigcontext*)uc);
347}
348
349void os::Linux::ucontext_set_pc(ucontext_t* uc, address pc) {
350  sigcontext_t* ctx = (sigcontext_t*) uc;
351  SIG_PC(ctx)  = (intptr_t)addr;
352  SIG_NPC(ctx) = (intptr_t)(addr+4);
353}
354
355intptr_t* os::Linux::ucontext_get_sp(ucontext_t *uc) {
356  return (intptr_t*)
357    ((intptr_t)SIG_REGS((sigcontext*)uc).u_regs[CON_O6] + STACK_BIAS);
358}
359
360// not used on Sparc
361intptr_t* os::Linux::ucontext_get_fp(ucontext_t *uc) {
362  ShouldNotReachHere();
363  return NULL;
364}
365
366// Utility functions
367
368inline static bool checkPrefetch(sigcontext* uc, address pc) {
369  if (StubRoutines::is_safefetch_fault(pc)) {
370    os::Linux::ucontext_set_pc((ucontext_t*)uc, StubRoutines::continuation_for_safefetch_fault(pc));
371    return true;
372  }
373  return false;
374}
375
376inline static bool checkOverflow(sigcontext* uc,
377                                 address pc,
378                                 address addr,
379                                 JavaThread* thread,
380                                 address* stub) {
381  // check if fault address is within thread stack
382  if (addr < thread->stack_base() &&
383      addr >= thread->stack_base() - thread->stack_size()) {
384    // stack overflow
385    if (thread->in_stack_yellow_zone(addr)) {
386      thread->disable_stack_yellow_zone();
387      if (thread->thread_state() == _thread_in_Java) {
388        // Throw a stack overflow exception.  Guard pages will be reenabled
389        // while unwinding the stack.
390        *stub =
391          SharedRuntime::continuation_for_implicit_exception(thread,
392                                                             pc,
393                                                             SharedRuntime::STACK_OVERFLOW);
394      } else {
395        // Thread was in the vm or native code.  Return and try to finish.
396        return true;
397      }
398    } else if (thread->in_stack_red_zone(addr)) {
399      // Fatal red zone violation.  Disable the guard pages and fall through
400      // to handle_unexpected_exception way down below.
401      thread->disable_stack_red_zone();
402      tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
403
404      // This is a likely cause, but hard to verify. Let's just print
405      // it as a hint.
406      tty->print_raw_cr("Please check if any of your loaded .so files has "
407                        "enabled executable stack (see man page execstack(8))");
408    } else {
409      // Accessing stack address below sp may cause SEGV if current
410      // thread has MAP_GROWSDOWN stack. This should only happen when
411      // current thread was created by user code with MAP_GROWSDOWN flag
412      // and then attached to VM. See notes in os_linux.cpp.
413      if (thread->osthread()->expanding_stack() == 0) {
414        thread->osthread()->set_expanding_stack();
415        if (os::Linux::manually_expand_stack(thread, addr)) {
416          thread->osthread()->clear_expanding_stack();
417          return true;
418        }
419        thread->osthread()->clear_expanding_stack();
420      } else {
421        fatal("recursive segv. expanding stack.");
422      }
423    }
424  }
425  return false;
426}
427
428inline static bool checkPollingPage(address pc, address fault, address* stub) {
429  if (fault == os::get_polling_page()) {
430    *stub = SharedRuntime::get_poll_stub(pc);
431    return true;
432  }
433  return false;
434}
435
436inline static bool checkByteBuffer(address pc, address* stub) {
437  // BugId 4454115: A read from a MappedByteBuffer can fault
438  // here if the underlying file has been truncated.
439  // Do not crash the VM in such a case.
440  CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
441  nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
442  if (nm != NULL && nm->has_unsafe_access()) {
443    *stub = StubRoutines::handler_for_unsafe_access();
444    return true;
445  }
446  return false;
447}
448
449inline static bool checkVerifyOops(address pc, address fault, address* stub) {
450  if (pc >= MacroAssembler::_verify_oop_implicit_branch[0]
451      && pc <  MacroAssembler::_verify_oop_implicit_branch[1] ) {
452    *stub     =  MacroAssembler::_verify_oop_implicit_branch[2];
453    warning("fixed up memory fault in +VerifyOops at address "
454            INTPTR_FORMAT, p2i(fault));
455    return true;
456  }
457  return false;
458}
459
460inline static bool checkFPFault(address pc, int code,
461                                JavaThread* thread, address* stub) {
462  if (code == FPE_INTDIV || code == FPE_FLTDIV) {
463    *stub =
464      SharedRuntime::
465      continuation_for_implicit_exception(thread,
466                                          pc,
467                                          SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
468    return true;
469  }
470  return false;
471}
472
473inline static bool checkNullPointer(address pc, intptr_t fault,
474                                    JavaThread* thread, address* stub) {
475  if (!MacroAssembler::needs_explicit_null_check(fault)) {
476    // Determination of interpreter/vtable stub/compiled code null
477    // exception
478    *stub =
479      SharedRuntime::
480      continuation_for_implicit_exception(thread, pc,
481                                          SharedRuntime::IMPLICIT_NULL);
482    return true;
483  }
484  return false;
485}
486
487inline static bool checkFastJNIAccess(address pc, address* stub) {
488  address addr = JNI_FastGetField::find_slowcase_pc(pc);
489  if (addr != (address)-1) {
490    *stub = addr;
491    return true;
492  }
493  return false;
494}
495
496inline static bool checkSerializePage(JavaThread* thread, address addr) {
497  return os::is_memory_serialize_page(thread, addr);
498}
499
500inline static bool checkZombie(sigcontext* uc, address* pc, address* stub) {
501  if (nativeInstruction_at(*pc)->is_zombie()) {
502    // zombie method (ld [%g0],%o7 instruction)
503    *stub = SharedRuntime::get_handle_wrong_method_stub();
504
505    // At the stub it needs to look like a call from the caller of this
506    // method (not a call from the segv site).
507    *pc = (address)SIG_REGS(uc).u_regs[CON_O7];
508    return true;
509  }
510  return false;
511}
512
513inline static bool checkICMiss(sigcontext* uc, address* pc, address* stub) {
514#ifdef COMPILER2
515  if (nativeInstruction_at(*pc)->is_ic_miss_trap()) {
516#ifdef ASSERT
517#ifdef TIERED
518    CodeBlob* cb = CodeCache::find_blob_unsafe(*pc);
519    assert(cb->is_compiled_by_c2(), "Wrong compiler");
520#endif // TIERED
521#endif // ASSERT
522    // Inline cache missed and user trap "Tne G0+ST_RESERVED_FOR_USER_0+2" taken.
523    *stub = SharedRuntime::get_ic_miss_stub();
524    // At the stub it needs to look like a call from the caller of this
525    // method (not a call from the segv site).
526    *pc = (address)SIG_REGS(uc).u_regs[CON_O7];
527    return true;
528  }
529#endif  // COMPILER2
530  return false;
531}
532
533extern "C" JNIEXPORT int
534JVM_handle_linux_signal(int sig,
535                        siginfo_t* info,
536                        void* ucVoid,
537                        int abort_if_unrecognized) {
538  // in fact this isn't ucontext_t* at all, but struct sigcontext*
539  // but Linux porting layer uses ucontext_t, so to minimize code change
540  // we cast as needed
541  ucontext_t* ucFake = (ucontext_t*) ucVoid;
542  sigcontext* uc = (sigcontext*)ucVoid;
543
544  Thread* t = ThreadLocalStorage::get_thread_slow();
545
546  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
547  // (no destructors can be run)
548  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
549
550  SignalHandlerMark shm(t);
551
552  // Note: it's not uncommon that JNI code uses signal/sigset to install
553  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
554  // or have a SIGILL handler when detecting CPU type). When that happens,
555  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
556  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
557  // that do not require siginfo/ucontext first.
558
559  if (sig == SIGPIPE || sig == SIGXFSZ) {
560    // allow chained handler to go first
561    if (os::Linux::chained_handler(sig, info, ucVoid)) {
562      return true;
563    } else {
564      if (PrintMiscellaneous && (WizardMode || Verbose)) {
565        char buf[64];
566        warning("Ignoring %s - see bugs 4229104 or 646499219",
567                os::exception_name(sig, buf, sizeof(buf)));
568      }
569      return true;
570    }
571  }
572
573  JavaThread* thread = NULL;
574  VMThread* vmthread = NULL;
575  if (os::Linux::signal_handlers_are_installed) {
576    if (t != NULL ){
577      if(t->is_Java_thread()) {
578        thread = (JavaThread*)t;
579      }
580      else if(t->is_VM_thread()){
581        vmthread = (VMThread *)t;
582      }
583    }
584  }
585
586  // decide if this trap can be handled by a stub
587  address stub = NULL;
588  address pc = NULL;
589  address npc = NULL;
590
591  //%note os_trap_1
592  if (info != NULL && uc != NULL && thread != NULL) {
593    pc = address(SIG_PC(uc));
594    npc = address(SIG_NPC(uc));
595
596    // Check to see if we caught the safepoint code in the
597    // process of write protecting the memory serialization page.
598    // It write enables the page immediately after protecting it
599    // so we can just return to retry the write.
600    if ((sig == SIGSEGV) && checkSerializePage(thread, (address)info->si_addr)) {
601      // Block current thread until the memory serialize page permission restored.
602      os::block_on_serialize_page_trap();
603      return 1;
604    }
605
606    if (checkPrefetch(uc, pc)) {
607      return 1;
608    }
609
610    // Handle ALL stack overflow variations here
611    if (sig == SIGSEGV) {
612      if (checkOverflow(uc, pc, (address)info->si_addr, thread, &stub)) {
613        return 1;
614      }
615    }
616
617    if (sig == SIGBUS &&
618        thread->thread_state() == _thread_in_vm &&
619        thread->doing_unsafe_access()) {
620      stub = StubRoutines::handler_for_unsafe_access();
621    }
622
623    if (thread->thread_state() == _thread_in_Java) {
624      do {
625        // Java thread running in Java code => find exception handler if any
626        // a fault inside compiled code, the interpreter, or a stub
627
628        if ((sig == SIGSEGV) && checkPollingPage(pc, (address)info->si_addr, &stub)) {
629          break;
630        }
631
632        if ((sig == SIGBUS) && checkByteBuffer(pc, &stub)) {
633          break;
634        }
635
636        if ((sig == SIGSEGV || sig == SIGBUS) &&
637            checkVerifyOops(pc, (address)info->si_addr, &stub)) {
638          break;
639        }
640
641        if ((sig == SIGSEGV) && checkZombie(uc, &pc, &stub)) {
642          break;
643        }
644
645        if ((sig == SIGILL) && checkICMiss(uc, &pc, &stub)) {
646          break;
647        }
648
649        if ((sig == SIGFPE) && checkFPFault(pc, info->si_code, thread, &stub)) {
650          break;
651        }
652
653        if ((sig == SIGSEGV) &&
654            checkNullPointer(pc, (intptr_t)info->si_addr, thread, &stub)) {
655          break;
656        }
657      } while (0);
658
659      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
660      // and the heap gets shrunk before the field access.
661      if ((sig == SIGSEGV) || (sig == SIGBUS)) {
662        checkFastJNIAccess(pc, &stub);
663      }
664    }
665
666    if (stub != NULL) {
667      // save all thread context in case we need to restore it
668      thread->set_saved_exception_pc(pc);
669      thread->set_saved_exception_npc(npc);
670      os::Linux::ucontext_set_pc((ucontext_t*)uc, stub);
671      return true;
672    }
673  }
674
675  // signal-chaining
676  if (os::Linux::chained_handler(sig, info, ucVoid)) {
677    return true;
678  }
679
680  if (!abort_if_unrecognized) {
681    // caller wants another chance, so give it to him
682    return false;
683  }
684
685  if (pc == NULL && uc != NULL) {
686    pc = os::Linux::ucontext_get_pc((ucontext_t*)uc);
687  }
688
689  // unmask current signal
690  sigset_t newset;
691  sigemptyset(&newset);
692  sigaddset(&newset, sig);
693  sigprocmask(SIG_UNBLOCK, &newset, NULL);
694
695  VMError err(t, sig, pc, info, ucVoid);
696  err.report_and_die();
697
698  ShouldNotReachHere();
699}
700
701void os::Linux::init_thread_fpu_state(void) {
702  // Nothing to do
703}
704
705int os::Linux::get_fpu_control_word() {
706  return 0;
707}
708
709void os::Linux::set_fpu_control_word(int fpu) {
710  // nothing
711}
712
713bool os::is_allocatable(size_t bytes) {
714#ifdef _LP64
715  return true;
716#else
717  if (bytes < 2 * G) {
718    return true;
719  }
720
721  char* addr = reserve_memory(bytes, NULL);
722
723  if (addr != NULL) {
724    release_memory(addr, bytes);
725  }
726
727  return addr != NULL;
728#endif // _LP64
729}
730
731///////////////////////////////////////////////////////////////////////////////
732// thread stack
733
734size_t os::Linux::min_stack_allowed  = 128 * K;
735
736// pthread on Ubuntu is always in floating stack mode
737bool os::Linux::supports_variable_stack_size() {  return true; }
738
739// return default stack size for thr_type
740size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
741  // default stack size (compiler thread needs larger stack)
742  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
743  return s;
744}
745
746size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
747  // Creating guard page is very expensive. Java thread has HotSpot
748  // guard page, only enable glibc guard page for non-Java threads.
749  return (thr_type == java_thread ? 0 : page_size());
750}
751
752#ifndef PRODUCT
753void os::verify_stack_alignment() {
754}
755#endif
756
757int os::extra_bang_size_in_bytes() {
758  // SPARC does not require the additional stack bang.
759  return 0;
760}
761