os_linux_aarch64.cpp revision 12469:c7a256349729
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26// no precompiled headers
27#include "asm/macroAssembler.hpp"
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "code/nativeInst.hpp"
35#include "interpreter/interpreter.hpp"
36#include "jvm_linux.h"
37#include "memory/allocation.inline.hpp"
38#include "os_share_linux.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/frame.inline.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/osThread.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/thread.inline.hpp"
53#include "runtime/timer.hpp"
54#include "utilities/events.hpp"
55#include "utilities/vmError.hpp"
56#ifdef BUILTIN_SIM
57#include "../../../../../../simulator/simulator.hpp"
58#endif
59
60// put OS-includes here
61# include <sys/types.h>
62# include <sys/mman.h>
63# include <pthread.h>
64# include <signal.h>
65# include <errno.h>
66# include <dlfcn.h>
67# include <stdlib.h>
68# include <stdio.h>
69# include <unistd.h>
70# include <sys/resource.h>
71# include <pthread.h>
72# include <sys/stat.h>
73# include <sys/time.h>
74# include <sys/utsname.h>
75# include <sys/socket.h>
76# include <sys/wait.h>
77# include <pwd.h>
78# include <poll.h>
79# include <ucontext.h>
80# include <fpu_control.h>
81
82#ifdef BUILTIN_SIM
83#define REG_SP REG_RSP
84#define REG_PC REG_RIP
85#define REG_FP REG_RBP
86#define SPELL_REG_SP "rsp"
87#define SPELL_REG_FP "rbp"
88#else
89#define REG_FP 29
90
91#define SPELL_REG_SP "sp"
92#define SPELL_REG_FP "x29"
93#endif
94
95address os::current_stack_pointer() {
96  register void *esp __asm__ (SPELL_REG_SP);
97  return (address) esp;
98}
99
100char* os::non_memory_address_word() {
101  // Must never look like an address returned by reserve_memory,
102  // even in its subfields (as defined by the CPU immediate fields,
103  // if the CPU splits constants across multiple instructions).
104
105  return (char*) 0xffffffffffff;
106}
107
108void os::initialize_thread(Thread *thr) {
109}
110
111address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
112#ifdef BUILTIN_SIM
113  return (address)uc->uc_mcontext.gregs[REG_PC];
114#else
115  return (address)uc->uc_mcontext.pc;
116#endif
117}
118
119void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
120#ifdef BUILTIN_SIM
121  uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
122#else
123  uc->uc_mcontext.pc = (intptr_t)pc;
124#endif
125}
126
127intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
128#ifdef BUILTIN_SIM
129  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
130#else
131  return (intptr_t*)uc->uc_mcontext.sp;
132#endif
133}
134
135intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
136#ifdef BUILTIN_SIM
137  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
138#else
139  return (intptr_t*)uc->uc_mcontext.regs[REG_FP];
140#endif
141}
142
143// For Forte Analyzer AsyncGetCallTrace profiling support - thread
144// is currently interrupted by SIGPROF.
145// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
146// frames. Currently we don't do that on Linux, so it's the same as
147// os::fetch_frame_from_context().
148ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
149  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
150
151  assert(thread != NULL, "just checking");
152  assert(ret_sp != NULL, "just checking");
153  assert(ret_fp != NULL, "just checking");
154
155  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
156}
157
158ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
159                    intptr_t** ret_sp, intptr_t** ret_fp) {
160
161  ExtendedPC  epc;
162  const ucontext_t* uc = (const ucontext_t*)ucVoid;
163
164  if (uc != NULL) {
165    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
166    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
167    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
168  } else {
169    // construct empty ExtendedPC for return value checking
170    epc = ExtendedPC(NULL);
171    if (ret_sp) *ret_sp = (intptr_t *)NULL;
172    if (ret_fp) *ret_fp = (intptr_t *)NULL;
173  }
174
175  return epc;
176}
177
178frame os::fetch_frame_from_context(const void* ucVoid) {
179  intptr_t* sp;
180  intptr_t* fp;
181  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
182  return frame(sp, fp, epc.pc());
183}
184
185// By default, gcc always saves frame pointer rfp on this stack. This
186// may get turned off by -fomit-frame-pointer.
187frame os::get_sender_for_C_frame(frame* fr) {
188#ifdef BUILTIN_SIM
189  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
190#else
191  return frame(fr->link(), fr->link(), fr->sender_pc());
192#endif
193}
194
195intptr_t* _get_previous_fp() {
196  register intptr_t **ebp __asm__ (SPELL_REG_FP);
197  return (intptr_t*) *ebp;   // we want what it points to.
198}
199
200
201frame os::current_frame() {
202  intptr_t* fp = _get_previous_fp();
203  frame myframe((intptr_t*)os::current_stack_pointer(),
204                (intptr_t*)fp,
205                CAST_FROM_FN_PTR(address, os::current_frame));
206  if (os::is_first_C_frame(&myframe)) {
207    // stack is not walkable
208    return frame();
209  } else {
210    return os::get_sender_for_C_frame(&myframe);
211  }
212}
213
214// Utility functions
215
216// From IA32 System Programming Guide
217enum {
218  trap_page_fault = 0xE
219};
220
221#ifdef BUILTIN_SIM
222extern "C" void Fetch32PFI () ;
223extern "C" void Fetch32Resume () ;
224extern "C" void FetchNPFI () ;
225extern "C" void FetchNResume () ;
226#endif
227
228extern "C" JNIEXPORT int
229JVM_handle_linux_signal(int sig,
230                        siginfo_t* info,
231                        void* ucVoid,
232                        int abort_if_unrecognized) {
233  ucontext_t* uc = (ucontext_t*) ucVoid;
234
235  Thread* t = Thread::current_or_null_safe();
236
237  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
238  // (no destructors can be run)
239  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
240
241  SignalHandlerMark shm(t);
242
243  // Note: it's not uncommon that JNI code uses signal/sigset to install
244  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
245  // or have a SIGILL handler when detecting CPU type). When that happens,
246  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
247  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
248  // that do not require siginfo/ucontext first.
249
250  if (sig == SIGPIPE || sig == SIGXFSZ) {
251    // allow chained handler to go first
252    if (os::Linux::chained_handler(sig, info, ucVoid)) {
253      return true;
254    } else {
255      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
256      return true;
257    }
258  }
259
260  JavaThread* thread = NULL;
261  VMThread* vmthread = NULL;
262  if (os::Linux::signal_handlers_are_installed) {
263    if (t != NULL ){
264      if(t->is_Java_thread()) {
265        thread = (JavaThread*)t;
266      }
267      else if(t->is_VM_thread()){
268        vmthread = (VMThread *)t;
269      }
270    }
271  }
272/*
273  NOTE: does not seem to work on linux.
274  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
275    // can't decode this kind of signal
276    info = NULL;
277  } else {
278    assert(sig == info->si_signo, "bad siginfo");
279  }
280*/
281  // decide if this trap can be handled by a stub
282  address stub = NULL;
283
284  address pc          = NULL;
285
286  //%note os_trap_1
287  if (info != NULL && uc != NULL && thread != NULL) {
288    pc = (address) os::Linux::ucontext_get_pc(uc);
289
290#ifdef BUILTIN_SIM
291    if (pc == (address) Fetch32PFI) {
292       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
293       return 1 ;
294    }
295    if (pc == (address) FetchNPFI) {
296       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
297       return 1 ;
298    }
299#else
300    if (StubRoutines::is_safefetch_fault(pc)) {
301      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
302      return 1;
303    }
304#endif
305
306    // Handle ALL stack overflow variations here
307    if (sig == SIGSEGV) {
308      address addr = (address) info->si_addr;
309
310      // check if fault address is within thread stack
311      if (thread->on_local_stack(addr)) {
312        // stack overflow
313        if (thread->in_stack_yellow_reserved_zone(addr)) {
314          thread->disable_stack_yellow_reserved_zone();
315          if (thread->thread_state() == _thread_in_Java) {
316            // Throw a stack overflow exception.  Guard pages will be reenabled
317            // while unwinding the stack.
318            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
319          } else {
320            // Thread was in the vm or native code.  Return and try to finish.
321            return 1;
322          }
323        } else if (thread->in_stack_red_zone(addr)) {
324          // Fatal red zone violation.  Disable the guard pages and fall through
325          // to handle_unexpected_exception way down below.
326          thread->disable_stack_red_zone();
327          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
328
329          // This is a likely cause, but hard to verify. Let's just print
330          // it as a hint.
331          tty->print_raw_cr("Please check if any of your loaded .so files has "
332                            "enabled executable stack (see man page execstack(8))");
333        } else {
334          // Accessing stack address below sp may cause SEGV if current
335          // thread has MAP_GROWSDOWN stack. This should only happen when
336          // current thread was created by user code with MAP_GROWSDOWN flag
337          // and then attached to VM. See notes in os_linux.cpp.
338          if (thread->osthread()->expanding_stack() == 0) {
339             thread->osthread()->set_expanding_stack();
340             if (os::Linux::manually_expand_stack(thread, addr)) {
341               thread->osthread()->clear_expanding_stack();
342               return 1;
343             }
344             thread->osthread()->clear_expanding_stack();
345          } else {
346             fatal("recursive segv. expanding stack.");
347          }
348        }
349      }
350    }
351
352    if (thread->thread_state() == _thread_in_Java) {
353      // Java thread running in Java code => find exception handler if any
354      // a fault inside compiled code, the interpreter, or a stub
355
356      // Handle signal from NativeJump::patch_verified_entry().
357      if ((sig == SIGILL || sig == SIGTRAP)
358          && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant()) {
359        if (TraceTraps) {
360          tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
361        }
362        stub = SharedRuntime::get_handle_wrong_method_stub();
363      } else if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
364        stub = SharedRuntime::get_poll_stub(pc);
365      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
366        // BugId 4454115: A read from a MappedByteBuffer can fault
367        // here if the underlying file has been truncated.
368        // Do not crash the VM in such a case.
369        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
370        CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
371        if (nm != NULL && nm->has_unsafe_access()) {
372          address next_pc = pc + NativeCall::instruction_size;
373          stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
374        }
375      }
376      else
377
378      if (sig == SIGFPE  &&
379          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
380        stub =
381          SharedRuntime::
382          continuation_for_implicit_exception(thread,
383                                              pc,
384                                              SharedRuntime::
385                                              IMPLICIT_DIVIDE_BY_ZERO);
386      } else if (sig == SIGSEGV &&
387               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
388          // Determination of interpreter/vtable stub/compiled code null exception
389          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
390      }
391    } else if (thread->thread_state() == _thread_in_vm &&
392               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
393               thread->doing_unsafe_access()) {
394      address next_pc = pc + NativeCall::instruction_size;
395      stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
396    }
397
398    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
399    // and the heap gets shrunk before the field access.
400    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
401      address addr = JNI_FastGetField::find_slowcase_pc(pc);
402      if (addr != (address)-1) {
403        stub = addr;
404      }
405    }
406
407    // Check to see if we caught the safepoint code in the
408    // process of write protecting the memory serialization page.
409    // It write enables the page immediately after protecting it
410    // so we can just return to retry the write.
411    if ((sig == SIGSEGV) &&
412        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
413      // Block current thread until the memory serialize page permission restored.
414      os::block_on_serialize_page_trap();
415      return true;
416    }
417  }
418
419  if (stub != NULL) {
420    // save all thread context in case we need to restore it
421    if (thread != NULL) thread->set_saved_exception_pc(pc);
422
423    os::Linux::ucontext_set_pc(uc, stub);
424    return true;
425  }
426
427  // signal-chaining
428  if (os::Linux::chained_handler(sig, info, ucVoid)) {
429     return true;
430  }
431
432  if (!abort_if_unrecognized) {
433    // caller wants another chance, so give it to him
434    return false;
435  }
436
437  if (pc == NULL && uc != NULL) {
438    pc = os::Linux::ucontext_get_pc(uc);
439  }
440
441  // unmask current signal
442  sigset_t newset;
443  sigemptyset(&newset);
444  sigaddset(&newset, sig);
445  sigprocmask(SIG_UNBLOCK, &newset, NULL);
446
447  VMError::report_and_die(t, sig, pc, info, ucVoid);
448
449  ShouldNotReachHere();
450  return true; // Mute compiler
451}
452
453void os::Linux::init_thread_fpu_state(void) {
454}
455
456int os::Linux::get_fpu_control_word(void) {
457  return 0;
458}
459
460void os::Linux::set_fpu_control_word(int fpu_control) {
461}
462
463// Check that the linux kernel version is 2.4 or higher since earlier
464// versions do not support SSE without patches.
465bool os::supports_sse() {
466  return true;
467}
468
469bool os::is_allocatable(size_t bytes) {
470  return true;
471}
472
473////////////////////////////////////////////////////////////////////////////////
474// thread stack
475
476// Minimum usable stack sizes required to get to user code. Space for
477// HotSpot guard pages is added later.
478size_t os::Posix::_compiler_thread_min_stack_allowed = 32 * K;
479size_t os::Posix::_java_thread_min_stack_allowed = 32 * K;
480size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
481
482// return default stack size for thr_type
483size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
484  // default stack size (compiler thread needs larger stack)
485  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
486  return s;
487}
488
489/////////////////////////////////////////////////////////////////////////////
490// helper functions for fatal error handler
491
492void os::print_context(outputStream *st, const void *context) {
493  if (context == NULL) return;
494
495  const ucontext_t *uc = (const ucontext_t*)context;
496  st->print_cr("Registers:");
497#ifdef BUILTIN_SIM
498  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
499  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
500  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
501  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
502  st->cr();
503  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
504  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
505  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
506  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
507  st->cr();
508  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
509  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
510  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
511  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
512  st->cr();
513  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
514  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
515  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
516  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
517  st->cr();
518  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
519  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
520  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
521  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
522  st->cr();
523  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
524  st->cr();
525#else
526  for (int r = 0; r < 31; r++)
527    st->print_cr(  "R%d=" INTPTR_FORMAT, r, (size_t)uc->uc_mcontext.regs[r]);
528#endif
529  st->cr();
530
531  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
532  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
533  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
534  st->cr();
535
536  // Note: it may be unsafe to inspect memory near pc. For example, pc may
537  // point to garbage if entry point in an nmethod is corrupted. Leave
538  // this at the end, and hope for the best.
539  address pc = os::Linux::ucontext_get_pc(uc);
540  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
541  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
542}
543
544void os::print_register_info(outputStream *st, const void *context) {
545  if (context == NULL) return;
546
547  const ucontext_t *uc = (const ucontext_t*)context;
548
549  st->print_cr("Register to memory mapping:");
550  st->cr();
551
552  // this is horrendously verbose but the layout of the registers in the
553  // context does not match how we defined our abstract Register set, so
554  // we can't just iterate through the gregs area
555
556  // this is only for the "general purpose" registers
557
558#ifdef BUILTIN_SIM
559  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
560  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
561  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
562  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
563  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
564  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
565  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
566  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
567  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
568  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
569  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
570  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
571  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
572  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
573  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
574  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
575#else
576  for (int r = 0; r < 31; r++)
577    st->print_cr(  "R%d=" INTPTR_FORMAT, r, (uintptr_t)uc->uc_mcontext.regs[r]);
578#endif
579  st->cr();
580}
581
582void os::setup_fpu() {
583}
584
585#ifndef PRODUCT
586void os::verify_stack_alignment() {
587  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
588}
589#endif
590
591int os::extra_bang_size_in_bytes() {
592  // AArch64 does not require the additional stack bang.
593  return 0;
594}
595
596extern "C" {
597  int SpinPause() {
598    return 0;
599  }
600
601  void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
602    if (from > to) {
603      jshort *end = from + count;
604      while (from < end)
605        *(to++) = *(from++);
606    }
607    else if (from < to) {
608      jshort *end = from;
609      from += count - 1;
610      to   += count - 1;
611      while (from >= end)
612        *(to--) = *(from--);
613    }
614  }
615  void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
616    if (from > to) {
617      jint *end = from + count;
618      while (from < end)
619        *(to++) = *(from++);
620    }
621    else if (from < to) {
622      jint *end = from;
623      from += count - 1;
624      to   += count - 1;
625      while (from >= end)
626        *(to--) = *(from--);
627    }
628  }
629  void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
630    if (from > to) {
631      jlong *end = from + count;
632      while (from < end)
633        os::atomic_copy64(from++, to++);
634    }
635    else if (from < to) {
636      jlong *end = from;
637      from += count - 1;
638      to   += count - 1;
639      while (from >= end)
640        os::atomic_copy64(from--, to--);
641    }
642  }
643
644  void _Copy_arrayof_conjoint_bytes(HeapWord* from,
645                                    HeapWord* to,
646                                    size_t    count) {
647    memmove(to, from, count);
648  }
649  void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
650                                      HeapWord* to,
651                                      size_t    count) {
652    memmove(to, from, count * 2);
653  }
654  void _Copy_arrayof_conjoint_jints(HeapWord* from,
655                                    HeapWord* to,
656                                    size_t    count) {
657    memmove(to, from, count * 4);
658  }
659  void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
660                                     HeapWord* to,
661                                     size_t    count) {
662    memmove(to, from, count * 8);
663  }
664};
665