os_bsd_x86.cpp revision 9867:3125c4a60cc9
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "mutex_bsd.inline.hpp"
37#include "os_share_bsd.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/thread.inline.hpp"
52#include "runtime/timer.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdlib.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <pthread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/utsname.h>
71# include <sys/socket.h>
72# include <sys/wait.h>
73# include <pwd.h>
74# include <poll.h>
75#ifndef __OpenBSD__
76# include <ucontext.h>
77#endif
78
79#if !defined(__APPLE__) && !defined(__NetBSD__)
80# include <pthread_np.h>
81#endif
82
83// needed by current_stack_region() workaround for Mavericks
84#if defined(__APPLE__)
85# include <errno.h>
86# include <sys/types.h>
87# include <sys/sysctl.h>
88# define DEFAULT_MAIN_THREAD_STACK_PAGES 2048
89# define OS_X_10_9_0_KERNEL_MAJOR_VERSION 13
90#endif
91
92#ifdef AMD64
93#define SPELL_REG_SP "rsp"
94#define SPELL_REG_FP "rbp"
95#else
96#define SPELL_REG_SP "esp"
97#define SPELL_REG_FP "ebp"
98#endif // AMD64
99
100#ifdef __FreeBSD__
101# define context_trapno uc_mcontext.mc_trapno
102# ifdef AMD64
103#  define context_pc uc_mcontext.mc_rip
104#  define context_sp uc_mcontext.mc_rsp
105#  define context_fp uc_mcontext.mc_rbp
106#  define context_rip uc_mcontext.mc_rip
107#  define context_rsp uc_mcontext.mc_rsp
108#  define context_rbp uc_mcontext.mc_rbp
109#  define context_rax uc_mcontext.mc_rax
110#  define context_rbx uc_mcontext.mc_rbx
111#  define context_rcx uc_mcontext.mc_rcx
112#  define context_rdx uc_mcontext.mc_rdx
113#  define context_rsi uc_mcontext.mc_rsi
114#  define context_rdi uc_mcontext.mc_rdi
115#  define context_r8  uc_mcontext.mc_r8
116#  define context_r9  uc_mcontext.mc_r9
117#  define context_r10 uc_mcontext.mc_r10
118#  define context_r11 uc_mcontext.mc_r11
119#  define context_r12 uc_mcontext.mc_r12
120#  define context_r13 uc_mcontext.mc_r13
121#  define context_r14 uc_mcontext.mc_r14
122#  define context_r15 uc_mcontext.mc_r15
123#  define context_flags uc_mcontext.mc_flags
124#  define context_err uc_mcontext.mc_err
125# else
126#  define context_pc uc_mcontext.mc_eip
127#  define context_sp uc_mcontext.mc_esp
128#  define context_fp uc_mcontext.mc_ebp
129#  define context_eip uc_mcontext.mc_eip
130#  define context_esp uc_mcontext.mc_esp
131#  define context_eax uc_mcontext.mc_eax
132#  define context_ebx uc_mcontext.mc_ebx
133#  define context_ecx uc_mcontext.mc_ecx
134#  define context_edx uc_mcontext.mc_edx
135#  define context_ebp uc_mcontext.mc_ebp
136#  define context_esi uc_mcontext.mc_esi
137#  define context_edi uc_mcontext.mc_edi
138#  define context_eflags uc_mcontext.mc_eflags
139#  define context_trapno uc_mcontext.mc_trapno
140# endif
141#endif
142
143#ifdef __APPLE__
144# if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
145  // 10.5 UNIX03 member name prefixes
146  #define DU3_PREFIX(s, m) __ ## s.__ ## m
147# else
148  #define DU3_PREFIX(s, m) s ## . ## m
149# endif
150
151# ifdef AMD64
152#  define context_pc context_rip
153#  define context_sp context_rsp
154#  define context_fp context_rbp
155#  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
156#  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
157#  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
158#  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
159#  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
160#  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
161#  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
162#  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
163#  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
164#  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
165#  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
166#  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
167#  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
168#  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
169#  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
170#  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
171#  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
172#  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
173#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
174#  define context_err uc_mcontext->DU3_PREFIX(es,err)
175# else
176#  define context_pc context_eip
177#  define context_sp context_esp
178#  define context_fp context_ebp
179#  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
180#  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
181#  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
182#  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
183#  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
184#  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
185#  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
186#  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
187#  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
188#  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
189#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
190# endif
191#endif
192
193#ifdef __OpenBSD__
194# define context_trapno sc_trapno
195# ifdef AMD64
196#  define context_pc sc_rip
197#  define context_sp sc_rsp
198#  define context_fp sc_rbp
199#  define context_rip sc_rip
200#  define context_rsp sc_rsp
201#  define context_rbp sc_rbp
202#  define context_rax sc_rax
203#  define context_rbx sc_rbx
204#  define context_rcx sc_rcx
205#  define context_rdx sc_rdx
206#  define context_rsi sc_rsi
207#  define context_rdi sc_rdi
208#  define context_r8  sc_r8
209#  define context_r9  sc_r9
210#  define context_r10 sc_r10
211#  define context_r11 sc_r11
212#  define context_r12 sc_r12
213#  define context_r13 sc_r13
214#  define context_r14 sc_r14
215#  define context_r15 sc_r15
216#  define context_flags sc_rflags
217#  define context_err sc_err
218# else
219#  define context_pc sc_eip
220#  define context_sp sc_esp
221#  define context_fp sc_ebp
222#  define context_eip sc_eip
223#  define context_esp sc_esp
224#  define context_eax sc_eax
225#  define context_ebx sc_ebx
226#  define context_ecx sc_ecx
227#  define context_edx sc_edx
228#  define context_ebp sc_ebp
229#  define context_esi sc_esi
230#  define context_edi sc_edi
231#  define context_eflags sc_eflags
232#  define context_trapno sc_trapno
233# endif
234#endif
235
236#ifdef __NetBSD__
237# define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
238# ifdef AMD64
239#  define __register_t __greg_t
240#  define context_pc uc_mcontext.__gregs[_REG_RIP]
241#  define context_sp uc_mcontext.__gregs[_REG_URSP]
242#  define context_fp uc_mcontext.__gregs[_REG_RBP]
243#  define context_rip uc_mcontext.__gregs[_REG_RIP]
244#  define context_rsp uc_mcontext.__gregs[_REG_URSP]
245#  define context_rax uc_mcontext.__gregs[_REG_RAX]
246#  define context_rbx uc_mcontext.__gregs[_REG_RBX]
247#  define context_rcx uc_mcontext.__gregs[_REG_RCX]
248#  define context_rdx uc_mcontext.__gregs[_REG_RDX]
249#  define context_rbp uc_mcontext.__gregs[_REG_RBP]
250#  define context_rsi uc_mcontext.__gregs[_REG_RSI]
251#  define context_rdi uc_mcontext.__gregs[_REG_RDI]
252#  define context_r8  uc_mcontext.__gregs[_REG_R8]
253#  define context_r9  uc_mcontext.__gregs[_REG_R9]
254#  define context_r10 uc_mcontext.__gregs[_REG_R10]
255#  define context_r11 uc_mcontext.__gregs[_REG_R11]
256#  define context_r12 uc_mcontext.__gregs[_REG_R12]
257#  define context_r13 uc_mcontext.__gregs[_REG_R13]
258#  define context_r14 uc_mcontext.__gregs[_REG_R14]
259#  define context_r15 uc_mcontext.__gregs[_REG_R15]
260#  define context_flags uc_mcontext.__gregs[_REG_RFL]
261#  define context_err uc_mcontext.__gregs[_REG_ERR]
262# else
263#  define context_pc uc_mcontext.__gregs[_REG_EIP]
264#  define context_sp uc_mcontext.__gregs[_REG_UESP]
265#  define context_fp uc_mcontext.__gregs[_REG_EBP]
266#  define context_eip uc_mcontext.__gregs[_REG_EIP]
267#  define context_esp uc_mcontext.__gregs[_REG_UESP]
268#  define context_eax uc_mcontext.__gregs[_REG_EAX]
269#  define context_ebx uc_mcontext.__gregs[_REG_EBX]
270#  define context_ecx uc_mcontext.__gregs[_REG_ECX]
271#  define context_edx uc_mcontext.__gregs[_REG_EDX]
272#  define context_ebp uc_mcontext.__gregs[_REG_EBP]
273#  define context_esi uc_mcontext.__gregs[_REG_ESI]
274#  define context_edi uc_mcontext.__gregs[_REG_EDI]
275#  define context_eflags uc_mcontext.__gregs[_REG_EFL]
276#  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
277# endif
278#endif
279
280address os::current_stack_pointer() {
281#if defined(__clang__) || defined(__llvm__)
282  register void *esp;
283  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
284  return (address) esp;
285#elif defined(SPARC_WORKS)
286  register void *esp;
287  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
288  return (address) ((char*)esp + sizeof(long)*2);
289#else
290  register void *esp __asm__ (SPELL_REG_SP);
291  return (address) esp;
292#endif
293}
294
295char* os::non_memory_address_word() {
296  // Must never look like an address returned by reserve_memory,
297  // even in its subfields (as defined by the CPU immediate fields,
298  // if the CPU splits constants across multiple instructions).
299
300  return (char*) -1;
301}
302
303void os::initialize_thread(Thread* thr) {
304// Nothing to do.
305}
306
307address os::Bsd::ucontext_get_pc(const ucontext_t * uc) {
308  return (address)uc->context_pc;
309}
310
311void os::Bsd::ucontext_set_pc(ucontext_t * uc, address pc) {
312  uc->context_pc = (intptr_t)pc ;
313}
314
315intptr_t* os::Bsd::ucontext_get_sp(const ucontext_t * uc) {
316  return (intptr_t*)uc->context_sp;
317}
318
319intptr_t* os::Bsd::ucontext_get_fp(const ucontext_t * uc) {
320  return (intptr_t*)uc->context_fp;
321}
322
323// For Forte Analyzer AsyncGetCallTrace profiling support - thread
324// is currently interrupted by SIGPROF.
325// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
326// frames. Currently we don't do that on Bsd, so it's the same as
327// os::fetch_frame_from_context().
328// This method is also used for stack overflow signal handling.
329ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
330  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
331
332  assert(thread != NULL, "just checking");
333  assert(ret_sp != NULL, "just checking");
334  assert(ret_fp != NULL, "just checking");
335
336  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
337}
338
339ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
340                    intptr_t** ret_sp, intptr_t** ret_fp) {
341
342  ExtendedPC  epc;
343  const ucontext_t* uc = (const ucontext_t*)ucVoid;
344
345  if (uc != NULL) {
346    epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
347    if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
348    if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
349  } else {
350    // construct empty ExtendedPC for return value checking
351    epc = ExtendedPC(NULL);
352    if (ret_sp) *ret_sp = (intptr_t *)NULL;
353    if (ret_fp) *ret_fp = (intptr_t *)NULL;
354  }
355
356  return epc;
357}
358
359frame os::fetch_frame_from_context(const void* ucVoid) {
360  intptr_t* sp;
361  intptr_t* fp;
362  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
363  return frame(sp, fp, epc.pc());
364}
365
366frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
367  intptr_t* sp;
368  intptr_t* fp;
369  ExtendedPC epc = os::Bsd::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
370  return frame(sp, fp, epc.pc());
371}
372
373bool os::Bsd::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
374  address pc = (address) os::Bsd::ucontext_get_pc(uc);
375  if (Interpreter::contains(pc)) {
376    // interpreter performs stack banging after the fixed frame header has
377    // been generated while the compilers perform it before. To maintain
378    // semantic consistency between interpreted and compiled frames, the
379    // method returns the Java sender of the current frame.
380    *fr = os::fetch_frame_from_ucontext(thread, uc);
381    if (!fr->is_first_java_frame()) {
382      assert(fr->safe_for_sender(thread), "Safety check");
383      *fr = fr->java_sender();
384    }
385  } else {
386    // more complex code with compiled code
387    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
388    CodeBlob* cb = CodeCache::find_blob(pc);
389    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
390      // Not sure where the pc points to, fallback to default
391      // stack overflow handling
392      return false;
393    } else {
394      *fr = os::fetch_frame_from_ucontext(thread, uc);
395      // in compiled code, the stack banging is performed just after the return pc
396      // has been pushed on the stack
397      *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
398      if (!fr->is_java_frame()) {
399        assert(fr->safe_for_sender(thread), "Safety check");
400        *fr = fr->java_sender();
401      }
402    }
403  }
404  assert(fr->is_java_frame(), "Safety check");
405  return true;
406}
407
408// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
409// turned off by -fomit-frame-pointer,
410frame os::get_sender_for_C_frame(frame* fr) {
411  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
412}
413
414intptr_t* _get_previous_fp() {
415#if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
416  register intptr_t **ebp;
417  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
418#else
419  register intptr_t **ebp __asm__ (SPELL_REG_FP);
420#endif
421  return (intptr_t*) *ebp;   // we want what it points to.
422}
423
424
425frame os::current_frame() {
426  intptr_t* fp = _get_previous_fp();
427  frame myframe((intptr_t*)os::current_stack_pointer(),
428                (intptr_t*)fp,
429                CAST_FROM_FN_PTR(address, os::current_frame));
430  if (os::is_first_C_frame(&myframe)) {
431    // stack is not walkable
432    return frame();
433  } else {
434    return os::get_sender_for_C_frame(&myframe);
435  }
436}
437
438// Utility functions
439
440// From IA32 System Programming Guide
441enum {
442  trap_page_fault = 0xE
443};
444
445extern "C" JNIEXPORT int
446JVM_handle_bsd_signal(int sig,
447                        siginfo_t* info,
448                        void* ucVoid,
449                        int abort_if_unrecognized) {
450  ucontext_t* uc = (ucontext_t*) ucVoid;
451
452  Thread* t = Thread::current_or_null_safe();
453
454  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
455  // (no destructors can be run)
456  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
457
458  SignalHandlerMark shm(t);
459
460  // Note: it's not uncommon that JNI code uses signal/sigset to install
461  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
462  // or have a SIGILL handler when detecting CPU type). When that happens,
463  // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
464  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
465  // that do not require siginfo/ucontext first.
466
467  if (sig == SIGPIPE || sig == SIGXFSZ) {
468    // allow chained handler to go first
469    if (os::Bsd::chained_handler(sig, info, ucVoid)) {
470      return true;
471    } else {
472      if (PrintMiscellaneous && (WizardMode || Verbose)) {
473        char buf[64];
474        warning("Ignoring %s - see bugs 4229104 or 646499219",
475                os::exception_name(sig, buf, sizeof(buf)));
476      }
477      return true;
478    }
479  }
480
481  JavaThread* thread = NULL;
482  VMThread* vmthread = NULL;
483  if (os::Bsd::signal_handlers_are_installed) {
484    if (t != NULL ){
485      if(t->is_Java_thread()) {
486        thread = (JavaThread*)t;
487      }
488      else if(t->is_VM_thread()){
489        vmthread = (VMThread *)t;
490      }
491    }
492  }
493/*
494  NOTE: does not seem to work on bsd.
495  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
496    // can't decode this kind of signal
497    info = NULL;
498  } else {
499    assert(sig == info->si_signo, "bad siginfo");
500  }
501*/
502  // decide if this trap can be handled by a stub
503  address stub = NULL;
504
505  address pc          = NULL;
506
507  //%note os_trap_1
508  if (info != NULL && uc != NULL && thread != NULL) {
509    pc = (address) os::Bsd::ucontext_get_pc(uc);
510
511    if (StubRoutines::is_safefetch_fault(pc)) {
512      os::Bsd::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
513      return 1;
514    }
515
516    // Handle ALL stack overflow variations here
517    if (sig == SIGSEGV || sig == SIGBUS) {
518      address addr = (address) info->si_addr;
519
520      // check if fault address is within thread stack
521      if (thread->on_local_stack(addr)) {
522        // stack overflow
523        if (thread->in_stack_yellow_reserved_zone(addr)) {
524          if (thread->thread_state() == _thread_in_Java) {
525            if (thread->in_stack_reserved_zone(addr)) {
526              frame fr;
527              if (os::Bsd::get_frame_at_stack_banging_point(thread, uc, &fr)) {
528                assert(fr.is_java_frame(), "Must be a Java frame");
529                frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
530                if (activation.sp() != NULL) {
531                  thread->disable_stack_reserved_zone();
532                  if (activation.is_interpreted_frame()) {
533                    thread->set_reserved_stack_activation((address)(
534                      activation.fp() + frame::interpreter_frame_initial_sp_offset));
535                  } else {
536                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
537                  }
538                  return 1;
539                }
540              }
541            }
542            // Throw a stack overflow exception.  Guard pages will be reenabled
543            // while unwinding the stack.
544            thread->disable_stack_yellow_reserved_zone();
545            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
546          } else {
547            // Thread was in the vm or native code.  Return and try to finish.
548            thread->disable_stack_yellow_reserved_zone();
549            return 1;
550          }
551        } else if (thread->in_stack_red_zone(addr)) {
552          // Fatal red zone violation.  Disable the guard pages and fall through
553          // to handle_unexpected_exception way down below.
554          thread->disable_stack_red_zone();
555          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
556        }
557      }
558    }
559
560    if ((sig == SIGSEGV || sig == SIGBUS) && VM_Version::is_cpuinfo_segv_addr(pc)) {
561      // Verify that OS save/restore AVX registers.
562      stub = VM_Version::cpuinfo_cont_addr();
563    }
564
565    // We test if stub is already set (by the stack overflow code
566    // above) so it is not overwritten by the code that follows. This
567    // check is not required on other platforms, because on other
568    // platforms we check for SIGSEGV only or SIGBUS only, where here
569    // we have to check for both SIGSEGV and SIGBUS.
570    if (thread->thread_state() == _thread_in_Java && stub == NULL) {
571      // Java thread running in Java code => find exception handler if any
572      // a fault inside compiled code, the interpreter, or a stub
573
574      if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
575        stub = SharedRuntime::get_poll_stub(pc);
576#if defined(__APPLE__)
577      // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
578      // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
579      // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
580      // being called, so only do so if the implicit NULL check is not necessary.
581      } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
582#else
583      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
584#endif
585        // BugId 4454115: A read from a MappedByteBuffer can fault
586        // here if the underlying file has been truncated.
587        // Do not crash the VM in such a case.
588        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
589        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
590        if (nm != NULL && nm->has_unsafe_access()) {
591          stub = StubRoutines::handler_for_unsafe_access();
592        }
593      }
594      else
595
596#ifdef AMD64
597      if (sig == SIGFPE  &&
598          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
599        stub =
600          SharedRuntime::
601          continuation_for_implicit_exception(thread,
602                                              pc,
603                                              SharedRuntime::
604                                              IMPLICIT_DIVIDE_BY_ZERO);
605#ifdef __APPLE__
606      } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
607        int op = pc[0];
608
609        // Skip REX
610        if ((pc[0] & 0xf0) == 0x40) {
611          op = pc[1];
612        } else {
613          op = pc[0];
614        }
615
616        // Check for IDIV
617        if (op == 0xF7) {
618          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
619        } else {
620          // TODO: handle more cases if we are using other x86 instructions
621          //   that can generate SIGFPE signal.
622          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
623          fatal("please update this code.");
624        }
625#endif /* __APPLE__ */
626
627#else
628      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
629        // HACK: si_code does not work on bsd 2.2.12-20!!!
630        int op = pc[0];
631        if (op == 0xDB) {
632          // FIST
633          // TODO: The encoding of D2I in i486.ad can cause an exception
634          // prior to the fist instruction if there was an invalid operation
635          // pending. We want to dismiss that exception. From the win_32
636          // side it also seems that if it really was the fist causing
637          // the exception that we do the d2i by hand with different
638          // rounding. Seems kind of weird.
639          // NOTE: that we take the exception at the NEXT floating point instruction.
640          assert(pc[0] == 0xDB, "not a FIST opcode");
641          assert(pc[1] == 0x14, "not a FIST opcode");
642          assert(pc[2] == 0x24, "not a FIST opcode");
643          return true;
644        } else if (op == 0xF7) {
645          // IDIV
646          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
647        } else {
648          // TODO: handle more cases if we are using other x86 instructions
649          //   that can generate SIGFPE signal on bsd.
650          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
651          fatal("please update this code.");
652        }
653#endif // AMD64
654      } else if ((sig == SIGSEGV || sig == SIGBUS) &&
655               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
656          // Determination of interpreter/vtable stub/compiled code null exception
657          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
658      }
659    } else if (thread->thread_state() == _thread_in_vm &&
660               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
661               thread->doing_unsafe_access()) {
662        stub = StubRoutines::handler_for_unsafe_access();
663    }
664
665    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
666    // and the heap gets shrunk before the field access.
667    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
668      address addr = JNI_FastGetField::find_slowcase_pc(pc);
669      if (addr != (address)-1) {
670        stub = addr;
671      }
672    }
673
674    // Check to see if we caught the safepoint code in the
675    // process of write protecting the memory serialization page.
676    // It write enables the page immediately after protecting it
677    // so we can just return to retry the write.
678    if ((sig == SIGSEGV || sig == SIGBUS) &&
679        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
680      // Block current thread until the memory serialize page permission restored.
681      os::block_on_serialize_page_trap();
682      return true;
683    }
684  }
685
686#ifndef AMD64
687  // Execution protection violation
688  //
689  // This should be kept as the last step in the triage.  We don't
690  // have a dedicated trap number for a no-execute fault, so be
691  // conservative and allow other handlers the first shot.
692  //
693  // Note: We don't test that info->si_code == SEGV_ACCERR here.
694  // this si_code is so generic that it is almost meaningless; and
695  // the si_code for this condition may change in the future.
696  // Furthermore, a false-positive should be harmless.
697  if (UnguardOnExecutionViolation > 0 &&
698      (sig == SIGSEGV || sig == SIGBUS) &&
699      uc->context_trapno == trap_page_fault) {
700    int page_size = os::vm_page_size();
701    address addr = (address) info->si_addr;
702    address pc = os::Bsd::ucontext_get_pc(uc);
703    // Make sure the pc and the faulting address are sane.
704    //
705    // If an instruction spans a page boundary, and the page containing
706    // the beginning of the instruction is executable but the following
707    // page is not, the pc and the faulting address might be slightly
708    // different - we still want to unguard the 2nd page in this case.
709    //
710    // 15 bytes seems to be a (very) safe value for max instruction size.
711    bool pc_is_near_addr =
712      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
713    bool instr_spans_page_boundary =
714      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
715                       (intptr_t) page_size) > 0);
716
717    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
718      static volatile address last_addr =
719        (address) os::non_memory_address_word();
720
721      // In conservative mode, don't unguard unless the address is in the VM
722      if (addr != last_addr &&
723          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
724
725        // Set memory to RWX and retry
726        address page_start =
727          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
728        bool res = os::protect_memory((char*) page_start, page_size,
729                                      os::MEM_PROT_RWX);
730
731        if (PrintMiscellaneous && Verbose) {
732          char buf[256];
733          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
734                       "at " INTPTR_FORMAT
735                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
736                       page_start, (res ? "success" : "failed"), errno);
737          tty->print_raw_cr(buf);
738        }
739        stub = pc;
740
741        // Set last_addr so if we fault again at the same address, we don't end
742        // up in an endless loop.
743        //
744        // There are two potential complications here.  Two threads trapping at
745        // the same address at the same time could cause one of the threads to
746        // think it already unguarded, and abort the VM.  Likely very rare.
747        //
748        // The other race involves two threads alternately trapping at
749        // different addresses and failing to unguard the page, resulting in
750        // an endless loop.  This condition is probably even more unlikely than
751        // the first.
752        //
753        // Although both cases could be avoided by using locks or thread local
754        // last_addr, these solutions are unnecessary complication: this
755        // handler is a best-effort safety net, not a complete solution.  It is
756        // disabled by default and should only be used as a workaround in case
757        // we missed any no-execute-unsafe VM code.
758
759        last_addr = addr;
760      }
761    }
762  }
763#endif // !AMD64
764
765  if (stub != NULL) {
766    // save all thread context in case we need to restore it
767    if (thread != NULL) thread->set_saved_exception_pc(pc);
768
769    os::Bsd::ucontext_set_pc(uc, stub);
770    return true;
771  }
772
773  // signal-chaining
774  if (os::Bsd::chained_handler(sig, info, ucVoid)) {
775     return true;
776  }
777
778  if (!abort_if_unrecognized) {
779    // caller wants another chance, so give it to him
780    return false;
781  }
782
783  if (pc == NULL && uc != NULL) {
784    pc = os::Bsd::ucontext_get_pc(uc);
785  }
786
787  // unmask current signal
788  sigset_t newset;
789  sigemptyset(&newset);
790  sigaddset(&newset, sig);
791  sigprocmask(SIG_UNBLOCK, &newset, NULL);
792
793  VMError::report_and_die(t, sig, pc, info, ucVoid);
794
795  ShouldNotReachHere();
796  return false;
797}
798
799// From solaris_i486.s ported to bsd_i486.s
800extern "C" void fixcw();
801
802void os::Bsd::init_thread_fpu_state(void) {
803#ifndef AMD64
804  // Set fpu to 53 bit precision. This happens too early to use a stub.
805  fixcw();
806#endif // !AMD64
807}
808
809
810// Check that the bsd kernel version is 2.4 or higher since earlier
811// versions do not support SSE without patches.
812bool os::supports_sse() {
813  return true;
814}
815
816bool os::is_allocatable(size_t bytes) {
817#ifdef AMD64
818  // unused on amd64?
819  return true;
820#else
821
822  if (bytes < 2 * G) {
823    return true;
824  }
825
826  char* addr = reserve_memory(bytes, NULL);
827
828  if (addr != NULL) {
829    release_memory(addr, bytes);
830  }
831
832  return addr != NULL;
833#endif // AMD64
834}
835
836////////////////////////////////////////////////////////////////////////////////
837// thread stack
838
839#ifdef AMD64
840size_t os::Bsd::min_stack_allowed  = 64 * K;
841#else
842size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
843
844#ifdef __GNUC__
845#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
846#endif
847
848#endif // AMD64
849
850// return default stack size for thr_type
851size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
852  // default stack size (compiler thread needs larger stack)
853#ifdef AMD64
854  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
855#else
856  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
857#endif // AMD64
858  return s;
859}
860
861size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
862  // Creating guard page is very expensive. Java thread has HotSpot
863  // guard page, only enable glibc guard page for non-Java threads.
864  return (thr_type == java_thread ? 0 : page_size());
865}
866
867// Java thread:
868//
869//   Low memory addresses
870//    +------------------------+
871//    |                        |\  JavaThread created by VM does not have glibc
872//    |    glibc guard page    | - guard, attached Java thread usually has
873//    |                        |/  1 page glibc guard.
874// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
875//    |                        |\
876//    |  HotSpot Guard Pages   | - red and yellow pages
877//    |                        |/
878//    +------------------------+ JavaThread::stack_yellow_zone_base()
879//    |                        |\
880//    |      Normal Stack      | -
881//    |                        |/
882// P2 +------------------------+ Thread::stack_base()
883//
884// Non-Java thread:
885//
886//   Low memory addresses
887//    +------------------------+
888//    |                        |\
889//    |  glibc guard page      | - usually 1 page
890//    |                        |/
891// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
892//    |                        |\
893//    |      Normal Stack      | -
894//    |                        |/
895// P2 +------------------------+ Thread::stack_base()
896//
897// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
898//    pthread_attr_getstack()
899
900static void current_stack_region(address * bottom, size_t * size) {
901#ifdef __APPLE__
902  pthread_t self = pthread_self();
903  void *stacktop = pthread_get_stackaddr_np(self);
904  *size = pthread_get_stacksize_np(self);
905  // workaround for OS X 10.9.0 (Mavericks)
906  // pthread_get_stacksize_np returns 128 pages even though the actual size is 2048 pages
907  if (pthread_main_np() == 1) {
908    if ((*size) < (DEFAULT_MAIN_THREAD_STACK_PAGES * (size_t)getpagesize())) {
909      char kern_osrelease[256];
910      size_t kern_osrelease_size = sizeof(kern_osrelease);
911      int ret = sysctlbyname("kern.osrelease", kern_osrelease, &kern_osrelease_size, NULL, 0);
912      if (ret == 0) {
913        // get the major number, atoi will ignore the minor amd micro portions of the version string
914        if (atoi(kern_osrelease) >= OS_X_10_9_0_KERNEL_MAJOR_VERSION) {
915          *size = (DEFAULT_MAIN_THREAD_STACK_PAGES*getpagesize());
916        }
917      }
918    }
919  }
920  *bottom = (address) stacktop - *size;
921#elif defined(__OpenBSD__)
922  stack_t ss;
923  int rslt = pthread_stackseg_np(pthread_self(), &ss);
924
925  if (rslt != 0)
926    fatal("pthread_stackseg_np failed with err = %d", rslt);
927
928  *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
929  *size   = ss.ss_size;
930#else
931  pthread_attr_t attr;
932
933  int rslt = pthread_attr_init(&attr);
934
935  // JVM needs to know exact stack location, abort if it fails
936  if (rslt != 0)
937    fatal("pthread_attr_init failed with err = %d", rslt);
938
939  rslt = pthread_attr_get_np(pthread_self(), &attr);
940
941  if (rslt != 0)
942    fatal("pthread_attr_get_np failed with err = %d", rslt);
943
944  if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
945    pthread_attr_getstacksize(&attr, size) != 0) {
946    fatal("Can not locate current stack attributes!");
947  }
948
949  pthread_attr_destroy(&attr);
950#endif
951  assert(os::current_stack_pointer() >= *bottom &&
952         os::current_stack_pointer() < *bottom + *size, "just checking");
953}
954
955address os::current_stack_base() {
956  address bottom;
957  size_t size;
958  current_stack_region(&bottom, &size);
959  return (bottom + size);
960}
961
962size_t os::current_stack_size() {
963  // stack size includes normal stack and HotSpot guard pages
964  address bottom;
965  size_t size;
966  current_stack_region(&bottom, &size);
967  return size;
968}
969
970/////////////////////////////////////////////////////////////////////////////
971// helper functions for fatal error handler
972
973void os::print_context(outputStream *st, const void *context) {
974  if (context == NULL) return;
975
976  const ucontext_t *uc = (const ucontext_t*)context;
977  st->print_cr("Registers:");
978#ifdef AMD64
979  st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
980  st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
981  st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
982  st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
983  st->cr();
984  st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
985  st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
986  st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
987  st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
988  st->cr();
989  st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
990  st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
991  st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
992  st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
993  st->cr();
994  st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
995  st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
996  st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
997  st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
998  st->cr();
999  st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
1000  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
1001  st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
1002  st->cr();
1003  st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
1004#else
1005  st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
1006  st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
1007  st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
1008  st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
1009  st->cr();
1010  st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
1011  st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
1012  st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
1013  st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
1014  st->cr();
1015  st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
1016  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
1017#endif // AMD64
1018  st->cr();
1019  st->cr();
1020
1021  intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
1022  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
1023  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
1024  st->cr();
1025
1026  // Note: it may be unsafe to inspect memory near pc. For example, pc may
1027  // point to garbage if entry point in an nmethod is corrupted. Leave
1028  // this at the end, and hope for the best.
1029  address pc = os::Bsd::ucontext_get_pc(uc);
1030  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
1031  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
1032}
1033
1034void os::print_register_info(outputStream *st, const void *context) {
1035  if (context == NULL) return;
1036
1037  const ucontext_t *uc = (const ucontext_t*)context;
1038
1039  st->print_cr("Register to memory mapping:");
1040  st->cr();
1041
1042  // this is horrendously verbose but the layout of the registers in the
1043  // context does not match how we defined our abstract Register set, so
1044  // we can't just iterate through the gregs area
1045
1046  // this is only for the "general purpose" registers
1047
1048#ifdef AMD64
1049  st->print("RAX="); print_location(st, uc->context_rax);
1050  st->print("RBX="); print_location(st, uc->context_rbx);
1051  st->print("RCX="); print_location(st, uc->context_rcx);
1052  st->print("RDX="); print_location(st, uc->context_rdx);
1053  st->print("RSP="); print_location(st, uc->context_rsp);
1054  st->print("RBP="); print_location(st, uc->context_rbp);
1055  st->print("RSI="); print_location(st, uc->context_rsi);
1056  st->print("RDI="); print_location(st, uc->context_rdi);
1057  st->print("R8 ="); print_location(st, uc->context_r8);
1058  st->print("R9 ="); print_location(st, uc->context_r9);
1059  st->print("R10="); print_location(st, uc->context_r10);
1060  st->print("R11="); print_location(st, uc->context_r11);
1061  st->print("R12="); print_location(st, uc->context_r12);
1062  st->print("R13="); print_location(st, uc->context_r13);
1063  st->print("R14="); print_location(st, uc->context_r14);
1064  st->print("R15="); print_location(st, uc->context_r15);
1065#else
1066  st->print("EAX="); print_location(st, uc->context_eax);
1067  st->print("EBX="); print_location(st, uc->context_ebx);
1068  st->print("ECX="); print_location(st, uc->context_ecx);
1069  st->print("EDX="); print_location(st, uc->context_edx);
1070  st->print("ESP="); print_location(st, uc->context_esp);
1071  st->print("EBP="); print_location(st, uc->context_ebp);
1072  st->print("ESI="); print_location(st, uc->context_esi);
1073  st->print("EDI="); print_location(st, uc->context_edi);
1074#endif // AMD64
1075
1076  st->cr();
1077}
1078
1079void os::setup_fpu() {
1080#ifndef AMD64
1081  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
1082  __asm__ volatile (  "fldcw (%0)" :
1083                      : "r" (fpu_cntrl) : "memory");
1084#endif // !AMD64
1085}
1086
1087#ifndef PRODUCT
1088void os::verify_stack_alignment() {
1089}
1090#endif
1091
1092int os::extra_bang_size_in_bytes() {
1093  // JDK-8050147 requires the full cache line bang for x86.
1094  return VM_Version::L1_line_size();
1095}
1096