os_bsd_x86.cpp revision 6412:53a41e7cbe05
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_bsd.inline.hpp"
36#include "os_share_bsd.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <errno.h>
61# include <dlfcn.h>
62# include <stdlib.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <pthread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/utsname.h>
70# include <sys/socket.h>
71# include <sys/wait.h>
72# include <pwd.h>
73# include <poll.h>
74#ifndef __OpenBSD__
75# include <ucontext.h>
76#endif
77
78#if !defined(__APPLE__) && !defined(__NetBSD__)
79# include <pthread_np.h>
80#endif
81
82// needed by current_stack_region() workaround for Mavericks
83#if defined(__APPLE__)
84# include <errno.h>
85# include <sys/types.h>
86# include <sys/sysctl.h>
87# define DEFAULT_MAIN_THREAD_STACK_PAGES 2048
88# define OS_X_10_9_0_KERNEL_MAJOR_VERSION 13
89#endif
90
91#ifdef AMD64
92#define SPELL_REG_SP "rsp"
93#define SPELL_REG_FP "rbp"
94#else
95#define SPELL_REG_SP "esp"
96#define SPELL_REG_FP "ebp"
97#endif // AMD64
98
99#ifdef __FreeBSD__
100# define context_trapno uc_mcontext.mc_trapno
101# ifdef AMD64
102#  define context_pc uc_mcontext.mc_rip
103#  define context_sp uc_mcontext.mc_rsp
104#  define context_fp uc_mcontext.mc_rbp
105#  define context_rip uc_mcontext.mc_rip
106#  define context_rsp uc_mcontext.mc_rsp
107#  define context_rbp uc_mcontext.mc_rbp
108#  define context_rax uc_mcontext.mc_rax
109#  define context_rbx uc_mcontext.mc_rbx
110#  define context_rcx uc_mcontext.mc_rcx
111#  define context_rdx uc_mcontext.mc_rdx
112#  define context_rsi uc_mcontext.mc_rsi
113#  define context_rdi uc_mcontext.mc_rdi
114#  define context_r8  uc_mcontext.mc_r8
115#  define context_r9  uc_mcontext.mc_r9
116#  define context_r10 uc_mcontext.mc_r10
117#  define context_r11 uc_mcontext.mc_r11
118#  define context_r12 uc_mcontext.mc_r12
119#  define context_r13 uc_mcontext.mc_r13
120#  define context_r14 uc_mcontext.mc_r14
121#  define context_r15 uc_mcontext.mc_r15
122#  define context_flags uc_mcontext.mc_flags
123#  define context_err uc_mcontext.mc_err
124# else
125#  define context_pc uc_mcontext.mc_eip
126#  define context_sp uc_mcontext.mc_esp
127#  define context_fp uc_mcontext.mc_ebp
128#  define context_eip uc_mcontext.mc_eip
129#  define context_esp uc_mcontext.mc_esp
130#  define context_eax uc_mcontext.mc_eax
131#  define context_ebx uc_mcontext.mc_ebx
132#  define context_ecx uc_mcontext.mc_ecx
133#  define context_edx uc_mcontext.mc_edx
134#  define context_ebp uc_mcontext.mc_ebp
135#  define context_esi uc_mcontext.mc_esi
136#  define context_edi uc_mcontext.mc_edi
137#  define context_eflags uc_mcontext.mc_eflags
138#  define context_trapno uc_mcontext.mc_trapno
139# endif
140#endif
141
142#ifdef __APPLE__
143# if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
144  // 10.5 UNIX03 member name prefixes
145  #define DU3_PREFIX(s, m) __ ## s.__ ## m
146# else
147  #define DU3_PREFIX(s, m) s ## . ## m
148# endif
149
150# ifdef AMD64
151#  define context_pc context_rip
152#  define context_sp context_rsp
153#  define context_fp context_rbp
154#  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
155#  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
156#  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
157#  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
158#  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
159#  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
160#  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
161#  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
162#  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
163#  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
164#  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
165#  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
166#  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
167#  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
168#  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
169#  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
170#  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
171#  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
172#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
173#  define context_err uc_mcontext->DU3_PREFIX(es,err)
174# else
175#  define context_pc context_eip
176#  define context_sp context_esp
177#  define context_fp context_ebp
178#  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
179#  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
180#  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
181#  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
182#  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
183#  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
184#  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
185#  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
186#  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
187#  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
188#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
189# endif
190#endif
191
192#ifdef __OpenBSD__
193# define context_trapno sc_trapno
194# ifdef AMD64
195#  define context_pc sc_rip
196#  define context_sp sc_rsp
197#  define context_fp sc_rbp
198#  define context_rip sc_rip
199#  define context_rsp sc_rsp
200#  define context_rbp sc_rbp
201#  define context_rax sc_rax
202#  define context_rbx sc_rbx
203#  define context_rcx sc_rcx
204#  define context_rdx sc_rdx
205#  define context_rsi sc_rsi
206#  define context_rdi sc_rdi
207#  define context_r8  sc_r8
208#  define context_r9  sc_r9
209#  define context_r10 sc_r10
210#  define context_r11 sc_r11
211#  define context_r12 sc_r12
212#  define context_r13 sc_r13
213#  define context_r14 sc_r14
214#  define context_r15 sc_r15
215#  define context_flags sc_rflags
216#  define context_err sc_err
217# else
218#  define context_pc sc_eip
219#  define context_sp sc_esp
220#  define context_fp sc_ebp
221#  define context_eip sc_eip
222#  define context_esp sc_esp
223#  define context_eax sc_eax
224#  define context_ebx sc_ebx
225#  define context_ecx sc_ecx
226#  define context_edx sc_edx
227#  define context_ebp sc_ebp
228#  define context_esi sc_esi
229#  define context_edi sc_edi
230#  define context_eflags sc_eflags
231#  define context_trapno sc_trapno
232# endif
233#endif
234
235#ifdef __NetBSD__
236# define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
237# ifdef AMD64
238#  define __register_t __greg_t
239#  define context_pc uc_mcontext.__gregs[_REG_RIP]
240#  define context_sp uc_mcontext.__gregs[_REG_URSP]
241#  define context_fp uc_mcontext.__gregs[_REG_RBP]
242#  define context_rip uc_mcontext.__gregs[_REG_RIP]
243#  define context_rsp uc_mcontext.__gregs[_REG_URSP]
244#  define context_rax uc_mcontext.__gregs[_REG_RAX]
245#  define context_rbx uc_mcontext.__gregs[_REG_RBX]
246#  define context_rcx uc_mcontext.__gregs[_REG_RCX]
247#  define context_rdx uc_mcontext.__gregs[_REG_RDX]
248#  define context_rbp uc_mcontext.__gregs[_REG_RBP]
249#  define context_rsi uc_mcontext.__gregs[_REG_RSI]
250#  define context_rdi uc_mcontext.__gregs[_REG_RDI]
251#  define context_r8  uc_mcontext.__gregs[_REG_R8]
252#  define context_r9  uc_mcontext.__gregs[_REG_R9]
253#  define context_r10 uc_mcontext.__gregs[_REG_R10]
254#  define context_r11 uc_mcontext.__gregs[_REG_R11]
255#  define context_r12 uc_mcontext.__gregs[_REG_R12]
256#  define context_r13 uc_mcontext.__gregs[_REG_R13]
257#  define context_r14 uc_mcontext.__gregs[_REG_R14]
258#  define context_r15 uc_mcontext.__gregs[_REG_R15]
259#  define context_flags uc_mcontext.__gregs[_REG_RFL]
260#  define context_err uc_mcontext.__gregs[_REG_ERR]
261# else
262#  define context_pc uc_mcontext.__gregs[_REG_EIP]
263#  define context_sp uc_mcontext.__gregs[_REG_UESP]
264#  define context_fp uc_mcontext.__gregs[_REG_EBP]
265#  define context_eip uc_mcontext.__gregs[_REG_EIP]
266#  define context_esp uc_mcontext.__gregs[_REG_UESP]
267#  define context_eax uc_mcontext.__gregs[_REG_EAX]
268#  define context_ebx uc_mcontext.__gregs[_REG_EBX]
269#  define context_ecx uc_mcontext.__gregs[_REG_ECX]
270#  define context_edx uc_mcontext.__gregs[_REG_EDX]
271#  define context_ebp uc_mcontext.__gregs[_REG_EBP]
272#  define context_esi uc_mcontext.__gregs[_REG_ESI]
273#  define context_edi uc_mcontext.__gregs[_REG_EDI]
274#  define context_eflags uc_mcontext.__gregs[_REG_EFL]
275#  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
276# endif
277#endif
278
279PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
280
281address os::current_stack_pointer() {
282#if defined(__clang__) || defined(__llvm__)
283  register void *esp;
284  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
285  return (address) esp;
286#elif defined(SPARC_WORKS)
287  register void *esp;
288  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
289  return (address) ((char*)esp + sizeof(long)*2);
290#else
291  register void *esp __asm__ (SPELL_REG_SP);
292  return (address) esp;
293#endif
294}
295
296char* os::non_memory_address_word() {
297  // Must never look like an address returned by reserve_memory,
298  // even in its subfields (as defined by the CPU immediate fields,
299  // if the CPU splits constants across multiple instructions).
300
301  return (char*) -1;
302}
303
304void os::initialize_thread(Thread* thr) {
305// Nothing to do.
306}
307
308address os::Bsd::ucontext_get_pc(ucontext_t * uc) {
309  return (address)uc->context_pc;
310}
311
312intptr_t* os::Bsd::ucontext_get_sp(ucontext_t * uc) {
313  return (intptr_t*)uc->context_sp;
314}
315
316intptr_t* os::Bsd::ucontext_get_fp(ucontext_t * uc) {
317  return (intptr_t*)uc->context_fp;
318}
319
320// For Forte Analyzer AsyncGetCallTrace profiling support - thread
321// is currently interrupted by SIGPROF.
322// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
323// frames. Currently we don't do that on Bsd, so it's the same as
324// os::fetch_frame_from_context().
325ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
326  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
327
328  assert(thread != NULL, "just checking");
329  assert(ret_sp != NULL, "just checking");
330  assert(ret_fp != NULL, "just checking");
331
332  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
333}
334
335ExtendedPC os::fetch_frame_from_context(void* ucVoid,
336                    intptr_t** ret_sp, intptr_t** ret_fp) {
337
338  ExtendedPC  epc;
339  ucontext_t* uc = (ucontext_t*)ucVoid;
340
341  if (uc != NULL) {
342    epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
343    if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
344    if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
345  } else {
346    // construct empty ExtendedPC for return value checking
347    epc = ExtendedPC(NULL);
348    if (ret_sp) *ret_sp = (intptr_t *)NULL;
349    if (ret_fp) *ret_fp = (intptr_t *)NULL;
350  }
351
352  return epc;
353}
354
355frame os::fetch_frame_from_context(void* ucVoid) {
356  intptr_t* sp;
357  intptr_t* fp;
358  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
359  return frame(sp, fp, epc.pc());
360}
361
362// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
363// turned off by -fomit-frame-pointer,
364frame os::get_sender_for_C_frame(frame* fr) {
365  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
366}
367
368intptr_t* _get_previous_fp() {
369#if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
370  register intptr_t **ebp;
371  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
372#else
373  register intptr_t **ebp __asm__ (SPELL_REG_FP);
374#endif
375  return (intptr_t*) *ebp;   // we want what it points to.
376}
377
378
379frame os::current_frame() {
380  intptr_t* fp = _get_previous_fp();
381  frame myframe((intptr_t*)os::current_stack_pointer(),
382                (intptr_t*)fp,
383                CAST_FROM_FN_PTR(address, os::current_frame));
384  if (os::is_first_C_frame(&myframe)) {
385    // stack is not walkable
386    return frame();
387  } else {
388    return os::get_sender_for_C_frame(&myframe);
389  }
390}
391
392// Utility functions
393
394// From IA32 System Programming Guide
395enum {
396  trap_page_fault = 0xE
397};
398
399extern "C" JNIEXPORT int
400JVM_handle_bsd_signal(int sig,
401                        siginfo_t* info,
402                        void* ucVoid,
403                        int abort_if_unrecognized) {
404  ucontext_t* uc = (ucontext_t*) ucVoid;
405
406  Thread* t = ThreadLocalStorage::get_thread_slow();
407
408  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
409  // (no destructors can be run)
410  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
411
412  SignalHandlerMark shm(t);
413
414  // Note: it's not uncommon that JNI code uses signal/sigset to install
415  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
416  // or have a SIGILL handler when detecting CPU type). When that happens,
417  // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
418  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
419  // that do not require siginfo/ucontext first.
420
421  if (sig == SIGPIPE || sig == SIGXFSZ) {
422    // allow chained handler to go first
423    if (os::Bsd::chained_handler(sig, info, ucVoid)) {
424      return true;
425    } else {
426      if (PrintMiscellaneous && (WizardMode || Verbose)) {
427        char buf[64];
428        warning("Ignoring %s - see bugs 4229104 or 646499219",
429                os::exception_name(sig, buf, sizeof(buf)));
430      }
431      return true;
432    }
433  }
434
435  JavaThread* thread = NULL;
436  VMThread* vmthread = NULL;
437  if (os::Bsd::signal_handlers_are_installed) {
438    if (t != NULL ){
439      if(t->is_Java_thread()) {
440        thread = (JavaThread*)t;
441      }
442      else if(t->is_VM_thread()){
443        vmthread = (VMThread *)t;
444      }
445    }
446  }
447/*
448  NOTE: does not seem to work on bsd.
449  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
450    // can't decode this kind of signal
451    info = NULL;
452  } else {
453    assert(sig == info->si_signo, "bad siginfo");
454  }
455*/
456  // decide if this trap can be handled by a stub
457  address stub = NULL;
458
459  address pc          = NULL;
460
461  //%note os_trap_1
462  if (info != NULL && uc != NULL && thread != NULL) {
463    pc = (address) os::Bsd::ucontext_get_pc(uc);
464
465    if (StubRoutines::is_safefetch_fault(pc)) {
466      uc->context_pc = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
467      return 1;
468    }
469
470    // Handle ALL stack overflow variations here
471    if (sig == SIGSEGV || sig == SIGBUS) {
472      address addr = (address) info->si_addr;
473
474      // check if fault address is within thread stack
475      if (addr < thread->stack_base() &&
476          addr >= thread->stack_base() - thread->stack_size()) {
477        // stack overflow
478        if (thread->in_stack_yellow_zone(addr)) {
479          thread->disable_stack_yellow_zone();
480          if (thread->thread_state() == _thread_in_Java) {
481            // Throw a stack overflow exception.  Guard pages will be reenabled
482            // while unwinding the stack.
483            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
484          } else {
485            // Thread was in the vm or native code.  Return and try to finish.
486            return 1;
487          }
488        } else if (thread->in_stack_red_zone(addr)) {
489          // Fatal red zone violation.  Disable the guard pages and fall through
490          // to handle_unexpected_exception way down below.
491          thread->disable_stack_red_zone();
492          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
493        }
494      }
495    }
496
497    if ((sig == SIGSEGV || sig == SIGBUS) && VM_Version::is_cpuinfo_segv_addr(pc)) {
498      // Verify that OS save/restore AVX registers.
499      stub = VM_Version::cpuinfo_cont_addr();
500    }
501
502    // We test if stub is already set (by the stack overflow code
503    // above) so it is not overwritten by the code that follows. This
504    // check is not required on other platforms, because on other
505    // platforms we check for SIGSEGV only or SIGBUS only, where here
506    // we have to check for both SIGSEGV and SIGBUS.
507    if (thread->thread_state() == _thread_in_Java && stub == NULL) {
508      // Java thread running in Java code => find exception handler if any
509      // a fault inside compiled code, the interpreter, or a stub
510
511      if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
512        stub = SharedRuntime::get_poll_stub(pc);
513#if defined(__APPLE__)
514      // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
515      // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
516      // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
517      // being called, so only do so if the implicit NULL check is not necessary.
518      } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
519#else
520      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
521#endif
522        // BugId 4454115: A read from a MappedByteBuffer can fault
523        // here if the underlying file has been truncated.
524        // Do not crash the VM in such a case.
525        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
526        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
527        if (nm != NULL && nm->has_unsafe_access()) {
528          stub = StubRoutines::handler_for_unsafe_access();
529        }
530      }
531      else
532
533#ifdef AMD64
534      if (sig == SIGFPE  &&
535          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
536        stub =
537          SharedRuntime::
538          continuation_for_implicit_exception(thread,
539                                              pc,
540                                              SharedRuntime::
541                                              IMPLICIT_DIVIDE_BY_ZERO);
542#ifdef __APPLE__
543      } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
544        int op = pc[0];
545
546        // Skip REX
547        if ((pc[0] & 0xf0) == 0x40) {
548          op = pc[1];
549        } else {
550          op = pc[0];
551        }
552
553        // Check for IDIV
554        if (op == 0xF7) {
555          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
556        } else {
557          // TODO: handle more cases if we are using other x86 instructions
558          //   that can generate SIGFPE signal.
559          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
560          fatal("please update this code.");
561        }
562#endif /* __APPLE__ */
563
564#else
565      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
566        // HACK: si_code does not work on bsd 2.2.12-20!!!
567        int op = pc[0];
568        if (op == 0xDB) {
569          // FIST
570          // TODO: The encoding of D2I in i486.ad can cause an exception
571          // prior to the fist instruction if there was an invalid operation
572          // pending. We want to dismiss that exception. From the win_32
573          // side it also seems that if it really was the fist causing
574          // the exception that we do the d2i by hand with different
575          // rounding. Seems kind of weird.
576          // NOTE: that we take the exception at the NEXT floating point instruction.
577          assert(pc[0] == 0xDB, "not a FIST opcode");
578          assert(pc[1] == 0x14, "not a FIST opcode");
579          assert(pc[2] == 0x24, "not a FIST opcode");
580          return true;
581        } else if (op == 0xF7) {
582          // IDIV
583          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
584        } else {
585          // TODO: handle more cases if we are using other x86 instructions
586          //   that can generate SIGFPE signal on bsd.
587          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
588          fatal("please update this code.");
589        }
590#endif // AMD64
591      } else if ((sig == SIGSEGV || sig == SIGBUS) &&
592               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
593          // Determination of interpreter/vtable stub/compiled code null exception
594          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
595      }
596    } else if (thread->thread_state() == _thread_in_vm &&
597               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
598               thread->doing_unsafe_access()) {
599        stub = StubRoutines::handler_for_unsafe_access();
600    }
601
602    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
603    // and the heap gets shrunk before the field access.
604    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
605      address addr = JNI_FastGetField::find_slowcase_pc(pc);
606      if (addr != (address)-1) {
607        stub = addr;
608      }
609    }
610
611    // Check to see if we caught the safepoint code in the
612    // process of write protecting the memory serialization page.
613    // It write enables the page immediately after protecting it
614    // so we can just return to retry the write.
615    if ((sig == SIGSEGV || sig == SIGBUS) &&
616        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
617      // Block current thread until the memory serialize page permission restored.
618      os::block_on_serialize_page_trap();
619      return true;
620    }
621  }
622
623#ifndef AMD64
624  // Execution protection violation
625  //
626  // This should be kept as the last step in the triage.  We don't
627  // have a dedicated trap number for a no-execute fault, so be
628  // conservative and allow other handlers the first shot.
629  //
630  // Note: We don't test that info->si_code == SEGV_ACCERR here.
631  // this si_code is so generic that it is almost meaningless; and
632  // the si_code for this condition may change in the future.
633  // Furthermore, a false-positive should be harmless.
634  if (UnguardOnExecutionViolation > 0 &&
635      (sig == SIGSEGV || sig == SIGBUS) &&
636      uc->context_trapno == trap_page_fault) {
637    int page_size = os::vm_page_size();
638    address addr = (address) info->si_addr;
639    address pc = os::Bsd::ucontext_get_pc(uc);
640    // Make sure the pc and the faulting address are sane.
641    //
642    // If an instruction spans a page boundary, and the page containing
643    // the beginning of the instruction is executable but the following
644    // page is not, the pc and the faulting address might be slightly
645    // different - we still want to unguard the 2nd page in this case.
646    //
647    // 15 bytes seems to be a (very) safe value for max instruction size.
648    bool pc_is_near_addr =
649      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
650    bool instr_spans_page_boundary =
651      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
652                       (intptr_t) page_size) > 0);
653
654    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
655      static volatile address last_addr =
656        (address) os::non_memory_address_word();
657
658      // In conservative mode, don't unguard unless the address is in the VM
659      if (addr != last_addr &&
660          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
661
662        // Set memory to RWX and retry
663        address page_start =
664          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
665        bool res = os::protect_memory((char*) page_start, page_size,
666                                      os::MEM_PROT_RWX);
667
668        if (PrintMiscellaneous && Verbose) {
669          char buf[256];
670          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
671                       "at " INTPTR_FORMAT
672                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
673                       page_start, (res ? "success" : "failed"), errno);
674          tty->print_raw_cr(buf);
675        }
676        stub = pc;
677
678        // Set last_addr so if we fault again at the same address, we don't end
679        // up in an endless loop.
680        //
681        // There are two potential complications here.  Two threads trapping at
682        // the same address at the same time could cause one of the threads to
683        // think it already unguarded, and abort the VM.  Likely very rare.
684        //
685        // The other race involves two threads alternately trapping at
686        // different addresses and failing to unguard the page, resulting in
687        // an endless loop.  This condition is probably even more unlikely than
688        // the first.
689        //
690        // Although both cases could be avoided by using locks or thread local
691        // last_addr, these solutions are unnecessary complication: this
692        // handler is a best-effort safety net, not a complete solution.  It is
693        // disabled by default and should only be used as a workaround in case
694        // we missed any no-execute-unsafe VM code.
695
696        last_addr = addr;
697      }
698    }
699  }
700#endif // !AMD64
701
702  if (stub != NULL) {
703    // save all thread context in case we need to restore it
704    if (thread != NULL) thread->set_saved_exception_pc(pc);
705
706    uc->context_pc = (intptr_t)stub;
707    return true;
708  }
709
710  // signal-chaining
711  if (os::Bsd::chained_handler(sig, info, ucVoid)) {
712     return true;
713  }
714
715  if (!abort_if_unrecognized) {
716    // caller wants another chance, so give it to him
717    return false;
718  }
719
720  if (pc == NULL && uc != NULL) {
721    pc = os::Bsd::ucontext_get_pc(uc);
722  }
723
724  // unmask current signal
725  sigset_t newset;
726  sigemptyset(&newset);
727  sigaddset(&newset, sig);
728  sigprocmask(SIG_UNBLOCK, &newset, NULL);
729
730  VMError err(t, sig, pc, info, ucVoid);
731  err.report_and_die();
732
733  ShouldNotReachHere();
734  return false;
735}
736
737// From solaris_i486.s ported to bsd_i486.s
738extern "C" void fixcw();
739
740void os::Bsd::init_thread_fpu_state(void) {
741#ifndef AMD64
742  // Set fpu to 53 bit precision. This happens too early to use a stub.
743  fixcw();
744#endif // !AMD64
745}
746
747
748// Check that the bsd kernel version is 2.4 or higher since earlier
749// versions do not support SSE without patches.
750bool os::supports_sse() {
751  return true;
752}
753
754bool os::is_allocatable(size_t bytes) {
755#ifdef AMD64
756  // unused on amd64?
757  return true;
758#else
759
760  if (bytes < 2 * G) {
761    return true;
762  }
763
764  char* addr = reserve_memory(bytes, NULL);
765
766  if (addr != NULL) {
767    release_memory(addr, bytes);
768  }
769
770  return addr != NULL;
771#endif // AMD64
772}
773
774////////////////////////////////////////////////////////////////////////////////
775// thread stack
776
777#ifdef AMD64
778size_t os::Bsd::min_stack_allowed  = 64 * K;
779
780// amd64: pthread on amd64 is always in floating stack mode
781bool os::Bsd::supports_variable_stack_size() {  return true; }
782#else
783size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
784
785#ifdef __GNUC__
786#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
787#endif
788
789bool os::Bsd::supports_variable_stack_size() { return true; }
790#endif // AMD64
791
792// return default stack size for thr_type
793size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
794  // default stack size (compiler thread needs larger stack)
795#ifdef AMD64
796  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
797#else
798  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
799#endif // AMD64
800  return s;
801}
802
803size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
804  // Creating guard page is very expensive. Java thread has HotSpot
805  // guard page, only enable glibc guard page for non-Java threads.
806  return (thr_type == java_thread ? 0 : page_size());
807}
808
809// Java thread:
810//
811//   Low memory addresses
812//    +------------------------+
813//    |                        |\  JavaThread created by VM does not have glibc
814//    |    glibc guard page    | - guard, attached Java thread usually has
815//    |                        |/  1 page glibc guard.
816// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
817//    |                        |\
818//    |  HotSpot Guard Pages   | - red and yellow pages
819//    |                        |/
820//    +------------------------+ JavaThread::stack_yellow_zone_base()
821//    |                        |\
822//    |      Normal Stack      | -
823//    |                        |/
824// P2 +------------------------+ Thread::stack_base()
825//
826// Non-Java thread:
827//
828//   Low memory addresses
829//    +------------------------+
830//    |                        |\
831//    |  glibc guard page      | - usually 1 page
832//    |                        |/
833// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
834//    |                        |\
835//    |      Normal Stack      | -
836//    |                        |/
837// P2 +------------------------+ Thread::stack_base()
838//
839// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
840//    pthread_attr_getstack()
841
842static void current_stack_region(address * bottom, size_t * size) {
843#ifdef __APPLE__
844  pthread_t self = pthread_self();
845  void *stacktop = pthread_get_stackaddr_np(self);
846  *size = pthread_get_stacksize_np(self);
847  // workaround for OS X 10.9.0 (Mavericks)
848  // pthread_get_stacksize_np returns 128 pages even though the actual size is 2048 pages
849  if (pthread_main_np() == 1) {
850    if ((*size) < (DEFAULT_MAIN_THREAD_STACK_PAGES * (size_t)getpagesize())) {
851      char kern_osrelease[256];
852      size_t kern_osrelease_size = sizeof(kern_osrelease);
853      int ret = sysctlbyname("kern.osrelease", kern_osrelease, &kern_osrelease_size, NULL, 0);
854      if (ret == 0) {
855        // get the major number, atoi will ignore the minor amd micro portions of the version string
856        if (atoi(kern_osrelease) >= OS_X_10_9_0_KERNEL_MAJOR_VERSION) {
857          *size = (DEFAULT_MAIN_THREAD_STACK_PAGES*getpagesize());
858        }
859      }
860    }
861  }
862  *bottom = (address) stacktop - *size;
863#elif defined(__OpenBSD__)
864  stack_t ss;
865  int rslt = pthread_stackseg_np(pthread_self(), &ss);
866
867  if (rslt != 0)
868    fatal(err_msg("pthread_stackseg_np failed with err = %d", rslt));
869
870  *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
871  *size   = ss.ss_size;
872#else
873  pthread_attr_t attr;
874
875  int rslt = pthread_attr_init(&attr);
876
877  // JVM needs to know exact stack location, abort if it fails
878  if (rslt != 0)
879    fatal(err_msg("pthread_attr_init failed with err = %d", rslt));
880
881  rslt = pthread_attr_get_np(pthread_self(), &attr);
882
883  if (rslt != 0)
884    fatal(err_msg("pthread_attr_get_np failed with err = %d", rslt));
885
886  if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
887    pthread_attr_getstacksize(&attr, size) != 0) {
888    fatal("Can not locate current stack attributes!");
889  }
890
891  pthread_attr_destroy(&attr);
892#endif
893  assert(os::current_stack_pointer() >= *bottom &&
894         os::current_stack_pointer() < *bottom + *size, "just checking");
895}
896
897address os::current_stack_base() {
898  address bottom;
899  size_t size;
900  current_stack_region(&bottom, &size);
901  return (bottom + size);
902}
903
904size_t os::current_stack_size() {
905  // stack size includes normal stack and HotSpot guard pages
906  address bottom;
907  size_t size;
908  current_stack_region(&bottom, &size);
909  return size;
910}
911
912/////////////////////////////////////////////////////////////////////////////
913// helper functions for fatal error handler
914
915void os::print_context(outputStream *st, void *context) {
916  if (context == NULL) return;
917
918  ucontext_t *uc = (ucontext_t*)context;
919  st->print_cr("Registers:");
920#ifdef AMD64
921  st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
922  st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
923  st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
924  st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
925  st->cr();
926  st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
927  st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
928  st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
929  st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
930  st->cr();
931  st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
932  st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
933  st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
934  st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
935  st->cr();
936  st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
937  st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
938  st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
939  st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
940  st->cr();
941  st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
942  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
943  st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
944  st->cr();
945  st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
946#else
947  st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
948  st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
949  st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
950  st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
951  st->cr();
952  st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
953  st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
954  st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
955  st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
956  st->cr();
957  st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
958  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
959#endif // AMD64
960  st->cr();
961  st->cr();
962
963  intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
964  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
965  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
966  st->cr();
967
968  // Note: it may be unsafe to inspect memory near pc. For example, pc may
969  // point to garbage if entry point in an nmethod is corrupted. Leave
970  // this at the end, and hope for the best.
971  address pc = os::Bsd::ucontext_get_pc(uc);
972  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
973  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
974}
975
976void os::print_register_info(outputStream *st, void *context) {
977  if (context == NULL) return;
978
979  ucontext_t *uc = (ucontext_t*)context;
980
981  st->print_cr("Register to memory mapping:");
982  st->cr();
983
984  // this is horrendously verbose but the layout of the registers in the
985  // context does not match how we defined our abstract Register set, so
986  // we can't just iterate through the gregs area
987
988  // this is only for the "general purpose" registers
989
990#ifdef AMD64
991  st->print("RAX="); print_location(st, uc->context_rax);
992  st->print("RBX="); print_location(st, uc->context_rbx);
993  st->print("RCX="); print_location(st, uc->context_rcx);
994  st->print("RDX="); print_location(st, uc->context_rdx);
995  st->print("RSP="); print_location(st, uc->context_rsp);
996  st->print("RBP="); print_location(st, uc->context_rbp);
997  st->print("RSI="); print_location(st, uc->context_rsi);
998  st->print("RDI="); print_location(st, uc->context_rdi);
999  st->print("R8 ="); print_location(st, uc->context_r8);
1000  st->print("R9 ="); print_location(st, uc->context_r9);
1001  st->print("R10="); print_location(st, uc->context_r10);
1002  st->print("R11="); print_location(st, uc->context_r11);
1003  st->print("R12="); print_location(st, uc->context_r12);
1004  st->print("R13="); print_location(st, uc->context_r13);
1005  st->print("R14="); print_location(st, uc->context_r14);
1006  st->print("R15="); print_location(st, uc->context_r15);
1007#else
1008  st->print("EAX="); print_location(st, uc->context_eax);
1009  st->print("EBX="); print_location(st, uc->context_ebx);
1010  st->print("ECX="); print_location(st, uc->context_ecx);
1011  st->print("EDX="); print_location(st, uc->context_edx);
1012  st->print("ESP="); print_location(st, uc->context_esp);
1013  st->print("EBP="); print_location(st, uc->context_ebp);
1014  st->print("ESI="); print_location(st, uc->context_esi);
1015  st->print("EDI="); print_location(st, uc->context_edi);
1016#endif // AMD64
1017
1018  st->cr();
1019}
1020
1021void os::setup_fpu() {
1022#ifndef AMD64
1023  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
1024  __asm__ volatile (  "fldcw (%0)" :
1025                      : "r" (fpu_cntrl) : "memory");
1026#endif // !AMD64
1027}
1028
1029#ifndef PRODUCT
1030void os::verify_stack_alignment() {
1031}
1032#endif
1033