os_bsd_x86.cpp revision 6178:8867fec28aa1
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_bsd.inline.hpp"
36#include "os_share_bsd.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <errno.h>
61# include <dlfcn.h>
62# include <stdlib.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <pthread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/utsname.h>
70# include <sys/socket.h>
71# include <sys/wait.h>
72# include <pwd.h>
73# include <poll.h>
74#ifndef __OpenBSD__
75# include <ucontext.h>
76#endif
77
78#if !defined(__APPLE__) && !defined(__NetBSD__)
79# include <pthread_np.h>
80#endif
81
82// needed by current_stack_region() workaround for Mavericks
83#if defined(__APPLE__)
84# include <errno.h>
85# include <sys/types.h>
86# include <sys/sysctl.h>
87# define DEFAULT_MAIN_THREAD_STACK_PAGES 2048
88# define OS_X_10_9_0_KERNEL_MAJOR_VERSION 13
89#endif
90
91#ifdef AMD64
92#define SPELL_REG_SP "rsp"
93#define SPELL_REG_FP "rbp"
94#else
95#define SPELL_REG_SP "esp"
96#define SPELL_REG_FP "ebp"
97#endif // AMD64
98
99#ifdef __FreeBSD__
100# define context_trapno uc_mcontext.mc_trapno
101# ifdef AMD64
102#  define context_pc uc_mcontext.mc_rip
103#  define context_sp uc_mcontext.mc_rsp
104#  define context_fp uc_mcontext.mc_rbp
105#  define context_rip uc_mcontext.mc_rip
106#  define context_rsp uc_mcontext.mc_rsp
107#  define context_rbp uc_mcontext.mc_rbp
108#  define context_rax uc_mcontext.mc_rax
109#  define context_rbx uc_mcontext.mc_rbx
110#  define context_rcx uc_mcontext.mc_rcx
111#  define context_rdx uc_mcontext.mc_rdx
112#  define context_rsi uc_mcontext.mc_rsi
113#  define context_rdi uc_mcontext.mc_rdi
114#  define context_r8  uc_mcontext.mc_r8
115#  define context_r9  uc_mcontext.mc_r9
116#  define context_r10 uc_mcontext.mc_r10
117#  define context_r11 uc_mcontext.mc_r11
118#  define context_r12 uc_mcontext.mc_r12
119#  define context_r13 uc_mcontext.mc_r13
120#  define context_r14 uc_mcontext.mc_r14
121#  define context_r15 uc_mcontext.mc_r15
122#  define context_flags uc_mcontext.mc_flags
123#  define context_err uc_mcontext.mc_err
124# else
125#  define context_pc uc_mcontext.mc_eip
126#  define context_sp uc_mcontext.mc_esp
127#  define context_fp uc_mcontext.mc_ebp
128#  define context_eip uc_mcontext.mc_eip
129#  define context_esp uc_mcontext.mc_esp
130#  define context_eax uc_mcontext.mc_eax
131#  define context_ebx uc_mcontext.mc_ebx
132#  define context_ecx uc_mcontext.mc_ecx
133#  define context_edx uc_mcontext.mc_edx
134#  define context_ebp uc_mcontext.mc_ebp
135#  define context_esi uc_mcontext.mc_esi
136#  define context_edi uc_mcontext.mc_edi
137#  define context_eflags uc_mcontext.mc_eflags
138#  define context_trapno uc_mcontext.mc_trapno
139# endif
140#endif
141
142#ifdef __APPLE__
143# if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
144  // 10.5 UNIX03 member name prefixes
145  #define DU3_PREFIX(s, m) __ ## s.__ ## m
146# else
147  #define DU3_PREFIX(s, m) s ## . ## m
148# endif
149
150# ifdef AMD64
151#  define context_pc context_rip
152#  define context_sp context_rsp
153#  define context_fp context_rbp
154#  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
155#  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
156#  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
157#  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
158#  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
159#  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
160#  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
161#  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
162#  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
163#  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
164#  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
165#  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
166#  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
167#  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
168#  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
169#  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
170#  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
171#  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
172#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
173#  define context_err uc_mcontext->DU3_PREFIX(es,err)
174# else
175#  define context_pc context_eip
176#  define context_sp context_esp
177#  define context_fp context_ebp
178#  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
179#  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
180#  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
181#  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
182#  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
183#  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
184#  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
185#  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
186#  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
187#  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
188#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
189# endif
190#endif
191
192#ifdef __OpenBSD__
193# define context_trapno sc_trapno
194# ifdef AMD64
195#  define context_pc sc_rip
196#  define context_sp sc_rsp
197#  define context_fp sc_rbp
198#  define context_rip sc_rip
199#  define context_rsp sc_rsp
200#  define context_rbp sc_rbp
201#  define context_rax sc_rax
202#  define context_rbx sc_rbx
203#  define context_rcx sc_rcx
204#  define context_rdx sc_rdx
205#  define context_rsi sc_rsi
206#  define context_rdi sc_rdi
207#  define context_r8  sc_r8
208#  define context_r9  sc_r9
209#  define context_r10 sc_r10
210#  define context_r11 sc_r11
211#  define context_r12 sc_r12
212#  define context_r13 sc_r13
213#  define context_r14 sc_r14
214#  define context_r15 sc_r15
215#  define context_flags sc_rflags
216#  define context_err sc_err
217# else
218#  define context_pc sc_eip
219#  define context_sp sc_esp
220#  define context_fp sc_ebp
221#  define context_eip sc_eip
222#  define context_esp sc_esp
223#  define context_eax sc_eax
224#  define context_ebx sc_ebx
225#  define context_ecx sc_ecx
226#  define context_edx sc_edx
227#  define context_ebp sc_ebp
228#  define context_esi sc_esi
229#  define context_edi sc_edi
230#  define context_eflags sc_eflags
231#  define context_trapno sc_trapno
232# endif
233#endif
234
235#ifdef __NetBSD__
236# define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
237# ifdef AMD64
238#  define __register_t __greg_t
239#  define context_pc uc_mcontext.__gregs[_REG_RIP]
240#  define context_sp uc_mcontext.__gregs[_REG_URSP]
241#  define context_fp uc_mcontext.__gregs[_REG_RBP]
242#  define context_rip uc_mcontext.__gregs[_REG_RIP]
243#  define context_rsp uc_mcontext.__gregs[_REG_URSP]
244#  define context_rax uc_mcontext.__gregs[_REG_RAX]
245#  define context_rbx uc_mcontext.__gregs[_REG_RBX]
246#  define context_rcx uc_mcontext.__gregs[_REG_RCX]
247#  define context_rdx uc_mcontext.__gregs[_REG_RDX]
248#  define context_rbp uc_mcontext.__gregs[_REG_RBP]
249#  define context_rsi uc_mcontext.__gregs[_REG_RSI]
250#  define context_rdi uc_mcontext.__gregs[_REG_RDI]
251#  define context_r8  uc_mcontext.__gregs[_REG_R8]
252#  define context_r9  uc_mcontext.__gregs[_REG_R9]
253#  define context_r10 uc_mcontext.__gregs[_REG_R10]
254#  define context_r11 uc_mcontext.__gregs[_REG_R11]
255#  define context_r12 uc_mcontext.__gregs[_REG_R12]
256#  define context_r13 uc_mcontext.__gregs[_REG_R13]
257#  define context_r14 uc_mcontext.__gregs[_REG_R14]
258#  define context_r15 uc_mcontext.__gregs[_REG_R15]
259#  define context_flags uc_mcontext.__gregs[_REG_RFL]
260#  define context_err uc_mcontext.__gregs[_REG_ERR]
261# else
262#  define context_pc uc_mcontext.__gregs[_REG_EIP]
263#  define context_sp uc_mcontext.__gregs[_REG_UESP]
264#  define context_fp uc_mcontext.__gregs[_REG_EBP]
265#  define context_eip uc_mcontext.__gregs[_REG_EIP]
266#  define context_esp uc_mcontext.__gregs[_REG_UESP]
267#  define context_eax uc_mcontext.__gregs[_REG_EAX]
268#  define context_ebx uc_mcontext.__gregs[_REG_EBX]
269#  define context_ecx uc_mcontext.__gregs[_REG_ECX]
270#  define context_edx uc_mcontext.__gregs[_REG_EDX]
271#  define context_ebp uc_mcontext.__gregs[_REG_EBP]
272#  define context_esi uc_mcontext.__gregs[_REG_ESI]
273#  define context_edi uc_mcontext.__gregs[_REG_EDI]
274#  define context_eflags uc_mcontext.__gregs[_REG_EFL]
275#  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
276# endif
277#endif
278
279address os::current_stack_pointer() {
280#if defined(__clang__) || defined(__llvm__)
281  register void *esp;
282  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
283  return (address) esp;
284#elif defined(SPARC_WORKS)
285  register void *esp;
286  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
287  return (address) ((char*)esp + sizeof(long)*2);
288#else
289  register void *esp __asm__ (SPELL_REG_SP);
290  return (address) esp;
291#endif
292}
293
294char* os::non_memory_address_word() {
295  // Must never look like an address returned by reserve_memory,
296  // even in its subfields (as defined by the CPU immediate fields,
297  // if the CPU splits constants across multiple instructions).
298
299  return (char*) -1;
300}
301
302void os::initialize_thread(Thread* thr) {
303// Nothing to do.
304}
305
306address os::Bsd::ucontext_get_pc(ucontext_t * uc) {
307  return (address)uc->context_pc;
308}
309
310intptr_t* os::Bsd::ucontext_get_sp(ucontext_t * uc) {
311  return (intptr_t*)uc->context_sp;
312}
313
314intptr_t* os::Bsd::ucontext_get_fp(ucontext_t * uc) {
315  return (intptr_t*)uc->context_fp;
316}
317
318// For Forte Analyzer AsyncGetCallTrace profiling support - thread
319// is currently interrupted by SIGPROF.
320// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
321// frames. Currently we don't do that on Bsd, so it's the same as
322// os::fetch_frame_from_context().
323ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
324  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
325
326  assert(thread != NULL, "just checking");
327  assert(ret_sp != NULL, "just checking");
328  assert(ret_fp != NULL, "just checking");
329
330  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
331}
332
333ExtendedPC os::fetch_frame_from_context(void* ucVoid,
334                    intptr_t** ret_sp, intptr_t** ret_fp) {
335
336  ExtendedPC  epc;
337  ucontext_t* uc = (ucontext_t*)ucVoid;
338
339  if (uc != NULL) {
340    epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
341    if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
342    if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
343  } else {
344    // construct empty ExtendedPC for return value checking
345    epc = ExtendedPC(NULL);
346    if (ret_sp) *ret_sp = (intptr_t *)NULL;
347    if (ret_fp) *ret_fp = (intptr_t *)NULL;
348  }
349
350  return epc;
351}
352
353frame os::fetch_frame_from_context(void* ucVoid) {
354  intptr_t* sp;
355  intptr_t* fp;
356  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
357  return frame(sp, fp, epc.pc());
358}
359
360// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
361// turned off by -fomit-frame-pointer,
362frame os::get_sender_for_C_frame(frame* fr) {
363  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
364}
365
366intptr_t* _get_previous_fp() {
367#if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
368  register intptr_t **ebp;
369  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
370#else
371  register intptr_t **ebp __asm__ (SPELL_REG_FP);
372#endif
373  return (intptr_t*) *ebp;   // we want what it points to.
374}
375
376
377frame os::current_frame() {
378  intptr_t* fp = _get_previous_fp();
379  frame myframe((intptr_t*)os::current_stack_pointer(),
380                (intptr_t*)fp,
381                CAST_FROM_FN_PTR(address, os::current_frame));
382  if (os::is_first_C_frame(&myframe)) {
383    // stack is not walkable
384    return frame();
385  } else {
386    return os::get_sender_for_C_frame(&myframe);
387  }
388}
389
390// Utility functions
391
392// From IA32 System Programming Guide
393enum {
394  trap_page_fault = 0xE
395};
396
397extern "C" JNIEXPORT int
398JVM_handle_bsd_signal(int sig,
399                        siginfo_t* info,
400                        void* ucVoid,
401                        int abort_if_unrecognized) {
402  ucontext_t* uc = (ucontext_t*) ucVoid;
403
404  Thread* t = ThreadLocalStorage::get_thread_slow();
405
406  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
407  // (no destructors can be run)
408  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
409
410  SignalHandlerMark shm(t);
411
412  // Note: it's not uncommon that JNI code uses signal/sigset to install
413  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
414  // or have a SIGILL handler when detecting CPU type). When that happens,
415  // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
416  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
417  // that do not require siginfo/ucontext first.
418
419  if (sig == SIGPIPE || sig == SIGXFSZ) {
420    // allow chained handler to go first
421    if (os::Bsd::chained_handler(sig, info, ucVoid)) {
422      return true;
423    } else {
424      if (PrintMiscellaneous && (WizardMode || Verbose)) {
425        char buf[64];
426        warning("Ignoring %s - see bugs 4229104 or 646499219",
427                os::exception_name(sig, buf, sizeof(buf)));
428      }
429      return true;
430    }
431  }
432
433  JavaThread* thread = NULL;
434  VMThread* vmthread = NULL;
435  if (os::Bsd::signal_handlers_are_installed) {
436    if (t != NULL ){
437      if(t->is_Java_thread()) {
438        thread = (JavaThread*)t;
439      }
440      else if(t->is_VM_thread()){
441        vmthread = (VMThread *)t;
442      }
443    }
444  }
445/*
446  NOTE: does not seem to work on bsd.
447  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
448    // can't decode this kind of signal
449    info = NULL;
450  } else {
451    assert(sig == info->si_signo, "bad siginfo");
452  }
453*/
454  // decide if this trap can be handled by a stub
455  address stub = NULL;
456
457  address pc          = NULL;
458
459  //%note os_trap_1
460  if (info != NULL && uc != NULL && thread != NULL) {
461    pc = (address) os::Bsd::ucontext_get_pc(uc);
462
463    if (StubRoutines::is_safefetch_fault(pc)) {
464      uc->context_pc = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
465      return 1;
466    }
467
468    // Handle ALL stack overflow variations here
469    if (sig == SIGSEGV || sig == SIGBUS) {
470      address addr = (address) info->si_addr;
471
472      // check if fault address is within thread stack
473      if (addr < thread->stack_base() &&
474          addr >= thread->stack_base() - thread->stack_size()) {
475        // stack overflow
476        if (thread->in_stack_yellow_zone(addr)) {
477          thread->disable_stack_yellow_zone();
478          if (thread->thread_state() == _thread_in_Java) {
479            // Throw a stack overflow exception.  Guard pages will be reenabled
480            // while unwinding the stack.
481            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
482          } else {
483            // Thread was in the vm or native code.  Return and try to finish.
484            return 1;
485          }
486        } else if (thread->in_stack_red_zone(addr)) {
487          // Fatal red zone violation.  Disable the guard pages and fall through
488          // to handle_unexpected_exception way down below.
489          thread->disable_stack_red_zone();
490          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
491        }
492      }
493    }
494
495    if ((sig == SIGSEGV || sig == SIGBUS) && VM_Version::is_cpuinfo_segv_addr(pc)) {
496      // Verify that OS save/restore AVX registers.
497      stub = VM_Version::cpuinfo_cont_addr();
498    }
499
500    // We test if stub is already set (by the stack overflow code
501    // above) so it is not overwritten by the code that follows. This
502    // check is not required on other platforms, because on other
503    // platforms we check for SIGSEGV only or SIGBUS only, where here
504    // we have to check for both SIGSEGV and SIGBUS.
505    if (thread->thread_state() == _thread_in_Java && stub == NULL) {
506      // Java thread running in Java code => find exception handler if any
507      // a fault inside compiled code, the interpreter, or a stub
508
509      if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
510        stub = SharedRuntime::get_poll_stub(pc);
511#if defined(__APPLE__)
512      // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
513      // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
514      // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
515      // being called, so only do so if the implicit NULL check is not necessary.
516      } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
517#else
518      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
519#endif
520        // BugId 4454115: A read from a MappedByteBuffer can fault
521        // here if the underlying file has been truncated.
522        // Do not crash the VM in such a case.
523        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
524        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
525        if (nm != NULL && nm->has_unsafe_access()) {
526          stub = StubRoutines::handler_for_unsafe_access();
527        }
528      }
529      else
530
531#ifdef AMD64
532      if (sig == SIGFPE  &&
533          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
534        stub =
535          SharedRuntime::
536          continuation_for_implicit_exception(thread,
537                                              pc,
538                                              SharedRuntime::
539                                              IMPLICIT_DIVIDE_BY_ZERO);
540#ifdef __APPLE__
541      } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
542        int op = pc[0];
543
544        // Skip REX
545        if ((pc[0] & 0xf0) == 0x40) {
546          op = pc[1];
547        } else {
548          op = pc[0];
549        }
550
551        // Check for IDIV
552        if (op == 0xF7) {
553          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
554        } else {
555          // TODO: handle more cases if we are using other x86 instructions
556          //   that can generate SIGFPE signal.
557          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
558          fatal("please update this code.");
559        }
560#endif /* __APPLE__ */
561
562#else
563      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
564        // HACK: si_code does not work on bsd 2.2.12-20!!!
565        int op = pc[0];
566        if (op == 0xDB) {
567          // FIST
568          // TODO: The encoding of D2I in i486.ad can cause an exception
569          // prior to the fist instruction if there was an invalid operation
570          // pending. We want to dismiss that exception. From the win_32
571          // side it also seems that if it really was the fist causing
572          // the exception that we do the d2i by hand with different
573          // rounding. Seems kind of weird.
574          // NOTE: that we take the exception at the NEXT floating point instruction.
575          assert(pc[0] == 0xDB, "not a FIST opcode");
576          assert(pc[1] == 0x14, "not a FIST opcode");
577          assert(pc[2] == 0x24, "not a FIST opcode");
578          return true;
579        } else if (op == 0xF7) {
580          // IDIV
581          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
582        } else {
583          // TODO: handle more cases if we are using other x86 instructions
584          //   that can generate SIGFPE signal on bsd.
585          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
586          fatal("please update this code.");
587        }
588#endif // AMD64
589      } else if ((sig == SIGSEGV || sig == SIGBUS) &&
590               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
591          // Determination of interpreter/vtable stub/compiled code null exception
592          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
593      }
594    } else if (thread->thread_state() == _thread_in_vm &&
595               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
596               thread->doing_unsafe_access()) {
597        stub = StubRoutines::handler_for_unsafe_access();
598    }
599
600    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
601    // and the heap gets shrunk before the field access.
602    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
603      address addr = JNI_FastGetField::find_slowcase_pc(pc);
604      if (addr != (address)-1) {
605        stub = addr;
606      }
607    }
608
609    // Check to see if we caught the safepoint code in the
610    // process of write protecting the memory serialization page.
611    // It write enables the page immediately after protecting it
612    // so we can just return to retry the write.
613    if ((sig == SIGSEGV || sig == SIGBUS) &&
614        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
615      // Block current thread until the memory serialize page permission restored.
616      os::block_on_serialize_page_trap();
617      return true;
618    }
619  }
620
621#ifndef AMD64
622  // Execution protection violation
623  //
624  // This should be kept as the last step in the triage.  We don't
625  // have a dedicated trap number for a no-execute fault, so be
626  // conservative and allow other handlers the first shot.
627  //
628  // Note: We don't test that info->si_code == SEGV_ACCERR here.
629  // this si_code is so generic that it is almost meaningless; and
630  // the si_code for this condition may change in the future.
631  // Furthermore, a false-positive should be harmless.
632  if (UnguardOnExecutionViolation > 0 &&
633      (sig == SIGSEGV || sig == SIGBUS) &&
634      uc->context_trapno == trap_page_fault) {
635    int page_size = os::vm_page_size();
636    address addr = (address) info->si_addr;
637    address pc = os::Bsd::ucontext_get_pc(uc);
638    // Make sure the pc and the faulting address are sane.
639    //
640    // If an instruction spans a page boundary, and the page containing
641    // the beginning of the instruction is executable but the following
642    // page is not, the pc and the faulting address might be slightly
643    // different - we still want to unguard the 2nd page in this case.
644    //
645    // 15 bytes seems to be a (very) safe value for max instruction size.
646    bool pc_is_near_addr =
647      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
648    bool instr_spans_page_boundary =
649      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
650                       (intptr_t) page_size) > 0);
651
652    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
653      static volatile address last_addr =
654        (address) os::non_memory_address_word();
655
656      // In conservative mode, don't unguard unless the address is in the VM
657      if (addr != last_addr &&
658          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
659
660        // Set memory to RWX and retry
661        address page_start =
662          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
663        bool res = os::protect_memory((char*) page_start, page_size,
664                                      os::MEM_PROT_RWX);
665
666        if (PrintMiscellaneous && Verbose) {
667          char buf[256];
668          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
669                       "at " INTPTR_FORMAT
670                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
671                       page_start, (res ? "success" : "failed"), errno);
672          tty->print_raw_cr(buf);
673        }
674        stub = pc;
675
676        // Set last_addr so if we fault again at the same address, we don't end
677        // up in an endless loop.
678        //
679        // There are two potential complications here.  Two threads trapping at
680        // the same address at the same time could cause one of the threads to
681        // think it already unguarded, and abort the VM.  Likely very rare.
682        //
683        // The other race involves two threads alternately trapping at
684        // different addresses and failing to unguard the page, resulting in
685        // an endless loop.  This condition is probably even more unlikely than
686        // the first.
687        //
688        // Although both cases could be avoided by using locks or thread local
689        // last_addr, these solutions are unnecessary complication: this
690        // handler is a best-effort safety net, not a complete solution.  It is
691        // disabled by default and should only be used as a workaround in case
692        // we missed any no-execute-unsafe VM code.
693
694        last_addr = addr;
695      }
696    }
697  }
698#endif // !AMD64
699
700  if (stub != NULL) {
701    // save all thread context in case we need to restore it
702    if (thread != NULL) thread->set_saved_exception_pc(pc);
703
704    uc->context_pc = (intptr_t)stub;
705    return true;
706  }
707
708  // signal-chaining
709  if (os::Bsd::chained_handler(sig, info, ucVoid)) {
710     return true;
711  }
712
713  if (!abort_if_unrecognized) {
714    // caller wants another chance, so give it to him
715    return false;
716  }
717
718  if (pc == NULL && uc != NULL) {
719    pc = os::Bsd::ucontext_get_pc(uc);
720  }
721
722  // unmask current signal
723  sigset_t newset;
724  sigemptyset(&newset);
725  sigaddset(&newset, sig);
726  sigprocmask(SIG_UNBLOCK, &newset, NULL);
727
728  VMError err(t, sig, pc, info, ucVoid);
729  err.report_and_die();
730
731  ShouldNotReachHere();
732  return false;
733}
734
735// From solaris_i486.s ported to bsd_i486.s
736extern "C" void fixcw();
737
738void os::Bsd::init_thread_fpu_state(void) {
739#ifndef AMD64
740  // Set fpu to 53 bit precision. This happens too early to use a stub.
741  fixcw();
742#endif // !AMD64
743}
744
745
746// Check that the bsd kernel version is 2.4 or higher since earlier
747// versions do not support SSE without patches.
748bool os::supports_sse() {
749  return true;
750}
751
752bool os::is_allocatable(size_t bytes) {
753#ifdef AMD64
754  // unused on amd64?
755  return true;
756#else
757
758  if (bytes < 2 * G) {
759    return true;
760  }
761
762  char* addr = reserve_memory(bytes, NULL);
763
764  if (addr != NULL) {
765    release_memory(addr, bytes);
766  }
767
768  return addr != NULL;
769#endif // AMD64
770}
771
772////////////////////////////////////////////////////////////////////////////////
773// thread stack
774
775#ifdef AMD64
776size_t os::Bsd::min_stack_allowed  = 64 * K;
777
778// amd64: pthread on amd64 is always in floating stack mode
779bool os::Bsd::supports_variable_stack_size() {  return true; }
780#else
781size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
782
783#ifdef __GNUC__
784#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
785#endif
786
787bool os::Bsd::supports_variable_stack_size() { return true; }
788#endif // AMD64
789
790// return default stack size for thr_type
791size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
792  // default stack size (compiler thread needs larger stack)
793#ifdef AMD64
794  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
795#else
796  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
797#endif // AMD64
798  return s;
799}
800
801size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
802  // Creating guard page is very expensive. Java thread has HotSpot
803  // guard page, only enable glibc guard page for non-Java threads.
804  return (thr_type == java_thread ? 0 : page_size());
805}
806
807// Java thread:
808//
809//   Low memory addresses
810//    +------------------------+
811//    |                        |\  JavaThread created by VM does not have glibc
812//    |    glibc guard page    | - guard, attached Java thread usually has
813//    |                        |/  1 page glibc guard.
814// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
815//    |                        |\
816//    |  HotSpot Guard Pages   | - red and yellow pages
817//    |                        |/
818//    +------------------------+ JavaThread::stack_yellow_zone_base()
819//    |                        |\
820//    |      Normal Stack      | -
821//    |                        |/
822// P2 +------------------------+ Thread::stack_base()
823//
824// Non-Java thread:
825//
826//   Low memory addresses
827//    +------------------------+
828//    |                        |\
829//    |  glibc guard page      | - usually 1 page
830//    |                        |/
831// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
832//    |                        |\
833//    |      Normal Stack      | -
834//    |                        |/
835// P2 +------------------------+ Thread::stack_base()
836//
837// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
838//    pthread_attr_getstack()
839
840static void current_stack_region(address * bottom, size_t * size) {
841#ifdef __APPLE__
842  pthread_t self = pthread_self();
843  void *stacktop = pthread_get_stackaddr_np(self);
844  *size = pthread_get_stacksize_np(self);
845  // workaround for OS X 10.9.0 (Mavericks)
846  // pthread_get_stacksize_np returns 128 pages even though the actual size is 2048 pages
847  if (pthread_main_np() == 1) {
848    if ((*size) < (DEFAULT_MAIN_THREAD_STACK_PAGES * (size_t)getpagesize())) {
849      char kern_osrelease[256];
850      size_t kern_osrelease_size = sizeof(kern_osrelease);
851      int ret = sysctlbyname("kern.osrelease", kern_osrelease, &kern_osrelease_size, NULL, 0);
852      if (ret == 0) {
853        // get the major number, atoi will ignore the minor amd micro portions of the version string
854        if (atoi(kern_osrelease) >= OS_X_10_9_0_KERNEL_MAJOR_VERSION) {
855          *size = (DEFAULT_MAIN_THREAD_STACK_PAGES*getpagesize());
856        }
857      }
858    }
859  }
860  *bottom = (address) stacktop - *size;
861#elif defined(__OpenBSD__)
862  stack_t ss;
863  int rslt = pthread_stackseg_np(pthread_self(), &ss);
864
865  if (rslt != 0)
866    fatal(err_msg("pthread_stackseg_np failed with err = %d", rslt));
867
868  *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
869  *size   = ss.ss_size;
870#else
871  pthread_attr_t attr;
872
873  int rslt = pthread_attr_init(&attr);
874
875  // JVM needs to know exact stack location, abort if it fails
876  if (rslt != 0)
877    fatal(err_msg("pthread_attr_init failed with err = %d", rslt));
878
879  rslt = pthread_attr_get_np(pthread_self(), &attr);
880
881  if (rslt != 0)
882    fatal(err_msg("pthread_attr_get_np failed with err = %d", rslt));
883
884  if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
885    pthread_attr_getstacksize(&attr, size) != 0) {
886    fatal("Can not locate current stack attributes!");
887  }
888
889  pthread_attr_destroy(&attr);
890#endif
891  assert(os::current_stack_pointer() >= *bottom &&
892         os::current_stack_pointer() < *bottom + *size, "just checking");
893}
894
895address os::current_stack_base() {
896  address bottom;
897  size_t size;
898  current_stack_region(&bottom, &size);
899  return (bottom + size);
900}
901
902size_t os::current_stack_size() {
903  // stack size includes normal stack and HotSpot guard pages
904  address bottom;
905  size_t size;
906  current_stack_region(&bottom, &size);
907  return size;
908}
909
910/////////////////////////////////////////////////////////////////////////////
911// helper functions for fatal error handler
912
913void os::print_context(outputStream *st, void *context) {
914  if (context == NULL) return;
915
916  ucontext_t *uc = (ucontext_t*)context;
917  st->print_cr("Registers:");
918#ifdef AMD64
919  st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
920  st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
921  st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
922  st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
923  st->cr();
924  st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
925  st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
926  st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
927  st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
928  st->cr();
929  st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
930  st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
931  st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
932  st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
933  st->cr();
934  st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
935  st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
936  st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
937  st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
938  st->cr();
939  st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
940  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
941  st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
942  st->cr();
943  st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
944#else
945  st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
946  st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
947  st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
948  st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
949  st->cr();
950  st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
951  st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
952  st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
953  st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
954  st->cr();
955  st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
956  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
957#endif // AMD64
958  st->cr();
959  st->cr();
960
961  intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
962  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
963  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
964  st->cr();
965
966  // Note: it may be unsafe to inspect memory near pc. For example, pc may
967  // point to garbage if entry point in an nmethod is corrupted. Leave
968  // this at the end, and hope for the best.
969  address pc = os::Bsd::ucontext_get_pc(uc);
970  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
971  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
972}
973
974void os::print_register_info(outputStream *st, void *context) {
975  if (context == NULL) return;
976
977  ucontext_t *uc = (ucontext_t*)context;
978
979  st->print_cr("Register to memory mapping:");
980  st->cr();
981
982  // this is horrendously verbose but the layout of the registers in the
983  // context does not match how we defined our abstract Register set, so
984  // we can't just iterate through the gregs area
985
986  // this is only for the "general purpose" registers
987
988#ifdef AMD64
989  st->print("RAX="); print_location(st, uc->context_rax);
990  st->print("RBX="); print_location(st, uc->context_rbx);
991  st->print("RCX="); print_location(st, uc->context_rcx);
992  st->print("RDX="); print_location(st, uc->context_rdx);
993  st->print("RSP="); print_location(st, uc->context_rsp);
994  st->print("RBP="); print_location(st, uc->context_rbp);
995  st->print("RSI="); print_location(st, uc->context_rsi);
996  st->print("RDI="); print_location(st, uc->context_rdi);
997  st->print("R8 ="); print_location(st, uc->context_r8);
998  st->print("R9 ="); print_location(st, uc->context_r9);
999  st->print("R10="); print_location(st, uc->context_r10);
1000  st->print("R11="); print_location(st, uc->context_r11);
1001  st->print("R12="); print_location(st, uc->context_r12);
1002  st->print("R13="); print_location(st, uc->context_r13);
1003  st->print("R14="); print_location(st, uc->context_r14);
1004  st->print("R15="); print_location(st, uc->context_r15);
1005#else
1006  st->print("EAX="); print_location(st, uc->context_eax);
1007  st->print("EBX="); print_location(st, uc->context_ebx);
1008  st->print("ECX="); print_location(st, uc->context_ecx);
1009  st->print("EDX="); print_location(st, uc->context_edx);
1010  st->print("ESP="); print_location(st, uc->context_esp);
1011  st->print("EBP="); print_location(st, uc->context_ebp);
1012  st->print("ESI="); print_location(st, uc->context_esi);
1013  st->print("EDI="); print_location(st, uc->context_edi);
1014#endif // AMD64
1015
1016  st->cr();
1017}
1018
1019void os::setup_fpu() {
1020#ifndef AMD64
1021  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
1022  __asm__ volatile (  "fldcw (%0)" :
1023                      : "r" (fpu_cntrl) : "memory");
1024#endif // !AMD64
1025}
1026
1027#ifndef PRODUCT
1028void os::verify_stack_alignment() {
1029}
1030#endif
1031