os_bsd_x86.cpp revision 4991:af21010d1062
168651Skris/*
268651Skris * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
368651Skris * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
468651Skris *
568651Skris * This code is free software; you can redistribute it and/or modify it
668651Skris * under the terms of the GNU General Public License version 2 only, as
768651Skris * published by the Free Software Foundation.
868651Skris *
968651Skris * This code is distributed in the hope that it will be useful, but WITHOUT
1068651Skris * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1168651Skris * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1268651Skris * version 2 for more details (a copy is included in the LICENSE file that
1368651Skris * accompanied this code).
1468651Skris *
1568651Skris * You should have received a copy of the GNU General Public License version
1668651Skris * 2 along with this work; if not, write to the Free Software Foundation,
1768651Skris * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1868651Skris *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_bsd.inline.hpp"
36#include "os_share_bsd.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <errno.h>
61# include <dlfcn.h>
62# include <stdlib.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <pthread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/utsname.h>
70# include <sys/socket.h>
71# include <sys/wait.h>
72# include <pwd.h>
73# include <poll.h>
74#ifndef __OpenBSD__
75# include <ucontext.h>
76#endif
77
78#if !defined(__APPLE__) && !defined(__NetBSD__)
79# include <pthread_np.h>
80#endif
81
82#ifdef AMD64
83#define SPELL_REG_SP "rsp"
84#define SPELL_REG_FP "rbp"
85#else
86#define SPELL_REG_SP "esp"
87#define SPELL_REG_FP "ebp"
88#endif // AMD64
89
90#ifdef __FreeBSD__
91# define context_trapno uc_mcontext.mc_trapno
92# ifdef AMD64
93#  define context_pc uc_mcontext.mc_rip
94#  define context_sp uc_mcontext.mc_rsp
95#  define context_fp uc_mcontext.mc_rbp
96#  define context_rip uc_mcontext.mc_rip
97#  define context_rsp uc_mcontext.mc_rsp
98#  define context_rbp uc_mcontext.mc_rbp
99#  define context_rax uc_mcontext.mc_rax
100#  define context_rbx uc_mcontext.mc_rbx
101#  define context_rcx uc_mcontext.mc_rcx
102#  define context_rdx uc_mcontext.mc_rdx
103#  define context_rsi uc_mcontext.mc_rsi
104#  define context_rdi uc_mcontext.mc_rdi
105#  define context_r8  uc_mcontext.mc_r8
106#  define context_r9  uc_mcontext.mc_r9
107#  define context_r10 uc_mcontext.mc_r10
108#  define context_r11 uc_mcontext.mc_r11
109#  define context_r12 uc_mcontext.mc_r12
110#  define context_r13 uc_mcontext.mc_r13
111#  define context_r14 uc_mcontext.mc_r14
112#  define context_r15 uc_mcontext.mc_r15
113#  define context_flags uc_mcontext.mc_flags
114#  define context_err uc_mcontext.mc_err
115# else
116#  define context_pc uc_mcontext.mc_eip
117#  define context_sp uc_mcontext.mc_esp
118#  define context_fp uc_mcontext.mc_ebp
119#  define context_eip uc_mcontext.mc_eip
120#  define context_esp uc_mcontext.mc_esp
121#  define context_eax uc_mcontext.mc_eax
122#  define context_ebx uc_mcontext.mc_ebx
123#  define context_ecx uc_mcontext.mc_ecx
124#  define context_edx uc_mcontext.mc_edx
125#  define context_ebp uc_mcontext.mc_ebp
126#  define context_esi uc_mcontext.mc_esi
127#  define context_edi uc_mcontext.mc_edi
128#  define context_eflags uc_mcontext.mc_eflags
129#  define context_trapno uc_mcontext.mc_trapno
130# endif
131#endif
132
133#ifdef __APPLE__
134# if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
135  // 10.5 UNIX03 member name prefixes
136  #define DU3_PREFIX(s, m) __ ## s.__ ## m
137# else
138  #define DU3_PREFIX(s, m) s ## . ## m
139# endif
140
141# ifdef AMD64
142#  define context_pc context_rip
143#  define context_sp context_rsp
144#  define context_fp context_rbp
145#  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
146#  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
147#  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
148#  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
149#  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
150#  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
151#  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
152#  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
153#  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
154#  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
155#  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
156#  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
157#  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
158#  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
159#  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
160#  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
161#  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
162#  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
163#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
164#  define context_err uc_mcontext->DU3_PREFIX(es,err)
165# else
166#  define context_pc context_eip
167#  define context_sp context_esp
168#  define context_fp context_ebp
169#  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
170#  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
171#  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
172#  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
173#  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
174#  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
175#  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
176#  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
177#  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
178#  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
179#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
180# endif
181#endif
182
183#ifdef __OpenBSD__
184# define context_trapno sc_trapno
185# ifdef AMD64
186#  define context_pc sc_rip
187#  define context_sp sc_rsp
188#  define context_fp sc_rbp
189#  define context_rip sc_rip
190#  define context_rsp sc_rsp
191#  define context_rbp sc_rbp
192#  define context_rax sc_rax
193#  define context_rbx sc_rbx
194#  define context_rcx sc_rcx
195#  define context_rdx sc_rdx
196#  define context_rsi sc_rsi
197#  define context_rdi sc_rdi
198#  define context_r8  sc_r8
199#  define context_r9  sc_r9
200#  define context_r10 sc_r10
201#  define context_r11 sc_r11
202#  define context_r12 sc_r12
203#  define context_r13 sc_r13
204#  define context_r14 sc_r14
205#  define context_r15 sc_r15
206#  define context_flags sc_rflags
207#  define context_err sc_err
208# else
209#  define context_pc sc_eip
210#  define context_sp sc_esp
211#  define context_fp sc_ebp
212#  define context_eip sc_eip
213#  define context_esp sc_esp
214#  define context_eax sc_eax
215#  define context_ebx sc_ebx
216#  define context_ecx sc_ecx
217#  define context_edx sc_edx
218#  define context_ebp sc_ebp
219#  define context_esi sc_esi
220#  define context_edi sc_edi
221#  define context_eflags sc_eflags
222#  define context_trapno sc_trapno
223# endif
224#endif
225
226#ifdef __NetBSD__
227# define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
228# ifdef AMD64
229#  define __register_t __greg_t
230#  define context_pc uc_mcontext.__gregs[_REG_RIP]
231#  define context_sp uc_mcontext.__gregs[_REG_URSP]
232#  define context_fp uc_mcontext.__gregs[_REG_RBP]
233#  define context_rip uc_mcontext.__gregs[_REG_RIP]
234#  define context_rsp uc_mcontext.__gregs[_REG_URSP]
235#  define context_rax uc_mcontext.__gregs[_REG_RAX]
236#  define context_rbx uc_mcontext.__gregs[_REG_RBX]
237#  define context_rcx uc_mcontext.__gregs[_REG_RCX]
238#  define context_rdx uc_mcontext.__gregs[_REG_RDX]
239#  define context_rbp uc_mcontext.__gregs[_REG_RBP]
240#  define context_rsi uc_mcontext.__gregs[_REG_RSI]
241#  define context_rdi uc_mcontext.__gregs[_REG_RDI]
242#  define context_r8  uc_mcontext.__gregs[_REG_R8]
243#  define context_r9  uc_mcontext.__gregs[_REG_R9]
244#  define context_r10 uc_mcontext.__gregs[_REG_R10]
245#  define context_r11 uc_mcontext.__gregs[_REG_R11]
246#  define context_r12 uc_mcontext.__gregs[_REG_R12]
247#  define context_r13 uc_mcontext.__gregs[_REG_R13]
248#  define context_r14 uc_mcontext.__gregs[_REG_R14]
249#  define context_r15 uc_mcontext.__gregs[_REG_R15]
250#  define context_flags uc_mcontext.__gregs[_REG_RFL]
251#  define context_err uc_mcontext.__gregs[_REG_ERR]
252# else
253#  define context_pc uc_mcontext.__gregs[_REG_EIP]
254#  define context_sp uc_mcontext.__gregs[_REG_UESP]
255#  define context_fp uc_mcontext.__gregs[_REG_EBP]
256#  define context_eip uc_mcontext.__gregs[_REG_EIP]
257#  define context_esp uc_mcontext.__gregs[_REG_UESP]
258#  define context_eax uc_mcontext.__gregs[_REG_EAX]
259#  define context_ebx uc_mcontext.__gregs[_REG_EBX]
260#  define context_ecx uc_mcontext.__gregs[_REG_ECX]
261#  define context_edx uc_mcontext.__gregs[_REG_EDX]
262#  define context_ebp uc_mcontext.__gregs[_REG_EBP]
263#  define context_esi uc_mcontext.__gregs[_REG_ESI]
264#  define context_edi uc_mcontext.__gregs[_REG_EDI]
265#  define context_eflags uc_mcontext.__gregs[_REG_EFL]
266#  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
267# endif
268#endif
269
270address os::current_stack_pointer() {
271#if defined(__clang__) || defined(__llvm__)
272  register void *esp;
273  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
274  return (address) esp;
275#elif defined(SPARC_WORKS)
276  register void *esp;
277  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
278  return (address) ((char*)esp + sizeof(long)*2);
279#else
280  register void *esp __asm__ (SPELL_REG_SP);
281  return (address) esp;
282#endif
283}
284
285char* os::non_memory_address_word() {
286  // Must never look like an address returned by reserve_memory,
287  // even in its subfields (as defined by the CPU immediate fields,
288  // if the CPU splits constants across multiple instructions).
289
290  return (char*) -1;
291}
292
293void os::initialize_thread(Thread* thr) {
294// Nothing to do.
295}
296
297address os::Bsd::ucontext_get_pc(ucontext_t * uc) {
298  return (address)uc->context_pc;
299}
300
301intptr_t* os::Bsd::ucontext_get_sp(ucontext_t * uc) {
302  return (intptr_t*)uc->context_sp;
303}
304
305intptr_t* os::Bsd::ucontext_get_fp(ucontext_t * uc) {
306  return (intptr_t*)uc->context_fp;
307}
308
309// For Forte Analyzer AsyncGetCallTrace profiling support - thread
310// is currently interrupted by SIGPROF.
311// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
312// frames. Currently we don't do that on Bsd, so it's the same as
313// os::fetch_frame_from_context().
314ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
315  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
316
317  assert(thread != NULL, "just checking");
318  assert(ret_sp != NULL, "just checking");
319  assert(ret_fp != NULL, "just checking");
320
321  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
322}
323
324ExtendedPC os::fetch_frame_from_context(void* ucVoid,
325                    intptr_t** ret_sp, intptr_t** ret_fp) {
326
327  ExtendedPC  epc;
328  ucontext_t* uc = (ucontext_t*)ucVoid;
329
330  if (uc != NULL) {
331    epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
332    if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
333    if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
334  } else {
335    // construct empty ExtendedPC for return value checking
336    epc = ExtendedPC(NULL);
337    if (ret_sp) *ret_sp = (intptr_t *)NULL;
338    if (ret_fp) *ret_fp = (intptr_t *)NULL;
339  }
340
341  return epc;
342}
343
344frame os::fetch_frame_from_context(void* ucVoid) {
345  intptr_t* sp;
346  intptr_t* fp;
347  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
348  return frame(sp, fp, epc.pc());
349}
350
351// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
352// turned off by -fomit-frame-pointer,
353frame os::get_sender_for_C_frame(frame* fr) {
354  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
355}
356
357intptr_t* _get_previous_fp() {
358#if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
359  register intptr_t **ebp;
360  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
361#else
362  register intptr_t **ebp __asm__ (SPELL_REG_FP);
363#endif
364  return (intptr_t*) *ebp;   // we want what it points to.
365}
366
367
368frame os::current_frame() {
369  intptr_t* fp = _get_previous_fp();
370  frame myframe((intptr_t*)os::current_stack_pointer(),
371                (intptr_t*)fp,
372                CAST_FROM_FN_PTR(address, os::current_frame));
373  if (os::is_first_C_frame(&myframe)) {
374    // stack is not walkable
375    return frame();
376  } else {
377    return os::get_sender_for_C_frame(&myframe);
378  }
379}
380
381// Utility functions
382
383// From IA32 System Programming Guide
384enum {
385  trap_page_fault = 0xE
386};
387
388extern "C" JNIEXPORT int
389JVM_handle_bsd_signal(int sig,
390                        siginfo_t* info,
391                        void* ucVoid,
392                        int abort_if_unrecognized) {
393  ucontext_t* uc = (ucontext_t*) ucVoid;
394
395  Thread* t = ThreadLocalStorage::get_thread_slow();
396
397  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
398  // (no destructors can be run)
399  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
400
401  SignalHandlerMark shm(t);
402
403  // Note: it's not uncommon that JNI code uses signal/sigset to install
404  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
405  // or have a SIGILL handler when detecting CPU type). When that happens,
406  // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
407  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
408  // that do not require siginfo/ucontext first.
409
410  if (sig == SIGPIPE || sig == SIGXFSZ) {
411    // allow chained handler to go first
412    if (os::Bsd::chained_handler(sig, info, ucVoid)) {
413      return true;
414    } else {
415      if (PrintMiscellaneous && (WizardMode || Verbose)) {
416        char buf[64];
417        warning("Ignoring %s - see bugs 4229104 or 646499219",
418                os::exception_name(sig, buf, sizeof(buf)));
419      }
420      return true;
421    }
422  }
423
424  JavaThread* thread = NULL;
425  VMThread* vmthread = NULL;
426  if (os::Bsd::signal_handlers_are_installed) {
427    if (t != NULL ){
428      if(t->is_Java_thread()) {
429        thread = (JavaThread*)t;
430      }
431      else if(t->is_VM_thread()){
432        vmthread = (VMThread *)t;
433      }
434    }
435  }
436/*
437  NOTE: does not seem to work on bsd.
438  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
439    // can't decode this kind of signal
440    info = NULL;
441  } else {
442    assert(sig == info->si_signo, "bad siginfo");
443  }
444*/
445  // decide if this trap can be handled by a stub
446  address stub = NULL;
447
448  address pc          = NULL;
449
450  //%note os_trap_1
451  if (info != NULL && uc != NULL && thread != NULL) {
452    pc = (address) os::Bsd::ucontext_get_pc(uc);
453
454    if (StubRoutines::is_safefetch_fault(pc)) {
455      uc->context_pc = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
456      return 1;
457    }
458
459    // Handle ALL stack overflow variations here
460    if (sig == SIGSEGV || sig == SIGBUS) {
461      address addr = (address) info->si_addr;
462
463      // check if fault address is within thread stack
464      if (addr < thread->stack_base() &&
465          addr >= thread->stack_base() - thread->stack_size()) {
466        // stack overflow
467        if (thread->in_stack_yellow_zone(addr)) {
468          thread->disable_stack_yellow_zone();
469          if (thread->thread_state() == _thread_in_Java) {
470            // Throw a stack overflow exception.  Guard pages will be reenabled
471            // while unwinding the stack.
472            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
473          } else {
474            // Thread was in the vm or native code.  Return and try to finish.
475            return 1;
476          }
477        } else if (thread->in_stack_red_zone(addr)) {
478          // Fatal red zone violation.  Disable the guard pages and fall through
479          // to handle_unexpected_exception way down below.
480          thread->disable_stack_red_zone();
481          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
482        }
483      }
484    }
485
486    // We test if stub is already set (by the stack overflow code
487    // above) so it is not overwritten by the code that follows. This
488    // check is not required on other platforms, because on other
489    // platforms we check for SIGSEGV only or SIGBUS only, where here
490    // we have to check for both SIGSEGV and SIGBUS.
491    if (thread->thread_state() == _thread_in_Java && stub == NULL) {
492      // Java thread running in Java code => find exception handler if any
493      // a fault inside compiled code, the interpreter, or a stub
494
495      if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
496        stub = SharedRuntime::get_poll_stub(pc);
497#if defined(__APPLE__)
498      // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
499      // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
500      // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
501      // being called, so only do so if the implicit NULL check is not necessary.
502      } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
503#else
504      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
505#endif
506        // BugId 4454115: A read from a MappedByteBuffer can fault
507        // here if the underlying file has been truncated.
508        // Do not crash the VM in such a case.
509        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
510        nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
511        if (nm != NULL && nm->has_unsafe_access()) {
512          stub = StubRoutines::handler_for_unsafe_access();
513        }
514      }
515      else
516
517#ifdef AMD64
518      if (sig == SIGFPE  &&
519          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
520        stub =
521          SharedRuntime::
522          continuation_for_implicit_exception(thread,
523                                              pc,
524                                              SharedRuntime::
525                                              IMPLICIT_DIVIDE_BY_ZERO);
526#ifdef __APPLE__
527      } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
528        int op = pc[0];
529
530        // Skip REX
531        if ((pc[0] & 0xf0) == 0x40) {
532          op = pc[1];
533        } else {
534          op = pc[0];
535        }
536
537        // Check for IDIV
538        if (op == 0xF7) {
539          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
540        } else {
541          // TODO: handle more cases if we are using other x86 instructions
542          //   that can generate SIGFPE signal.
543          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
544          fatal("please update this code.");
545        }
546#endif /* __APPLE__ */
547
548#else
549      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
550        // HACK: si_code does not work on bsd 2.2.12-20!!!
551        int op = pc[0];
552        if (op == 0xDB) {
553          // FIST
554          // TODO: The encoding of D2I in i486.ad can cause an exception
555          // prior to the fist instruction if there was an invalid operation
556          // pending. We want to dismiss that exception. From the win_32
557          // side it also seems that if it really was the fist causing
558          // the exception that we do the d2i by hand with different
559          // rounding. Seems kind of weird.
560          // NOTE: that we take the exception at the NEXT floating point instruction.
561          assert(pc[0] == 0xDB, "not a FIST opcode");
562          assert(pc[1] == 0x14, "not a FIST opcode");
563          assert(pc[2] == 0x24, "not a FIST opcode");
564          return true;
565        } else if (op == 0xF7) {
566          // IDIV
567          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
568        } else {
569          // TODO: handle more cases if we are using other x86 instructions
570          //   that can generate SIGFPE signal on bsd.
571          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
572          fatal("please update this code.");
573        }
574#endif // AMD64
575      } else if ((sig == SIGSEGV || sig == SIGBUS) &&
576               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
577          // Determination of interpreter/vtable stub/compiled code null exception
578          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
579      }
580    } else if (thread->thread_state() == _thread_in_vm &&
581               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
582               thread->doing_unsafe_access()) {
583        stub = StubRoutines::handler_for_unsafe_access();
584    }
585
586    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
587    // and the heap gets shrunk before the field access.
588    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
589      address addr = JNI_FastGetField::find_slowcase_pc(pc);
590      if (addr != (address)-1) {
591        stub = addr;
592      }
593    }
594
595    // Check to see if we caught the safepoint code in the
596    // process of write protecting the memory serialization page.
597    // It write enables the page immediately after protecting it
598    // so we can just return to retry the write.
599    if ((sig == SIGSEGV || sig == SIGBUS) &&
600        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
601      // Block current thread until the memory serialize page permission restored.
602      os::block_on_serialize_page_trap();
603      return true;
604    }
605  }
606
607#ifndef AMD64
608  // Execution protection violation
609  //
610  // This should be kept as the last step in the triage.  We don't
611  // have a dedicated trap number for a no-execute fault, so be
612  // conservative and allow other handlers the first shot.
613  //
614  // Note: We don't test that info->si_code == SEGV_ACCERR here.
615  // this si_code is so generic that it is almost meaningless; and
616  // the si_code for this condition may change in the future.
617  // Furthermore, a false-positive should be harmless.
618  if (UnguardOnExecutionViolation > 0 &&
619      (sig == SIGSEGV || sig == SIGBUS) &&
620      uc->context_trapno == trap_page_fault) {
621    int page_size = os::vm_page_size();
622    address addr = (address) info->si_addr;
623    address pc = os::Bsd::ucontext_get_pc(uc);
624    // Make sure the pc and the faulting address are sane.
625    //
626    // If an instruction spans a page boundary, and the page containing
627    // the beginning of the instruction is executable but the following
628    // page is not, the pc and the faulting address might be slightly
629    // different - we still want to unguard the 2nd page in this case.
630    //
631    // 15 bytes seems to be a (very) safe value for max instruction size.
632    bool pc_is_near_addr =
633      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
634    bool instr_spans_page_boundary =
635      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
636                       (intptr_t) page_size) > 0);
637
638    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
639      static volatile address last_addr =
640        (address) os::non_memory_address_word();
641
642      // In conservative mode, don't unguard unless the address is in the VM
643      if (addr != last_addr &&
644          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
645
646        // Set memory to RWX and retry
647        address page_start =
648          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
649        bool res = os::protect_memory((char*) page_start, page_size,
650                                      os::MEM_PROT_RWX);
651
652        if (PrintMiscellaneous && Verbose) {
653          char buf[256];
654          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
655                       "at " INTPTR_FORMAT
656                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
657                       page_start, (res ? "success" : "failed"), errno);
658          tty->print_raw_cr(buf);
659        }
660        stub = pc;
661
662        // Set last_addr so if we fault again at the same address, we don't end
663        // up in an endless loop.
664        //
665        // There are two potential complications here.  Two threads trapping at
666        // the same address at the same time could cause one of the threads to
667        // think it already unguarded, and abort the VM.  Likely very rare.
668        //
669        // The other race involves two threads alternately trapping at
670        // different addresses and failing to unguard the page, resulting in
671        // an endless loop.  This condition is probably even more unlikely than
672        // the first.
673        //
674        // Although both cases could be avoided by using locks or thread local
675        // last_addr, these solutions are unnecessary complication: this
676        // handler is a best-effort safety net, not a complete solution.  It is
677        // disabled by default and should only be used as a workaround in case
678        // we missed any no-execute-unsafe VM code.
679
680        last_addr = addr;
681      }
682    }
683  }
684#endif // !AMD64
685
686  if (stub != NULL) {
687    // save all thread context in case we need to restore it
688    if (thread != NULL) thread->set_saved_exception_pc(pc);
689
690    uc->context_pc = (intptr_t)stub;
691    return true;
692  }
693
694  // signal-chaining
695  if (os::Bsd::chained_handler(sig, info, ucVoid)) {
696     return true;
697  }
698
699  if (!abort_if_unrecognized) {
700    // caller wants another chance, so give it to him
701    return false;
702  }
703
704  if (pc == NULL && uc != NULL) {
705    pc = os::Bsd::ucontext_get_pc(uc);
706  }
707
708  // unmask current signal
709  sigset_t newset;
710  sigemptyset(&newset);
711  sigaddset(&newset, sig);
712  sigprocmask(SIG_UNBLOCK, &newset, NULL);
713
714  VMError err(t, sig, pc, info, ucVoid);
715  err.report_and_die();
716
717  ShouldNotReachHere();
718}
719
720// From solaris_i486.s ported to bsd_i486.s
721extern "C" void fixcw();
722
723void os::Bsd::init_thread_fpu_state(void) {
724#ifndef AMD64
725  // Set fpu to 53 bit precision. This happens too early to use a stub.
726  fixcw();
727#endif // !AMD64
728}
729
730
731// Check that the bsd kernel version is 2.4 or higher since earlier
732// versions do not support SSE without patches.
733bool os::supports_sse() {
734  return true;
735}
736
737bool os::is_allocatable(size_t bytes) {
738#ifdef AMD64
739  // unused on amd64?
740  return true;
741#else
742
743  if (bytes < 2 * G) {
744    return true;
745  }
746
747  char* addr = reserve_memory(bytes, NULL);
748
749  if (addr != NULL) {
750    release_memory(addr, bytes);
751  }
752
753  return addr != NULL;
754#endif // AMD64
755}
756
757////////////////////////////////////////////////////////////////////////////////
758// thread stack
759
760#ifdef AMD64
761size_t os::Bsd::min_stack_allowed  = 64 * K;
762
763// amd64: pthread on amd64 is always in floating stack mode
764bool os::Bsd::supports_variable_stack_size() {  return true; }
765#else
766size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
767
768#ifdef __GNUC__
769#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
770#endif
771
772bool os::Bsd::supports_variable_stack_size() { return true; }
773#endif // AMD64
774
775// return default stack size for thr_type
776size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
777  // default stack size (compiler thread needs larger stack)
778#ifdef AMD64
779  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
780#else
781  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
782#endif // AMD64
783  return s;
784}
785
786size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
787  // Creating guard page is very expensive. Java thread has HotSpot
788  // guard page, only enable glibc guard page for non-Java threads.
789  return (thr_type == java_thread ? 0 : page_size());
790}
791
792// Java thread:
793//
794//   Low memory addresses
795//    +------------------------+
796//    |                        |\  JavaThread created by VM does not have glibc
797//    |    glibc guard page    | - guard, attached Java thread usually has
798//    |                        |/  1 page glibc guard.
799// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
800//    |                        |\
801//    |  HotSpot Guard Pages   | - red and yellow pages
802//    |                        |/
803//    +------------------------+ JavaThread::stack_yellow_zone_base()
804//    |                        |\
805//    |      Normal Stack      | -
806//    |                        |/
807// P2 +------------------------+ Thread::stack_base()
808//
809// Non-Java thread:
810//
811//   Low memory addresses
812//    +------------------------+
813//    |                        |\
814//    |  glibc guard page      | - usually 1 page
815//    |                        |/
816// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
817//    |                        |\
818//    |      Normal Stack      | -
819//    |                        |/
820// P2 +------------------------+ Thread::stack_base()
821//
822// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
823//    pthread_attr_getstack()
824
825static void current_stack_region(address * bottom, size_t * size) {
826#ifdef __APPLE__
827  pthread_t self = pthread_self();
828  void *stacktop = pthread_get_stackaddr_np(self);
829  *size = pthread_get_stacksize_np(self);
830  *bottom = (address) stacktop - *size;
831#elif defined(__OpenBSD__)
832  stack_t ss;
833  int rslt = pthread_stackseg_np(pthread_self(), &ss);
834
835  if (rslt != 0)
836    fatal(err_msg("pthread_stackseg_np failed with err = %d", rslt));
837
838  *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
839  *size   = ss.ss_size;
840#else
841  pthread_attr_t attr;
842
843  int rslt = pthread_attr_init(&attr);
844
845  // JVM needs to know exact stack location, abort if it fails
846  if (rslt != 0)
847    fatal(err_msg("pthread_attr_init failed with err = %d", rslt));
848
849  rslt = pthread_attr_get_np(pthread_self(), &attr);
850
851  if (rslt != 0)
852    fatal(err_msg("pthread_attr_get_np failed with err = %d", rslt));
853
854  if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
855    pthread_attr_getstacksize(&attr, size) != 0) {
856    fatal("Can not locate current stack attributes!");
857  }
858
859  pthread_attr_destroy(&attr);
860#endif
861  assert(os::current_stack_pointer() >= *bottom &&
862         os::current_stack_pointer() < *bottom + *size, "just checking");
863}
864
865address os::current_stack_base() {
866  address bottom;
867  size_t size;
868  current_stack_region(&bottom, &size);
869  return (bottom + size);
870}
871
872size_t os::current_stack_size() {
873  // stack size includes normal stack and HotSpot guard pages
874  address bottom;
875  size_t size;
876  current_stack_region(&bottom, &size);
877  return size;
878}
879
880/////////////////////////////////////////////////////////////////////////////
881// helper functions for fatal error handler
882
883void os::print_context(outputStream *st, void *context) {
884  if (context == NULL) return;
885
886  ucontext_t *uc = (ucontext_t*)context;
887  st->print_cr("Registers:");
888#ifdef AMD64
889  st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
890  st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
891  st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
892  st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
893  st->cr();
894  st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
895  st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
896  st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
897  st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
898  st->cr();
899  st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
900  st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
901  st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
902  st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
903  st->cr();
904  st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
905  st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
906  st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
907  st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
908  st->cr();
909  st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
910  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
911  st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
912  st->cr();
913  st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
914#else
915  st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
916  st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
917  st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
918  st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
919  st->cr();
920  st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
921  st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
922  st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
923  st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
924  st->cr();
925  st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
926  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
927#endif // AMD64
928  st->cr();
929  st->cr();
930
931  intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
932  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
933  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
934  st->cr();
935
936  // Note: it may be unsafe to inspect memory near pc. For example, pc may
937  // point to garbage if entry point in an nmethod is corrupted. Leave
938  // this at the end, and hope for the best.
939  address pc = os::Bsd::ucontext_get_pc(uc);
940  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
941  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
942}
943
944void os::print_register_info(outputStream *st, void *context) {
945  if (context == NULL) return;
946
947  ucontext_t *uc = (ucontext_t*)context;
948
949  st->print_cr("Register to memory mapping:");
950  st->cr();
951
952  // this is horrendously verbose but the layout of the registers in the
953  // context does not match how we defined our abstract Register set, so
954  // we can't just iterate through the gregs area
955
956  // this is only for the "general purpose" registers
957
958#ifdef AMD64
959  st->print("RAX="); print_location(st, uc->context_rax);
960  st->print("RBX="); print_location(st, uc->context_rbx);
961  st->print("RCX="); print_location(st, uc->context_rcx);
962  st->print("RDX="); print_location(st, uc->context_rdx);
963  st->print("RSP="); print_location(st, uc->context_rsp);
964  st->print("RBP="); print_location(st, uc->context_rbp);
965  st->print("RSI="); print_location(st, uc->context_rsi);
966  st->print("RDI="); print_location(st, uc->context_rdi);
967  st->print("R8 ="); print_location(st, uc->context_r8);
968  st->print("R9 ="); print_location(st, uc->context_r9);
969  st->print("R10="); print_location(st, uc->context_r10);
970  st->print("R11="); print_location(st, uc->context_r11);
971  st->print("R12="); print_location(st, uc->context_r12);
972  st->print("R13="); print_location(st, uc->context_r13);
973  st->print("R14="); print_location(st, uc->context_r14);
974  st->print("R15="); print_location(st, uc->context_r15);
975#else
976  st->print("EAX="); print_location(st, uc->context_eax);
977  st->print("EBX="); print_location(st, uc->context_ebx);
978  st->print("ECX="); print_location(st, uc->context_ecx);
979  st->print("EDX="); print_location(st, uc->context_edx);
980  st->print("ESP="); print_location(st, uc->context_esp);
981  st->print("EBP="); print_location(st, uc->context_ebp);
982  st->print("ESI="); print_location(st, uc->context_esi);
983  st->print("EDI="); print_location(st, uc->context_edi);
984#endif // AMD64
985
986  st->cr();
987}
988
989void os::setup_fpu() {
990#ifndef AMD64
991  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
992  __asm__ volatile (  "fldcw (%0)" :
993                      : "r" (fpu_cntrl) : "memory");
994#endif // !AMD64
995}
996
997#ifndef PRODUCT
998void os::verify_stack_alignment() {
999}
1000#endif
1001