os_bsd_x86.cpp revision 3171:da4be62fb889
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "assembler_x86.inline.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_bsd.inline.hpp"
36#include "nativeInst_x86.hpp"
37#include "os_share_bsd.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/timer.hpp"
52#include "thread_bsd.inline.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55#ifdef COMPILER1
56#include "c1/c1_Runtime1.hpp"
57#endif
58#ifdef COMPILER2
59#include "opto/runtime.hpp"
60#endif
61
62// put OS-includes here
63# include <sys/types.h>
64# include <sys/mman.h>
65# include <pthread.h>
66# include <signal.h>
67# include <errno.h>
68# include <dlfcn.h>
69# include <stdlib.h>
70# include <stdio.h>
71# include <unistd.h>
72# include <sys/resource.h>
73# include <pthread.h>
74# include <sys/stat.h>
75# include <sys/time.h>
76# include <sys/utsname.h>
77# include <sys/socket.h>
78# include <sys/wait.h>
79# include <pwd.h>
80# include <poll.h>
81#ifndef __OpenBSD__
82# include <ucontext.h>
83#endif
84
85#if defined(_ALLBSD_SOURCE) && !defined(__APPLE__) && !defined(__NetBSD__)
86# include <pthread_np.h>
87#endif
88
89#ifdef AMD64
90#define SPELL_REG_SP "rsp"
91#define SPELL_REG_FP "rbp"
92#else
93#define SPELL_REG_SP "esp"
94#define SPELL_REG_FP "ebp"
95#endif // AMD64
96
97#ifdef __FreeBSD__
98# define context_trapno uc_mcontext.mc_trapno
99# ifdef AMD64
100#  define context_pc uc_mcontext.mc_rip
101#  define context_sp uc_mcontext.mc_rsp
102#  define context_fp uc_mcontext.mc_rbp
103#  define context_rip uc_mcontext.mc_rip
104#  define context_rsp uc_mcontext.mc_rsp
105#  define context_rbp uc_mcontext.mc_rbp
106#  define context_rax uc_mcontext.mc_rax
107#  define context_rbx uc_mcontext.mc_rbx
108#  define context_rcx uc_mcontext.mc_rcx
109#  define context_rdx uc_mcontext.mc_rdx
110#  define context_rsi uc_mcontext.mc_rsi
111#  define context_rdi uc_mcontext.mc_rdi
112#  define context_r8  uc_mcontext.mc_r8
113#  define context_r9  uc_mcontext.mc_r9
114#  define context_r10 uc_mcontext.mc_r10
115#  define context_r11 uc_mcontext.mc_r11
116#  define context_r12 uc_mcontext.mc_r12
117#  define context_r13 uc_mcontext.mc_r13
118#  define context_r14 uc_mcontext.mc_r14
119#  define context_r15 uc_mcontext.mc_r15
120#  define context_flags uc_mcontext.mc_flags
121#  define context_err uc_mcontext.mc_err
122# else
123#  define context_pc uc_mcontext.mc_eip
124#  define context_sp uc_mcontext.mc_esp
125#  define context_fp uc_mcontext.mc_ebp
126#  define context_eip uc_mcontext.mc_eip
127#  define context_esp uc_mcontext.mc_esp
128#  define context_eax uc_mcontext.mc_eax
129#  define context_ebx uc_mcontext.mc_ebx
130#  define context_ecx uc_mcontext.mc_ecx
131#  define context_edx uc_mcontext.mc_edx
132#  define context_ebp uc_mcontext.mc_ebp
133#  define context_esi uc_mcontext.mc_esi
134#  define context_edi uc_mcontext.mc_edi
135#  define context_eflags uc_mcontext.mc_eflags
136#  define context_trapno uc_mcontext.mc_trapno
137# endif
138#endif
139
140#ifdef __APPLE__
141# if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
142  // 10.5 UNIX03 member name prefixes
143  #define DU3_PREFIX(s, m) __ ## s.__ ## m
144# else
145  #define DU3_PREFIX(s, m) s ## . ## m
146# endif
147
148# ifdef AMD64
149#  define context_pc context_rip
150#  define context_sp context_rsp
151#  define context_fp context_rbp
152#  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
153#  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
154#  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
155#  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
156#  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
157#  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
158#  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
159#  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
160#  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
161#  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
162#  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
163#  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
164#  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
165#  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
166#  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
167#  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
168#  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
169#  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
170#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
171#  define context_err uc_mcontext->DU3_PREFIX(es,err)
172# else
173#  define context_pc context_eip
174#  define context_sp context_esp
175#  define context_fp context_ebp
176#  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
177#  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
178#  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
179#  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
180#  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
181#  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
182#  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
183#  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
184#  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
185#  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
186#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
187# endif
188#endif
189
190#ifdef __OpenBSD__
191# define context_trapno sc_trapno
192# ifdef AMD64
193#  define context_pc sc_rip
194#  define context_sp sc_rsp
195#  define context_fp sc_rbp
196#  define context_rip sc_rip
197#  define context_rsp sc_rsp
198#  define context_rbp sc_rbp
199#  define context_rax sc_rax
200#  define context_rbx sc_rbx
201#  define context_rcx sc_rcx
202#  define context_rdx sc_rdx
203#  define context_rsi sc_rsi
204#  define context_rdi sc_rdi
205#  define context_r8  sc_r8
206#  define context_r9  sc_r9
207#  define context_r10 sc_r10
208#  define context_r11 sc_r11
209#  define context_r12 sc_r12
210#  define context_r13 sc_r13
211#  define context_r14 sc_r14
212#  define context_r15 sc_r15
213#  define context_flags sc_rflags
214#  define context_err sc_err
215# else
216#  define context_pc sc_eip
217#  define context_sp sc_esp
218#  define context_fp sc_ebp
219#  define context_eip sc_eip
220#  define context_esp sc_esp
221#  define context_eax sc_eax
222#  define context_ebx sc_ebx
223#  define context_ecx sc_ecx
224#  define context_edx sc_edx
225#  define context_ebp sc_ebp
226#  define context_esi sc_esi
227#  define context_edi sc_edi
228#  define context_eflags sc_eflags
229#  define context_trapno sc_trapno
230# endif
231#endif
232
233#ifdef __NetBSD__
234# define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
235# ifdef AMD64
236#  define __register_t __greg_t
237#  define context_pc uc_mcontext.__gregs[_REG_RIP]
238#  define context_sp uc_mcontext.__gregs[_REG_URSP]
239#  define context_fp uc_mcontext.__gregs[_REG_RBP]
240#  define context_rip uc_mcontext.__gregs[_REG_RIP]
241#  define context_rsp uc_mcontext.__gregs[_REG_URSP]
242#  define context_rax uc_mcontext.__gregs[_REG_RAX]
243#  define context_rbx uc_mcontext.__gregs[_REG_RBX]
244#  define context_rcx uc_mcontext.__gregs[_REG_RCX]
245#  define context_rdx uc_mcontext.__gregs[_REG_RDX]
246#  define context_rbp uc_mcontext.__gregs[_REG_RBP]
247#  define context_rsi uc_mcontext.__gregs[_REG_RSI]
248#  define context_rdi uc_mcontext.__gregs[_REG_RDI]
249#  define context_r8  uc_mcontext.__gregs[_REG_R8]
250#  define context_r9  uc_mcontext.__gregs[_REG_R9]
251#  define context_r10 uc_mcontext.__gregs[_REG_R10]
252#  define context_r11 uc_mcontext.__gregs[_REG_R11]
253#  define context_r12 uc_mcontext.__gregs[_REG_R12]
254#  define context_r13 uc_mcontext.__gregs[_REG_R13]
255#  define context_r14 uc_mcontext.__gregs[_REG_R14]
256#  define context_r15 uc_mcontext.__gregs[_REG_R15]
257#  define context_flags uc_mcontext.__gregs[_REG_RFL]
258#  define context_err uc_mcontext.__gregs[_REG_ERR]
259# else
260#  define context_pc uc_mcontext.__gregs[_REG_EIP]
261#  define context_sp uc_mcontext.__gregs[_REG_UESP]
262#  define context_fp uc_mcontext.__gregs[_REG_EBP]
263#  define context_eip uc_mcontext.__gregs[_REG_EIP]
264#  define context_esp uc_mcontext.__gregs[_REG_UESP]
265#  define context_eax uc_mcontext.__gregs[_REG_EAX]
266#  define context_ebx uc_mcontext.__gregs[_REG_EBX]
267#  define context_ecx uc_mcontext.__gregs[_REG_ECX]
268#  define context_edx uc_mcontext.__gregs[_REG_EDX]
269#  define context_ebp uc_mcontext.__gregs[_REG_EBP]
270#  define context_esi uc_mcontext.__gregs[_REG_ESI]
271#  define context_edi uc_mcontext.__gregs[_REG_EDI]
272#  define context_eflags uc_mcontext.__gregs[_REG_EFL]
273#  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
274# endif
275#endif
276
277address os::current_stack_pointer() {
278#if defined(__clang__) || defined(__llvm__)
279  register void *esp;
280  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
281  return (address) esp;
282#elif defined(SPARC_WORKS)
283  register void *esp;
284  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
285  return (address) ((char*)esp + sizeof(long)*2);
286#else
287  register void *esp __asm__ (SPELL_REG_SP);
288  return (address) esp;
289#endif
290}
291
292char* os::non_memory_address_word() {
293  // Must never look like an address returned by reserve_memory,
294  // even in its subfields (as defined by the CPU immediate fields,
295  // if the CPU splits constants across multiple instructions).
296
297  return (char*) -1;
298}
299
300void os::initialize_thread() {
301// Nothing to do.
302}
303
304address os::Bsd::ucontext_get_pc(ucontext_t * uc) {
305  return (address)uc->context_pc;
306}
307
308intptr_t* os::Bsd::ucontext_get_sp(ucontext_t * uc) {
309  return (intptr_t*)uc->context_sp;
310}
311
312intptr_t* os::Bsd::ucontext_get_fp(ucontext_t * uc) {
313  return (intptr_t*)uc->context_fp;
314}
315
316// For Forte Analyzer AsyncGetCallTrace profiling support - thread
317// is currently interrupted by SIGPROF.
318// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
319// frames. Currently we don't do that on Bsd, so it's the same as
320// os::fetch_frame_from_context().
321ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
322  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
323
324  assert(thread != NULL, "just checking");
325  assert(ret_sp != NULL, "just checking");
326  assert(ret_fp != NULL, "just checking");
327
328  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
329}
330
331ExtendedPC os::fetch_frame_from_context(void* ucVoid,
332                    intptr_t** ret_sp, intptr_t** ret_fp) {
333
334  ExtendedPC  epc;
335  ucontext_t* uc = (ucontext_t*)ucVoid;
336
337  if (uc != NULL) {
338    epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
339    if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
340    if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
341  } else {
342    // construct empty ExtendedPC for return value checking
343    epc = ExtendedPC(NULL);
344    if (ret_sp) *ret_sp = (intptr_t *)NULL;
345    if (ret_fp) *ret_fp = (intptr_t *)NULL;
346  }
347
348  return epc;
349}
350
351frame os::fetch_frame_from_context(void* ucVoid) {
352  intptr_t* sp;
353  intptr_t* fp;
354  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
355  return frame(sp, fp, epc.pc());
356}
357
358// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
359// turned off by -fomit-frame-pointer,
360frame os::get_sender_for_C_frame(frame* fr) {
361  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
362}
363
364intptr_t* _get_previous_fp() {
365#if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
366  register intptr_t **ebp;
367  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
368#else
369  register intptr_t **ebp __asm__ (SPELL_REG_FP);
370#endif
371  return (intptr_t*) *ebp;   // we want what it points to.
372}
373
374
375frame os::current_frame() {
376  intptr_t* fp = _get_previous_fp();
377  frame myframe((intptr_t*)os::current_stack_pointer(),
378                (intptr_t*)fp,
379                CAST_FROM_FN_PTR(address, os::current_frame));
380  if (os::is_first_C_frame(&myframe)) {
381    // stack is not walkable
382    return frame(NULL, NULL, NULL);
383  } else {
384    return os::get_sender_for_C_frame(&myframe);
385  }
386}
387
388// Utility functions
389
390// From IA32 System Programming Guide
391enum {
392  trap_page_fault = 0xE
393};
394
395extern "C" void Fetch32PFI () ;
396extern "C" void Fetch32Resume () ;
397#ifdef AMD64
398extern "C" void FetchNPFI () ;
399extern "C" void FetchNResume () ;
400#endif // AMD64
401
402extern "C" JNIEXPORT int
403JVM_handle_bsd_signal(int sig,
404                        siginfo_t* info,
405                        void* ucVoid,
406                        int abort_if_unrecognized) {
407  ucontext_t* uc = (ucontext_t*) ucVoid;
408
409  Thread* t = ThreadLocalStorage::get_thread_slow();
410
411  SignalHandlerMark shm(t);
412
413  // Note: it's not uncommon that JNI code uses signal/sigset to install
414  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
415  // or have a SIGILL handler when detecting CPU type). When that happens,
416  // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
417  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
418  // that do not require siginfo/ucontext first.
419
420  if (sig == SIGPIPE || sig == SIGXFSZ) {
421    // allow chained handler to go first
422    if (os::Bsd::chained_handler(sig, info, ucVoid)) {
423      return true;
424    } else {
425      if (PrintMiscellaneous && (WizardMode || Verbose)) {
426        char buf[64];
427        warning("Ignoring %s - see bugs 4229104 or 646499219",
428                os::exception_name(sig, buf, sizeof(buf)));
429      }
430      return true;
431    }
432  }
433
434  JavaThread* thread = NULL;
435  VMThread* vmthread = NULL;
436  if (os::Bsd::signal_handlers_are_installed) {
437    if (t != NULL ){
438      if(t->is_Java_thread()) {
439        thread = (JavaThread*)t;
440      }
441      else if(t->is_VM_thread()){
442        vmthread = (VMThread *)t;
443      }
444    }
445  }
446/*
447  NOTE: does not seem to work on bsd.
448  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
449    // can't decode this kind of signal
450    info = NULL;
451  } else {
452    assert(sig == info->si_signo, "bad siginfo");
453  }
454*/
455  // decide if this trap can be handled by a stub
456  address stub = NULL;
457
458  address pc          = NULL;
459
460  //%note os_trap_1
461  if (info != NULL && uc != NULL && thread != NULL) {
462    pc = (address) os::Bsd::ucontext_get_pc(uc);
463
464    if (pc == (address) Fetch32PFI) {
465       uc->context_pc = intptr_t(Fetch32Resume) ;
466       return 1 ;
467    }
468#ifdef AMD64
469    if (pc == (address) FetchNPFI) {
470       uc->context_pc = intptr_t (FetchNResume) ;
471       return 1 ;
472    }
473#endif // AMD64
474
475    // Handle ALL stack overflow variations here
476    if (sig == SIGSEGV || sig == SIGBUS) {
477      address addr = (address) info->si_addr;
478
479      // check if fault address is within thread stack
480      if (addr < thread->stack_base() &&
481          addr >= thread->stack_base() - thread->stack_size()) {
482        // stack overflow
483        if (thread->in_stack_yellow_zone(addr)) {
484          thread->disable_stack_yellow_zone();
485          if (thread->thread_state() == _thread_in_Java) {
486            // Throw a stack overflow exception.  Guard pages will be reenabled
487            // while unwinding the stack.
488            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
489          } else {
490            // Thread was in the vm or native code.  Return and try to finish.
491            return 1;
492          }
493        } else if (thread->in_stack_red_zone(addr)) {
494          // Fatal red zone violation.  Disable the guard pages and fall through
495          // to handle_unexpected_exception way down below.
496          thread->disable_stack_red_zone();
497          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
498#ifndef _ALLBSD_SOURCE
499        } else {
500          // Accessing stack address below sp may cause SEGV if current
501          // thread has MAP_GROWSDOWN stack. This should only happen when
502          // current thread was created by user code with MAP_GROWSDOWN flag
503          // and then attached to VM. See notes in os_bsd.cpp.
504          if (thread->osthread()->expanding_stack() == 0) {
505             thread->osthread()->set_expanding_stack();
506             if (os::Bsd::manually_expand_stack(thread, addr)) {
507               thread->osthread()->clear_expanding_stack();
508               return 1;
509             }
510             thread->osthread()->clear_expanding_stack();
511          } else {
512             fatal("recursive segv. expanding stack.");
513          }
514#endif
515        }
516      }
517    }
518
519    if (thread->thread_state() == _thread_in_Java) {
520      // Java thread running in Java code => find exception handler if any
521      // a fault inside compiled code, the interpreter, or a stub
522
523      if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
524        stub = SharedRuntime::get_poll_stub(pc);
525#if defined(__APPLE__) && !defined(AMD64)
526      // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
527      // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
528      // being called, so only do so if the implicit NULL check is not necessary.
529      } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((int)info->si_addr)) {
530#else
531      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
532#endif
533        // BugId 4454115: A read from a MappedByteBuffer can fault
534        // here if the underlying file has been truncated.
535        // Do not crash the VM in such a case.
536        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
537        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
538        if (nm != NULL && nm->has_unsafe_access()) {
539          stub = StubRoutines::handler_for_unsafe_access();
540        }
541      }
542      else
543
544#ifdef AMD64
545      if (sig == SIGFPE  &&
546          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
547        stub =
548          SharedRuntime::
549          continuation_for_implicit_exception(thread,
550                                              pc,
551                                              SharedRuntime::
552                                              IMPLICIT_DIVIDE_BY_ZERO);
553#ifdef __APPLE__
554      } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
555        int op = pc[0];
556
557        // Skip REX
558        if ((pc[0] & 0xf0) == 0x40) {
559          op = pc[1];
560        } else {
561          op = pc[0];
562        }
563
564        // Check for IDIV
565        if (op == 0xF7) {
566          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
567        } else {
568          // TODO: handle more cases if we are using other x86 instructions
569          //   that can generate SIGFPE signal.
570          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
571          fatal("please update this code.");
572        }
573#endif /* __APPLE__ */
574
575#else
576      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
577        // HACK: si_code does not work on bsd 2.2.12-20!!!
578        int op = pc[0];
579        if (op == 0xDB) {
580          // FIST
581          // TODO: The encoding of D2I in i486.ad can cause an exception
582          // prior to the fist instruction if there was an invalid operation
583          // pending. We want to dismiss that exception. From the win_32
584          // side it also seems that if it really was the fist causing
585          // the exception that we do the d2i by hand with different
586          // rounding. Seems kind of weird.
587          // NOTE: that we take the exception at the NEXT floating point instruction.
588          assert(pc[0] == 0xDB, "not a FIST opcode");
589          assert(pc[1] == 0x14, "not a FIST opcode");
590          assert(pc[2] == 0x24, "not a FIST opcode");
591          return true;
592        } else if (op == 0xF7) {
593          // IDIV
594          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
595        } else {
596          // TODO: handle more cases if we are using other x86 instructions
597          //   that can generate SIGFPE signal on bsd.
598          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
599          fatal("please update this code.");
600        }
601#endif // AMD64
602      } else if ((sig == SIGSEGV || sig == SIGBUS) &&
603               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
604          // Determination of interpreter/vtable stub/compiled code null exception
605          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
606      }
607    } else if (thread->thread_state() == _thread_in_vm &&
608               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
609               thread->doing_unsafe_access()) {
610        stub = StubRoutines::handler_for_unsafe_access();
611    }
612
613    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
614    // and the heap gets shrunk before the field access.
615    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
616      address addr = JNI_FastGetField::find_slowcase_pc(pc);
617      if (addr != (address)-1) {
618        stub = addr;
619      }
620    }
621
622    // Check to see if we caught the safepoint code in the
623    // process of write protecting the memory serialization page.
624    // It write enables the page immediately after protecting it
625    // so we can just return to retry the write.
626    if ((sig == SIGSEGV || sig == SIGBUS) &&
627        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
628      // Block current thread until the memory serialize page permission restored.
629      os::block_on_serialize_page_trap();
630      return true;
631    }
632  }
633
634#ifndef AMD64
635  // Execution protection violation
636  //
637  // This should be kept as the last step in the triage.  We don't
638  // have a dedicated trap number for a no-execute fault, so be
639  // conservative and allow other handlers the first shot.
640  //
641  // Note: We don't test that info->si_code == SEGV_ACCERR here.
642  // this si_code is so generic that it is almost meaningless; and
643  // the si_code for this condition may change in the future.
644  // Furthermore, a false-positive should be harmless.
645  if (UnguardOnExecutionViolation > 0 &&
646      (sig == SIGSEGV || sig == SIGBUS) &&
647      uc->context_trapno == trap_page_fault) {
648    int page_size = os::vm_page_size();
649    address addr = (address) info->si_addr;
650    address pc = os::Bsd::ucontext_get_pc(uc);
651    // Make sure the pc and the faulting address are sane.
652    //
653    // If an instruction spans a page boundary, and the page containing
654    // the beginning of the instruction is executable but the following
655    // page is not, the pc and the faulting address might be slightly
656    // different - we still want to unguard the 2nd page in this case.
657    //
658    // 15 bytes seems to be a (very) safe value for max instruction size.
659    bool pc_is_near_addr =
660      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
661    bool instr_spans_page_boundary =
662      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
663                       (intptr_t) page_size) > 0);
664
665    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
666      static volatile address last_addr =
667        (address) os::non_memory_address_word();
668
669      // In conservative mode, don't unguard unless the address is in the VM
670      if (addr != last_addr &&
671          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
672
673        // Set memory to RWX and retry
674        address page_start =
675          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
676        bool res = os::protect_memory((char*) page_start, page_size,
677                                      os::MEM_PROT_RWX);
678
679        if (PrintMiscellaneous && Verbose) {
680          char buf[256];
681          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
682                       "at " INTPTR_FORMAT
683                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
684                       page_start, (res ? "success" : "failed"), errno);
685          tty->print_raw_cr(buf);
686        }
687        stub = pc;
688
689        // Set last_addr so if we fault again at the same address, we don't end
690        // up in an endless loop.
691        //
692        // There are two potential complications here.  Two threads trapping at
693        // the same address at the same time could cause one of the threads to
694        // think it already unguarded, and abort the VM.  Likely very rare.
695        //
696        // The other race involves two threads alternately trapping at
697        // different addresses and failing to unguard the page, resulting in
698        // an endless loop.  This condition is probably even more unlikely than
699        // the first.
700        //
701        // Although both cases could be avoided by using locks or thread local
702        // last_addr, these solutions are unnecessary complication: this
703        // handler is a best-effort safety net, not a complete solution.  It is
704        // disabled by default and should only be used as a workaround in case
705        // we missed any no-execute-unsafe VM code.
706
707        last_addr = addr;
708      }
709    }
710  }
711#endif // !AMD64
712
713  if (stub != NULL) {
714    // save all thread context in case we need to restore it
715    if (thread != NULL) thread->set_saved_exception_pc(pc);
716
717    uc->context_pc = (intptr_t)stub;
718    return true;
719  }
720
721  // signal-chaining
722  if (os::Bsd::chained_handler(sig, info, ucVoid)) {
723     return true;
724  }
725
726  if (!abort_if_unrecognized) {
727    // caller wants another chance, so give it to him
728    return false;
729  }
730
731  if (pc == NULL && uc != NULL) {
732    pc = os::Bsd::ucontext_get_pc(uc);
733  }
734
735  // unmask current signal
736  sigset_t newset;
737  sigemptyset(&newset);
738  sigaddset(&newset, sig);
739  sigprocmask(SIG_UNBLOCK, &newset, NULL);
740
741  VMError err(t, sig, pc, info, ucVoid);
742  err.report_and_die();
743
744  ShouldNotReachHere();
745}
746
747#ifdef _ALLBSD_SOURCE
748// From solaris_i486.s ported to bsd_i486.s
749extern "C" void fixcw();
750#endif
751
752void os::Bsd::init_thread_fpu_state(void) {
753#ifndef AMD64
754# ifdef _ALLBSD_SOURCE
755  // Set fpu to 53 bit precision. This happens too early to use a stub.
756  fixcw();
757# else
758  // set fpu to 53 bit precision
759  set_fpu_control_word(0x27f);
760# endif
761#endif // !AMD64
762}
763
764#ifndef _ALLBSD_SOURCE
765int os::Bsd::get_fpu_control_word(void) {
766#ifdef AMD64
767  return 0;
768#else
769  int fpu_control;
770  _FPU_GETCW(fpu_control);
771  return fpu_control & 0xffff;
772#endif // AMD64
773}
774
775void os::Bsd::set_fpu_control_word(int fpu_control) {
776#ifndef AMD64
777  _FPU_SETCW(fpu_control);
778#endif // !AMD64
779}
780#endif
781
782// Check that the bsd kernel version is 2.4 or higher since earlier
783// versions do not support SSE without patches.
784bool os::supports_sse() {
785#if defined(AMD64) || defined(_ALLBSD_SOURCE)
786  return true;
787#else
788  struct utsname uts;
789  if( uname(&uts) != 0 ) return false; // uname fails?
790  char *minor_string;
791  int major = strtol(uts.release,&minor_string,10);
792  int minor = strtol(minor_string+1,NULL,10);
793  bool result = (major > 2 || (major==2 && minor >= 4));
794#ifndef PRODUCT
795  if (PrintMiscellaneous && Verbose) {
796    tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
797               major,minor, result ? "DOES" : "does NOT");
798  }
799#endif
800  return result;
801#endif // AMD64
802}
803
804bool os::is_allocatable(size_t bytes) {
805#ifdef AMD64
806  // unused on amd64?
807  return true;
808#else
809
810  if (bytes < 2 * G) {
811    return true;
812  }
813
814  char* addr = reserve_memory(bytes, NULL);
815
816  if (addr != NULL) {
817    release_memory(addr, bytes);
818  }
819
820  return addr != NULL;
821#endif // AMD64
822}
823
824////////////////////////////////////////////////////////////////////////////////
825// thread stack
826
827#ifdef AMD64
828size_t os::Bsd::min_stack_allowed  = 64 * K;
829
830// amd64: pthread on amd64 is always in floating stack mode
831bool os::Bsd::supports_variable_stack_size() {  return true; }
832#else
833size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
834
835#ifdef __GNUC__
836#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
837#endif
838
839#ifdef _ALLBSD_SOURCE
840bool os::Bsd::supports_variable_stack_size() { return true; }
841#else
842// Test if pthread library can support variable thread stack size. BsdThreads
843// in fixed stack mode allocates 2M fixed slot for each thread. BsdThreads
844// in floating stack mode and NPTL support variable stack size.
845bool os::Bsd::supports_variable_stack_size() {
846  if (os::Bsd::is_NPTL()) {
847     // NPTL, yes
848     return true;
849
850  } else {
851    // Note: We can't control default stack size when creating a thread.
852    // If we use non-default stack size (pthread_attr_setstacksize), both
853    // floating stack and non-floating stack BsdThreads will return the
854    // same value. This makes it impossible to implement this function by
855    // detecting thread stack size directly.
856    //
857    // An alternative approach is to check %gs. Fixed-stack BsdThreads
858    // do not use %gs, so its value is 0. Floating-stack BsdThreads use
859    // %gs (either as LDT selector or GDT selector, depending on kernel)
860    // to access thread specific data.
861    //
862    // Note that %gs is a reserved glibc register since early 2001, so
863    // applications are not allowed to change its value (Ulrich Drepper from
864    // Redhat confirmed that all known offenders have been modified to use
865    // either %fs or TSD). In the worst case scenario, when VM is embedded in
866    // a native application that plays with %gs, we might see non-zero %gs
867    // even BsdThreads is running in fixed stack mode. As the result, we'll
868    // return true and skip _thread_safety_check(), so we may not be able to
869    // detect stack-heap collisions. But otherwise it's harmless.
870    //
871#ifdef __GNUC__
872    return (GET_GS() != 0);
873#else
874    return false;
875#endif
876  }
877}
878#endif
879#endif // AMD64
880
881// return default stack size for thr_type
882size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
883  // default stack size (compiler thread needs larger stack)
884#ifdef AMD64
885  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
886#else
887  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
888#endif // AMD64
889  return s;
890}
891
892size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
893  // Creating guard page is very expensive. Java thread has HotSpot
894  // guard page, only enable glibc guard page for non-Java threads.
895  return (thr_type == java_thread ? 0 : page_size());
896}
897
898// Java thread:
899//
900//   Low memory addresses
901//    +------------------------+
902//    |                        |\  JavaThread created by VM does not have glibc
903//    |    glibc guard page    | - guard, attached Java thread usually has
904//    |                        |/  1 page glibc guard.
905// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
906//    |                        |\
907//    |  HotSpot Guard Pages   | - red and yellow pages
908//    |                        |/
909//    +------------------------+ JavaThread::stack_yellow_zone_base()
910//    |                        |\
911//    |      Normal Stack      | -
912//    |                        |/
913// P2 +------------------------+ Thread::stack_base()
914//
915// Non-Java thread:
916//
917//   Low memory addresses
918//    +------------------------+
919//    |                        |\
920//    |  glibc guard page      | - usually 1 page
921//    |                        |/
922// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
923//    |                        |\
924//    |      Normal Stack      | -
925//    |                        |/
926// P2 +------------------------+ Thread::stack_base()
927//
928// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
929//    pthread_attr_getstack()
930
931static void current_stack_region(address * bottom, size_t * size) {
932#ifdef __APPLE__
933  pthread_t self = pthread_self();
934  void *stacktop = pthread_get_stackaddr_np(self);
935  *size = pthread_get_stacksize_np(self);
936  *bottom = (address) stacktop - *size;
937#elif defined(__OpenBSD__)
938  stack_t ss;
939  int rslt = pthread_stackseg_np(pthread_self(), &ss);
940
941  if (rslt != 0)
942    fatal(err_msg("pthread_stackseg_np failed with err = %d", rslt));
943
944  *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
945  *size   = ss.ss_size;
946#elif defined(_ALLBSD_SOURCE)
947  pthread_attr_t attr;
948
949  int rslt = pthread_attr_init(&attr);
950
951  // JVM needs to know exact stack location, abort if it fails
952  if (rslt != 0)
953    fatal(err_msg("pthread_attr_init failed with err = %d", rslt));
954
955  rslt = pthread_attr_get_np(pthread_self(), &attr);
956
957  if (rslt != 0)
958    fatal(err_msg("pthread_attr_get_np failed with err = %d", rslt));
959
960  if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
961    pthread_attr_getstacksize(&attr, size) != 0) {
962    fatal("Can not locate current stack attributes!");
963  }
964
965  pthread_attr_destroy(&attr);
966#else
967  if (os::Bsd::is_initial_thread()) {
968     // initial thread needs special handling because pthread_getattr_np()
969     // may return bogus value.
970     *bottom = os::Bsd::initial_thread_stack_bottom();
971     *size   = os::Bsd::initial_thread_stack_size();
972  } else {
973     pthread_attr_t attr;
974
975     int rslt = pthread_getattr_np(pthread_self(), &attr);
976
977     // JVM needs to know exact stack location, abort if it fails
978     if (rslt != 0) {
979       if (rslt == ENOMEM) {
980         vm_exit_out_of_memory(0, "pthread_getattr_np");
981       } else {
982         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
983       }
984     }
985
986     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
987         fatal("Can not locate current stack attributes!");
988     }
989
990     pthread_attr_destroy(&attr);
991
992  }
993#endif
994  assert(os::current_stack_pointer() >= *bottom &&
995         os::current_stack_pointer() < *bottom + *size, "just checking");
996}
997
998address os::current_stack_base() {
999  address bottom;
1000  size_t size;
1001  current_stack_region(&bottom, &size);
1002  return (bottom + size);
1003}
1004
1005size_t os::current_stack_size() {
1006  // stack size includes normal stack and HotSpot guard pages
1007  address bottom;
1008  size_t size;
1009  current_stack_region(&bottom, &size);
1010  return size;
1011}
1012
1013/////////////////////////////////////////////////////////////////////////////
1014// helper functions for fatal error handler
1015
1016void os::print_context(outputStream *st, void *context) {
1017  if (context == NULL) return;
1018
1019  ucontext_t *uc = (ucontext_t*)context;
1020  st->print_cr("Registers:");
1021#ifdef AMD64
1022  st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
1023  st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
1024  st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
1025  st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
1026  st->cr();
1027  st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
1028  st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
1029  st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
1030  st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
1031  st->cr();
1032  st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
1033  st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
1034  st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
1035  st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
1036  st->cr();
1037  st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
1038  st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
1039  st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
1040  st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
1041  st->cr();
1042  st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
1043  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
1044  st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
1045  st->cr();
1046  st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
1047#else
1048  st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
1049  st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
1050  st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
1051  st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
1052  st->cr();
1053  st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
1054  st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
1055  st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
1056  st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
1057  st->cr();
1058  st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
1059  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
1060#endif // AMD64
1061  st->cr();
1062  st->cr();
1063
1064  intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
1065  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
1066  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
1067  st->cr();
1068
1069  // Note: it may be unsafe to inspect memory near pc. For example, pc may
1070  // point to garbage if entry point in an nmethod is corrupted. Leave
1071  // this at the end, and hope for the best.
1072  address pc = os::Bsd::ucontext_get_pc(uc);
1073  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
1074  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
1075}
1076
1077void os::print_register_info(outputStream *st, void *context) {
1078  if (context == NULL) return;
1079
1080  ucontext_t *uc = (ucontext_t*)context;
1081
1082  st->print_cr("Register to memory mapping:");
1083  st->cr();
1084
1085  // this is horrendously verbose but the layout of the registers in the
1086  // context does not match how we defined our abstract Register set, so
1087  // we can't just iterate through the gregs area
1088
1089  // this is only for the "general purpose" registers
1090
1091#ifdef AMD64
1092  st->print("RAX="); print_location(st, uc->context_rax);
1093  st->print("RBX="); print_location(st, uc->context_rbx);
1094  st->print("RCX="); print_location(st, uc->context_rcx);
1095  st->print("RDX="); print_location(st, uc->context_rdx);
1096  st->print("RSP="); print_location(st, uc->context_rsp);
1097  st->print("RBP="); print_location(st, uc->context_rbp);
1098  st->print("RSI="); print_location(st, uc->context_rsi);
1099  st->print("RDI="); print_location(st, uc->context_rdi);
1100  st->print("R8 ="); print_location(st, uc->context_r8);
1101  st->print("R9 ="); print_location(st, uc->context_r9);
1102  st->print("R10="); print_location(st, uc->context_r10);
1103  st->print("R11="); print_location(st, uc->context_r11);
1104  st->print("R12="); print_location(st, uc->context_r12);
1105  st->print("R13="); print_location(st, uc->context_r13);
1106  st->print("R14="); print_location(st, uc->context_r14);
1107  st->print("R15="); print_location(st, uc->context_r15);
1108#else
1109  st->print("EAX="); print_location(st, uc->context_eax);
1110  st->print("EBX="); print_location(st, uc->context_ebx);
1111  st->print("ECX="); print_location(st, uc->context_ecx);
1112  st->print("EDX="); print_location(st, uc->context_edx);
1113  st->print("ESP="); print_location(st, uc->context_esp);
1114  st->print("EBP="); print_location(st, uc->context_ebp);
1115  st->print("ESI="); print_location(st, uc->context_esi);
1116  st->print("EDI="); print_location(st, uc->context_edi);
1117#endif // AMD64
1118
1119  st->cr();
1120}
1121
1122void os::setup_fpu() {
1123#ifndef AMD64
1124  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
1125  __asm__ volatile (  "fldcw (%0)" :
1126                      : "r" (fpu_cntrl) : "memory");
1127#endif // !AMD64
1128}
1129
1130#ifndef PRODUCT
1131void os::verify_stack_alignment() {
1132}
1133#endif
1134