os_bsd_x86.cpp revision 13249:a2753984d2c1
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "os_share_bsd.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/align.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdlib.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <pthread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/utsname.h>
71# include <sys/socket.h>
72# include <sys/wait.h>
73# include <pwd.h>
74# include <poll.h>
75#ifndef __OpenBSD__
76# include <ucontext.h>
77#endif
78
79#if !defined(__APPLE__) && !defined(__NetBSD__)
80# include <pthread_np.h>
81#endif
82
83// needed by current_stack_region() workaround for Mavericks
84#if defined(__APPLE__)
85# include <errno.h>
86# include <sys/types.h>
87# include <sys/sysctl.h>
88# define DEFAULT_MAIN_THREAD_STACK_PAGES 2048
89# define OS_X_10_9_0_KERNEL_MAJOR_VERSION 13
90#endif
91
92#ifdef AMD64
93#define SPELL_REG_SP "rsp"
94#define SPELL_REG_FP "rbp"
95#else
96#define SPELL_REG_SP "esp"
97#define SPELL_REG_FP "ebp"
98#endif // AMD64
99
100#ifdef __FreeBSD__
101# define context_trapno uc_mcontext.mc_trapno
102# ifdef AMD64
103#  define context_pc uc_mcontext.mc_rip
104#  define context_sp uc_mcontext.mc_rsp
105#  define context_fp uc_mcontext.mc_rbp
106#  define context_rip uc_mcontext.mc_rip
107#  define context_rsp uc_mcontext.mc_rsp
108#  define context_rbp uc_mcontext.mc_rbp
109#  define context_rax uc_mcontext.mc_rax
110#  define context_rbx uc_mcontext.mc_rbx
111#  define context_rcx uc_mcontext.mc_rcx
112#  define context_rdx uc_mcontext.mc_rdx
113#  define context_rsi uc_mcontext.mc_rsi
114#  define context_rdi uc_mcontext.mc_rdi
115#  define context_r8  uc_mcontext.mc_r8
116#  define context_r9  uc_mcontext.mc_r9
117#  define context_r10 uc_mcontext.mc_r10
118#  define context_r11 uc_mcontext.mc_r11
119#  define context_r12 uc_mcontext.mc_r12
120#  define context_r13 uc_mcontext.mc_r13
121#  define context_r14 uc_mcontext.mc_r14
122#  define context_r15 uc_mcontext.mc_r15
123#  define context_flags uc_mcontext.mc_flags
124#  define context_err uc_mcontext.mc_err
125# else
126#  define context_pc uc_mcontext.mc_eip
127#  define context_sp uc_mcontext.mc_esp
128#  define context_fp uc_mcontext.mc_ebp
129#  define context_eip uc_mcontext.mc_eip
130#  define context_esp uc_mcontext.mc_esp
131#  define context_eax uc_mcontext.mc_eax
132#  define context_ebx uc_mcontext.mc_ebx
133#  define context_ecx uc_mcontext.mc_ecx
134#  define context_edx uc_mcontext.mc_edx
135#  define context_ebp uc_mcontext.mc_ebp
136#  define context_esi uc_mcontext.mc_esi
137#  define context_edi uc_mcontext.mc_edi
138#  define context_eflags uc_mcontext.mc_eflags
139#  define context_trapno uc_mcontext.mc_trapno
140# endif
141#endif
142
143#ifdef __APPLE__
144# if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
145  // 10.5 UNIX03 member name prefixes
146  #define DU3_PREFIX(s, m) __ ## s.__ ## m
147# else
148  #define DU3_PREFIX(s, m) s ## . ## m
149# endif
150
151# ifdef AMD64
152#  define context_pc context_rip
153#  define context_sp context_rsp
154#  define context_fp context_rbp
155#  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
156#  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
157#  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
158#  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
159#  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
160#  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
161#  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
162#  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
163#  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
164#  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
165#  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
166#  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
167#  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
168#  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
169#  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
170#  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
171#  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
172#  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
173#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
174#  define context_err uc_mcontext->DU3_PREFIX(es,err)
175# else
176#  define context_pc context_eip
177#  define context_sp context_esp
178#  define context_fp context_ebp
179#  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
180#  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
181#  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
182#  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
183#  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
184#  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
185#  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
186#  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
187#  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
188#  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
189#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
190# endif
191#endif
192
193#ifdef __OpenBSD__
194# define context_trapno sc_trapno
195# ifdef AMD64
196#  define context_pc sc_rip
197#  define context_sp sc_rsp
198#  define context_fp sc_rbp
199#  define context_rip sc_rip
200#  define context_rsp sc_rsp
201#  define context_rbp sc_rbp
202#  define context_rax sc_rax
203#  define context_rbx sc_rbx
204#  define context_rcx sc_rcx
205#  define context_rdx sc_rdx
206#  define context_rsi sc_rsi
207#  define context_rdi sc_rdi
208#  define context_r8  sc_r8
209#  define context_r9  sc_r9
210#  define context_r10 sc_r10
211#  define context_r11 sc_r11
212#  define context_r12 sc_r12
213#  define context_r13 sc_r13
214#  define context_r14 sc_r14
215#  define context_r15 sc_r15
216#  define context_flags sc_rflags
217#  define context_err sc_err
218# else
219#  define context_pc sc_eip
220#  define context_sp sc_esp
221#  define context_fp sc_ebp
222#  define context_eip sc_eip
223#  define context_esp sc_esp
224#  define context_eax sc_eax
225#  define context_ebx sc_ebx
226#  define context_ecx sc_ecx
227#  define context_edx sc_edx
228#  define context_ebp sc_ebp
229#  define context_esi sc_esi
230#  define context_edi sc_edi
231#  define context_eflags sc_eflags
232#  define context_trapno sc_trapno
233# endif
234#endif
235
236#ifdef __NetBSD__
237# define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
238# ifdef AMD64
239#  define __register_t __greg_t
240#  define context_pc uc_mcontext.__gregs[_REG_RIP]
241#  define context_sp uc_mcontext.__gregs[_REG_URSP]
242#  define context_fp uc_mcontext.__gregs[_REG_RBP]
243#  define context_rip uc_mcontext.__gregs[_REG_RIP]
244#  define context_rsp uc_mcontext.__gregs[_REG_URSP]
245#  define context_rax uc_mcontext.__gregs[_REG_RAX]
246#  define context_rbx uc_mcontext.__gregs[_REG_RBX]
247#  define context_rcx uc_mcontext.__gregs[_REG_RCX]
248#  define context_rdx uc_mcontext.__gregs[_REG_RDX]
249#  define context_rbp uc_mcontext.__gregs[_REG_RBP]
250#  define context_rsi uc_mcontext.__gregs[_REG_RSI]
251#  define context_rdi uc_mcontext.__gregs[_REG_RDI]
252#  define context_r8  uc_mcontext.__gregs[_REG_R8]
253#  define context_r9  uc_mcontext.__gregs[_REG_R9]
254#  define context_r10 uc_mcontext.__gregs[_REG_R10]
255#  define context_r11 uc_mcontext.__gregs[_REG_R11]
256#  define context_r12 uc_mcontext.__gregs[_REG_R12]
257#  define context_r13 uc_mcontext.__gregs[_REG_R13]
258#  define context_r14 uc_mcontext.__gregs[_REG_R14]
259#  define context_r15 uc_mcontext.__gregs[_REG_R15]
260#  define context_flags uc_mcontext.__gregs[_REG_RFL]
261#  define context_err uc_mcontext.__gregs[_REG_ERR]
262# else
263#  define context_pc uc_mcontext.__gregs[_REG_EIP]
264#  define context_sp uc_mcontext.__gregs[_REG_UESP]
265#  define context_fp uc_mcontext.__gregs[_REG_EBP]
266#  define context_eip uc_mcontext.__gregs[_REG_EIP]
267#  define context_esp uc_mcontext.__gregs[_REG_UESP]
268#  define context_eax uc_mcontext.__gregs[_REG_EAX]
269#  define context_ebx uc_mcontext.__gregs[_REG_EBX]
270#  define context_ecx uc_mcontext.__gregs[_REG_ECX]
271#  define context_edx uc_mcontext.__gregs[_REG_EDX]
272#  define context_ebp uc_mcontext.__gregs[_REG_EBP]
273#  define context_esi uc_mcontext.__gregs[_REG_ESI]
274#  define context_edi uc_mcontext.__gregs[_REG_EDI]
275#  define context_eflags uc_mcontext.__gregs[_REG_EFL]
276#  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
277# endif
278#endif
279
280address os::current_stack_pointer() {
281#if defined(__clang__) || defined(__llvm__)
282  register void *esp;
283  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
284  return (address) esp;
285#elif defined(SPARC_WORKS)
286  register void *esp;
287  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
288  return (address) ((char*)esp + sizeof(long)*2);
289#else
290  register void *esp __asm__ (SPELL_REG_SP);
291  return (address) esp;
292#endif
293}
294
295char* os::non_memory_address_word() {
296  // Must never look like an address returned by reserve_memory,
297  // even in its subfields (as defined by the CPU immediate fields,
298  // if the CPU splits constants across multiple instructions).
299
300  return (char*) -1;
301}
302
303void os::initialize_thread(Thread* thr) {
304// Nothing to do.
305}
306
307address os::Bsd::ucontext_get_pc(const ucontext_t * uc) {
308  return (address)uc->context_pc;
309}
310
311void os::Bsd::ucontext_set_pc(ucontext_t * uc, address pc) {
312  uc->context_pc = (intptr_t)pc ;
313}
314
315intptr_t* os::Bsd::ucontext_get_sp(const ucontext_t * uc) {
316  return (intptr_t*)uc->context_sp;
317}
318
319intptr_t* os::Bsd::ucontext_get_fp(const ucontext_t * uc) {
320  return (intptr_t*)uc->context_fp;
321}
322
323// For Forte Analyzer AsyncGetCallTrace profiling support - thread
324// is currently interrupted by SIGPROF.
325// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
326// frames. Currently we don't do that on Bsd, so it's the same as
327// os::fetch_frame_from_context().
328// This method is also used for stack overflow signal handling.
329ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
330  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
331
332  assert(thread != NULL, "just checking");
333  assert(ret_sp != NULL, "just checking");
334  assert(ret_fp != NULL, "just checking");
335
336  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
337}
338
339ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
340                    intptr_t** ret_sp, intptr_t** ret_fp) {
341
342  ExtendedPC  epc;
343  const ucontext_t* uc = (const ucontext_t*)ucVoid;
344
345  if (uc != NULL) {
346    epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
347    if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
348    if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
349  } else {
350    // construct empty ExtendedPC for return value checking
351    epc = ExtendedPC(NULL);
352    if (ret_sp) *ret_sp = (intptr_t *)NULL;
353    if (ret_fp) *ret_fp = (intptr_t *)NULL;
354  }
355
356  return epc;
357}
358
359frame os::fetch_frame_from_context(const void* ucVoid) {
360  intptr_t* sp;
361  intptr_t* fp;
362  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
363  return frame(sp, fp, epc.pc());
364}
365
366frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
367  intptr_t* sp;
368  intptr_t* fp;
369  ExtendedPC epc = os::Bsd::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
370  return frame(sp, fp, epc.pc());
371}
372
373bool os::Bsd::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
374  address pc = (address) os::Bsd::ucontext_get_pc(uc);
375  if (Interpreter::contains(pc)) {
376    // interpreter performs stack banging after the fixed frame header has
377    // been generated while the compilers perform it before. To maintain
378    // semantic consistency between interpreted and compiled frames, the
379    // method returns the Java sender of the current frame.
380    *fr = os::fetch_frame_from_ucontext(thread, uc);
381    if (!fr->is_first_java_frame()) {
382      // get_frame_at_stack_banging_point() is only called when we
383      // have well defined stacks so java_sender() calls do not need
384      // to assert safe_for_sender() first.
385      *fr = fr->java_sender();
386    }
387  } else {
388    // more complex code with compiled code
389    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
390    CodeBlob* cb = CodeCache::find_blob(pc);
391    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
392      // Not sure where the pc points to, fallback to default
393      // stack overflow handling
394      return false;
395    } else {
396      *fr = os::fetch_frame_from_ucontext(thread, uc);
397      // in compiled code, the stack banging is performed just after the return pc
398      // has been pushed on the stack
399      *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
400      if (!fr->is_java_frame()) {
401        // See java_sender() comment above.
402        *fr = fr->java_sender();
403      }
404    }
405  }
406  assert(fr->is_java_frame(), "Safety check");
407  return true;
408}
409
410// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
411// turned off by -fomit-frame-pointer,
412frame os::get_sender_for_C_frame(frame* fr) {
413  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
414}
415
416intptr_t* _get_previous_fp() {
417#if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
418  register intptr_t **ebp;
419  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
420#else
421  register intptr_t **ebp __asm__ (SPELL_REG_FP);
422#endif
423  // ebp is for this frame (_get_previous_fp). We want the ebp for the
424  // caller of os::current_frame*(), so go up two frames. However, for
425  // optimized builds, _get_previous_fp() will be inlined, so only go
426  // up 1 frame in that case.
427#ifdef _NMT_NOINLINE_
428  return **(intptr_t***)ebp;
429#else
430  return *ebp;
431#endif
432}
433
434
435frame os::current_frame() {
436  intptr_t* fp = _get_previous_fp();
437  frame myframe((intptr_t*)os::current_stack_pointer(),
438                (intptr_t*)fp,
439                CAST_FROM_FN_PTR(address, os::current_frame));
440  if (os::is_first_C_frame(&myframe)) {
441    // stack is not walkable
442    return frame();
443  } else {
444    return os::get_sender_for_C_frame(&myframe);
445  }
446}
447
448// Utility functions
449
450// From IA32 System Programming Guide
451enum {
452  trap_page_fault = 0xE
453};
454
455extern "C" JNIEXPORT int
456JVM_handle_bsd_signal(int sig,
457                        siginfo_t* info,
458                        void* ucVoid,
459                        int abort_if_unrecognized) {
460  ucontext_t* uc = (ucontext_t*) ucVoid;
461
462  Thread* t = Thread::current_or_null_safe();
463
464  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
465  // (no destructors can be run)
466  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
467
468  SignalHandlerMark shm(t);
469
470  // Note: it's not uncommon that JNI code uses signal/sigset to install
471  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
472  // or have a SIGILL handler when detecting CPU type). When that happens,
473  // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
474  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
475  // that do not require siginfo/ucontext first.
476
477  if (sig == SIGPIPE || sig == SIGXFSZ) {
478    // allow chained handler to go first
479    if (os::Bsd::chained_handler(sig, info, ucVoid)) {
480      return true;
481    } else {
482      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
483      return true;
484    }
485  }
486
487  JavaThread* thread = NULL;
488  VMThread* vmthread = NULL;
489  if (os::Bsd::signal_handlers_are_installed) {
490    if (t != NULL ){
491      if(t->is_Java_thread()) {
492        thread = (JavaThread*)t;
493      }
494      else if(t->is_VM_thread()){
495        vmthread = (VMThread *)t;
496      }
497    }
498  }
499/*
500  NOTE: does not seem to work on bsd.
501  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
502    // can't decode this kind of signal
503    info = NULL;
504  } else {
505    assert(sig == info->si_signo, "bad siginfo");
506  }
507*/
508  // decide if this trap can be handled by a stub
509  address stub = NULL;
510
511  address pc          = NULL;
512
513  //%note os_trap_1
514  if (info != NULL && uc != NULL && thread != NULL) {
515    pc = (address) os::Bsd::ucontext_get_pc(uc);
516
517    if (StubRoutines::is_safefetch_fault(pc)) {
518      os::Bsd::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
519      return 1;
520    }
521
522    // Handle ALL stack overflow variations here
523    if (sig == SIGSEGV || sig == SIGBUS) {
524      address addr = (address) info->si_addr;
525
526      // check if fault address is within thread stack
527      if (thread->on_local_stack(addr)) {
528        // stack overflow
529        if (thread->in_stack_yellow_reserved_zone(addr)) {
530          if (thread->thread_state() == _thread_in_Java) {
531            if (thread->in_stack_reserved_zone(addr)) {
532              frame fr;
533              if (os::Bsd::get_frame_at_stack_banging_point(thread, uc, &fr)) {
534                assert(fr.is_java_frame(), "Must be a Java frame");
535                frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
536                if (activation.sp() != NULL) {
537                  thread->disable_stack_reserved_zone();
538                  if (activation.is_interpreted_frame()) {
539                    thread->set_reserved_stack_activation((address)(
540                      activation.fp() + frame::interpreter_frame_initial_sp_offset));
541                  } else {
542                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
543                  }
544                  return 1;
545                }
546              }
547            }
548            // Throw a stack overflow exception.  Guard pages will be reenabled
549            // while unwinding the stack.
550            thread->disable_stack_yellow_reserved_zone();
551            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
552          } else {
553            // Thread was in the vm or native code.  Return and try to finish.
554            thread->disable_stack_yellow_reserved_zone();
555            return 1;
556          }
557        } else if (thread->in_stack_red_zone(addr)) {
558          // Fatal red zone violation.  Disable the guard pages and fall through
559          // to handle_unexpected_exception way down below.
560          thread->disable_stack_red_zone();
561          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
562        }
563      }
564    }
565
566    if ((sig == SIGSEGV || sig == SIGBUS) && VM_Version::is_cpuinfo_segv_addr(pc)) {
567      // Verify that OS save/restore AVX registers.
568      stub = VM_Version::cpuinfo_cont_addr();
569    }
570
571    // We test if stub is already set (by the stack overflow code
572    // above) so it is not overwritten by the code that follows. This
573    // check is not required on other platforms, because on other
574    // platforms we check for SIGSEGV only or SIGBUS only, where here
575    // we have to check for both SIGSEGV and SIGBUS.
576    if (thread->thread_state() == _thread_in_Java && stub == NULL) {
577      // Java thread running in Java code => find exception handler if any
578      // a fault inside compiled code, the interpreter, or a stub
579
580      if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
581        stub = SharedRuntime::get_poll_stub(pc);
582#if defined(__APPLE__)
583      // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
584      // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
585      // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
586      // being called, so only do so if the implicit NULL check is not necessary.
587      } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
588#else
589      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
590#endif
591        // BugId 4454115: A read from a MappedByteBuffer can fault
592        // here if the underlying file has been truncated.
593        // Do not crash the VM in such a case.
594        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
595        CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
596        if (nm != NULL && nm->has_unsafe_access()) {
597          address next_pc = Assembler::locate_next_instruction(pc);
598          stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
599        }
600      }
601      else
602
603#ifdef AMD64
604      if (sig == SIGFPE  &&
605          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
606        stub =
607          SharedRuntime::
608          continuation_for_implicit_exception(thread,
609                                              pc,
610                                              SharedRuntime::
611                                              IMPLICIT_DIVIDE_BY_ZERO);
612#ifdef __APPLE__
613      } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
614        int op = pc[0];
615
616        // Skip REX
617        if ((pc[0] & 0xf0) == 0x40) {
618          op = pc[1];
619        } else {
620          op = pc[0];
621        }
622
623        // Check for IDIV
624        if (op == 0xF7) {
625          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
626        } else {
627          // TODO: handle more cases if we are using other x86 instructions
628          //   that can generate SIGFPE signal.
629          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
630          fatal("please update this code.");
631        }
632#endif /* __APPLE__ */
633
634#else
635      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
636        // HACK: si_code does not work on bsd 2.2.12-20!!!
637        int op = pc[0];
638        if (op == 0xDB) {
639          // FIST
640          // TODO: The encoding of D2I in i486.ad can cause an exception
641          // prior to the fist instruction if there was an invalid operation
642          // pending. We want to dismiss that exception. From the win_32
643          // side it also seems that if it really was the fist causing
644          // the exception that we do the d2i by hand with different
645          // rounding. Seems kind of weird.
646          // NOTE: that we take the exception at the NEXT floating point instruction.
647          assert(pc[0] == 0xDB, "not a FIST opcode");
648          assert(pc[1] == 0x14, "not a FIST opcode");
649          assert(pc[2] == 0x24, "not a FIST opcode");
650          return true;
651        } else if (op == 0xF7) {
652          // IDIV
653          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
654        } else {
655          // TODO: handle more cases if we are using other x86 instructions
656          //   that can generate SIGFPE signal on bsd.
657          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
658          fatal("please update this code.");
659        }
660#endif // AMD64
661      } else if ((sig == SIGSEGV || sig == SIGBUS) &&
662               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
663          // Determination of interpreter/vtable stub/compiled code null exception
664          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
665      }
666    } else if (thread->thread_state() == _thread_in_vm &&
667               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
668               thread->doing_unsafe_access()) {
669        address next_pc = Assembler::locate_next_instruction(pc);
670        stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
671    }
672
673    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
674    // and the heap gets shrunk before the field access.
675    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
676      address addr = JNI_FastGetField::find_slowcase_pc(pc);
677      if (addr != (address)-1) {
678        stub = addr;
679      }
680    }
681
682    // Check to see if we caught the safepoint code in the
683    // process of write protecting the memory serialization page.
684    // It write enables the page immediately after protecting it
685    // so we can just return to retry the write.
686    if ((sig == SIGSEGV || sig == SIGBUS) &&
687        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
688      // Block current thread until the memory serialize page permission restored.
689      os::block_on_serialize_page_trap();
690      return true;
691    }
692  }
693
694#ifndef AMD64
695  // Execution protection violation
696  //
697  // This should be kept as the last step in the triage.  We don't
698  // have a dedicated trap number for a no-execute fault, so be
699  // conservative and allow other handlers the first shot.
700  //
701  // Note: We don't test that info->si_code == SEGV_ACCERR here.
702  // this si_code is so generic that it is almost meaningless; and
703  // the si_code for this condition may change in the future.
704  // Furthermore, a false-positive should be harmless.
705  if (UnguardOnExecutionViolation > 0 &&
706      (sig == SIGSEGV || sig == SIGBUS) &&
707      uc->context_trapno == trap_page_fault) {
708    int page_size = os::vm_page_size();
709    address addr = (address) info->si_addr;
710    address pc = os::Bsd::ucontext_get_pc(uc);
711    // Make sure the pc and the faulting address are sane.
712    //
713    // If an instruction spans a page boundary, and the page containing
714    // the beginning of the instruction is executable but the following
715    // page is not, the pc and the faulting address might be slightly
716    // different - we still want to unguard the 2nd page in this case.
717    //
718    // 15 bytes seems to be a (very) safe value for max instruction size.
719    bool pc_is_near_addr =
720      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
721    bool instr_spans_page_boundary =
722      (align_down((intptr_t) pc ^ (intptr_t) addr,
723                       (intptr_t) page_size) > 0);
724
725    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
726      static volatile address last_addr =
727        (address) os::non_memory_address_word();
728
729      // In conservative mode, don't unguard unless the address is in the VM
730      if (addr != last_addr &&
731          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
732
733        // Set memory to RWX and retry
734        address page_start = align_down(addr, page_size);
735        bool res = os::protect_memory((char*) page_start, page_size,
736                                      os::MEM_PROT_RWX);
737
738        log_debug(os)("Execution protection violation "
739                      "at " INTPTR_FORMAT
740                      ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
741                      p2i(page_start), (res ? "success" : "failed"), errno);
742        stub = pc;
743
744        // Set last_addr so if we fault again at the same address, we don't end
745        // up in an endless loop.
746        //
747        // There are two potential complications here.  Two threads trapping at
748        // the same address at the same time could cause one of the threads to
749        // think it already unguarded, and abort the VM.  Likely very rare.
750        //
751        // The other race involves two threads alternately trapping at
752        // different addresses and failing to unguard the page, resulting in
753        // an endless loop.  This condition is probably even more unlikely than
754        // the first.
755        //
756        // Although both cases could be avoided by using locks or thread local
757        // last_addr, these solutions are unnecessary complication: this
758        // handler is a best-effort safety net, not a complete solution.  It is
759        // disabled by default and should only be used as a workaround in case
760        // we missed any no-execute-unsafe VM code.
761
762        last_addr = addr;
763      }
764    }
765  }
766#endif // !AMD64
767
768  if (stub != NULL) {
769    // save all thread context in case we need to restore it
770    if (thread != NULL) thread->set_saved_exception_pc(pc);
771
772    os::Bsd::ucontext_set_pc(uc, stub);
773    return true;
774  }
775
776  // signal-chaining
777  if (os::Bsd::chained_handler(sig, info, ucVoid)) {
778     return true;
779  }
780
781  if (!abort_if_unrecognized) {
782    // caller wants another chance, so give it to him
783    return false;
784  }
785
786  if (pc == NULL && uc != NULL) {
787    pc = os::Bsd::ucontext_get_pc(uc);
788  }
789
790  // unmask current signal
791  sigset_t newset;
792  sigemptyset(&newset);
793  sigaddset(&newset, sig);
794  sigprocmask(SIG_UNBLOCK, &newset, NULL);
795
796  VMError::report_and_die(t, sig, pc, info, ucVoid);
797
798  ShouldNotReachHere();
799  return false;
800}
801
802// From solaris_i486.s ported to bsd_i486.s
803extern "C" void fixcw();
804
805void os::Bsd::init_thread_fpu_state(void) {
806#ifndef AMD64
807  // Set fpu to 53 bit precision. This happens too early to use a stub.
808  fixcw();
809#endif // !AMD64
810}
811
812
813// Check that the bsd kernel version is 2.4 or higher since earlier
814// versions do not support SSE without patches.
815bool os::supports_sse() {
816  return true;
817}
818
819bool os::is_allocatable(size_t bytes) {
820#ifdef AMD64
821  // unused on amd64?
822  return true;
823#else
824
825  if (bytes < 2 * G) {
826    return true;
827  }
828
829  char* addr = reserve_memory(bytes, NULL);
830
831  if (addr != NULL) {
832    release_memory(addr, bytes);
833  }
834
835  return addr != NULL;
836#endif // AMD64
837}
838
839////////////////////////////////////////////////////////////////////////////////
840// thread stack
841
842// Minimum usable stack sizes required to get to user code. Space for
843// HotSpot guard pages is added later.
844size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K;
845size_t os::Posix::_java_thread_min_stack_allowed = 48 * K;
846#ifdef _LP64
847size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
848#else
849size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
850#endif // _LP64
851
852#ifndef AMD64
853#ifdef __GNUC__
854#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
855#endif
856#endif // AMD64
857
858// return default stack size for thr_type
859size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
860  // default stack size (compiler thread needs larger stack)
861#ifdef AMD64
862  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
863#else
864  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
865#endif // AMD64
866  return s;
867}
868
869
870// Java thread:
871//
872//   Low memory addresses
873//    +------------------------+
874//    |                        |\  Java thread created by VM does not have glibc
875//    |    glibc guard page    | - guard, attached Java thread usually has
876//    |                        |/  1 glibc guard page.
877// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
878//    |                        |\
879//    |  HotSpot Guard Pages   | - red, yellow and reserved pages
880//    |                        |/
881//    +------------------------+ JavaThread::stack_reserved_zone_base()
882//    |                        |\
883//    |      Normal Stack      | -
884//    |                        |/
885// P2 +------------------------+ Thread::stack_base()
886//
887// Non-Java thread:
888//
889//   Low memory addresses
890//    +------------------------+
891//    |                        |\
892//    |  glibc guard page      | - usually 1 page
893//    |                        |/
894// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
895//    |                        |\
896//    |      Normal Stack      | -
897//    |                        |/
898// P2 +------------------------+ Thread::stack_base()
899//
900// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
901//    pthread_attr_getstack()
902
903static void current_stack_region(address * bottom, size_t * size) {
904#ifdef __APPLE__
905  pthread_t self = pthread_self();
906  void *stacktop = pthread_get_stackaddr_np(self);
907  *size = pthread_get_stacksize_np(self);
908  // workaround for OS X 10.9.0 (Mavericks)
909  // pthread_get_stacksize_np returns 128 pages even though the actual size is 2048 pages
910  if (pthread_main_np() == 1) {
911    if ((*size) < (DEFAULT_MAIN_THREAD_STACK_PAGES * (size_t)getpagesize())) {
912      char kern_osrelease[256];
913      size_t kern_osrelease_size = sizeof(kern_osrelease);
914      int ret = sysctlbyname("kern.osrelease", kern_osrelease, &kern_osrelease_size, NULL, 0);
915      if (ret == 0) {
916        // get the major number, atoi will ignore the minor amd micro portions of the version string
917        if (atoi(kern_osrelease) >= OS_X_10_9_0_KERNEL_MAJOR_VERSION) {
918          *size = (DEFAULT_MAIN_THREAD_STACK_PAGES*getpagesize());
919        }
920      }
921    }
922  }
923  *bottom = (address) stacktop - *size;
924#elif defined(__OpenBSD__)
925  stack_t ss;
926  int rslt = pthread_stackseg_np(pthread_self(), &ss);
927
928  if (rslt != 0)
929    fatal("pthread_stackseg_np failed with error = %d", rslt);
930
931  *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
932  *size   = ss.ss_size;
933#else
934  pthread_attr_t attr;
935
936  int rslt = pthread_attr_init(&attr);
937
938  // JVM needs to know exact stack location, abort if it fails
939  if (rslt != 0)
940    fatal("pthread_attr_init failed with error = %d", rslt);
941
942  rslt = pthread_attr_get_np(pthread_self(), &attr);
943
944  if (rslt != 0)
945    fatal("pthread_attr_get_np failed with error = %d", rslt);
946
947  if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
948    pthread_attr_getstacksize(&attr, size) != 0) {
949    fatal("Can not locate current stack attributes!");
950  }
951
952  pthread_attr_destroy(&attr);
953#endif
954  assert(os::current_stack_pointer() >= *bottom &&
955         os::current_stack_pointer() < *bottom + *size, "just checking");
956}
957
958address os::current_stack_base() {
959  address bottom;
960  size_t size;
961  current_stack_region(&bottom, &size);
962  return (bottom + size);
963}
964
965size_t os::current_stack_size() {
966  // stack size includes normal stack and HotSpot guard pages
967  address bottom;
968  size_t size;
969  current_stack_region(&bottom, &size);
970  return size;
971}
972
973/////////////////////////////////////////////////////////////////////////////
974// helper functions for fatal error handler
975
976void os::print_context(outputStream *st, const void *context) {
977  if (context == NULL) return;
978
979  const ucontext_t *uc = (const ucontext_t*)context;
980  st->print_cr("Registers:");
981#ifdef AMD64
982  st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
983  st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
984  st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
985  st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
986  st->cr();
987  st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
988  st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
989  st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
990  st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
991  st->cr();
992  st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
993  st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
994  st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
995  st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
996  st->cr();
997  st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
998  st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
999  st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
1000  st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
1001  st->cr();
1002  st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
1003  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
1004  st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
1005  st->cr();
1006  st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
1007#else
1008  st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
1009  st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
1010  st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
1011  st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
1012  st->cr();
1013  st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
1014  st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
1015  st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
1016  st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
1017  st->cr();
1018  st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
1019  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
1020#endif // AMD64
1021  st->cr();
1022  st->cr();
1023
1024  intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
1025  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
1026  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
1027  st->cr();
1028
1029  // Note: it may be unsafe to inspect memory near pc. For example, pc may
1030  // point to garbage if entry point in an nmethod is corrupted. Leave
1031  // this at the end, and hope for the best.
1032  address pc = os::Bsd::ucontext_get_pc(uc);
1033  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
1034  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
1035}
1036
1037void os::print_register_info(outputStream *st, const void *context) {
1038  if (context == NULL) return;
1039
1040  const ucontext_t *uc = (const ucontext_t*)context;
1041
1042  st->print_cr("Register to memory mapping:");
1043  st->cr();
1044
1045  // this is horrendously verbose but the layout of the registers in the
1046  // context does not match how we defined our abstract Register set, so
1047  // we can't just iterate through the gregs area
1048
1049  // this is only for the "general purpose" registers
1050
1051#ifdef AMD64
1052  st->print("RAX="); print_location(st, uc->context_rax);
1053  st->print("RBX="); print_location(st, uc->context_rbx);
1054  st->print("RCX="); print_location(st, uc->context_rcx);
1055  st->print("RDX="); print_location(st, uc->context_rdx);
1056  st->print("RSP="); print_location(st, uc->context_rsp);
1057  st->print("RBP="); print_location(st, uc->context_rbp);
1058  st->print("RSI="); print_location(st, uc->context_rsi);
1059  st->print("RDI="); print_location(st, uc->context_rdi);
1060  st->print("R8 ="); print_location(st, uc->context_r8);
1061  st->print("R9 ="); print_location(st, uc->context_r9);
1062  st->print("R10="); print_location(st, uc->context_r10);
1063  st->print("R11="); print_location(st, uc->context_r11);
1064  st->print("R12="); print_location(st, uc->context_r12);
1065  st->print("R13="); print_location(st, uc->context_r13);
1066  st->print("R14="); print_location(st, uc->context_r14);
1067  st->print("R15="); print_location(st, uc->context_r15);
1068#else
1069  st->print("EAX="); print_location(st, uc->context_eax);
1070  st->print("EBX="); print_location(st, uc->context_ebx);
1071  st->print("ECX="); print_location(st, uc->context_ecx);
1072  st->print("EDX="); print_location(st, uc->context_edx);
1073  st->print("ESP="); print_location(st, uc->context_esp);
1074  st->print("EBP="); print_location(st, uc->context_ebp);
1075  st->print("ESI="); print_location(st, uc->context_esi);
1076  st->print("EDI="); print_location(st, uc->context_edi);
1077#endif // AMD64
1078
1079  st->cr();
1080}
1081
1082void os::setup_fpu() {
1083#ifndef AMD64
1084  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
1085  __asm__ volatile (  "fldcw (%0)" :
1086                      : "r" (fpu_cntrl) : "memory");
1087#endif // !AMD64
1088}
1089
1090#ifndef PRODUCT
1091void os::verify_stack_alignment() {
1092}
1093#endif
1094
1095int os::extra_bang_size_in_bytes() {
1096  // JDK-8050147 requires the full cache line bang for x86.
1097  return VM_Version::L1_line_size();
1098}
1099