os_aix_ppc.cpp revision 11979:e7203436d63d
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2012, 2016 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26// no precompiled headers
27#include "asm/assembler.inline.hpp"
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_aix.h"
36#include "memory/allocation.inline.hpp"
37#include "nativeInst_ppc.hpp"
38#include "os_share_aix.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "porting_aix.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/frame.inline.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/sharedRuntime.hpp"
52#include "runtime/stubRoutines.hpp"
53#include "runtime/thread.inline.hpp"
54#include "runtime/timer.hpp"
55#include "utilities/events.hpp"
56#include "utilities/vmError.hpp"
57#ifdef COMPILER1
58#include "c1/c1_Runtime1.hpp"
59#endif
60#ifdef COMPILER2
61#include "opto/runtime.hpp"
62#endif
63
64// put OS-includes here
65# include <ucontext.h>
66
67address os::current_stack_pointer() {
68  address csp;
69
70#if !defined(USE_XLC_BUILTINS)
71  // inline assembly for `mr regno(csp), R1_SP':
72  __asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
73#else
74  csp = (address) __builtin_frame_address(0);
75#endif
76
77  return csp;
78}
79
80char* os::non_memory_address_word() {
81  // Must never look like an address returned by reserve_memory,
82  // even in its subfields (as defined by the CPU immediate fields,
83  // if the CPU splits constants across multiple instructions).
84
85  return (char*) -1;
86}
87
88// OS specific thread initialization
89//
90// Calculate and store the limits of the memory stack.
91void os::initialize_thread(Thread *thread) { }
92
93// Frame information (pc, sp, fp) retrieved via ucontext
94// always looks like a C-frame according to the frame
95// conventions in frame_ppc.hpp.
96
97address os::Aix::ucontext_get_pc(const ucontext_t * uc) {
98  return (address)uc->uc_mcontext.jmp_context.iar;
99}
100
101intptr_t* os::Aix::ucontext_get_sp(const ucontext_t * uc) {
102  // gpr1 holds the stack pointer on aix
103  return (intptr_t*)uc->uc_mcontext.jmp_context.gpr[1/*REG_SP*/];
104}
105
106intptr_t* os::Aix::ucontext_get_fp(const ucontext_t * uc) {
107  return NULL;
108}
109
110void os::Aix::ucontext_set_pc(ucontext_t* uc, address new_pc) {
111  uc->uc_mcontext.jmp_context.iar = (uint64_t) new_pc;
112}
113
114ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
115                                        intptr_t** ret_sp, intptr_t** ret_fp) {
116
117  ExtendedPC  epc;
118  const ucontext_t* uc = (const ucontext_t*)ucVoid;
119
120  if (uc != NULL) {
121    epc = ExtendedPC(os::Aix::ucontext_get_pc(uc));
122    if (ret_sp) *ret_sp = os::Aix::ucontext_get_sp(uc);
123    if (ret_fp) *ret_fp = os::Aix::ucontext_get_fp(uc);
124  } else {
125    // construct empty ExtendedPC for return value checking
126    epc = ExtendedPC(NULL);
127    if (ret_sp) *ret_sp = (intptr_t *)NULL;
128    if (ret_fp) *ret_fp = (intptr_t *)NULL;
129  }
130
131  return epc;
132}
133
134frame os::fetch_frame_from_context(const void* ucVoid) {
135  intptr_t* sp;
136  intptr_t* fp;
137  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
138  // Avoid crash during crash if pc broken.
139  if (epc.pc()) {
140    frame fr(sp, epc.pc());
141    return fr;
142  }
143  frame fr(sp);
144  return fr;
145}
146
147bool os::Aix::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
148  address pc = (address) os::Aix::ucontext_get_pc(uc);
149  if (Interpreter::contains(pc)) {
150    // Interpreter performs stack banging after the fixed frame header has
151    // been generated while the compilers perform it before. To maintain
152    // semantic consistency between interpreted and compiled frames, the
153    // method returns the Java sender of the current frame.
154    *fr = os::fetch_frame_from_context(uc);
155    if (!fr->is_first_java_frame()) {
156      assert(fr->safe_for_sender(thread), "Safety check");
157      *fr = fr->java_sender();
158    }
159  } else {
160    // More complex code with compiled code.
161    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
162    CodeBlob* cb = CodeCache::find_blob(pc);
163    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
164      // Not sure where the pc points to, fallback to default
165      // stack overflow handling. In compiled code, we bang before
166      // the frame is complete.
167      return false;
168    } else {
169      intptr_t* sp = os::Aix::ucontext_get_sp(uc);
170      *fr = frame(sp, (address)*sp);
171      if (!fr->is_java_frame()) {
172        assert(fr->safe_for_sender(thread), "Safety check");
173        assert(!fr->is_first_frame(), "Safety check");
174        *fr = fr->java_sender();
175      }
176    }
177  }
178  assert(fr->is_java_frame(), "Safety check");
179  return true;
180}
181
182frame os::get_sender_for_C_frame(frame* fr) {
183  if (*fr->sp() == NULL) {
184    // fr is the last C frame
185    return frame(NULL, NULL);
186  }
187  return frame(fr->sender_sp(), fr->sender_pc());
188}
189
190
191frame os::current_frame() {
192  intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
193  // hack.
194  frame topframe(csp, (address)0x8);
195  // return sender of current topframe which hopefully has pc != NULL.
196  return os::get_sender_for_C_frame(&topframe);
197}
198
199// Utility functions
200
201extern "C" JNIEXPORT int
202JVM_handle_aix_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) {
203
204  ucontext_t* uc = (ucontext_t*) ucVoid;
205
206  Thread* t = Thread::current_or_null_safe();
207
208  SignalHandlerMark shm(t);
209
210  // Note: it's not uncommon that JNI code uses signal/sigset to install
211  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
212  // or have a SIGILL handler when detecting CPU type). When that happens,
213  // JVM_handle_aix_signal() might be invoked with junk info/ucVoid. To
214  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
215  // that do not require siginfo/ucontext first.
216
217  if (sig == SIGPIPE) {
218    if (os::Aix::chained_handler(sig, info, ucVoid)) {
219      return 1;
220    } else {
221      // Ignoring SIGPIPE - see bugs 4229104
222      return 1;
223    }
224  }
225
226  JavaThread* thread = NULL;
227  VMThread* vmthread = NULL;
228  if (os::Aix::signal_handlers_are_installed) {
229    if (t != NULL) {
230      if(t->is_Java_thread()) {
231        thread = (JavaThread*)t;
232      }
233      else if(t->is_VM_thread()) {
234        vmthread = (VMThread *)t;
235      }
236    }
237  }
238
239  // Decide if this trap can be handled by a stub.
240  address stub = NULL;
241
242  // retrieve program counter
243  address const pc = uc ? os::Aix::ucontext_get_pc(uc) : NULL;
244
245  // retrieve crash address
246  address const addr = info ? (const address) info->si_addr : NULL;
247
248  // SafeFetch 32 handling:
249  // - make it work if _thread is null
250  // - make it use the standard os::...::ucontext_get/set_pc APIs
251  if (uc) {
252    address const pc = os::Aix::ucontext_get_pc(uc);
253    if (pc && StubRoutines::is_safefetch_fault(pc)) {
254      os::Aix::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
255      return true;
256    }
257  }
258
259  // Handle SIGDANGER right away. AIX would raise SIGDANGER whenever available swap
260  // space falls below 30%. This is only a chance for the process to gracefully abort.
261  // We can't hope to proceed after SIGDANGER since SIGKILL tailgates.
262  if (sig == SIGDANGER) {
263    goto report_and_die;
264  }
265
266  if (info == NULL || uc == NULL || thread == NULL && vmthread == NULL) {
267    goto run_chained_handler;
268  }
269
270  // If we are a java thread...
271  if (thread != NULL) {
272
273    // Handle ALL stack overflow variations here
274    if (sig == SIGSEGV && thread->on_local_stack(addr)) {
275      // stack overflow
276      //
277      // If we are in a yellow zone and we are inside java, we disable the yellow zone and
278      // throw a stack overflow exception.
279      // If we are in native code or VM C code, we report-and-die. The original coding tried
280      // to continue with yellow zone disabled, but that doesn't buy us much and prevents
281      // hs_err_pid files.
282      if (thread->in_stack_yellow_reserved_zone(addr)) {
283        if (thread->thread_state() == _thread_in_Java) {
284            if (thread->in_stack_reserved_zone(addr)) {
285              frame fr;
286              if (os::Aix::get_frame_at_stack_banging_point(thread, uc, &fr)) {
287                assert(fr.is_java_frame(), "Must be a Javac frame");
288                frame activation =
289                  SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
290                if (activation.sp() != NULL) {
291                  thread->disable_stack_reserved_zone();
292                  if (activation.is_interpreted_frame()) {
293                    thread->set_reserved_stack_activation((address)activation.fp());
294                  } else {
295                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
296                  }
297                  return 1;
298                }
299              }
300            }
301          // Throw a stack overflow exception.
302          // Guard pages will be reenabled while unwinding the stack.
303          thread->disable_stack_yellow_reserved_zone();
304          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
305          goto run_stub;
306        } else {
307          // Thread was in the vm or native code. Return and try to finish.
308          thread->disable_stack_yellow_reserved_zone();
309          return 1;
310        }
311      } else if (thread->in_stack_red_zone(addr)) {
312        // Fatal red zone violation. Disable the guard pages and fall through
313        // to handle_unexpected_exception way down below.
314        thread->disable_stack_red_zone();
315        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
316        goto report_and_die;
317      } else {
318        // This means a segv happened inside our stack, but not in
319        // the guarded zone. I'd like to know when this happens,
320        tty->print_raw_cr("SIGSEGV happened inside stack but outside yellow and red zone.");
321        goto report_and_die;
322      }
323
324    } // end handle SIGSEGV inside stack boundaries
325
326    if (thread->thread_state() == _thread_in_Java) {
327      // Java thread running in Java code
328
329      // The following signals are used for communicating VM events:
330      //
331      // SIGILL: the compiler generates illegal opcodes
332      //   at places where it wishes to interrupt the VM:
333      //   Safepoints, Unreachable Code, Entry points of Zombie methods,
334      //    This results in a SIGILL with (*pc) == inserted illegal instruction.
335      //
336      //   (so, SIGILLs with a pc inside the zero page are real errors)
337      //
338      // SIGTRAP:
339      //   The ppc trap instruction raises a SIGTRAP and is very efficient if it
340      //   does not trap. It is used for conditional branches that are expected
341      //   to be never taken. These are:
342      //     - zombie methods
343      //     - IC (inline cache) misses.
344      //     - null checks leading to UncommonTraps.
345      //     - range checks leading to Uncommon Traps.
346      //   On Aix, these are especially null checks, as the ImplicitNullCheck
347      //   optimization works only in rare cases, as the page at address 0 is only
348      //   write protected.      //
349      //   Note: !UseSIGTRAP is used to prevent SIGTRAPS altogether, to facilitate debugging.
350      //
351      // SIGSEGV:
352      //   used for safe point polling:
353      //     To notify all threads that they have to reach a safe point, safe point polling is used:
354      //     All threads poll a certain mapped memory page. Normally, this page has read access.
355      //     If the VM wants to inform the threads about impending safe points, it puts this
356      //     page to read only ("poisens" the page), and the threads then reach a safe point.
357      //   used for null checks:
358      //     If the compiler finds a store it uses it for a null check. Unfortunately this
359      //     happens rarely.  In heap based and disjoint base compressd oop modes also loads
360      //     are used for null checks.
361
362      // A VM-related SIGILL may only occur if we are not in the zero page.
363      // On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
364      // in the zero page, because it is filled with 0x0. We ignore
365      // explicit SIGILLs in the zero page.
366      if (sig == SIGILL && (pc < (address) 0x200)) {
367        if (TraceTraps) {
368          tty->print_raw_cr("SIGILL happened inside zero page.");
369        }
370        goto report_and_die;
371      }
372
373      // Handle signal from NativeJump::patch_verified_entry().
374      if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
375          (!TrapBasedNotEntrantChecks && sig == SIGILL  && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
376        if (TraceTraps) {
377          tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
378        }
379        stub = SharedRuntime::get_handle_wrong_method_stub();
380        goto run_stub;
381      }
382
383      else if (sig == SIGSEGV && os::is_poll_address(addr)) {
384        if (TraceTraps) {
385          tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (SIGSEGV)", pc);
386        }
387        stub = SharedRuntime::get_poll_stub(pc);
388        goto run_stub;
389      }
390
391      // SIGTRAP-based ic miss check in compiled code.
392      else if (sig == SIGTRAP && TrapBasedICMissChecks &&
393               nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
394        if (TraceTraps) {
395          tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
396        }
397        stub = SharedRuntime::get_ic_miss_stub();
398        goto run_stub;
399      }
400
401      // SIGTRAP-based implicit null check in compiled code.
402      else if (sig == SIGTRAP && TrapBasedNullChecks &&
403               nativeInstruction_at(pc)->is_sigtrap_null_check()) {
404        if (TraceTraps) {
405          tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
406        }
407        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
408        goto run_stub;
409      }
410
411      // SIGSEGV-based implicit null check in compiled code.
412      else if (sig == SIGSEGV && ImplicitNullChecks &&
413               CodeCache::contains((void*) pc) &&
414               !MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
415        if (TraceTraps) {
416          tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc);
417        }
418        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
419      }
420
421#ifdef COMPILER2
422      // SIGTRAP-based implicit range check in compiled code.
423      else if (sig == SIGTRAP && TrapBasedRangeChecks &&
424               nativeInstruction_at(pc)->is_sigtrap_range_check()) {
425        if (TraceTraps) {
426          tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
427        }
428        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
429        goto run_stub;
430      }
431#endif
432
433      else if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
434        if (TraceTraps) {
435          tty->print_raw_cr("Fix SIGFPE handler, trying divide by zero handler.");
436        }
437        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
438        goto run_stub;
439      }
440
441      else if (sig == SIGBUS) {
442        // BugId 4454115: A read from a MappedByteBuffer can fault here if the
443        // underlying file has been truncated. Do not crash the VM in such a case.
444        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
445        CompiledMethod* nm = cb->as_compiled_method_or_null();
446        if (nm != NULL && nm->has_unsafe_access()) {
447          address next_pc = pc + 4;
448          next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
449          os::Aix::ucontext_set_pc(uc, next_pc);
450          return 1;
451        }
452      }
453    }
454
455    else { // thread->thread_state() != _thread_in_Java
456      // Detect CPU features. This is only done at the very start of the VM. Later, the
457      // VM_Version::is_determine_features_test_running() flag should be false.
458
459      if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
460        // SIGILL must be caused by VM_Version::determine_features().
461        *(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
462                        // flushing of icache is not necessary.
463        stub = pc + 4;  // continue with next instruction.
464        goto run_stub;
465      }
466      else if (thread->thread_state() == _thread_in_vm &&
467               sig == SIGBUS && thread->doing_unsafe_access()) {
468        address next_pc = pc + 4;
469        next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
470        os::Aix::ucontext_set_pc(uc, next_pc);
471        return 1;
472      }
473    }
474
475    // Check to see if we caught the safepoint code in the
476    // process of write protecting the memory serialization page.
477    // It write enables the page immediately after protecting it
478    // so we can just return to retry the write.
479    if ((sig == SIGSEGV) &&
480        os::is_memory_serialize_page(thread, addr)) {
481      // Synchronization problem in the pseudo memory barrier code (bug id 6546278)
482      // Block current thread until the memory serialize page permission restored.
483      os::block_on_serialize_page_trap();
484      return true;
485    }
486  }
487
488run_stub:
489
490  // One of the above code blocks ininitalized the stub, so we want to
491  // delegate control to that stub.
492  if (stub != NULL) {
493    // Save all thread context in case we need to restore it.
494    if (thread != NULL) thread->set_saved_exception_pc(pc);
495    os::Aix::ucontext_set_pc(uc, stub);
496    return 1;
497  }
498
499run_chained_handler:
500
501  // signal-chaining
502  if (os::Aix::chained_handler(sig, info, ucVoid)) {
503    return 1;
504  }
505  if (!abort_if_unrecognized) {
506    // caller wants another chance, so give it to him
507    return 0;
508  }
509
510report_and_die:
511
512  // Use sigthreadmask instead of sigprocmask on AIX and unmask current signal.
513  sigset_t newset;
514  sigemptyset(&newset);
515  sigaddset(&newset, sig);
516  sigthreadmask(SIG_UNBLOCK, &newset, NULL);
517
518  VMError::report_and_die(t, sig, pc, info, ucVoid);
519
520  ShouldNotReachHere();
521  return 0;
522}
523
524void os::Aix::init_thread_fpu_state(void) {
525#if !defined(USE_XLC_BUILTINS)
526  // Disable FP exceptions.
527  __asm__ __volatile__ ("mtfsfi 6,0");
528#else
529  __mtfsfi(6, 0);
530#endif
531}
532
533////////////////////////////////////////////////////////////////////////////////
534// thread stack
535
536size_t os::Posix::_compiler_thread_min_stack_allowed = 128 * K;
537size_t os::Posix::_java_thread_min_stack_allowed = 128 * K;
538size_t os::Posix::_vm_internal_thread_min_stack_allowed = 128 * K;
539
540// return default stack size for thr_type
541size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
542  // default stack size (compiler thread needs larger stack)
543  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
544  return s;
545}
546
547/////////////////////////////////////////////////////////////////////////////
548// helper functions for fatal error handler
549
550void os::print_context(outputStream *st, const void *context) {
551  if (context == NULL) return;
552
553  const ucontext_t* uc = (const ucontext_t*)context;
554
555  st->print_cr("Registers:");
556  st->print("pc =" INTPTR_FORMAT "  ", uc->uc_mcontext.jmp_context.iar);
557  st->print("lr =" INTPTR_FORMAT "  ", uc->uc_mcontext.jmp_context.lr);
558  st->print("ctr=" INTPTR_FORMAT "  ", uc->uc_mcontext.jmp_context.ctr);
559  st->cr();
560  for (int i = 0; i < 32; i++) {
561    st->print("r%-2d=" INTPTR_FORMAT "  ", i, uc->uc_mcontext.jmp_context.gpr[i]);
562    if (i % 3 == 2) st->cr();
563  }
564  st->cr();
565  st->cr();
566
567  intptr_t *sp = (intptr_t *)os::Aix::ucontext_get_sp(uc);
568  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
569  print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
570  st->cr();
571
572  // Note: it may be unsafe to inspect memory near pc. For example, pc may
573  // point to garbage if entry point in an nmethod is corrupted. Leave
574  // this at the end, and hope for the best.
575  address pc = os::Aix::ucontext_get_pc(uc);
576  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
577  print_hex_dump(st, pc - 64, pc + 64, /*instrsize=*/4);
578  st->cr();
579
580  // Try to decode the instructions.
581  st->print_cr("Decoded instructions: (pc=" PTR_FORMAT ")", pc);
582  st->print("<TODO: PPC port - print_context>");
583  // TODO: PPC port Disassembler::decode(pc, 16, 16, st);
584  st->cr();
585}
586
587void os::print_register_info(outputStream *st, const void *context) {
588  if (context == NULL) return;
589
590  ucontext_t *uc = (ucontext_t*)context;
591
592  st->print_cr("Register to memory mapping:");
593  st->cr();
594
595  st->print("pc ="); print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.iar);
596  st->print("lr ="); print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.lr);
597  st->print("sp ="); print_location(st, (intptr_t)os::Aix::ucontext_get_sp(uc));
598  for (int i = 0; i < 32; i++) {
599    st->print("r%-2d=", i);
600    print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.gpr[i]);
601  }
602
603  st->cr();
604}
605
606extern "C" {
607  int SpinPause() {
608    return 0;
609  }
610}
611
612#ifndef PRODUCT
613void os::verify_stack_alignment() {
614  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
615}
616#endif
617
618int os::extra_bang_size_in_bytes() {
619  // PPC does not require the additional stack bang.
620  return 0;
621}
622
623bool os::platform_print_native_stack(outputStream* st, void* context, char *buf, int buf_size) {
624  AixNativeCallstack::print_callstack_for_context(st, (const ucontext_t*)context, true, buf, (size_t) buf_size);
625  return true;
626}
627
628
629