os_windows.cpp revision 9566:6aa8279709e6
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "semaphore_windows.hpp"
67#include "services/attachListener.hpp"
68#include "services/memTracker.hpp"
69#include "services/runtimeService.hpp"
70#include "utilities/decoder.hpp"
71#include "utilities/defaultStream.hpp"
72#include "utilities/events.hpp"
73#include "utilities/growableArray.hpp"
74#include "utilities/vmError.hpp"
75
76#ifdef _DEBUG
77#include <crtdbg.h>
78#endif
79
80
81#include <windows.h>
82#include <sys/types.h>
83#include <sys/stat.h>
84#include <sys/timeb.h>
85#include <objidl.h>
86#include <shlobj.h>
87
88#include <malloc.h>
89#include <signal.h>
90#include <direct.h>
91#include <errno.h>
92#include <fcntl.h>
93#include <io.h>
94#include <process.h>              // For _beginthreadex(), _endthreadex()
95#include <imagehlp.h>             // For os::dll_address_to_function_name
96// for enumerating dll libraries
97#include <vdmdbg.h>
98
99// for timer info max values which include all bits
100#define ALL_64_BITS CONST64(-1)
101
102// For DLL loading/load error detection
103// Values of PE COFF
104#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
105#define IMAGE_FILE_SIGNATURE_LENGTH 4
106
107static HANDLE main_process;
108static HANDLE main_thread;
109static int    main_thread_id;
110
111static FILETIME process_creation_time;
112static FILETIME process_exit_time;
113static FILETIME process_user_time;
114static FILETIME process_kernel_time;
115
116#ifdef _M_IA64
117  #define __CPU__ ia64
118#else
119  #ifdef _M_AMD64
120    #define __CPU__ amd64
121  #else
122    #define __CPU__ i486
123  #endif
124#endif
125
126// save DLL module handle, used by GetModuleFileName
127
128HINSTANCE vm_lib_handle;
129
130BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
131  switch (reason) {
132  case DLL_PROCESS_ATTACH:
133    vm_lib_handle = hinst;
134    if (ForceTimeHighResolution) {
135      timeBeginPeriod(1L);
136    }
137    break;
138  case DLL_PROCESS_DETACH:
139    if (ForceTimeHighResolution) {
140      timeEndPeriod(1L);
141    }
142    break;
143  default:
144    break;
145  }
146  return true;
147}
148
149static inline double fileTimeAsDouble(FILETIME* time) {
150  const double high  = (double) ((unsigned int) ~0);
151  const double split = 10000000.0;
152  double result = (time->dwLowDateTime / split) +
153                   time->dwHighDateTime * (high/split);
154  return result;
155}
156
157// Implementation of os
158
159bool os::unsetenv(const char* name) {
160  assert(name != NULL, "Null pointer");
161  return (SetEnvironmentVariable(name, NULL) == TRUE);
162}
163
164// No setuid programs under Windows.
165bool os::have_special_privileges() {
166  return false;
167}
168
169
170// This method is  a periodic task to check for misbehaving JNI applications
171// under CheckJNI, we can add any periodic checks here.
172// For Windows at the moment does nothing
173void os::run_periodic_checks() {
174  return;
175}
176
177// previous UnhandledExceptionFilter, if there is one
178static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
179
180LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
181
182void os::init_system_properties_values() {
183  // sysclasspath, java_home, dll_dir
184  {
185    char *home_path;
186    char *dll_path;
187    char *pslash;
188    char *bin = "\\bin";
189    char home_dir[MAX_PATH + 1];
190    char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
191
192    if (alt_home_dir != NULL)  {
193      strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
194      home_dir[MAX_PATH] = '\0';
195    } else {
196      os::jvm_path(home_dir, sizeof(home_dir));
197      // Found the full path to jvm.dll.
198      // Now cut the path to <java_home>/jre if we can.
199      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
200      pslash = strrchr(home_dir, '\\');
201      if (pslash != NULL) {
202        *pslash = '\0';                   // get rid of \{client|server}
203        pslash = strrchr(home_dir, '\\');
204        if (pslash != NULL) {
205          *pslash = '\0';                 // get rid of \bin
206        }
207      }
208    }
209
210    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
211    if (home_path == NULL) {
212      return;
213    }
214    strcpy(home_path, home_dir);
215    Arguments::set_java_home(home_path);
216    FREE_C_HEAP_ARRAY(char, home_path);
217
218    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
219                                mtInternal);
220    if (dll_path == NULL) {
221      return;
222    }
223    strcpy(dll_path, home_dir);
224    strcat(dll_path, bin);
225    Arguments::set_dll_dir(dll_path);
226    FREE_C_HEAP_ARRAY(char, dll_path);
227
228    if (!set_boot_path('\\', ';')) {
229      return;
230    }
231  }
232
233// library_path
234#define EXT_DIR "\\lib\\ext"
235#define BIN_DIR "\\bin"
236#define PACKAGE_DIR "\\Sun\\Java"
237  {
238    // Win32 library search order (See the documentation for LoadLibrary):
239    //
240    // 1. The directory from which application is loaded.
241    // 2. The system wide Java Extensions directory (Java only)
242    // 3. System directory (GetSystemDirectory)
243    // 4. Windows directory (GetWindowsDirectory)
244    // 5. The PATH environment variable
245    // 6. The current directory
246
247    char *library_path;
248    char tmp[MAX_PATH];
249    char *path_str = ::getenv("PATH");
250
251    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
252                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
253
254    library_path[0] = '\0';
255
256    GetModuleFileName(NULL, tmp, sizeof(tmp));
257    *(strrchr(tmp, '\\')) = '\0';
258    strcat(library_path, tmp);
259
260    GetWindowsDirectory(tmp, sizeof(tmp));
261    strcat(library_path, ";");
262    strcat(library_path, tmp);
263    strcat(library_path, PACKAGE_DIR BIN_DIR);
264
265    GetSystemDirectory(tmp, sizeof(tmp));
266    strcat(library_path, ";");
267    strcat(library_path, tmp);
268
269    GetWindowsDirectory(tmp, sizeof(tmp));
270    strcat(library_path, ";");
271    strcat(library_path, tmp);
272
273    if (path_str) {
274      strcat(library_path, ";");
275      strcat(library_path, path_str);
276    }
277
278    strcat(library_path, ";.");
279
280    Arguments::set_library_path(library_path);
281    FREE_C_HEAP_ARRAY(char, library_path);
282  }
283
284  // Default extensions directory
285  {
286    char path[MAX_PATH];
287    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
288    GetWindowsDirectory(path, MAX_PATH);
289    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
290            path, PACKAGE_DIR, EXT_DIR);
291    Arguments::set_ext_dirs(buf);
292  }
293  #undef EXT_DIR
294  #undef BIN_DIR
295  #undef PACKAGE_DIR
296
297#ifndef _WIN64
298  // set our UnhandledExceptionFilter and save any previous one
299  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
300#endif
301
302  // Done
303  return;
304}
305
306void os::breakpoint() {
307  DebugBreak();
308}
309
310// Invoked from the BREAKPOINT Macro
311extern "C" void breakpoint() {
312  os::breakpoint();
313}
314
315// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
316// So far, this method is only used by Native Memory Tracking, which is
317// only supported on Windows XP or later.
318//
319int os::get_native_stack(address* stack, int frames, int toSkip) {
320#ifdef _NMT_NOINLINE_
321  toSkip++;
322#endif
323  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
324                                                       (PVOID*)stack, NULL);
325  for (int index = captured; index < frames; index ++) {
326    stack[index] = NULL;
327  }
328  return captured;
329}
330
331
332// os::current_stack_base()
333//
334//   Returns the base of the stack, which is the stack's
335//   starting address.  This function must be called
336//   while running on the stack of the thread being queried.
337
338address os::current_stack_base() {
339  MEMORY_BASIC_INFORMATION minfo;
340  address stack_bottom;
341  size_t stack_size;
342
343  VirtualQuery(&minfo, &minfo, sizeof(minfo));
344  stack_bottom =  (address)minfo.AllocationBase;
345  stack_size = minfo.RegionSize;
346
347  // Add up the sizes of all the regions with the same
348  // AllocationBase.
349  while (1) {
350    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
351    if (stack_bottom == (address)minfo.AllocationBase) {
352      stack_size += minfo.RegionSize;
353    } else {
354      break;
355    }
356  }
357
358#ifdef _M_IA64
359  // IA64 has memory and register stacks
360  //
361  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
362  // at thread creation (1MB backing store growing upwards, 1MB memory stack
363  // growing downwards, 2MB summed up)
364  //
365  // ...
366  // ------- top of stack (high address) -----
367  // |
368  // |      1MB
369  // |      Backing Store (Register Stack)
370  // |
371  // |         / \
372  // |          |
373  // |          |
374  // |          |
375  // ------------------------ stack base -----
376  // |      1MB
377  // |      Memory Stack
378  // |
379  // |          |
380  // |          |
381  // |          |
382  // |         \ /
383  // |
384  // ----- bottom of stack (low address) -----
385  // ...
386
387  stack_size = stack_size / 2;
388#endif
389  return stack_bottom + stack_size;
390}
391
392size_t os::current_stack_size() {
393  size_t sz;
394  MEMORY_BASIC_INFORMATION minfo;
395  VirtualQuery(&minfo, &minfo, sizeof(minfo));
396  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
397  return sz;
398}
399
400struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
401  const struct tm* time_struct_ptr = localtime(clock);
402  if (time_struct_ptr != NULL) {
403    *res = *time_struct_ptr;
404    return res;
405  }
406  return NULL;
407}
408
409LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
410
411// Thread start routine for all new Java threads
412static unsigned __stdcall java_start(Thread* thread) {
413  // Try to randomize the cache line index of hot stack frames.
414  // This helps when threads of the same stack traces evict each other's
415  // cache lines. The threads can be either from the same JVM instance, or
416  // from different JVM instances. The benefit is especially true for
417  // processors with hyperthreading technology.
418  static int counter = 0;
419  int pid = os::current_process_id();
420  _alloca(((pid ^ counter++) & 7) * 128);
421
422  OSThread* osthr = thread->osthread();
423  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
424
425  if (UseNUMA) {
426    int lgrp_id = os::numa_get_group_id();
427    if (lgrp_id != -1) {
428      thread->set_lgrp_id(lgrp_id);
429    }
430  }
431
432  // Diagnostic code to investigate JDK-6573254
433  int res = 30115;  // non-java thread
434  if (thread->is_Java_thread()) {
435    res = 20115;    // java thread
436  }
437
438  // Install a win32 structured exception handler around every thread created
439  // by VM, so VM can generate error dump when an exception occurred in non-
440  // Java thread (e.g. VM thread).
441  __try {
442    thread->run();
443  } __except(topLevelExceptionFilter(
444                                     (_EXCEPTION_POINTERS*)_exception_info())) {
445    // Nothing to do.
446  }
447
448  // One less thread is executing
449  // When the VMThread gets here, the main thread may have already exited
450  // which frees the CodeHeap containing the Atomic::add code
451  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
452    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
453  }
454
455  // Thread must not return from exit_process_or_thread(), but if it does,
456  // let it proceed to exit normally
457  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
458}
459
460static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
461                                  int thread_id) {
462  // Allocate the OSThread object
463  OSThread* osthread = new OSThread(NULL, NULL);
464  if (osthread == NULL) return NULL;
465
466  // Initialize support for Java interrupts
467  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
468  if (interrupt_event == NULL) {
469    delete osthread;
470    return NULL;
471  }
472  osthread->set_interrupt_event(interrupt_event);
473
474  // Store info on the Win32 thread into the OSThread
475  osthread->set_thread_handle(thread_handle);
476  osthread->set_thread_id(thread_id);
477
478  if (UseNUMA) {
479    int lgrp_id = os::numa_get_group_id();
480    if (lgrp_id != -1) {
481      thread->set_lgrp_id(lgrp_id);
482    }
483  }
484
485  // Initial thread state is INITIALIZED, not SUSPENDED
486  osthread->set_state(INITIALIZED);
487
488  return osthread;
489}
490
491
492bool os::create_attached_thread(JavaThread* thread) {
493#ifdef ASSERT
494  thread->verify_not_published();
495#endif
496  HANDLE thread_h;
497  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
498                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
499    fatal("DuplicateHandle failed\n");
500  }
501  OSThread* osthread = create_os_thread(thread, thread_h,
502                                        (int)current_thread_id());
503  if (osthread == NULL) {
504    return false;
505  }
506
507  // Initial thread state is RUNNABLE
508  osthread->set_state(RUNNABLE);
509
510  thread->set_osthread(osthread);
511  return true;
512}
513
514bool os::create_main_thread(JavaThread* thread) {
515#ifdef ASSERT
516  thread->verify_not_published();
517#endif
518  if (_starting_thread == NULL) {
519    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
520    if (_starting_thread == NULL) {
521      return false;
522    }
523  }
524
525  // The primordial thread is runnable from the start)
526  _starting_thread->set_state(RUNNABLE);
527
528  thread->set_osthread(_starting_thread);
529  return true;
530}
531
532// Allocate and initialize a new OSThread
533bool os::create_thread(Thread* thread, ThreadType thr_type,
534                       size_t stack_size) {
535  unsigned thread_id;
536
537  // Allocate the OSThread object
538  OSThread* osthread = new OSThread(NULL, NULL);
539  if (osthread == NULL) {
540    return false;
541  }
542
543  // Initialize support for Java interrupts
544  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
545  if (interrupt_event == NULL) {
546    delete osthread;
547    return NULL;
548  }
549  osthread->set_interrupt_event(interrupt_event);
550  osthread->set_interrupted(false);
551
552  thread->set_osthread(osthread);
553
554  if (stack_size == 0) {
555    switch (thr_type) {
556    case os::java_thread:
557      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
558      if (JavaThread::stack_size_at_create() > 0) {
559        stack_size = JavaThread::stack_size_at_create();
560      }
561      break;
562    case os::compiler_thread:
563      if (CompilerThreadStackSize > 0) {
564        stack_size = (size_t)(CompilerThreadStackSize * K);
565        break;
566      } // else fall through:
567        // use VMThreadStackSize if CompilerThreadStackSize is not defined
568    case os::vm_thread:
569    case os::pgc_thread:
570    case os::cgc_thread:
571    case os::watcher_thread:
572      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
573      break;
574    }
575  }
576
577  // Create the Win32 thread
578  //
579  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
580  // does not specify stack size. Instead, it specifies the size of
581  // initially committed space. The stack size is determined by
582  // PE header in the executable. If the committed "stack_size" is larger
583  // than default value in the PE header, the stack is rounded up to the
584  // nearest multiple of 1MB. For example if the launcher has default
585  // stack size of 320k, specifying any size less than 320k does not
586  // affect the actual stack size at all, it only affects the initial
587  // commitment. On the other hand, specifying 'stack_size' larger than
588  // default value may cause significant increase in memory usage, because
589  // not only the stack space will be rounded up to MB, but also the
590  // entire space is committed upfront.
591  //
592  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
593  // for CreateThread() that can treat 'stack_size' as stack size. However we
594  // are not supposed to call CreateThread() directly according to MSDN
595  // document because JVM uses C runtime library. The good news is that the
596  // flag appears to work with _beginthredex() as well.
597
598#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
599  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
600#endif
601
602  HANDLE thread_handle =
603    (HANDLE)_beginthreadex(NULL,
604                           (unsigned)stack_size,
605                           (unsigned (__stdcall *)(void*)) java_start,
606                           thread,
607                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
608                           &thread_id);
609  if (thread_handle == NULL) {
610    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
611    // without the flag.
612    thread_handle =
613      (HANDLE)_beginthreadex(NULL,
614                             (unsigned)stack_size,
615                             (unsigned (__stdcall *)(void*)) java_start,
616                             thread,
617                             CREATE_SUSPENDED,
618                             &thread_id);
619  }
620  if (thread_handle == NULL) {
621    // Need to clean up stuff we've allocated so far
622    CloseHandle(osthread->interrupt_event());
623    thread->set_osthread(NULL);
624    delete osthread;
625    return NULL;
626  }
627
628  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
629
630  // Store info on the Win32 thread into the OSThread
631  osthread->set_thread_handle(thread_handle);
632  osthread->set_thread_id(thread_id);
633
634  // Initial thread state is INITIALIZED, not SUSPENDED
635  osthread->set_state(INITIALIZED);
636
637  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
638  return true;
639}
640
641
642// Free Win32 resources related to the OSThread
643void os::free_thread(OSThread* osthread) {
644  assert(osthread != NULL, "osthread not set");
645  CloseHandle(osthread->thread_handle());
646  CloseHandle(osthread->interrupt_event());
647  delete osthread;
648}
649
650static jlong first_filetime;
651static jlong initial_performance_count;
652static jlong performance_frequency;
653
654
655jlong as_long(LARGE_INTEGER x) {
656  jlong result = 0; // initialization to avoid warning
657  set_high(&result, x.HighPart);
658  set_low(&result, x.LowPart);
659  return result;
660}
661
662
663jlong os::elapsed_counter() {
664  LARGE_INTEGER count;
665  if (win32::_has_performance_count) {
666    QueryPerformanceCounter(&count);
667    return as_long(count) - initial_performance_count;
668  } else {
669    FILETIME wt;
670    GetSystemTimeAsFileTime(&wt);
671    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
672  }
673}
674
675
676jlong os::elapsed_frequency() {
677  if (win32::_has_performance_count) {
678    return performance_frequency;
679  } else {
680    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
681    return 10000000;
682  }
683}
684
685
686julong os::available_memory() {
687  return win32::available_memory();
688}
689
690julong os::win32::available_memory() {
691  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
692  // value if total memory is larger than 4GB
693  MEMORYSTATUSEX ms;
694  ms.dwLength = sizeof(ms);
695  GlobalMemoryStatusEx(&ms);
696
697  return (julong)ms.ullAvailPhys;
698}
699
700julong os::physical_memory() {
701  return win32::physical_memory();
702}
703
704bool os::has_allocatable_memory_limit(julong* limit) {
705  MEMORYSTATUSEX ms;
706  ms.dwLength = sizeof(ms);
707  GlobalMemoryStatusEx(&ms);
708#ifdef _LP64
709  *limit = (julong)ms.ullAvailVirtual;
710  return true;
711#else
712  // Limit to 1400m because of the 2gb address space wall
713  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
714  return true;
715#endif
716}
717
718// VC6 lacks DWORD_PTR
719#if _MSC_VER < 1300
720typedef UINT_PTR DWORD_PTR;
721#endif
722
723int os::active_processor_count() {
724  DWORD_PTR lpProcessAffinityMask = 0;
725  DWORD_PTR lpSystemAffinityMask = 0;
726  int proc_count = processor_count();
727  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
728      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
729    // Nof active processors is number of bits in process affinity mask
730    int bitcount = 0;
731    while (lpProcessAffinityMask != 0) {
732      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
733      bitcount++;
734    }
735    return bitcount;
736  } else {
737    return proc_count;
738  }
739}
740
741void os::set_native_thread_name(const char *name) {
742
743  // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
744  //
745  // Note that unfortunately this only works if the process
746  // is already attached to a debugger; debugger must observe
747  // the exception below to show the correct name.
748
749  const DWORD MS_VC_EXCEPTION = 0x406D1388;
750  struct {
751    DWORD dwType;     // must be 0x1000
752    LPCSTR szName;    // pointer to name (in user addr space)
753    DWORD dwThreadID; // thread ID (-1=caller thread)
754    DWORD dwFlags;    // reserved for future use, must be zero
755  } info;
756
757  info.dwType = 0x1000;
758  info.szName = name;
759  info.dwThreadID = -1;
760  info.dwFlags = 0;
761
762  __try {
763    RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
764  } __except(EXCEPTION_CONTINUE_EXECUTION) {}
765}
766
767bool os::distribute_processes(uint length, uint* distribution) {
768  // Not yet implemented.
769  return false;
770}
771
772bool os::bind_to_processor(uint processor_id) {
773  // Not yet implemented.
774  return false;
775}
776
777void os::win32::initialize_performance_counter() {
778  LARGE_INTEGER count;
779  if (QueryPerformanceFrequency(&count)) {
780    win32::_has_performance_count = 1;
781    performance_frequency = as_long(count);
782    QueryPerformanceCounter(&count);
783    initial_performance_count = as_long(count);
784  } else {
785    win32::_has_performance_count = 0;
786    FILETIME wt;
787    GetSystemTimeAsFileTime(&wt);
788    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
789  }
790}
791
792
793double os::elapsedTime() {
794  return (double) elapsed_counter() / (double) elapsed_frequency();
795}
796
797
798// Windows format:
799//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
800// Java format:
801//   Java standards require the number of milliseconds since 1/1/1970
802
803// Constant offset - calculated using offset()
804static jlong  _offset   = 116444736000000000;
805// Fake time counter for reproducible results when debugging
806static jlong  fake_time = 0;
807
808#ifdef ASSERT
809// Just to be safe, recalculate the offset in debug mode
810static jlong _calculated_offset = 0;
811static int   _has_calculated_offset = 0;
812
813jlong offset() {
814  if (_has_calculated_offset) return _calculated_offset;
815  SYSTEMTIME java_origin;
816  java_origin.wYear          = 1970;
817  java_origin.wMonth         = 1;
818  java_origin.wDayOfWeek     = 0; // ignored
819  java_origin.wDay           = 1;
820  java_origin.wHour          = 0;
821  java_origin.wMinute        = 0;
822  java_origin.wSecond        = 0;
823  java_origin.wMilliseconds  = 0;
824  FILETIME jot;
825  if (!SystemTimeToFileTime(&java_origin, &jot)) {
826    fatal("Error = %d\nWindows error", GetLastError());
827  }
828  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
829  _has_calculated_offset = 1;
830  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
831  return _calculated_offset;
832}
833#else
834jlong offset() {
835  return _offset;
836}
837#endif
838
839jlong windows_to_java_time(FILETIME wt) {
840  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
841  return (a - offset()) / 10000;
842}
843
844// Returns time ticks in (10th of micro seconds)
845jlong windows_to_time_ticks(FILETIME wt) {
846  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
847  return (a - offset());
848}
849
850FILETIME java_to_windows_time(jlong l) {
851  jlong a = (l * 10000) + offset();
852  FILETIME result;
853  result.dwHighDateTime = high(a);
854  result.dwLowDateTime  = low(a);
855  return result;
856}
857
858bool os::supports_vtime() { return true; }
859bool os::enable_vtime() { return false; }
860bool os::vtime_enabled() { return false; }
861
862double os::elapsedVTime() {
863  FILETIME created;
864  FILETIME exited;
865  FILETIME kernel;
866  FILETIME user;
867  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
868    // the resolution of windows_to_java_time() should be sufficient (ms)
869    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
870  } else {
871    return elapsedTime();
872  }
873}
874
875jlong os::javaTimeMillis() {
876  if (UseFakeTimers) {
877    return fake_time++;
878  } else {
879    FILETIME wt;
880    GetSystemTimeAsFileTime(&wt);
881    return windows_to_java_time(wt);
882  }
883}
884
885void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
886  FILETIME wt;
887  GetSystemTimeAsFileTime(&wt);
888  jlong ticks = windows_to_time_ticks(wt); // 10th of micros
889  jlong secs = jlong(ticks / 10000000); // 10000 * 1000
890  seconds = secs;
891  nanos = jlong(ticks - (secs*10000000)) * 100;
892}
893
894jlong os::javaTimeNanos() {
895  if (!win32::_has_performance_count) {
896    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
897  } else {
898    LARGE_INTEGER current_count;
899    QueryPerformanceCounter(&current_count);
900    double current = as_long(current_count);
901    double freq = performance_frequency;
902    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
903    return time;
904  }
905}
906
907void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
908  if (!win32::_has_performance_count) {
909    // javaTimeMillis() doesn't have much percision,
910    // but it is not going to wrap -- so all 64 bits
911    info_ptr->max_value = ALL_64_BITS;
912
913    // this is a wall clock timer, so may skip
914    info_ptr->may_skip_backward = true;
915    info_ptr->may_skip_forward = true;
916  } else {
917    jlong freq = performance_frequency;
918    if (freq < NANOSECS_PER_SEC) {
919      // the performance counter is 64 bits and we will
920      // be multiplying it -- so no wrap in 64 bits
921      info_ptr->max_value = ALL_64_BITS;
922    } else if (freq > NANOSECS_PER_SEC) {
923      // use the max value the counter can reach to
924      // determine the max value which could be returned
925      julong max_counter = (julong)ALL_64_BITS;
926      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
927    } else {
928      // the performance counter is 64 bits and we will
929      // be using it directly -- so no wrap in 64 bits
930      info_ptr->max_value = ALL_64_BITS;
931    }
932
933    // using a counter, so no skipping
934    info_ptr->may_skip_backward = false;
935    info_ptr->may_skip_forward = false;
936  }
937  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
938}
939
940char* os::local_time_string(char *buf, size_t buflen) {
941  SYSTEMTIME st;
942  GetLocalTime(&st);
943  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
944               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
945  return buf;
946}
947
948bool os::getTimesSecs(double* process_real_time,
949                      double* process_user_time,
950                      double* process_system_time) {
951  HANDLE h_process = GetCurrentProcess();
952  FILETIME create_time, exit_time, kernel_time, user_time;
953  BOOL result = GetProcessTimes(h_process,
954                                &create_time,
955                                &exit_time,
956                                &kernel_time,
957                                &user_time);
958  if (result != 0) {
959    FILETIME wt;
960    GetSystemTimeAsFileTime(&wt);
961    jlong rtc_millis = windows_to_java_time(wt);
962    jlong user_millis = windows_to_java_time(user_time);
963    jlong system_millis = windows_to_java_time(kernel_time);
964    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
965    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
966    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
967    return true;
968  } else {
969    return false;
970  }
971}
972
973void os::shutdown() {
974  // allow PerfMemory to attempt cleanup of any persistent resources
975  perfMemory_exit();
976
977  // flush buffered output, finish log files
978  ostream_abort();
979
980  // Check for abort hook
981  abort_hook_t abort_hook = Arguments::abort_hook();
982  if (abort_hook != NULL) {
983    abort_hook();
984  }
985}
986
987
988static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
989                                         PMINIDUMP_EXCEPTION_INFORMATION,
990                                         PMINIDUMP_USER_STREAM_INFORMATION,
991                                         PMINIDUMP_CALLBACK_INFORMATION);
992
993static HANDLE dumpFile = NULL;
994
995// Check if dump file can be created.
996void os::check_dump_limit(char* buffer, size_t buffsz) {
997  bool status = true;
998  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
999    jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000    status = false;
1001  }
1002
1003#ifndef ASSERT
1004  if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1005    jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1006    status = false;
1007  }
1008#endif
1009
1010  if (status) {
1011    const char* cwd = get_current_directory(NULL, 0);
1012    int pid = current_process_id();
1013    if (cwd != NULL) {
1014      jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1015    } else {
1016      jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1017    }
1018
1019    if (dumpFile == NULL &&
1020       (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1021                 == INVALID_HANDLE_VALUE) {
1022      jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1023      status = false;
1024    }
1025  }
1026  VMError::record_coredump_status(buffer, status);
1027}
1028
1029void os::abort(bool dump_core, void* siginfo, void* context) {
1030  HINSTANCE dbghelp;
1031  EXCEPTION_POINTERS ep;
1032  MINIDUMP_EXCEPTION_INFORMATION mei;
1033  MINIDUMP_EXCEPTION_INFORMATION* pmei;
1034
1035  HANDLE hProcess = GetCurrentProcess();
1036  DWORD processId = GetCurrentProcessId();
1037  MINIDUMP_TYPE dumpType;
1038
1039  shutdown();
1040  if (!dump_core || dumpFile == NULL) {
1041    if (dumpFile != NULL) {
1042      CloseHandle(dumpFile);
1043    }
1044    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1045  }
1046
1047  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1048
1049  if (dbghelp == NULL) {
1050    jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1051    CloseHandle(dumpFile);
1052    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1053  }
1054
1055  _MiniDumpWriteDump =
1056      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1057                                    PMINIDUMP_EXCEPTION_INFORMATION,
1058                                    PMINIDUMP_USER_STREAM_INFORMATION,
1059                                    PMINIDUMP_CALLBACK_INFORMATION),
1060                                    GetProcAddress(dbghelp,
1061                                    "MiniDumpWriteDump"));
1062
1063  if (_MiniDumpWriteDump == NULL) {
1064    jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1065    CloseHandle(dumpFile);
1066    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1067  }
1068
1069  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1070
1071  // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1072  // API_VERSION_NUMBER 11 or higher contains the ones we want though
1073#if API_VERSION_NUMBER >= 11
1074  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1075                             MiniDumpWithUnloadedModules);
1076#endif
1077
1078  if (siginfo != NULL && context != NULL) {
1079    ep.ContextRecord = (PCONTEXT) context;
1080    ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1081
1082    mei.ThreadId = GetCurrentThreadId();
1083    mei.ExceptionPointers = &ep;
1084    pmei = &mei;
1085  } else {
1086    pmei = NULL;
1087  }
1088
1089  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1090  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1091  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1092      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1093    jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1094  }
1095  CloseHandle(dumpFile);
1096  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1097}
1098
1099// Die immediately, no exit hook, no abort hook, no cleanup.
1100void os::die() {
1101  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1102}
1103
1104// Directory routines copied from src/win32/native/java/io/dirent_md.c
1105//  * dirent_md.c       1.15 00/02/02
1106//
1107// The declarations for DIR and struct dirent are in jvm_win32.h.
1108
1109// Caller must have already run dirname through JVM_NativePath, which removes
1110// duplicate slashes and converts all instances of '/' into '\\'.
1111
1112DIR * os::opendir(const char *dirname) {
1113  assert(dirname != NULL, "just checking");   // hotspot change
1114  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1115  DWORD fattr;                                // hotspot change
1116  char alt_dirname[4] = { 0, 0, 0, 0 };
1117
1118  if (dirp == 0) {
1119    errno = ENOMEM;
1120    return 0;
1121  }
1122
1123  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1124  // as a directory in FindFirstFile().  We detect this case here and
1125  // prepend the current drive name.
1126  //
1127  if (dirname[1] == '\0' && dirname[0] == '\\') {
1128    alt_dirname[0] = _getdrive() + 'A' - 1;
1129    alt_dirname[1] = ':';
1130    alt_dirname[2] = '\\';
1131    alt_dirname[3] = '\0';
1132    dirname = alt_dirname;
1133  }
1134
1135  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1136  if (dirp->path == 0) {
1137    free(dirp);
1138    errno = ENOMEM;
1139    return 0;
1140  }
1141  strcpy(dirp->path, dirname);
1142
1143  fattr = GetFileAttributes(dirp->path);
1144  if (fattr == 0xffffffff) {
1145    free(dirp->path);
1146    free(dirp);
1147    errno = ENOENT;
1148    return 0;
1149  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1150    free(dirp->path);
1151    free(dirp);
1152    errno = ENOTDIR;
1153    return 0;
1154  }
1155
1156  // Append "*.*", or possibly "\\*.*", to path
1157  if (dirp->path[1] == ':' &&
1158      (dirp->path[2] == '\0' ||
1159      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1160    // No '\\' needed for cases like "Z:" or "Z:\"
1161    strcat(dirp->path, "*.*");
1162  } else {
1163    strcat(dirp->path, "\\*.*");
1164  }
1165
1166  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1167  if (dirp->handle == INVALID_HANDLE_VALUE) {
1168    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1169      free(dirp->path);
1170      free(dirp);
1171      errno = EACCES;
1172      return 0;
1173    }
1174  }
1175  return dirp;
1176}
1177
1178// parameter dbuf unused on Windows
1179struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1180  assert(dirp != NULL, "just checking");      // hotspot change
1181  if (dirp->handle == INVALID_HANDLE_VALUE) {
1182    return 0;
1183  }
1184
1185  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1186
1187  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1188    if (GetLastError() == ERROR_INVALID_HANDLE) {
1189      errno = EBADF;
1190      return 0;
1191    }
1192    FindClose(dirp->handle);
1193    dirp->handle = INVALID_HANDLE_VALUE;
1194  }
1195
1196  return &dirp->dirent;
1197}
1198
1199int os::closedir(DIR *dirp) {
1200  assert(dirp != NULL, "just checking");      // hotspot change
1201  if (dirp->handle != INVALID_HANDLE_VALUE) {
1202    if (!FindClose(dirp->handle)) {
1203      errno = EBADF;
1204      return -1;
1205    }
1206    dirp->handle = INVALID_HANDLE_VALUE;
1207  }
1208  free(dirp->path);
1209  free(dirp);
1210  return 0;
1211}
1212
1213// This must be hard coded because it's the system's temporary
1214// directory not the java application's temp directory, ala java.io.tmpdir.
1215const char* os::get_temp_directory() {
1216  static char path_buf[MAX_PATH];
1217  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1218    return path_buf;
1219  } else {
1220    path_buf[0] = '\0';
1221    return path_buf;
1222  }
1223}
1224
1225static bool file_exists(const char* filename) {
1226  if (filename == NULL || strlen(filename) == 0) {
1227    return false;
1228  }
1229  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1230}
1231
1232bool os::dll_build_name(char *buffer, size_t buflen,
1233                        const char* pname, const char* fname) {
1234  bool retval = false;
1235  const size_t pnamelen = pname ? strlen(pname) : 0;
1236  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1237
1238  // Return error on buffer overflow.
1239  if (pnamelen + strlen(fname) + 10 > buflen) {
1240    return retval;
1241  }
1242
1243  if (pnamelen == 0) {
1244    jio_snprintf(buffer, buflen, "%s.dll", fname);
1245    retval = true;
1246  } else if (c == ':' || c == '\\') {
1247    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1248    retval = true;
1249  } else if (strchr(pname, *os::path_separator()) != NULL) {
1250    int n;
1251    char** pelements = split_path(pname, &n);
1252    if (pelements == NULL) {
1253      return false;
1254    }
1255    for (int i = 0; i < n; i++) {
1256      char* path = pelements[i];
1257      // Really shouldn't be NULL, but check can't hurt
1258      size_t plen = (path == NULL) ? 0 : strlen(path);
1259      if (plen == 0) {
1260        continue; // skip the empty path values
1261      }
1262      const char lastchar = path[plen - 1];
1263      if (lastchar == ':' || lastchar == '\\') {
1264        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1265      } else {
1266        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1267      }
1268      if (file_exists(buffer)) {
1269        retval = true;
1270        break;
1271      }
1272    }
1273    // release the storage
1274    for (int i = 0; i < n; i++) {
1275      if (pelements[i] != NULL) {
1276        FREE_C_HEAP_ARRAY(char, pelements[i]);
1277      }
1278    }
1279    if (pelements != NULL) {
1280      FREE_C_HEAP_ARRAY(char*, pelements);
1281    }
1282  } else {
1283    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1284    retval = true;
1285  }
1286  return retval;
1287}
1288
1289// Needs to be in os specific directory because windows requires another
1290// header file <direct.h>
1291const char* os::get_current_directory(char *buf, size_t buflen) {
1292  int n = static_cast<int>(buflen);
1293  if (buflen > INT_MAX)  n = INT_MAX;
1294  return _getcwd(buf, n);
1295}
1296
1297//-----------------------------------------------------------
1298// Helper functions for fatal error handler
1299#ifdef _WIN64
1300// Helper routine which returns true if address in
1301// within the NTDLL address space.
1302//
1303static bool _addr_in_ntdll(address addr) {
1304  HMODULE hmod;
1305  MODULEINFO minfo;
1306
1307  hmod = GetModuleHandle("NTDLL.DLL");
1308  if (hmod == NULL) return false;
1309  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1310                                          &minfo, sizeof(MODULEINFO))) {
1311    return false;
1312  }
1313
1314  if ((addr >= minfo.lpBaseOfDll) &&
1315      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1316    return true;
1317  } else {
1318    return false;
1319  }
1320}
1321#endif
1322
1323struct _modinfo {
1324  address addr;
1325  char*   full_path;   // point to a char buffer
1326  int     buflen;      // size of the buffer
1327  address base_addr;
1328};
1329
1330static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1331                                  address top_address, void * param) {
1332  struct _modinfo *pmod = (struct _modinfo *)param;
1333  if (!pmod) return -1;
1334
1335  if (base_addr   <= pmod->addr &&
1336      top_address > pmod->addr) {
1337    // if a buffer is provided, copy path name to the buffer
1338    if (pmod->full_path) {
1339      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340    }
1341    pmod->base_addr = base_addr;
1342    return 1;
1343  }
1344  return 0;
1345}
1346
1347bool os::dll_address_to_library_name(address addr, char* buf,
1348                                     int buflen, int* offset) {
1349  // buf is not optional, but offset is optional
1350  assert(buf != NULL, "sanity check");
1351
1352// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1353//       return the full path to the DLL file, sometimes it returns path
1354//       to the corresponding PDB file (debug info); sometimes it only
1355//       returns partial path, which makes life painful.
1356
1357  struct _modinfo mi;
1358  mi.addr      = addr;
1359  mi.full_path = buf;
1360  mi.buflen    = buflen;
1361  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1362    // buf already contains path name
1363    if (offset) *offset = addr - mi.base_addr;
1364    return true;
1365  }
1366
1367  buf[0] = '\0';
1368  if (offset) *offset = -1;
1369  return false;
1370}
1371
1372bool os::dll_address_to_function_name(address addr, char *buf,
1373                                      int buflen, int *offset,
1374                                      bool demangle) {
1375  // buf is not optional, but offset is optional
1376  assert(buf != NULL, "sanity check");
1377
1378  if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1379    return true;
1380  }
1381  if (offset != NULL)  *offset  = -1;
1382  buf[0] = '\0';
1383  return false;
1384}
1385
1386// save the start and end address of jvm.dll into param[0] and param[1]
1387static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1388                           address top_address, void * param) {
1389  if (!param) return -1;
1390
1391  if (base_addr   <= (address)_locate_jvm_dll &&
1392      top_address > (address)_locate_jvm_dll) {
1393    ((address*)param)[0] = base_addr;
1394    ((address*)param)[1] = top_address;
1395    return 1;
1396  }
1397  return 0;
1398}
1399
1400address vm_lib_location[2];    // start and end address of jvm.dll
1401
1402// check if addr is inside jvm.dll
1403bool os::address_is_in_vm(address addr) {
1404  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1405    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1406      assert(false, "Can't find jvm module.");
1407      return false;
1408    }
1409  }
1410
1411  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412}
1413
1414// print module info; param is outputStream*
1415static int _print_module(const char* fname, address base_address,
1416                         address top_address, void* param) {
1417  if (!param) return -1;
1418
1419  outputStream* st = (outputStream*)param;
1420
1421  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1422  return 0;
1423}
1424
1425// Loads .dll/.so and
1426// in case of error it checks if .dll/.so was built for the
1427// same architecture as Hotspot is running on
1428void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1429  void * result = LoadLibrary(name);
1430  if (result != NULL) {
1431    return result;
1432  }
1433
1434  DWORD errcode = GetLastError();
1435  if (errcode == ERROR_MOD_NOT_FOUND) {
1436    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1437    ebuf[ebuflen - 1] = '\0';
1438    return NULL;
1439  }
1440
1441  // Parsing dll below
1442  // If we can read dll-info and find that dll was built
1443  // for an architecture other than Hotspot is running in
1444  // - then print to buffer "DLL was built for a different architecture"
1445  // else call os::lasterror to obtain system error message
1446
1447  // Read system error message into ebuf
1448  // It may or may not be overwritten below (in the for loop and just above)
1449  lasterror(ebuf, (size_t) ebuflen);
1450  ebuf[ebuflen - 1] = '\0';
1451  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1452  if (fd < 0) {
1453    return NULL;
1454  }
1455
1456  uint32_t signature_offset;
1457  uint16_t lib_arch = 0;
1458  bool failed_to_get_lib_arch =
1459    ( // Go to position 3c in the dll
1460     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1461     ||
1462     // Read location of signature
1463     (sizeof(signature_offset) !=
1464     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1465     ||
1466     // Go to COFF File Header in dll
1467     // that is located after "signature" (4 bytes long)
1468     (os::seek_to_file_offset(fd,
1469     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1470     ||
1471     // Read field that contains code of architecture
1472     // that dll was built for
1473     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1474    );
1475
1476  ::close(fd);
1477  if (failed_to_get_lib_arch) {
1478    // file i/o error - report os::lasterror(...) msg
1479    return NULL;
1480  }
1481
1482  typedef struct {
1483    uint16_t arch_code;
1484    char* arch_name;
1485  } arch_t;
1486
1487  static const arch_t arch_array[] = {
1488    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1489    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1490    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1491  };
1492#if   (defined _M_IA64)
1493  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1494#elif (defined _M_AMD64)
1495  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1496#elif (defined _M_IX86)
1497  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1498#else
1499  #error Method os::dll_load requires that one of following \
1500         is defined :_M_IA64,_M_AMD64 or _M_IX86
1501#endif
1502
1503
1504  // Obtain a string for printf operation
1505  // lib_arch_str shall contain string what platform this .dll was built for
1506  // running_arch_str shall string contain what platform Hotspot was built for
1507  char *running_arch_str = NULL, *lib_arch_str = NULL;
1508  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1509    if (lib_arch == arch_array[i].arch_code) {
1510      lib_arch_str = arch_array[i].arch_name;
1511    }
1512    if (running_arch == arch_array[i].arch_code) {
1513      running_arch_str = arch_array[i].arch_name;
1514    }
1515  }
1516
1517  assert(running_arch_str,
1518         "Didn't find running architecture code in arch_array");
1519
1520  // If the architecture is right
1521  // but some other error took place - report os::lasterror(...) msg
1522  if (lib_arch == running_arch) {
1523    return NULL;
1524  }
1525
1526  if (lib_arch_str != NULL) {
1527    ::_snprintf(ebuf, ebuflen - 1,
1528                "Can't load %s-bit .dll on a %s-bit platform",
1529                lib_arch_str, running_arch_str);
1530  } else {
1531    // don't know what architecture this dll was build for
1532    ::_snprintf(ebuf, ebuflen - 1,
1533                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1534                lib_arch, running_arch_str);
1535  }
1536
1537  return NULL;
1538}
1539
1540void os::print_dll_info(outputStream *st) {
1541  st->print_cr("Dynamic libraries:");
1542  get_loaded_modules_info(_print_module, (void *)st);
1543}
1544
1545int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1546  HANDLE   hProcess;
1547
1548# define MAX_NUM_MODULES 128
1549  HMODULE     modules[MAX_NUM_MODULES];
1550  static char filename[MAX_PATH];
1551  int         result = 0;
1552
1553  if (!os::PSApiDll::PSApiAvailable()) {
1554    return 0;
1555  }
1556
1557  int pid = os::current_process_id();
1558  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1559                         FALSE, pid);
1560  if (hProcess == NULL) return 0;
1561
1562  DWORD size_needed;
1563  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1564                                        sizeof(modules), &size_needed)) {
1565    CloseHandle(hProcess);
1566    return 0;
1567  }
1568
1569  // number of modules that are currently loaded
1570  int num_modules = size_needed / sizeof(HMODULE);
1571
1572  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1573    // Get Full pathname:
1574    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1575                                           filename, sizeof(filename))) {
1576      filename[0] = '\0';
1577    }
1578
1579    MODULEINFO modinfo;
1580    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1581                                            &modinfo, sizeof(modinfo))) {
1582      modinfo.lpBaseOfDll = NULL;
1583      modinfo.SizeOfImage = 0;
1584    }
1585
1586    // Invoke callback function
1587    result = callback(filename, (address)modinfo.lpBaseOfDll,
1588                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1589    if (result) break;
1590  }
1591
1592  CloseHandle(hProcess);
1593  return result;
1594}
1595
1596#ifndef PRODUCT
1597bool os::get_host_name(char* buf, size_t buflen) {
1598  DWORD size = (DWORD)buflen;
1599  return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1600}
1601#endif // PRODUCT
1602
1603void os::get_summary_os_info(char* buf, size_t buflen) {
1604  stringStream sst(buf, buflen);
1605  os::win32::print_windows_version(&sst);
1606  // chop off newline character
1607  char* nl = strchr(buf, '\n');
1608  if (nl != NULL) *nl = '\0';
1609}
1610
1611int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1612  int ret = vsnprintf(buf, len, fmt, args);
1613  // Get the correct buffer size if buf is too small
1614  if (ret < 0) {
1615    return _vscprintf(fmt, args);
1616  }
1617  return ret;
1618}
1619
1620void os::print_os_info_brief(outputStream* st) {
1621  os::print_os_info(st);
1622}
1623
1624void os::print_os_info(outputStream* st) {
1625#ifdef ASSERT
1626  char buffer[1024];
1627  st->print("HostName: ");
1628  if (get_host_name(buffer, sizeof(buffer))) {
1629    st->print("%s ", buffer);
1630  } else {
1631    st->print("N/A ");
1632  }
1633#endif
1634  st->print("OS:");
1635  os::win32::print_windows_version(st);
1636}
1637
1638void os::win32::print_windows_version(outputStream* st) {
1639  OSVERSIONINFOEX osvi;
1640  VS_FIXEDFILEINFO *file_info;
1641  TCHAR kernel32_path[MAX_PATH];
1642  UINT len, ret;
1643
1644  // Use the GetVersionEx information to see if we're on a server or
1645  // workstation edition of Windows. Starting with Windows 8.1 we can't
1646  // trust the OS version information returned by this API.
1647  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1648  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1649  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1650    st->print_cr("Call to GetVersionEx failed");
1651    return;
1652  }
1653  bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1654
1655  // Get the full path to \Windows\System32\kernel32.dll and use that for
1656  // determining what version of Windows we're running on.
1657  len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1658  ret = GetSystemDirectory(kernel32_path, len);
1659  if (ret == 0 || ret > len) {
1660    st->print_cr("Call to GetSystemDirectory failed");
1661    return;
1662  }
1663  strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1664
1665  DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1666  if (version_size == 0) {
1667    st->print_cr("Call to GetFileVersionInfoSize failed");
1668    return;
1669  }
1670
1671  LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1672  if (version_info == NULL) {
1673    st->print_cr("Failed to allocate version_info");
1674    return;
1675  }
1676
1677  if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1678    os::free(version_info);
1679    st->print_cr("Call to GetFileVersionInfo failed");
1680    return;
1681  }
1682
1683  if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1684    os::free(version_info);
1685    st->print_cr("Call to VerQueryValue failed");
1686    return;
1687  }
1688
1689  int major_version = HIWORD(file_info->dwProductVersionMS);
1690  int minor_version = LOWORD(file_info->dwProductVersionMS);
1691  int build_number = HIWORD(file_info->dwProductVersionLS);
1692  int build_minor = LOWORD(file_info->dwProductVersionLS);
1693  int os_vers = major_version * 1000 + minor_version;
1694  os::free(version_info);
1695
1696  st->print(" Windows ");
1697  switch (os_vers) {
1698
1699  case 6000:
1700    if (is_workstation) {
1701      st->print("Vista");
1702    } else {
1703      st->print("Server 2008");
1704    }
1705    break;
1706
1707  case 6001:
1708    if (is_workstation) {
1709      st->print("7");
1710    } else {
1711      st->print("Server 2008 R2");
1712    }
1713    break;
1714
1715  case 6002:
1716    if (is_workstation) {
1717      st->print("8");
1718    } else {
1719      st->print("Server 2012");
1720    }
1721    break;
1722
1723  case 6003:
1724    if (is_workstation) {
1725      st->print("8.1");
1726    } else {
1727      st->print("Server 2012 R2");
1728    }
1729    break;
1730
1731  case 10000:
1732    if (is_workstation) {
1733      st->print("10");
1734    } else {
1735      // The server version name of Windows 10 is not known at this time
1736      st->print("%d.%d", major_version, minor_version);
1737    }
1738    break;
1739
1740  default:
1741    // Unrecognized windows, print out its major and minor versions
1742    st->print("%d.%d", major_version, minor_version);
1743    break;
1744  }
1745
1746  // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1747  // find out whether we are running on 64 bit processor or not
1748  SYSTEM_INFO si;
1749  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1750  os::Kernel32Dll::GetNativeSystemInfo(&si);
1751  if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1752    st->print(" , 64 bit");
1753  }
1754
1755  st->print(" Build %d", build_number);
1756  st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1757  st->cr();
1758}
1759
1760void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1761  // Nothing to do for now.
1762}
1763
1764void os::get_summary_cpu_info(char* buf, size_t buflen) {
1765  HKEY key;
1766  DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1767               "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1768  if (status == ERROR_SUCCESS) {
1769    DWORD size = (DWORD)buflen;
1770    status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1771    if (status != ERROR_SUCCESS) {
1772        strncpy(buf, "## __CPU__", buflen);
1773    }
1774    RegCloseKey(key);
1775  } else {
1776    // Put generic cpu info to return
1777    strncpy(buf, "## __CPU__", buflen);
1778  }
1779}
1780
1781void os::print_memory_info(outputStream* st) {
1782  st->print("Memory:");
1783  st->print(" %dk page", os::vm_page_size()>>10);
1784
1785  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1786  // value if total memory is larger than 4GB
1787  MEMORYSTATUSEX ms;
1788  ms.dwLength = sizeof(ms);
1789  GlobalMemoryStatusEx(&ms);
1790
1791  st->print(", physical %uk", os::physical_memory() >> 10);
1792  st->print("(%uk free)", os::available_memory() >> 10);
1793
1794  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1795  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1796  st->cr();
1797}
1798
1799void os::print_siginfo(outputStream *st, void *siginfo) {
1800  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1801  st->print("siginfo:");
1802  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1803
1804  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1805      er->NumberParameters >= 2) {
1806    switch (er->ExceptionInformation[0]) {
1807    case 0: st->print(", reading address"); break;
1808    case 1: st->print(", writing address"); break;
1809    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1810                       er->ExceptionInformation[0]);
1811    }
1812    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1813  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1814             er->NumberParameters >= 2 && UseSharedSpaces) {
1815    FileMapInfo* mapinfo = FileMapInfo::current_info();
1816    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1817      st->print("\n\nError accessing class data sharing archive."       \
1818                " Mapped file inaccessible during execution, "          \
1819                " possible disk/network problem.");
1820    }
1821  } else {
1822    int num = er->NumberParameters;
1823    if (num > 0) {
1824      st->print(", ExceptionInformation=");
1825      for (int i = 0; i < num; i++) {
1826        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1827      }
1828    }
1829  }
1830  st->cr();
1831}
1832
1833void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1834  // do nothing
1835}
1836
1837static char saved_jvm_path[MAX_PATH] = {0};
1838
1839// Find the full path to the current module, jvm.dll
1840void os::jvm_path(char *buf, jint buflen) {
1841  // Error checking.
1842  if (buflen < MAX_PATH) {
1843    assert(false, "must use a large-enough buffer");
1844    buf[0] = '\0';
1845    return;
1846  }
1847  // Lazy resolve the path to current module.
1848  if (saved_jvm_path[0] != 0) {
1849    strcpy(buf, saved_jvm_path);
1850    return;
1851  }
1852
1853  buf[0] = '\0';
1854  if (Arguments::sun_java_launcher_is_altjvm()) {
1855    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1856    // for a JAVA_HOME environment variable and fix up the path so it
1857    // looks like jvm.dll is installed there (append a fake suffix
1858    // hotspot/jvm.dll).
1859    char* java_home_var = ::getenv("JAVA_HOME");
1860    if (java_home_var != NULL && java_home_var[0] != 0 &&
1861        strlen(java_home_var) < (size_t)buflen) {
1862      strncpy(buf, java_home_var, buflen);
1863
1864      // determine if this is a legacy image or modules image
1865      // modules image doesn't have "jre" subdirectory
1866      size_t len = strlen(buf);
1867      char* jrebin_p = buf + len;
1868      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1869      if (0 != _access(buf, 0)) {
1870        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1871      }
1872      len = strlen(buf);
1873      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1874    }
1875  }
1876
1877  if (buf[0] == '\0') {
1878    GetModuleFileName(vm_lib_handle, buf, buflen);
1879  }
1880  strncpy(saved_jvm_path, buf, MAX_PATH);
1881  saved_jvm_path[MAX_PATH - 1] = '\0';
1882}
1883
1884
1885void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1886#ifndef _WIN64
1887  st->print("_");
1888#endif
1889}
1890
1891
1892void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1893#ifndef _WIN64
1894  st->print("@%d", args_size  * sizeof(int));
1895#endif
1896}
1897
1898// This method is a copy of JDK's sysGetLastErrorString
1899// from src/windows/hpi/src/system_md.c
1900
1901size_t os::lasterror(char* buf, size_t len) {
1902  DWORD errval;
1903
1904  if ((errval = GetLastError()) != 0) {
1905    // DOS error
1906    size_t n = (size_t)FormatMessage(
1907                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1908                                     NULL,
1909                                     errval,
1910                                     0,
1911                                     buf,
1912                                     (DWORD)len,
1913                                     NULL);
1914    if (n > 3) {
1915      // Drop final '.', CR, LF
1916      if (buf[n - 1] == '\n') n--;
1917      if (buf[n - 1] == '\r') n--;
1918      if (buf[n - 1] == '.') n--;
1919      buf[n] = '\0';
1920    }
1921    return n;
1922  }
1923
1924  if (errno != 0) {
1925    // C runtime error that has no corresponding DOS error code
1926    const char* s = strerror(errno);
1927    size_t n = strlen(s);
1928    if (n >= len) n = len - 1;
1929    strncpy(buf, s, n);
1930    buf[n] = '\0';
1931    return n;
1932  }
1933
1934  return 0;
1935}
1936
1937int os::get_last_error() {
1938  DWORD error = GetLastError();
1939  if (error == 0) {
1940    error = errno;
1941  }
1942  return (int)error;
1943}
1944
1945WindowsSemaphore::WindowsSemaphore(uint value) {
1946  _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1947
1948  guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1949}
1950
1951WindowsSemaphore::~WindowsSemaphore() {
1952  ::CloseHandle(_semaphore);
1953}
1954
1955void WindowsSemaphore::signal(uint count) {
1956  if (count > 0) {
1957    BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1958
1959    assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1960  }
1961}
1962
1963void WindowsSemaphore::wait() {
1964  DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1965  assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1966  assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1967}
1968
1969// sun.misc.Signal
1970// NOTE that this is a workaround for an apparent kernel bug where if
1971// a signal handler for SIGBREAK is installed then that signal handler
1972// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1973// See bug 4416763.
1974static void (*sigbreakHandler)(int) = NULL;
1975
1976static void UserHandler(int sig, void *siginfo, void *context) {
1977  os::signal_notify(sig);
1978  // We need to reinstate the signal handler each time...
1979  os::signal(sig, (void*)UserHandler);
1980}
1981
1982void* os::user_handler() {
1983  return (void*) UserHandler;
1984}
1985
1986void* os::signal(int signal_number, void* handler) {
1987  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1988    void (*oldHandler)(int) = sigbreakHandler;
1989    sigbreakHandler = (void (*)(int)) handler;
1990    return (void*) oldHandler;
1991  } else {
1992    return (void*)::signal(signal_number, (void (*)(int))handler);
1993  }
1994}
1995
1996void os::signal_raise(int signal_number) {
1997  raise(signal_number);
1998}
1999
2000// The Win32 C runtime library maps all console control events other than ^C
2001// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2002// logoff, and shutdown events.  We therefore install our own console handler
2003// that raises SIGTERM for the latter cases.
2004//
2005static BOOL WINAPI consoleHandler(DWORD event) {
2006  switch (event) {
2007  case CTRL_C_EVENT:
2008    if (is_error_reported()) {
2009      // Ctrl-C is pressed during error reporting, likely because the error
2010      // handler fails to abort. Let VM die immediately.
2011      os::die();
2012    }
2013
2014    os::signal_raise(SIGINT);
2015    return TRUE;
2016    break;
2017  case CTRL_BREAK_EVENT:
2018    if (sigbreakHandler != NULL) {
2019      (*sigbreakHandler)(SIGBREAK);
2020    }
2021    return TRUE;
2022    break;
2023  case CTRL_LOGOFF_EVENT: {
2024    // Don't terminate JVM if it is running in a non-interactive session,
2025    // such as a service process.
2026    USEROBJECTFLAGS flags;
2027    HANDLE handle = GetProcessWindowStation();
2028    if (handle != NULL &&
2029        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2030        sizeof(USEROBJECTFLAGS), NULL)) {
2031      // If it is a non-interactive session, let next handler to deal
2032      // with it.
2033      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2034        return FALSE;
2035      }
2036    }
2037  }
2038  case CTRL_CLOSE_EVENT:
2039  case CTRL_SHUTDOWN_EVENT:
2040    os::signal_raise(SIGTERM);
2041    return TRUE;
2042    break;
2043  default:
2044    break;
2045  }
2046  return FALSE;
2047}
2048
2049// The following code is moved from os.cpp for making this
2050// code platform specific, which it is by its very nature.
2051
2052// Return maximum OS signal used + 1 for internal use only
2053// Used as exit signal for signal_thread
2054int os::sigexitnum_pd() {
2055  return NSIG;
2056}
2057
2058// a counter for each possible signal value, including signal_thread exit signal
2059static volatile jint pending_signals[NSIG+1] = { 0 };
2060static HANDLE sig_sem = NULL;
2061
2062void os::signal_init_pd() {
2063  // Initialize signal structures
2064  memset((void*)pending_signals, 0, sizeof(pending_signals));
2065
2066  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2067
2068  // Programs embedding the VM do not want it to attempt to receive
2069  // events like CTRL_LOGOFF_EVENT, which are used to implement the
2070  // shutdown hooks mechanism introduced in 1.3.  For example, when
2071  // the VM is run as part of a Windows NT service (i.e., a servlet
2072  // engine in a web server), the correct behavior is for any console
2073  // control handler to return FALSE, not TRUE, because the OS's
2074  // "final" handler for such events allows the process to continue if
2075  // it is a service (while terminating it if it is not a service).
2076  // To make this behavior uniform and the mechanism simpler, we
2077  // completely disable the VM's usage of these console events if -Xrs
2078  // (=ReduceSignalUsage) is specified.  This means, for example, that
2079  // the CTRL-BREAK thread dump mechanism is also disabled in this
2080  // case.  See bugs 4323062, 4345157, and related bugs.
2081
2082  if (!ReduceSignalUsage) {
2083    // Add a CTRL-C handler
2084    SetConsoleCtrlHandler(consoleHandler, TRUE);
2085  }
2086}
2087
2088void os::signal_notify(int signal_number) {
2089  BOOL ret;
2090  if (sig_sem != NULL) {
2091    Atomic::inc(&pending_signals[signal_number]);
2092    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2093    assert(ret != 0, "ReleaseSemaphore() failed");
2094  }
2095}
2096
2097static int check_pending_signals(bool wait_for_signal) {
2098  DWORD ret;
2099  while (true) {
2100    for (int i = 0; i < NSIG + 1; i++) {
2101      jint n = pending_signals[i];
2102      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2103        return i;
2104      }
2105    }
2106    if (!wait_for_signal) {
2107      return -1;
2108    }
2109
2110    JavaThread *thread = JavaThread::current();
2111
2112    ThreadBlockInVM tbivm(thread);
2113
2114    bool threadIsSuspended;
2115    do {
2116      thread->set_suspend_equivalent();
2117      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2118      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2119      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2120
2121      // were we externally suspended while we were waiting?
2122      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2123      if (threadIsSuspended) {
2124        // The semaphore has been incremented, but while we were waiting
2125        // another thread suspended us. We don't want to continue running
2126        // while suspended because that would surprise the thread that
2127        // suspended us.
2128        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2129        assert(ret != 0, "ReleaseSemaphore() failed");
2130
2131        thread->java_suspend_self();
2132      }
2133    } while (threadIsSuspended);
2134  }
2135}
2136
2137int os::signal_lookup() {
2138  return check_pending_signals(false);
2139}
2140
2141int os::signal_wait() {
2142  return check_pending_signals(true);
2143}
2144
2145// Implicit OS exception handling
2146
2147LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2148                      address handler) {
2149  JavaThread* thread = JavaThread::current();
2150  // Save pc in thread
2151#ifdef _M_IA64
2152  // Do not blow up if no thread info available.
2153  if (thread) {
2154    // Saving PRECISE pc (with slot information) in thread.
2155    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2156    // Convert precise PC into "Unix" format
2157    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2158    thread->set_saved_exception_pc((address)precise_pc);
2159  }
2160  // Set pc to handler
2161  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2162  // Clear out psr.ri (= Restart Instruction) in order to continue
2163  // at the beginning of the target bundle.
2164  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2165  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2166#else
2167  #ifdef _M_AMD64
2168  // Do not blow up if no thread info available.
2169  if (thread) {
2170    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2171  }
2172  // Set pc to handler
2173  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2174  #else
2175  // Do not blow up if no thread info available.
2176  if (thread) {
2177    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2178  }
2179  // Set pc to handler
2180  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2181  #endif
2182#endif
2183
2184  // Continue the execution
2185  return EXCEPTION_CONTINUE_EXECUTION;
2186}
2187
2188
2189// Used for PostMortemDump
2190extern "C" void safepoints();
2191extern "C" void find(int x);
2192extern "C" void events();
2193
2194// According to Windows API documentation, an illegal instruction sequence should generate
2195// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2196// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2197// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2198
2199#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2200
2201// From "Execution Protection in the Windows Operating System" draft 0.35
2202// Once a system header becomes available, the "real" define should be
2203// included or copied here.
2204#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2205
2206// Handle NAT Bit consumption on IA64.
2207#ifdef _M_IA64
2208  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2209#endif
2210
2211// Windows Vista/2008 heap corruption check
2212#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2213
2214#define def_excpt(val) #val, val
2215
2216struct siglabel {
2217  char *name;
2218  int   number;
2219};
2220
2221// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2222// C++ compiler contain this error code. Because this is a compiler-generated
2223// error, the code is not listed in the Win32 API header files.
2224// The code is actually a cryptic mnemonic device, with the initial "E"
2225// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2226// ASCII values of "msc".
2227
2228#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2229
2230
2231struct siglabel exceptlabels[] = {
2232    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2233    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2234    def_excpt(EXCEPTION_BREAKPOINT),
2235    def_excpt(EXCEPTION_SINGLE_STEP),
2236    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2237    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2238    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2239    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2240    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2241    def_excpt(EXCEPTION_FLT_OVERFLOW),
2242    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2243    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2244    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2245    def_excpt(EXCEPTION_INT_OVERFLOW),
2246    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2247    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2248    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2249    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2250    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2251    def_excpt(EXCEPTION_STACK_OVERFLOW),
2252    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2253    def_excpt(EXCEPTION_GUARD_PAGE),
2254    def_excpt(EXCEPTION_INVALID_HANDLE),
2255    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2256    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2257#ifdef _M_IA64
2258    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2259#endif
2260    NULL, 0
2261};
2262
2263const char* os::exception_name(int exception_code, char *buf, size_t size) {
2264  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2265    if (exceptlabels[i].number == exception_code) {
2266      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2267      return buf;
2268    }
2269  }
2270
2271  return NULL;
2272}
2273
2274//-----------------------------------------------------------------------------
2275LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2276  // handle exception caused by idiv; should only happen for -MinInt/-1
2277  // (division by zero is handled explicitly)
2278#ifdef _M_IA64
2279  assert(0, "Fix Handle_IDiv_Exception");
2280#else
2281  #ifdef  _M_AMD64
2282  PCONTEXT ctx = exceptionInfo->ContextRecord;
2283  address pc = (address)ctx->Rip;
2284  assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2285  assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2286  if (pc[0] == 0xF7) {
2287    // set correct result values and continue after idiv instruction
2288    ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2289  } else {
2290    ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2291  }
2292  // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2293  // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2294  // idiv opcode (0xF7).
2295  ctx->Rdx = (DWORD)0;             // remainder
2296  // Continue the execution
2297  #else
2298  PCONTEXT ctx = exceptionInfo->ContextRecord;
2299  address pc = (address)ctx->Eip;
2300  assert(pc[0] == 0xF7, "not an idiv opcode");
2301  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2302  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2303  // set correct result values and continue after idiv instruction
2304  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2305  ctx->Eax = (DWORD)min_jint;      // result
2306  ctx->Edx = (DWORD)0;             // remainder
2307  // Continue the execution
2308  #endif
2309#endif
2310  return EXCEPTION_CONTINUE_EXECUTION;
2311}
2312
2313//-----------------------------------------------------------------------------
2314LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2315  PCONTEXT ctx = exceptionInfo->ContextRecord;
2316#ifndef  _WIN64
2317  // handle exception caused by native method modifying control word
2318  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2319
2320  switch (exception_code) {
2321  case EXCEPTION_FLT_DENORMAL_OPERAND:
2322  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2323  case EXCEPTION_FLT_INEXACT_RESULT:
2324  case EXCEPTION_FLT_INVALID_OPERATION:
2325  case EXCEPTION_FLT_OVERFLOW:
2326  case EXCEPTION_FLT_STACK_CHECK:
2327  case EXCEPTION_FLT_UNDERFLOW:
2328    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2329    if (fp_control_word != ctx->FloatSave.ControlWord) {
2330      // Restore FPCW and mask out FLT exceptions
2331      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2332      // Mask out pending FLT exceptions
2333      ctx->FloatSave.StatusWord &=  0xffffff00;
2334      return EXCEPTION_CONTINUE_EXECUTION;
2335    }
2336  }
2337
2338  if (prev_uef_handler != NULL) {
2339    // We didn't handle this exception so pass it to the previous
2340    // UnhandledExceptionFilter.
2341    return (prev_uef_handler)(exceptionInfo);
2342  }
2343#else // !_WIN64
2344  // On Windows, the mxcsr control bits are non-volatile across calls
2345  // See also CR 6192333
2346  //
2347  jint MxCsr = INITIAL_MXCSR;
2348  // we can't use StubRoutines::addr_mxcsr_std()
2349  // because in Win64 mxcsr is not saved there
2350  if (MxCsr != ctx->MxCsr) {
2351    ctx->MxCsr = MxCsr;
2352    return EXCEPTION_CONTINUE_EXECUTION;
2353  }
2354#endif // !_WIN64
2355
2356  return EXCEPTION_CONTINUE_SEARCH;
2357}
2358
2359static inline void report_error(Thread* t, DWORD exception_code,
2360                                address addr, void* siginfo, void* context) {
2361  VMError::report_and_die(t, exception_code, addr, siginfo, context);
2362
2363  // If UseOsErrorReporting, this will return here and save the error file
2364  // somewhere where we can find it in the minidump.
2365}
2366
2367//-----------------------------------------------------------------------------
2368LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2369  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2370  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2371#ifdef _M_IA64
2372  // On Itanium, we need the "precise pc", which has the slot number coded
2373  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2374  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2375  // Convert the pc to "Unix format", which has the slot number coded
2376  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2377  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2378  // information is saved in the Unix format.
2379  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2380#else
2381  #ifdef _M_AMD64
2382  address pc = (address) exceptionInfo->ContextRecord->Rip;
2383  #else
2384  address pc = (address) exceptionInfo->ContextRecord->Eip;
2385  #endif
2386#endif
2387  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2388
2389  // Handle SafeFetch32 and SafeFetchN exceptions.
2390  if (StubRoutines::is_safefetch_fault(pc)) {
2391    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2392  }
2393
2394#ifndef _WIN64
2395  // Execution protection violation - win32 running on AMD64 only
2396  // Handled first to avoid misdiagnosis as a "normal" access violation;
2397  // This is safe to do because we have a new/unique ExceptionInformation
2398  // code for this condition.
2399  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2400    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2401    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2402    address addr = (address) exceptionRecord->ExceptionInformation[1];
2403
2404    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2405      int page_size = os::vm_page_size();
2406
2407      // Make sure the pc and the faulting address are sane.
2408      //
2409      // If an instruction spans a page boundary, and the page containing
2410      // the beginning of the instruction is executable but the following
2411      // page is not, the pc and the faulting address might be slightly
2412      // different - we still want to unguard the 2nd page in this case.
2413      //
2414      // 15 bytes seems to be a (very) safe value for max instruction size.
2415      bool pc_is_near_addr =
2416        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2417      bool instr_spans_page_boundary =
2418        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2419                         (intptr_t) page_size) > 0);
2420
2421      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2422        static volatile address last_addr =
2423          (address) os::non_memory_address_word();
2424
2425        // In conservative mode, don't unguard unless the address is in the VM
2426        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2427            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2428
2429          // Set memory to RWX and retry
2430          address page_start =
2431            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2432          bool res = os::protect_memory((char*) page_start, page_size,
2433                                        os::MEM_PROT_RWX);
2434
2435          if (PrintMiscellaneous && Verbose) {
2436            char buf[256];
2437            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2438                         "at " INTPTR_FORMAT
2439                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2440                         page_start, (res ? "success" : strerror(errno)));
2441            tty->print_raw_cr(buf);
2442          }
2443
2444          // Set last_addr so if we fault again at the same address, we don't
2445          // end up in an endless loop.
2446          //
2447          // There are two potential complications here.  Two threads trapping
2448          // at the same address at the same time could cause one of the
2449          // threads to think it already unguarded, and abort the VM.  Likely
2450          // very rare.
2451          //
2452          // The other race involves two threads alternately trapping at
2453          // different addresses and failing to unguard the page, resulting in
2454          // an endless loop.  This condition is probably even more unlikely
2455          // than the first.
2456          //
2457          // Although both cases could be avoided by using locks or thread
2458          // local last_addr, these solutions are unnecessary complication:
2459          // this handler is a best-effort safety net, not a complete solution.
2460          // It is disabled by default and should only be used as a workaround
2461          // in case we missed any no-execute-unsafe VM code.
2462
2463          last_addr = addr;
2464
2465          return EXCEPTION_CONTINUE_EXECUTION;
2466        }
2467      }
2468
2469      // Last unguard failed or not unguarding
2470      tty->print_raw_cr("Execution protection violation");
2471      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2472                   exceptionInfo->ContextRecord);
2473      return EXCEPTION_CONTINUE_SEARCH;
2474    }
2475  }
2476#endif // _WIN64
2477
2478  // Check to see if we caught the safepoint code in the
2479  // process of write protecting the memory serialization page.
2480  // It write enables the page immediately after protecting it
2481  // so just return.
2482  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2483    JavaThread* thread = (JavaThread*) t;
2484    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2485    address addr = (address) exceptionRecord->ExceptionInformation[1];
2486    if (os::is_memory_serialize_page(thread, addr)) {
2487      // Block current thread until the memory serialize page permission restored.
2488      os::block_on_serialize_page_trap();
2489      return EXCEPTION_CONTINUE_EXECUTION;
2490    }
2491  }
2492
2493  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2494      VM_Version::is_cpuinfo_segv_addr(pc)) {
2495    // Verify that OS save/restore AVX registers.
2496    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2497  }
2498
2499  if (t != NULL && t->is_Java_thread()) {
2500    JavaThread* thread = (JavaThread*) t;
2501    bool in_java = thread->thread_state() == _thread_in_Java;
2502
2503    // Handle potential stack overflows up front.
2504    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2505      if (os::uses_stack_guard_pages()) {
2506#ifdef _M_IA64
2507        // Use guard page for register stack.
2508        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2509        address addr = (address) exceptionRecord->ExceptionInformation[1];
2510        // Check for a register stack overflow on Itanium
2511        if (thread->addr_inside_register_stack_red_zone(addr)) {
2512          // Fatal red zone violation happens if the Java program
2513          // catches a StackOverflow error and does so much processing
2514          // that it runs beyond the unprotected yellow guard zone. As
2515          // a result, we are out of here.
2516          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2517        } else if(thread->addr_inside_register_stack(addr)) {
2518          // Disable the yellow zone which sets the state that
2519          // we've got a stack overflow problem.
2520          if (thread->stack_yellow_zone_enabled()) {
2521            thread->disable_stack_yellow_zone();
2522          }
2523          // Give us some room to process the exception.
2524          thread->disable_register_stack_guard();
2525          // Tracing with +Verbose.
2526          if (Verbose) {
2527            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2528            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2529            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2530            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2531                          thread->register_stack_base(),
2532                          thread->register_stack_base() + thread->stack_size());
2533          }
2534
2535          // Reguard the permanent register stack red zone just to be sure.
2536          // We saw Windows silently disabling this without telling us.
2537          thread->enable_register_stack_red_zone();
2538
2539          return Handle_Exception(exceptionInfo,
2540                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2541        }
2542#endif
2543        if (thread->stack_yellow_zone_enabled()) {
2544          // Yellow zone violation.  The o/s has unprotected the first yellow
2545          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2546          // update the enabled status, even if the zone contains only one page.
2547          thread->disable_stack_yellow_zone();
2548          // If not in java code, return and hope for the best.
2549          return in_java
2550              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2551              :  EXCEPTION_CONTINUE_EXECUTION;
2552        } else {
2553          // Fatal red zone violation.
2554          thread->disable_stack_red_zone();
2555          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2556          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2557                       exceptionInfo->ContextRecord);
2558          return EXCEPTION_CONTINUE_SEARCH;
2559        }
2560      } else if (in_java) {
2561        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2562        // a one-time-only guard page, which it has released to us.  The next
2563        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2564        return Handle_Exception(exceptionInfo,
2565                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2566      } else {
2567        // Can only return and hope for the best.  Further stack growth will
2568        // result in an ACCESS_VIOLATION.
2569        return EXCEPTION_CONTINUE_EXECUTION;
2570      }
2571    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2572      // Either stack overflow or null pointer exception.
2573      if (in_java) {
2574        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2575        address addr = (address) exceptionRecord->ExceptionInformation[1];
2576        address stack_end = thread->stack_base() - thread->stack_size();
2577        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2578          // Stack overflow.
2579          assert(!os::uses_stack_guard_pages(),
2580                 "should be caught by red zone code above.");
2581          return Handle_Exception(exceptionInfo,
2582                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2583        }
2584        // Check for safepoint polling and implicit null
2585        // We only expect null pointers in the stubs (vtable)
2586        // the rest are checked explicitly now.
2587        CodeBlob* cb = CodeCache::find_blob(pc);
2588        if (cb != NULL) {
2589          if (os::is_poll_address(addr)) {
2590            address stub = SharedRuntime::get_poll_stub(pc);
2591            return Handle_Exception(exceptionInfo, stub);
2592          }
2593        }
2594        {
2595#ifdef _WIN64
2596          // If it's a legal stack address map the entire region in
2597          //
2598          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2599          address addr = (address) exceptionRecord->ExceptionInformation[1];
2600          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2601            addr = (address)((uintptr_t)addr &
2602                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2603            os::commit_memory((char *)addr, thread->stack_base() - addr,
2604                              !ExecMem);
2605            return EXCEPTION_CONTINUE_EXECUTION;
2606          } else
2607#endif
2608          {
2609            // Null pointer exception.
2610#ifdef _M_IA64
2611            // Process implicit null checks in compiled code. Note: Implicit null checks
2612            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2613            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2614              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2615              // Handle implicit null check in UEP method entry
2616              if (cb && (cb->is_frame_complete_at(pc) ||
2617                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2618                if (Verbose) {
2619                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2620                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2621                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2622                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2623                                *(bundle_start + 1), *bundle_start);
2624                }
2625                return Handle_Exception(exceptionInfo,
2626                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2627              }
2628            }
2629
2630            // Implicit null checks were processed above.  Hence, we should not reach
2631            // here in the usual case => die!
2632            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2633            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2634                         exceptionInfo->ContextRecord);
2635            return EXCEPTION_CONTINUE_SEARCH;
2636
2637#else // !IA64
2638
2639            // Windows 98 reports faulting addresses incorrectly
2640            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2641                !os::win32::is_nt()) {
2642              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2643              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2644            }
2645            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2646                         exceptionInfo->ContextRecord);
2647            return EXCEPTION_CONTINUE_SEARCH;
2648#endif
2649          }
2650        }
2651      }
2652
2653#ifdef _WIN64
2654      // Special care for fast JNI field accessors.
2655      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2656      // in and the heap gets shrunk before the field access.
2657      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2658        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2659        if (addr != (address)-1) {
2660          return Handle_Exception(exceptionInfo, addr);
2661        }
2662      }
2663#endif
2664
2665      // Stack overflow or null pointer exception in native code.
2666      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2667                   exceptionInfo->ContextRecord);
2668      return EXCEPTION_CONTINUE_SEARCH;
2669    } // /EXCEPTION_ACCESS_VIOLATION
2670    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2671#if defined _M_IA64
2672    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2673              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2674      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2675
2676      // Compiled method patched to be non entrant? Following conditions must apply:
2677      // 1. must be first instruction in bundle
2678      // 2. must be a break instruction with appropriate code
2679      if ((((uint64_t) pc & 0x0F) == 0) &&
2680          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2681        return Handle_Exception(exceptionInfo,
2682                                (address)SharedRuntime::get_handle_wrong_method_stub());
2683      }
2684    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2685#endif
2686
2687
2688    if (in_java) {
2689      switch (exception_code) {
2690      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2691        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2692
2693      case EXCEPTION_INT_OVERFLOW:
2694        return Handle_IDiv_Exception(exceptionInfo);
2695
2696      } // switch
2697    }
2698    if (((thread->thread_state() == _thread_in_Java) ||
2699         (thread->thread_state() == _thread_in_native)) &&
2700         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2701      LONG result=Handle_FLT_Exception(exceptionInfo);
2702      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2703    }
2704  }
2705
2706  if (exception_code != EXCEPTION_BREAKPOINT) {
2707    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2708                 exceptionInfo->ContextRecord);
2709  }
2710  return EXCEPTION_CONTINUE_SEARCH;
2711}
2712
2713#ifndef _WIN64
2714// Special care for fast JNI accessors.
2715// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2716// the heap gets shrunk before the field access.
2717// Need to install our own structured exception handler since native code may
2718// install its own.
2719LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2720  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2721  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2722    address pc = (address) exceptionInfo->ContextRecord->Eip;
2723    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2724    if (addr != (address)-1) {
2725      return Handle_Exception(exceptionInfo, addr);
2726    }
2727  }
2728  return EXCEPTION_CONTINUE_SEARCH;
2729}
2730
2731#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2732  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2733                                                     jobject obj,           \
2734                                                     jfieldID fieldID) {    \
2735    __try {                                                                 \
2736      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2737                                                                 obj,       \
2738                                                                 fieldID);  \
2739    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2740                                              _exception_info())) {         \
2741    }                                                                       \
2742    return 0;                                                               \
2743  }
2744
2745DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2746DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2747DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2748DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2749DEFINE_FAST_GETFIELD(jint,     int,    Int)
2750DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2751DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2752DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2753
2754address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2755  switch (type) {
2756  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2757  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2758  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2759  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2760  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2761  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2762  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2763  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2764  default:        ShouldNotReachHere();
2765  }
2766  return (address)-1;
2767}
2768#endif
2769
2770// Virtual Memory
2771
2772int os::vm_page_size() { return os::win32::vm_page_size(); }
2773int os::vm_allocation_granularity() {
2774  return os::win32::vm_allocation_granularity();
2775}
2776
2777// Windows large page support is available on Windows 2003. In order to use
2778// large page memory, the administrator must first assign additional privilege
2779// to the user:
2780//   + select Control Panel -> Administrative Tools -> Local Security Policy
2781//   + select Local Policies -> User Rights Assignment
2782//   + double click "Lock pages in memory", add users and/or groups
2783//   + reboot
2784// Note the above steps are needed for administrator as well, as administrators
2785// by default do not have the privilege to lock pages in memory.
2786//
2787// Note about Windows 2003: although the API supports committing large page
2788// memory on a page-by-page basis and VirtualAlloc() returns success under this
2789// scenario, I found through experiment it only uses large page if the entire
2790// memory region is reserved and committed in a single VirtualAlloc() call.
2791// This makes Windows large page support more or less like Solaris ISM, in
2792// that the entire heap must be committed upfront. This probably will change
2793// in the future, if so the code below needs to be revisited.
2794
2795#ifndef MEM_LARGE_PAGES
2796  #define MEM_LARGE_PAGES 0x20000000
2797#endif
2798
2799static HANDLE    _hProcess;
2800static HANDLE    _hToken;
2801
2802// Container for NUMA node list info
2803class NUMANodeListHolder {
2804 private:
2805  int *_numa_used_node_list;  // allocated below
2806  int _numa_used_node_count;
2807
2808  void free_node_list() {
2809    if (_numa_used_node_list != NULL) {
2810      FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2811    }
2812  }
2813
2814 public:
2815  NUMANodeListHolder() {
2816    _numa_used_node_count = 0;
2817    _numa_used_node_list = NULL;
2818    // do rest of initialization in build routine (after function pointers are set up)
2819  }
2820
2821  ~NUMANodeListHolder() {
2822    free_node_list();
2823  }
2824
2825  bool build() {
2826    DWORD_PTR proc_aff_mask;
2827    DWORD_PTR sys_aff_mask;
2828    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2829    ULONG highest_node_number;
2830    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2831    free_node_list();
2832    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2833    for (unsigned int i = 0; i <= highest_node_number; i++) {
2834      ULONGLONG proc_mask_numa_node;
2835      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2836      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2837        _numa_used_node_list[_numa_used_node_count++] = i;
2838      }
2839    }
2840    return (_numa_used_node_count > 1);
2841  }
2842
2843  int get_count() { return _numa_used_node_count; }
2844  int get_node_list_entry(int n) {
2845    // for indexes out of range, returns -1
2846    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2847  }
2848
2849} numa_node_list_holder;
2850
2851
2852
2853static size_t _large_page_size = 0;
2854
2855static bool resolve_functions_for_large_page_init() {
2856  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2857    os::Advapi32Dll::AdvapiAvailable();
2858}
2859
2860static bool request_lock_memory_privilege() {
2861  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2862                          os::current_process_id());
2863
2864  LUID luid;
2865  if (_hProcess != NULL &&
2866      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2867      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2868
2869    TOKEN_PRIVILEGES tp;
2870    tp.PrivilegeCount = 1;
2871    tp.Privileges[0].Luid = luid;
2872    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2873
2874    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2875    // privilege. Check GetLastError() too. See MSDN document.
2876    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2877        (GetLastError() == ERROR_SUCCESS)) {
2878      return true;
2879    }
2880  }
2881
2882  return false;
2883}
2884
2885static void cleanup_after_large_page_init() {
2886  if (_hProcess) CloseHandle(_hProcess);
2887  _hProcess = NULL;
2888  if (_hToken) CloseHandle(_hToken);
2889  _hToken = NULL;
2890}
2891
2892static bool numa_interleaving_init() {
2893  bool success = false;
2894  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2895
2896  // print a warning if UseNUMAInterleaving flag is specified on command line
2897  bool warn_on_failure = use_numa_interleaving_specified;
2898#define WARN(msg) if (warn_on_failure) { warning(msg); }
2899
2900  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2901  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2902  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2903
2904  if (os::Kernel32Dll::NumaCallsAvailable()) {
2905    if (numa_node_list_holder.build()) {
2906      if (PrintMiscellaneous && Verbose) {
2907        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2908        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2909          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2910        }
2911        tty->print("\n");
2912      }
2913      success = true;
2914    } else {
2915      WARN("Process does not cover multiple NUMA nodes.");
2916    }
2917  } else {
2918    WARN("NUMA Interleaving is not supported by the operating system.");
2919  }
2920  if (!success) {
2921    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2922  }
2923  return success;
2924#undef WARN
2925}
2926
2927// this routine is used whenever we need to reserve a contiguous VA range
2928// but we need to make separate VirtualAlloc calls for each piece of the range
2929// Reasons for doing this:
2930//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2931//  * UseNUMAInterleaving requires a separate node for each piece
2932static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2933                                         DWORD prot,
2934                                         bool should_inject_error = false) {
2935  char * p_buf;
2936  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2937  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2938  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2939
2940  // first reserve enough address space in advance since we want to be
2941  // able to break a single contiguous virtual address range into multiple
2942  // large page commits but WS2003 does not allow reserving large page space
2943  // so we just use 4K pages for reserve, this gives us a legal contiguous
2944  // address space. then we will deallocate that reservation, and re alloc
2945  // using large pages
2946  const size_t size_of_reserve = bytes + chunk_size;
2947  if (bytes > size_of_reserve) {
2948    // Overflowed.
2949    return NULL;
2950  }
2951  p_buf = (char *) VirtualAlloc(addr,
2952                                size_of_reserve,  // size of Reserve
2953                                MEM_RESERVE,
2954                                PAGE_READWRITE);
2955  // If reservation failed, return NULL
2956  if (p_buf == NULL) return NULL;
2957  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2958  os::release_memory(p_buf, bytes + chunk_size);
2959
2960  // we still need to round up to a page boundary (in case we are using large pages)
2961  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2962  // instead we handle this in the bytes_to_rq computation below
2963  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2964
2965  // now go through and allocate one chunk at a time until all bytes are
2966  // allocated
2967  size_t  bytes_remaining = bytes;
2968  // An overflow of align_size_up() would have been caught above
2969  // in the calculation of size_of_reserve.
2970  char * next_alloc_addr = p_buf;
2971  HANDLE hProc = GetCurrentProcess();
2972
2973#ifdef ASSERT
2974  // Variable for the failure injection
2975  long ran_num = os::random();
2976  size_t fail_after = ran_num % bytes;
2977#endif
2978
2979  int count=0;
2980  while (bytes_remaining) {
2981    // select bytes_to_rq to get to the next chunk_size boundary
2982
2983    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2984    // Note allocate and commit
2985    char * p_new;
2986
2987#ifdef ASSERT
2988    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2989#else
2990    const bool inject_error_now = false;
2991#endif
2992
2993    if (inject_error_now) {
2994      p_new = NULL;
2995    } else {
2996      if (!UseNUMAInterleaving) {
2997        p_new = (char *) VirtualAlloc(next_alloc_addr,
2998                                      bytes_to_rq,
2999                                      flags,
3000                                      prot);
3001      } else {
3002        // get the next node to use from the used_node_list
3003        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3004        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3005        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
3006                                                            next_alloc_addr,
3007                                                            bytes_to_rq,
3008                                                            flags,
3009                                                            prot,
3010                                                            node);
3011      }
3012    }
3013
3014    if (p_new == NULL) {
3015      // Free any allocated pages
3016      if (next_alloc_addr > p_buf) {
3017        // Some memory was committed so release it.
3018        size_t bytes_to_release = bytes - bytes_remaining;
3019        // NMT has yet to record any individual blocks, so it
3020        // need to create a dummy 'reserve' record to match
3021        // the release.
3022        MemTracker::record_virtual_memory_reserve((address)p_buf,
3023                                                  bytes_to_release, CALLER_PC);
3024        os::release_memory(p_buf, bytes_to_release);
3025      }
3026#ifdef ASSERT
3027      if (should_inject_error) {
3028        if (TracePageSizes && Verbose) {
3029          tty->print_cr("Reserving pages individually failed.");
3030        }
3031      }
3032#endif
3033      return NULL;
3034    }
3035
3036    bytes_remaining -= bytes_to_rq;
3037    next_alloc_addr += bytes_to_rq;
3038    count++;
3039  }
3040  // Although the memory is allocated individually, it is returned as one.
3041  // NMT records it as one block.
3042  if ((flags & MEM_COMMIT) != 0) {
3043    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3044  } else {
3045    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3046  }
3047
3048  // made it this far, success
3049  return p_buf;
3050}
3051
3052
3053
3054void os::large_page_init() {
3055  if (!UseLargePages) return;
3056
3057  // print a warning if any large page related flag is specified on command line
3058  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3059                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3060  bool success = false;
3061
3062#define WARN(msg) if (warn_on_failure) { warning(msg); }
3063  if (resolve_functions_for_large_page_init()) {
3064    if (request_lock_memory_privilege()) {
3065      size_t s = os::Kernel32Dll::GetLargePageMinimum();
3066      if (s) {
3067#if defined(IA32) || defined(AMD64)
3068        if (s > 4*M || LargePageSizeInBytes > 4*M) {
3069          WARN("JVM cannot use large pages bigger than 4mb.");
3070        } else {
3071#endif
3072          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3073            _large_page_size = LargePageSizeInBytes;
3074          } else {
3075            _large_page_size = s;
3076          }
3077          success = true;
3078#if defined(IA32) || defined(AMD64)
3079        }
3080#endif
3081      } else {
3082        WARN("Large page is not supported by the processor.");
3083      }
3084    } else {
3085      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3086    }
3087  } else {
3088    WARN("Large page is not supported by the operating system.");
3089  }
3090#undef WARN
3091
3092  const size_t default_page_size = (size_t) vm_page_size();
3093  if (success && _large_page_size > default_page_size) {
3094    _page_sizes[0] = _large_page_size;
3095    _page_sizes[1] = default_page_size;
3096    _page_sizes[2] = 0;
3097  }
3098
3099  cleanup_after_large_page_init();
3100  UseLargePages = success;
3101}
3102
3103// On win32, one cannot release just a part of reserved memory, it's an
3104// all or nothing deal.  When we split a reservation, we must break the
3105// reservation into two reservations.
3106void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3107                                  bool realloc) {
3108  if (size > 0) {
3109    release_memory(base, size);
3110    if (realloc) {
3111      reserve_memory(split, base);
3112    }
3113    if (size != split) {
3114      reserve_memory(size - split, base + split);
3115    }
3116  }
3117}
3118
3119// Multiple threads can race in this code but it's not possible to unmap small sections of
3120// virtual space to get requested alignment, like posix-like os's.
3121// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3122char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3123  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3124         "Alignment must be a multiple of allocation granularity (page size)");
3125  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3126
3127  size_t extra_size = size + alignment;
3128  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3129
3130  char* aligned_base = NULL;
3131
3132  do {
3133    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3134    if (extra_base == NULL) {
3135      return NULL;
3136    }
3137    // Do manual alignment
3138    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3139
3140    os::release_memory(extra_base, extra_size);
3141
3142    aligned_base = os::reserve_memory(size, aligned_base);
3143
3144  } while (aligned_base == NULL);
3145
3146  return aligned_base;
3147}
3148
3149char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3150  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3151         "reserve alignment");
3152  assert(bytes % os::vm_page_size() == 0, "reserve page size");
3153  char* res;
3154  // note that if UseLargePages is on, all the areas that require interleaving
3155  // will go thru reserve_memory_special rather than thru here.
3156  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3157  if (!use_individual) {
3158    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3159  } else {
3160    elapsedTimer reserveTimer;
3161    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3162    // in numa interleaving, we have to allocate pages individually
3163    // (well really chunks of NUMAInterleaveGranularity size)
3164    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3165    if (res == NULL) {
3166      warning("NUMA page allocation failed");
3167    }
3168    if (Verbose && PrintMiscellaneous) {
3169      reserveTimer.stop();
3170      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3171                    reserveTimer.milliseconds(), reserveTimer.ticks());
3172    }
3173  }
3174  assert(res == NULL || addr == NULL || addr == res,
3175         "Unexpected address from reserve.");
3176
3177  return res;
3178}
3179
3180// Reserve memory at an arbitrary address, only if that area is
3181// available (and not reserved for something else).
3182char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3183  // Windows os::reserve_memory() fails of the requested address range is
3184  // not avilable.
3185  return reserve_memory(bytes, requested_addr);
3186}
3187
3188size_t os::large_page_size() {
3189  return _large_page_size;
3190}
3191
3192bool os::can_commit_large_page_memory() {
3193  // Windows only uses large page memory when the entire region is reserved
3194  // and committed in a single VirtualAlloc() call. This may change in the
3195  // future, but with Windows 2003 it's not possible to commit on demand.
3196  return false;
3197}
3198
3199bool os::can_execute_large_page_memory() {
3200  return true;
3201}
3202
3203char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3204                                 bool exec) {
3205  assert(UseLargePages, "only for large pages");
3206
3207  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3208    return NULL; // Fallback to small pages.
3209  }
3210
3211  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3212  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3213
3214  // with large pages, there are two cases where we need to use Individual Allocation
3215  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3216  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3217  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3218    if (TracePageSizes && Verbose) {
3219      tty->print_cr("Reserving large pages individually.");
3220    }
3221    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3222    if (p_buf == NULL) {
3223      // give an appropriate warning message
3224      if (UseNUMAInterleaving) {
3225        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3226      }
3227      if (UseLargePagesIndividualAllocation) {
3228        warning("Individually allocated large pages failed, "
3229                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3230      }
3231      return NULL;
3232    }
3233
3234    return p_buf;
3235
3236  } else {
3237    if (TracePageSizes && Verbose) {
3238      tty->print_cr("Reserving large pages in a single large chunk.");
3239    }
3240    // normal policy just allocate it all at once
3241    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3242    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3243    if (res != NULL) {
3244      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3245    }
3246
3247    return res;
3248  }
3249}
3250
3251bool os::release_memory_special(char* base, size_t bytes) {
3252  assert(base != NULL, "Sanity check");
3253  return release_memory(base, bytes);
3254}
3255
3256void os::print_statistics() {
3257}
3258
3259static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3260  int err = os::get_last_error();
3261  char buf[256];
3262  size_t buf_len = os::lasterror(buf, sizeof(buf));
3263  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3264          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3265          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3266}
3267
3268bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3269  if (bytes == 0) {
3270    // Don't bother the OS with noops.
3271    return true;
3272  }
3273  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3274  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3275  // Don't attempt to print anything if the OS call fails. We're
3276  // probably low on resources, so the print itself may cause crashes.
3277
3278  // unless we have NUMAInterleaving enabled, the range of a commit
3279  // is always within a reserve covered by a single VirtualAlloc
3280  // in that case we can just do a single commit for the requested size
3281  if (!UseNUMAInterleaving) {
3282    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3283      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3284      return false;
3285    }
3286    if (exec) {
3287      DWORD oldprot;
3288      // Windows doc says to use VirtualProtect to get execute permissions
3289      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3290        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3291        return false;
3292      }
3293    }
3294    return true;
3295  } else {
3296
3297    // when NUMAInterleaving is enabled, the commit might cover a range that
3298    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3299    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3300    // returns represents the number of bytes that can be committed in one step.
3301    size_t bytes_remaining = bytes;
3302    char * next_alloc_addr = addr;
3303    while (bytes_remaining > 0) {
3304      MEMORY_BASIC_INFORMATION alloc_info;
3305      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3306      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3307      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3308                       PAGE_READWRITE) == NULL) {
3309        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3310                                            exec);)
3311        return false;
3312      }
3313      if (exec) {
3314        DWORD oldprot;
3315        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3316                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3317          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3318                                              exec);)
3319          return false;
3320        }
3321      }
3322      bytes_remaining -= bytes_to_rq;
3323      next_alloc_addr += bytes_to_rq;
3324    }
3325  }
3326  // if we made it this far, return true
3327  return true;
3328}
3329
3330bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3331                          bool exec) {
3332  // alignment_hint is ignored on this OS
3333  return pd_commit_memory(addr, size, exec);
3334}
3335
3336void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3337                                  const char* mesg) {
3338  assert(mesg != NULL, "mesg must be specified");
3339  if (!pd_commit_memory(addr, size, exec)) {
3340    warn_fail_commit_memory(addr, size, exec);
3341    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3342  }
3343}
3344
3345void os::pd_commit_memory_or_exit(char* addr, size_t size,
3346                                  size_t alignment_hint, bool exec,
3347                                  const char* mesg) {
3348  // alignment_hint is ignored on this OS
3349  pd_commit_memory_or_exit(addr, size, exec, mesg);
3350}
3351
3352bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3353  if (bytes == 0) {
3354    // Don't bother the OS with noops.
3355    return true;
3356  }
3357  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3358  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3359  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3360}
3361
3362bool os::pd_release_memory(char* addr, size_t bytes) {
3363  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3364}
3365
3366bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3367  return os::commit_memory(addr, size, !ExecMem);
3368}
3369
3370bool os::remove_stack_guard_pages(char* addr, size_t size) {
3371  return os::uncommit_memory(addr, size);
3372}
3373
3374// Set protections specified
3375bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3376                        bool is_committed) {
3377  unsigned int p = 0;
3378  switch (prot) {
3379  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3380  case MEM_PROT_READ: p = PAGE_READONLY; break;
3381  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3382  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3383  default:
3384    ShouldNotReachHere();
3385  }
3386
3387  DWORD old_status;
3388
3389  // Strange enough, but on Win32 one can change protection only for committed
3390  // memory, not a big deal anyway, as bytes less or equal than 64K
3391  if (!is_committed) {
3392    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3393                          "cannot commit protection page");
3394  }
3395  // One cannot use os::guard_memory() here, as on Win32 guard page
3396  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3397  //
3398  // Pages in the region become guard pages. Any attempt to access a guard page
3399  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3400  // the guard page status. Guard pages thus act as a one-time access alarm.
3401  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3402}
3403
3404bool os::guard_memory(char* addr, size_t bytes) {
3405  DWORD old_status;
3406  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3407}
3408
3409bool os::unguard_memory(char* addr, size_t bytes) {
3410  DWORD old_status;
3411  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3412}
3413
3414void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3415void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3416void os::numa_make_global(char *addr, size_t bytes)    { }
3417void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3418bool os::numa_topology_changed()                       { return false; }
3419size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3420int os::numa_get_group_id()                            { return 0; }
3421size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3422  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3423    // Provide an answer for UMA systems
3424    ids[0] = 0;
3425    return 1;
3426  } else {
3427    // check for size bigger than actual groups_num
3428    size = MIN2(size, numa_get_groups_num());
3429    for (int i = 0; i < (int)size; i++) {
3430      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3431    }
3432    return size;
3433  }
3434}
3435
3436bool os::get_page_info(char *start, page_info* info) {
3437  return false;
3438}
3439
3440char *os::scan_pages(char *start, char* end, page_info* page_expected,
3441                     page_info* page_found) {
3442  return end;
3443}
3444
3445char* os::non_memory_address_word() {
3446  // Must never look like an address returned by reserve_memory,
3447  // even in its subfields (as defined by the CPU immediate fields,
3448  // if the CPU splits constants across multiple instructions).
3449  return (char*)-1;
3450}
3451
3452#define MAX_ERROR_COUNT 100
3453#define SYS_THREAD_ERROR 0xffffffffUL
3454
3455void os::pd_start_thread(Thread* thread) {
3456  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3457  // Returns previous suspend state:
3458  // 0:  Thread was not suspended
3459  // 1:  Thread is running now
3460  // >1: Thread is still suspended.
3461  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3462}
3463
3464class HighResolutionInterval : public CHeapObj<mtThread> {
3465  // The default timer resolution seems to be 10 milliseconds.
3466  // (Where is this written down?)
3467  // If someone wants to sleep for only a fraction of the default,
3468  // then we set the timer resolution down to 1 millisecond for
3469  // the duration of their interval.
3470  // We carefully set the resolution back, since otherwise we
3471  // seem to incur an overhead (3%?) that we don't need.
3472  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3473  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3474  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3475  // timeBeginPeriod() if the relative error exceeded some threshold.
3476  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3477  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3478  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3479  // resolution timers running.
3480 private:
3481  jlong resolution;
3482 public:
3483  HighResolutionInterval(jlong ms) {
3484    resolution = ms % 10L;
3485    if (resolution != 0) {
3486      MMRESULT result = timeBeginPeriod(1L);
3487    }
3488  }
3489  ~HighResolutionInterval() {
3490    if (resolution != 0) {
3491      MMRESULT result = timeEndPeriod(1L);
3492    }
3493    resolution = 0L;
3494  }
3495};
3496
3497int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3498  jlong limit = (jlong) MAXDWORD;
3499
3500  while (ms > limit) {
3501    int res;
3502    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3503      return res;
3504    }
3505    ms -= limit;
3506  }
3507
3508  assert(thread == Thread::current(), "thread consistency check");
3509  OSThread* osthread = thread->osthread();
3510  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3511  int result;
3512  if (interruptable) {
3513    assert(thread->is_Java_thread(), "must be java thread");
3514    JavaThread *jt = (JavaThread *) thread;
3515    ThreadBlockInVM tbivm(jt);
3516
3517    jt->set_suspend_equivalent();
3518    // cleared by handle_special_suspend_equivalent_condition() or
3519    // java_suspend_self() via check_and_wait_while_suspended()
3520
3521    HANDLE events[1];
3522    events[0] = osthread->interrupt_event();
3523    HighResolutionInterval *phri=NULL;
3524    if (!ForceTimeHighResolution) {
3525      phri = new HighResolutionInterval(ms);
3526    }
3527    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3528      result = OS_TIMEOUT;
3529    } else {
3530      ResetEvent(osthread->interrupt_event());
3531      osthread->set_interrupted(false);
3532      result = OS_INTRPT;
3533    }
3534    delete phri; //if it is NULL, harmless
3535
3536    // were we externally suspended while we were waiting?
3537    jt->check_and_wait_while_suspended();
3538  } else {
3539    assert(!thread->is_Java_thread(), "must not be java thread");
3540    Sleep((long) ms);
3541    result = OS_TIMEOUT;
3542  }
3543  return result;
3544}
3545
3546// Short sleep, direct OS call.
3547//
3548// ms = 0, means allow others (if any) to run.
3549//
3550void os::naked_short_sleep(jlong ms) {
3551  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3552  Sleep(ms);
3553}
3554
3555// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3556void os::infinite_sleep() {
3557  while (true) {    // sleep forever ...
3558    Sleep(100000);  // ... 100 seconds at a time
3559  }
3560}
3561
3562typedef BOOL (WINAPI * STTSignature)(void);
3563
3564void os::naked_yield() {
3565  // Use either SwitchToThread() or Sleep(0)
3566  // Consider passing back the return value from SwitchToThread().
3567  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3568    SwitchToThread();
3569  } else {
3570    Sleep(0);
3571  }
3572}
3573
3574// Win32 only gives you access to seven real priorities at a time,
3575// so we compress Java's ten down to seven.  It would be better
3576// if we dynamically adjusted relative priorities.
3577
3578int os::java_to_os_priority[CriticalPriority + 1] = {
3579  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3580  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3581  THREAD_PRIORITY_LOWEST,                       // 2
3582  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3583  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3584  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3585  THREAD_PRIORITY_NORMAL,                       // 6
3586  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3587  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3588  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3589  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3590  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3591};
3592
3593int prio_policy1[CriticalPriority + 1] = {
3594  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3595  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3596  THREAD_PRIORITY_LOWEST,                       // 2
3597  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3598  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3599  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3600  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3601  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3602  THREAD_PRIORITY_HIGHEST,                      // 8
3603  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3604  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3605  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3606};
3607
3608static int prio_init() {
3609  // If ThreadPriorityPolicy is 1, switch tables
3610  if (ThreadPriorityPolicy == 1) {
3611    int i;
3612    for (i = 0; i < CriticalPriority + 1; i++) {
3613      os::java_to_os_priority[i] = prio_policy1[i];
3614    }
3615  }
3616  if (UseCriticalJavaThreadPriority) {
3617    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3618  }
3619  return 0;
3620}
3621
3622OSReturn os::set_native_priority(Thread* thread, int priority) {
3623  if (!UseThreadPriorities) return OS_OK;
3624  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3625  return ret ? OS_OK : OS_ERR;
3626}
3627
3628OSReturn os::get_native_priority(const Thread* const thread,
3629                                 int* priority_ptr) {
3630  if (!UseThreadPriorities) {
3631    *priority_ptr = java_to_os_priority[NormPriority];
3632    return OS_OK;
3633  }
3634  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3635  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3636    assert(false, "GetThreadPriority failed");
3637    return OS_ERR;
3638  }
3639  *priority_ptr = os_prio;
3640  return OS_OK;
3641}
3642
3643
3644// Hint to the underlying OS that a task switch would not be good.
3645// Void return because it's a hint and can fail.
3646void os::hint_no_preempt() {}
3647
3648void os::interrupt(Thread* thread) {
3649  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3650         Threads_lock->owned_by_self(),
3651         "possibility of dangling Thread pointer");
3652
3653  OSThread* osthread = thread->osthread();
3654  osthread->set_interrupted(true);
3655  // More than one thread can get here with the same value of osthread,
3656  // resulting in multiple notifications.  We do, however, want the store
3657  // to interrupted() to be visible to other threads before we post
3658  // the interrupt event.
3659  OrderAccess::release();
3660  SetEvent(osthread->interrupt_event());
3661  // For JSR166:  unpark after setting status
3662  if (thread->is_Java_thread()) {
3663    ((JavaThread*)thread)->parker()->unpark();
3664  }
3665
3666  ParkEvent * ev = thread->_ParkEvent;
3667  if (ev != NULL) ev->unpark();
3668}
3669
3670
3671bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3672  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3673         "possibility of dangling Thread pointer");
3674
3675  OSThread* osthread = thread->osthread();
3676  // There is no synchronization between the setting of the interrupt
3677  // and it being cleared here. It is critical - see 6535709 - that
3678  // we only clear the interrupt state, and reset the interrupt event,
3679  // if we are going to report that we were indeed interrupted - else
3680  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3681  // depending on the timing. By checking thread interrupt event to see
3682  // if the thread gets real interrupt thus prevent spurious wakeup.
3683  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3684  if (interrupted && clear_interrupted) {
3685    osthread->set_interrupted(false);
3686    ResetEvent(osthread->interrupt_event());
3687  } // Otherwise leave the interrupted state alone
3688
3689  return interrupted;
3690}
3691
3692// Get's a pc (hint) for a running thread. Currently used only for profiling.
3693ExtendedPC os::get_thread_pc(Thread* thread) {
3694  CONTEXT context;
3695  context.ContextFlags = CONTEXT_CONTROL;
3696  HANDLE handle = thread->osthread()->thread_handle();
3697#ifdef _M_IA64
3698  assert(0, "Fix get_thread_pc");
3699  return ExtendedPC(NULL);
3700#else
3701  if (GetThreadContext(handle, &context)) {
3702#ifdef _M_AMD64
3703    return ExtendedPC((address) context.Rip);
3704#else
3705    return ExtendedPC((address) context.Eip);
3706#endif
3707  } else {
3708    return ExtendedPC(NULL);
3709  }
3710#endif
3711}
3712
3713// GetCurrentThreadId() returns DWORD
3714intx os::current_thread_id()  { return GetCurrentThreadId(); }
3715
3716static int _initial_pid = 0;
3717
3718int os::current_process_id() {
3719  return (_initial_pid ? _initial_pid : _getpid());
3720}
3721
3722int    os::win32::_vm_page_size              = 0;
3723int    os::win32::_vm_allocation_granularity = 0;
3724int    os::win32::_processor_type            = 0;
3725// Processor level is not available on non-NT systems, use vm_version instead
3726int    os::win32::_processor_level           = 0;
3727julong os::win32::_physical_memory           = 0;
3728size_t os::win32::_default_stack_size        = 0;
3729
3730intx          os::win32::_os_thread_limit    = 0;
3731volatile intx os::win32::_os_thread_count    = 0;
3732
3733bool   os::win32::_is_nt                     = false;
3734bool   os::win32::_is_windows_2003           = false;
3735bool   os::win32::_is_windows_server         = false;
3736
3737// 6573254
3738// Currently, the bug is observed across all the supported Windows releases,
3739// including the latest one (as of this writing - Windows Server 2012 R2)
3740bool   os::win32::_has_exit_bug              = true;
3741bool   os::win32::_has_performance_count     = 0;
3742
3743void os::win32::initialize_system_info() {
3744  SYSTEM_INFO si;
3745  GetSystemInfo(&si);
3746  _vm_page_size    = si.dwPageSize;
3747  _vm_allocation_granularity = si.dwAllocationGranularity;
3748  _processor_type  = si.dwProcessorType;
3749  _processor_level = si.wProcessorLevel;
3750  set_processor_count(si.dwNumberOfProcessors);
3751
3752  MEMORYSTATUSEX ms;
3753  ms.dwLength = sizeof(ms);
3754
3755  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3756  // dwMemoryLoad (% of memory in use)
3757  GlobalMemoryStatusEx(&ms);
3758  _physical_memory = ms.ullTotalPhys;
3759
3760  OSVERSIONINFOEX oi;
3761  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3762  GetVersionEx((OSVERSIONINFO*)&oi);
3763  switch (oi.dwPlatformId) {
3764  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3765  case VER_PLATFORM_WIN32_NT:
3766    _is_nt = true;
3767    {
3768      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3769      if (os_vers == 5002) {
3770        _is_windows_2003 = true;
3771      }
3772      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3773          oi.wProductType == VER_NT_SERVER) {
3774        _is_windows_server = true;
3775      }
3776    }
3777    break;
3778  default: fatal("Unknown platform");
3779  }
3780
3781  _default_stack_size = os::current_stack_size();
3782  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3783  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3784         "stack size not a multiple of page size");
3785
3786  initialize_performance_counter();
3787}
3788
3789
3790HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3791                                      int ebuflen) {
3792  char path[MAX_PATH];
3793  DWORD size;
3794  DWORD pathLen = (DWORD)sizeof(path);
3795  HINSTANCE result = NULL;
3796
3797  // only allow library name without path component
3798  assert(strchr(name, '\\') == NULL, "path not allowed");
3799  assert(strchr(name, ':') == NULL, "path not allowed");
3800  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3801    jio_snprintf(ebuf, ebuflen,
3802                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3803    return NULL;
3804  }
3805
3806  // search system directory
3807  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3808    if (size >= pathLen) {
3809      return NULL; // truncated
3810    }
3811    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3812      return NULL; // truncated
3813    }
3814    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3815      return result;
3816    }
3817  }
3818
3819  // try Windows directory
3820  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3821    if (size >= pathLen) {
3822      return NULL; // truncated
3823    }
3824    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3825      return NULL; // truncated
3826    }
3827    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3828      return result;
3829    }
3830  }
3831
3832  jio_snprintf(ebuf, ebuflen,
3833               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3834  return NULL;
3835}
3836
3837#define EXIT_TIMEOUT 300000 /* 5 minutes */
3838
3839static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3840  InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3841  return TRUE;
3842}
3843
3844int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3845  // Basic approach:
3846  //  - Each exiting thread registers its intent to exit and then does so.
3847  //  - A thread trying to terminate the process must wait for all
3848  //    threads currently exiting to complete their exit.
3849
3850  if (os::win32::has_exit_bug()) {
3851    // The array holds handles of the threads that have started exiting by calling
3852    // _endthreadex().
3853    // Should be large enough to avoid blocking the exiting thread due to lack of
3854    // a free slot.
3855    static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3856    static int handle_count = 0;
3857
3858    static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3859    static CRITICAL_SECTION crit_sect;
3860    static volatile jint process_exiting = 0;
3861    int i, j;
3862    DWORD res;
3863    HANDLE hproc, hthr;
3864
3865    // The first thread that reached this point, initializes the critical section.
3866    if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3867      warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3868    } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3869      EnterCriticalSection(&crit_sect);
3870
3871      if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3872        // Remove from the array those handles of the threads that have completed exiting.
3873        for (i = 0, j = 0; i < handle_count; ++i) {
3874          res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3875          if (res == WAIT_TIMEOUT) {
3876            handles[j++] = handles[i];
3877          } else {
3878            if (res == WAIT_FAILED) {
3879              warning("WaitForSingleObject failed (%u) in %s: %d\n",
3880                      GetLastError(), __FILE__, __LINE__);
3881            }
3882            // Don't keep the handle, if we failed waiting for it.
3883            CloseHandle(handles[i]);
3884          }
3885        }
3886
3887        // If there's no free slot in the array of the kept handles, we'll have to
3888        // wait until at least one thread completes exiting.
3889        if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3890          // Raise the priority of the oldest exiting thread to increase its chances
3891          // to complete sooner.
3892          SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3893          res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3894          if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3895            i = (res - WAIT_OBJECT_0);
3896            handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3897            for (; i < handle_count; ++i) {
3898              handles[i] = handles[i + 1];
3899            }
3900          } else {
3901            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3902                    (res == WAIT_FAILED ? "failed" : "timed out"),
3903                    GetLastError(), __FILE__, __LINE__);
3904            // Don't keep handles, if we failed waiting for them.
3905            for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3906              CloseHandle(handles[i]);
3907            }
3908            handle_count = 0;
3909          }
3910        }
3911
3912        // Store a duplicate of the current thread handle in the array of handles.
3913        hproc = GetCurrentProcess();
3914        hthr = GetCurrentThread();
3915        if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3916                             0, FALSE, DUPLICATE_SAME_ACCESS)) {
3917          warning("DuplicateHandle failed (%u) in %s: %d\n",
3918                  GetLastError(), __FILE__, __LINE__);
3919        } else {
3920          ++handle_count;
3921        }
3922
3923        // The current exiting thread has stored its handle in the array, and now
3924        // should leave the critical section before calling _endthreadex().
3925
3926      } else if (what != EPT_THREAD) {
3927        if (handle_count > 0) {
3928          // Before ending the process, make sure all the threads that had called
3929          // _endthreadex() completed.
3930
3931          // Set the priority level of the current thread to the same value as
3932          // the priority level of exiting threads.
3933          // This is to ensure it will be given a fair chance to execute if
3934          // the timeout expires.
3935          hthr = GetCurrentThread();
3936          SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3937          for (i = 0; i < handle_count; ++i) {
3938            SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3939          }
3940          res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3941          if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3942            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3943                    (res == WAIT_FAILED ? "failed" : "timed out"),
3944                    GetLastError(), __FILE__, __LINE__);
3945          }
3946          for (i = 0; i < handle_count; ++i) {
3947            CloseHandle(handles[i]);
3948          }
3949          handle_count = 0;
3950        }
3951
3952        OrderAccess::release_store(&process_exiting, 1);
3953      }
3954
3955      LeaveCriticalSection(&crit_sect);
3956    }
3957
3958    if (what == EPT_THREAD) {
3959      while (OrderAccess::load_acquire(&process_exiting) != 0) {
3960        // Some other thread is about to call exit(), so we
3961        // don't let the current thread proceed to _endthreadex()
3962        SuspendThread(GetCurrentThread());
3963        // Avoid busy-wait loop, if SuspendThread() failed.
3964        Sleep(EXIT_TIMEOUT);
3965      }
3966    }
3967  }
3968
3969  // We are here if either
3970  // - there's no 'race at exit' bug on this OS release;
3971  // - initialization of the critical section failed (unlikely);
3972  // - the current thread has stored its handle and left the critical section;
3973  // - the process-exiting thread has raised the flag and left the critical section.
3974  if (what == EPT_THREAD) {
3975    _endthreadex((unsigned)exit_code);
3976  } else if (what == EPT_PROCESS) {
3977    ::exit(exit_code);
3978  } else {
3979    _exit(exit_code);
3980  }
3981
3982  // Should not reach here
3983  return exit_code;
3984}
3985
3986#undef EXIT_TIMEOUT
3987
3988void os::win32::setmode_streams() {
3989  _setmode(_fileno(stdin), _O_BINARY);
3990  _setmode(_fileno(stdout), _O_BINARY);
3991  _setmode(_fileno(stderr), _O_BINARY);
3992}
3993
3994
3995bool os::is_debugger_attached() {
3996  return IsDebuggerPresent() ? true : false;
3997}
3998
3999
4000void os::wait_for_keypress_at_exit(void) {
4001  if (PauseAtExit) {
4002    fprintf(stderr, "Press any key to continue...\n");
4003    fgetc(stdin);
4004  }
4005}
4006
4007
4008int os::message_box(const char* title, const char* message) {
4009  int result = MessageBox(NULL, message, title,
4010                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4011  return result == IDYES;
4012}
4013
4014int os::allocate_thread_local_storage() {
4015  return TlsAlloc();
4016}
4017
4018
4019void os::free_thread_local_storage(int index) {
4020  TlsFree(index);
4021}
4022
4023
4024void os::thread_local_storage_at_put(int index, void* value) {
4025  TlsSetValue(index, value);
4026  assert(thread_local_storage_at(index) == value, "Just checking");
4027}
4028
4029
4030void* os::thread_local_storage_at(int index) {
4031  return TlsGetValue(index);
4032}
4033
4034
4035#ifndef PRODUCT
4036#ifndef _WIN64
4037// Helpers to check whether NX protection is enabled
4038int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4039  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4040      pex->ExceptionRecord->NumberParameters > 0 &&
4041      pex->ExceptionRecord->ExceptionInformation[0] ==
4042      EXCEPTION_INFO_EXEC_VIOLATION) {
4043    return EXCEPTION_EXECUTE_HANDLER;
4044  }
4045  return EXCEPTION_CONTINUE_SEARCH;
4046}
4047
4048void nx_check_protection() {
4049  // If NX is enabled we'll get an exception calling into code on the stack
4050  char code[] = { (char)0xC3 }; // ret
4051  void *code_ptr = (void *)code;
4052  __try {
4053    __asm call code_ptr
4054  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4055    tty->print_raw_cr("NX protection detected.");
4056  }
4057}
4058#endif // _WIN64
4059#endif // PRODUCT
4060
4061// this is called _before_ the global arguments have been parsed
4062void os::init(void) {
4063  _initial_pid = _getpid();
4064
4065  init_random(1234567);
4066
4067  win32::initialize_system_info();
4068  win32::setmode_streams();
4069  init_page_sizes((size_t) win32::vm_page_size());
4070
4071  // This may be overridden later when argument processing is done.
4072  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4073                os::win32::is_windows_2003());
4074
4075  // Initialize main_process and main_thread
4076  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4077  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4078                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4079    fatal("DuplicateHandle failed\n");
4080  }
4081  main_thread_id = (int) GetCurrentThreadId();
4082}
4083
4084// To install functions for atexit processing
4085extern "C" {
4086  static void perfMemory_exit_helper() {
4087    perfMemory_exit();
4088  }
4089}
4090
4091static jint initSock();
4092
4093// this is called _after_ the global arguments have been parsed
4094jint os::init_2(void) {
4095  // Allocate a single page and mark it as readable for safepoint polling
4096  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4097  guarantee(polling_page != NULL, "Reserve Failed for polling page");
4098
4099  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4100  guarantee(return_page != NULL, "Commit Failed for polling page");
4101
4102  os::set_polling_page(polling_page);
4103
4104#ifndef PRODUCT
4105  if (Verbose && PrintMiscellaneous) {
4106    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4107               (intptr_t)polling_page);
4108  }
4109#endif
4110
4111  if (!UseMembar) {
4112    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4113    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4114
4115    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4116    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4117
4118    os::set_memory_serialize_page(mem_serialize_page);
4119
4120#ifndef PRODUCT
4121    if (Verbose && PrintMiscellaneous) {
4122      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4123                 (intptr_t)mem_serialize_page);
4124    }
4125#endif
4126  }
4127
4128  // Setup Windows Exceptions
4129
4130  // for debugging float code generation bugs
4131  if (ForceFloatExceptions) {
4132#ifndef  _WIN64
4133    static long fp_control_word = 0;
4134    __asm { fstcw fp_control_word }
4135    // see Intel PPro Manual, Vol. 2, p 7-16
4136    const long precision = 0x20;
4137    const long underflow = 0x10;
4138    const long overflow  = 0x08;
4139    const long zero_div  = 0x04;
4140    const long denorm    = 0x02;
4141    const long invalid   = 0x01;
4142    fp_control_word |= invalid;
4143    __asm { fldcw fp_control_word }
4144#endif
4145  }
4146
4147  // If stack_commit_size is 0, windows will reserve the default size,
4148  // but only commit a small portion of it.
4149  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4150  size_t default_reserve_size = os::win32::default_stack_size();
4151  size_t actual_reserve_size = stack_commit_size;
4152  if (stack_commit_size < default_reserve_size) {
4153    // If stack_commit_size == 0, we want this too
4154    actual_reserve_size = default_reserve_size;
4155  }
4156
4157  // Check minimum allowable stack size for thread creation and to initialize
4158  // the java system classes, including StackOverflowError - depends on page
4159  // size.  Add a page for compiler2 recursion in main thread.
4160  // Add in 2*BytesPerWord times page size to account for VM stack during
4161  // class initialization depending on 32 or 64 bit VM.
4162  size_t min_stack_allowed =
4163            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4164                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4165  if (actual_reserve_size < min_stack_allowed) {
4166    tty->print_cr("\nThe stack size specified is too small, "
4167                  "Specify at least %dk",
4168                  min_stack_allowed / K);
4169    return JNI_ERR;
4170  }
4171
4172  JavaThread::set_stack_size_at_create(stack_commit_size);
4173
4174  // Calculate theoretical max. size of Threads to guard gainst artifical
4175  // out-of-memory situations, where all available address-space has been
4176  // reserved by thread stacks.
4177  assert(actual_reserve_size != 0, "Must have a stack");
4178
4179  // Calculate the thread limit when we should start doing Virtual Memory
4180  // banging. Currently when the threads will have used all but 200Mb of space.
4181  //
4182  // TODO: consider performing a similar calculation for commit size instead
4183  // as reserve size, since on a 64-bit platform we'll run into that more
4184  // often than running out of virtual memory space.  We can use the
4185  // lower value of the two calculations as the os_thread_limit.
4186  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4187  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4188
4189  // at exit methods are called in the reverse order of their registration.
4190  // there is no limit to the number of functions registered. atexit does
4191  // not set errno.
4192
4193  if (PerfAllowAtExitRegistration) {
4194    // only register atexit functions if PerfAllowAtExitRegistration is set.
4195    // atexit functions can be delayed until process exit time, which
4196    // can be problematic for embedded VM situations. Embedded VMs should
4197    // call DestroyJavaVM() to assure that VM resources are released.
4198
4199    // note: perfMemory_exit_helper atexit function may be removed in
4200    // the future if the appropriate cleanup code can be added to the
4201    // VM_Exit VMOperation's doit method.
4202    if (atexit(perfMemory_exit_helper) != 0) {
4203      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4204    }
4205  }
4206
4207#ifndef _WIN64
4208  // Print something if NX is enabled (win32 on AMD64)
4209  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4210#endif
4211
4212  // initialize thread priority policy
4213  prio_init();
4214
4215  if (UseNUMA && !ForceNUMA) {
4216    UseNUMA = false; // We don't fully support this yet
4217  }
4218
4219  if (UseNUMAInterleaving) {
4220    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4221    bool success = numa_interleaving_init();
4222    if (!success) UseNUMAInterleaving = false;
4223  }
4224
4225  if (initSock() != JNI_OK) {
4226    return JNI_ERR;
4227  }
4228
4229  return JNI_OK;
4230}
4231
4232// Mark the polling page as unreadable
4233void os::make_polling_page_unreadable(void) {
4234  DWORD old_status;
4235  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4236                      PAGE_NOACCESS, &old_status)) {
4237    fatal("Could not disable polling page");
4238  }
4239}
4240
4241// Mark the polling page as readable
4242void os::make_polling_page_readable(void) {
4243  DWORD old_status;
4244  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4245                      PAGE_READONLY, &old_status)) {
4246    fatal("Could not enable polling page");
4247  }
4248}
4249
4250
4251int os::stat(const char *path, struct stat *sbuf) {
4252  char pathbuf[MAX_PATH];
4253  if (strlen(path) > MAX_PATH - 1) {
4254    errno = ENAMETOOLONG;
4255    return -1;
4256  }
4257  os::native_path(strcpy(pathbuf, path));
4258  int ret = ::stat(pathbuf, sbuf);
4259  if (sbuf != NULL && UseUTCFileTimestamp) {
4260    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4261    // the system timezone and so can return different values for the
4262    // same file if/when daylight savings time changes.  This adjustment
4263    // makes sure the same timestamp is returned regardless of the TZ.
4264    //
4265    // See:
4266    // http://msdn.microsoft.com/library/
4267    //   default.asp?url=/library/en-us/sysinfo/base/
4268    //   time_zone_information_str.asp
4269    // and
4270    // http://msdn.microsoft.com/library/default.asp?url=
4271    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4272    //
4273    // NOTE: there is a insidious bug here:  If the timezone is changed
4274    // after the call to stat() but before 'GetTimeZoneInformation()', then
4275    // the adjustment we do here will be wrong and we'll return the wrong
4276    // value (which will likely end up creating an invalid class data
4277    // archive).  Absent a better API for this, or some time zone locking
4278    // mechanism, we'll have to live with this risk.
4279    TIME_ZONE_INFORMATION tz;
4280    DWORD tzid = GetTimeZoneInformation(&tz);
4281    int daylightBias =
4282      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4283    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4284  }
4285  return ret;
4286}
4287
4288
4289#define FT2INT64(ft) \
4290  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4291
4292
4293// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4294// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4295// of a thread.
4296//
4297// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4298// the fast estimate available on the platform.
4299
4300// current_thread_cpu_time() is not optimized for Windows yet
4301jlong os::current_thread_cpu_time() {
4302  // return user + sys since the cost is the same
4303  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4304}
4305
4306jlong os::thread_cpu_time(Thread* thread) {
4307  // consistent with what current_thread_cpu_time() returns.
4308  return os::thread_cpu_time(thread, true /* user+sys */);
4309}
4310
4311jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4312  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4313}
4314
4315jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4316  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4317  // If this function changes, os::is_thread_cpu_time_supported() should too
4318  if (os::win32::is_nt()) {
4319    FILETIME CreationTime;
4320    FILETIME ExitTime;
4321    FILETIME KernelTime;
4322    FILETIME UserTime;
4323
4324    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4325                       &ExitTime, &KernelTime, &UserTime) == 0) {
4326      return -1;
4327    } else if (user_sys_cpu_time) {
4328      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4329    } else {
4330      return FT2INT64(UserTime) * 100;
4331    }
4332  } else {
4333    return (jlong) timeGetTime() * 1000000;
4334  }
4335}
4336
4337void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4338  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4339  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4340  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4341  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4342}
4343
4344void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4345  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4346  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4347  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4348  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4349}
4350
4351bool os::is_thread_cpu_time_supported() {
4352  // see os::thread_cpu_time
4353  if (os::win32::is_nt()) {
4354    FILETIME CreationTime;
4355    FILETIME ExitTime;
4356    FILETIME KernelTime;
4357    FILETIME UserTime;
4358
4359    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4360                       &KernelTime, &UserTime) == 0) {
4361      return false;
4362    } else {
4363      return true;
4364    }
4365  } else {
4366    return false;
4367  }
4368}
4369
4370// Windows does't provide a loadavg primitive so this is stubbed out for now.
4371// It does have primitives (PDH API) to get CPU usage and run queue length.
4372// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4373// If we wanted to implement loadavg on Windows, we have a few options:
4374//
4375// a) Query CPU usage and run queue length and "fake" an answer by
4376//    returning the CPU usage if it's under 100%, and the run queue
4377//    length otherwise.  It turns out that querying is pretty slow
4378//    on Windows, on the order of 200 microseconds on a fast machine.
4379//    Note that on the Windows the CPU usage value is the % usage
4380//    since the last time the API was called (and the first call
4381//    returns 100%), so we'd have to deal with that as well.
4382//
4383// b) Sample the "fake" answer using a sampling thread and store
4384//    the answer in a global variable.  The call to loadavg would
4385//    just return the value of the global, avoiding the slow query.
4386//
4387// c) Sample a better answer using exponential decay to smooth the
4388//    value.  This is basically the algorithm used by UNIX kernels.
4389//
4390// Note that sampling thread starvation could affect both (b) and (c).
4391int os::loadavg(double loadavg[], int nelem) {
4392  return -1;
4393}
4394
4395
4396// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4397bool os::dont_yield() {
4398  return DontYieldALot;
4399}
4400
4401// This method is a slightly reworked copy of JDK's sysOpen
4402// from src/windows/hpi/src/sys_api_md.c
4403
4404int os::open(const char *path, int oflag, int mode) {
4405  char pathbuf[MAX_PATH];
4406
4407  if (strlen(path) > MAX_PATH - 1) {
4408    errno = ENAMETOOLONG;
4409    return -1;
4410  }
4411  os::native_path(strcpy(pathbuf, path));
4412  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4413}
4414
4415FILE* os::open(int fd, const char* mode) {
4416  return ::_fdopen(fd, mode);
4417}
4418
4419// Is a (classpath) directory empty?
4420bool os::dir_is_empty(const char* path) {
4421  WIN32_FIND_DATA fd;
4422  HANDLE f = FindFirstFile(path, &fd);
4423  if (f == INVALID_HANDLE_VALUE) {
4424    return true;
4425  }
4426  FindClose(f);
4427  return false;
4428}
4429
4430// create binary file, rewriting existing file if required
4431int os::create_binary_file(const char* path, bool rewrite_existing) {
4432  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4433  if (!rewrite_existing) {
4434    oflags |= _O_EXCL;
4435  }
4436  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4437}
4438
4439// return current position of file pointer
4440jlong os::current_file_offset(int fd) {
4441  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4442}
4443
4444// move file pointer to the specified offset
4445jlong os::seek_to_file_offset(int fd, jlong offset) {
4446  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4447}
4448
4449
4450jlong os::lseek(int fd, jlong offset, int whence) {
4451  return (jlong) ::_lseeki64(fd, offset, whence);
4452}
4453
4454size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4455  OVERLAPPED ov;
4456  DWORD nread;
4457  BOOL result;
4458
4459  ZeroMemory(&ov, sizeof(ov));
4460  ov.Offset = (DWORD)offset;
4461  ov.OffsetHigh = (DWORD)(offset >> 32);
4462
4463  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4464
4465  result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4466
4467  return result ? nread : 0;
4468}
4469
4470
4471// This method is a slightly reworked copy of JDK's sysNativePath
4472// from src/windows/hpi/src/path_md.c
4473
4474// Convert a pathname to native format.  On win32, this involves forcing all
4475// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4476// sometimes rejects '/') and removing redundant separators.  The input path is
4477// assumed to have been converted into the character encoding used by the local
4478// system.  Because this might be a double-byte encoding, care is taken to
4479// treat double-byte lead characters correctly.
4480//
4481// This procedure modifies the given path in place, as the result is never
4482// longer than the original.  There is no error return; this operation always
4483// succeeds.
4484char * os::native_path(char *path) {
4485  char *src = path, *dst = path, *end = path;
4486  char *colon = NULL;  // If a drive specifier is found, this will
4487                       // point to the colon following the drive letter
4488
4489  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4490  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4491          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4492
4493  // Check for leading separators
4494#define isfilesep(c) ((c) == '/' || (c) == '\\')
4495  while (isfilesep(*src)) {
4496    src++;
4497  }
4498
4499  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4500    // Remove leading separators if followed by drive specifier.  This
4501    // hack is necessary to support file URLs containing drive
4502    // specifiers (e.g., "file://c:/path").  As a side effect,
4503    // "/c:/path" can be used as an alternative to "c:/path".
4504    *dst++ = *src++;
4505    colon = dst;
4506    *dst++ = ':';
4507    src++;
4508  } else {
4509    src = path;
4510    if (isfilesep(src[0]) && isfilesep(src[1])) {
4511      // UNC pathname: Retain first separator; leave src pointed at
4512      // second separator so that further separators will be collapsed
4513      // into the second separator.  The result will be a pathname
4514      // beginning with "\\\\" followed (most likely) by a host name.
4515      src = dst = path + 1;
4516      path[0] = '\\';     // Force first separator to '\\'
4517    }
4518  }
4519
4520  end = dst;
4521
4522  // Remove redundant separators from remainder of path, forcing all
4523  // separators to be '\\' rather than '/'. Also, single byte space
4524  // characters are removed from the end of the path because those
4525  // are not legal ending characters on this operating system.
4526  //
4527  while (*src != '\0') {
4528    if (isfilesep(*src)) {
4529      *dst++ = '\\'; src++;
4530      while (isfilesep(*src)) src++;
4531      if (*src == '\0') {
4532        // Check for trailing separator
4533        end = dst;
4534        if (colon == dst - 2) break;  // "z:\\"
4535        if (dst == path + 1) break;   // "\\"
4536        if (dst == path + 2 && isfilesep(path[0])) {
4537          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4538          // beginning of a UNC pathname.  Even though it is not, by
4539          // itself, a valid UNC pathname, we leave it as is in order
4540          // to be consistent with the path canonicalizer as well
4541          // as the win32 APIs, which treat this case as an invalid
4542          // UNC pathname rather than as an alias for the root
4543          // directory of the current drive.
4544          break;
4545        }
4546        end = --dst;  // Path does not denote a root directory, so
4547                      // remove trailing separator
4548        break;
4549      }
4550      end = dst;
4551    } else {
4552      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4553        *dst++ = *src++;
4554        if (*src) *dst++ = *src++;
4555        end = dst;
4556      } else {  // Copy a single-byte character
4557        char c = *src++;
4558        *dst++ = c;
4559        // Space is not a legal ending character
4560        if (c != ' ') end = dst;
4561      }
4562    }
4563  }
4564
4565  *end = '\0';
4566
4567  // For "z:", add "." to work around a bug in the C runtime library
4568  if (colon == dst - 1) {
4569    path[2] = '.';
4570    path[3] = '\0';
4571  }
4572
4573  return path;
4574}
4575
4576// This code is a copy of JDK's sysSetLength
4577// from src/windows/hpi/src/sys_api_md.c
4578
4579int os::ftruncate(int fd, jlong length) {
4580  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4581  long high = (long)(length >> 32);
4582  DWORD ret;
4583
4584  if (h == (HANDLE)(-1)) {
4585    return -1;
4586  }
4587
4588  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4589  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4590    return -1;
4591  }
4592
4593  if (::SetEndOfFile(h) == FALSE) {
4594    return -1;
4595  }
4596
4597  return 0;
4598}
4599
4600
4601// This code is a copy of JDK's sysSync
4602// from src/windows/hpi/src/sys_api_md.c
4603// except for the legacy workaround for a bug in Win 98
4604
4605int os::fsync(int fd) {
4606  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4607
4608  if ((!::FlushFileBuffers(handle)) &&
4609      (GetLastError() != ERROR_ACCESS_DENIED)) {
4610    // from winerror.h
4611    return -1;
4612  }
4613  return 0;
4614}
4615
4616static int nonSeekAvailable(int, long *);
4617static int stdinAvailable(int, long *);
4618
4619#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4620#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4621
4622// This code is a copy of JDK's sysAvailable
4623// from src/windows/hpi/src/sys_api_md.c
4624
4625int os::available(int fd, jlong *bytes) {
4626  jlong cur, end;
4627  struct _stati64 stbuf64;
4628
4629  if (::_fstati64(fd, &stbuf64) >= 0) {
4630    int mode = stbuf64.st_mode;
4631    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4632      int ret;
4633      long lpbytes;
4634      if (fd == 0) {
4635        ret = stdinAvailable(fd, &lpbytes);
4636      } else {
4637        ret = nonSeekAvailable(fd, &lpbytes);
4638      }
4639      (*bytes) = (jlong)(lpbytes);
4640      return ret;
4641    }
4642    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4643      return FALSE;
4644    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4645      return FALSE;
4646    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4647      return FALSE;
4648    }
4649    *bytes = end - cur;
4650    return TRUE;
4651  } else {
4652    return FALSE;
4653  }
4654}
4655
4656// This code is a copy of JDK's nonSeekAvailable
4657// from src/windows/hpi/src/sys_api_md.c
4658
4659static int nonSeekAvailable(int fd, long *pbytes) {
4660  // This is used for available on non-seekable devices
4661  // (like both named and anonymous pipes, such as pipes
4662  //  connected to an exec'd process).
4663  // Standard Input is a special case.
4664  HANDLE han;
4665
4666  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4667    return FALSE;
4668  }
4669
4670  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4671    // PeekNamedPipe fails when at EOF.  In that case we
4672    // simply make *pbytes = 0 which is consistent with the
4673    // behavior we get on Solaris when an fd is at EOF.
4674    // The only alternative is to raise an Exception,
4675    // which isn't really warranted.
4676    //
4677    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4678      return FALSE;
4679    }
4680    *pbytes = 0;
4681  }
4682  return TRUE;
4683}
4684
4685#define MAX_INPUT_EVENTS 2000
4686
4687// This code is a copy of JDK's stdinAvailable
4688// from src/windows/hpi/src/sys_api_md.c
4689
4690static int stdinAvailable(int fd, long *pbytes) {
4691  HANDLE han;
4692  DWORD numEventsRead = 0;  // Number of events read from buffer
4693  DWORD numEvents = 0;      // Number of events in buffer
4694  DWORD i = 0;              // Loop index
4695  DWORD curLength = 0;      // Position marker
4696  DWORD actualLength = 0;   // Number of bytes readable
4697  BOOL error = FALSE;       // Error holder
4698  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4699
4700  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4701    return FALSE;
4702  }
4703
4704  // Construct an array of input records in the console buffer
4705  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4706  if (error == 0) {
4707    return nonSeekAvailable(fd, pbytes);
4708  }
4709
4710  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4711  if (numEvents > MAX_INPUT_EVENTS) {
4712    numEvents = MAX_INPUT_EVENTS;
4713  }
4714
4715  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4716  if (lpBuffer == NULL) {
4717    return FALSE;
4718  }
4719
4720  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4721  if (error == 0) {
4722    os::free(lpBuffer);
4723    return FALSE;
4724  }
4725
4726  // Examine input records for the number of bytes available
4727  for (i=0; i<numEvents; i++) {
4728    if (lpBuffer[i].EventType == KEY_EVENT) {
4729
4730      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4731                                      &(lpBuffer[i].Event);
4732      if (keyRecord->bKeyDown == TRUE) {
4733        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4734        curLength++;
4735        if (*keyPressed == '\r') {
4736          actualLength = curLength;
4737        }
4738      }
4739    }
4740  }
4741
4742  if (lpBuffer != NULL) {
4743    os::free(lpBuffer);
4744  }
4745
4746  *pbytes = (long) actualLength;
4747  return TRUE;
4748}
4749
4750// Map a block of memory.
4751char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4752                        char *addr, size_t bytes, bool read_only,
4753                        bool allow_exec) {
4754  HANDLE hFile;
4755  char* base;
4756
4757  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4758                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4759  if (hFile == NULL) {
4760    if (PrintMiscellaneous && Verbose) {
4761      DWORD err = GetLastError();
4762      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4763    }
4764    return NULL;
4765  }
4766
4767  if (allow_exec) {
4768    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4769    // unless it comes from a PE image (which the shared archive is not.)
4770    // Even VirtualProtect refuses to give execute access to mapped memory
4771    // that was not previously executable.
4772    //
4773    // Instead, stick the executable region in anonymous memory.  Yuck.
4774    // Penalty is that ~4 pages will not be shareable - in the future
4775    // we might consider DLLizing the shared archive with a proper PE
4776    // header so that mapping executable + sharing is possible.
4777
4778    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4779                                PAGE_READWRITE);
4780    if (base == NULL) {
4781      if (PrintMiscellaneous && Verbose) {
4782        DWORD err = GetLastError();
4783        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4784      }
4785      CloseHandle(hFile);
4786      return NULL;
4787    }
4788
4789    DWORD bytes_read;
4790    OVERLAPPED overlapped;
4791    overlapped.Offset = (DWORD)file_offset;
4792    overlapped.OffsetHigh = 0;
4793    overlapped.hEvent = NULL;
4794    // ReadFile guarantees that if the return value is true, the requested
4795    // number of bytes were read before returning.
4796    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4797    if (!res) {
4798      if (PrintMiscellaneous && Verbose) {
4799        DWORD err = GetLastError();
4800        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4801      }
4802      release_memory(base, bytes);
4803      CloseHandle(hFile);
4804      return NULL;
4805    }
4806  } else {
4807    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4808                                    NULL /* file_name */);
4809    if (hMap == NULL) {
4810      if (PrintMiscellaneous && Verbose) {
4811        DWORD err = GetLastError();
4812        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4813      }
4814      CloseHandle(hFile);
4815      return NULL;
4816    }
4817
4818    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4819    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4820                                  (DWORD)bytes, addr);
4821    if (base == NULL) {
4822      if (PrintMiscellaneous && Verbose) {
4823        DWORD err = GetLastError();
4824        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4825      }
4826      CloseHandle(hMap);
4827      CloseHandle(hFile);
4828      return NULL;
4829    }
4830
4831    if (CloseHandle(hMap) == 0) {
4832      if (PrintMiscellaneous && Verbose) {
4833        DWORD err = GetLastError();
4834        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4835      }
4836      CloseHandle(hFile);
4837      return base;
4838    }
4839  }
4840
4841  if (allow_exec) {
4842    DWORD old_protect;
4843    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4844    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4845
4846    if (!res) {
4847      if (PrintMiscellaneous && Verbose) {
4848        DWORD err = GetLastError();
4849        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4850      }
4851      // Don't consider this a hard error, on IA32 even if the
4852      // VirtualProtect fails, we should still be able to execute
4853      CloseHandle(hFile);
4854      return base;
4855    }
4856  }
4857
4858  if (CloseHandle(hFile) == 0) {
4859    if (PrintMiscellaneous && Verbose) {
4860      DWORD err = GetLastError();
4861      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4862    }
4863    return base;
4864  }
4865
4866  return base;
4867}
4868
4869
4870// Remap a block of memory.
4871char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4872                          char *addr, size_t bytes, bool read_only,
4873                          bool allow_exec) {
4874  // This OS does not allow existing memory maps to be remapped so we
4875  // have to unmap the memory before we remap it.
4876  if (!os::unmap_memory(addr, bytes)) {
4877    return NULL;
4878  }
4879
4880  // There is a very small theoretical window between the unmap_memory()
4881  // call above and the map_memory() call below where a thread in native
4882  // code may be able to access an address that is no longer mapped.
4883
4884  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4885                        read_only, allow_exec);
4886}
4887
4888
4889// Unmap a block of memory.
4890// Returns true=success, otherwise false.
4891
4892bool os::pd_unmap_memory(char* addr, size_t bytes) {
4893  MEMORY_BASIC_INFORMATION mem_info;
4894  if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4895    if (PrintMiscellaneous && Verbose) {
4896      DWORD err = GetLastError();
4897      tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
4898    }
4899    return false;
4900  }
4901
4902  // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4903  // Instead, executable region was allocated using VirtualAlloc(). See
4904  // pd_map_memory() above.
4905  //
4906  // The following flags should match the 'exec_access' flages used for
4907  // VirtualProtect() in pd_map_memory().
4908  if (mem_info.Protect == PAGE_EXECUTE_READ ||
4909      mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4910    return pd_release_memory(addr, bytes);
4911  }
4912
4913  BOOL result = UnmapViewOfFile(addr);
4914  if (result == 0) {
4915    if (PrintMiscellaneous && Verbose) {
4916      DWORD err = GetLastError();
4917      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4918    }
4919    return false;
4920  }
4921  return true;
4922}
4923
4924void os::pause() {
4925  char filename[MAX_PATH];
4926  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4927    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4928  } else {
4929    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4930  }
4931
4932  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4933  if (fd != -1) {
4934    struct stat buf;
4935    ::close(fd);
4936    while (::stat(filename, &buf) == 0) {
4937      Sleep(100);
4938    }
4939  } else {
4940    jio_fprintf(stderr,
4941                "Could not open pause file '%s', continuing immediately.\n", filename);
4942  }
4943}
4944
4945os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4946  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4947}
4948
4949// See the caveats for this class in os_windows.hpp
4950// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4951// into this method and returns false. If no OS EXCEPTION was raised, returns
4952// true.
4953// The callback is supposed to provide the method that should be protected.
4954//
4955bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4956  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4957  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4958         "crash_protection already set?");
4959
4960  bool success = true;
4961  __try {
4962    WatcherThread::watcher_thread()->set_crash_protection(this);
4963    cb.call();
4964  } __except(EXCEPTION_EXECUTE_HANDLER) {
4965    // only for protection, nothing to do
4966    success = false;
4967  }
4968  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4969  return success;
4970}
4971
4972// An Event wraps a win32 "CreateEvent" kernel handle.
4973//
4974// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4975//
4976// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4977//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4978//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4979//     In addition, an unpark() operation might fetch the handle field, but the
4980//     event could recycle between the fetch and the SetEvent() operation.
4981//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4982//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4983//     on an stale but recycled handle would be harmless, but in practice this might
4984//     confuse other non-Sun code, so it's not a viable approach.
4985//
4986// 2:  Once a win32 event handle is associated with an Event, it remains associated
4987//     with the Event.  The event handle is never closed.  This could be construed
4988//     as handle leakage, but only up to the maximum # of threads that have been extant
4989//     at any one time.  This shouldn't be an issue, as windows platforms typically
4990//     permit a process to have hundreds of thousands of open handles.
4991//
4992// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4993//     and release unused handles.
4994//
4995// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4996//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4997//
4998// 5.  Use an RCU-like mechanism (Read-Copy Update).
4999//     Or perhaps something similar to Maged Michael's "Hazard pointers".
5000//
5001// We use (2).
5002//
5003// TODO-FIXME:
5004// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5005// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5006//     to recover from (or at least detect) the dreaded Windows 841176 bug.
5007// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5008//     into a single win32 CreateEvent() handle.
5009//
5010// Assumption:
5011//    Only one parker can exist on an event, which is why we allocate
5012//    them per-thread. Multiple unparkers can coexist.
5013//
5014// _Event transitions in park()
5015//   -1 => -1 : illegal
5016//    1 =>  0 : pass - return immediately
5017//    0 => -1 : block; then set _Event to 0 before returning
5018//
5019// _Event transitions in unpark()
5020//    0 => 1 : just return
5021//    1 => 1 : just return
5022//   -1 => either 0 or 1; must signal target thread
5023//         That is, we can safely transition _Event from -1 to either
5024//         0 or 1.
5025//
5026// _Event serves as a restricted-range semaphore.
5027//   -1 : thread is blocked, i.e. there is a waiter
5028//    0 : neutral: thread is running or ready,
5029//        could have been signaled after a wait started
5030//    1 : signaled - thread is running or ready
5031//
5032// Another possible encoding of _Event would be with
5033// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5034//
5035
5036int os::PlatformEvent::park(jlong Millis) {
5037  // Transitions for _Event:
5038  //   -1 => -1 : illegal
5039  //    1 =>  0 : pass - return immediately
5040  //    0 => -1 : block; then set _Event to 0 before returning
5041
5042  guarantee(_ParkHandle != NULL , "Invariant");
5043  guarantee(Millis > 0          , "Invariant");
5044
5045  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5046  // the initial park() operation.
5047  // Consider: use atomic decrement instead of CAS-loop
5048
5049  int v;
5050  for (;;) {
5051    v = _Event;
5052    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5053  }
5054  guarantee((v == 0) || (v == 1), "invariant");
5055  if (v != 0) return OS_OK;
5056
5057  // Do this the hard way by blocking ...
5058  // TODO: consider a brief spin here, gated on the success of recent
5059  // spin attempts by this thread.
5060  //
5061  // We decompose long timeouts into series of shorter timed waits.
5062  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5063  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5064  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5065  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5066  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5067  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5068  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5069  // for the already waited time.  This policy does not admit any new outcomes.
5070  // In the future, however, we might want to track the accumulated wait time and
5071  // adjust Millis accordingly if we encounter a spurious wakeup.
5072
5073  const int MAXTIMEOUT = 0x10000000;
5074  DWORD rv = WAIT_TIMEOUT;
5075  while (_Event < 0 && Millis > 0) {
5076    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5077    if (Millis > MAXTIMEOUT) {
5078      prd = MAXTIMEOUT;
5079    }
5080    rv = ::WaitForSingleObject(_ParkHandle, prd);
5081    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5082    if (rv == WAIT_TIMEOUT) {
5083      Millis -= prd;
5084    }
5085  }
5086  v = _Event;
5087  _Event = 0;
5088  // see comment at end of os::PlatformEvent::park() below:
5089  OrderAccess::fence();
5090  // If we encounter a nearly simultanous timeout expiry and unpark()
5091  // we return OS_OK indicating we awoke via unpark().
5092  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5093  return (v >= 0) ? OS_OK : OS_TIMEOUT;
5094}
5095
5096void os::PlatformEvent::park() {
5097  // Transitions for _Event:
5098  //   -1 => -1 : illegal
5099  //    1 =>  0 : pass - return immediately
5100  //    0 => -1 : block; then set _Event to 0 before returning
5101
5102  guarantee(_ParkHandle != NULL, "Invariant");
5103  // Invariant: Only the thread associated with the Event/PlatformEvent
5104  // may call park().
5105  // Consider: use atomic decrement instead of CAS-loop
5106  int v;
5107  for (;;) {
5108    v = _Event;
5109    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5110  }
5111  guarantee((v == 0) || (v == 1), "invariant");
5112  if (v != 0) return;
5113
5114  // Do this the hard way by blocking ...
5115  // TODO: consider a brief spin here, gated on the success of recent
5116  // spin attempts by this thread.
5117  while (_Event < 0) {
5118    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5119    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5120  }
5121
5122  // Usually we'll find _Event == 0 at this point, but as
5123  // an optional optimization we clear it, just in case can
5124  // multiple unpark() operations drove _Event up to 1.
5125  _Event = 0;
5126  OrderAccess::fence();
5127  guarantee(_Event >= 0, "invariant");
5128}
5129
5130void os::PlatformEvent::unpark() {
5131  guarantee(_ParkHandle != NULL, "Invariant");
5132
5133  // Transitions for _Event:
5134  //    0 => 1 : just return
5135  //    1 => 1 : just return
5136  //   -1 => either 0 or 1; must signal target thread
5137  //         That is, we can safely transition _Event from -1 to either
5138  //         0 or 1.
5139  // See also: "Semaphores in Plan 9" by Mullender & Cox
5140  //
5141  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5142  // that it will take two back-to-back park() calls for the owning
5143  // thread to block. This has the benefit of forcing a spurious return
5144  // from the first park() call after an unpark() call which will help
5145  // shake out uses of park() and unpark() without condition variables.
5146
5147  if (Atomic::xchg(1, &_Event) >= 0) return;
5148
5149  ::SetEvent(_ParkHandle);
5150}
5151
5152
5153// JSR166
5154// -------------------------------------------------------
5155
5156// The Windows implementation of Park is very straightforward: Basic
5157// operations on Win32 Events turn out to have the right semantics to
5158// use them directly. We opportunistically resuse the event inherited
5159// from Monitor.
5160
5161void Parker::park(bool isAbsolute, jlong time) {
5162  guarantee(_ParkEvent != NULL, "invariant");
5163  // First, demultiplex/decode time arguments
5164  if (time < 0) { // don't wait
5165    return;
5166  } else if (time == 0 && !isAbsolute) {
5167    time = INFINITE;
5168  } else if (isAbsolute) {
5169    time -= os::javaTimeMillis(); // convert to relative time
5170    if (time <= 0) {  // already elapsed
5171      return;
5172    }
5173  } else { // relative
5174    time /= 1000000;  // Must coarsen from nanos to millis
5175    if (time == 0) {  // Wait for the minimal time unit if zero
5176      time = 1;
5177    }
5178  }
5179
5180  JavaThread* thread = (JavaThread*)(Thread::current());
5181  assert(thread->is_Java_thread(), "Must be JavaThread");
5182  JavaThread *jt = (JavaThread *)thread;
5183
5184  // Don't wait if interrupted or already triggered
5185  if (Thread::is_interrupted(thread, false) ||
5186      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5187    ResetEvent(_ParkEvent);
5188    return;
5189  } else {
5190    ThreadBlockInVM tbivm(jt);
5191    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5192    jt->set_suspend_equivalent();
5193
5194    WaitForSingleObject(_ParkEvent, time);
5195    ResetEvent(_ParkEvent);
5196
5197    // If externally suspended while waiting, re-suspend
5198    if (jt->handle_special_suspend_equivalent_condition()) {
5199      jt->java_suspend_self();
5200    }
5201  }
5202}
5203
5204void Parker::unpark() {
5205  guarantee(_ParkEvent != NULL, "invariant");
5206  SetEvent(_ParkEvent);
5207}
5208
5209// Run the specified command in a separate process. Return its exit value,
5210// or -1 on failure (e.g. can't create a new process).
5211int os::fork_and_exec(char* cmd) {
5212  STARTUPINFO si;
5213  PROCESS_INFORMATION pi;
5214
5215  memset(&si, 0, sizeof(si));
5216  si.cb = sizeof(si);
5217  memset(&pi, 0, sizeof(pi));
5218  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5219                            cmd,    // command line
5220                            NULL,   // process security attribute
5221                            NULL,   // thread security attribute
5222                            TRUE,   // inherits system handles
5223                            0,      // no creation flags
5224                            NULL,   // use parent's environment block
5225                            NULL,   // use parent's starting directory
5226                            &si,    // (in) startup information
5227                            &pi);   // (out) process information
5228
5229  if (rslt) {
5230    // Wait until child process exits.
5231    WaitForSingleObject(pi.hProcess, INFINITE);
5232
5233    DWORD exit_code;
5234    GetExitCodeProcess(pi.hProcess, &exit_code);
5235
5236    // Close process and thread handles.
5237    CloseHandle(pi.hProcess);
5238    CloseHandle(pi.hThread);
5239
5240    return (int)exit_code;
5241  } else {
5242    return -1;
5243  }
5244}
5245
5246//--------------------------------------------------------------------------------------------------
5247// Non-product code
5248
5249static int mallocDebugIntervalCounter = 0;
5250static int mallocDebugCounter = 0;
5251bool os::check_heap(bool force) {
5252  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5253  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5254    // Note: HeapValidate executes two hardware breakpoints when it finds something
5255    // wrong; at these points, eax contains the address of the offending block (I think).
5256    // To get to the exlicit error message(s) below, just continue twice.
5257    //
5258    // Note:  we want to check the CRT heap, which is not necessarily located in the
5259    // process default heap.
5260    HANDLE heap = (HANDLE) _get_heap_handle();
5261    if (!heap) {
5262      return true;
5263    }
5264
5265    // If we fail to lock the heap, then gflags.exe has been used
5266    // or some other special heap flag has been set that prevents
5267    // locking. We don't try to walk a heap we can't lock.
5268    if (HeapLock(heap) != 0) {
5269      PROCESS_HEAP_ENTRY phe;
5270      phe.lpData = NULL;
5271      while (HeapWalk(heap, &phe) != 0) {
5272        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5273            !HeapValidate(heap, 0, phe.lpData)) {
5274          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5275          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5276          HeapUnlock(heap);
5277          fatal("corrupted C heap");
5278        }
5279      }
5280      DWORD err = GetLastError();
5281      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5282        HeapUnlock(heap);
5283        fatal("heap walk aborted with error %d", err);
5284      }
5285      HeapUnlock(heap);
5286    }
5287    mallocDebugIntervalCounter = 0;
5288  }
5289  return true;
5290}
5291
5292
5293bool os::find(address addr, outputStream* st) {
5294  // Nothing yet
5295  return false;
5296}
5297
5298LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5299  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5300
5301  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5302    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5303    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5304    address addr = (address) exceptionRecord->ExceptionInformation[1];
5305
5306    if (os::is_memory_serialize_page(thread, addr)) {
5307      return EXCEPTION_CONTINUE_EXECUTION;
5308    }
5309  }
5310
5311  return EXCEPTION_CONTINUE_SEARCH;
5312}
5313
5314// We don't build a headless jre for Windows
5315bool os::is_headless_jre() { return false; }
5316
5317static jint initSock() {
5318  WSADATA wsadata;
5319
5320  if (!os::WinSock2Dll::WinSock2Available()) {
5321    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5322                ::GetLastError());
5323    return JNI_ERR;
5324  }
5325
5326  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5327    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5328                ::GetLastError());
5329    return JNI_ERR;
5330  }
5331  return JNI_OK;
5332}
5333
5334struct hostent* os::get_host_by_name(char* name) {
5335  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5336}
5337
5338int os::socket_close(int fd) {
5339  return ::closesocket(fd);
5340}
5341
5342int os::socket(int domain, int type, int protocol) {
5343  return ::socket(domain, type, protocol);
5344}
5345
5346int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5347  return ::connect(fd, him, len);
5348}
5349
5350int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5351  return ::recv(fd, buf, (int)nBytes, flags);
5352}
5353
5354int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5355  return ::send(fd, buf, (int)nBytes, flags);
5356}
5357
5358int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5359  return ::send(fd, buf, (int)nBytes, flags);
5360}
5361
5362// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5363#if defined(IA32)
5364  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5365#elif defined (AMD64)
5366  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5367#endif
5368
5369// returns true if thread could be suspended,
5370// false otherwise
5371static bool do_suspend(HANDLE* h) {
5372  if (h != NULL) {
5373    if (SuspendThread(*h) != ~0) {
5374      return true;
5375    }
5376  }
5377  return false;
5378}
5379
5380// resume the thread
5381// calling resume on an active thread is a no-op
5382static void do_resume(HANDLE* h) {
5383  if (h != NULL) {
5384    ResumeThread(*h);
5385  }
5386}
5387
5388// retrieve a suspend/resume context capable handle
5389// from the tid. Caller validates handle return value.
5390void get_thread_handle_for_extended_context(HANDLE* h,
5391                                            OSThread::thread_id_t tid) {
5392  if (h != NULL) {
5393    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5394  }
5395}
5396
5397// Thread sampling implementation
5398//
5399void os::SuspendedThreadTask::internal_do_task() {
5400  CONTEXT    ctxt;
5401  HANDLE     h = NULL;
5402
5403  // get context capable handle for thread
5404  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5405
5406  // sanity
5407  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5408    return;
5409  }
5410
5411  // suspend the thread
5412  if (do_suspend(&h)) {
5413    ctxt.ContextFlags = sampling_context_flags;
5414    // get thread context
5415    GetThreadContext(h, &ctxt);
5416    SuspendedThreadTaskContext context(_thread, &ctxt);
5417    // pass context to Thread Sampling impl
5418    do_task(context);
5419    // resume thread
5420    do_resume(&h);
5421  }
5422
5423  // close handle
5424  CloseHandle(h);
5425}
5426
5427
5428// Kernel32 API
5429typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5430typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5431typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5432typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5433typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5434
5435GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5436VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5437GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5438GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5439RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5440
5441
5442BOOL                        os::Kernel32Dll::initialized = FALSE;
5443SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5444  assert(initialized && _GetLargePageMinimum != NULL,
5445         "GetLargePageMinimumAvailable() not yet called");
5446  return _GetLargePageMinimum();
5447}
5448
5449BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5450  if (!initialized) {
5451    initialize();
5452  }
5453  return _GetLargePageMinimum != NULL;
5454}
5455
5456BOOL os::Kernel32Dll::NumaCallsAvailable() {
5457  if (!initialized) {
5458    initialize();
5459  }
5460  return _VirtualAllocExNuma != NULL;
5461}
5462
5463LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5464                                           SIZE_T bytes, DWORD flags,
5465                                           DWORD prot, DWORD node) {
5466  assert(initialized && _VirtualAllocExNuma != NULL,
5467         "NUMACallsAvailable() not yet called");
5468
5469  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5470}
5471
5472BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5473  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5474         "NUMACallsAvailable() not yet called");
5475
5476  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5477}
5478
5479BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5480                                               PULONGLONG proc_mask) {
5481  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5482         "NUMACallsAvailable() not yet called");
5483
5484  return _GetNumaNodeProcessorMask(node, proc_mask);
5485}
5486
5487USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5488                                                 ULONG FrameToCapture,
5489                                                 PVOID* BackTrace,
5490                                                 PULONG BackTraceHash) {
5491  if (!initialized) {
5492    initialize();
5493  }
5494
5495  if (_RtlCaptureStackBackTrace != NULL) {
5496    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5497                                     BackTrace, BackTraceHash);
5498  } else {
5499    return 0;
5500  }
5501}
5502
5503void os::Kernel32Dll::initializeCommon() {
5504  if (!initialized) {
5505    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5506    assert(handle != NULL, "Just check");
5507    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5508    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5509    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5510    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5511    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5512    initialized = TRUE;
5513  }
5514}
5515
5516
5517
5518#ifndef JDK6_OR_EARLIER
5519
5520void os::Kernel32Dll::initialize() {
5521  initializeCommon();
5522}
5523
5524
5525// Kernel32 API
5526inline BOOL os::Kernel32Dll::SwitchToThread() {
5527  return ::SwitchToThread();
5528}
5529
5530inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5531  return true;
5532}
5533
5534// Help tools
5535inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5536  return true;
5537}
5538
5539inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5540                                                        DWORD th32ProcessId) {
5541  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5542}
5543
5544inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5545                                           LPMODULEENTRY32 lpme) {
5546  return ::Module32First(hSnapshot, lpme);
5547}
5548
5549inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5550                                          LPMODULEENTRY32 lpme) {
5551  return ::Module32Next(hSnapshot, lpme);
5552}
5553
5554inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5555  ::GetNativeSystemInfo(lpSystemInfo);
5556}
5557
5558// PSAPI API
5559inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5560                                             HMODULE *lpModule, DWORD cb,
5561                                             LPDWORD lpcbNeeded) {
5562  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5563}
5564
5565inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5566                                               HMODULE hModule,
5567                                               LPTSTR lpFilename,
5568                                               DWORD nSize) {
5569  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5570}
5571
5572inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5573                                               HMODULE hModule,
5574                                               LPMODULEINFO lpmodinfo,
5575                                               DWORD cb) {
5576  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5577}
5578
5579inline BOOL os::PSApiDll::PSApiAvailable() {
5580  return true;
5581}
5582
5583
5584// WinSock2 API
5585inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5586                                        LPWSADATA lpWSAData) {
5587  return ::WSAStartup(wVersionRequested, lpWSAData);
5588}
5589
5590inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5591  return ::gethostbyname(name);
5592}
5593
5594inline BOOL os::WinSock2Dll::WinSock2Available() {
5595  return true;
5596}
5597
5598// Advapi API
5599inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5600                                                   BOOL DisableAllPrivileges,
5601                                                   PTOKEN_PRIVILEGES NewState,
5602                                                   DWORD BufferLength,
5603                                                   PTOKEN_PRIVILEGES PreviousState,
5604                                                   PDWORD ReturnLength) {
5605  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5606                                 BufferLength, PreviousState, ReturnLength);
5607}
5608
5609inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5610                                              DWORD DesiredAccess,
5611                                              PHANDLE TokenHandle) {
5612  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5613}
5614
5615inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5616                                                  LPCTSTR lpName,
5617                                                  PLUID lpLuid) {
5618  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5619}
5620
5621inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5622  return true;
5623}
5624
5625void* os::get_default_process_handle() {
5626  return (void*)GetModuleHandle(NULL);
5627}
5628
5629// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5630// which is used to find statically linked in agents.
5631// Additionally for windows, takes into account __stdcall names.
5632// Parameters:
5633//            sym_name: Symbol in library we are looking for
5634//            lib_name: Name of library to look in, NULL for shared libs.
5635//            is_absolute_path == true if lib_name is absolute path to agent
5636//                                     such as "C:/a/b/L.dll"
5637//            == false if only the base name of the library is passed in
5638//               such as "L"
5639char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5640                                    bool is_absolute_path) {
5641  char *agent_entry_name;
5642  size_t len;
5643  size_t name_len;
5644  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5645  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5646  const char *start;
5647
5648  if (lib_name != NULL) {
5649    len = name_len = strlen(lib_name);
5650    if (is_absolute_path) {
5651      // Need to strip path, prefix and suffix
5652      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5653        lib_name = ++start;
5654      } else {
5655        // Need to check for drive prefix
5656        if ((start = strchr(lib_name, ':')) != NULL) {
5657          lib_name = ++start;
5658        }
5659      }
5660      if (len <= (prefix_len + suffix_len)) {
5661        return NULL;
5662      }
5663      lib_name += prefix_len;
5664      name_len = strlen(lib_name) - suffix_len;
5665    }
5666  }
5667  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5668  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5669  if (agent_entry_name == NULL) {
5670    return NULL;
5671  }
5672  if (lib_name != NULL) {
5673    const char *p = strrchr(sym_name, '@');
5674    if (p != NULL && p != sym_name) {
5675      // sym_name == _Agent_OnLoad@XX
5676      strncpy(agent_entry_name, sym_name, (p - sym_name));
5677      agent_entry_name[(p-sym_name)] = '\0';
5678      // agent_entry_name == _Agent_OnLoad
5679      strcat(agent_entry_name, "_");
5680      strncat(agent_entry_name, lib_name, name_len);
5681      strcat(agent_entry_name, p);
5682      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5683    } else {
5684      strcpy(agent_entry_name, sym_name);
5685      strcat(agent_entry_name, "_");
5686      strncat(agent_entry_name, lib_name, name_len);
5687    }
5688  } else {
5689    strcpy(agent_entry_name, sym_name);
5690  }
5691  return agent_entry_name;
5692}
5693
5694#else
5695// Kernel32 API
5696typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5697typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5698typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5699typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5700typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5701
5702SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5703CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5704Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5705Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5706GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5707
5708void os::Kernel32Dll::initialize() {
5709  if (!initialized) {
5710    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5711    assert(handle != NULL, "Just check");
5712
5713    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5714    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5715      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5716    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5717    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5718    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5719    initializeCommon();  // resolve the functions that always need resolving
5720
5721    initialized = TRUE;
5722  }
5723}
5724
5725BOOL os::Kernel32Dll::SwitchToThread() {
5726  assert(initialized && _SwitchToThread != NULL,
5727         "SwitchToThreadAvailable() not yet called");
5728  return _SwitchToThread();
5729}
5730
5731
5732BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5733  if (!initialized) {
5734    initialize();
5735  }
5736  return _SwitchToThread != NULL;
5737}
5738
5739// Help tools
5740BOOL os::Kernel32Dll::HelpToolsAvailable() {
5741  if (!initialized) {
5742    initialize();
5743  }
5744  return _CreateToolhelp32Snapshot != NULL &&
5745         _Module32First != NULL &&
5746         _Module32Next != NULL;
5747}
5748
5749HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5750                                                 DWORD th32ProcessId) {
5751  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5752         "HelpToolsAvailable() not yet called");
5753
5754  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5755}
5756
5757BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5758  assert(initialized && _Module32First != NULL,
5759         "HelpToolsAvailable() not yet called");
5760
5761  return _Module32First(hSnapshot, lpme);
5762}
5763
5764inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5765                                          LPMODULEENTRY32 lpme) {
5766  assert(initialized && _Module32Next != NULL,
5767         "HelpToolsAvailable() not yet called");
5768
5769  return _Module32Next(hSnapshot, lpme);
5770}
5771
5772
5773BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5774  if (!initialized) {
5775    initialize();
5776  }
5777  return _GetNativeSystemInfo != NULL;
5778}
5779
5780void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5781  assert(initialized && _GetNativeSystemInfo != NULL,
5782         "GetNativeSystemInfoAvailable() not yet called");
5783
5784  _GetNativeSystemInfo(lpSystemInfo);
5785}
5786
5787// PSAPI API
5788
5789
5790typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5791typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5792typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5793
5794EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5795GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5796GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5797BOOL                    os::PSApiDll::initialized = FALSE;
5798
5799void os::PSApiDll::initialize() {
5800  if (!initialized) {
5801    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5802    if (handle != NULL) {
5803      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5804                                                                    "EnumProcessModules");
5805      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5806                                                                      "GetModuleFileNameExA");
5807      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5808                                                                        "GetModuleInformation");
5809    }
5810    initialized = TRUE;
5811  }
5812}
5813
5814
5815
5816BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5817                                      DWORD cb, LPDWORD lpcbNeeded) {
5818  assert(initialized && _EnumProcessModules != NULL,
5819         "PSApiAvailable() not yet called");
5820  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5821}
5822
5823DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5824                                        LPTSTR lpFilename, DWORD nSize) {
5825  assert(initialized && _GetModuleFileNameEx != NULL,
5826         "PSApiAvailable() not yet called");
5827  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5828}
5829
5830BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5831                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5832  assert(initialized && _GetModuleInformation != NULL,
5833         "PSApiAvailable() not yet called");
5834  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5835}
5836
5837BOOL os::PSApiDll::PSApiAvailable() {
5838  if (!initialized) {
5839    initialize();
5840  }
5841  return _EnumProcessModules != NULL &&
5842    _GetModuleFileNameEx != NULL &&
5843    _GetModuleInformation != NULL;
5844}
5845
5846
5847// WinSock2 API
5848typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5849typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5850
5851WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5852gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5853BOOL             os::WinSock2Dll::initialized = FALSE;
5854
5855void os::WinSock2Dll::initialize() {
5856  if (!initialized) {
5857    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5858    if (handle != NULL) {
5859      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5860      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5861    }
5862    initialized = TRUE;
5863  }
5864}
5865
5866
5867BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5868  assert(initialized && _WSAStartup != NULL,
5869         "WinSock2Available() not yet called");
5870  return _WSAStartup(wVersionRequested, lpWSAData);
5871}
5872
5873struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5874  assert(initialized && _gethostbyname != NULL,
5875         "WinSock2Available() not yet called");
5876  return _gethostbyname(name);
5877}
5878
5879BOOL os::WinSock2Dll::WinSock2Available() {
5880  if (!initialized) {
5881    initialize();
5882  }
5883  return _WSAStartup != NULL &&
5884    _gethostbyname != NULL;
5885}
5886
5887typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5888typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5889typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5890
5891AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5892OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5893LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5894BOOL                     os::Advapi32Dll::initialized = FALSE;
5895
5896void os::Advapi32Dll::initialize() {
5897  if (!initialized) {
5898    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5899    if (handle != NULL) {
5900      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5901                                                                          "AdjustTokenPrivileges");
5902      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5903                                                                "OpenProcessToken");
5904      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5905                                                                        "LookupPrivilegeValueA");
5906    }
5907    initialized = TRUE;
5908  }
5909}
5910
5911BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5912                                            BOOL DisableAllPrivileges,
5913                                            PTOKEN_PRIVILEGES NewState,
5914                                            DWORD BufferLength,
5915                                            PTOKEN_PRIVILEGES PreviousState,
5916                                            PDWORD ReturnLength) {
5917  assert(initialized && _AdjustTokenPrivileges != NULL,
5918         "AdvapiAvailable() not yet called");
5919  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5920                                BufferLength, PreviousState, ReturnLength);
5921}
5922
5923BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5924                                       DWORD DesiredAccess,
5925                                       PHANDLE TokenHandle) {
5926  assert(initialized && _OpenProcessToken != NULL,
5927         "AdvapiAvailable() not yet called");
5928  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5929}
5930
5931BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5932                                           LPCTSTR lpName, PLUID lpLuid) {
5933  assert(initialized && _LookupPrivilegeValue != NULL,
5934         "AdvapiAvailable() not yet called");
5935  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5936}
5937
5938BOOL os::Advapi32Dll::AdvapiAvailable() {
5939  if (!initialized) {
5940    initialize();
5941  }
5942  return _AdjustTokenPrivileges != NULL &&
5943    _OpenProcessToken != NULL &&
5944    _LookupPrivilegeValue != NULL;
5945}
5946
5947#endif
5948
5949#ifndef PRODUCT
5950
5951// test the code path in reserve_memory_special() that tries to allocate memory in a single
5952// contiguous memory block at a particular address.
5953// The test first tries to find a good approximate address to allocate at by using the same
5954// method to allocate some memory at any address. The test then tries to allocate memory in
5955// the vicinity (not directly after it to avoid possible by-chance use of that location)
5956// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5957// the previously allocated memory is available for allocation. The only actual failure
5958// that is reported is when the test tries to allocate at a particular location but gets a
5959// different valid one. A NULL return value at this point is not considered an error but may
5960// be legitimate.
5961// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5962void TestReserveMemorySpecial_test() {
5963  if (!UseLargePages) {
5964    if (VerboseInternalVMTests) {
5965      gclog_or_tty->print("Skipping test because large pages are disabled");
5966    }
5967    return;
5968  }
5969  // save current value of globals
5970  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5971  bool old_use_numa_interleaving = UseNUMAInterleaving;
5972
5973  // set globals to make sure we hit the correct code path
5974  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5975
5976  // do an allocation at an address selected by the OS to get a good one.
5977  const size_t large_allocation_size = os::large_page_size() * 4;
5978  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5979  if (result == NULL) {
5980    if (VerboseInternalVMTests) {
5981      gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5982                          large_allocation_size);
5983    }
5984  } else {
5985    os::release_memory_special(result, large_allocation_size);
5986
5987    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5988    // we managed to get it once.
5989    const size_t expected_allocation_size = os::large_page_size();
5990    char* expected_location = result + os::large_page_size();
5991    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5992    if (actual_location == NULL) {
5993      if (VerboseInternalVMTests) {
5994        gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5995                            expected_location, large_allocation_size);
5996      }
5997    } else {
5998      // release memory
5999      os::release_memory_special(actual_location, expected_allocation_size);
6000      // only now check, after releasing any memory to avoid any leaks.
6001      assert(actual_location == expected_location,
6002             "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
6003             expected_location, expected_allocation_size, actual_location);
6004    }
6005  }
6006
6007  // restore globals
6008  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
6009  UseNUMAInterleaving = old_use_numa_interleaving;
6010}
6011#endif // PRODUCT
6012