os_windows.cpp revision 9149:a8a8604f890f
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "semaphore_windows.hpp"
67#include "services/attachListener.hpp"
68#include "services/memTracker.hpp"
69#include "services/runtimeService.hpp"
70#include "utilities/decoder.hpp"
71#include "utilities/defaultStream.hpp"
72#include "utilities/events.hpp"
73#include "utilities/growableArray.hpp"
74#include "utilities/vmError.hpp"
75
76#ifdef _DEBUG
77#include <crtdbg.h>
78#endif
79
80
81#include <windows.h>
82#include <sys/types.h>
83#include <sys/stat.h>
84#include <sys/timeb.h>
85#include <objidl.h>
86#include <shlobj.h>
87
88#include <malloc.h>
89#include <signal.h>
90#include <direct.h>
91#include <errno.h>
92#include <fcntl.h>
93#include <io.h>
94#include <process.h>              // For _beginthreadex(), _endthreadex()
95#include <imagehlp.h>             // For os::dll_address_to_function_name
96// for enumerating dll libraries
97#include <vdmdbg.h>
98
99// for timer info max values which include all bits
100#define ALL_64_BITS CONST64(-1)
101
102// For DLL loading/load error detection
103// Values of PE COFF
104#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
105#define IMAGE_FILE_SIGNATURE_LENGTH 4
106
107static HANDLE main_process;
108static HANDLE main_thread;
109static int    main_thread_id;
110
111static FILETIME process_creation_time;
112static FILETIME process_exit_time;
113static FILETIME process_user_time;
114static FILETIME process_kernel_time;
115
116#ifdef _M_IA64
117  #define __CPU__ ia64
118#else
119  #ifdef _M_AMD64
120    #define __CPU__ amd64
121  #else
122    #define __CPU__ i486
123  #endif
124#endif
125
126// save DLL module handle, used by GetModuleFileName
127
128HINSTANCE vm_lib_handle;
129
130BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
131  switch (reason) {
132  case DLL_PROCESS_ATTACH:
133    vm_lib_handle = hinst;
134    if (ForceTimeHighResolution) {
135      timeBeginPeriod(1L);
136    }
137    break;
138  case DLL_PROCESS_DETACH:
139    if (ForceTimeHighResolution) {
140      timeEndPeriod(1L);
141    }
142    break;
143  default:
144    break;
145  }
146  return true;
147}
148
149static inline double fileTimeAsDouble(FILETIME* time) {
150  const double high  = (double) ((unsigned int) ~0);
151  const double split = 10000000.0;
152  double result = (time->dwLowDateTime / split) +
153                   time->dwHighDateTime * (high/split);
154  return result;
155}
156
157// Implementation of os
158
159bool os::unsetenv(const char* name) {
160  assert(name != NULL, "Null pointer");
161  return (SetEnvironmentVariable(name, NULL) == TRUE);
162}
163
164// No setuid programs under Windows.
165bool os::have_special_privileges() {
166  return false;
167}
168
169
170// This method is  a periodic task to check for misbehaving JNI applications
171// under CheckJNI, we can add any periodic checks here.
172// For Windows at the moment does nothing
173void os::run_periodic_checks() {
174  return;
175}
176
177// previous UnhandledExceptionFilter, if there is one
178static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
179
180LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
181
182void os::init_system_properties_values() {
183  // sysclasspath, java_home, dll_dir
184  {
185    char *home_path;
186    char *dll_path;
187    char *pslash;
188    char *bin = "\\bin";
189    char home_dir[MAX_PATH + 1];
190    char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
191
192    if (alt_home_dir != NULL)  {
193      strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
194      home_dir[MAX_PATH] = '\0';
195    } else {
196      os::jvm_path(home_dir, sizeof(home_dir));
197      // Found the full path to jvm.dll.
198      // Now cut the path to <java_home>/jre if we can.
199      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
200      pslash = strrchr(home_dir, '\\');
201      if (pslash != NULL) {
202        *pslash = '\0';                   // get rid of \{client|server}
203        pslash = strrchr(home_dir, '\\');
204        if (pslash != NULL) {
205          *pslash = '\0';                 // get rid of \bin
206        }
207      }
208    }
209
210    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
211    if (home_path == NULL) {
212      return;
213    }
214    strcpy(home_path, home_dir);
215    Arguments::set_java_home(home_path);
216    FREE_C_HEAP_ARRAY(char, home_path);
217
218    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
219                                mtInternal);
220    if (dll_path == NULL) {
221      return;
222    }
223    strcpy(dll_path, home_dir);
224    strcat(dll_path, bin);
225    Arguments::set_dll_dir(dll_path);
226    FREE_C_HEAP_ARRAY(char, dll_path);
227
228    if (!set_boot_path('\\', ';')) {
229      return;
230    }
231  }
232
233// library_path
234#define EXT_DIR "\\lib\\ext"
235#define BIN_DIR "\\bin"
236#define PACKAGE_DIR "\\Sun\\Java"
237  {
238    // Win32 library search order (See the documentation for LoadLibrary):
239    //
240    // 1. The directory from which application is loaded.
241    // 2. The system wide Java Extensions directory (Java only)
242    // 3. System directory (GetSystemDirectory)
243    // 4. Windows directory (GetWindowsDirectory)
244    // 5. The PATH environment variable
245    // 6. The current directory
246
247    char *library_path;
248    char tmp[MAX_PATH];
249    char *path_str = ::getenv("PATH");
250
251    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
252                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
253
254    library_path[0] = '\0';
255
256    GetModuleFileName(NULL, tmp, sizeof(tmp));
257    *(strrchr(tmp, '\\')) = '\0';
258    strcat(library_path, tmp);
259
260    GetWindowsDirectory(tmp, sizeof(tmp));
261    strcat(library_path, ";");
262    strcat(library_path, tmp);
263    strcat(library_path, PACKAGE_DIR BIN_DIR);
264
265    GetSystemDirectory(tmp, sizeof(tmp));
266    strcat(library_path, ";");
267    strcat(library_path, tmp);
268
269    GetWindowsDirectory(tmp, sizeof(tmp));
270    strcat(library_path, ";");
271    strcat(library_path, tmp);
272
273    if (path_str) {
274      strcat(library_path, ";");
275      strcat(library_path, path_str);
276    }
277
278    strcat(library_path, ";.");
279
280    Arguments::set_library_path(library_path);
281    FREE_C_HEAP_ARRAY(char, library_path);
282  }
283
284  // Default extensions directory
285  {
286    char path[MAX_PATH];
287    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
288    GetWindowsDirectory(path, MAX_PATH);
289    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
290            path, PACKAGE_DIR, EXT_DIR);
291    Arguments::set_ext_dirs(buf);
292  }
293  #undef EXT_DIR
294  #undef BIN_DIR
295  #undef PACKAGE_DIR
296
297#ifndef _WIN64
298  // set our UnhandledExceptionFilter and save any previous one
299  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
300#endif
301
302  // Done
303  return;
304}
305
306void os::breakpoint() {
307  DebugBreak();
308}
309
310// Invoked from the BREAKPOINT Macro
311extern "C" void breakpoint() {
312  os::breakpoint();
313}
314
315// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
316// So far, this method is only used by Native Memory Tracking, which is
317// only supported on Windows XP or later.
318//
319int os::get_native_stack(address* stack, int frames, int toSkip) {
320#ifdef _NMT_NOINLINE_
321  toSkip++;
322#endif
323  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
324                                                       (PVOID*)stack, NULL);
325  for (int index = captured; index < frames; index ++) {
326    stack[index] = NULL;
327  }
328  return captured;
329}
330
331
332// os::current_stack_base()
333//
334//   Returns the base of the stack, which is the stack's
335//   starting address.  This function must be called
336//   while running on the stack of the thread being queried.
337
338address os::current_stack_base() {
339  MEMORY_BASIC_INFORMATION minfo;
340  address stack_bottom;
341  size_t stack_size;
342
343  VirtualQuery(&minfo, &minfo, sizeof(minfo));
344  stack_bottom =  (address)minfo.AllocationBase;
345  stack_size = minfo.RegionSize;
346
347  // Add up the sizes of all the regions with the same
348  // AllocationBase.
349  while (1) {
350    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
351    if (stack_bottom == (address)minfo.AllocationBase) {
352      stack_size += minfo.RegionSize;
353    } else {
354      break;
355    }
356  }
357
358#ifdef _M_IA64
359  // IA64 has memory and register stacks
360  //
361  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
362  // at thread creation (1MB backing store growing upwards, 1MB memory stack
363  // growing downwards, 2MB summed up)
364  //
365  // ...
366  // ------- top of stack (high address) -----
367  // |
368  // |      1MB
369  // |      Backing Store (Register Stack)
370  // |
371  // |         / \
372  // |          |
373  // |          |
374  // |          |
375  // ------------------------ stack base -----
376  // |      1MB
377  // |      Memory Stack
378  // |
379  // |          |
380  // |          |
381  // |          |
382  // |         \ /
383  // |
384  // ----- bottom of stack (low address) -----
385  // ...
386
387  stack_size = stack_size / 2;
388#endif
389  return stack_bottom + stack_size;
390}
391
392size_t os::current_stack_size() {
393  size_t sz;
394  MEMORY_BASIC_INFORMATION minfo;
395  VirtualQuery(&minfo, &minfo, sizeof(minfo));
396  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
397  return sz;
398}
399
400struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
401  const struct tm* time_struct_ptr = localtime(clock);
402  if (time_struct_ptr != NULL) {
403    *res = *time_struct_ptr;
404    return res;
405  }
406  return NULL;
407}
408
409LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
410
411// Thread start routine for all new Java threads
412static unsigned __stdcall java_start(Thread* thread) {
413  // Try to randomize the cache line index of hot stack frames.
414  // This helps when threads of the same stack traces evict each other's
415  // cache lines. The threads can be either from the same JVM instance, or
416  // from different JVM instances. The benefit is especially true for
417  // processors with hyperthreading technology.
418  static int counter = 0;
419  int pid = os::current_process_id();
420  _alloca(((pid ^ counter++) & 7) * 128);
421
422  OSThread* osthr = thread->osthread();
423  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
424
425  if (UseNUMA) {
426    int lgrp_id = os::numa_get_group_id();
427    if (lgrp_id != -1) {
428      thread->set_lgrp_id(lgrp_id);
429    }
430  }
431
432  // Diagnostic code to investigate JDK-6573254
433  int res = 30115;  // non-java thread
434  if (thread->is_Java_thread()) {
435    res = 20115;    // java thread
436  }
437
438  // Install a win32 structured exception handler around every thread created
439  // by VM, so VM can generate error dump when an exception occurred in non-
440  // Java thread (e.g. VM thread).
441  __try {
442    thread->run();
443  } __except(topLevelExceptionFilter(
444                                     (_EXCEPTION_POINTERS*)_exception_info())) {
445    // Nothing to do.
446  }
447
448  // One less thread is executing
449  // When the VMThread gets here, the main thread may have already exited
450  // which frees the CodeHeap containing the Atomic::add code
451  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
452    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
453  }
454
455  // Thread must not return from exit_process_or_thread(), but if it does,
456  // let it proceed to exit normally
457  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
458}
459
460static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
461                                  int thread_id) {
462  // Allocate the OSThread object
463  OSThread* osthread = new OSThread(NULL, NULL);
464  if (osthread == NULL) return NULL;
465
466  // Initialize support for Java interrupts
467  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
468  if (interrupt_event == NULL) {
469    delete osthread;
470    return NULL;
471  }
472  osthread->set_interrupt_event(interrupt_event);
473
474  // Store info on the Win32 thread into the OSThread
475  osthread->set_thread_handle(thread_handle);
476  osthread->set_thread_id(thread_id);
477
478  if (UseNUMA) {
479    int lgrp_id = os::numa_get_group_id();
480    if (lgrp_id != -1) {
481      thread->set_lgrp_id(lgrp_id);
482    }
483  }
484
485  // Initial thread state is INITIALIZED, not SUSPENDED
486  osthread->set_state(INITIALIZED);
487
488  return osthread;
489}
490
491
492bool os::create_attached_thread(JavaThread* thread) {
493#ifdef ASSERT
494  thread->verify_not_published();
495#endif
496  HANDLE thread_h;
497  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
498                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
499    fatal("DuplicateHandle failed\n");
500  }
501  OSThread* osthread = create_os_thread(thread, thread_h,
502                                        (int)current_thread_id());
503  if (osthread == NULL) {
504    return false;
505  }
506
507  // Initial thread state is RUNNABLE
508  osthread->set_state(RUNNABLE);
509
510  thread->set_osthread(osthread);
511  return true;
512}
513
514bool os::create_main_thread(JavaThread* thread) {
515#ifdef ASSERT
516  thread->verify_not_published();
517#endif
518  if (_starting_thread == NULL) {
519    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
520    if (_starting_thread == NULL) {
521      return false;
522    }
523  }
524
525  // The primordial thread is runnable from the start)
526  _starting_thread->set_state(RUNNABLE);
527
528  thread->set_osthread(_starting_thread);
529  return true;
530}
531
532// Allocate and initialize a new OSThread
533bool os::create_thread(Thread* thread, ThreadType thr_type,
534                       size_t stack_size) {
535  unsigned thread_id;
536
537  // Allocate the OSThread object
538  OSThread* osthread = new OSThread(NULL, NULL);
539  if (osthread == NULL) {
540    return false;
541  }
542
543  // Initialize support for Java interrupts
544  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
545  if (interrupt_event == NULL) {
546    delete osthread;
547    return NULL;
548  }
549  osthread->set_interrupt_event(interrupt_event);
550  osthread->set_interrupted(false);
551
552  thread->set_osthread(osthread);
553
554  if (stack_size == 0) {
555    switch (thr_type) {
556    case os::java_thread:
557      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
558      if (JavaThread::stack_size_at_create() > 0) {
559        stack_size = JavaThread::stack_size_at_create();
560      }
561      break;
562    case os::compiler_thread:
563      if (CompilerThreadStackSize > 0) {
564        stack_size = (size_t)(CompilerThreadStackSize * K);
565        break;
566      } // else fall through:
567        // use VMThreadStackSize if CompilerThreadStackSize is not defined
568    case os::vm_thread:
569    case os::pgc_thread:
570    case os::cgc_thread:
571    case os::watcher_thread:
572      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
573      break;
574    }
575  }
576
577  // Create the Win32 thread
578  //
579  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
580  // does not specify stack size. Instead, it specifies the size of
581  // initially committed space. The stack size is determined by
582  // PE header in the executable. If the committed "stack_size" is larger
583  // than default value in the PE header, the stack is rounded up to the
584  // nearest multiple of 1MB. For example if the launcher has default
585  // stack size of 320k, specifying any size less than 320k does not
586  // affect the actual stack size at all, it only affects the initial
587  // commitment. On the other hand, specifying 'stack_size' larger than
588  // default value may cause significant increase in memory usage, because
589  // not only the stack space will be rounded up to MB, but also the
590  // entire space is committed upfront.
591  //
592  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
593  // for CreateThread() that can treat 'stack_size' as stack size. However we
594  // are not supposed to call CreateThread() directly according to MSDN
595  // document because JVM uses C runtime library. The good news is that the
596  // flag appears to work with _beginthredex() as well.
597
598#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
599  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
600#endif
601
602  HANDLE thread_handle =
603    (HANDLE)_beginthreadex(NULL,
604                           (unsigned)stack_size,
605                           (unsigned (__stdcall *)(void*)) java_start,
606                           thread,
607                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
608                           &thread_id);
609  if (thread_handle == NULL) {
610    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
611    // without the flag.
612    thread_handle =
613      (HANDLE)_beginthreadex(NULL,
614                             (unsigned)stack_size,
615                             (unsigned (__stdcall *)(void*)) java_start,
616                             thread,
617                             CREATE_SUSPENDED,
618                             &thread_id);
619  }
620  if (thread_handle == NULL) {
621    // Need to clean up stuff we've allocated so far
622    CloseHandle(osthread->interrupt_event());
623    thread->set_osthread(NULL);
624    delete osthread;
625    return NULL;
626  }
627
628  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
629
630  // Store info on the Win32 thread into the OSThread
631  osthread->set_thread_handle(thread_handle);
632  osthread->set_thread_id(thread_id);
633
634  // Initial thread state is INITIALIZED, not SUSPENDED
635  osthread->set_state(INITIALIZED);
636
637  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
638  return true;
639}
640
641
642// Free Win32 resources related to the OSThread
643void os::free_thread(OSThread* osthread) {
644  assert(osthread != NULL, "osthread not set");
645  CloseHandle(osthread->thread_handle());
646  CloseHandle(osthread->interrupt_event());
647  delete osthread;
648}
649
650static jlong first_filetime;
651static jlong initial_performance_count;
652static jlong performance_frequency;
653
654
655jlong as_long(LARGE_INTEGER x) {
656  jlong result = 0; // initialization to avoid warning
657  set_high(&result, x.HighPart);
658  set_low(&result, x.LowPart);
659  return result;
660}
661
662
663jlong os::elapsed_counter() {
664  LARGE_INTEGER count;
665  if (win32::_has_performance_count) {
666    QueryPerformanceCounter(&count);
667    return as_long(count) - initial_performance_count;
668  } else {
669    FILETIME wt;
670    GetSystemTimeAsFileTime(&wt);
671    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
672  }
673}
674
675
676jlong os::elapsed_frequency() {
677  if (win32::_has_performance_count) {
678    return performance_frequency;
679  } else {
680    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
681    return 10000000;
682  }
683}
684
685
686julong os::available_memory() {
687  return win32::available_memory();
688}
689
690julong os::win32::available_memory() {
691  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
692  // value if total memory is larger than 4GB
693  MEMORYSTATUSEX ms;
694  ms.dwLength = sizeof(ms);
695  GlobalMemoryStatusEx(&ms);
696
697  return (julong)ms.ullAvailPhys;
698}
699
700julong os::physical_memory() {
701  return win32::physical_memory();
702}
703
704bool os::has_allocatable_memory_limit(julong* limit) {
705  MEMORYSTATUSEX ms;
706  ms.dwLength = sizeof(ms);
707  GlobalMemoryStatusEx(&ms);
708#ifdef _LP64
709  *limit = (julong)ms.ullAvailVirtual;
710  return true;
711#else
712  // Limit to 1400m because of the 2gb address space wall
713  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
714  return true;
715#endif
716}
717
718// VC6 lacks DWORD_PTR
719#if _MSC_VER < 1300
720typedef UINT_PTR DWORD_PTR;
721#endif
722
723int os::active_processor_count() {
724  DWORD_PTR lpProcessAffinityMask = 0;
725  DWORD_PTR lpSystemAffinityMask = 0;
726  int proc_count = processor_count();
727  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
728      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
729    // Nof active processors is number of bits in process affinity mask
730    int bitcount = 0;
731    while (lpProcessAffinityMask != 0) {
732      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
733      bitcount++;
734    }
735    return bitcount;
736  } else {
737    return proc_count;
738  }
739}
740
741void os::set_native_thread_name(const char *name) {
742
743  // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
744  //
745  // Note that unfortunately this only works if the process
746  // is already attached to a debugger; debugger must observe
747  // the exception below to show the correct name.
748
749  const DWORD MS_VC_EXCEPTION = 0x406D1388;
750  struct {
751    DWORD dwType;     // must be 0x1000
752    LPCSTR szName;    // pointer to name (in user addr space)
753    DWORD dwThreadID; // thread ID (-1=caller thread)
754    DWORD dwFlags;    // reserved for future use, must be zero
755  } info;
756
757  info.dwType = 0x1000;
758  info.szName = name;
759  info.dwThreadID = -1;
760  info.dwFlags = 0;
761
762  __try {
763    RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
764  } __except(EXCEPTION_CONTINUE_EXECUTION) {}
765}
766
767bool os::distribute_processes(uint length, uint* distribution) {
768  // Not yet implemented.
769  return false;
770}
771
772bool os::bind_to_processor(uint processor_id) {
773  // Not yet implemented.
774  return false;
775}
776
777void os::win32::initialize_performance_counter() {
778  LARGE_INTEGER count;
779  if (QueryPerformanceFrequency(&count)) {
780    win32::_has_performance_count = 1;
781    performance_frequency = as_long(count);
782    QueryPerformanceCounter(&count);
783    initial_performance_count = as_long(count);
784  } else {
785    win32::_has_performance_count = 0;
786    FILETIME wt;
787    GetSystemTimeAsFileTime(&wt);
788    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
789  }
790}
791
792
793double os::elapsedTime() {
794  return (double) elapsed_counter() / (double) elapsed_frequency();
795}
796
797
798// Windows format:
799//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
800// Java format:
801//   Java standards require the number of milliseconds since 1/1/1970
802
803// Constant offset - calculated using offset()
804static jlong  _offset   = 116444736000000000;
805// Fake time counter for reproducible results when debugging
806static jlong  fake_time = 0;
807
808#ifdef ASSERT
809// Just to be safe, recalculate the offset in debug mode
810static jlong _calculated_offset = 0;
811static int   _has_calculated_offset = 0;
812
813jlong offset() {
814  if (_has_calculated_offset) return _calculated_offset;
815  SYSTEMTIME java_origin;
816  java_origin.wYear          = 1970;
817  java_origin.wMonth         = 1;
818  java_origin.wDayOfWeek     = 0; // ignored
819  java_origin.wDay           = 1;
820  java_origin.wHour          = 0;
821  java_origin.wMinute        = 0;
822  java_origin.wSecond        = 0;
823  java_origin.wMilliseconds  = 0;
824  FILETIME jot;
825  if (!SystemTimeToFileTime(&java_origin, &jot)) {
826    fatal("Error = %d\nWindows error", GetLastError());
827  }
828  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
829  _has_calculated_offset = 1;
830  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
831  return _calculated_offset;
832}
833#else
834jlong offset() {
835  return _offset;
836}
837#endif
838
839jlong windows_to_java_time(FILETIME wt) {
840  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
841  return (a - offset()) / 10000;
842}
843
844// Returns time ticks in (10th of micro seconds)
845jlong windows_to_time_ticks(FILETIME wt) {
846  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
847  return (a - offset());
848}
849
850FILETIME java_to_windows_time(jlong l) {
851  jlong a = (l * 10000) + offset();
852  FILETIME result;
853  result.dwHighDateTime = high(a);
854  result.dwLowDateTime  = low(a);
855  return result;
856}
857
858bool os::supports_vtime() { return true; }
859bool os::enable_vtime() { return false; }
860bool os::vtime_enabled() { return false; }
861
862double os::elapsedVTime() {
863  FILETIME created;
864  FILETIME exited;
865  FILETIME kernel;
866  FILETIME user;
867  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
868    // the resolution of windows_to_java_time() should be sufficient (ms)
869    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
870  } else {
871    return elapsedTime();
872  }
873}
874
875jlong os::javaTimeMillis() {
876  if (UseFakeTimers) {
877    return fake_time++;
878  } else {
879    FILETIME wt;
880    GetSystemTimeAsFileTime(&wt);
881    return windows_to_java_time(wt);
882  }
883}
884
885void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
886  FILETIME wt;
887  GetSystemTimeAsFileTime(&wt);
888  jlong ticks = windows_to_time_ticks(wt); // 10th of micros
889  jlong secs = jlong(ticks / 10000000); // 10000 * 1000
890  seconds = secs;
891  nanos = jlong(ticks - (secs*10000000)) * 100;
892}
893
894jlong os::javaTimeNanos() {
895  if (!win32::_has_performance_count) {
896    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
897  } else {
898    LARGE_INTEGER current_count;
899    QueryPerformanceCounter(&current_count);
900    double current = as_long(current_count);
901    double freq = performance_frequency;
902    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
903    return time;
904  }
905}
906
907void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
908  if (!win32::_has_performance_count) {
909    // javaTimeMillis() doesn't have much percision,
910    // but it is not going to wrap -- so all 64 bits
911    info_ptr->max_value = ALL_64_BITS;
912
913    // this is a wall clock timer, so may skip
914    info_ptr->may_skip_backward = true;
915    info_ptr->may_skip_forward = true;
916  } else {
917    jlong freq = performance_frequency;
918    if (freq < NANOSECS_PER_SEC) {
919      // the performance counter is 64 bits and we will
920      // be multiplying it -- so no wrap in 64 bits
921      info_ptr->max_value = ALL_64_BITS;
922    } else if (freq > NANOSECS_PER_SEC) {
923      // use the max value the counter can reach to
924      // determine the max value which could be returned
925      julong max_counter = (julong)ALL_64_BITS;
926      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
927    } else {
928      // the performance counter is 64 bits and we will
929      // be using it directly -- so no wrap in 64 bits
930      info_ptr->max_value = ALL_64_BITS;
931    }
932
933    // using a counter, so no skipping
934    info_ptr->may_skip_backward = false;
935    info_ptr->may_skip_forward = false;
936  }
937  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
938}
939
940char* os::local_time_string(char *buf, size_t buflen) {
941  SYSTEMTIME st;
942  GetLocalTime(&st);
943  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
944               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
945  return buf;
946}
947
948bool os::getTimesSecs(double* process_real_time,
949                      double* process_user_time,
950                      double* process_system_time) {
951  HANDLE h_process = GetCurrentProcess();
952  FILETIME create_time, exit_time, kernel_time, user_time;
953  BOOL result = GetProcessTimes(h_process,
954                                &create_time,
955                                &exit_time,
956                                &kernel_time,
957                                &user_time);
958  if (result != 0) {
959    FILETIME wt;
960    GetSystemTimeAsFileTime(&wt);
961    jlong rtc_millis = windows_to_java_time(wt);
962    jlong user_millis = windows_to_java_time(user_time);
963    jlong system_millis = windows_to_java_time(kernel_time);
964    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
965    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
966    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
967    return true;
968  } else {
969    return false;
970  }
971}
972
973void os::shutdown() {
974  // allow PerfMemory to attempt cleanup of any persistent resources
975  perfMemory_exit();
976
977  // flush buffered output, finish log files
978  ostream_abort();
979
980  // Check for abort hook
981  abort_hook_t abort_hook = Arguments::abort_hook();
982  if (abort_hook != NULL) {
983    abort_hook();
984  }
985}
986
987
988static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
989                                         PMINIDUMP_EXCEPTION_INFORMATION,
990                                         PMINIDUMP_USER_STREAM_INFORMATION,
991                                         PMINIDUMP_CALLBACK_INFORMATION);
992
993static HANDLE dumpFile = NULL;
994
995// Check if dump file can be created.
996void os::check_dump_limit(char* buffer, size_t buffsz) {
997  bool status = true;
998  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
999    jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000    status = false;
1001  }
1002
1003#ifndef ASSERT
1004  if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1005    jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1006    status = false;
1007  }
1008#endif
1009
1010  if (status) {
1011    const char* cwd = get_current_directory(NULL, 0);
1012    int pid = current_process_id();
1013    if (cwd != NULL) {
1014      jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1015    } else {
1016      jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1017    }
1018
1019    if (dumpFile == NULL &&
1020       (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1021                 == INVALID_HANDLE_VALUE) {
1022      jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1023      status = false;
1024    }
1025  }
1026  VMError::record_coredump_status(buffer, status);
1027}
1028
1029void os::abort(bool dump_core, void* siginfo, void* context) {
1030  HINSTANCE dbghelp;
1031  EXCEPTION_POINTERS ep;
1032  MINIDUMP_EXCEPTION_INFORMATION mei;
1033  MINIDUMP_EXCEPTION_INFORMATION* pmei;
1034
1035  HANDLE hProcess = GetCurrentProcess();
1036  DWORD processId = GetCurrentProcessId();
1037  MINIDUMP_TYPE dumpType;
1038
1039  shutdown();
1040  if (!dump_core || dumpFile == NULL) {
1041    if (dumpFile != NULL) {
1042      CloseHandle(dumpFile);
1043    }
1044    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1045  }
1046
1047  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1048
1049  if (dbghelp == NULL) {
1050    jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1051    CloseHandle(dumpFile);
1052    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1053  }
1054
1055  _MiniDumpWriteDump =
1056      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1057                                    PMINIDUMP_EXCEPTION_INFORMATION,
1058                                    PMINIDUMP_USER_STREAM_INFORMATION,
1059                                    PMINIDUMP_CALLBACK_INFORMATION),
1060                                    GetProcAddress(dbghelp,
1061                                    "MiniDumpWriteDump"));
1062
1063  if (_MiniDumpWriteDump == NULL) {
1064    jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1065    CloseHandle(dumpFile);
1066    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1067  }
1068
1069  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1070
1071  // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1072  // API_VERSION_NUMBER 11 or higher contains the ones we want though
1073#if API_VERSION_NUMBER >= 11
1074  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1075                             MiniDumpWithUnloadedModules);
1076#endif
1077
1078  if (siginfo != NULL && context != NULL) {
1079    ep.ContextRecord = (PCONTEXT) context;
1080    ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1081
1082    mei.ThreadId = GetCurrentThreadId();
1083    mei.ExceptionPointers = &ep;
1084    pmei = &mei;
1085  } else {
1086    pmei = NULL;
1087  }
1088
1089  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1090  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1091  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1092      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1093    jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1094  }
1095  CloseHandle(dumpFile);
1096  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1097}
1098
1099// Die immediately, no exit hook, no abort hook, no cleanup.
1100void os::die() {
1101  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1102}
1103
1104// Directory routines copied from src/win32/native/java/io/dirent_md.c
1105//  * dirent_md.c       1.15 00/02/02
1106//
1107// The declarations for DIR and struct dirent are in jvm_win32.h.
1108
1109// Caller must have already run dirname through JVM_NativePath, which removes
1110// duplicate slashes and converts all instances of '/' into '\\'.
1111
1112DIR * os::opendir(const char *dirname) {
1113  assert(dirname != NULL, "just checking");   // hotspot change
1114  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1115  DWORD fattr;                                // hotspot change
1116  char alt_dirname[4] = { 0, 0, 0, 0 };
1117
1118  if (dirp == 0) {
1119    errno = ENOMEM;
1120    return 0;
1121  }
1122
1123  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1124  // as a directory in FindFirstFile().  We detect this case here and
1125  // prepend the current drive name.
1126  //
1127  if (dirname[1] == '\0' && dirname[0] == '\\') {
1128    alt_dirname[0] = _getdrive() + 'A' - 1;
1129    alt_dirname[1] = ':';
1130    alt_dirname[2] = '\\';
1131    alt_dirname[3] = '\0';
1132    dirname = alt_dirname;
1133  }
1134
1135  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1136  if (dirp->path == 0) {
1137    free(dirp);
1138    errno = ENOMEM;
1139    return 0;
1140  }
1141  strcpy(dirp->path, dirname);
1142
1143  fattr = GetFileAttributes(dirp->path);
1144  if (fattr == 0xffffffff) {
1145    free(dirp->path);
1146    free(dirp);
1147    errno = ENOENT;
1148    return 0;
1149  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1150    free(dirp->path);
1151    free(dirp);
1152    errno = ENOTDIR;
1153    return 0;
1154  }
1155
1156  // Append "*.*", or possibly "\\*.*", to path
1157  if (dirp->path[1] == ':' &&
1158      (dirp->path[2] == '\0' ||
1159      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1160    // No '\\' needed for cases like "Z:" or "Z:\"
1161    strcat(dirp->path, "*.*");
1162  } else {
1163    strcat(dirp->path, "\\*.*");
1164  }
1165
1166  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1167  if (dirp->handle == INVALID_HANDLE_VALUE) {
1168    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1169      free(dirp->path);
1170      free(dirp);
1171      errno = EACCES;
1172      return 0;
1173    }
1174  }
1175  return dirp;
1176}
1177
1178// parameter dbuf unused on Windows
1179struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1180  assert(dirp != NULL, "just checking");      // hotspot change
1181  if (dirp->handle == INVALID_HANDLE_VALUE) {
1182    return 0;
1183  }
1184
1185  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1186
1187  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1188    if (GetLastError() == ERROR_INVALID_HANDLE) {
1189      errno = EBADF;
1190      return 0;
1191    }
1192    FindClose(dirp->handle);
1193    dirp->handle = INVALID_HANDLE_VALUE;
1194  }
1195
1196  return &dirp->dirent;
1197}
1198
1199int os::closedir(DIR *dirp) {
1200  assert(dirp != NULL, "just checking");      // hotspot change
1201  if (dirp->handle != INVALID_HANDLE_VALUE) {
1202    if (!FindClose(dirp->handle)) {
1203      errno = EBADF;
1204      return -1;
1205    }
1206    dirp->handle = INVALID_HANDLE_VALUE;
1207  }
1208  free(dirp->path);
1209  free(dirp);
1210  return 0;
1211}
1212
1213// This must be hard coded because it's the system's temporary
1214// directory not the java application's temp directory, ala java.io.tmpdir.
1215const char* os::get_temp_directory() {
1216  static char path_buf[MAX_PATH];
1217  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1218    return path_buf;
1219  } else {
1220    path_buf[0] = '\0';
1221    return path_buf;
1222  }
1223}
1224
1225static bool file_exists(const char* filename) {
1226  if (filename == NULL || strlen(filename) == 0) {
1227    return false;
1228  }
1229  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1230}
1231
1232bool os::dll_build_name(char *buffer, size_t buflen,
1233                        const char* pname, const char* fname) {
1234  bool retval = false;
1235  const size_t pnamelen = pname ? strlen(pname) : 0;
1236  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1237
1238  // Return error on buffer overflow.
1239  if (pnamelen + strlen(fname) + 10 > buflen) {
1240    return retval;
1241  }
1242
1243  if (pnamelen == 0) {
1244    jio_snprintf(buffer, buflen, "%s.dll", fname);
1245    retval = true;
1246  } else if (c == ':' || c == '\\') {
1247    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1248    retval = true;
1249  } else if (strchr(pname, *os::path_separator()) != NULL) {
1250    int n;
1251    char** pelements = split_path(pname, &n);
1252    if (pelements == NULL) {
1253      return false;
1254    }
1255    for (int i = 0; i < n; i++) {
1256      char* path = pelements[i];
1257      // Really shouldn't be NULL, but check can't hurt
1258      size_t plen = (path == NULL) ? 0 : strlen(path);
1259      if (plen == 0) {
1260        continue; // skip the empty path values
1261      }
1262      const char lastchar = path[plen - 1];
1263      if (lastchar == ':' || lastchar == '\\') {
1264        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1265      } else {
1266        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1267      }
1268      if (file_exists(buffer)) {
1269        retval = true;
1270        break;
1271      }
1272    }
1273    // release the storage
1274    for (int i = 0; i < n; i++) {
1275      if (pelements[i] != NULL) {
1276        FREE_C_HEAP_ARRAY(char, pelements[i]);
1277      }
1278    }
1279    if (pelements != NULL) {
1280      FREE_C_HEAP_ARRAY(char*, pelements);
1281    }
1282  } else {
1283    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1284    retval = true;
1285  }
1286  return retval;
1287}
1288
1289// Needs to be in os specific directory because windows requires another
1290// header file <direct.h>
1291const char* os::get_current_directory(char *buf, size_t buflen) {
1292  int n = static_cast<int>(buflen);
1293  if (buflen > INT_MAX)  n = INT_MAX;
1294  return _getcwd(buf, n);
1295}
1296
1297//-----------------------------------------------------------
1298// Helper functions for fatal error handler
1299#ifdef _WIN64
1300// Helper routine which returns true if address in
1301// within the NTDLL address space.
1302//
1303static bool _addr_in_ntdll(address addr) {
1304  HMODULE hmod;
1305  MODULEINFO minfo;
1306
1307  hmod = GetModuleHandle("NTDLL.DLL");
1308  if (hmod == NULL) return false;
1309  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1310                                          &minfo, sizeof(MODULEINFO))) {
1311    return false;
1312  }
1313
1314  if ((addr >= minfo.lpBaseOfDll) &&
1315      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1316    return true;
1317  } else {
1318    return false;
1319  }
1320}
1321#endif
1322
1323struct _modinfo {
1324  address addr;
1325  char*   full_path;   // point to a char buffer
1326  int     buflen;      // size of the buffer
1327  address base_addr;
1328};
1329
1330static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1331                                  address top_address, void * param) {
1332  struct _modinfo *pmod = (struct _modinfo *)param;
1333  if (!pmod) return -1;
1334
1335  if (base_addr   <= pmod->addr &&
1336      top_address > pmod->addr) {
1337    // if a buffer is provided, copy path name to the buffer
1338    if (pmod->full_path) {
1339      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340    }
1341    pmod->base_addr = base_addr;
1342    return 1;
1343  }
1344  return 0;
1345}
1346
1347bool os::dll_address_to_library_name(address addr, char* buf,
1348                                     int buflen, int* offset) {
1349  // buf is not optional, but offset is optional
1350  assert(buf != NULL, "sanity check");
1351
1352// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1353//       return the full path to the DLL file, sometimes it returns path
1354//       to the corresponding PDB file (debug info); sometimes it only
1355//       returns partial path, which makes life painful.
1356
1357  struct _modinfo mi;
1358  mi.addr      = addr;
1359  mi.full_path = buf;
1360  mi.buflen    = buflen;
1361  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1362    // buf already contains path name
1363    if (offset) *offset = addr - mi.base_addr;
1364    return true;
1365  }
1366
1367  buf[0] = '\0';
1368  if (offset) *offset = -1;
1369  return false;
1370}
1371
1372bool os::dll_address_to_function_name(address addr, char *buf,
1373                                      int buflen, int *offset,
1374                                      bool demangle) {
1375  // buf is not optional, but offset is optional
1376  assert(buf != NULL, "sanity check");
1377
1378  if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1379    return true;
1380  }
1381  if (offset != NULL)  *offset  = -1;
1382  buf[0] = '\0';
1383  return false;
1384}
1385
1386// save the start and end address of jvm.dll into param[0] and param[1]
1387static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1388                           address top_address, void * param) {
1389  if (!param) return -1;
1390
1391  if (base_addr   <= (address)_locate_jvm_dll &&
1392      top_address > (address)_locate_jvm_dll) {
1393    ((address*)param)[0] = base_addr;
1394    ((address*)param)[1] = top_address;
1395    return 1;
1396  }
1397  return 0;
1398}
1399
1400address vm_lib_location[2];    // start and end address of jvm.dll
1401
1402// check if addr is inside jvm.dll
1403bool os::address_is_in_vm(address addr) {
1404  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1405    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1406      assert(false, "Can't find jvm module.");
1407      return false;
1408    }
1409  }
1410
1411  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412}
1413
1414// print module info; param is outputStream*
1415static int _print_module(const char* fname, address base_address,
1416                         address top_address, void* param) {
1417  if (!param) return -1;
1418
1419  outputStream* st = (outputStream*)param;
1420
1421  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1422  return 0;
1423}
1424
1425// Loads .dll/.so and
1426// in case of error it checks if .dll/.so was built for the
1427// same architecture as Hotspot is running on
1428void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1429  void * result = LoadLibrary(name);
1430  if (result != NULL) {
1431    return result;
1432  }
1433
1434  DWORD errcode = GetLastError();
1435  if (errcode == ERROR_MOD_NOT_FOUND) {
1436    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1437    ebuf[ebuflen - 1] = '\0';
1438    return NULL;
1439  }
1440
1441  // Parsing dll below
1442  // If we can read dll-info and find that dll was built
1443  // for an architecture other than Hotspot is running in
1444  // - then print to buffer "DLL was built for a different architecture"
1445  // else call os::lasterror to obtain system error message
1446
1447  // Read system error message into ebuf
1448  // It may or may not be overwritten below (in the for loop and just above)
1449  lasterror(ebuf, (size_t) ebuflen);
1450  ebuf[ebuflen - 1] = '\0';
1451  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1452  if (fd < 0) {
1453    return NULL;
1454  }
1455
1456  uint32_t signature_offset;
1457  uint16_t lib_arch = 0;
1458  bool failed_to_get_lib_arch =
1459    ( // Go to position 3c in the dll
1460     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1461     ||
1462     // Read location of signature
1463     (sizeof(signature_offset) !=
1464     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1465     ||
1466     // Go to COFF File Header in dll
1467     // that is located after "signature" (4 bytes long)
1468     (os::seek_to_file_offset(fd,
1469     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1470     ||
1471     // Read field that contains code of architecture
1472     // that dll was built for
1473     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1474    );
1475
1476  ::close(fd);
1477  if (failed_to_get_lib_arch) {
1478    // file i/o error - report os::lasterror(...) msg
1479    return NULL;
1480  }
1481
1482  typedef struct {
1483    uint16_t arch_code;
1484    char* arch_name;
1485  } arch_t;
1486
1487  static const arch_t arch_array[] = {
1488    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1489    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1490    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1491  };
1492#if   (defined _M_IA64)
1493  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1494#elif (defined _M_AMD64)
1495  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1496#elif (defined _M_IX86)
1497  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1498#else
1499  #error Method os::dll_load requires that one of following \
1500         is defined :_M_IA64,_M_AMD64 or _M_IX86
1501#endif
1502
1503
1504  // Obtain a string for printf operation
1505  // lib_arch_str shall contain string what platform this .dll was built for
1506  // running_arch_str shall string contain what platform Hotspot was built for
1507  char *running_arch_str = NULL, *lib_arch_str = NULL;
1508  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1509    if (lib_arch == arch_array[i].arch_code) {
1510      lib_arch_str = arch_array[i].arch_name;
1511    }
1512    if (running_arch == arch_array[i].arch_code) {
1513      running_arch_str = arch_array[i].arch_name;
1514    }
1515  }
1516
1517  assert(running_arch_str,
1518         "Didn't find running architecture code in arch_array");
1519
1520  // If the architecture is right
1521  // but some other error took place - report os::lasterror(...) msg
1522  if (lib_arch == running_arch) {
1523    return NULL;
1524  }
1525
1526  if (lib_arch_str != NULL) {
1527    ::_snprintf(ebuf, ebuflen - 1,
1528                "Can't load %s-bit .dll on a %s-bit platform",
1529                lib_arch_str, running_arch_str);
1530  } else {
1531    // don't know what architecture this dll was build for
1532    ::_snprintf(ebuf, ebuflen - 1,
1533                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1534                lib_arch, running_arch_str);
1535  }
1536
1537  return NULL;
1538}
1539
1540void os::print_dll_info(outputStream *st) {
1541  st->print_cr("Dynamic libraries:");
1542  get_loaded_modules_info(_print_module, (void *)st);
1543}
1544
1545int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1546  HANDLE   hProcess;
1547
1548# define MAX_NUM_MODULES 128
1549  HMODULE     modules[MAX_NUM_MODULES];
1550  static char filename[MAX_PATH];
1551  int         result = 0;
1552
1553  if (!os::PSApiDll::PSApiAvailable()) {
1554    return 0;
1555  }
1556
1557  int pid = os::current_process_id();
1558  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1559                         FALSE, pid);
1560  if (hProcess == NULL) return 0;
1561
1562  DWORD size_needed;
1563  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1564                                        sizeof(modules), &size_needed)) {
1565    CloseHandle(hProcess);
1566    return 0;
1567  }
1568
1569  // number of modules that are currently loaded
1570  int num_modules = size_needed / sizeof(HMODULE);
1571
1572  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1573    // Get Full pathname:
1574    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1575                                           filename, sizeof(filename))) {
1576      filename[0] = '\0';
1577    }
1578
1579    MODULEINFO modinfo;
1580    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1581                                            &modinfo, sizeof(modinfo))) {
1582      modinfo.lpBaseOfDll = NULL;
1583      modinfo.SizeOfImage = 0;
1584    }
1585
1586    // Invoke callback function
1587    result = callback(filename, (address)modinfo.lpBaseOfDll,
1588                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1589    if (result) break;
1590  }
1591
1592  CloseHandle(hProcess);
1593  return result;
1594}
1595
1596#ifndef PRODUCT
1597bool os::get_host_name(char* buf, size_t buflen) {
1598  DWORD size = (DWORD)buflen;
1599  return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1600}
1601#endif // PRODUCT
1602
1603void os::get_summary_os_info(char* buf, size_t buflen) {
1604  stringStream sst(buf, buflen);
1605  os::win32::print_windows_version(&sst);
1606  // chop off newline character
1607  char* nl = strchr(buf, '\n');
1608  if (nl != NULL) *nl = '\0';
1609}
1610
1611void os::print_os_info_brief(outputStream* st) {
1612  os::print_os_info(st);
1613}
1614
1615void os::print_os_info(outputStream* st) {
1616#ifdef ASSERT
1617  char buffer[1024];
1618  st->print("HostName: ");
1619  if (get_host_name(buffer, sizeof(buffer))) {
1620    st->print("%s ", buffer);
1621  } else {
1622    st->print("N/A ");
1623  }
1624#endif
1625  st->print("OS:");
1626  os::win32::print_windows_version(st);
1627}
1628
1629void os::win32::print_windows_version(outputStream* st) {
1630  OSVERSIONINFOEX osvi;
1631  VS_FIXEDFILEINFO *file_info;
1632  TCHAR kernel32_path[MAX_PATH];
1633  UINT len, ret;
1634
1635  // Use the GetVersionEx information to see if we're on a server or
1636  // workstation edition of Windows. Starting with Windows 8.1 we can't
1637  // trust the OS version information returned by this API.
1638  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1639  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1640  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1641    st->print_cr("Call to GetVersionEx failed");
1642    return;
1643  }
1644  bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1645
1646  // Get the full path to \Windows\System32\kernel32.dll and use that for
1647  // determining what version of Windows we're running on.
1648  len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1649  ret = GetSystemDirectory(kernel32_path, len);
1650  if (ret == 0 || ret > len) {
1651    st->print_cr("Call to GetSystemDirectory failed");
1652    return;
1653  }
1654  strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1655
1656  DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1657  if (version_size == 0) {
1658    st->print_cr("Call to GetFileVersionInfoSize failed");
1659    return;
1660  }
1661
1662  LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1663  if (version_info == NULL) {
1664    st->print_cr("Failed to allocate version_info");
1665    return;
1666  }
1667
1668  if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1669    os::free(version_info);
1670    st->print_cr("Call to GetFileVersionInfo failed");
1671    return;
1672  }
1673
1674  if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1675    os::free(version_info);
1676    st->print_cr("Call to VerQueryValue failed");
1677    return;
1678  }
1679
1680  int major_version = HIWORD(file_info->dwProductVersionMS);
1681  int minor_version = LOWORD(file_info->dwProductVersionMS);
1682  int build_number = HIWORD(file_info->dwProductVersionLS);
1683  int build_minor = LOWORD(file_info->dwProductVersionLS);
1684  int os_vers = major_version * 1000 + minor_version;
1685  os::free(version_info);
1686
1687  st->print(" Windows ");
1688  switch (os_vers) {
1689
1690  case 6000:
1691    if (is_workstation) {
1692      st->print("Vista");
1693    } else {
1694      st->print("Server 2008");
1695    }
1696    break;
1697
1698  case 6001:
1699    if (is_workstation) {
1700      st->print("7");
1701    } else {
1702      st->print("Server 2008 R2");
1703    }
1704    break;
1705
1706  case 6002:
1707    if (is_workstation) {
1708      st->print("8");
1709    } else {
1710      st->print("Server 2012");
1711    }
1712    break;
1713
1714  case 6003:
1715    if (is_workstation) {
1716      st->print("8.1");
1717    } else {
1718      st->print("Server 2012 R2");
1719    }
1720    break;
1721
1722  case 10000:
1723    if (is_workstation) {
1724      st->print("10");
1725    } else {
1726      // The server version name of Windows 10 is not known at this time
1727      st->print("%d.%d", major_version, minor_version);
1728    }
1729    break;
1730
1731  default:
1732    // Unrecognized windows, print out its major and minor versions
1733    st->print("%d.%d", major_version, minor_version);
1734    break;
1735  }
1736
1737  // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1738  // find out whether we are running on 64 bit processor or not
1739  SYSTEM_INFO si;
1740  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1741  os::Kernel32Dll::GetNativeSystemInfo(&si);
1742  if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1743    st->print(" , 64 bit");
1744  }
1745
1746  st->print(" Build %d", build_number);
1747  st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1748  st->cr();
1749}
1750
1751void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1752  // Nothing to do for now.
1753}
1754
1755void os::get_summary_cpu_info(char* buf, size_t buflen) {
1756  HKEY key;
1757  DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1758               "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1759  if (status == ERROR_SUCCESS) {
1760    DWORD size = (DWORD)buflen;
1761    status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1762    if (status != ERROR_SUCCESS) {
1763        strncpy(buf, "## __CPU__", buflen);
1764    }
1765    RegCloseKey(key);
1766  } else {
1767    // Put generic cpu info to return
1768    strncpy(buf, "## __CPU__", buflen);
1769  }
1770}
1771
1772void os::print_memory_info(outputStream* st) {
1773  st->print("Memory:");
1774  st->print(" %dk page", os::vm_page_size()>>10);
1775
1776  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1777  // value if total memory is larger than 4GB
1778  MEMORYSTATUSEX ms;
1779  ms.dwLength = sizeof(ms);
1780  GlobalMemoryStatusEx(&ms);
1781
1782  st->print(", physical %uk", os::physical_memory() >> 10);
1783  st->print("(%uk free)", os::available_memory() >> 10);
1784
1785  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1786  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1787  st->cr();
1788}
1789
1790void os::print_siginfo(outputStream *st, void *siginfo) {
1791  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1792  st->print("siginfo:");
1793  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1794
1795  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1796      er->NumberParameters >= 2) {
1797    switch (er->ExceptionInformation[0]) {
1798    case 0: st->print(", reading address"); break;
1799    case 1: st->print(", writing address"); break;
1800    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1801                       er->ExceptionInformation[0]);
1802    }
1803    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1804  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1805             er->NumberParameters >= 2 && UseSharedSpaces) {
1806    FileMapInfo* mapinfo = FileMapInfo::current_info();
1807    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1808      st->print("\n\nError accessing class data sharing archive."       \
1809                " Mapped file inaccessible during execution, "          \
1810                " possible disk/network problem.");
1811    }
1812  } else {
1813    int num = er->NumberParameters;
1814    if (num > 0) {
1815      st->print(", ExceptionInformation=");
1816      for (int i = 0; i < num; i++) {
1817        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1818      }
1819    }
1820  }
1821  st->cr();
1822}
1823
1824void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1825  // do nothing
1826}
1827
1828static char saved_jvm_path[MAX_PATH] = {0};
1829
1830// Find the full path to the current module, jvm.dll
1831void os::jvm_path(char *buf, jint buflen) {
1832  // Error checking.
1833  if (buflen < MAX_PATH) {
1834    assert(false, "must use a large-enough buffer");
1835    buf[0] = '\0';
1836    return;
1837  }
1838  // Lazy resolve the path to current module.
1839  if (saved_jvm_path[0] != 0) {
1840    strcpy(buf, saved_jvm_path);
1841    return;
1842  }
1843
1844  buf[0] = '\0';
1845  if (Arguments::sun_java_launcher_is_altjvm()) {
1846    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1847    // for a JAVA_HOME environment variable and fix up the path so it
1848    // looks like jvm.dll is installed there (append a fake suffix
1849    // hotspot/jvm.dll).
1850    char* java_home_var = ::getenv("JAVA_HOME");
1851    if (java_home_var != NULL && java_home_var[0] != 0 &&
1852        strlen(java_home_var) < (size_t)buflen) {
1853      strncpy(buf, java_home_var, buflen);
1854
1855      // determine if this is a legacy image or modules image
1856      // modules image doesn't have "jre" subdirectory
1857      size_t len = strlen(buf);
1858      char* jrebin_p = buf + len;
1859      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1860      if (0 != _access(buf, 0)) {
1861        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1862      }
1863      len = strlen(buf);
1864      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1865    }
1866  }
1867
1868  if (buf[0] == '\0') {
1869    GetModuleFileName(vm_lib_handle, buf, buflen);
1870  }
1871  strncpy(saved_jvm_path, buf, MAX_PATH);
1872  saved_jvm_path[MAX_PATH - 1] = '\0';
1873}
1874
1875
1876void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1877#ifndef _WIN64
1878  st->print("_");
1879#endif
1880}
1881
1882
1883void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1884#ifndef _WIN64
1885  st->print("@%d", args_size  * sizeof(int));
1886#endif
1887}
1888
1889// This method is a copy of JDK's sysGetLastErrorString
1890// from src/windows/hpi/src/system_md.c
1891
1892size_t os::lasterror(char* buf, size_t len) {
1893  DWORD errval;
1894
1895  if ((errval = GetLastError()) != 0) {
1896    // DOS error
1897    size_t n = (size_t)FormatMessage(
1898                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1899                                     NULL,
1900                                     errval,
1901                                     0,
1902                                     buf,
1903                                     (DWORD)len,
1904                                     NULL);
1905    if (n > 3) {
1906      // Drop final '.', CR, LF
1907      if (buf[n - 1] == '\n') n--;
1908      if (buf[n - 1] == '\r') n--;
1909      if (buf[n - 1] == '.') n--;
1910      buf[n] = '\0';
1911    }
1912    return n;
1913  }
1914
1915  if (errno != 0) {
1916    // C runtime error that has no corresponding DOS error code
1917    const char* s = strerror(errno);
1918    size_t n = strlen(s);
1919    if (n >= len) n = len - 1;
1920    strncpy(buf, s, n);
1921    buf[n] = '\0';
1922    return n;
1923  }
1924
1925  return 0;
1926}
1927
1928int os::get_last_error() {
1929  DWORD error = GetLastError();
1930  if (error == 0) {
1931    error = errno;
1932  }
1933  return (int)error;
1934}
1935
1936WindowsSemaphore::WindowsSemaphore(uint value) {
1937  _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1938
1939  guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1940}
1941
1942WindowsSemaphore::~WindowsSemaphore() {
1943  ::CloseHandle(_semaphore);
1944}
1945
1946void WindowsSemaphore::signal(uint count) {
1947  if (count > 0) {
1948    BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1949
1950    assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1951  }
1952}
1953
1954void WindowsSemaphore::wait() {
1955  DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1956  assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1957  assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1958}
1959
1960// sun.misc.Signal
1961// NOTE that this is a workaround for an apparent kernel bug where if
1962// a signal handler for SIGBREAK is installed then that signal handler
1963// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1964// See bug 4416763.
1965static void (*sigbreakHandler)(int) = NULL;
1966
1967static void UserHandler(int sig, void *siginfo, void *context) {
1968  os::signal_notify(sig);
1969  // We need to reinstate the signal handler each time...
1970  os::signal(sig, (void*)UserHandler);
1971}
1972
1973void* os::user_handler() {
1974  return (void*) UserHandler;
1975}
1976
1977void* os::signal(int signal_number, void* handler) {
1978  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1979    void (*oldHandler)(int) = sigbreakHandler;
1980    sigbreakHandler = (void (*)(int)) handler;
1981    return (void*) oldHandler;
1982  } else {
1983    return (void*)::signal(signal_number, (void (*)(int))handler);
1984  }
1985}
1986
1987void os::signal_raise(int signal_number) {
1988  raise(signal_number);
1989}
1990
1991// The Win32 C runtime library maps all console control events other than ^C
1992// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1993// logoff, and shutdown events.  We therefore install our own console handler
1994// that raises SIGTERM for the latter cases.
1995//
1996static BOOL WINAPI consoleHandler(DWORD event) {
1997  switch (event) {
1998  case CTRL_C_EVENT:
1999    if (is_error_reported()) {
2000      // Ctrl-C is pressed during error reporting, likely because the error
2001      // handler fails to abort. Let VM die immediately.
2002      os::die();
2003    }
2004
2005    os::signal_raise(SIGINT);
2006    return TRUE;
2007    break;
2008  case CTRL_BREAK_EVENT:
2009    if (sigbreakHandler != NULL) {
2010      (*sigbreakHandler)(SIGBREAK);
2011    }
2012    return TRUE;
2013    break;
2014  case CTRL_LOGOFF_EVENT: {
2015    // Don't terminate JVM if it is running in a non-interactive session,
2016    // such as a service process.
2017    USEROBJECTFLAGS flags;
2018    HANDLE handle = GetProcessWindowStation();
2019    if (handle != NULL &&
2020        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2021        sizeof(USEROBJECTFLAGS), NULL)) {
2022      // If it is a non-interactive session, let next handler to deal
2023      // with it.
2024      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2025        return FALSE;
2026      }
2027    }
2028  }
2029  case CTRL_CLOSE_EVENT:
2030  case CTRL_SHUTDOWN_EVENT:
2031    os::signal_raise(SIGTERM);
2032    return TRUE;
2033    break;
2034  default:
2035    break;
2036  }
2037  return FALSE;
2038}
2039
2040// The following code is moved from os.cpp for making this
2041// code platform specific, which it is by its very nature.
2042
2043// Return maximum OS signal used + 1 for internal use only
2044// Used as exit signal for signal_thread
2045int os::sigexitnum_pd() {
2046  return NSIG;
2047}
2048
2049// a counter for each possible signal value, including signal_thread exit signal
2050static volatile jint pending_signals[NSIG+1] = { 0 };
2051static HANDLE sig_sem = NULL;
2052
2053void os::signal_init_pd() {
2054  // Initialize signal structures
2055  memset((void*)pending_signals, 0, sizeof(pending_signals));
2056
2057  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2058
2059  // Programs embedding the VM do not want it to attempt to receive
2060  // events like CTRL_LOGOFF_EVENT, which are used to implement the
2061  // shutdown hooks mechanism introduced in 1.3.  For example, when
2062  // the VM is run as part of a Windows NT service (i.e., a servlet
2063  // engine in a web server), the correct behavior is for any console
2064  // control handler to return FALSE, not TRUE, because the OS's
2065  // "final" handler for such events allows the process to continue if
2066  // it is a service (while terminating it if it is not a service).
2067  // To make this behavior uniform and the mechanism simpler, we
2068  // completely disable the VM's usage of these console events if -Xrs
2069  // (=ReduceSignalUsage) is specified.  This means, for example, that
2070  // the CTRL-BREAK thread dump mechanism is also disabled in this
2071  // case.  See bugs 4323062, 4345157, and related bugs.
2072
2073  if (!ReduceSignalUsage) {
2074    // Add a CTRL-C handler
2075    SetConsoleCtrlHandler(consoleHandler, TRUE);
2076  }
2077}
2078
2079void os::signal_notify(int signal_number) {
2080  BOOL ret;
2081  if (sig_sem != NULL) {
2082    Atomic::inc(&pending_signals[signal_number]);
2083    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2084    assert(ret != 0, "ReleaseSemaphore() failed");
2085  }
2086}
2087
2088static int check_pending_signals(bool wait_for_signal) {
2089  DWORD ret;
2090  while (true) {
2091    for (int i = 0; i < NSIG + 1; i++) {
2092      jint n = pending_signals[i];
2093      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2094        return i;
2095      }
2096    }
2097    if (!wait_for_signal) {
2098      return -1;
2099    }
2100
2101    JavaThread *thread = JavaThread::current();
2102
2103    ThreadBlockInVM tbivm(thread);
2104
2105    bool threadIsSuspended;
2106    do {
2107      thread->set_suspend_equivalent();
2108      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2109      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2110      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2111
2112      // were we externally suspended while we were waiting?
2113      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2114      if (threadIsSuspended) {
2115        // The semaphore has been incremented, but while we were waiting
2116        // another thread suspended us. We don't want to continue running
2117        // while suspended because that would surprise the thread that
2118        // suspended us.
2119        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2120        assert(ret != 0, "ReleaseSemaphore() failed");
2121
2122        thread->java_suspend_self();
2123      }
2124    } while (threadIsSuspended);
2125  }
2126}
2127
2128int os::signal_lookup() {
2129  return check_pending_signals(false);
2130}
2131
2132int os::signal_wait() {
2133  return check_pending_signals(true);
2134}
2135
2136// Implicit OS exception handling
2137
2138LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2139                      address handler) {
2140  JavaThread* thread = JavaThread::current();
2141  // Save pc in thread
2142#ifdef _M_IA64
2143  // Do not blow up if no thread info available.
2144  if (thread) {
2145    // Saving PRECISE pc (with slot information) in thread.
2146    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2147    // Convert precise PC into "Unix" format
2148    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2149    thread->set_saved_exception_pc((address)precise_pc);
2150  }
2151  // Set pc to handler
2152  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2153  // Clear out psr.ri (= Restart Instruction) in order to continue
2154  // at the beginning of the target bundle.
2155  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2156  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2157#else
2158  #ifdef _M_AMD64
2159  // Do not blow up if no thread info available.
2160  if (thread) {
2161    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2162  }
2163  // Set pc to handler
2164  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2165  #else
2166  // Do not blow up if no thread info available.
2167  if (thread) {
2168    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2169  }
2170  // Set pc to handler
2171  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2172  #endif
2173#endif
2174
2175  // Continue the execution
2176  return EXCEPTION_CONTINUE_EXECUTION;
2177}
2178
2179
2180// Used for PostMortemDump
2181extern "C" void safepoints();
2182extern "C" void find(int x);
2183extern "C" void events();
2184
2185// According to Windows API documentation, an illegal instruction sequence should generate
2186// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2187// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2188// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2189
2190#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2191
2192// From "Execution Protection in the Windows Operating System" draft 0.35
2193// Once a system header becomes available, the "real" define should be
2194// included or copied here.
2195#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2196
2197// Handle NAT Bit consumption on IA64.
2198#ifdef _M_IA64
2199  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2200#endif
2201
2202// Windows Vista/2008 heap corruption check
2203#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2204
2205#define def_excpt(val) #val, val
2206
2207struct siglabel {
2208  char *name;
2209  int   number;
2210};
2211
2212// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2213// C++ compiler contain this error code. Because this is a compiler-generated
2214// error, the code is not listed in the Win32 API header files.
2215// The code is actually a cryptic mnemonic device, with the initial "E"
2216// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2217// ASCII values of "msc".
2218
2219#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2220
2221
2222struct siglabel exceptlabels[] = {
2223    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2224    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2225    def_excpt(EXCEPTION_BREAKPOINT),
2226    def_excpt(EXCEPTION_SINGLE_STEP),
2227    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2228    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2229    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2230    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2231    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2232    def_excpt(EXCEPTION_FLT_OVERFLOW),
2233    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2234    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2235    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2236    def_excpt(EXCEPTION_INT_OVERFLOW),
2237    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2238    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2239    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2240    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2241    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2242    def_excpt(EXCEPTION_STACK_OVERFLOW),
2243    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2244    def_excpt(EXCEPTION_GUARD_PAGE),
2245    def_excpt(EXCEPTION_INVALID_HANDLE),
2246    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2247    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2248#ifdef _M_IA64
2249    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2250#endif
2251    NULL, 0
2252};
2253
2254const char* os::exception_name(int exception_code, char *buf, size_t size) {
2255  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2256    if (exceptlabels[i].number == exception_code) {
2257      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2258      return buf;
2259    }
2260  }
2261
2262  return NULL;
2263}
2264
2265//-----------------------------------------------------------------------------
2266LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2267  // handle exception caused by idiv; should only happen for -MinInt/-1
2268  // (division by zero is handled explicitly)
2269#ifdef _M_IA64
2270  assert(0, "Fix Handle_IDiv_Exception");
2271#else
2272  #ifdef  _M_AMD64
2273  PCONTEXT ctx = exceptionInfo->ContextRecord;
2274  address pc = (address)ctx->Rip;
2275  assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2276  assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2277  if (pc[0] == 0xF7) {
2278    // set correct result values and continue after idiv instruction
2279    ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2280  } else {
2281    ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2282  }
2283  // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2284  // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2285  // idiv opcode (0xF7).
2286  ctx->Rdx = (DWORD)0;             // remainder
2287  // Continue the execution
2288  #else
2289  PCONTEXT ctx = exceptionInfo->ContextRecord;
2290  address pc = (address)ctx->Eip;
2291  assert(pc[0] == 0xF7, "not an idiv opcode");
2292  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2293  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2294  // set correct result values and continue after idiv instruction
2295  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2296  ctx->Eax = (DWORD)min_jint;      // result
2297  ctx->Edx = (DWORD)0;             // remainder
2298  // Continue the execution
2299  #endif
2300#endif
2301  return EXCEPTION_CONTINUE_EXECUTION;
2302}
2303
2304//-----------------------------------------------------------------------------
2305LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2306  PCONTEXT ctx = exceptionInfo->ContextRecord;
2307#ifndef  _WIN64
2308  // handle exception caused by native method modifying control word
2309  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2310
2311  switch (exception_code) {
2312  case EXCEPTION_FLT_DENORMAL_OPERAND:
2313  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2314  case EXCEPTION_FLT_INEXACT_RESULT:
2315  case EXCEPTION_FLT_INVALID_OPERATION:
2316  case EXCEPTION_FLT_OVERFLOW:
2317  case EXCEPTION_FLT_STACK_CHECK:
2318  case EXCEPTION_FLT_UNDERFLOW:
2319    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2320    if (fp_control_word != ctx->FloatSave.ControlWord) {
2321      // Restore FPCW and mask out FLT exceptions
2322      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2323      // Mask out pending FLT exceptions
2324      ctx->FloatSave.StatusWord &=  0xffffff00;
2325      return EXCEPTION_CONTINUE_EXECUTION;
2326    }
2327  }
2328
2329  if (prev_uef_handler != NULL) {
2330    // We didn't handle this exception so pass it to the previous
2331    // UnhandledExceptionFilter.
2332    return (prev_uef_handler)(exceptionInfo);
2333  }
2334#else // !_WIN64
2335  // On Windows, the mxcsr control bits are non-volatile across calls
2336  // See also CR 6192333
2337  //
2338  jint MxCsr = INITIAL_MXCSR;
2339  // we can't use StubRoutines::addr_mxcsr_std()
2340  // because in Win64 mxcsr is not saved there
2341  if (MxCsr != ctx->MxCsr) {
2342    ctx->MxCsr = MxCsr;
2343    return EXCEPTION_CONTINUE_EXECUTION;
2344  }
2345#endif // !_WIN64
2346
2347  return EXCEPTION_CONTINUE_SEARCH;
2348}
2349
2350static inline void report_error(Thread* t, DWORD exception_code,
2351                                address addr, void* siginfo, void* context) {
2352  VMError::report_and_die(t, exception_code, addr, siginfo, context);
2353
2354  // If UseOsErrorReporting, this will return here and save the error file
2355  // somewhere where we can find it in the minidump.
2356}
2357
2358//-----------------------------------------------------------------------------
2359LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2360  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2361  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2362#ifdef _M_IA64
2363  // On Itanium, we need the "precise pc", which has the slot number coded
2364  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2365  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2366  // Convert the pc to "Unix format", which has the slot number coded
2367  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2368  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2369  // information is saved in the Unix format.
2370  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2371#else
2372  #ifdef _M_AMD64
2373  address pc = (address) exceptionInfo->ContextRecord->Rip;
2374  #else
2375  address pc = (address) exceptionInfo->ContextRecord->Eip;
2376  #endif
2377#endif
2378  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2379
2380  // Handle SafeFetch32 and SafeFetchN exceptions.
2381  if (StubRoutines::is_safefetch_fault(pc)) {
2382    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2383  }
2384
2385#ifndef _WIN64
2386  // Execution protection violation - win32 running on AMD64 only
2387  // Handled first to avoid misdiagnosis as a "normal" access violation;
2388  // This is safe to do because we have a new/unique ExceptionInformation
2389  // code for this condition.
2390  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2391    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2392    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2393    address addr = (address) exceptionRecord->ExceptionInformation[1];
2394
2395    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2396      int page_size = os::vm_page_size();
2397
2398      // Make sure the pc and the faulting address are sane.
2399      //
2400      // If an instruction spans a page boundary, and the page containing
2401      // the beginning of the instruction is executable but the following
2402      // page is not, the pc and the faulting address might be slightly
2403      // different - we still want to unguard the 2nd page in this case.
2404      //
2405      // 15 bytes seems to be a (very) safe value for max instruction size.
2406      bool pc_is_near_addr =
2407        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2408      bool instr_spans_page_boundary =
2409        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2410                         (intptr_t) page_size) > 0);
2411
2412      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2413        static volatile address last_addr =
2414          (address) os::non_memory_address_word();
2415
2416        // In conservative mode, don't unguard unless the address is in the VM
2417        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2418            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2419
2420          // Set memory to RWX and retry
2421          address page_start =
2422            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2423          bool res = os::protect_memory((char*) page_start, page_size,
2424                                        os::MEM_PROT_RWX);
2425
2426          if (PrintMiscellaneous && Verbose) {
2427            char buf[256];
2428            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2429                         "at " INTPTR_FORMAT
2430                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2431                         page_start, (res ? "success" : strerror(errno)));
2432            tty->print_raw_cr(buf);
2433          }
2434
2435          // Set last_addr so if we fault again at the same address, we don't
2436          // end up in an endless loop.
2437          //
2438          // There are two potential complications here.  Two threads trapping
2439          // at the same address at the same time could cause one of the
2440          // threads to think it already unguarded, and abort the VM.  Likely
2441          // very rare.
2442          //
2443          // The other race involves two threads alternately trapping at
2444          // different addresses and failing to unguard the page, resulting in
2445          // an endless loop.  This condition is probably even more unlikely
2446          // than the first.
2447          //
2448          // Although both cases could be avoided by using locks or thread
2449          // local last_addr, these solutions are unnecessary complication:
2450          // this handler is a best-effort safety net, not a complete solution.
2451          // It is disabled by default and should only be used as a workaround
2452          // in case we missed any no-execute-unsafe VM code.
2453
2454          last_addr = addr;
2455
2456          return EXCEPTION_CONTINUE_EXECUTION;
2457        }
2458      }
2459
2460      // Last unguard failed or not unguarding
2461      tty->print_raw_cr("Execution protection violation");
2462      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2463                   exceptionInfo->ContextRecord);
2464      return EXCEPTION_CONTINUE_SEARCH;
2465    }
2466  }
2467#endif // _WIN64
2468
2469  // Check to see if we caught the safepoint code in the
2470  // process of write protecting the memory serialization page.
2471  // It write enables the page immediately after protecting it
2472  // so just return.
2473  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2474    JavaThread* thread = (JavaThread*) t;
2475    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2476    address addr = (address) exceptionRecord->ExceptionInformation[1];
2477    if (os::is_memory_serialize_page(thread, addr)) {
2478      // Block current thread until the memory serialize page permission restored.
2479      os::block_on_serialize_page_trap();
2480      return EXCEPTION_CONTINUE_EXECUTION;
2481    }
2482  }
2483
2484  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2485      VM_Version::is_cpuinfo_segv_addr(pc)) {
2486    // Verify that OS save/restore AVX registers.
2487    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2488  }
2489
2490  if (t != NULL && t->is_Java_thread()) {
2491    JavaThread* thread = (JavaThread*) t;
2492    bool in_java = thread->thread_state() == _thread_in_Java;
2493
2494    // Handle potential stack overflows up front.
2495    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2496      if (os::uses_stack_guard_pages()) {
2497#ifdef _M_IA64
2498        // Use guard page for register stack.
2499        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2500        address addr = (address) exceptionRecord->ExceptionInformation[1];
2501        // Check for a register stack overflow on Itanium
2502        if (thread->addr_inside_register_stack_red_zone(addr)) {
2503          // Fatal red zone violation happens if the Java program
2504          // catches a StackOverflow error and does so much processing
2505          // that it runs beyond the unprotected yellow guard zone. As
2506          // a result, we are out of here.
2507          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2508        } else if(thread->addr_inside_register_stack(addr)) {
2509          // Disable the yellow zone which sets the state that
2510          // we've got a stack overflow problem.
2511          if (thread->stack_yellow_zone_enabled()) {
2512            thread->disable_stack_yellow_zone();
2513          }
2514          // Give us some room to process the exception.
2515          thread->disable_register_stack_guard();
2516          // Tracing with +Verbose.
2517          if (Verbose) {
2518            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2519            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2520            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2521            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2522                          thread->register_stack_base(),
2523                          thread->register_stack_base() + thread->stack_size());
2524          }
2525
2526          // Reguard the permanent register stack red zone just to be sure.
2527          // We saw Windows silently disabling this without telling us.
2528          thread->enable_register_stack_red_zone();
2529
2530          return Handle_Exception(exceptionInfo,
2531                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2532        }
2533#endif
2534        if (thread->stack_yellow_zone_enabled()) {
2535          // Yellow zone violation.  The o/s has unprotected the first yellow
2536          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2537          // update the enabled status, even if the zone contains only one page.
2538          thread->disable_stack_yellow_zone();
2539          // If not in java code, return and hope for the best.
2540          return in_java
2541              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2542              :  EXCEPTION_CONTINUE_EXECUTION;
2543        } else {
2544          // Fatal red zone violation.
2545          thread->disable_stack_red_zone();
2546          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2547          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2548                       exceptionInfo->ContextRecord);
2549          return EXCEPTION_CONTINUE_SEARCH;
2550        }
2551      } else if (in_java) {
2552        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2553        // a one-time-only guard page, which it has released to us.  The next
2554        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2555        return Handle_Exception(exceptionInfo,
2556                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2557      } else {
2558        // Can only return and hope for the best.  Further stack growth will
2559        // result in an ACCESS_VIOLATION.
2560        return EXCEPTION_CONTINUE_EXECUTION;
2561      }
2562    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2563      // Either stack overflow or null pointer exception.
2564      if (in_java) {
2565        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2566        address addr = (address) exceptionRecord->ExceptionInformation[1];
2567        address stack_end = thread->stack_base() - thread->stack_size();
2568        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2569          // Stack overflow.
2570          assert(!os::uses_stack_guard_pages(),
2571                 "should be caught by red zone code above.");
2572          return Handle_Exception(exceptionInfo,
2573                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2574        }
2575        // Check for safepoint polling and implicit null
2576        // We only expect null pointers in the stubs (vtable)
2577        // the rest are checked explicitly now.
2578        CodeBlob* cb = CodeCache::find_blob(pc);
2579        if (cb != NULL) {
2580          if (os::is_poll_address(addr)) {
2581            address stub = SharedRuntime::get_poll_stub(pc);
2582            return Handle_Exception(exceptionInfo, stub);
2583          }
2584        }
2585        {
2586#ifdef _WIN64
2587          // If it's a legal stack address map the entire region in
2588          //
2589          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2590          address addr = (address) exceptionRecord->ExceptionInformation[1];
2591          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2592            addr = (address)((uintptr_t)addr &
2593                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2594            os::commit_memory((char *)addr, thread->stack_base() - addr,
2595                              !ExecMem);
2596            return EXCEPTION_CONTINUE_EXECUTION;
2597          } else
2598#endif
2599          {
2600            // Null pointer exception.
2601#ifdef _M_IA64
2602            // Process implicit null checks in compiled code. Note: Implicit null checks
2603            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2604            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2605              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2606              // Handle implicit null check in UEP method entry
2607              if (cb && (cb->is_frame_complete_at(pc) ||
2608                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2609                if (Verbose) {
2610                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2611                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2612                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2613                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2614                                *(bundle_start + 1), *bundle_start);
2615                }
2616                return Handle_Exception(exceptionInfo,
2617                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2618              }
2619            }
2620
2621            // Implicit null checks were processed above.  Hence, we should not reach
2622            // here in the usual case => die!
2623            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2624            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2625                         exceptionInfo->ContextRecord);
2626            return EXCEPTION_CONTINUE_SEARCH;
2627
2628#else // !IA64
2629
2630            // Windows 98 reports faulting addresses incorrectly
2631            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2632                !os::win32::is_nt()) {
2633              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2634              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2635            }
2636            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2637                         exceptionInfo->ContextRecord);
2638            return EXCEPTION_CONTINUE_SEARCH;
2639#endif
2640          }
2641        }
2642      }
2643
2644#ifdef _WIN64
2645      // Special care for fast JNI field accessors.
2646      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2647      // in and the heap gets shrunk before the field access.
2648      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2649        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2650        if (addr != (address)-1) {
2651          return Handle_Exception(exceptionInfo, addr);
2652        }
2653      }
2654#endif
2655
2656      // Stack overflow or null pointer exception in native code.
2657      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2658                   exceptionInfo->ContextRecord);
2659      return EXCEPTION_CONTINUE_SEARCH;
2660    } // /EXCEPTION_ACCESS_VIOLATION
2661    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2662#if defined _M_IA64
2663    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2664              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2665      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2666
2667      // Compiled method patched to be non entrant? Following conditions must apply:
2668      // 1. must be first instruction in bundle
2669      // 2. must be a break instruction with appropriate code
2670      if ((((uint64_t) pc & 0x0F) == 0) &&
2671          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2672        return Handle_Exception(exceptionInfo,
2673                                (address)SharedRuntime::get_handle_wrong_method_stub());
2674      }
2675    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2676#endif
2677
2678
2679    if (in_java) {
2680      switch (exception_code) {
2681      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2682        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2683
2684      case EXCEPTION_INT_OVERFLOW:
2685        return Handle_IDiv_Exception(exceptionInfo);
2686
2687      } // switch
2688    }
2689    if (((thread->thread_state() == _thread_in_Java) ||
2690         (thread->thread_state() == _thread_in_native)) &&
2691         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2692      LONG result=Handle_FLT_Exception(exceptionInfo);
2693      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2694    }
2695  }
2696
2697  if (exception_code != EXCEPTION_BREAKPOINT) {
2698    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2699                 exceptionInfo->ContextRecord);
2700  }
2701  return EXCEPTION_CONTINUE_SEARCH;
2702}
2703
2704#ifndef _WIN64
2705// Special care for fast JNI accessors.
2706// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2707// the heap gets shrunk before the field access.
2708// Need to install our own structured exception handler since native code may
2709// install its own.
2710LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2711  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2712  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2713    address pc = (address) exceptionInfo->ContextRecord->Eip;
2714    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2715    if (addr != (address)-1) {
2716      return Handle_Exception(exceptionInfo, addr);
2717    }
2718  }
2719  return EXCEPTION_CONTINUE_SEARCH;
2720}
2721
2722#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2723  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2724                                                     jobject obj,           \
2725                                                     jfieldID fieldID) {    \
2726    __try {                                                                 \
2727      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2728                                                                 obj,       \
2729                                                                 fieldID);  \
2730    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2731                                              _exception_info())) {         \
2732    }                                                                       \
2733    return 0;                                                               \
2734  }
2735
2736DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2737DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2738DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2739DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2740DEFINE_FAST_GETFIELD(jint,     int,    Int)
2741DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2742DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2743DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2744
2745address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2746  switch (type) {
2747  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2748  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2749  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2750  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2751  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2752  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2753  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2754  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2755  default:        ShouldNotReachHere();
2756  }
2757  return (address)-1;
2758}
2759#endif
2760
2761// Virtual Memory
2762
2763int os::vm_page_size() { return os::win32::vm_page_size(); }
2764int os::vm_allocation_granularity() {
2765  return os::win32::vm_allocation_granularity();
2766}
2767
2768// Windows large page support is available on Windows 2003. In order to use
2769// large page memory, the administrator must first assign additional privilege
2770// to the user:
2771//   + select Control Panel -> Administrative Tools -> Local Security Policy
2772//   + select Local Policies -> User Rights Assignment
2773//   + double click "Lock pages in memory", add users and/or groups
2774//   + reboot
2775// Note the above steps are needed for administrator as well, as administrators
2776// by default do not have the privilege to lock pages in memory.
2777//
2778// Note about Windows 2003: although the API supports committing large page
2779// memory on a page-by-page basis and VirtualAlloc() returns success under this
2780// scenario, I found through experiment it only uses large page if the entire
2781// memory region is reserved and committed in a single VirtualAlloc() call.
2782// This makes Windows large page support more or less like Solaris ISM, in
2783// that the entire heap must be committed upfront. This probably will change
2784// in the future, if so the code below needs to be revisited.
2785
2786#ifndef MEM_LARGE_PAGES
2787  #define MEM_LARGE_PAGES 0x20000000
2788#endif
2789
2790static HANDLE    _hProcess;
2791static HANDLE    _hToken;
2792
2793// Container for NUMA node list info
2794class NUMANodeListHolder {
2795 private:
2796  int *_numa_used_node_list;  // allocated below
2797  int _numa_used_node_count;
2798
2799  void free_node_list() {
2800    if (_numa_used_node_list != NULL) {
2801      FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2802    }
2803  }
2804
2805 public:
2806  NUMANodeListHolder() {
2807    _numa_used_node_count = 0;
2808    _numa_used_node_list = NULL;
2809    // do rest of initialization in build routine (after function pointers are set up)
2810  }
2811
2812  ~NUMANodeListHolder() {
2813    free_node_list();
2814  }
2815
2816  bool build() {
2817    DWORD_PTR proc_aff_mask;
2818    DWORD_PTR sys_aff_mask;
2819    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2820    ULONG highest_node_number;
2821    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2822    free_node_list();
2823    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2824    for (unsigned int i = 0; i <= highest_node_number; i++) {
2825      ULONGLONG proc_mask_numa_node;
2826      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2827      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2828        _numa_used_node_list[_numa_used_node_count++] = i;
2829      }
2830    }
2831    return (_numa_used_node_count > 1);
2832  }
2833
2834  int get_count() { return _numa_used_node_count; }
2835  int get_node_list_entry(int n) {
2836    // for indexes out of range, returns -1
2837    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2838  }
2839
2840} numa_node_list_holder;
2841
2842
2843
2844static size_t _large_page_size = 0;
2845
2846static bool resolve_functions_for_large_page_init() {
2847  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2848    os::Advapi32Dll::AdvapiAvailable();
2849}
2850
2851static bool request_lock_memory_privilege() {
2852  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2853                          os::current_process_id());
2854
2855  LUID luid;
2856  if (_hProcess != NULL &&
2857      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2858      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2859
2860    TOKEN_PRIVILEGES tp;
2861    tp.PrivilegeCount = 1;
2862    tp.Privileges[0].Luid = luid;
2863    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2864
2865    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2866    // privilege. Check GetLastError() too. See MSDN document.
2867    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2868        (GetLastError() == ERROR_SUCCESS)) {
2869      return true;
2870    }
2871  }
2872
2873  return false;
2874}
2875
2876static void cleanup_after_large_page_init() {
2877  if (_hProcess) CloseHandle(_hProcess);
2878  _hProcess = NULL;
2879  if (_hToken) CloseHandle(_hToken);
2880  _hToken = NULL;
2881}
2882
2883static bool numa_interleaving_init() {
2884  bool success = false;
2885  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2886
2887  // print a warning if UseNUMAInterleaving flag is specified on command line
2888  bool warn_on_failure = use_numa_interleaving_specified;
2889#define WARN(msg) if (warn_on_failure) { warning(msg); }
2890
2891  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2892  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2893  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2894
2895  if (os::Kernel32Dll::NumaCallsAvailable()) {
2896    if (numa_node_list_holder.build()) {
2897      if (PrintMiscellaneous && Verbose) {
2898        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2899        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2900          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2901        }
2902        tty->print("\n");
2903      }
2904      success = true;
2905    } else {
2906      WARN("Process does not cover multiple NUMA nodes.");
2907    }
2908  } else {
2909    WARN("NUMA Interleaving is not supported by the operating system.");
2910  }
2911  if (!success) {
2912    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2913  }
2914  return success;
2915#undef WARN
2916}
2917
2918// this routine is used whenever we need to reserve a contiguous VA range
2919// but we need to make separate VirtualAlloc calls for each piece of the range
2920// Reasons for doing this:
2921//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2922//  * UseNUMAInterleaving requires a separate node for each piece
2923static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2924                                         DWORD prot,
2925                                         bool should_inject_error = false) {
2926  char * p_buf;
2927  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2928  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2929  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2930
2931  // first reserve enough address space in advance since we want to be
2932  // able to break a single contiguous virtual address range into multiple
2933  // large page commits but WS2003 does not allow reserving large page space
2934  // so we just use 4K pages for reserve, this gives us a legal contiguous
2935  // address space. then we will deallocate that reservation, and re alloc
2936  // using large pages
2937  const size_t size_of_reserve = bytes + chunk_size;
2938  if (bytes > size_of_reserve) {
2939    // Overflowed.
2940    return NULL;
2941  }
2942  p_buf = (char *) VirtualAlloc(addr,
2943                                size_of_reserve,  // size of Reserve
2944                                MEM_RESERVE,
2945                                PAGE_READWRITE);
2946  // If reservation failed, return NULL
2947  if (p_buf == NULL) return NULL;
2948  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2949  os::release_memory(p_buf, bytes + chunk_size);
2950
2951  // we still need to round up to a page boundary (in case we are using large pages)
2952  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2953  // instead we handle this in the bytes_to_rq computation below
2954  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2955
2956  // now go through and allocate one chunk at a time until all bytes are
2957  // allocated
2958  size_t  bytes_remaining = bytes;
2959  // An overflow of align_size_up() would have been caught above
2960  // in the calculation of size_of_reserve.
2961  char * next_alloc_addr = p_buf;
2962  HANDLE hProc = GetCurrentProcess();
2963
2964#ifdef ASSERT
2965  // Variable for the failure injection
2966  long ran_num = os::random();
2967  size_t fail_after = ran_num % bytes;
2968#endif
2969
2970  int count=0;
2971  while (bytes_remaining) {
2972    // select bytes_to_rq to get to the next chunk_size boundary
2973
2974    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2975    // Note allocate and commit
2976    char * p_new;
2977
2978#ifdef ASSERT
2979    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2980#else
2981    const bool inject_error_now = false;
2982#endif
2983
2984    if (inject_error_now) {
2985      p_new = NULL;
2986    } else {
2987      if (!UseNUMAInterleaving) {
2988        p_new = (char *) VirtualAlloc(next_alloc_addr,
2989                                      bytes_to_rq,
2990                                      flags,
2991                                      prot);
2992      } else {
2993        // get the next node to use from the used_node_list
2994        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2995        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2996        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2997                                                            next_alloc_addr,
2998                                                            bytes_to_rq,
2999                                                            flags,
3000                                                            prot,
3001                                                            node);
3002      }
3003    }
3004
3005    if (p_new == NULL) {
3006      // Free any allocated pages
3007      if (next_alloc_addr > p_buf) {
3008        // Some memory was committed so release it.
3009        size_t bytes_to_release = bytes - bytes_remaining;
3010        // NMT has yet to record any individual blocks, so it
3011        // need to create a dummy 'reserve' record to match
3012        // the release.
3013        MemTracker::record_virtual_memory_reserve((address)p_buf,
3014                                                  bytes_to_release, CALLER_PC);
3015        os::release_memory(p_buf, bytes_to_release);
3016      }
3017#ifdef ASSERT
3018      if (should_inject_error) {
3019        if (TracePageSizes && Verbose) {
3020          tty->print_cr("Reserving pages individually failed.");
3021        }
3022      }
3023#endif
3024      return NULL;
3025    }
3026
3027    bytes_remaining -= bytes_to_rq;
3028    next_alloc_addr += bytes_to_rq;
3029    count++;
3030  }
3031  // Although the memory is allocated individually, it is returned as one.
3032  // NMT records it as one block.
3033  if ((flags & MEM_COMMIT) != 0) {
3034    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3035  } else {
3036    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3037  }
3038
3039  // made it this far, success
3040  return p_buf;
3041}
3042
3043
3044
3045void os::large_page_init() {
3046  if (!UseLargePages) return;
3047
3048  // print a warning if any large page related flag is specified on command line
3049  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3050                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3051  bool success = false;
3052
3053#define WARN(msg) if (warn_on_failure) { warning(msg); }
3054  if (resolve_functions_for_large_page_init()) {
3055    if (request_lock_memory_privilege()) {
3056      size_t s = os::Kernel32Dll::GetLargePageMinimum();
3057      if (s) {
3058#if defined(IA32) || defined(AMD64)
3059        if (s > 4*M || LargePageSizeInBytes > 4*M) {
3060          WARN("JVM cannot use large pages bigger than 4mb.");
3061        } else {
3062#endif
3063          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3064            _large_page_size = LargePageSizeInBytes;
3065          } else {
3066            _large_page_size = s;
3067          }
3068          success = true;
3069#if defined(IA32) || defined(AMD64)
3070        }
3071#endif
3072      } else {
3073        WARN("Large page is not supported by the processor.");
3074      }
3075    } else {
3076      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3077    }
3078  } else {
3079    WARN("Large page is not supported by the operating system.");
3080  }
3081#undef WARN
3082
3083  const size_t default_page_size = (size_t) vm_page_size();
3084  if (success && _large_page_size > default_page_size) {
3085    _page_sizes[0] = _large_page_size;
3086    _page_sizes[1] = default_page_size;
3087    _page_sizes[2] = 0;
3088  }
3089
3090  cleanup_after_large_page_init();
3091  UseLargePages = success;
3092}
3093
3094// On win32, one cannot release just a part of reserved memory, it's an
3095// all or nothing deal.  When we split a reservation, we must break the
3096// reservation into two reservations.
3097void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3098                                  bool realloc) {
3099  if (size > 0) {
3100    release_memory(base, size);
3101    if (realloc) {
3102      reserve_memory(split, base);
3103    }
3104    if (size != split) {
3105      reserve_memory(size - split, base + split);
3106    }
3107  }
3108}
3109
3110// Multiple threads can race in this code but it's not possible to unmap small sections of
3111// virtual space to get requested alignment, like posix-like os's.
3112// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3113char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3114  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3115         "Alignment must be a multiple of allocation granularity (page size)");
3116  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3117
3118  size_t extra_size = size + alignment;
3119  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3120
3121  char* aligned_base = NULL;
3122
3123  do {
3124    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3125    if (extra_base == NULL) {
3126      return NULL;
3127    }
3128    // Do manual alignment
3129    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3130
3131    os::release_memory(extra_base, extra_size);
3132
3133    aligned_base = os::reserve_memory(size, aligned_base);
3134
3135  } while (aligned_base == NULL);
3136
3137  return aligned_base;
3138}
3139
3140char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3141  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3142         "reserve alignment");
3143  assert(bytes % os::vm_page_size() == 0, "reserve page size");
3144  char* res;
3145  // note that if UseLargePages is on, all the areas that require interleaving
3146  // will go thru reserve_memory_special rather than thru here.
3147  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3148  if (!use_individual) {
3149    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3150  } else {
3151    elapsedTimer reserveTimer;
3152    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3153    // in numa interleaving, we have to allocate pages individually
3154    // (well really chunks of NUMAInterleaveGranularity size)
3155    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3156    if (res == NULL) {
3157      warning("NUMA page allocation failed");
3158    }
3159    if (Verbose && PrintMiscellaneous) {
3160      reserveTimer.stop();
3161      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3162                    reserveTimer.milliseconds(), reserveTimer.ticks());
3163    }
3164  }
3165  assert(res == NULL || addr == NULL || addr == res,
3166         "Unexpected address from reserve.");
3167
3168  return res;
3169}
3170
3171// Reserve memory at an arbitrary address, only if that area is
3172// available (and not reserved for something else).
3173char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3174  // Windows os::reserve_memory() fails of the requested address range is
3175  // not avilable.
3176  return reserve_memory(bytes, requested_addr);
3177}
3178
3179size_t os::large_page_size() {
3180  return _large_page_size;
3181}
3182
3183bool os::can_commit_large_page_memory() {
3184  // Windows only uses large page memory when the entire region is reserved
3185  // and committed in a single VirtualAlloc() call. This may change in the
3186  // future, but with Windows 2003 it's not possible to commit on demand.
3187  return false;
3188}
3189
3190bool os::can_execute_large_page_memory() {
3191  return true;
3192}
3193
3194char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3195                                 bool exec) {
3196  assert(UseLargePages, "only for large pages");
3197
3198  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3199    return NULL; // Fallback to small pages.
3200  }
3201
3202  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3203  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3204
3205  // with large pages, there are two cases where we need to use Individual Allocation
3206  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3207  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3208  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3209    if (TracePageSizes && Verbose) {
3210      tty->print_cr("Reserving large pages individually.");
3211    }
3212    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3213    if (p_buf == NULL) {
3214      // give an appropriate warning message
3215      if (UseNUMAInterleaving) {
3216        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3217      }
3218      if (UseLargePagesIndividualAllocation) {
3219        warning("Individually allocated large pages failed, "
3220                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3221      }
3222      return NULL;
3223    }
3224
3225    return p_buf;
3226
3227  } else {
3228    if (TracePageSizes && Verbose) {
3229      tty->print_cr("Reserving large pages in a single large chunk.");
3230    }
3231    // normal policy just allocate it all at once
3232    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3233    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3234    if (res != NULL) {
3235      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3236    }
3237
3238    return res;
3239  }
3240}
3241
3242bool os::release_memory_special(char* base, size_t bytes) {
3243  assert(base != NULL, "Sanity check");
3244  return release_memory(base, bytes);
3245}
3246
3247void os::print_statistics() {
3248}
3249
3250static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3251  int err = os::get_last_error();
3252  char buf[256];
3253  size_t buf_len = os::lasterror(buf, sizeof(buf));
3254  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3255          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3256          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3257}
3258
3259bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3260  if (bytes == 0) {
3261    // Don't bother the OS with noops.
3262    return true;
3263  }
3264  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3265  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3266  // Don't attempt to print anything if the OS call fails. We're
3267  // probably low on resources, so the print itself may cause crashes.
3268
3269  // unless we have NUMAInterleaving enabled, the range of a commit
3270  // is always within a reserve covered by a single VirtualAlloc
3271  // in that case we can just do a single commit for the requested size
3272  if (!UseNUMAInterleaving) {
3273    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3274      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3275      return false;
3276    }
3277    if (exec) {
3278      DWORD oldprot;
3279      // Windows doc says to use VirtualProtect to get execute permissions
3280      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3281        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3282        return false;
3283      }
3284    }
3285    return true;
3286  } else {
3287
3288    // when NUMAInterleaving is enabled, the commit might cover a range that
3289    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3290    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3291    // returns represents the number of bytes that can be committed in one step.
3292    size_t bytes_remaining = bytes;
3293    char * next_alloc_addr = addr;
3294    while (bytes_remaining > 0) {
3295      MEMORY_BASIC_INFORMATION alloc_info;
3296      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3297      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3298      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3299                       PAGE_READWRITE) == NULL) {
3300        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3301                                            exec);)
3302        return false;
3303      }
3304      if (exec) {
3305        DWORD oldprot;
3306        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3307                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3308          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3309                                              exec);)
3310          return false;
3311        }
3312      }
3313      bytes_remaining -= bytes_to_rq;
3314      next_alloc_addr += bytes_to_rq;
3315    }
3316  }
3317  // if we made it this far, return true
3318  return true;
3319}
3320
3321bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3322                          bool exec) {
3323  // alignment_hint is ignored on this OS
3324  return pd_commit_memory(addr, size, exec);
3325}
3326
3327void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3328                                  const char* mesg) {
3329  assert(mesg != NULL, "mesg must be specified");
3330  if (!pd_commit_memory(addr, size, exec)) {
3331    warn_fail_commit_memory(addr, size, exec);
3332    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3333  }
3334}
3335
3336void os::pd_commit_memory_or_exit(char* addr, size_t size,
3337                                  size_t alignment_hint, bool exec,
3338                                  const char* mesg) {
3339  // alignment_hint is ignored on this OS
3340  pd_commit_memory_or_exit(addr, size, exec, mesg);
3341}
3342
3343bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3344  if (bytes == 0) {
3345    // Don't bother the OS with noops.
3346    return true;
3347  }
3348  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3349  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3350  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3351}
3352
3353bool os::pd_release_memory(char* addr, size_t bytes) {
3354  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3355}
3356
3357bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3358  return os::commit_memory(addr, size, !ExecMem);
3359}
3360
3361bool os::remove_stack_guard_pages(char* addr, size_t size) {
3362  return os::uncommit_memory(addr, size);
3363}
3364
3365// Set protections specified
3366bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3367                        bool is_committed) {
3368  unsigned int p = 0;
3369  switch (prot) {
3370  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3371  case MEM_PROT_READ: p = PAGE_READONLY; break;
3372  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3373  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3374  default:
3375    ShouldNotReachHere();
3376  }
3377
3378  DWORD old_status;
3379
3380  // Strange enough, but on Win32 one can change protection only for committed
3381  // memory, not a big deal anyway, as bytes less or equal than 64K
3382  if (!is_committed) {
3383    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3384                          "cannot commit protection page");
3385  }
3386  // One cannot use os::guard_memory() here, as on Win32 guard page
3387  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3388  //
3389  // Pages in the region become guard pages. Any attempt to access a guard page
3390  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3391  // the guard page status. Guard pages thus act as a one-time access alarm.
3392  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3393}
3394
3395bool os::guard_memory(char* addr, size_t bytes) {
3396  DWORD old_status;
3397  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3398}
3399
3400bool os::unguard_memory(char* addr, size_t bytes) {
3401  DWORD old_status;
3402  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3403}
3404
3405void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3406void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3407void os::numa_make_global(char *addr, size_t bytes)    { }
3408void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3409bool os::numa_topology_changed()                       { return false; }
3410size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3411int os::numa_get_group_id()                            { return 0; }
3412size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3413  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3414    // Provide an answer for UMA systems
3415    ids[0] = 0;
3416    return 1;
3417  } else {
3418    // check for size bigger than actual groups_num
3419    size = MIN2(size, numa_get_groups_num());
3420    for (int i = 0; i < (int)size; i++) {
3421      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3422    }
3423    return size;
3424  }
3425}
3426
3427bool os::get_page_info(char *start, page_info* info) {
3428  return false;
3429}
3430
3431char *os::scan_pages(char *start, char* end, page_info* page_expected,
3432                     page_info* page_found) {
3433  return end;
3434}
3435
3436char* os::non_memory_address_word() {
3437  // Must never look like an address returned by reserve_memory,
3438  // even in its subfields (as defined by the CPU immediate fields,
3439  // if the CPU splits constants across multiple instructions).
3440  return (char*)-1;
3441}
3442
3443#define MAX_ERROR_COUNT 100
3444#define SYS_THREAD_ERROR 0xffffffffUL
3445
3446void os::pd_start_thread(Thread* thread) {
3447  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3448  // Returns previous suspend state:
3449  // 0:  Thread was not suspended
3450  // 1:  Thread is running now
3451  // >1: Thread is still suspended.
3452  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3453}
3454
3455class HighResolutionInterval : public CHeapObj<mtThread> {
3456  // The default timer resolution seems to be 10 milliseconds.
3457  // (Where is this written down?)
3458  // If someone wants to sleep for only a fraction of the default,
3459  // then we set the timer resolution down to 1 millisecond for
3460  // the duration of their interval.
3461  // We carefully set the resolution back, since otherwise we
3462  // seem to incur an overhead (3%?) that we don't need.
3463  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3464  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3465  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3466  // timeBeginPeriod() if the relative error exceeded some threshold.
3467  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3468  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3469  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3470  // resolution timers running.
3471 private:
3472  jlong resolution;
3473 public:
3474  HighResolutionInterval(jlong ms) {
3475    resolution = ms % 10L;
3476    if (resolution != 0) {
3477      MMRESULT result = timeBeginPeriod(1L);
3478    }
3479  }
3480  ~HighResolutionInterval() {
3481    if (resolution != 0) {
3482      MMRESULT result = timeEndPeriod(1L);
3483    }
3484    resolution = 0L;
3485  }
3486};
3487
3488int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3489  jlong limit = (jlong) MAXDWORD;
3490
3491  while (ms > limit) {
3492    int res;
3493    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3494      return res;
3495    }
3496    ms -= limit;
3497  }
3498
3499  assert(thread == Thread::current(), "thread consistency check");
3500  OSThread* osthread = thread->osthread();
3501  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3502  int result;
3503  if (interruptable) {
3504    assert(thread->is_Java_thread(), "must be java thread");
3505    JavaThread *jt = (JavaThread *) thread;
3506    ThreadBlockInVM tbivm(jt);
3507
3508    jt->set_suspend_equivalent();
3509    // cleared by handle_special_suspend_equivalent_condition() or
3510    // java_suspend_self() via check_and_wait_while_suspended()
3511
3512    HANDLE events[1];
3513    events[0] = osthread->interrupt_event();
3514    HighResolutionInterval *phri=NULL;
3515    if (!ForceTimeHighResolution) {
3516      phri = new HighResolutionInterval(ms);
3517    }
3518    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3519      result = OS_TIMEOUT;
3520    } else {
3521      ResetEvent(osthread->interrupt_event());
3522      osthread->set_interrupted(false);
3523      result = OS_INTRPT;
3524    }
3525    delete phri; //if it is NULL, harmless
3526
3527    // were we externally suspended while we were waiting?
3528    jt->check_and_wait_while_suspended();
3529  } else {
3530    assert(!thread->is_Java_thread(), "must not be java thread");
3531    Sleep((long) ms);
3532    result = OS_TIMEOUT;
3533  }
3534  return result;
3535}
3536
3537// Short sleep, direct OS call.
3538//
3539// ms = 0, means allow others (if any) to run.
3540//
3541void os::naked_short_sleep(jlong ms) {
3542  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3543  Sleep(ms);
3544}
3545
3546// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3547void os::infinite_sleep() {
3548  while (true) {    // sleep forever ...
3549    Sleep(100000);  // ... 100 seconds at a time
3550  }
3551}
3552
3553typedef BOOL (WINAPI * STTSignature)(void);
3554
3555void os::naked_yield() {
3556  // Use either SwitchToThread() or Sleep(0)
3557  // Consider passing back the return value from SwitchToThread().
3558  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3559    SwitchToThread();
3560  } else {
3561    Sleep(0);
3562  }
3563}
3564
3565// Win32 only gives you access to seven real priorities at a time,
3566// so we compress Java's ten down to seven.  It would be better
3567// if we dynamically adjusted relative priorities.
3568
3569int os::java_to_os_priority[CriticalPriority + 1] = {
3570  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3571  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3572  THREAD_PRIORITY_LOWEST,                       // 2
3573  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3574  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3575  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3576  THREAD_PRIORITY_NORMAL,                       // 6
3577  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3578  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3579  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3580  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3581  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3582};
3583
3584int prio_policy1[CriticalPriority + 1] = {
3585  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3586  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3587  THREAD_PRIORITY_LOWEST,                       // 2
3588  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3589  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3590  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3591  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3592  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3593  THREAD_PRIORITY_HIGHEST,                      // 8
3594  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3595  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3596  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3597};
3598
3599static int prio_init() {
3600  // If ThreadPriorityPolicy is 1, switch tables
3601  if (ThreadPriorityPolicy == 1) {
3602    int i;
3603    for (i = 0; i < CriticalPriority + 1; i++) {
3604      os::java_to_os_priority[i] = prio_policy1[i];
3605    }
3606  }
3607  if (UseCriticalJavaThreadPriority) {
3608    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3609  }
3610  return 0;
3611}
3612
3613OSReturn os::set_native_priority(Thread* thread, int priority) {
3614  if (!UseThreadPriorities) return OS_OK;
3615  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3616  return ret ? OS_OK : OS_ERR;
3617}
3618
3619OSReturn os::get_native_priority(const Thread* const thread,
3620                                 int* priority_ptr) {
3621  if (!UseThreadPriorities) {
3622    *priority_ptr = java_to_os_priority[NormPriority];
3623    return OS_OK;
3624  }
3625  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3626  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3627    assert(false, "GetThreadPriority failed");
3628    return OS_ERR;
3629  }
3630  *priority_ptr = os_prio;
3631  return OS_OK;
3632}
3633
3634
3635// Hint to the underlying OS that a task switch would not be good.
3636// Void return because it's a hint and can fail.
3637void os::hint_no_preempt() {}
3638
3639void os::interrupt(Thread* thread) {
3640  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3641         Threads_lock->owned_by_self(),
3642         "possibility of dangling Thread pointer");
3643
3644  OSThread* osthread = thread->osthread();
3645  osthread->set_interrupted(true);
3646  // More than one thread can get here with the same value of osthread,
3647  // resulting in multiple notifications.  We do, however, want the store
3648  // to interrupted() to be visible to other threads before we post
3649  // the interrupt event.
3650  OrderAccess::release();
3651  SetEvent(osthread->interrupt_event());
3652  // For JSR166:  unpark after setting status
3653  if (thread->is_Java_thread()) {
3654    ((JavaThread*)thread)->parker()->unpark();
3655  }
3656
3657  ParkEvent * ev = thread->_ParkEvent;
3658  if (ev != NULL) ev->unpark();
3659}
3660
3661
3662bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3663  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3664         "possibility of dangling Thread pointer");
3665
3666  OSThread* osthread = thread->osthread();
3667  // There is no synchronization between the setting of the interrupt
3668  // and it being cleared here. It is critical - see 6535709 - that
3669  // we only clear the interrupt state, and reset the interrupt event,
3670  // if we are going to report that we were indeed interrupted - else
3671  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3672  // depending on the timing. By checking thread interrupt event to see
3673  // if the thread gets real interrupt thus prevent spurious wakeup.
3674  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3675  if (interrupted && clear_interrupted) {
3676    osthread->set_interrupted(false);
3677    ResetEvent(osthread->interrupt_event());
3678  } // Otherwise leave the interrupted state alone
3679
3680  return interrupted;
3681}
3682
3683// Get's a pc (hint) for a running thread. Currently used only for profiling.
3684ExtendedPC os::get_thread_pc(Thread* thread) {
3685  CONTEXT context;
3686  context.ContextFlags = CONTEXT_CONTROL;
3687  HANDLE handle = thread->osthread()->thread_handle();
3688#ifdef _M_IA64
3689  assert(0, "Fix get_thread_pc");
3690  return ExtendedPC(NULL);
3691#else
3692  if (GetThreadContext(handle, &context)) {
3693#ifdef _M_AMD64
3694    return ExtendedPC((address) context.Rip);
3695#else
3696    return ExtendedPC((address) context.Eip);
3697#endif
3698  } else {
3699    return ExtendedPC(NULL);
3700  }
3701#endif
3702}
3703
3704// GetCurrentThreadId() returns DWORD
3705intx os::current_thread_id()  { return GetCurrentThreadId(); }
3706
3707static int _initial_pid = 0;
3708
3709int os::current_process_id() {
3710  return (_initial_pid ? _initial_pid : _getpid());
3711}
3712
3713int    os::win32::_vm_page_size              = 0;
3714int    os::win32::_vm_allocation_granularity = 0;
3715int    os::win32::_processor_type            = 0;
3716// Processor level is not available on non-NT systems, use vm_version instead
3717int    os::win32::_processor_level           = 0;
3718julong os::win32::_physical_memory           = 0;
3719size_t os::win32::_default_stack_size        = 0;
3720
3721intx          os::win32::_os_thread_limit    = 0;
3722volatile intx os::win32::_os_thread_count    = 0;
3723
3724bool   os::win32::_is_nt                     = false;
3725bool   os::win32::_is_windows_2003           = false;
3726bool   os::win32::_is_windows_server         = false;
3727
3728// 6573254
3729// Currently, the bug is observed across all the supported Windows releases,
3730// including the latest one (as of this writing - Windows Server 2012 R2)
3731bool   os::win32::_has_exit_bug              = true;
3732bool   os::win32::_has_performance_count     = 0;
3733
3734void os::win32::initialize_system_info() {
3735  SYSTEM_INFO si;
3736  GetSystemInfo(&si);
3737  _vm_page_size    = si.dwPageSize;
3738  _vm_allocation_granularity = si.dwAllocationGranularity;
3739  _processor_type  = si.dwProcessorType;
3740  _processor_level = si.wProcessorLevel;
3741  set_processor_count(si.dwNumberOfProcessors);
3742
3743  MEMORYSTATUSEX ms;
3744  ms.dwLength = sizeof(ms);
3745
3746  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3747  // dwMemoryLoad (% of memory in use)
3748  GlobalMemoryStatusEx(&ms);
3749  _physical_memory = ms.ullTotalPhys;
3750
3751  OSVERSIONINFOEX oi;
3752  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3753  GetVersionEx((OSVERSIONINFO*)&oi);
3754  switch (oi.dwPlatformId) {
3755  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3756  case VER_PLATFORM_WIN32_NT:
3757    _is_nt = true;
3758    {
3759      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3760      if (os_vers == 5002) {
3761        _is_windows_2003 = true;
3762      }
3763      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3764          oi.wProductType == VER_NT_SERVER) {
3765        _is_windows_server = true;
3766      }
3767    }
3768    break;
3769  default: fatal("Unknown platform");
3770  }
3771
3772  _default_stack_size = os::current_stack_size();
3773  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3774  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3775         "stack size not a multiple of page size");
3776
3777  initialize_performance_counter();
3778}
3779
3780
3781HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3782                                      int ebuflen) {
3783  char path[MAX_PATH];
3784  DWORD size;
3785  DWORD pathLen = (DWORD)sizeof(path);
3786  HINSTANCE result = NULL;
3787
3788  // only allow library name without path component
3789  assert(strchr(name, '\\') == NULL, "path not allowed");
3790  assert(strchr(name, ':') == NULL, "path not allowed");
3791  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3792    jio_snprintf(ebuf, ebuflen,
3793                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3794    return NULL;
3795  }
3796
3797  // search system directory
3798  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3799    if (size >= pathLen) {
3800      return NULL; // truncated
3801    }
3802    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3803      return NULL; // truncated
3804    }
3805    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3806      return result;
3807    }
3808  }
3809
3810  // try Windows directory
3811  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3812    if (size >= pathLen) {
3813      return NULL; // truncated
3814    }
3815    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3816      return NULL; // truncated
3817    }
3818    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3819      return result;
3820    }
3821  }
3822
3823  jio_snprintf(ebuf, ebuflen,
3824               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3825  return NULL;
3826}
3827
3828#define EXIT_TIMEOUT 300000 /* 5 minutes */
3829
3830static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3831  InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3832  return TRUE;
3833}
3834
3835int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3836  // Basic approach:
3837  //  - Each exiting thread registers its intent to exit and then does so.
3838  //  - A thread trying to terminate the process must wait for all
3839  //    threads currently exiting to complete their exit.
3840
3841  if (os::win32::has_exit_bug()) {
3842    // The array holds handles of the threads that have started exiting by calling
3843    // _endthreadex().
3844    // Should be large enough to avoid blocking the exiting thread due to lack of
3845    // a free slot.
3846    static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3847    static int handle_count = 0;
3848
3849    static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3850    static CRITICAL_SECTION crit_sect;
3851    static volatile jint process_exiting = 0;
3852    int i, j;
3853    DWORD res;
3854    HANDLE hproc, hthr;
3855
3856    // The first thread that reached this point, initializes the critical section.
3857    if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3858      warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3859    } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3860      EnterCriticalSection(&crit_sect);
3861
3862      if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3863        // Remove from the array those handles of the threads that have completed exiting.
3864        for (i = 0, j = 0; i < handle_count; ++i) {
3865          res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3866          if (res == WAIT_TIMEOUT) {
3867            handles[j++] = handles[i];
3868          } else {
3869            if (res == WAIT_FAILED) {
3870              warning("WaitForSingleObject failed (%u) in %s: %d\n",
3871                      GetLastError(), __FILE__, __LINE__);
3872            }
3873            // Don't keep the handle, if we failed waiting for it.
3874            CloseHandle(handles[i]);
3875          }
3876        }
3877
3878        // If there's no free slot in the array of the kept handles, we'll have to
3879        // wait until at least one thread completes exiting.
3880        if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3881          // Raise the priority of the oldest exiting thread to increase its chances
3882          // to complete sooner.
3883          SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3884          res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3885          if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3886            i = (res - WAIT_OBJECT_0);
3887            handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3888            for (; i < handle_count; ++i) {
3889              handles[i] = handles[i + 1];
3890            }
3891          } else {
3892            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3893                    (res == WAIT_FAILED ? "failed" : "timed out"),
3894                    GetLastError(), __FILE__, __LINE__);
3895            // Don't keep handles, if we failed waiting for them.
3896            for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3897              CloseHandle(handles[i]);
3898            }
3899            handle_count = 0;
3900          }
3901        }
3902
3903        // Store a duplicate of the current thread handle in the array of handles.
3904        hproc = GetCurrentProcess();
3905        hthr = GetCurrentThread();
3906        if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3907                             0, FALSE, DUPLICATE_SAME_ACCESS)) {
3908          warning("DuplicateHandle failed (%u) in %s: %d\n",
3909                  GetLastError(), __FILE__, __LINE__);
3910        } else {
3911          ++handle_count;
3912        }
3913
3914        // The current exiting thread has stored its handle in the array, and now
3915        // should leave the critical section before calling _endthreadex().
3916
3917      } else if (what != EPT_THREAD) {
3918        if (handle_count > 0) {
3919          // Before ending the process, make sure all the threads that had called
3920          // _endthreadex() completed.
3921
3922          // Set the priority level of the current thread to the same value as
3923          // the priority level of exiting threads.
3924          // This is to ensure it will be given a fair chance to execute if
3925          // the timeout expires.
3926          hthr = GetCurrentThread();
3927          SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3928          for (i = 0; i < handle_count; ++i) {
3929            SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3930          }
3931          res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3932          if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3933            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3934                    (res == WAIT_FAILED ? "failed" : "timed out"),
3935                    GetLastError(), __FILE__, __LINE__);
3936          }
3937          for (i = 0; i < handle_count; ++i) {
3938            CloseHandle(handles[i]);
3939          }
3940          handle_count = 0;
3941        }
3942
3943        OrderAccess::release_store(&process_exiting, 1);
3944      }
3945
3946      LeaveCriticalSection(&crit_sect);
3947    }
3948
3949    if (what == EPT_THREAD) {
3950      while (OrderAccess::load_acquire(&process_exiting) != 0) {
3951        // Some other thread is about to call exit(), so we
3952        // don't let the current thread proceed to _endthreadex()
3953        SuspendThread(GetCurrentThread());
3954        // Avoid busy-wait loop, if SuspendThread() failed.
3955        Sleep(EXIT_TIMEOUT);
3956      }
3957    }
3958  }
3959
3960  // We are here if either
3961  // - there's no 'race at exit' bug on this OS release;
3962  // - initialization of the critical section failed (unlikely);
3963  // - the current thread has stored its handle and left the critical section;
3964  // - the process-exiting thread has raised the flag and left the critical section.
3965  if (what == EPT_THREAD) {
3966    _endthreadex((unsigned)exit_code);
3967  } else if (what == EPT_PROCESS) {
3968    ::exit(exit_code);
3969  } else {
3970    _exit(exit_code);
3971  }
3972
3973  // Should not reach here
3974  return exit_code;
3975}
3976
3977#undef EXIT_TIMEOUT
3978
3979void os::win32::setmode_streams() {
3980  _setmode(_fileno(stdin), _O_BINARY);
3981  _setmode(_fileno(stdout), _O_BINARY);
3982  _setmode(_fileno(stderr), _O_BINARY);
3983}
3984
3985
3986bool os::is_debugger_attached() {
3987  return IsDebuggerPresent() ? true : false;
3988}
3989
3990
3991void os::wait_for_keypress_at_exit(void) {
3992  if (PauseAtExit) {
3993    fprintf(stderr, "Press any key to continue...\n");
3994    fgetc(stdin);
3995  }
3996}
3997
3998
3999int os::message_box(const char* title, const char* message) {
4000  int result = MessageBox(NULL, message, title,
4001                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4002  return result == IDYES;
4003}
4004
4005int os::allocate_thread_local_storage() {
4006  return TlsAlloc();
4007}
4008
4009
4010void os::free_thread_local_storage(int index) {
4011  TlsFree(index);
4012}
4013
4014
4015void os::thread_local_storage_at_put(int index, void* value) {
4016  TlsSetValue(index, value);
4017  assert(thread_local_storage_at(index) == value, "Just checking");
4018}
4019
4020
4021void* os::thread_local_storage_at(int index) {
4022  return TlsGetValue(index);
4023}
4024
4025
4026#ifndef PRODUCT
4027#ifndef _WIN64
4028// Helpers to check whether NX protection is enabled
4029int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4030  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4031      pex->ExceptionRecord->NumberParameters > 0 &&
4032      pex->ExceptionRecord->ExceptionInformation[0] ==
4033      EXCEPTION_INFO_EXEC_VIOLATION) {
4034    return EXCEPTION_EXECUTE_HANDLER;
4035  }
4036  return EXCEPTION_CONTINUE_SEARCH;
4037}
4038
4039void nx_check_protection() {
4040  // If NX is enabled we'll get an exception calling into code on the stack
4041  char code[] = { (char)0xC3 }; // ret
4042  void *code_ptr = (void *)code;
4043  __try {
4044    __asm call code_ptr
4045  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4046    tty->print_raw_cr("NX protection detected.");
4047  }
4048}
4049#endif // _WIN64
4050#endif // PRODUCT
4051
4052// this is called _before_ the global arguments have been parsed
4053void os::init(void) {
4054  _initial_pid = _getpid();
4055
4056  init_random(1234567);
4057
4058  win32::initialize_system_info();
4059  win32::setmode_streams();
4060  init_page_sizes((size_t) win32::vm_page_size());
4061
4062  // This may be overridden later when argument processing is done.
4063  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4064                os::win32::is_windows_2003());
4065
4066  // Initialize main_process and main_thread
4067  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4068  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4069                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4070    fatal("DuplicateHandle failed\n");
4071  }
4072  main_thread_id = (int) GetCurrentThreadId();
4073}
4074
4075// To install functions for atexit processing
4076extern "C" {
4077  static void perfMemory_exit_helper() {
4078    perfMemory_exit();
4079  }
4080}
4081
4082static jint initSock();
4083
4084// this is called _after_ the global arguments have been parsed
4085jint os::init_2(void) {
4086  // Allocate a single page and mark it as readable for safepoint polling
4087  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4088  guarantee(polling_page != NULL, "Reserve Failed for polling page");
4089
4090  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4091  guarantee(return_page != NULL, "Commit Failed for polling page");
4092
4093  os::set_polling_page(polling_page);
4094
4095#ifndef PRODUCT
4096  if (Verbose && PrintMiscellaneous) {
4097    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4098               (intptr_t)polling_page);
4099  }
4100#endif
4101
4102  if (!UseMembar) {
4103    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4104    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4105
4106    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4107    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4108
4109    os::set_memory_serialize_page(mem_serialize_page);
4110
4111#ifndef PRODUCT
4112    if (Verbose && PrintMiscellaneous) {
4113      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4114                 (intptr_t)mem_serialize_page);
4115    }
4116#endif
4117  }
4118
4119  // Setup Windows Exceptions
4120
4121  // for debugging float code generation bugs
4122  if (ForceFloatExceptions) {
4123#ifndef  _WIN64
4124    static long fp_control_word = 0;
4125    __asm { fstcw fp_control_word }
4126    // see Intel PPro Manual, Vol. 2, p 7-16
4127    const long precision = 0x20;
4128    const long underflow = 0x10;
4129    const long overflow  = 0x08;
4130    const long zero_div  = 0x04;
4131    const long denorm    = 0x02;
4132    const long invalid   = 0x01;
4133    fp_control_word |= invalid;
4134    __asm { fldcw fp_control_word }
4135#endif
4136  }
4137
4138  // If stack_commit_size is 0, windows will reserve the default size,
4139  // but only commit a small portion of it.
4140  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4141  size_t default_reserve_size = os::win32::default_stack_size();
4142  size_t actual_reserve_size = stack_commit_size;
4143  if (stack_commit_size < default_reserve_size) {
4144    // If stack_commit_size == 0, we want this too
4145    actual_reserve_size = default_reserve_size;
4146  }
4147
4148  // Check minimum allowable stack size for thread creation and to initialize
4149  // the java system classes, including StackOverflowError - depends on page
4150  // size.  Add a page for compiler2 recursion in main thread.
4151  // Add in 2*BytesPerWord times page size to account for VM stack during
4152  // class initialization depending on 32 or 64 bit VM.
4153  size_t min_stack_allowed =
4154            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4155                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4156  if (actual_reserve_size < min_stack_allowed) {
4157    tty->print_cr("\nThe stack size specified is too small, "
4158                  "Specify at least %dk",
4159                  min_stack_allowed / K);
4160    return JNI_ERR;
4161  }
4162
4163  JavaThread::set_stack_size_at_create(stack_commit_size);
4164
4165  // Calculate theoretical max. size of Threads to guard gainst artifical
4166  // out-of-memory situations, where all available address-space has been
4167  // reserved by thread stacks.
4168  assert(actual_reserve_size != 0, "Must have a stack");
4169
4170  // Calculate the thread limit when we should start doing Virtual Memory
4171  // banging. Currently when the threads will have used all but 200Mb of space.
4172  //
4173  // TODO: consider performing a similar calculation for commit size instead
4174  // as reserve size, since on a 64-bit platform we'll run into that more
4175  // often than running out of virtual memory space.  We can use the
4176  // lower value of the two calculations as the os_thread_limit.
4177  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4178  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4179
4180  // at exit methods are called in the reverse order of their registration.
4181  // there is no limit to the number of functions registered. atexit does
4182  // not set errno.
4183
4184  if (PerfAllowAtExitRegistration) {
4185    // only register atexit functions if PerfAllowAtExitRegistration is set.
4186    // atexit functions can be delayed until process exit time, which
4187    // can be problematic for embedded VM situations. Embedded VMs should
4188    // call DestroyJavaVM() to assure that VM resources are released.
4189
4190    // note: perfMemory_exit_helper atexit function may be removed in
4191    // the future if the appropriate cleanup code can be added to the
4192    // VM_Exit VMOperation's doit method.
4193    if (atexit(perfMemory_exit_helper) != 0) {
4194      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4195    }
4196  }
4197
4198#ifndef _WIN64
4199  // Print something if NX is enabled (win32 on AMD64)
4200  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4201#endif
4202
4203  // initialize thread priority policy
4204  prio_init();
4205
4206  if (UseNUMA && !ForceNUMA) {
4207    UseNUMA = false; // We don't fully support this yet
4208  }
4209
4210  if (UseNUMAInterleaving) {
4211    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4212    bool success = numa_interleaving_init();
4213    if (!success) UseNUMAInterleaving = false;
4214  }
4215
4216  if (initSock() != JNI_OK) {
4217    return JNI_ERR;
4218  }
4219
4220  return JNI_OK;
4221}
4222
4223// Mark the polling page as unreadable
4224void os::make_polling_page_unreadable(void) {
4225  DWORD old_status;
4226  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4227                      PAGE_NOACCESS, &old_status)) {
4228    fatal("Could not disable polling page");
4229  }
4230}
4231
4232// Mark the polling page as readable
4233void os::make_polling_page_readable(void) {
4234  DWORD old_status;
4235  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4236                      PAGE_READONLY, &old_status)) {
4237    fatal("Could not enable polling page");
4238  }
4239}
4240
4241
4242int os::stat(const char *path, struct stat *sbuf) {
4243  char pathbuf[MAX_PATH];
4244  if (strlen(path) > MAX_PATH - 1) {
4245    errno = ENAMETOOLONG;
4246    return -1;
4247  }
4248  os::native_path(strcpy(pathbuf, path));
4249  int ret = ::stat(pathbuf, sbuf);
4250  if (sbuf != NULL && UseUTCFileTimestamp) {
4251    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4252    // the system timezone and so can return different values for the
4253    // same file if/when daylight savings time changes.  This adjustment
4254    // makes sure the same timestamp is returned regardless of the TZ.
4255    //
4256    // See:
4257    // http://msdn.microsoft.com/library/
4258    //   default.asp?url=/library/en-us/sysinfo/base/
4259    //   time_zone_information_str.asp
4260    // and
4261    // http://msdn.microsoft.com/library/default.asp?url=
4262    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4263    //
4264    // NOTE: there is a insidious bug here:  If the timezone is changed
4265    // after the call to stat() but before 'GetTimeZoneInformation()', then
4266    // the adjustment we do here will be wrong and we'll return the wrong
4267    // value (which will likely end up creating an invalid class data
4268    // archive).  Absent a better API for this, or some time zone locking
4269    // mechanism, we'll have to live with this risk.
4270    TIME_ZONE_INFORMATION tz;
4271    DWORD tzid = GetTimeZoneInformation(&tz);
4272    int daylightBias =
4273      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4274    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4275  }
4276  return ret;
4277}
4278
4279
4280#define FT2INT64(ft) \
4281  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4282
4283
4284// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4285// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4286// of a thread.
4287//
4288// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4289// the fast estimate available on the platform.
4290
4291// current_thread_cpu_time() is not optimized for Windows yet
4292jlong os::current_thread_cpu_time() {
4293  // return user + sys since the cost is the same
4294  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4295}
4296
4297jlong os::thread_cpu_time(Thread* thread) {
4298  // consistent with what current_thread_cpu_time() returns.
4299  return os::thread_cpu_time(thread, true /* user+sys */);
4300}
4301
4302jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4303  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4304}
4305
4306jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4307  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4308  // If this function changes, os::is_thread_cpu_time_supported() should too
4309  if (os::win32::is_nt()) {
4310    FILETIME CreationTime;
4311    FILETIME ExitTime;
4312    FILETIME KernelTime;
4313    FILETIME UserTime;
4314
4315    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4316                       &ExitTime, &KernelTime, &UserTime) == 0) {
4317      return -1;
4318    } else if (user_sys_cpu_time) {
4319      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4320    } else {
4321      return FT2INT64(UserTime) * 100;
4322    }
4323  } else {
4324    return (jlong) timeGetTime() * 1000000;
4325  }
4326}
4327
4328void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4329  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4330  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4331  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4332  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4333}
4334
4335void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4336  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4337  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4338  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4339  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4340}
4341
4342bool os::is_thread_cpu_time_supported() {
4343  // see os::thread_cpu_time
4344  if (os::win32::is_nt()) {
4345    FILETIME CreationTime;
4346    FILETIME ExitTime;
4347    FILETIME KernelTime;
4348    FILETIME UserTime;
4349
4350    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4351                       &KernelTime, &UserTime) == 0) {
4352      return false;
4353    } else {
4354      return true;
4355    }
4356  } else {
4357    return false;
4358  }
4359}
4360
4361// Windows does't provide a loadavg primitive so this is stubbed out for now.
4362// It does have primitives (PDH API) to get CPU usage and run queue length.
4363// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4364// If we wanted to implement loadavg on Windows, we have a few options:
4365//
4366// a) Query CPU usage and run queue length and "fake" an answer by
4367//    returning the CPU usage if it's under 100%, and the run queue
4368//    length otherwise.  It turns out that querying is pretty slow
4369//    on Windows, on the order of 200 microseconds on a fast machine.
4370//    Note that on the Windows the CPU usage value is the % usage
4371//    since the last time the API was called (and the first call
4372//    returns 100%), so we'd have to deal with that as well.
4373//
4374// b) Sample the "fake" answer using a sampling thread and store
4375//    the answer in a global variable.  The call to loadavg would
4376//    just return the value of the global, avoiding the slow query.
4377//
4378// c) Sample a better answer using exponential decay to smooth the
4379//    value.  This is basically the algorithm used by UNIX kernels.
4380//
4381// Note that sampling thread starvation could affect both (b) and (c).
4382int os::loadavg(double loadavg[], int nelem) {
4383  return -1;
4384}
4385
4386
4387// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4388bool os::dont_yield() {
4389  return DontYieldALot;
4390}
4391
4392// This method is a slightly reworked copy of JDK's sysOpen
4393// from src/windows/hpi/src/sys_api_md.c
4394
4395int os::open(const char *path, int oflag, int mode) {
4396  char pathbuf[MAX_PATH];
4397
4398  if (strlen(path) > MAX_PATH - 1) {
4399    errno = ENAMETOOLONG;
4400    return -1;
4401  }
4402  os::native_path(strcpy(pathbuf, path));
4403  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4404}
4405
4406FILE* os::open(int fd, const char* mode) {
4407  return ::_fdopen(fd, mode);
4408}
4409
4410// Is a (classpath) directory empty?
4411bool os::dir_is_empty(const char* path) {
4412  WIN32_FIND_DATA fd;
4413  HANDLE f = FindFirstFile(path, &fd);
4414  if (f == INVALID_HANDLE_VALUE) {
4415    return true;
4416  }
4417  FindClose(f);
4418  return false;
4419}
4420
4421// create binary file, rewriting existing file if required
4422int os::create_binary_file(const char* path, bool rewrite_existing) {
4423  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4424  if (!rewrite_existing) {
4425    oflags |= _O_EXCL;
4426  }
4427  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4428}
4429
4430// return current position of file pointer
4431jlong os::current_file_offset(int fd) {
4432  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4433}
4434
4435// move file pointer to the specified offset
4436jlong os::seek_to_file_offset(int fd, jlong offset) {
4437  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4438}
4439
4440
4441jlong os::lseek(int fd, jlong offset, int whence) {
4442  return (jlong) ::_lseeki64(fd, offset, whence);
4443}
4444
4445size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4446  OVERLAPPED ov;
4447  DWORD nread;
4448  BOOL result;
4449
4450  ZeroMemory(&ov, sizeof(ov));
4451  ov.Offset = (DWORD)offset;
4452  ov.OffsetHigh = (DWORD)(offset >> 32);
4453
4454  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4455
4456  result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4457
4458  return result ? nread : 0;
4459}
4460
4461
4462// This method is a slightly reworked copy of JDK's sysNativePath
4463// from src/windows/hpi/src/path_md.c
4464
4465// Convert a pathname to native format.  On win32, this involves forcing all
4466// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4467// sometimes rejects '/') and removing redundant separators.  The input path is
4468// assumed to have been converted into the character encoding used by the local
4469// system.  Because this might be a double-byte encoding, care is taken to
4470// treat double-byte lead characters correctly.
4471//
4472// This procedure modifies the given path in place, as the result is never
4473// longer than the original.  There is no error return; this operation always
4474// succeeds.
4475char * os::native_path(char *path) {
4476  char *src = path, *dst = path, *end = path;
4477  char *colon = NULL;  // If a drive specifier is found, this will
4478                       // point to the colon following the drive letter
4479
4480  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4481  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4482          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4483
4484  // Check for leading separators
4485#define isfilesep(c) ((c) == '/' || (c) == '\\')
4486  while (isfilesep(*src)) {
4487    src++;
4488  }
4489
4490  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4491    // Remove leading separators if followed by drive specifier.  This
4492    // hack is necessary to support file URLs containing drive
4493    // specifiers (e.g., "file://c:/path").  As a side effect,
4494    // "/c:/path" can be used as an alternative to "c:/path".
4495    *dst++ = *src++;
4496    colon = dst;
4497    *dst++ = ':';
4498    src++;
4499  } else {
4500    src = path;
4501    if (isfilesep(src[0]) && isfilesep(src[1])) {
4502      // UNC pathname: Retain first separator; leave src pointed at
4503      // second separator so that further separators will be collapsed
4504      // into the second separator.  The result will be a pathname
4505      // beginning with "\\\\" followed (most likely) by a host name.
4506      src = dst = path + 1;
4507      path[0] = '\\';     // Force first separator to '\\'
4508    }
4509  }
4510
4511  end = dst;
4512
4513  // Remove redundant separators from remainder of path, forcing all
4514  // separators to be '\\' rather than '/'. Also, single byte space
4515  // characters are removed from the end of the path because those
4516  // are not legal ending characters on this operating system.
4517  //
4518  while (*src != '\0') {
4519    if (isfilesep(*src)) {
4520      *dst++ = '\\'; src++;
4521      while (isfilesep(*src)) src++;
4522      if (*src == '\0') {
4523        // Check for trailing separator
4524        end = dst;
4525        if (colon == dst - 2) break;  // "z:\\"
4526        if (dst == path + 1) break;   // "\\"
4527        if (dst == path + 2 && isfilesep(path[0])) {
4528          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4529          // beginning of a UNC pathname.  Even though it is not, by
4530          // itself, a valid UNC pathname, we leave it as is in order
4531          // to be consistent with the path canonicalizer as well
4532          // as the win32 APIs, which treat this case as an invalid
4533          // UNC pathname rather than as an alias for the root
4534          // directory of the current drive.
4535          break;
4536        }
4537        end = --dst;  // Path does not denote a root directory, so
4538                      // remove trailing separator
4539        break;
4540      }
4541      end = dst;
4542    } else {
4543      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4544        *dst++ = *src++;
4545        if (*src) *dst++ = *src++;
4546        end = dst;
4547      } else {  // Copy a single-byte character
4548        char c = *src++;
4549        *dst++ = c;
4550        // Space is not a legal ending character
4551        if (c != ' ') end = dst;
4552      }
4553    }
4554  }
4555
4556  *end = '\0';
4557
4558  // For "z:", add "." to work around a bug in the C runtime library
4559  if (colon == dst - 1) {
4560    path[2] = '.';
4561    path[3] = '\0';
4562  }
4563
4564  return path;
4565}
4566
4567// This code is a copy of JDK's sysSetLength
4568// from src/windows/hpi/src/sys_api_md.c
4569
4570int os::ftruncate(int fd, jlong length) {
4571  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4572  long high = (long)(length >> 32);
4573  DWORD ret;
4574
4575  if (h == (HANDLE)(-1)) {
4576    return -1;
4577  }
4578
4579  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4580  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4581    return -1;
4582  }
4583
4584  if (::SetEndOfFile(h) == FALSE) {
4585    return -1;
4586  }
4587
4588  return 0;
4589}
4590
4591
4592// This code is a copy of JDK's sysSync
4593// from src/windows/hpi/src/sys_api_md.c
4594// except for the legacy workaround for a bug in Win 98
4595
4596int os::fsync(int fd) {
4597  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4598
4599  if ((!::FlushFileBuffers(handle)) &&
4600      (GetLastError() != ERROR_ACCESS_DENIED)) {
4601    // from winerror.h
4602    return -1;
4603  }
4604  return 0;
4605}
4606
4607static int nonSeekAvailable(int, long *);
4608static int stdinAvailable(int, long *);
4609
4610#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4611#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4612
4613// This code is a copy of JDK's sysAvailable
4614// from src/windows/hpi/src/sys_api_md.c
4615
4616int os::available(int fd, jlong *bytes) {
4617  jlong cur, end;
4618  struct _stati64 stbuf64;
4619
4620  if (::_fstati64(fd, &stbuf64) >= 0) {
4621    int mode = stbuf64.st_mode;
4622    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4623      int ret;
4624      long lpbytes;
4625      if (fd == 0) {
4626        ret = stdinAvailable(fd, &lpbytes);
4627      } else {
4628        ret = nonSeekAvailable(fd, &lpbytes);
4629      }
4630      (*bytes) = (jlong)(lpbytes);
4631      return ret;
4632    }
4633    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4634      return FALSE;
4635    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4636      return FALSE;
4637    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4638      return FALSE;
4639    }
4640    *bytes = end - cur;
4641    return TRUE;
4642  } else {
4643    return FALSE;
4644  }
4645}
4646
4647// This code is a copy of JDK's nonSeekAvailable
4648// from src/windows/hpi/src/sys_api_md.c
4649
4650static int nonSeekAvailable(int fd, long *pbytes) {
4651  // This is used for available on non-seekable devices
4652  // (like both named and anonymous pipes, such as pipes
4653  //  connected to an exec'd process).
4654  // Standard Input is a special case.
4655  HANDLE han;
4656
4657  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4658    return FALSE;
4659  }
4660
4661  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4662    // PeekNamedPipe fails when at EOF.  In that case we
4663    // simply make *pbytes = 0 which is consistent with the
4664    // behavior we get on Solaris when an fd is at EOF.
4665    // The only alternative is to raise an Exception,
4666    // which isn't really warranted.
4667    //
4668    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4669      return FALSE;
4670    }
4671    *pbytes = 0;
4672  }
4673  return TRUE;
4674}
4675
4676#define MAX_INPUT_EVENTS 2000
4677
4678// This code is a copy of JDK's stdinAvailable
4679// from src/windows/hpi/src/sys_api_md.c
4680
4681static int stdinAvailable(int fd, long *pbytes) {
4682  HANDLE han;
4683  DWORD numEventsRead = 0;  // Number of events read from buffer
4684  DWORD numEvents = 0;      // Number of events in buffer
4685  DWORD i = 0;              // Loop index
4686  DWORD curLength = 0;      // Position marker
4687  DWORD actualLength = 0;   // Number of bytes readable
4688  BOOL error = FALSE;       // Error holder
4689  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4690
4691  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4692    return FALSE;
4693  }
4694
4695  // Construct an array of input records in the console buffer
4696  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4697  if (error == 0) {
4698    return nonSeekAvailable(fd, pbytes);
4699  }
4700
4701  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4702  if (numEvents > MAX_INPUT_EVENTS) {
4703    numEvents = MAX_INPUT_EVENTS;
4704  }
4705
4706  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4707  if (lpBuffer == NULL) {
4708    return FALSE;
4709  }
4710
4711  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4712  if (error == 0) {
4713    os::free(lpBuffer);
4714    return FALSE;
4715  }
4716
4717  // Examine input records for the number of bytes available
4718  for (i=0; i<numEvents; i++) {
4719    if (lpBuffer[i].EventType == KEY_EVENT) {
4720
4721      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4722                                      &(lpBuffer[i].Event);
4723      if (keyRecord->bKeyDown == TRUE) {
4724        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4725        curLength++;
4726        if (*keyPressed == '\r') {
4727          actualLength = curLength;
4728        }
4729      }
4730    }
4731  }
4732
4733  if (lpBuffer != NULL) {
4734    os::free(lpBuffer);
4735  }
4736
4737  *pbytes = (long) actualLength;
4738  return TRUE;
4739}
4740
4741// Map a block of memory.
4742char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4743                        char *addr, size_t bytes, bool read_only,
4744                        bool allow_exec) {
4745  HANDLE hFile;
4746  char* base;
4747
4748  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4749                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4750  if (hFile == NULL) {
4751    if (PrintMiscellaneous && Verbose) {
4752      DWORD err = GetLastError();
4753      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4754    }
4755    return NULL;
4756  }
4757
4758  if (allow_exec) {
4759    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4760    // unless it comes from a PE image (which the shared archive is not.)
4761    // Even VirtualProtect refuses to give execute access to mapped memory
4762    // that was not previously executable.
4763    //
4764    // Instead, stick the executable region in anonymous memory.  Yuck.
4765    // Penalty is that ~4 pages will not be shareable - in the future
4766    // we might consider DLLizing the shared archive with a proper PE
4767    // header so that mapping executable + sharing is possible.
4768
4769    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4770                                PAGE_READWRITE);
4771    if (base == NULL) {
4772      if (PrintMiscellaneous && Verbose) {
4773        DWORD err = GetLastError();
4774        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4775      }
4776      CloseHandle(hFile);
4777      return NULL;
4778    }
4779
4780    DWORD bytes_read;
4781    OVERLAPPED overlapped;
4782    overlapped.Offset = (DWORD)file_offset;
4783    overlapped.OffsetHigh = 0;
4784    overlapped.hEvent = NULL;
4785    // ReadFile guarantees that if the return value is true, the requested
4786    // number of bytes were read before returning.
4787    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4788    if (!res) {
4789      if (PrintMiscellaneous && Verbose) {
4790        DWORD err = GetLastError();
4791        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4792      }
4793      release_memory(base, bytes);
4794      CloseHandle(hFile);
4795      return NULL;
4796    }
4797  } else {
4798    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4799                                    NULL /* file_name */);
4800    if (hMap == NULL) {
4801      if (PrintMiscellaneous && Verbose) {
4802        DWORD err = GetLastError();
4803        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4804      }
4805      CloseHandle(hFile);
4806      return NULL;
4807    }
4808
4809    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4810    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4811                                  (DWORD)bytes, addr);
4812    if (base == NULL) {
4813      if (PrintMiscellaneous && Verbose) {
4814        DWORD err = GetLastError();
4815        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4816      }
4817      CloseHandle(hMap);
4818      CloseHandle(hFile);
4819      return NULL;
4820    }
4821
4822    if (CloseHandle(hMap) == 0) {
4823      if (PrintMiscellaneous && Verbose) {
4824        DWORD err = GetLastError();
4825        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4826      }
4827      CloseHandle(hFile);
4828      return base;
4829    }
4830  }
4831
4832  if (allow_exec) {
4833    DWORD old_protect;
4834    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4835    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4836
4837    if (!res) {
4838      if (PrintMiscellaneous && Verbose) {
4839        DWORD err = GetLastError();
4840        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4841      }
4842      // Don't consider this a hard error, on IA32 even if the
4843      // VirtualProtect fails, we should still be able to execute
4844      CloseHandle(hFile);
4845      return base;
4846    }
4847  }
4848
4849  if (CloseHandle(hFile) == 0) {
4850    if (PrintMiscellaneous && Verbose) {
4851      DWORD err = GetLastError();
4852      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4853    }
4854    return base;
4855  }
4856
4857  return base;
4858}
4859
4860
4861// Remap a block of memory.
4862char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4863                          char *addr, size_t bytes, bool read_only,
4864                          bool allow_exec) {
4865  // This OS does not allow existing memory maps to be remapped so we
4866  // have to unmap the memory before we remap it.
4867  if (!os::unmap_memory(addr, bytes)) {
4868    return NULL;
4869  }
4870
4871  // There is a very small theoretical window between the unmap_memory()
4872  // call above and the map_memory() call below where a thread in native
4873  // code may be able to access an address that is no longer mapped.
4874
4875  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4876                        read_only, allow_exec);
4877}
4878
4879
4880// Unmap a block of memory.
4881// Returns true=success, otherwise false.
4882
4883bool os::pd_unmap_memory(char* addr, size_t bytes) {
4884  MEMORY_BASIC_INFORMATION mem_info;
4885  if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4886    if (PrintMiscellaneous && Verbose) {
4887      DWORD err = GetLastError();
4888      tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
4889    }
4890    return false;
4891  }
4892
4893  // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4894  // Instead, executable region was allocated using VirtualAlloc(). See
4895  // pd_map_memory() above.
4896  //
4897  // The following flags should match the 'exec_access' flages used for
4898  // VirtualProtect() in pd_map_memory().
4899  if (mem_info.Protect == PAGE_EXECUTE_READ ||
4900      mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4901    return pd_release_memory(addr, bytes);
4902  }
4903
4904  BOOL result = UnmapViewOfFile(addr);
4905  if (result == 0) {
4906    if (PrintMiscellaneous && Verbose) {
4907      DWORD err = GetLastError();
4908      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4909    }
4910    return false;
4911  }
4912  return true;
4913}
4914
4915void os::pause() {
4916  char filename[MAX_PATH];
4917  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4918    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4919  } else {
4920    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4921  }
4922
4923  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4924  if (fd != -1) {
4925    struct stat buf;
4926    ::close(fd);
4927    while (::stat(filename, &buf) == 0) {
4928      Sleep(100);
4929    }
4930  } else {
4931    jio_fprintf(stderr,
4932                "Could not open pause file '%s', continuing immediately.\n", filename);
4933  }
4934}
4935
4936os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4937  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4938}
4939
4940// See the caveats for this class in os_windows.hpp
4941// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4942// into this method and returns false. If no OS EXCEPTION was raised, returns
4943// true.
4944// The callback is supposed to provide the method that should be protected.
4945//
4946bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4947  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4948  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4949         "crash_protection already set?");
4950
4951  bool success = true;
4952  __try {
4953    WatcherThread::watcher_thread()->set_crash_protection(this);
4954    cb.call();
4955  } __except(EXCEPTION_EXECUTE_HANDLER) {
4956    // only for protection, nothing to do
4957    success = false;
4958  }
4959  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4960  return success;
4961}
4962
4963// An Event wraps a win32 "CreateEvent" kernel handle.
4964//
4965// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4966//
4967// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4968//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4969//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4970//     In addition, an unpark() operation might fetch the handle field, but the
4971//     event could recycle between the fetch and the SetEvent() operation.
4972//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4973//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4974//     on an stale but recycled handle would be harmless, but in practice this might
4975//     confuse other non-Sun code, so it's not a viable approach.
4976//
4977// 2:  Once a win32 event handle is associated with an Event, it remains associated
4978//     with the Event.  The event handle is never closed.  This could be construed
4979//     as handle leakage, but only up to the maximum # of threads that have been extant
4980//     at any one time.  This shouldn't be an issue, as windows platforms typically
4981//     permit a process to have hundreds of thousands of open handles.
4982//
4983// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4984//     and release unused handles.
4985//
4986// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4987//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4988//
4989// 5.  Use an RCU-like mechanism (Read-Copy Update).
4990//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4991//
4992// We use (2).
4993//
4994// TODO-FIXME:
4995// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4996// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4997//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4998// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4999//     into a single win32 CreateEvent() handle.
5000//
5001// Assumption:
5002//    Only one parker can exist on an event, which is why we allocate
5003//    them per-thread. Multiple unparkers can coexist.
5004//
5005// _Event transitions in park()
5006//   -1 => -1 : illegal
5007//    1 =>  0 : pass - return immediately
5008//    0 => -1 : block; then set _Event to 0 before returning
5009//
5010// _Event transitions in unpark()
5011//    0 => 1 : just return
5012//    1 => 1 : just return
5013//   -1 => either 0 or 1; must signal target thread
5014//         That is, we can safely transition _Event from -1 to either
5015//         0 or 1.
5016//
5017// _Event serves as a restricted-range semaphore.
5018//   -1 : thread is blocked, i.e. there is a waiter
5019//    0 : neutral: thread is running or ready,
5020//        could have been signaled after a wait started
5021//    1 : signaled - thread is running or ready
5022//
5023// Another possible encoding of _Event would be with
5024// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5025//
5026
5027int os::PlatformEvent::park(jlong Millis) {
5028  // Transitions for _Event:
5029  //   -1 => -1 : illegal
5030  //    1 =>  0 : pass - return immediately
5031  //    0 => -1 : block; then set _Event to 0 before returning
5032
5033  guarantee(_ParkHandle != NULL , "Invariant");
5034  guarantee(Millis > 0          , "Invariant");
5035
5036  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5037  // the initial park() operation.
5038  // Consider: use atomic decrement instead of CAS-loop
5039
5040  int v;
5041  for (;;) {
5042    v = _Event;
5043    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5044  }
5045  guarantee((v == 0) || (v == 1), "invariant");
5046  if (v != 0) return OS_OK;
5047
5048  // Do this the hard way by blocking ...
5049  // TODO: consider a brief spin here, gated on the success of recent
5050  // spin attempts by this thread.
5051  //
5052  // We decompose long timeouts into series of shorter timed waits.
5053  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5054  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5055  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5056  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5057  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5058  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5059  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5060  // for the already waited time.  This policy does not admit any new outcomes.
5061  // In the future, however, we might want to track the accumulated wait time and
5062  // adjust Millis accordingly if we encounter a spurious wakeup.
5063
5064  const int MAXTIMEOUT = 0x10000000;
5065  DWORD rv = WAIT_TIMEOUT;
5066  while (_Event < 0 && Millis > 0) {
5067    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5068    if (Millis > MAXTIMEOUT) {
5069      prd = MAXTIMEOUT;
5070    }
5071    rv = ::WaitForSingleObject(_ParkHandle, prd);
5072    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5073    if (rv == WAIT_TIMEOUT) {
5074      Millis -= prd;
5075    }
5076  }
5077  v = _Event;
5078  _Event = 0;
5079  // see comment at end of os::PlatformEvent::park() below:
5080  OrderAccess::fence();
5081  // If we encounter a nearly simultanous timeout expiry and unpark()
5082  // we return OS_OK indicating we awoke via unpark().
5083  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5084  return (v >= 0) ? OS_OK : OS_TIMEOUT;
5085}
5086
5087void os::PlatformEvent::park() {
5088  // Transitions for _Event:
5089  //   -1 => -1 : illegal
5090  //    1 =>  0 : pass - return immediately
5091  //    0 => -1 : block; then set _Event to 0 before returning
5092
5093  guarantee(_ParkHandle != NULL, "Invariant");
5094  // Invariant: Only the thread associated with the Event/PlatformEvent
5095  // may call park().
5096  // Consider: use atomic decrement instead of CAS-loop
5097  int v;
5098  for (;;) {
5099    v = _Event;
5100    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5101  }
5102  guarantee((v == 0) || (v == 1), "invariant");
5103  if (v != 0) return;
5104
5105  // Do this the hard way by blocking ...
5106  // TODO: consider a brief spin here, gated on the success of recent
5107  // spin attempts by this thread.
5108  while (_Event < 0) {
5109    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5110    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5111  }
5112
5113  // Usually we'll find _Event == 0 at this point, but as
5114  // an optional optimization we clear it, just in case can
5115  // multiple unpark() operations drove _Event up to 1.
5116  _Event = 0;
5117  OrderAccess::fence();
5118  guarantee(_Event >= 0, "invariant");
5119}
5120
5121void os::PlatformEvent::unpark() {
5122  guarantee(_ParkHandle != NULL, "Invariant");
5123
5124  // Transitions for _Event:
5125  //    0 => 1 : just return
5126  //    1 => 1 : just return
5127  //   -1 => either 0 or 1; must signal target thread
5128  //         That is, we can safely transition _Event from -1 to either
5129  //         0 or 1.
5130  // See also: "Semaphores in Plan 9" by Mullender & Cox
5131  //
5132  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5133  // that it will take two back-to-back park() calls for the owning
5134  // thread to block. This has the benefit of forcing a spurious return
5135  // from the first park() call after an unpark() call which will help
5136  // shake out uses of park() and unpark() without condition variables.
5137
5138  if (Atomic::xchg(1, &_Event) >= 0) return;
5139
5140  ::SetEvent(_ParkHandle);
5141}
5142
5143
5144// JSR166
5145// -------------------------------------------------------
5146
5147// The Windows implementation of Park is very straightforward: Basic
5148// operations on Win32 Events turn out to have the right semantics to
5149// use them directly. We opportunistically resuse the event inherited
5150// from Monitor.
5151
5152void Parker::park(bool isAbsolute, jlong time) {
5153  guarantee(_ParkEvent != NULL, "invariant");
5154  // First, demultiplex/decode time arguments
5155  if (time < 0) { // don't wait
5156    return;
5157  } else if (time == 0 && !isAbsolute) {
5158    time = INFINITE;
5159  } else if (isAbsolute) {
5160    time -= os::javaTimeMillis(); // convert to relative time
5161    if (time <= 0) {  // already elapsed
5162      return;
5163    }
5164  } else { // relative
5165    time /= 1000000;  // Must coarsen from nanos to millis
5166    if (time == 0) {  // Wait for the minimal time unit if zero
5167      time = 1;
5168    }
5169  }
5170
5171  JavaThread* thread = (JavaThread*)(Thread::current());
5172  assert(thread->is_Java_thread(), "Must be JavaThread");
5173  JavaThread *jt = (JavaThread *)thread;
5174
5175  // Don't wait if interrupted or already triggered
5176  if (Thread::is_interrupted(thread, false) ||
5177      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5178    ResetEvent(_ParkEvent);
5179    return;
5180  } else {
5181    ThreadBlockInVM tbivm(jt);
5182    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5183    jt->set_suspend_equivalent();
5184
5185    WaitForSingleObject(_ParkEvent, time);
5186    ResetEvent(_ParkEvent);
5187
5188    // If externally suspended while waiting, re-suspend
5189    if (jt->handle_special_suspend_equivalent_condition()) {
5190      jt->java_suspend_self();
5191    }
5192  }
5193}
5194
5195void Parker::unpark() {
5196  guarantee(_ParkEvent != NULL, "invariant");
5197  SetEvent(_ParkEvent);
5198}
5199
5200// Run the specified command in a separate process. Return its exit value,
5201// or -1 on failure (e.g. can't create a new process).
5202int os::fork_and_exec(char* cmd) {
5203  STARTUPINFO si;
5204  PROCESS_INFORMATION pi;
5205
5206  memset(&si, 0, sizeof(si));
5207  si.cb = sizeof(si);
5208  memset(&pi, 0, sizeof(pi));
5209  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5210                            cmd,    // command line
5211                            NULL,   // process security attribute
5212                            NULL,   // thread security attribute
5213                            TRUE,   // inherits system handles
5214                            0,      // no creation flags
5215                            NULL,   // use parent's environment block
5216                            NULL,   // use parent's starting directory
5217                            &si,    // (in) startup information
5218                            &pi);   // (out) process information
5219
5220  if (rslt) {
5221    // Wait until child process exits.
5222    WaitForSingleObject(pi.hProcess, INFINITE);
5223
5224    DWORD exit_code;
5225    GetExitCodeProcess(pi.hProcess, &exit_code);
5226
5227    // Close process and thread handles.
5228    CloseHandle(pi.hProcess);
5229    CloseHandle(pi.hThread);
5230
5231    return (int)exit_code;
5232  } else {
5233    return -1;
5234  }
5235}
5236
5237//--------------------------------------------------------------------------------------------------
5238// Non-product code
5239
5240static int mallocDebugIntervalCounter = 0;
5241static int mallocDebugCounter = 0;
5242bool os::check_heap(bool force) {
5243  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5244  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5245    // Note: HeapValidate executes two hardware breakpoints when it finds something
5246    // wrong; at these points, eax contains the address of the offending block (I think).
5247    // To get to the exlicit error message(s) below, just continue twice.
5248    HANDLE heap = GetProcessHeap();
5249
5250    // If we fail to lock the heap, then gflags.exe has been used
5251    // or some other special heap flag has been set that prevents
5252    // locking. We don't try to walk a heap we can't lock.
5253    if (HeapLock(heap) != 0) {
5254      PROCESS_HEAP_ENTRY phe;
5255      phe.lpData = NULL;
5256      while (HeapWalk(heap, &phe) != 0) {
5257        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5258            !HeapValidate(heap, 0, phe.lpData)) {
5259          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5260          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5261          fatal("corrupted C heap");
5262        }
5263      }
5264      DWORD err = GetLastError();
5265      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5266        fatal("heap walk aborted with error %d", err);
5267      }
5268      HeapUnlock(heap);
5269    }
5270    mallocDebugIntervalCounter = 0;
5271  }
5272  return true;
5273}
5274
5275
5276bool os::find(address addr, outputStream* st) {
5277  // Nothing yet
5278  return false;
5279}
5280
5281LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5282  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5283
5284  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5285    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5286    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5287    address addr = (address) exceptionRecord->ExceptionInformation[1];
5288
5289    if (os::is_memory_serialize_page(thread, addr)) {
5290      return EXCEPTION_CONTINUE_EXECUTION;
5291    }
5292  }
5293
5294  return EXCEPTION_CONTINUE_SEARCH;
5295}
5296
5297// We don't build a headless jre for Windows
5298bool os::is_headless_jre() { return false; }
5299
5300static jint initSock() {
5301  WSADATA wsadata;
5302
5303  if (!os::WinSock2Dll::WinSock2Available()) {
5304    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5305                ::GetLastError());
5306    return JNI_ERR;
5307  }
5308
5309  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5310    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5311                ::GetLastError());
5312    return JNI_ERR;
5313  }
5314  return JNI_OK;
5315}
5316
5317struct hostent* os::get_host_by_name(char* name) {
5318  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5319}
5320
5321int os::socket_close(int fd) {
5322  return ::closesocket(fd);
5323}
5324
5325int os::socket(int domain, int type, int protocol) {
5326  return ::socket(domain, type, protocol);
5327}
5328
5329int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5330  return ::connect(fd, him, len);
5331}
5332
5333int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5334  return ::recv(fd, buf, (int)nBytes, flags);
5335}
5336
5337int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5338  return ::send(fd, buf, (int)nBytes, flags);
5339}
5340
5341int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5342  return ::send(fd, buf, (int)nBytes, flags);
5343}
5344
5345// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5346#if defined(IA32)
5347  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5348#elif defined (AMD64)
5349  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5350#endif
5351
5352// returns true if thread could be suspended,
5353// false otherwise
5354static bool do_suspend(HANDLE* h) {
5355  if (h != NULL) {
5356    if (SuspendThread(*h) != ~0) {
5357      return true;
5358    }
5359  }
5360  return false;
5361}
5362
5363// resume the thread
5364// calling resume on an active thread is a no-op
5365static void do_resume(HANDLE* h) {
5366  if (h != NULL) {
5367    ResumeThread(*h);
5368  }
5369}
5370
5371// retrieve a suspend/resume context capable handle
5372// from the tid. Caller validates handle return value.
5373void get_thread_handle_for_extended_context(HANDLE* h,
5374                                            OSThread::thread_id_t tid) {
5375  if (h != NULL) {
5376    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5377  }
5378}
5379
5380// Thread sampling implementation
5381//
5382void os::SuspendedThreadTask::internal_do_task() {
5383  CONTEXT    ctxt;
5384  HANDLE     h = NULL;
5385
5386  // get context capable handle for thread
5387  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5388
5389  // sanity
5390  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5391    return;
5392  }
5393
5394  // suspend the thread
5395  if (do_suspend(&h)) {
5396    ctxt.ContextFlags = sampling_context_flags;
5397    // get thread context
5398    GetThreadContext(h, &ctxt);
5399    SuspendedThreadTaskContext context(_thread, &ctxt);
5400    // pass context to Thread Sampling impl
5401    do_task(context);
5402    // resume thread
5403    do_resume(&h);
5404  }
5405
5406  // close handle
5407  CloseHandle(h);
5408}
5409
5410
5411// Kernel32 API
5412typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5413typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5414typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5415typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5416typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5417
5418GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5419VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5420GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5421GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5422RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5423
5424
5425BOOL                        os::Kernel32Dll::initialized = FALSE;
5426SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5427  assert(initialized && _GetLargePageMinimum != NULL,
5428         "GetLargePageMinimumAvailable() not yet called");
5429  return _GetLargePageMinimum();
5430}
5431
5432BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5433  if (!initialized) {
5434    initialize();
5435  }
5436  return _GetLargePageMinimum != NULL;
5437}
5438
5439BOOL os::Kernel32Dll::NumaCallsAvailable() {
5440  if (!initialized) {
5441    initialize();
5442  }
5443  return _VirtualAllocExNuma != NULL;
5444}
5445
5446LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5447                                           SIZE_T bytes, DWORD flags,
5448                                           DWORD prot, DWORD node) {
5449  assert(initialized && _VirtualAllocExNuma != NULL,
5450         "NUMACallsAvailable() not yet called");
5451
5452  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5453}
5454
5455BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5456  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5457         "NUMACallsAvailable() not yet called");
5458
5459  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5460}
5461
5462BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5463                                               PULONGLONG proc_mask) {
5464  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5465         "NUMACallsAvailable() not yet called");
5466
5467  return _GetNumaNodeProcessorMask(node, proc_mask);
5468}
5469
5470USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5471                                                 ULONG FrameToCapture,
5472                                                 PVOID* BackTrace,
5473                                                 PULONG BackTraceHash) {
5474  if (!initialized) {
5475    initialize();
5476  }
5477
5478  if (_RtlCaptureStackBackTrace != NULL) {
5479    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5480                                     BackTrace, BackTraceHash);
5481  } else {
5482    return 0;
5483  }
5484}
5485
5486void os::Kernel32Dll::initializeCommon() {
5487  if (!initialized) {
5488    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5489    assert(handle != NULL, "Just check");
5490    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5491    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5492    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5493    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5494    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5495    initialized = TRUE;
5496  }
5497}
5498
5499
5500
5501#ifndef JDK6_OR_EARLIER
5502
5503void os::Kernel32Dll::initialize() {
5504  initializeCommon();
5505}
5506
5507
5508// Kernel32 API
5509inline BOOL os::Kernel32Dll::SwitchToThread() {
5510  return ::SwitchToThread();
5511}
5512
5513inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5514  return true;
5515}
5516
5517// Help tools
5518inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5519  return true;
5520}
5521
5522inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5523                                                        DWORD th32ProcessId) {
5524  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5525}
5526
5527inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5528                                           LPMODULEENTRY32 lpme) {
5529  return ::Module32First(hSnapshot, lpme);
5530}
5531
5532inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5533                                          LPMODULEENTRY32 lpme) {
5534  return ::Module32Next(hSnapshot, lpme);
5535}
5536
5537inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5538  ::GetNativeSystemInfo(lpSystemInfo);
5539}
5540
5541// PSAPI API
5542inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5543                                             HMODULE *lpModule, DWORD cb,
5544                                             LPDWORD lpcbNeeded) {
5545  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5546}
5547
5548inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5549                                               HMODULE hModule,
5550                                               LPTSTR lpFilename,
5551                                               DWORD nSize) {
5552  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5553}
5554
5555inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5556                                               HMODULE hModule,
5557                                               LPMODULEINFO lpmodinfo,
5558                                               DWORD cb) {
5559  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5560}
5561
5562inline BOOL os::PSApiDll::PSApiAvailable() {
5563  return true;
5564}
5565
5566
5567// WinSock2 API
5568inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5569                                        LPWSADATA lpWSAData) {
5570  return ::WSAStartup(wVersionRequested, lpWSAData);
5571}
5572
5573inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5574  return ::gethostbyname(name);
5575}
5576
5577inline BOOL os::WinSock2Dll::WinSock2Available() {
5578  return true;
5579}
5580
5581// Advapi API
5582inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5583                                                   BOOL DisableAllPrivileges,
5584                                                   PTOKEN_PRIVILEGES NewState,
5585                                                   DWORD BufferLength,
5586                                                   PTOKEN_PRIVILEGES PreviousState,
5587                                                   PDWORD ReturnLength) {
5588  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5589                                 BufferLength, PreviousState, ReturnLength);
5590}
5591
5592inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5593                                              DWORD DesiredAccess,
5594                                              PHANDLE TokenHandle) {
5595  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5596}
5597
5598inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5599                                                  LPCTSTR lpName,
5600                                                  PLUID lpLuid) {
5601  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5602}
5603
5604inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5605  return true;
5606}
5607
5608void* os::get_default_process_handle() {
5609  return (void*)GetModuleHandle(NULL);
5610}
5611
5612// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5613// which is used to find statically linked in agents.
5614// Additionally for windows, takes into account __stdcall names.
5615// Parameters:
5616//            sym_name: Symbol in library we are looking for
5617//            lib_name: Name of library to look in, NULL for shared libs.
5618//            is_absolute_path == true if lib_name is absolute path to agent
5619//                                     such as "C:/a/b/L.dll"
5620//            == false if only the base name of the library is passed in
5621//               such as "L"
5622char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5623                                    bool is_absolute_path) {
5624  char *agent_entry_name;
5625  size_t len;
5626  size_t name_len;
5627  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5628  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5629  const char *start;
5630
5631  if (lib_name != NULL) {
5632    len = name_len = strlen(lib_name);
5633    if (is_absolute_path) {
5634      // Need to strip path, prefix and suffix
5635      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5636        lib_name = ++start;
5637      } else {
5638        // Need to check for drive prefix
5639        if ((start = strchr(lib_name, ':')) != NULL) {
5640          lib_name = ++start;
5641        }
5642      }
5643      if (len <= (prefix_len + suffix_len)) {
5644        return NULL;
5645      }
5646      lib_name += prefix_len;
5647      name_len = strlen(lib_name) - suffix_len;
5648    }
5649  }
5650  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5651  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5652  if (agent_entry_name == NULL) {
5653    return NULL;
5654  }
5655  if (lib_name != NULL) {
5656    const char *p = strrchr(sym_name, '@');
5657    if (p != NULL && p != sym_name) {
5658      // sym_name == _Agent_OnLoad@XX
5659      strncpy(agent_entry_name, sym_name, (p - sym_name));
5660      agent_entry_name[(p-sym_name)] = '\0';
5661      // agent_entry_name == _Agent_OnLoad
5662      strcat(agent_entry_name, "_");
5663      strncat(agent_entry_name, lib_name, name_len);
5664      strcat(agent_entry_name, p);
5665      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5666    } else {
5667      strcpy(agent_entry_name, sym_name);
5668      strcat(agent_entry_name, "_");
5669      strncat(agent_entry_name, lib_name, name_len);
5670    }
5671  } else {
5672    strcpy(agent_entry_name, sym_name);
5673  }
5674  return agent_entry_name;
5675}
5676
5677#else
5678// Kernel32 API
5679typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5680typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5681typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5682typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5683typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5684
5685SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5686CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5687Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5688Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5689GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5690
5691void os::Kernel32Dll::initialize() {
5692  if (!initialized) {
5693    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5694    assert(handle != NULL, "Just check");
5695
5696    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5697    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5698      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5699    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5700    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5701    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5702    initializeCommon();  // resolve the functions that always need resolving
5703
5704    initialized = TRUE;
5705  }
5706}
5707
5708BOOL os::Kernel32Dll::SwitchToThread() {
5709  assert(initialized && _SwitchToThread != NULL,
5710         "SwitchToThreadAvailable() not yet called");
5711  return _SwitchToThread();
5712}
5713
5714
5715BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5716  if (!initialized) {
5717    initialize();
5718  }
5719  return _SwitchToThread != NULL;
5720}
5721
5722// Help tools
5723BOOL os::Kernel32Dll::HelpToolsAvailable() {
5724  if (!initialized) {
5725    initialize();
5726  }
5727  return _CreateToolhelp32Snapshot != NULL &&
5728         _Module32First != NULL &&
5729         _Module32Next != NULL;
5730}
5731
5732HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5733                                                 DWORD th32ProcessId) {
5734  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5735         "HelpToolsAvailable() not yet called");
5736
5737  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5738}
5739
5740BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5741  assert(initialized && _Module32First != NULL,
5742         "HelpToolsAvailable() not yet called");
5743
5744  return _Module32First(hSnapshot, lpme);
5745}
5746
5747inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5748                                          LPMODULEENTRY32 lpme) {
5749  assert(initialized && _Module32Next != NULL,
5750         "HelpToolsAvailable() not yet called");
5751
5752  return _Module32Next(hSnapshot, lpme);
5753}
5754
5755
5756BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5757  if (!initialized) {
5758    initialize();
5759  }
5760  return _GetNativeSystemInfo != NULL;
5761}
5762
5763void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5764  assert(initialized && _GetNativeSystemInfo != NULL,
5765         "GetNativeSystemInfoAvailable() not yet called");
5766
5767  _GetNativeSystemInfo(lpSystemInfo);
5768}
5769
5770// PSAPI API
5771
5772
5773typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5774typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5775typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5776
5777EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5778GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5779GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5780BOOL                    os::PSApiDll::initialized = FALSE;
5781
5782void os::PSApiDll::initialize() {
5783  if (!initialized) {
5784    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5785    if (handle != NULL) {
5786      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5787                                                                    "EnumProcessModules");
5788      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5789                                                                      "GetModuleFileNameExA");
5790      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5791                                                                        "GetModuleInformation");
5792    }
5793    initialized = TRUE;
5794  }
5795}
5796
5797
5798
5799BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5800                                      DWORD cb, LPDWORD lpcbNeeded) {
5801  assert(initialized && _EnumProcessModules != NULL,
5802         "PSApiAvailable() not yet called");
5803  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5804}
5805
5806DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5807                                        LPTSTR lpFilename, DWORD nSize) {
5808  assert(initialized && _GetModuleFileNameEx != NULL,
5809         "PSApiAvailable() not yet called");
5810  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5811}
5812
5813BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5814                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5815  assert(initialized && _GetModuleInformation != NULL,
5816         "PSApiAvailable() not yet called");
5817  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5818}
5819
5820BOOL os::PSApiDll::PSApiAvailable() {
5821  if (!initialized) {
5822    initialize();
5823  }
5824  return _EnumProcessModules != NULL &&
5825    _GetModuleFileNameEx != NULL &&
5826    _GetModuleInformation != NULL;
5827}
5828
5829
5830// WinSock2 API
5831typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5832typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5833
5834WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5835gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5836BOOL             os::WinSock2Dll::initialized = FALSE;
5837
5838void os::WinSock2Dll::initialize() {
5839  if (!initialized) {
5840    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5841    if (handle != NULL) {
5842      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5843      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5844    }
5845    initialized = TRUE;
5846  }
5847}
5848
5849
5850BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5851  assert(initialized && _WSAStartup != NULL,
5852         "WinSock2Available() not yet called");
5853  return _WSAStartup(wVersionRequested, lpWSAData);
5854}
5855
5856struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5857  assert(initialized && _gethostbyname != NULL,
5858         "WinSock2Available() not yet called");
5859  return _gethostbyname(name);
5860}
5861
5862BOOL os::WinSock2Dll::WinSock2Available() {
5863  if (!initialized) {
5864    initialize();
5865  }
5866  return _WSAStartup != NULL &&
5867    _gethostbyname != NULL;
5868}
5869
5870typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5871typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5872typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5873
5874AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5875OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5876LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5877BOOL                     os::Advapi32Dll::initialized = FALSE;
5878
5879void os::Advapi32Dll::initialize() {
5880  if (!initialized) {
5881    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5882    if (handle != NULL) {
5883      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5884                                                                          "AdjustTokenPrivileges");
5885      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5886                                                                "OpenProcessToken");
5887      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5888                                                                        "LookupPrivilegeValueA");
5889    }
5890    initialized = TRUE;
5891  }
5892}
5893
5894BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5895                                            BOOL DisableAllPrivileges,
5896                                            PTOKEN_PRIVILEGES NewState,
5897                                            DWORD BufferLength,
5898                                            PTOKEN_PRIVILEGES PreviousState,
5899                                            PDWORD ReturnLength) {
5900  assert(initialized && _AdjustTokenPrivileges != NULL,
5901         "AdvapiAvailable() not yet called");
5902  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5903                                BufferLength, PreviousState, ReturnLength);
5904}
5905
5906BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5907                                       DWORD DesiredAccess,
5908                                       PHANDLE TokenHandle) {
5909  assert(initialized && _OpenProcessToken != NULL,
5910         "AdvapiAvailable() not yet called");
5911  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5912}
5913
5914BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5915                                           LPCTSTR lpName, PLUID lpLuid) {
5916  assert(initialized && _LookupPrivilegeValue != NULL,
5917         "AdvapiAvailable() not yet called");
5918  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5919}
5920
5921BOOL os::Advapi32Dll::AdvapiAvailable() {
5922  if (!initialized) {
5923    initialize();
5924  }
5925  return _AdjustTokenPrivileges != NULL &&
5926    _OpenProcessToken != NULL &&
5927    _LookupPrivilegeValue != NULL;
5928}
5929
5930#endif
5931
5932#ifndef PRODUCT
5933
5934// test the code path in reserve_memory_special() that tries to allocate memory in a single
5935// contiguous memory block at a particular address.
5936// The test first tries to find a good approximate address to allocate at by using the same
5937// method to allocate some memory at any address. The test then tries to allocate memory in
5938// the vicinity (not directly after it to avoid possible by-chance use of that location)
5939// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5940// the previously allocated memory is available for allocation. The only actual failure
5941// that is reported is when the test tries to allocate at a particular location but gets a
5942// different valid one. A NULL return value at this point is not considered an error but may
5943// be legitimate.
5944// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5945void TestReserveMemorySpecial_test() {
5946  if (!UseLargePages) {
5947    if (VerboseInternalVMTests) {
5948      gclog_or_tty->print("Skipping test because large pages are disabled");
5949    }
5950    return;
5951  }
5952  // save current value of globals
5953  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5954  bool old_use_numa_interleaving = UseNUMAInterleaving;
5955
5956  // set globals to make sure we hit the correct code path
5957  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5958
5959  // do an allocation at an address selected by the OS to get a good one.
5960  const size_t large_allocation_size = os::large_page_size() * 4;
5961  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5962  if (result == NULL) {
5963    if (VerboseInternalVMTests) {
5964      gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5965                          large_allocation_size);
5966    }
5967  } else {
5968    os::release_memory_special(result, large_allocation_size);
5969
5970    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5971    // we managed to get it once.
5972    const size_t expected_allocation_size = os::large_page_size();
5973    char* expected_location = result + os::large_page_size();
5974    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5975    if (actual_location == NULL) {
5976      if (VerboseInternalVMTests) {
5977        gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5978                            expected_location, large_allocation_size);
5979      }
5980    } else {
5981      // release memory
5982      os::release_memory_special(actual_location, expected_allocation_size);
5983      // only now check, after releasing any memory to avoid any leaks.
5984      assert(actual_location == expected_location,
5985             "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5986             expected_location, expected_allocation_size, actual_location);
5987    }
5988  }
5989
5990  // restore globals
5991  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5992  UseNUMAInterleaving = old_use_numa_interleaving;
5993}
5994#endif // PRODUCT
5995