os_windows.cpp revision 8699:1c0343a9139a
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "semaphore_windows.hpp"
67#include "services/attachListener.hpp"
68#include "services/memTracker.hpp"
69#include "services/runtimeService.hpp"
70#include "utilities/decoder.hpp"
71#include "utilities/defaultStream.hpp"
72#include "utilities/events.hpp"
73#include "utilities/growableArray.hpp"
74#include "utilities/vmError.hpp"
75
76#ifdef _DEBUG
77#include <crtdbg.h>
78#endif
79
80
81#include <windows.h>
82#include <sys/types.h>
83#include <sys/stat.h>
84#include <sys/timeb.h>
85#include <objidl.h>
86#include <shlobj.h>
87
88#include <malloc.h>
89#include <signal.h>
90#include <direct.h>
91#include <errno.h>
92#include <fcntl.h>
93#include <io.h>
94#include <process.h>              // For _beginthreadex(), _endthreadex()
95#include <imagehlp.h>             // For os::dll_address_to_function_name
96// for enumerating dll libraries
97#include <vdmdbg.h>
98
99// for timer info max values which include all bits
100#define ALL_64_BITS CONST64(-1)
101
102// For DLL loading/load error detection
103// Values of PE COFF
104#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
105#define IMAGE_FILE_SIGNATURE_LENGTH 4
106
107static HANDLE main_process;
108static HANDLE main_thread;
109static int    main_thread_id;
110
111static FILETIME process_creation_time;
112static FILETIME process_exit_time;
113static FILETIME process_user_time;
114static FILETIME process_kernel_time;
115
116#ifdef _M_IA64
117  #define __CPU__ ia64
118#else
119  #ifdef _M_AMD64
120    #define __CPU__ amd64
121  #else
122    #define __CPU__ i486
123  #endif
124#endif
125
126// save DLL module handle, used by GetModuleFileName
127
128HINSTANCE vm_lib_handle;
129
130BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
131  switch (reason) {
132  case DLL_PROCESS_ATTACH:
133    vm_lib_handle = hinst;
134    if (ForceTimeHighResolution) {
135      timeBeginPeriod(1L);
136    }
137    break;
138  case DLL_PROCESS_DETACH:
139    if (ForceTimeHighResolution) {
140      timeEndPeriod(1L);
141    }
142    break;
143  default:
144    break;
145  }
146  return true;
147}
148
149static inline double fileTimeAsDouble(FILETIME* time) {
150  const double high  = (double) ((unsigned int) ~0);
151  const double split = 10000000.0;
152  double result = (time->dwLowDateTime / split) +
153                   time->dwHighDateTime * (high/split);
154  return result;
155}
156
157// Implementation of os
158
159bool os::unsetenv(const char* name) {
160  assert(name != NULL, "Null pointer");
161  return (SetEnvironmentVariable(name, NULL) == TRUE);
162}
163
164// No setuid programs under Windows.
165bool os::have_special_privileges() {
166  return false;
167}
168
169
170// This method is  a periodic task to check for misbehaving JNI applications
171// under CheckJNI, we can add any periodic checks here.
172// For Windows at the moment does nothing
173void os::run_periodic_checks() {
174  return;
175}
176
177// previous UnhandledExceptionFilter, if there is one
178static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
179
180LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
181
182void os::init_system_properties_values() {
183  // sysclasspath, java_home, dll_dir
184  {
185    char *home_path;
186    char *dll_path;
187    char *pslash;
188    char *bin = "\\bin";
189    char home_dir[MAX_PATH + 1];
190    char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
191
192    if (alt_home_dir != NULL)  {
193      strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
194      home_dir[MAX_PATH] = '\0';
195    } else {
196      os::jvm_path(home_dir, sizeof(home_dir));
197      // Found the full path to jvm.dll.
198      // Now cut the path to <java_home>/jre if we can.
199      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
200      pslash = strrchr(home_dir, '\\');
201      if (pslash != NULL) {
202        *pslash = '\0';                   // get rid of \{client|server}
203        pslash = strrchr(home_dir, '\\');
204        if (pslash != NULL) {
205          *pslash = '\0';                 // get rid of \bin
206        }
207      }
208    }
209
210    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
211    if (home_path == NULL) {
212      return;
213    }
214    strcpy(home_path, home_dir);
215    Arguments::set_java_home(home_path);
216    FREE_C_HEAP_ARRAY(char, home_path);
217
218    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
219                                mtInternal);
220    if (dll_path == NULL) {
221      return;
222    }
223    strcpy(dll_path, home_dir);
224    strcat(dll_path, bin);
225    Arguments::set_dll_dir(dll_path);
226    FREE_C_HEAP_ARRAY(char, dll_path);
227
228    if (!set_boot_path('\\', ';')) {
229      return;
230    }
231  }
232
233// library_path
234#define EXT_DIR "\\lib\\ext"
235#define BIN_DIR "\\bin"
236#define PACKAGE_DIR "\\Sun\\Java"
237  {
238    // Win32 library search order (See the documentation for LoadLibrary):
239    //
240    // 1. The directory from which application is loaded.
241    // 2. The system wide Java Extensions directory (Java only)
242    // 3. System directory (GetSystemDirectory)
243    // 4. Windows directory (GetWindowsDirectory)
244    // 5. The PATH environment variable
245    // 6. The current directory
246
247    char *library_path;
248    char tmp[MAX_PATH];
249    char *path_str = ::getenv("PATH");
250
251    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
252                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
253
254    library_path[0] = '\0';
255
256    GetModuleFileName(NULL, tmp, sizeof(tmp));
257    *(strrchr(tmp, '\\')) = '\0';
258    strcat(library_path, tmp);
259
260    GetWindowsDirectory(tmp, sizeof(tmp));
261    strcat(library_path, ";");
262    strcat(library_path, tmp);
263    strcat(library_path, PACKAGE_DIR BIN_DIR);
264
265    GetSystemDirectory(tmp, sizeof(tmp));
266    strcat(library_path, ";");
267    strcat(library_path, tmp);
268
269    GetWindowsDirectory(tmp, sizeof(tmp));
270    strcat(library_path, ";");
271    strcat(library_path, tmp);
272
273    if (path_str) {
274      strcat(library_path, ";");
275      strcat(library_path, path_str);
276    }
277
278    strcat(library_path, ";.");
279
280    Arguments::set_library_path(library_path);
281    FREE_C_HEAP_ARRAY(char, library_path);
282  }
283
284  // Default extensions directory
285  {
286    char path[MAX_PATH];
287    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
288    GetWindowsDirectory(path, MAX_PATH);
289    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
290            path, PACKAGE_DIR, EXT_DIR);
291    Arguments::set_ext_dirs(buf);
292  }
293  #undef EXT_DIR
294  #undef BIN_DIR
295  #undef PACKAGE_DIR
296
297#ifndef _WIN64
298  // set our UnhandledExceptionFilter and save any previous one
299  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
300#endif
301
302  // Done
303  return;
304}
305
306void os::breakpoint() {
307  DebugBreak();
308}
309
310// Invoked from the BREAKPOINT Macro
311extern "C" void breakpoint() {
312  os::breakpoint();
313}
314
315// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
316// So far, this method is only used by Native Memory Tracking, which is
317// only supported on Windows XP or later.
318//
319int os::get_native_stack(address* stack, int frames, int toSkip) {
320#ifdef _NMT_NOINLINE_
321  toSkip++;
322#endif
323  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
324                                                       (PVOID*)stack, NULL);
325  for (int index = captured; index < frames; index ++) {
326    stack[index] = NULL;
327  }
328  return captured;
329}
330
331
332// os::current_stack_base()
333//
334//   Returns the base of the stack, which is the stack's
335//   starting address.  This function must be called
336//   while running on the stack of the thread being queried.
337
338address os::current_stack_base() {
339  MEMORY_BASIC_INFORMATION minfo;
340  address stack_bottom;
341  size_t stack_size;
342
343  VirtualQuery(&minfo, &minfo, sizeof(minfo));
344  stack_bottom =  (address)minfo.AllocationBase;
345  stack_size = minfo.RegionSize;
346
347  // Add up the sizes of all the regions with the same
348  // AllocationBase.
349  while (1) {
350    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
351    if (stack_bottom == (address)minfo.AllocationBase) {
352      stack_size += minfo.RegionSize;
353    } else {
354      break;
355    }
356  }
357
358#ifdef _M_IA64
359  // IA64 has memory and register stacks
360  //
361  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
362  // at thread creation (1MB backing store growing upwards, 1MB memory stack
363  // growing downwards, 2MB summed up)
364  //
365  // ...
366  // ------- top of stack (high address) -----
367  // |
368  // |      1MB
369  // |      Backing Store (Register Stack)
370  // |
371  // |         / \
372  // |          |
373  // |          |
374  // |          |
375  // ------------------------ stack base -----
376  // |      1MB
377  // |      Memory Stack
378  // |
379  // |          |
380  // |          |
381  // |          |
382  // |         \ /
383  // |
384  // ----- bottom of stack (low address) -----
385  // ...
386
387  stack_size = stack_size / 2;
388#endif
389  return stack_bottom + stack_size;
390}
391
392size_t os::current_stack_size() {
393  size_t sz;
394  MEMORY_BASIC_INFORMATION minfo;
395  VirtualQuery(&minfo, &minfo, sizeof(minfo));
396  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
397  return sz;
398}
399
400struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
401  const struct tm* time_struct_ptr = localtime(clock);
402  if (time_struct_ptr != NULL) {
403    *res = *time_struct_ptr;
404    return res;
405  }
406  return NULL;
407}
408
409LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
410
411// Thread start routine for all new Java threads
412static unsigned __stdcall java_start(Thread* thread) {
413  // Try to randomize the cache line index of hot stack frames.
414  // This helps when threads of the same stack traces evict each other's
415  // cache lines. The threads can be either from the same JVM instance, or
416  // from different JVM instances. The benefit is especially true for
417  // processors with hyperthreading technology.
418  static int counter = 0;
419  int pid = os::current_process_id();
420  _alloca(((pid ^ counter++) & 7) * 128);
421
422  OSThread* osthr = thread->osthread();
423  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
424
425  if (UseNUMA) {
426    int lgrp_id = os::numa_get_group_id();
427    if (lgrp_id != -1) {
428      thread->set_lgrp_id(lgrp_id);
429    }
430  }
431
432  // Diagnostic code to investigate JDK-6573254
433  int res = 30115;  // non-java thread
434  if (thread->is_Java_thread()) {
435    res = 20115;    // java thread
436  }
437
438  // Install a win32 structured exception handler around every thread created
439  // by VM, so VM can generate error dump when an exception occurred in non-
440  // Java thread (e.g. VM thread).
441  __try {
442    thread->run();
443  } __except(topLevelExceptionFilter(
444                                     (_EXCEPTION_POINTERS*)_exception_info())) {
445    // Nothing to do.
446  }
447
448  // One less thread is executing
449  // When the VMThread gets here, the main thread may have already exited
450  // which frees the CodeHeap containing the Atomic::add code
451  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
452    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
453  }
454
455  // Thread must not return from exit_process_or_thread(), but if it does,
456  // let it proceed to exit normally
457  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
458}
459
460static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
461                                  int thread_id) {
462  // Allocate the OSThread object
463  OSThread* osthread = new OSThread(NULL, NULL);
464  if (osthread == NULL) return NULL;
465
466  // Initialize support for Java interrupts
467  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
468  if (interrupt_event == NULL) {
469    delete osthread;
470    return NULL;
471  }
472  osthread->set_interrupt_event(interrupt_event);
473
474  // Store info on the Win32 thread into the OSThread
475  osthread->set_thread_handle(thread_handle);
476  osthread->set_thread_id(thread_id);
477
478  if (UseNUMA) {
479    int lgrp_id = os::numa_get_group_id();
480    if (lgrp_id != -1) {
481      thread->set_lgrp_id(lgrp_id);
482    }
483  }
484
485  // Initial thread state is INITIALIZED, not SUSPENDED
486  osthread->set_state(INITIALIZED);
487
488  return osthread;
489}
490
491
492bool os::create_attached_thread(JavaThread* thread) {
493#ifdef ASSERT
494  thread->verify_not_published();
495#endif
496  HANDLE thread_h;
497  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
498                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
499    fatal("DuplicateHandle failed\n");
500  }
501  OSThread* osthread = create_os_thread(thread, thread_h,
502                                        (int)current_thread_id());
503  if (osthread == NULL) {
504    return false;
505  }
506
507  // Initial thread state is RUNNABLE
508  osthread->set_state(RUNNABLE);
509
510  thread->set_osthread(osthread);
511  return true;
512}
513
514bool os::create_main_thread(JavaThread* thread) {
515#ifdef ASSERT
516  thread->verify_not_published();
517#endif
518  if (_starting_thread == NULL) {
519    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
520    if (_starting_thread == NULL) {
521      return false;
522    }
523  }
524
525  // The primordial thread is runnable from the start)
526  _starting_thread->set_state(RUNNABLE);
527
528  thread->set_osthread(_starting_thread);
529  return true;
530}
531
532// Allocate and initialize a new OSThread
533bool os::create_thread(Thread* thread, ThreadType thr_type,
534                       size_t stack_size) {
535  unsigned thread_id;
536
537  // Allocate the OSThread object
538  OSThread* osthread = new OSThread(NULL, NULL);
539  if (osthread == NULL) {
540    return false;
541  }
542
543  // Initialize support for Java interrupts
544  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
545  if (interrupt_event == NULL) {
546    delete osthread;
547    return NULL;
548  }
549  osthread->set_interrupt_event(interrupt_event);
550  osthread->set_interrupted(false);
551
552  thread->set_osthread(osthread);
553
554  if (stack_size == 0) {
555    switch (thr_type) {
556    case os::java_thread:
557      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
558      if (JavaThread::stack_size_at_create() > 0) {
559        stack_size = JavaThread::stack_size_at_create();
560      }
561      break;
562    case os::compiler_thread:
563      if (CompilerThreadStackSize > 0) {
564        stack_size = (size_t)(CompilerThreadStackSize * K);
565        break;
566      } // else fall through:
567        // use VMThreadStackSize if CompilerThreadStackSize is not defined
568    case os::vm_thread:
569    case os::pgc_thread:
570    case os::cgc_thread:
571    case os::watcher_thread:
572      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
573      break;
574    }
575  }
576
577  // Create the Win32 thread
578  //
579  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
580  // does not specify stack size. Instead, it specifies the size of
581  // initially committed space. The stack size is determined by
582  // PE header in the executable. If the committed "stack_size" is larger
583  // than default value in the PE header, the stack is rounded up to the
584  // nearest multiple of 1MB. For example if the launcher has default
585  // stack size of 320k, specifying any size less than 320k does not
586  // affect the actual stack size at all, it only affects the initial
587  // commitment. On the other hand, specifying 'stack_size' larger than
588  // default value may cause significant increase in memory usage, because
589  // not only the stack space will be rounded up to MB, but also the
590  // entire space is committed upfront.
591  //
592  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
593  // for CreateThread() that can treat 'stack_size' as stack size. However we
594  // are not supposed to call CreateThread() directly according to MSDN
595  // document because JVM uses C runtime library. The good news is that the
596  // flag appears to work with _beginthredex() as well.
597
598#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
599  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
600#endif
601
602  HANDLE thread_handle =
603    (HANDLE)_beginthreadex(NULL,
604                           (unsigned)stack_size,
605                           (unsigned (__stdcall *)(void*)) java_start,
606                           thread,
607                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
608                           &thread_id);
609  if (thread_handle == NULL) {
610    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
611    // without the flag.
612    thread_handle =
613      (HANDLE)_beginthreadex(NULL,
614                             (unsigned)stack_size,
615                             (unsigned (__stdcall *)(void*)) java_start,
616                             thread,
617                             CREATE_SUSPENDED,
618                             &thread_id);
619  }
620  if (thread_handle == NULL) {
621    // Need to clean up stuff we've allocated so far
622    CloseHandle(osthread->interrupt_event());
623    thread->set_osthread(NULL);
624    delete osthread;
625    return NULL;
626  }
627
628  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
629
630  // Store info on the Win32 thread into the OSThread
631  osthread->set_thread_handle(thread_handle);
632  osthread->set_thread_id(thread_id);
633
634  // Initial thread state is INITIALIZED, not SUSPENDED
635  osthread->set_state(INITIALIZED);
636
637  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
638  return true;
639}
640
641
642// Free Win32 resources related to the OSThread
643void os::free_thread(OSThread* osthread) {
644  assert(osthread != NULL, "osthread not set");
645  CloseHandle(osthread->thread_handle());
646  CloseHandle(osthread->interrupt_event());
647  delete osthread;
648}
649
650static jlong first_filetime;
651static jlong initial_performance_count;
652static jlong performance_frequency;
653
654
655jlong as_long(LARGE_INTEGER x) {
656  jlong result = 0; // initialization to avoid warning
657  set_high(&result, x.HighPart);
658  set_low(&result, x.LowPart);
659  return result;
660}
661
662
663jlong os::elapsed_counter() {
664  LARGE_INTEGER count;
665  if (win32::_has_performance_count) {
666    QueryPerformanceCounter(&count);
667    return as_long(count) - initial_performance_count;
668  } else {
669    FILETIME wt;
670    GetSystemTimeAsFileTime(&wt);
671    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
672  }
673}
674
675
676jlong os::elapsed_frequency() {
677  if (win32::_has_performance_count) {
678    return performance_frequency;
679  } else {
680    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
681    return 10000000;
682  }
683}
684
685
686julong os::available_memory() {
687  return win32::available_memory();
688}
689
690julong os::win32::available_memory() {
691  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
692  // value if total memory is larger than 4GB
693  MEMORYSTATUSEX ms;
694  ms.dwLength = sizeof(ms);
695  GlobalMemoryStatusEx(&ms);
696
697  return (julong)ms.ullAvailPhys;
698}
699
700julong os::physical_memory() {
701  return win32::physical_memory();
702}
703
704bool os::has_allocatable_memory_limit(julong* limit) {
705  MEMORYSTATUSEX ms;
706  ms.dwLength = sizeof(ms);
707  GlobalMemoryStatusEx(&ms);
708#ifdef _LP64
709  *limit = (julong)ms.ullAvailVirtual;
710  return true;
711#else
712  // Limit to 1400m because of the 2gb address space wall
713  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
714  return true;
715#endif
716}
717
718// VC6 lacks DWORD_PTR
719#if _MSC_VER < 1300
720typedef UINT_PTR DWORD_PTR;
721#endif
722
723int os::active_processor_count() {
724  DWORD_PTR lpProcessAffinityMask = 0;
725  DWORD_PTR lpSystemAffinityMask = 0;
726  int proc_count = processor_count();
727  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
728      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
729    // Nof active processors is number of bits in process affinity mask
730    int bitcount = 0;
731    while (lpProcessAffinityMask != 0) {
732      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
733      bitcount++;
734    }
735    return bitcount;
736  } else {
737    return proc_count;
738  }
739}
740
741void os::set_native_thread_name(const char *name) {
742
743  // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
744  //
745  // Note that unfortunately this only works if the process
746  // is already attached to a debugger; debugger must observe
747  // the exception below to show the correct name.
748
749  const DWORD MS_VC_EXCEPTION = 0x406D1388;
750  struct {
751    DWORD dwType;     // must be 0x1000
752    LPCSTR szName;    // pointer to name (in user addr space)
753    DWORD dwThreadID; // thread ID (-1=caller thread)
754    DWORD dwFlags;    // reserved for future use, must be zero
755  } info;
756
757  info.dwType = 0x1000;
758  info.szName = name;
759  info.dwThreadID = -1;
760  info.dwFlags = 0;
761
762  __try {
763    RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
764  } __except(EXCEPTION_CONTINUE_EXECUTION) {}
765}
766
767bool os::distribute_processes(uint length, uint* distribution) {
768  // Not yet implemented.
769  return false;
770}
771
772bool os::bind_to_processor(uint processor_id) {
773  // Not yet implemented.
774  return false;
775}
776
777void os::win32::initialize_performance_counter() {
778  LARGE_INTEGER count;
779  if (QueryPerformanceFrequency(&count)) {
780    win32::_has_performance_count = 1;
781    performance_frequency = as_long(count);
782    QueryPerformanceCounter(&count);
783    initial_performance_count = as_long(count);
784  } else {
785    win32::_has_performance_count = 0;
786    FILETIME wt;
787    GetSystemTimeAsFileTime(&wt);
788    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
789  }
790}
791
792
793double os::elapsedTime() {
794  return (double) elapsed_counter() / (double) elapsed_frequency();
795}
796
797
798// Windows format:
799//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
800// Java format:
801//   Java standards require the number of milliseconds since 1/1/1970
802
803// Constant offset - calculated using offset()
804static jlong  _offset   = 116444736000000000;
805// Fake time counter for reproducible results when debugging
806static jlong  fake_time = 0;
807
808#ifdef ASSERT
809// Just to be safe, recalculate the offset in debug mode
810static jlong _calculated_offset = 0;
811static int   _has_calculated_offset = 0;
812
813jlong offset() {
814  if (_has_calculated_offset) return _calculated_offset;
815  SYSTEMTIME java_origin;
816  java_origin.wYear          = 1970;
817  java_origin.wMonth         = 1;
818  java_origin.wDayOfWeek     = 0; // ignored
819  java_origin.wDay           = 1;
820  java_origin.wHour          = 0;
821  java_origin.wMinute        = 0;
822  java_origin.wSecond        = 0;
823  java_origin.wMilliseconds  = 0;
824  FILETIME jot;
825  if (!SystemTimeToFileTime(&java_origin, &jot)) {
826    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
827  }
828  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
829  _has_calculated_offset = 1;
830  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
831  return _calculated_offset;
832}
833#else
834jlong offset() {
835  return _offset;
836}
837#endif
838
839jlong windows_to_java_time(FILETIME wt) {
840  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
841  return (a - offset()) / 10000;
842}
843
844// Returns time ticks in (10th of micro seconds)
845jlong windows_to_time_ticks(FILETIME wt) {
846  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
847  return (a - offset());
848}
849
850FILETIME java_to_windows_time(jlong l) {
851  jlong a = (l * 10000) + offset();
852  FILETIME result;
853  result.dwHighDateTime = high(a);
854  result.dwLowDateTime  = low(a);
855  return result;
856}
857
858bool os::supports_vtime() { return true; }
859bool os::enable_vtime() { return false; }
860bool os::vtime_enabled() { return false; }
861
862double os::elapsedVTime() {
863  FILETIME created;
864  FILETIME exited;
865  FILETIME kernel;
866  FILETIME user;
867  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
868    // the resolution of windows_to_java_time() should be sufficient (ms)
869    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
870  } else {
871    return elapsedTime();
872  }
873}
874
875jlong os::javaTimeMillis() {
876  if (UseFakeTimers) {
877    return fake_time++;
878  } else {
879    FILETIME wt;
880    GetSystemTimeAsFileTime(&wt);
881    return windows_to_java_time(wt);
882  }
883}
884
885void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
886  FILETIME wt;
887  GetSystemTimeAsFileTime(&wt);
888  jlong ticks = windows_to_time_ticks(wt); // 10th of micros
889  jlong secs = jlong(ticks / 10000000); // 10000 * 1000
890  seconds = secs;
891  nanos = jlong(ticks - (secs*10000000)) * 100;
892}
893
894jlong os::javaTimeNanos() {
895  if (!win32::_has_performance_count) {
896    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
897  } else {
898    LARGE_INTEGER current_count;
899    QueryPerformanceCounter(&current_count);
900    double current = as_long(current_count);
901    double freq = performance_frequency;
902    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
903    return time;
904  }
905}
906
907void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
908  if (!win32::_has_performance_count) {
909    // javaTimeMillis() doesn't have much percision,
910    // but it is not going to wrap -- so all 64 bits
911    info_ptr->max_value = ALL_64_BITS;
912
913    // this is a wall clock timer, so may skip
914    info_ptr->may_skip_backward = true;
915    info_ptr->may_skip_forward = true;
916  } else {
917    jlong freq = performance_frequency;
918    if (freq < NANOSECS_PER_SEC) {
919      // the performance counter is 64 bits and we will
920      // be multiplying it -- so no wrap in 64 bits
921      info_ptr->max_value = ALL_64_BITS;
922    } else if (freq > NANOSECS_PER_SEC) {
923      // use the max value the counter can reach to
924      // determine the max value which could be returned
925      julong max_counter = (julong)ALL_64_BITS;
926      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
927    } else {
928      // the performance counter is 64 bits and we will
929      // be using it directly -- so no wrap in 64 bits
930      info_ptr->max_value = ALL_64_BITS;
931    }
932
933    // using a counter, so no skipping
934    info_ptr->may_skip_backward = false;
935    info_ptr->may_skip_forward = false;
936  }
937  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
938}
939
940char* os::local_time_string(char *buf, size_t buflen) {
941  SYSTEMTIME st;
942  GetLocalTime(&st);
943  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
944               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
945  return buf;
946}
947
948bool os::getTimesSecs(double* process_real_time,
949                      double* process_user_time,
950                      double* process_system_time) {
951  HANDLE h_process = GetCurrentProcess();
952  FILETIME create_time, exit_time, kernel_time, user_time;
953  BOOL result = GetProcessTimes(h_process,
954                                &create_time,
955                                &exit_time,
956                                &kernel_time,
957                                &user_time);
958  if (result != 0) {
959    FILETIME wt;
960    GetSystemTimeAsFileTime(&wt);
961    jlong rtc_millis = windows_to_java_time(wt);
962    jlong user_millis = windows_to_java_time(user_time);
963    jlong system_millis = windows_to_java_time(kernel_time);
964    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
965    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
966    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
967    return true;
968  } else {
969    return false;
970  }
971}
972
973void os::shutdown() {
974  // allow PerfMemory to attempt cleanup of any persistent resources
975  perfMemory_exit();
976
977  // flush buffered output, finish log files
978  ostream_abort();
979
980  // Check for abort hook
981  abort_hook_t abort_hook = Arguments::abort_hook();
982  if (abort_hook != NULL) {
983    abort_hook();
984  }
985}
986
987
988static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
989                                         PMINIDUMP_EXCEPTION_INFORMATION,
990                                         PMINIDUMP_USER_STREAM_INFORMATION,
991                                         PMINIDUMP_CALLBACK_INFORMATION);
992
993static HANDLE dumpFile = NULL;
994
995// Check if dump file can be created.
996void os::check_dump_limit(char* buffer, size_t buffsz) {
997  bool status = true;
998  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
999    jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000    status = false;
1001  }
1002
1003#ifndef ASSERT
1004  if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1005    jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1006    status = false;
1007  }
1008#endif
1009
1010  if (status) {
1011    const char* cwd = get_current_directory(NULL, 0);
1012    int pid = current_process_id();
1013    if (cwd != NULL) {
1014      jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1015    } else {
1016      jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1017    }
1018
1019    if (dumpFile == NULL &&
1020       (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1021                 == INVALID_HANDLE_VALUE) {
1022      jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1023      status = false;
1024    }
1025  }
1026  VMError::record_coredump_status(buffer, status);
1027}
1028
1029void os::abort(bool dump_core, void* siginfo, void* context) {
1030  HINSTANCE dbghelp;
1031  EXCEPTION_POINTERS ep;
1032  MINIDUMP_EXCEPTION_INFORMATION mei;
1033  MINIDUMP_EXCEPTION_INFORMATION* pmei;
1034
1035  HANDLE hProcess = GetCurrentProcess();
1036  DWORD processId = GetCurrentProcessId();
1037  MINIDUMP_TYPE dumpType;
1038
1039  shutdown();
1040  if (!dump_core || dumpFile == NULL) {
1041    if (dumpFile != NULL) {
1042      CloseHandle(dumpFile);
1043    }
1044    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1045  }
1046
1047  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1048
1049  if (dbghelp == NULL) {
1050    jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1051    CloseHandle(dumpFile);
1052    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1053  }
1054
1055  _MiniDumpWriteDump =
1056      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1057                                    PMINIDUMP_EXCEPTION_INFORMATION,
1058                                    PMINIDUMP_USER_STREAM_INFORMATION,
1059                                    PMINIDUMP_CALLBACK_INFORMATION),
1060                                    GetProcAddress(dbghelp,
1061                                    "MiniDumpWriteDump"));
1062
1063  if (_MiniDumpWriteDump == NULL) {
1064    jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1065    CloseHandle(dumpFile);
1066    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1067  }
1068
1069  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1070
1071  // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1072  // API_VERSION_NUMBER 11 or higher contains the ones we want though
1073#if API_VERSION_NUMBER >= 11
1074  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1075                             MiniDumpWithUnloadedModules);
1076#endif
1077
1078  if (siginfo != NULL && context != NULL) {
1079    ep.ContextRecord = (PCONTEXT) context;
1080    ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1081
1082    mei.ThreadId = GetCurrentThreadId();
1083    mei.ExceptionPointers = &ep;
1084    pmei = &mei;
1085  } else {
1086    pmei = NULL;
1087  }
1088
1089  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1090  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1091  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1092      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1093    jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1094  }
1095  CloseHandle(dumpFile);
1096  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1097}
1098
1099// Die immediately, no exit hook, no abort hook, no cleanup.
1100void os::die() {
1101  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1102}
1103
1104// Directory routines copied from src/win32/native/java/io/dirent_md.c
1105//  * dirent_md.c       1.15 00/02/02
1106//
1107// The declarations for DIR and struct dirent are in jvm_win32.h.
1108
1109// Caller must have already run dirname through JVM_NativePath, which removes
1110// duplicate slashes and converts all instances of '/' into '\\'.
1111
1112DIR * os::opendir(const char *dirname) {
1113  assert(dirname != NULL, "just checking");   // hotspot change
1114  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1115  DWORD fattr;                                // hotspot change
1116  char alt_dirname[4] = { 0, 0, 0, 0 };
1117
1118  if (dirp == 0) {
1119    errno = ENOMEM;
1120    return 0;
1121  }
1122
1123  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1124  // as a directory in FindFirstFile().  We detect this case here and
1125  // prepend the current drive name.
1126  //
1127  if (dirname[1] == '\0' && dirname[0] == '\\') {
1128    alt_dirname[0] = _getdrive() + 'A' - 1;
1129    alt_dirname[1] = ':';
1130    alt_dirname[2] = '\\';
1131    alt_dirname[3] = '\0';
1132    dirname = alt_dirname;
1133  }
1134
1135  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1136  if (dirp->path == 0) {
1137    free(dirp);
1138    errno = ENOMEM;
1139    return 0;
1140  }
1141  strcpy(dirp->path, dirname);
1142
1143  fattr = GetFileAttributes(dirp->path);
1144  if (fattr == 0xffffffff) {
1145    free(dirp->path);
1146    free(dirp);
1147    errno = ENOENT;
1148    return 0;
1149  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1150    free(dirp->path);
1151    free(dirp);
1152    errno = ENOTDIR;
1153    return 0;
1154  }
1155
1156  // Append "*.*", or possibly "\\*.*", to path
1157  if (dirp->path[1] == ':' &&
1158      (dirp->path[2] == '\0' ||
1159      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1160    // No '\\' needed for cases like "Z:" or "Z:\"
1161    strcat(dirp->path, "*.*");
1162  } else {
1163    strcat(dirp->path, "\\*.*");
1164  }
1165
1166  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1167  if (dirp->handle == INVALID_HANDLE_VALUE) {
1168    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1169      free(dirp->path);
1170      free(dirp);
1171      errno = EACCES;
1172      return 0;
1173    }
1174  }
1175  return dirp;
1176}
1177
1178// parameter dbuf unused on Windows
1179struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1180  assert(dirp != NULL, "just checking");      // hotspot change
1181  if (dirp->handle == INVALID_HANDLE_VALUE) {
1182    return 0;
1183  }
1184
1185  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1186
1187  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1188    if (GetLastError() == ERROR_INVALID_HANDLE) {
1189      errno = EBADF;
1190      return 0;
1191    }
1192    FindClose(dirp->handle);
1193    dirp->handle = INVALID_HANDLE_VALUE;
1194  }
1195
1196  return &dirp->dirent;
1197}
1198
1199int os::closedir(DIR *dirp) {
1200  assert(dirp != NULL, "just checking");      // hotspot change
1201  if (dirp->handle != INVALID_HANDLE_VALUE) {
1202    if (!FindClose(dirp->handle)) {
1203      errno = EBADF;
1204      return -1;
1205    }
1206    dirp->handle = INVALID_HANDLE_VALUE;
1207  }
1208  free(dirp->path);
1209  free(dirp);
1210  return 0;
1211}
1212
1213// This must be hard coded because it's the system's temporary
1214// directory not the java application's temp directory, ala java.io.tmpdir.
1215const char* os::get_temp_directory() {
1216  static char path_buf[MAX_PATH];
1217  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1218    return path_buf;
1219  } else {
1220    path_buf[0] = '\0';
1221    return path_buf;
1222  }
1223}
1224
1225static bool file_exists(const char* filename) {
1226  if (filename == NULL || strlen(filename) == 0) {
1227    return false;
1228  }
1229  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1230}
1231
1232bool os::dll_build_name(char *buffer, size_t buflen,
1233                        const char* pname, const char* fname) {
1234  bool retval = false;
1235  const size_t pnamelen = pname ? strlen(pname) : 0;
1236  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1237
1238  // Return error on buffer overflow.
1239  if (pnamelen + strlen(fname) + 10 > buflen) {
1240    return retval;
1241  }
1242
1243  if (pnamelen == 0) {
1244    jio_snprintf(buffer, buflen, "%s.dll", fname);
1245    retval = true;
1246  } else if (c == ':' || c == '\\') {
1247    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1248    retval = true;
1249  } else if (strchr(pname, *os::path_separator()) != NULL) {
1250    int n;
1251    char** pelements = split_path(pname, &n);
1252    if (pelements == NULL) {
1253      return false;
1254    }
1255    for (int i = 0; i < n; i++) {
1256      char* path = pelements[i];
1257      // Really shouldn't be NULL, but check can't hurt
1258      size_t plen = (path == NULL) ? 0 : strlen(path);
1259      if (plen == 0) {
1260        continue; // skip the empty path values
1261      }
1262      const char lastchar = path[plen - 1];
1263      if (lastchar == ':' || lastchar == '\\') {
1264        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1265      } else {
1266        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1267      }
1268      if (file_exists(buffer)) {
1269        retval = true;
1270        break;
1271      }
1272    }
1273    // release the storage
1274    for (int i = 0; i < n; i++) {
1275      if (pelements[i] != NULL) {
1276        FREE_C_HEAP_ARRAY(char, pelements[i]);
1277      }
1278    }
1279    if (pelements != NULL) {
1280      FREE_C_HEAP_ARRAY(char*, pelements);
1281    }
1282  } else {
1283    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1284    retval = true;
1285  }
1286  return retval;
1287}
1288
1289// Needs to be in os specific directory because windows requires another
1290// header file <direct.h>
1291const char* os::get_current_directory(char *buf, size_t buflen) {
1292  int n = static_cast<int>(buflen);
1293  if (buflen > INT_MAX)  n = INT_MAX;
1294  return _getcwd(buf, n);
1295}
1296
1297//-----------------------------------------------------------
1298// Helper functions for fatal error handler
1299#ifdef _WIN64
1300// Helper routine which returns true if address in
1301// within the NTDLL address space.
1302//
1303static bool _addr_in_ntdll(address addr) {
1304  HMODULE hmod;
1305  MODULEINFO minfo;
1306
1307  hmod = GetModuleHandle("NTDLL.DLL");
1308  if (hmod == NULL) return false;
1309  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1310                                          &minfo, sizeof(MODULEINFO))) {
1311    return false;
1312  }
1313
1314  if ((addr >= minfo.lpBaseOfDll) &&
1315      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1316    return true;
1317  } else {
1318    return false;
1319  }
1320}
1321#endif
1322
1323struct _modinfo {
1324  address addr;
1325  char*   full_path;   // point to a char buffer
1326  int     buflen;      // size of the buffer
1327  address base_addr;
1328};
1329
1330static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1331                                  address top_address, void * param) {
1332  struct _modinfo *pmod = (struct _modinfo *)param;
1333  if (!pmod) return -1;
1334
1335  if (base_addr   <= pmod->addr &&
1336      top_address > pmod->addr) {
1337    // if a buffer is provided, copy path name to the buffer
1338    if (pmod->full_path) {
1339      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340    }
1341    pmod->base_addr = base_addr;
1342    return 1;
1343  }
1344  return 0;
1345}
1346
1347bool os::dll_address_to_library_name(address addr, char* buf,
1348                                     int buflen, int* offset) {
1349  // buf is not optional, but offset is optional
1350  assert(buf != NULL, "sanity check");
1351
1352// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1353//       return the full path to the DLL file, sometimes it returns path
1354//       to the corresponding PDB file (debug info); sometimes it only
1355//       returns partial path, which makes life painful.
1356
1357  struct _modinfo mi;
1358  mi.addr      = addr;
1359  mi.full_path = buf;
1360  mi.buflen    = buflen;
1361  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1362    // buf already contains path name
1363    if (offset) *offset = addr - mi.base_addr;
1364    return true;
1365  }
1366
1367  buf[0] = '\0';
1368  if (offset) *offset = -1;
1369  return false;
1370}
1371
1372bool os::dll_address_to_function_name(address addr, char *buf,
1373                                      int buflen, int *offset,
1374                                      bool demangle) {
1375  // buf is not optional, but offset is optional
1376  assert(buf != NULL, "sanity check");
1377
1378  if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1379    return true;
1380  }
1381  if (offset != NULL)  *offset  = -1;
1382  buf[0] = '\0';
1383  return false;
1384}
1385
1386// save the start and end address of jvm.dll into param[0] and param[1]
1387static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1388                           address top_address, void * param) {
1389  if (!param) return -1;
1390
1391  if (base_addr   <= (address)_locate_jvm_dll &&
1392      top_address > (address)_locate_jvm_dll) {
1393    ((address*)param)[0] = base_addr;
1394    ((address*)param)[1] = top_address;
1395    return 1;
1396  }
1397  return 0;
1398}
1399
1400address vm_lib_location[2];    // start and end address of jvm.dll
1401
1402// check if addr is inside jvm.dll
1403bool os::address_is_in_vm(address addr) {
1404  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1405    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1406      assert(false, "Can't find jvm module.");
1407      return false;
1408    }
1409  }
1410
1411  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412}
1413
1414// print module info; param is outputStream*
1415static int _print_module(const char* fname, address base_address,
1416                         address top_address, void* param) {
1417  if (!param) return -1;
1418
1419  outputStream* st = (outputStream*)param;
1420
1421  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1422  return 0;
1423}
1424
1425// Loads .dll/.so and
1426// in case of error it checks if .dll/.so was built for the
1427// same architecture as Hotspot is running on
1428void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1429  void * result = LoadLibrary(name);
1430  if (result != NULL) {
1431    return result;
1432  }
1433
1434  DWORD errcode = GetLastError();
1435  if (errcode == ERROR_MOD_NOT_FOUND) {
1436    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1437    ebuf[ebuflen - 1] = '\0';
1438    return NULL;
1439  }
1440
1441  // Parsing dll below
1442  // If we can read dll-info and find that dll was built
1443  // for an architecture other than Hotspot is running in
1444  // - then print to buffer "DLL was built for a different architecture"
1445  // else call os::lasterror to obtain system error message
1446
1447  // Read system error message into ebuf
1448  // It may or may not be overwritten below (in the for loop and just above)
1449  lasterror(ebuf, (size_t) ebuflen);
1450  ebuf[ebuflen - 1] = '\0';
1451  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1452  if (fd < 0) {
1453    return NULL;
1454  }
1455
1456  uint32_t signature_offset;
1457  uint16_t lib_arch = 0;
1458  bool failed_to_get_lib_arch =
1459    ( // Go to position 3c in the dll
1460     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1461     ||
1462     // Read location of signature
1463     (sizeof(signature_offset) !=
1464     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1465     ||
1466     // Go to COFF File Header in dll
1467     // that is located after "signature" (4 bytes long)
1468     (os::seek_to_file_offset(fd,
1469     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1470     ||
1471     // Read field that contains code of architecture
1472     // that dll was built for
1473     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1474    );
1475
1476  ::close(fd);
1477  if (failed_to_get_lib_arch) {
1478    // file i/o error - report os::lasterror(...) msg
1479    return NULL;
1480  }
1481
1482  typedef struct {
1483    uint16_t arch_code;
1484    char* arch_name;
1485  } arch_t;
1486
1487  static const arch_t arch_array[] = {
1488    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1489    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1490    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1491  };
1492#if   (defined _M_IA64)
1493  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1494#elif (defined _M_AMD64)
1495  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1496#elif (defined _M_IX86)
1497  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1498#else
1499  #error Method os::dll_load requires that one of following \
1500         is defined :_M_IA64,_M_AMD64 or _M_IX86
1501#endif
1502
1503
1504  // Obtain a string for printf operation
1505  // lib_arch_str shall contain string what platform this .dll was built for
1506  // running_arch_str shall string contain what platform Hotspot was built for
1507  char *running_arch_str = NULL, *lib_arch_str = NULL;
1508  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1509    if (lib_arch == arch_array[i].arch_code) {
1510      lib_arch_str = arch_array[i].arch_name;
1511    }
1512    if (running_arch == arch_array[i].arch_code) {
1513      running_arch_str = arch_array[i].arch_name;
1514    }
1515  }
1516
1517  assert(running_arch_str,
1518         "Didn't find running architecture code in arch_array");
1519
1520  // If the architecture is right
1521  // but some other error took place - report os::lasterror(...) msg
1522  if (lib_arch == running_arch) {
1523    return NULL;
1524  }
1525
1526  if (lib_arch_str != NULL) {
1527    ::_snprintf(ebuf, ebuflen - 1,
1528                "Can't load %s-bit .dll on a %s-bit platform",
1529                lib_arch_str, running_arch_str);
1530  } else {
1531    // don't know what architecture this dll was build for
1532    ::_snprintf(ebuf, ebuflen - 1,
1533                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1534                lib_arch, running_arch_str);
1535  }
1536
1537  return NULL;
1538}
1539
1540void os::print_dll_info(outputStream *st) {
1541  st->print_cr("Dynamic libraries:");
1542  get_loaded_modules_info(_print_module, (void *)st);
1543}
1544
1545int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1546  HANDLE   hProcess;
1547
1548# define MAX_NUM_MODULES 128
1549  HMODULE     modules[MAX_NUM_MODULES];
1550  static char filename[MAX_PATH];
1551  int         result = 0;
1552
1553  if (!os::PSApiDll::PSApiAvailable()) {
1554    return 0;
1555  }
1556
1557  int pid = os::current_process_id();
1558  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1559                         FALSE, pid);
1560  if (hProcess == NULL) return 0;
1561
1562  DWORD size_needed;
1563  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1564                                        sizeof(modules), &size_needed)) {
1565    CloseHandle(hProcess);
1566    return 0;
1567  }
1568
1569  // number of modules that are currently loaded
1570  int num_modules = size_needed / sizeof(HMODULE);
1571
1572  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1573    // Get Full pathname:
1574    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1575                                           filename, sizeof(filename))) {
1576      filename[0] = '\0';
1577    }
1578
1579    MODULEINFO modinfo;
1580    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1581                                            &modinfo, sizeof(modinfo))) {
1582      modinfo.lpBaseOfDll = NULL;
1583      modinfo.SizeOfImage = 0;
1584    }
1585
1586    // Invoke callback function
1587    result = callback(filename, (address)modinfo.lpBaseOfDll,
1588                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1589    if (result) break;
1590  }
1591
1592  CloseHandle(hProcess);
1593  return result;
1594}
1595
1596void os::print_os_info_brief(outputStream* st) {
1597  os::print_os_info(st);
1598}
1599
1600void os::print_os_info(outputStream* st) {
1601#ifdef ASSERT
1602  char buffer[1024];
1603  DWORD size = sizeof(buffer);
1604  st->print(" HostName: ");
1605  if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1606    st->print("%s", buffer);
1607  } else {
1608    st->print("N/A");
1609  }
1610#endif
1611  st->print(" OS:");
1612  os::win32::print_windows_version(st);
1613}
1614
1615void os::win32::print_windows_version(outputStream* st) {
1616  OSVERSIONINFOEX osvi;
1617  VS_FIXEDFILEINFO *file_info;
1618  TCHAR kernel32_path[MAX_PATH];
1619  UINT len, ret;
1620
1621  // Use the GetVersionEx information to see if we're on a server or
1622  // workstation edition of Windows. Starting with Windows 8.1 we can't
1623  // trust the OS version information returned by this API.
1624  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1625  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1626  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1627    st->print_cr("Call to GetVersionEx failed");
1628    return;
1629  }
1630  bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1631
1632  // Get the full path to \Windows\System32\kernel32.dll and use that for
1633  // determining what version of Windows we're running on.
1634  len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1635  ret = GetSystemDirectory(kernel32_path, len);
1636  if (ret == 0 || ret > len) {
1637    st->print_cr("Call to GetSystemDirectory failed");
1638    return;
1639  }
1640  strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1641
1642  DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1643  if (version_size == 0) {
1644    st->print_cr("Call to GetFileVersionInfoSize failed");
1645    return;
1646  }
1647
1648  LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1649  if (version_info == NULL) {
1650    st->print_cr("Failed to allocate version_info");
1651    return;
1652  }
1653
1654  if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1655    os::free(version_info);
1656    st->print_cr("Call to GetFileVersionInfo failed");
1657    return;
1658  }
1659
1660  if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1661    os::free(version_info);
1662    st->print_cr("Call to VerQueryValue failed");
1663    return;
1664  }
1665
1666  int major_version = HIWORD(file_info->dwProductVersionMS);
1667  int minor_version = LOWORD(file_info->dwProductVersionMS);
1668  int build_number = HIWORD(file_info->dwProductVersionLS);
1669  int build_minor = LOWORD(file_info->dwProductVersionLS);
1670  int os_vers = major_version * 1000 + minor_version;
1671  os::free(version_info);
1672
1673  st->print(" Windows ");
1674  switch (os_vers) {
1675
1676  case 6000:
1677    if (is_workstation) {
1678      st->print("Vista");
1679    } else {
1680      st->print("Server 2008");
1681    }
1682    break;
1683
1684  case 6001:
1685    if (is_workstation) {
1686      st->print("7");
1687    } else {
1688      st->print("Server 2008 R2");
1689    }
1690    break;
1691
1692  case 6002:
1693    if (is_workstation) {
1694      st->print("8");
1695    } else {
1696      st->print("Server 2012");
1697    }
1698    break;
1699
1700  case 6003:
1701    if (is_workstation) {
1702      st->print("8.1");
1703    } else {
1704      st->print("Server 2012 R2");
1705    }
1706    break;
1707
1708  case 10000:
1709    if (is_workstation) {
1710      st->print("10");
1711    } else {
1712      // The server version name of Windows 10 is not known at this time
1713      st->print("%d.%d", major_version, minor_version);
1714    }
1715    break;
1716
1717  default:
1718    // Unrecognized windows, print out its major and minor versions
1719    st->print("%d.%d", major_version, minor_version);
1720    break;
1721  }
1722
1723  // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1724  // find out whether we are running on 64 bit processor or not
1725  SYSTEM_INFO si;
1726  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1727  os::Kernel32Dll::GetNativeSystemInfo(&si);
1728  if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1729    st->print(" , 64 bit");
1730  }
1731
1732  st->print(" Build %d", build_number);
1733  st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1734  st->cr();
1735}
1736
1737void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1738  // Nothing to do for now.
1739}
1740
1741void os::print_memory_info(outputStream* st) {
1742  st->print("Memory:");
1743  st->print(" %dk page", os::vm_page_size()>>10);
1744
1745  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1746  // value if total memory is larger than 4GB
1747  MEMORYSTATUSEX ms;
1748  ms.dwLength = sizeof(ms);
1749  GlobalMemoryStatusEx(&ms);
1750
1751  st->print(", physical %uk", os::physical_memory() >> 10);
1752  st->print("(%uk free)", os::available_memory() >> 10);
1753
1754  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1755  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1756  st->cr();
1757}
1758
1759void os::print_siginfo(outputStream *st, void *siginfo) {
1760  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1761  st->print("siginfo:");
1762  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1763
1764  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1765      er->NumberParameters >= 2) {
1766    switch (er->ExceptionInformation[0]) {
1767    case 0: st->print(", reading address"); break;
1768    case 1: st->print(", writing address"); break;
1769    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1770                       er->ExceptionInformation[0]);
1771    }
1772    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1773  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1774             er->NumberParameters >= 2 && UseSharedSpaces) {
1775    FileMapInfo* mapinfo = FileMapInfo::current_info();
1776    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1777      st->print("\n\nError accessing class data sharing archive."       \
1778                " Mapped file inaccessible during execution, "          \
1779                " possible disk/network problem.");
1780    }
1781  } else {
1782    int num = er->NumberParameters;
1783    if (num > 0) {
1784      st->print(", ExceptionInformation=");
1785      for (int i = 0; i < num; i++) {
1786        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1787      }
1788    }
1789  }
1790  st->cr();
1791}
1792
1793void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1794  // do nothing
1795}
1796
1797static char saved_jvm_path[MAX_PATH] = {0};
1798
1799// Find the full path to the current module, jvm.dll
1800void os::jvm_path(char *buf, jint buflen) {
1801  // Error checking.
1802  if (buflen < MAX_PATH) {
1803    assert(false, "must use a large-enough buffer");
1804    buf[0] = '\0';
1805    return;
1806  }
1807  // Lazy resolve the path to current module.
1808  if (saved_jvm_path[0] != 0) {
1809    strcpy(buf, saved_jvm_path);
1810    return;
1811  }
1812
1813  buf[0] = '\0';
1814  if (Arguments::sun_java_launcher_is_altjvm()) {
1815    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1816    // for a JAVA_HOME environment variable and fix up the path so it
1817    // looks like jvm.dll is installed there (append a fake suffix
1818    // hotspot/jvm.dll).
1819    char* java_home_var = ::getenv("JAVA_HOME");
1820    if (java_home_var != NULL && java_home_var[0] != 0 &&
1821        strlen(java_home_var) < (size_t)buflen) {
1822      strncpy(buf, java_home_var, buflen);
1823
1824      // determine if this is a legacy image or modules image
1825      // modules image doesn't have "jre" subdirectory
1826      size_t len = strlen(buf);
1827      char* jrebin_p = buf + len;
1828      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1829      if (0 != _access(buf, 0)) {
1830        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1831      }
1832      len = strlen(buf);
1833      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1834    }
1835  }
1836
1837  if (buf[0] == '\0') {
1838    GetModuleFileName(vm_lib_handle, buf, buflen);
1839  }
1840  strncpy(saved_jvm_path, buf, MAX_PATH);
1841  saved_jvm_path[MAX_PATH - 1] = '\0';
1842}
1843
1844
1845void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1846#ifndef _WIN64
1847  st->print("_");
1848#endif
1849}
1850
1851
1852void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1853#ifndef _WIN64
1854  st->print("@%d", args_size  * sizeof(int));
1855#endif
1856}
1857
1858// This method is a copy of JDK's sysGetLastErrorString
1859// from src/windows/hpi/src/system_md.c
1860
1861size_t os::lasterror(char* buf, size_t len) {
1862  DWORD errval;
1863
1864  if ((errval = GetLastError()) != 0) {
1865    // DOS error
1866    size_t n = (size_t)FormatMessage(
1867                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1868                                     NULL,
1869                                     errval,
1870                                     0,
1871                                     buf,
1872                                     (DWORD)len,
1873                                     NULL);
1874    if (n > 3) {
1875      // Drop final '.', CR, LF
1876      if (buf[n - 1] == '\n') n--;
1877      if (buf[n - 1] == '\r') n--;
1878      if (buf[n - 1] == '.') n--;
1879      buf[n] = '\0';
1880    }
1881    return n;
1882  }
1883
1884  if (errno != 0) {
1885    // C runtime error that has no corresponding DOS error code
1886    const char* s = strerror(errno);
1887    size_t n = strlen(s);
1888    if (n >= len) n = len - 1;
1889    strncpy(buf, s, n);
1890    buf[n] = '\0';
1891    return n;
1892  }
1893
1894  return 0;
1895}
1896
1897int os::get_last_error() {
1898  DWORD error = GetLastError();
1899  if (error == 0) {
1900    error = errno;
1901  }
1902  return (int)error;
1903}
1904
1905WindowsSemaphore::WindowsSemaphore(uint value) {
1906  _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1907
1908  guarantee(_semaphore != NULL, err_msg("CreateSemaphore failed with error code: %lu", GetLastError()));
1909}
1910
1911WindowsSemaphore::~WindowsSemaphore() {
1912  ::CloseHandle(_semaphore);
1913}
1914
1915void WindowsSemaphore::signal(uint count) {
1916  if (count > 0) {
1917    BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1918
1919    assert(ret != 0, err_msg("ReleaseSemaphore failed with error code: %lu", GetLastError()));
1920  }
1921}
1922
1923void WindowsSemaphore::wait() {
1924  DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1925  assert(ret != WAIT_FAILED,   err_msg("WaitForSingleObject failed with error code: %lu", GetLastError()));
1926  assert(ret == WAIT_OBJECT_0, err_msg("WaitForSingleObject failed with return value: %lu", ret));
1927}
1928
1929// sun.misc.Signal
1930// NOTE that this is a workaround for an apparent kernel bug where if
1931// a signal handler for SIGBREAK is installed then that signal handler
1932// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1933// See bug 4416763.
1934static void (*sigbreakHandler)(int) = NULL;
1935
1936static void UserHandler(int sig, void *siginfo, void *context) {
1937  os::signal_notify(sig);
1938  // We need to reinstate the signal handler each time...
1939  os::signal(sig, (void*)UserHandler);
1940}
1941
1942void* os::user_handler() {
1943  return (void*) UserHandler;
1944}
1945
1946void* os::signal(int signal_number, void* handler) {
1947  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1948    void (*oldHandler)(int) = sigbreakHandler;
1949    sigbreakHandler = (void (*)(int)) handler;
1950    return (void*) oldHandler;
1951  } else {
1952    return (void*)::signal(signal_number, (void (*)(int))handler);
1953  }
1954}
1955
1956void os::signal_raise(int signal_number) {
1957  raise(signal_number);
1958}
1959
1960// The Win32 C runtime library maps all console control events other than ^C
1961// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1962// logoff, and shutdown events.  We therefore install our own console handler
1963// that raises SIGTERM for the latter cases.
1964//
1965static BOOL WINAPI consoleHandler(DWORD event) {
1966  switch (event) {
1967  case CTRL_C_EVENT:
1968    if (is_error_reported()) {
1969      // Ctrl-C is pressed during error reporting, likely because the error
1970      // handler fails to abort. Let VM die immediately.
1971      os::die();
1972    }
1973
1974    os::signal_raise(SIGINT);
1975    return TRUE;
1976    break;
1977  case CTRL_BREAK_EVENT:
1978    if (sigbreakHandler != NULL) {
1979      (*sigbreakHandler)(SIGBREAK);
1980    }
1981    return TRUE;
1982    break;
1983  case CTRL_LOGOFF_EVENT: {
1984    // Don't terminate JVM if it is running in a non-interactive session,
1985    // such as a service process.
1986    USEROBJECTFLAGS flags;
1987    HANDLE handle = GetProcessWindowStation();
1988    if (handle != NULL &&
1989        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1990        sizeof(USEROBJECTFLAGS), NULL)) {
1991      // If it is a non-interactive session, let next handler to deal
1992      // with it.
1993      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1994        return FALSE;
1995      }
1996    }
1997  }
1998  case CTRL_CLOSE_EVENT:
1999  case CTRL_SHUTDOWN_EVENT:
2000    os::signal_raise(SIGTERM);
2001    return TRUE;
2002    break;
2003  default:
2004    break;
2005  }
2006  return FALSE;
2007}
2008
2009// The following code is moved from os.cpp for making this
2010// code platform specific, which it is by its very nature.
2011
2012// Return maximum OS signal used + 1 for internal use only
2013// Used as exit signal for signal_thread
2014int os::sigexitnum_pd() {
2015  return NSIG;
2016}
2017
2018// a counter for each possible signal value, including signal_thread exit signal
2019static volatile jint pending_signals[NSIG+1] = { 0 };
2020static HANDLE sig_sem = NULL;
2021
2022void os::signal_init_pd() {
2023  // Initialize signal structures
2024  memset((void*)pending_signals, 0, sizeof(pending_signals));
2025
2026  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2027
2028  // Programs embedding the VM do not want it to attempt to receive
2029  // events like CTRL_LOGOFF_EVENT, which are used to implement the
2030  // shutdown hooks mechanism introduced in 1.3.  For example, when
2031  // the VM is run as part of a Windows NT service (i.e., a servlet
2032  // engine in a web server), the correct behavior is for any console
2033  // control handler to return FALSE, not TRUE, because the OS's
2034  // "final" handler for such events allows the process to continue if
2035  // it is a service (while terminating it if it is not a service).
2036  // To make this behavior uniform and the mechanism simpler, we
2037  // completely disable the VM's usage of these console events if -Xrs
2038  // (=ReduceSignalUsage) is specified.  This means, for example, that
2039  // the CTRL-BREAK thread dump mechanism is also disabled in this
2040  // case.  See bugs 4323062, 4345157, and related bugs.
2041
2042  if (!ReduceSignalUsage) {
2043    // Add a CTRL-C handler
2044    SetConsoleCtrlHandler(consoleHandler, TRUE);
2045  }
2046}
2047
2048void os::signal_notify(int signal_number) {
2049  BOOL ret;
2050  if (sig_sem != NULL) {
2051    Atomic::inc(&pending_signals[signal_number]);
2052    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2053    assert(ret != 0, "ReleaseSemaphore() failed");
2054  }
2055}
2056
2057static int check_pending_signals(bool wait_for_signal) {
2058  DWORD ret;
2059  while (true) {
2060    for (int i = 0; i < NSIG + 1; i++) {
2061      jint n = pending_signals[i];
2062      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2063        return i;
2064      }
2065    }
2066    if (!wait_for_signal) {
2067      return -1;
2068    }
2069
2070    JavaThread *thread = JavaThread::current();
2071
2072    ThreadBlockInVM tbivm(thread);
2073
2074    bool threadIsSuspended;
2075    do {
2076      thread->set_suspend_equivalent();
2077      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2078      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2079      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2080
2081      // were we externally suspended while we were waiting?
2082      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2083      if (threadIsSuspended) {
2084        // The semaphore has been incremented, but while we were waiting
2085        // another thread suspended us. We don't want to continue running
2086        // while suspended because that would surprise the thread that
2087        // suspended us.
2088        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2089        assert(ret != 0, "ReleaseSemaphore() failed");
2090
2091        thread->java_suspend_self();
2092      }
2093    } while (threadIsSuspended);
2094  }
2095}
2096
2097int os::signal_lookup() {
2098  return check_pending_signals(false);
2099}
2100
2101int os::signal_wait() {
2102  return check_pending_signals(true);
2103}
2104
2105// Implicit OS exception handling
2106
2107LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2108                      address handler) {
2109  JavaThread* thread = JavaThread::current();
2110  // Save pc in thread
2111#ifdef _M_IA64
2112  // Do not blow up if no thread info available.
2113  if (thread) {
2114    // Saving PRECISE pc (with slot information) in thread.
2115    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2116    // Convert precise PC into "Unix" format
2117    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2118    thread->set_saved_exception_pc((address)precise_pc);
2119  }
2120  // Set pc to handler
2121  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2122  // Clear out psr.ri (= Restart Instruction) in order to continue
2123  // at the beginning of the target bundle.
2124  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2125  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2126#else
2127  #ifdef _M_AMD64
2128  // Do not blow up if no thread info available.
2129  if (thread) {
2130    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2131  }
2132  // Set pc to handler
2133  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2134  #else
2135  // Do not blow up if no thread info available.
2136  if (thread) {
2137    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2138  }
2139  // Set pc to handler
2140  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2141  #endif
2142#endif
2143
2144  // Continue the execution
2145  return EXCEPTION_CONTINUE_EXECUTION;
2146}
2147
2148
2149// Used for PostMortemDump
2150extern "C" void safepoints();
2151extern "C" void find(int x);
2152extern "C" void events();
2153
2154// According to Windows API documentation, an illegal instruction sequence should generate
2155// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2156// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2157// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2158
2159#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2160
2161// From "Execution Protection in the Windows Operating System" draft 0.35
2162// Once a system header becomes available, the "real" define should be
2163// included or copied here.
2164#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2165
2166// Handle NAT Bit consumption on IA64.
2167#ifdef _M_IA64
2168  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2169#endif
2170
2171// Windows Vista/2008 heap corruption check
2172#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2173
2174#define def_excpt(val) #val, val
2175
2176struct siglabel {
2177  char *name;
2178  int   number;
2179};
2180
2181// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2182// C++ compiler contain this error code. Because this is a compiler-generated
2183// error, the code is not listed in the Win32 API header files.
2184// The code is actually a cryptic mnemonic device, with the initial "E"
2185// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2186// ASCII values of "msc".
2187
2188#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2189
2190
2191struct siglabel exceptlabels[] = {
2192    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2193    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2194    def_excpt(EXCEPTION_BREAKPOINT),
2195    def_excpt(EXCEPTION_SINGLE_STEP),
2196    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2197    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2198    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2199    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2200    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2201    def_excpt(EXCEPTION_FLT_OVERFLOW),
2202    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2203    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2204    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2205    def_excpt(EXCEPTION_INT_OVERFLOW),
2206    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2207    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2208    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2209    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2210    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2211    def_excpt(EXCEPTION_STACK_OVERFLOW),
2212    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2213    def_excpt(EXCEPTION_GUARD_PAGE),
2214    def_excpt(EXCEPTION_INVALID_HANDLE),
2215    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2216    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2217#ifdef _M_IA64
2218    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2219#endif
2220    NULL, 0
2221};
2222
2223const char* os::exception_name(int exception_code, char *buf, size_t size) {
2224  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2225    if (exceptlabels[i].number == exception_code) {
2226      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2227      return buf;
2228    }
2229  }
2230
2231  return NULL;
2232}
2233
2234//-----------------------------------------------------------------------------
2235LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2236  // handle exception caused by idiv; should only happen for -MinInt/-1
2237  // (division by zero is handled explicitly)
2238#ifdef _M_IA64
2239  assert(0, "Fix Handle_IDiv_Exception");
2240#else
2241  #ifdef  _M_AMD64
2242  PCONTEXT ctx = exceptionInfo->ContextRecord;
2243  address pc = (address)ctx->Rip;
2244  assert(pc[0] == 0xF7, "not an idiv opcode");
2245  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2246  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2247  // set correct result values and continue after idiv instruction
2248  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2249  ctx->Rax = (DWORD)min_jint;      // result
2250  ctx->Rdx = (DWORD)0;             // remainder
2251  // Continue the execution
2252  #else
2253  PCONTEXT ctx = exceptionInfo->ContextRecord;
2254  address pc = (address)ctx->Eip;
2255  assert(pc[0] == 0xF7, "not an idiv opcode");
2256  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2257  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2258  // set correct result values and continue after idiv instruction
2259  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2260  ctx->Eax = (DWORD)min_jint;      // result
2261  ctx->Edx = (DWORD)0;             // remainder
2262  // Continue the execution
2263  #endif
2264#endif
2265  return EXCEPTION_CONTINUE_EXECUTION;
2266}
2267
2268//-----------------------------------------------------------------------------
2269LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2270  PCONTEXT ctx = exceptionInfo->ContextRecord;
2271#ifndef  _WIN64
2272  // handle exception caused by native method modifying control word
2273  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2274
2275  switch (exception_code) {
2276  case EXCEPTION_FLT_DENORMAL_OPERAND:
2277  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2278  case EXCEPTION_FLT_INEXACT_RESULT:
2279  case EXCEPTION_FLT_INVALID_OPERATION:
2280  case EXCEPTION_FLT_OVERFLOW:
2281  case EXCEPTION_FLT_STACK_CHECK:
2282  case EXCEPTION_FLT_UNDERFLOW:
2283    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2284    if (fp_control_word != ctx->FloatSave.ControlWord) {
2285      // Restore FPCW and mask out FLT exceptions
2286      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2287      // Mask out pending FLT exceptions
2288      ctx->FloatSave.StatusWord &=  0xffffff00;
2289      return EXCEPTION_CONTINUE_EXECUTION;
2290    }
2291  }
2292
2293  if (prev_uef_handler != NULL) {
2294    // We didn't handle this exception so pass it to the previous
2295    // UnhandledExceptionFilter.
2296    return (prev_uef_handler)(exceptionInfo);
2297  }
2298#else // !_WIN64
2299  // On Windows, the mxcsr control bits are non-volatile across calls
2300  // See also CR 6192333
2301  //
2302  jint MxCsr = INITIAL_MXCSR;
2303  // we can't use StubRoutines::addr_mxcsr_std()
2304  // because in Win64 mxcsr is not saved there
2305  if (MxCsr != ctx->MxCsr) {
2306    ctx->MxCsr = MxCsr;
2307    return EXCEPTION_CONTINUE_EXECUTION;
2308  }
2309#endif // !_WIN64
2310
2311  return EXCEPTION_CONTINUE_SEARCH;
2312}
2313
2314static inline void report_error(Thread* t, DWORD exception_code,
2315                                address addr, void* siginfo, void* context) {
2316  VMError err(t, exception_code, addr, siginfo, context);
2317  err.report_and_die();
2318
2319  // If UseOsErrorReporting, this will return here and save the error file
2320  // somewhere where we can find it in the minidump.
2321}
2322
2323//-----------------------------------------------------------------------------
2324LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2325  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2326  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2327#ifdef _M_IA64
2328  // On Itanium, we need the "precise pc", which has the slot number coded
2329  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2330  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2331  // Convert the pc to "Unix format", which has the slot number coded
2332  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2333  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2334  // information is saved in the Unix format.
2335  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2336#else
2337  #ifdef _M_AMD64
2338  address pc = (address) exceptionInfo->ContextRecord->Rip;
2339  #else
2340  address pc = (address) exceptionInfo->ContextRecord->Eip;
2341  #endif
2342#endif
2343  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2344
2345  // Handle SafeFetch32 and SafeFetchN exceptions.
2346  if (StubRoutines::is_safefetch_fault(pc)) {
2347    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2348  }
2349
2350#ifndef _WIN64
2351  // Execution protection violation - win32 running on AMD64 only
2352  // Handled first to avoid misdiagnosis as a "normal" access violation;
2353  // This is safe to do because we have a new/unique ExceptionInformation
2354  // code for this condition.
2355  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2356    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2357    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2358    address addr = (address) exceptionRecord->ExceptionInformation[1];
2359
2360    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2361      int page_size = os::vm_page_size();
2362
2363      // Make sure the pc and the faulting address are sane.
2364      //
2365      // If an instruction spans a page boundary, and the page containing
2366      // the beginning of the instruction is executable but the following
2367      // page is not, the pc and the faulting address might be slightly
2368      // different - we still want to unguard the 2nd page in this case.
2369      //
2370      // 15 bytes seems to be a (very) safe value for max instruction size.
2371      bool pc_is_near_addr =
2372        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2373      bool instr_spans_page_boundary =
2374        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2375                         (intptr_t) page_size) > 0);
2376
2377      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2378        static volatile address last_addr =
2379          (address) os::non_memory_address_word();
2380
2381        // In conservative mode, don't unguard unless the address is in the VM
2382        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2383            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2384
2385          // Set memory to RWX and retry
2386          address page_start =
2387            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2388          bool res = os::protect_memory((char*) page_start, page_size,
2389                                        os::MEM_PROT_RWX);
2390
2391          if (PrintMiscellaneous && Verbose) {
2392            char buf[256];
2393            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2394                         "at " INTPTR_FORMAT
2395                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2396                         page_start, (res ? "success" : strerror(errno)));
2397            tty->print_raw_cr(buf);
2398          }
2399
2400          // Set last_addr so if we fault again at the same address, we don't
2401          // end up in an endless loop.
2402          //
2403          // There are two potential complications here.  Two threads trapping
2404          // at the same address at the same time could cause one of the
2405          // threads to think it already unguarded, and abort the VM.  Likely
2406          // very rare.
2407          //
2408          // The other race involves two threads alternately trapping at
2409          // different addresses and failing to unguard the page, resulting in
2410          // an endless loop.  This condition is probably even more unlikely
2411          // than the first.
2412          //
2413          // Although both cases could be avoided by using locks or thread
2414          // local last_addr, these solutions are unnecessary complication:
2415          // this handler is a best-effort safety net, not a complete solution.
2416          // It is disabled by default and should only be used as a workaround
2417          // in case we missed any no-execute-unsafe VM code.
2418
2419          last_addr = addr;
2420
2421          return EXCEPTION_CONTINUE_EXECUTION;
2422        }
2423      }
2424
2425      // Last unguard failed or not unguarding
2426      tty->print_raw_cr("Execution protection violation");
2427      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2428                   exceptionInfo->ContextRecord);
2429      return EXCEPTION_CONTINUE_SEARCH;
2430    }
2431  }
2432#endif // _WIN64
2433
2434  // Check to see if we caught the safepoint code in the
2435  // process of write protecting the memory serialization page.
2436  // It write enables the page immediately after protecting it
2437  // so just return.
2438  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2439    JavaThread* thread = (JavaThread*) t;
2440    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2441    address addr = (address) exceptionRecord->ExceptionInformation[1];
2442    if (os::is_memory_serialize_page(thread, addr)) {
2443      // Block current thread until the memory serialize page permission restored.
2444      os::block_on_serialize_page_trap();
2445      return EXCEPTION_CONTINUE_EXECUTION;
2446    }
2447  }
2448
2449  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2450      VM_Version::is_cpuinfo_segv_addr(pc)) {
2451    // Verify that OS save/restore AVX registers.
2452    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2453  }
2454
2455  if (t != NULL && t->is_Java_thread()) {
2456    JavaThread* thread = (JavaThread*) t;
2457    bool in_java = thread->thread_state() == _thread_in_Java;
2458
2459    // Handle potential stack overflows up front.
2460    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2461      if (os::uses_stack_guard_pages()) {
2462#ifdef _M_IA64
2463        // Use guard page for register stack.
2464        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2465        address addr = (address) exceptionRecord->ExceptionInformation[1];
2466        // Check for a register stack overflow on Itanium
2467        if (thread->addr_inside_register_stack_red_zone(addr)) {
2468          // Fatal red zone violation happens if the Java program
2469          // catches a StackOverflow error and does so much processing
2470          // that it runs beyond the unprotected yellow guard zone. As
2471          // a result, we are out of here.
2472          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2473        } else if(thread->addr_inside_register_stack(addr)) {
2474          // Disable the yellow zone which sets the state that
2475          // we've got a stack overflow problem.
2476          if (thread->stack_yellow_zone_enabled()) {
2477            thread->disable_stack_yellow_zone();
2478          }
2479          // Give us some room to process the exception.
2480          thread->disable_register_stack_guard();
2481          // Tracing with +Verbose.
2482          if (Verbose) {
2483            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2484            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2485            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2486            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2487                          thread->register_stack_base(),
2488                          thread->register_stack_base() + thread->stack_size());
2489          }
2490
2491          // Reguard the permanent register stack red zone just to be sure.
2492          // We saw Windows silently disabling this without telling us.
2493          thread->enable_register_stack_red_zone();
2494
2495          return Handle_Exception(exceptionInfo,
2496                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2497        }
2498#endif
2499        if (thread->stack_yellow_zone_enabled()) {
2500          // Yellow zone violation.  The o/s has unprotected the first yellow
2501          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2502          // update the enabled status, even if the zone contains only one page.
2503          thread->disable_stack_yellow_zone();
2504          // If not in java code, return and hope for the best.
2505          return in_java
2506              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2507              :  EXCEPTION_CONTINUE_EXECUTION;
2508        } else {
2509          // Fatal red zone violation.
2510          thread->disable_stack_red_zone();
2511          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2512          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2513                       exceptionInfo->ContextRecord);
2514          return EXCEPTION_CONTINUE_SEARCH;
2515        }
2516      } else if (in_java) {
2517        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2518        // a one-time-only guard page, which it has released to us.  The next
2519        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2520        return Handle_Exception(exceptionInfo,
2521                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2522      } else {
2523        // Can only return and hope for the best.  Further stack growth will
2524        // result in an ACCESS_VIOLATION.
2525        return EXCEPTION_CONTINUE_EXECUTION;
2526      }
2527    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2528      // Either stack overflow or null pointer exception.
2529      if (in_java) {
2530        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2531        address addr = (address) exceptionRecord->ExceptionInformation[1];
2532        address stack_end = thread->stack_base() - thread->stack_size();
2533        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2534          // Stack overflow.
2535          assert(!os::uses_stack_guard_pages(),
2536                 "should be caught by red zone code above.");
2537          return Handle_Exception(exceptionInfo,
2538                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2539        }
2540        // Check for safepoint polling and implicit null
2541        // We only expect null pointers in the stubs (vtable)
2542        // the rest are checked explicitly now.
2543        CodeBlob* cb = CodeCache::find_blob(pc);
2544        if (cb != NULL) {
2545          if (os::is_poll_address(addr)) {
2546            address stub = SharedRuntime::get_poll_stub(pc);
2547            return Handle_Exception(exceptionInfo, stub);
2548          }
2549        }
2550        {
2551#ifdef _WIN64
2552          // If it's a legal stack address map the entire region in
2553          //
2554          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2555          address addr = (address) exceptionRecord->ExceptionInformation[1];
2556          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2557            addr = (address)((uintptr_t)addr &
2558                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2559            os::commit_memory((char *)addr, thread->stack_base() - addr,
2560                              !ExecMem);
2561            return EXCEPTION_CONTINUE_EXECUTION;
2562          } else
2563#endif
2564          {
2565            // Null pointer exception.
2566#ifdef _M_IA64
2567            // Process implicit null checks in compiled code. Note: Implicit null checks
2568            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2569            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2570              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2571              // Handle implicit null check in UEP method entry
2572              if (cb && (cb->is_frame_complete_at(pc) ||
2573                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2574                if (Verbose) {
2575                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2576                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2577                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2578                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2579                                *(bundle_start + 1), *bundle_start);
2580                }
2581                return Handle_Exception(exceptionInfo,
2582                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2583              }
2584            }
2585
2586            // Implicit null checks were processed above.  Hence, we should not reach
2587            // here in the usual case => die!
2588            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2589            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2590                         exceptionInfo->ContextRecord);
2591            return EXCEPTION_CONTINUE_SEARCH;
2592
2593#else // !IA64
2594
2595            // Windows 98 reports faulting addresses incorrectly
2596            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2597                !os::win32::is_nt()) {
2598              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2599              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2600            }
2601            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2602                         exceptionInfo->ContextRecord);
2603            return EXCEPTION_CONTINUE_SEARCH;
2604#endif
2605          }
2606        }
2607      }
2608
2609#ifdef _WIN64
2610      // Special care for fast JNI field accessors.
2611      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2612      // in and the heap gets shrunk before the field access.
2613      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2614        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2615        if (addr != (address)-1) {
2616          return Handle_Exception(exceptionInfo, addr);
2617        }
2618      }
2619#endif
2620
2621      // Stack overflow or null pointer exception in native code.
2622      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2623                   exceptionInfo->ContextRecord);
2624      return EXCEPTION_CONTINUE_SEARCH;
2625    } // /EXCEPTION_ACCESS_VIOLATION
2626    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2627#if defined _M_IA64
2628    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2629              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2630      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2631
2632      // Compiled method patched to be non entrant? Following conditions must apply:
2633      // 1. must be first instruction in bundle
2634      // 2. must be a break instruction with appropriate code
2635      if ((((uint64_t) pc & 0x0F) == 0) &&
2636          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2637        return Handle_Exception(exceptionInfo,
2638                                (address)SharedRuntime::get_handle_wrong_method_stub());
2639      }
2640    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2641#endif
2642
2643
2644    if (in_java) {
2645      switch (exception_code) {
2646      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2647        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2648
2649      case EXCEPTION_INT_OVERFLOW:
2650        return Handle_IDiv_Exception(exceptionInfo);
2651
2652      } // switch
2653    }
2654    if (((thread->thread_state() == _thread_in_Java) ||
2655         (thread->thread_state() == _thread_in_native)) &&
2656         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2657      LONG result=Handle_FLT_Exception(exceptionInfo);
2658      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2659    }
2660  }
2661
2662  if (exception_code != EXCEPTION_BREAKPOINT) {
2663    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2664                 exceptionInfo->ContextRecord);
2665  }
2666  return EXCEPTION_CONTINUE_SEARCH;
2667}
2668
2669#ifndef _WIN64
2670// Special care for fast JNI accessors.
2671// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2672// the heap gets shrunk before the field access.
2673// Need to install our own structured exception handler since native code may
2674// install its own.
2675LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2676  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2677  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2678    address pc = (address) exceptionInfo->ContextRecord->Eip;
2679    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2680    if (addr != (address)-1) {
2681      return Handle_Exception(exceptionInfo, addr);
2682    }
2683  }
2684  return EXCEPTION_CONTINUE_SEARCH;
2685}
2686
2687#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2688  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2689                                                     jobject obj,           \
2690                                                     jfieldID fieldID) {    \
2691    __try {                                                                 \
2692      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2693                                                                 obj,       \
2694                                                                 fieldID);  \
2695    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2696                                              _exception_info())) {         \
2697    }                                                                       \
2698    return 0;                                                               \
2699  }
2700
2701DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2702DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2703DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2704DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2705DEFINE_FAST_GETFIELD(jint,     int,    Int)
2706DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2707DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2708DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2709
2710address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2711  switch (type) {
2712  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2713  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2714  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2715  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2716  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2717  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2718  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2719  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2720  default:        ShouldNotReachHere();
2721  }
2722  return (address)-1;
2723}
2724#endif
2725
2726// Virtual Memory
2727
2728int os::vm_page_size() { return os::win32::vm_page_size(); }
2729int os::vm_allocation_granularity() {
2730  return os::win32::vm_allocation_granularity();
2731}
2732
2733// Windows large page support is available on Windows 2003. In order to use
2734// large page memory, the administrator must first assign additional privilege
2735// to the user:
2736//   + select Control Panel -> Administrative Tools -> Local Security Policy
2737//   + select Local Policies -> User Rights Assignment
2738//   + double click "Lock pages in memory", add users and/or groups
2739//   + reboot
2740// Note the above steps are needed for administrator as well, as administrators
2741// by default do not have the privilege to lock pages in memory.
2742//
2743// Note about Windows 2003: although the API supports committing large page
2744// memory on a page-by-page basis and VirtualAlloc() returns success under this
2745// scenario, I found through experiment it only uses large page if the entire
2746// memory region is reserved and committed in a single VirtualAlloc() call.
2747// This makes Windows large page support more or less like Solaris ISM, in
2748// that the entire heap must be committed upfront. This probably will change
2749// in the future, if so the code below needs to be revisited.
2750
2751#ifndef MEM_LARGE_PAGES
2752  #define MEM_LARGE_PAGES 0x20000000
2753#endif
2754
2755static HANDLE    _hProcess;
2756static HANDLE    _hToken;
2757
2758// Container for NUMA node list info
2759class NUMANodeListHolder {
2760 private:
2761  int *_numa_used_node_list;  // allocated below
2762  int _numa_used_node_count;
2763
2764  void free_node_list() {
2765    if (_numa_used_node_list != NULL) {
2766      FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2767    }
2768  }
2769
2770 public:
2771  NUMANodeListHolder() {
2772    _numa_used_node_count = 0;
2773    _numa_used_node_list = NULL;
2774    // do rest of initialization in build routine (after function pointers are set up)
2775  }
2776
2777  ~NUMANodeListHolder() {
2778    free_node_list();
2779  }
2780
2781  bool build() {
2782    DWORD_PTR proc_aff_mask;
2783    DWORD_PTR sys_aff_mask;
2784    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2785    ULONG highest_node_number;
2786    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2787    free_node_list();
2788    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2789    for (unsigned int i = 0; i <= highest_node_number; i++) {
2790      ULONGLONG proc_mask_numa_node;
2791      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2792      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2793        _numa_used_node_list[_numa_used_node_count++] = i;
2794      }
2795    }
2796    return (_numa_used_node_count > 1);
2797  }
2798
2799  int get_count() { return _numa_used_node_count; }
2800  int get_node_list_entry(int n) {
2801    // for indexes out of range, returns -1
2802    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2803  }
2804
2805} numa_node_list_holder;
2806
2807
2808
2809static size_t _large_page_size = 0;
2810
2811static bool resolve_functions_for_large_page_init() {
2812  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2813    os::Advapi32Dll::AdvapiAvailable();
2814}
2815
2816static bool request_lock_memory_privilege() {
2817  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2818                          os::current_process_id());
2819
2820  LUID luid;
2821  if (_hProcess != NULL &&
2822      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2823      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2824
2825    TOKEN_PRIVILEGES tp;
2826    tp.PrivilegeCount = 1;
2827    tp.Privileges[0].Luid = luid;
2828    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2829
2830    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2831    // privilege. Check GetLastError() too. See MSDN document.
2832    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2833        (GetLastError() == ERROR_SUCCESS)) {
2834      return true;
2835    }
2836  }
2837
2838  return false;
2839}
2840
2841static void cleanup_after_large_page_init() {
2842  if (_hProcess) CloseHandle(_hProcess);
2843  _hProcess = NULL;
2844  if (_hToken) CloseHandle(_hToken);
2845  _hToken = NULL;
2846}
2847
2848static bool numa_interleaving_init() {
2849  bool success = false;
2850  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2851
2852  // print a warning if UseNUMAInterleaving flag is specified on command line
2853  bool warn_on_failure = use_numa_interleaving_specified;
2854#define WARN(msg) if (warn_on_failure) { warning(msg); }
2855
2856  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2857  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2858  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2859
2860  if (os::Kernel32Dll::NumaCallsAvailable()) {
2861    if (numa_node_list_holder.build()) {
2862      if (PrintMiscellaneous && Verbose) {
2863        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2864        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2865          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2866        }
2867        tty->print("\n");
2868      }
2869      success = true;
2870    } else {
2871      WARN("Process does not cover multiple NUMA nodes.");
2872    }
2873  } else {
2874    WARN("NUMA Interleaving is not supported by the operating system.");
2875  }
2876  if (!success) {
2877    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2878  }
2879  return success;
2880#undef WARN
2881}
2882
2883// this routine is used whenever we need to reserve a contiguous VA range
2884// but we need to make separate VirtualAlloc calls for each piece of the range
2885// Reasons for doing this:
2886//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2887//  * UseNUMAInterleaving requires a separate node for each piece
2888static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2889                                         DWORD prot,
2890                                         bool should_inject_error = false) {
2891  char * p_buf;
2892  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2893  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2894  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2895
2896  // first reserve enough address space in advance since we want to be
2897  // able to break a single contiguous virtual address range into multiple
2898  // large page commits but WS2003 does not allow reserving large page space
2899  // so we just use 4K pages for reserve, this gives us a legal contiguous
2900  // address space. then we will deallocate that reservation, and re alloc
2901  // using large pages
2902  const size_t size_of_reserve = bytes + chunk_size;
2903  if (bytes > size_of_reserve) {
2904    // Overflowed.
2905    return NULL;
2906  }
2907  p_buf = (char *) VirtualAlloc(addr,
2908                                size_of_reserve,  // size of Reserve
2909                                MEM_RESERVE,
2910                                PAGE_READWRITE);
2911  // If reservation failed, return NULL
2912  if (p_buf == NULL) return NULL;
2913  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2914  os::release_memory(p_buf, bytes + chunk_size);
2915
2916  // we still need to round up to a page boundary (in case we are using large pages)
2917  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2918  // instead we handle this in the bytes_to_rq computation below
2919  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2920
2921  // now go through and allocate one chunk at a time until all bytes are
2922  // allocated
2923  size_t  bytes_remaining = bytes;
2924  // An overflow of align_size_up() would have been caught above
2925  // in the calculation of size_of_reserve.
2926  char * next_alloc_addr = p_buf;
2927  HANDLE hProc = GetCurrentProcess();
2928
2929#ifdef ASSERT
2930  // Variable for the failure injection
2931  long ran_num = os::random();
2932  size_t fail_after = ran_num % bytes;
2933#endif
2934
2935  int count=0;
2936  while (bytes_remaining) {
2937    // select bytes_to_rq to get to the next chunk_size boundary
2938
2939    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2940    // Note allocate and commit
2941    char * p_new;
2942
2943#ifdef ASSERT
2944    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2945#else
2946    const bool inject_error_now = false;
2947#endif
2948
2949    if (inject_error_now) {
2950      p_new = NULL;
2951    } else {
2952      if (!UseNUMAInterleaving) {
2953        p_new = (char *) VirtualAlloc(next_alloc_addr,
2954                                      bytes_to_rq,
2955                                      flags,
2956                                      prot);
2957      } else {
2958        // get the next node to use from the used_node_list
2959        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2960        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2961        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2962                                                            next_alloc_addr,
2963                                                            bytes_to_rq,
2964                                                            flags,
2965                                                            prot,
2966                                                            node);
2967      }
2968    }
2969
2970    if (p_new == NULL) {
2971      // Free any allocated pages
2972      if (next_alloc_addr > p_buf) {
2973        // Some memory was committed so release it.
2974        size_t bytes_to_release = bytes - bytes_remaining;
2975        // NMT has yet to record any individual blocks, so it
2976        // need to create a dummy 'reserve' record to match
2977        // the release.
2978        MemTracker::record_virtual_memory_reserve((address)p_buf,
2979                                                  bytes_to_release, CALLER_PC);
2980        os::release_memory(p_buf, bytes_to_release);
2981      }
2982#ifdef ASSERT
2983      if (should_inject_error) {
2984        if (TracePageSizes && Verbose) {
2985          tty->print_cr("Reserving pages individually failed.");
2986        }
2987      }
2988#endif
2989      return NULL;
2990    }
2991
2992    bytes_remaining -= bytes_to_rq;
2993    next_alloc_addr += bytes_to_rq;
2994    count++;
2995  }
2996  // Although the memory is allocated individually, it is returned as one.
2997  // NMT records it as one block.
2998  if ((flags & MEM_COMMIT) != 0) {
2999    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3000  } else {
3001    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3002  }
3003
3004  // made it this far, success
3005  return p_buf;
3006}
3007
3008
3009
3010void os::large_page_init() {
3011  if (!UseLargePages) return;
3012
3013  // print a warning if any large page related flag is specified on command line
3014  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3015                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3016  bool success = false;
3017
3018#define WARN(msg) if (warn_on_failure) { warning(msg); }
3019  if (resolve_functions_for_large_page_init()) {
3020    if (request_lock_memory_privilege()) {
3021      size_t s = os::Kernel32Dll::GetLargePageMinimum();
3022      if (s) {
3023#if defined(IA32) || defined(AMD64)
3024        if (s > 4*M || LargePageSizeInBytes > 4*M) {
3025          WARN("JVM cannot use large pages bigger than 4mb.");
3026        } else {
3027#endif
3028          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3029            _large_page_size = LargePageSizeInBytes;
3030          } else {
3031            _large_page_size = s;
3032          }
3033          success = true;
3034#if defined(IA32) || defined(AMD64)
3035        }
3036#endif
3037      } else {
3038        WARN("Large page is not supported by the processor.");
3039      }
3040    } else {
3041      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3042    }
3043  } else {
3044    WARN("Large page is not supported by the operating system.");
3045  }
3046#undef WARN
3047
3048  const size_t default_page_size = (size_t) vm_page_size();
3049  if (success && _large_page_size > default_page_size) {
3050    _page_sizes[0] = _large_page_size;
3051    _page_sizes[1] = default_page_size;
3052    _page_sizes[2] = 0;
3053  }
3054
3055  cleanup_after_large_page_init();
3056  UseLargePages = success;
3057}
3058
3059// On win32, one cannot release just a part of reserved memory, it's an
3060// all or nothing deal.  When we split a reservation, we must break the
3061// reservation into two reservations.
3062void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3063                                  bool realloc) {
3064  if (size > 0) {
3065    release_memory(base, size);
3066    if (realloc) {
3067      reserve_memory(split, base);
3068    }
3069    if (size != split) {
3070      reserve_memory(size - split, base + split);
3071    }
3072  }
3073}
3074
3075// Multiple threads can race in this code but it's not possible to unmap small sections of
3076// virtual space to get requested alignment, like posix-like os's.
3077// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3078char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3079  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3080         "Alignment must be a multiple of allocation granularity (page size)");
3081  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3082
3083  size_t extra_size = size + alignment;
3084  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3085
3086  char* aligned_base = NULL;
3087
3088  do {
3089    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3090    if (extra_base == NULL) {
3091      return NULL;
3092    }
3093    // Do manual alignment
3094    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3095
3096    os::release_memory(extra_base, extra_size);
3097
3098    aligned_base = os::reserve_memory(size, aligned_base);
3099
3100  } while (aligned_base == NULL);
3101
3102  return aligned_base;
3103}
3104
3105char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3106  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3107         "reserve alignment");
3108  assert(bytes % os::vm_page_size() == 0, "reserve page size");
3109  char* res;
3110  // note that if UseLargePages is on, all the areas that require interleaving
3111  // will go thru reserve_memory_special rather than thru here.
3112  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3113  if (!use_individual) {
3114    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3115  } else {
3116    elapsedTimer reserveTimer;
3117    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3118    // in numa interleaving, we have to allocate pages individually
3119    // (well really chunks of NUMAInterleaveGranularity size)
3120    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3121    if (res == NULL) {
3122      warning("NUMA page allocation failed");
3123    }
3124    if (Verbose && PrintMiscellaneous) {
3125      reserveTimer.stop();
3126      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3127                    reserveTimer.milliseconds(), reserveTimer.ticks());
3128    }
3129  }
3130  assert(res == NULL || addr == NULL || addr == res,
3131         "Unexpected address from reserve.");
3132
3133  return res;
3134}
3135
3136// Reserve memory at an arbitrary address, only if that area is
3137// available (and not reserved for something else).
3138char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3139  // Windows os::reserve_memory() fails of the requested address range is
3140  // not avilable.
3141  return reserve_memory(bytes, requested_addr);
3142}
3143
3144size_t os::large_page_size() {
3145  return _large_page_size;
3146}
3147
3148bool os::can_commit_large_page_memory() {
3149  // Windows only uses large page memory when the entire region is reserved
3150  // and committed in a single VirtualAlloc() call. This may change in the
3151  // future, but with Windows 2003 it's not possible to commit on demand.
3152  return false;
3153}
3154
3155bool os::can_execute_large_page_memory() {
3156  return true;
3157}
3158
3159char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3160                                 bool exec) {
3161  assert(UseLargePages, "only for large pages");
3162
3163  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3164    return NULL; // Fallback to small pages.
3165  }
3166
3167  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3168  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3169
3170  // with large pages, there are two cases where we need to use Individual Allocation
3171  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3172  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3173  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3174    if (TracePageSizes && Verbose) {
3175      tty->print_cr("Reserving large pages individually.");
3176    }
3177    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3178    if (p_buf == NULL) {
3179      // give an appropriate warning message
3180      if (UseNUMAInterleaving) {
3181        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3182      }
3183      if (UseLargePagesIndividualAllocation) {
3184        warning("Individually allocated large pages failed, "
3185                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3186      }
3187      return NULL;
3188    }
3189
3190    return p_buf;
3191
3192  } else {
3193    if (TracePageSizes && Verbose) {
3194      tty->print_cr("Reserving large pages in a single large chunk.");
3195    }
3196    // normal policy just allocate it all at once
3197    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3198    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3199    if (res != NULL) {
3200      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3201    }
3202
3203    return res;
3204  }
3205}
3206
3207bool os::release_memory_special(char* base, size_t bytes) {
3208  assert(base != NULL, "Sanity check");
3209  return release_memory(base, bytes);
3210}
3211
3212void os::print_statistics() {
3213}
3214
3215static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3216  int err = os::get_last_error();
3217  char buf[256];
3218  size_t buf_len = os::lasterror(buf, sizeof(buf));
3219  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3220          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3221          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3222}
3223
3224bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3225  if (bytes == 0) {
3226    // Don't bother the OS with noops.
3227    return true;
3228  }
3229  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3230  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3231  // Don't attempt to print anything if the OS call fails. We're
3232  // probably low on resources, so the print itself may cause crashes.
3233
3234  // unless we have NUMAInterleaving enabled, the range of a commit
3235  // is always within a reserve covered by a single VirtualAlloc
3236  // in that case we can just do a single commit for the requested size
3237  if (!UseNUMAInterleaving) {
3238    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3239      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3240      return false;
3241    }
3242    if (exec) {
3243      DWORD oldprot;
3244      // Windows doc says to use VirtualProtect to get execute permissions
3245      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3246        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3247        return false;
3248      }
3249    }
3250    return true;
3251  } else {
3252
3253    // when NUMAInterleaving is enabled, the commit might cover a range that
3254    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3255    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3256    // returns represents the number of bytes that can be committed in one step.
3257    size_t bytes_remaining = bytes;
3258    char * next_alloc_addr = addr;
3259    while (bytes_remaining > 0) {
3260      MEMORY_BASIC_INFORMATION alloc_info;
3261      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3262      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3263      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3264                       PAGE_READWRITE) == NULL) {
3265        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3266                                            exec);)
3267        return false;
3268      }
3269      if (exec) {
3270        DWORD oldprot;
3271        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3272                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3273          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3274                                              exec);)
3275          return false;
3276        }
3277      }
3278      bytes_remaining -= bytes_to_rq;
3279      next_alloc_addr += bytes_to_rq;
3280    }
3281  }
3282  // if we made it this far, return true
3283  return true;
3284}
3285
3286bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3287                          bool exec) {
3288  // alignment_hint is ignored on this OS
3289  return pd_commit_memory(addr, size, exec);
3290}
3291
3292void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3293                                  const char* mesg) {
3294  assert(mesg != NULL, "mesg must be specified");
3295  if (!pd_commit_memory(addr, size, exec)) {
3296    warn_fail_commit_memory(addr, size, exec);
3297    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3298  }
3299}
3300
3301void os::pd_commit_memory_or_exit(char* addr, size_t size,
3302                                  size_t alignment_hint, bool exec,
3303                                  const char* mesg) {
3304  // alignment_hint is ignored on this OS
3305  pd_commit_memory_or_exit(addr, size, exec, mesg);
3306}
3307
3308bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3309  if (bytes == 0) {
3310    // Don't bother the OS with noops.
3311    return true;
3312  }
3313  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3314  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3315  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3316}
3317
3318bool os::pd_release_memory(char* addr, size_t bytes) {
3319  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3320}
3321
3322bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3323  return os::commit_memory(addr, size, !ExecMem);
3324}
3325
3326bool os::remove_stack_guard_pages(char* addr, size_t size) {
3327  return os::uncommit_memory(addr, size);
3328}
3329
3330// Set protections specified
3331bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3332                        bool is_committed) {
3333  unsigned int p = 0;
3334  switch (prot) {
3335  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3336  case MEM_PROT_READ: p = PAGE_READONLY; break;
3337  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3338  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3339  default:
3340    ShouldNotReachHere();
3341  }
3342
3343  DWORD old_status;
3344
3345  // Strange enough, but on Win32 one can change protection only for committed
3346  // memory, not a big deal anyway, as bytes less or equal than 64K
3347  if (!is_committed) {
3348    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3349                          "cannot commit protection page");
3350  }
3351  // One cannot use os::guard_memory() here, as on Win32 guard page
3352  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3353  //
3354  // Pages in the region become guard pages. Any attempt to access a guard page
3355  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3356  // the guard page status. Guard pages thus act as a one-time access alarm.
3357  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3358}
3359
3360bool os::guard_memory(char* addr, size_t bytes) {
3361  DWORD old_status;
3362  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3363}
3364
3365bool os::unguard_memory(char* addr, size_t bytes) {
3366  DWORD old_status;
3367  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3368}
3369
3370void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3371void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3372void os::numa_make_global(char *addr, size_t bytes)    { }
3373void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3374bool os::numa_topology_changed()                       { return false; }
3375size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3376int os::numa_get_group_id()                            { return 0; }
3377size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3378  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3379    // Provide an answer for UMA systems
3380    ids[0] = 0;
3381    return 1;
3382  } else {
3383    // check for size bigger than actual groups_num
3384    size = MIN2(size, numa_get_groups_num());
3385    for (int i = 0; i < (int)size; i++) {
3386      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3387    }
3388    return size;
3389  }
3390}
3391
3392bool os::get_page_info(char *start, page_info* info) {
3393  return false;
3394}
3395
3396char *os::scan_pages(char *start, char* end, page_info* page_expected,
3397                     page_info* page_found) {
3398  return end;
3399}
3400
3401char* os::non_memory_address_word() {
3402  // Must never look like an address returned by reserve_memory,
3403  // even in its subfields (as defined by the CPU immediate fields,
3404  // if the CPU splits constants across multiple instructions).
3405  return (char*)-1;
3406}
3407
3408#define MAX_ERROR_COUNT 100
3409#define SYS_THREAD_ERROR 0xffffffffUL
3410
3411void os::pd_start_thread(Thread* thread) {
3412  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3413  // Returns previous suspend state:
3414  // 0:  Thread was not suspended
3415  // 1:  Thread is running now
3416  // >1: Thread is still suspended.
3417  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3418}
3419
3420class HighResolutionInterval : public CHeapObj<mtThread> {
3421  // The default timer resolution seems to be 10 milliseconds.
3422  // (Where is this written down?)
3423  // If someone wants to sleep for only a fraction of the default,
3424  // then we set the timer resolution down to 1 millisecond for
3425  // the duration of their interval.
3426  // We carefully set the resolution back, since otherwise we
3427  // seem to incur an overhead (3%?) that we don't need.
3428  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3429  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3430  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3431  // timeBeginPeriod() if the relative error exceeded some threshold.
3432  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3433  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3434  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3435  // resolution timers running.
3436 private:
3437  jlong resolution;
3438 public:
3439  HighResolutionInterval(jlong ms) {
3440    resolution = ms % 10L;
3441    if (resolution != 0) {
3442      MMRESULT result = timeBeginPeriod(1L);
3443    }
3444  }
3445  ~HighResolutionInterval() {
3446    if (resolution != 0) {
3447      MMRESULT result = timeEndPeriod(1L);
3448    }
3449    resolution = 0L;
3450  }
3451};
3452
3453int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3454  jlong limit = (jlong) MAXDWORD;
3455
3456  while (ms > limit) {
3457    int res;
3458    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3459      return res;
3460    }
3461    ms -= limit;
3462  }
3463
3464  assert(thread == Thread::current(), "thread consistency check");
3465  OSThread* osthread = thread->osthread();
3466  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3467  int result;
3468  if (interruptable) {
3469    assert(thread->is_Java_thread(), "must be java thread");
3470    JavaThread *jt = (JavaThread *) thread;
3471    ThreadBlockInVM tbivm(jt);
3472
3473    jt->set_suspend_equivalent();
3474    // cleared by handle_special_suspend_equivalent_condition() or
3475    // java_suspend_self() via check_and_wait_while_suspended()
3476
3477    HANDLE events[1];
3478    events[0] = osthread->interrupt_event();
3479    HighResolutionInterval *phri=NULL;
3480    if (!ForceTimeHighResolution) {
3481      phri = new HighResolutionInterval(ms);
3482    }
3483    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3484      result = OS_TIMEOUT;
3485    } else {
3486      ResetEvent(osthread->interrupt_event());
3487      osthread->set_interrupted(false);
3488      result = OS_INTRPT;
3489    }
3490    delete phri; //if it is NULL, harmless
3491
3492    // were we externally suspended while we were waiting?
3493    jt->check_and_wait_while_suspended();
3494  } else {
3495    assert(!thread->is_Java_thread(), "must not be java thread");
3496    Sleep((long) ms);
3497    result = OS_TIMEOUT;
3498  }
3499  return result;
3500}
3501
3502// Short sleep, direct OS call.
3503//
3504// ms = 0, means allow others (if any) to run.
3505//
3506void os::naked_short_sleep(jlong ms) {
3507  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3508  Sleep(ms);
3509}
3510
3511// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3512void os::infinite_sleep() {
3513  while (true) {    // sleep forever ...
3514    Sleep(100000);  // ... 100 seconds at a time
3515  }
3516}
3517
3518typedef BOOL (WINAPI * STTSignature)(void);
3519
3520void os::naked_yield() {
3521  // Use either SwitchToThread() or Sleep(0)
3522  // Consider passing back the return value from SwitchToThread().
3523  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3524    SwitchToThread();
3525  } else {
3526    Sleep(0);
3527  }
3528}
3529
3530// Win32 only gives you access to seven real priorities at a time,
3531// so we compress Java's ten down to seven.  It would be better
3532// if we dynamically adjusted relative priorities.
3533
3534int os::java_to_os_priority[CriticalPriority + 1] = {
3535  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3536  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3537  THREAD_PRIORITY_LOWEST,                       // 2
3538  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3539  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3540  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3541  THREAD_PRIORITY_NORMAL,                       // 6
3542  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3543  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3544  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3545  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3546  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3547};
3548
3549int prio_policy1[CriticalPriority + 1] = {
3550  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3551  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3552  THREAD_PRIORITY_LOWEST,                       // 2
3553  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3554  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3555  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3556  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3557  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3558  THREAD_PRIORITY_HIGHEST,                      // 8
3559  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3560  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3561  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3562};
3563
3564static int prio_init() {
3565  // If ThreadPriorityPolicy is 1, switch tables
3566  if (ThreadPriorityPolicy == 1) {
3567    int i;
3568    for (i = 0; i < CriticalPriority + 1; i++) {
3569      os::java_to_os_priority[i] = prio_policy1[i];
3570    }
3571  }
3572  if (UseCriticalJavaThreadPriority) {
3573    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3574  }
3575  return 0;
3576}
3577
3578OSReturn os::set_native_priority(Thread* thread, int priority) {
3579  if (!UseThreadPriorities) return OS_OK;
3580  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3581  return ret ? OS_OK : OS_ERR;
3582}
3583
3584OSReturn os::get_native_priority(const Thread* const thread,
3585                                 int* priority_ptr) {
3586  if (!UseThreadPriorities) {
3587    *priority_ptr = java_to_os_priority[NormPriority];
3588    return OS_OK;
3589  }
3590  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3591  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3592    assert(false, "GetThreadPriority failed");
3593    return OS_ERR;
3594  }
3595  *priority_ptr = os_prio;
3596  return OS_OK;
3597}
3598
3599
3600// Hint to the underlying OS that a task switch would not be good.
3601// Void return because it's a hint and can fail.
3602void os::hint_no_preempt() {}
3603
3604void os::interrupt(Thread* thread) {
3605  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3606         Threads_lock->owned_by_self(),
3607         "possibility of dangling Thread pointer");
3608
3609  OSThread* osthread = thread->osthread();
3610  osthread->set_interrupted(true);
3611  // More than one thread can get here with the same value of osthread,
3612  // resulting in multiple notifications.  We do, however, want the store
3613  // to interrupted() to be visible to other threads before we post
3614  // the interrupt event.
3615  OrderAccess::release();
3616  SetEvent(osthread->interrupt_event());
3617  // For JSR166:  unpark after setting status
3618  if (thread->is_Java_thread()) {
3619    ((JavaThread*)thread)->parker()->unpark();
3620  }
3621
3622  ParkEvent * ev = thread->_ParkEvent;
3623  if (ev != NULL) ev->unpark();
3624}
3625
3626
3627bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3628  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3629         "possibility of dangling Thread pointer");
3630
3631  OSThread* osthread = thread->osthread();
3632  // There is no synchronization between the setting of the interrupt
3633  // and it being cleared here. It is critical - see 6535709 - that
3634  // we only clear the interrupt state, and reset the interrupt event,
3635  // if we are going to report that we were indeed interrupted - else
3636  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3637  // depending on the timing. By checking thread interrupt event to see
3638  // if the thread gets real interrupt thus prevent spurious wakeup.
3639  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3640  if (interrupted && clear_interrupted) {
3641    osthread->set_interrupted(false);
3642    ResetEvent(osthread->interrupt_event());
3643  } // Otherwise leave the interrupted state alone
3644
3645  return interrupted;
3646}
3647
3648// Get's a pc (hint) for a running thread. Currently used only for profiling.
3649ExtendedPC os::get_thread_pc(Thread* thread) {
3650  CONTEXT context;
3651  context.ContextFlags = CONTEXT_CONTROL;
3652  HANDLE handle = thread->osthread()->thread_handle();
3653#ifdef _M_IA64
3654  assert(0, "Fix get_thread_pc");
3655  return ExtendedPC(NULL);
3656#else
3657  if (GetThreadContext(handle, &context)) {
3658#ifdef _M_AMD64
3659    return ExtendedPC((address) context.Rip);
3660#else
3661    return ExtendedPC((address) context.Eip);
3662#endif
3663  } else {
3664    return ExtendedPC(NULL);
3665  }
3666#endif
3667}
3668
3669// GetCurrentThreadId() returns DWORD
3670intx os::current_thread_id()  { return GetCurrentThreadId(); }
3671
3672static int _initial_pid = 0;
3673
3674int os::current_process_id() {
3675  return (_initial_pid ? _initial_pid : _getpid());
3676}
3677
3678int    os::win32::_vm_page_size              = 0;
3679int    os::win32::_vm_allocation_granularity = 0;
3680int    os::win32::_processor_type            = 0;
3681// Processor level is not available on non-NT systems, use vm_version instead
3682int    os::win32::_processor_level           = 0;
3683julong os::win32::_physical_memory           = 0;
3684size_t os::win32::_default_stack_size        = 0;
3685
3686intx          os::win32::_os_thread_limit    = 0;
3687volatile intx os::win32::_os_thread_count    = 0;
3688
3689bool   os::win32::_is_nt                     = false;
3690bool   os::win32::_is_windows_2003           = false;
3691bool   os::win32::_is_windows_server         = false;
3692
3693// 6573254
3694// Currently, the bug is observed across all the supported Windows releases,
3695// including the latest one (as of this writing - Windows Server 2012 R2)
3696bool   os::win32::_has_exit_bug              = true;
3697bool   os::win32::_has_performance_count     = 0;
3698
3699void os::win32::initialize_system_info() {
3700  SYSTEM_INFO si;
3701  GetSystemInfo(&si);
3702  _vm_page_size    = si.dwPageSize;
3703  _vm_allocation_granularity = si.dwAllocationGranularity;
3704  _processor_type  = si.dwProcessorType;
3705  _processor_level = si.wProcessorLevel;
3706  set_processor_count(si.dwNumberOfProcessors);
3707
3708  MEMORYSTATUSEX ms;
3709  ms.dwLength = sizeof(ms);
3710
3711  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3712  // dwMemoryLoad (% of memory in use)
3713  GlobalMemoryStatusEx(&ms);
3714  _physical_memory = ms.ullTotalPhys;
3715
3716  OSVERSIONINFOEX oi;
3717  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3718  GetVersionEx((OSVERSIONINFO*)&oi);
3719  switch (oi.dwPlatformId) {
3720  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3721  case VER_PLATFORM_WIN32_NT:
3722    _is_nt = true;
3723    {
3724      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3725      if (os_vers == 5002) {
3726        _is_windows_2003 = true;
3727      }
3728      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3729          oi.wProductType == VER_NT_SERVER) {
3730        _is_windows_server = true;
3731      }
3732    }
3733    break;
3734  default: fatal("Unknown platform");
3735  }
3736
3737  _default_stack_size = os::current_stack_size();
3738  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3739  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3740         "stack size not a multiple of page size");
3741
3742  initialize_performance_counter();
3743}
3744
3745
3746HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3747                                      int ebuflen) {
3748  char path[MAX_PATH];
3749  DWORD size;
3750  DWORD pathLen = (DWORD)sizeof(path);
3751  HINSTANCE result = NULL;
3752
3753  // only allow library name without path component
3754  assert(strchr(name, '\\') == NULL, "path not allowed");
3755  assert(strchr(name, ':') == NULL, "path not allowed");
3756  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3757    jio_snprintf(ebuf, ebuflen,
3758                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3759    return NULL;
3760  }
3761
3762  // search system directory
3763  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3764    if (size >= pathLen) {
3765      return NULL; // truncated
3766    }
3767    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3768      return NULL; // truncated
3769    }
3770    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3771      return result;
3772    }
3773  }
3774
3775  // try Windows directory
3776  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3777    if (size >= pathLen) {
3778      return NULL; // truncated
3779    }
3780    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3781      return NULL; // truncated
3782    }
3783    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3784      return result;
3785    }
3786  }
3787
3788  jio_snprintf(ebuf, ebuflen,
3789               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3790  return NULL;
3791}
3792
3793#define EXIT_TIMEOUT 300000 /* 5 minutes */
3794
3795static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3796  InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3797  return TRUE;
3798}
3799
3800int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3801  // Basic approach:
3802  //  - Each exiting thread registers its intent to exit and then does so.
3803  //  - A thread trying to terminate the process must wait for all
3804  //    threads currently exiting to complete their exit.
3805
3806  if (os::win32::has_exit_bug()) {
3807    // The array holds handles of the threads that have started exiting by calling
3808    // _endthreadex().
3809    // Should be large enough to avoid blocking the exiting thread due to lack of
3810    // a free slot.
3811    static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3812    static int handle_count = 0;
3813
3814    static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3815    static CRITICAL_SECTION crit_sect;
3816    static volatile jint process_exiting = 0;
3817    int i, j;
3818    DWORD res;
3819    HANDLE hproc, hthr;
3820
3821    // The first thread that reached this point, initializes the critical section.
3822    if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3823      warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3824    } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3825      EnterCriticalSection(&crit_sect);
3826
3827      if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3828        // Remove from the array those handles of the threads that have completed exiting.
3829        for (i = 0, j = 0; i < handle_count; ++i) {
3830          res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3831          if (res == WAIT_TIMEOUT) {
3832            handles[j++] = handles[i];
3833          } else {
3834            if (res == WAIT_FAILED) {
3835              warning("WaitForSingleObject failed (%u) in %s: %d\n",
3836                      GetLastError(), __FILE__, __LINE__);
3837            }
3838            // Don't keep the handle, if we failed waiting for it.
3839            CloseHandle(handles[i]);
3840          }
3841        }
3842
3843        // If there's no free slot in the array of the kept handles, we'll have to
3844        // wait until at least one thread completes exiting.
3845        if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3846          // Raise the priority of the oldest exiting thread to increase its chances
3847          // to complete sooner.
3848          SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3849          res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3850          if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3851            i = (res - WAIT_OBJECT_0);
3852            handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3853            for (; i < handle_count; ++i) {
3854              handles[i] = handles[i + 1];
3855            }
3856          } else {
3857            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3858                    (res == WAIT_FAILED ? "failed" : "timed out"),
3859                    GetLastError(), __FILE__, __LINE__);
3860            // Don't keep handles, if we failed waiting for them.
3861            for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3862              CloseHandle(handles[i]);
3863            }
3864            handle_count = 0;
3865          }
3866        }
3867
3868        // Store a duplicate of the current thread handle in the array of handles.
3869        hproc = GetCurrentProcess();
3870        hthr = GetCurrentThread();
3871        if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3872                             0, FALSE, DUPLICATE_SAME_ACCESS)) {
3873          warning("DuplicateHandle failed (%u) in %s: %d\n",
3874                  GetLastError(), __FILE__, __LINE__);
3875        } else {
3876          ++handle_count;
3877        }
3878
3879        // The current exiting thread has stored its handle in the array, and now
3880        // should leave the critical section before calling _endthreadex().
3881
3882      } else if (what != EPT_THREAD) {
3883        if (handle_count > 0) {
3884          // Before ending the process, make sure all the threads that had called
3885          // _endthreadex() completed.
3886
3887          // Set the priority level of the current thread to the same value as
3888          // the priority level of exiting threads.
3889          // This is to ensure it will be given a fair chance to execute if
3890          // the timeout expires.
3891          hthr = GetCurrentThread();
3892          SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3893          for (i = 0; i < handle_count; ++i) {
3894            SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3895          }
3896          res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3897          if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3898            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3899                    (res == WAIT_FAILED ? "failed" : "timed out"),
3900                    GetLastError(), __FILE__, __LINE__);
3901          }
3902          for (i = 0; i < handle_count; ++i) {
3903            CloseHandle(handles[i]);
3904          }
3905          handle_count = 0;
3906        }
3907
3908        OrderAccess::release_store(&process_exiting, 1);
3909      }
3910
3911      LeaveCriticalSection(&crit_sect);
3912    }
3913
3914    if (what == EPT_THREAD) {
3915      while (OrderAccess::load_acquire(&process_exiting) != 0) {
3916        // Some other thread is about to call exit(), so we
3917        // don't let the current thread proceed to _endthreadex()
3918        SuspendThread(GetCurrentThread());
3919        // Avoid busy-wait loop, if SuspendThread() failed.
3920        Sleep(EXIT_TIMEOUT);
3921      }
3922    }
3923  }
3924
3925  // We are here if either
3926  // - there's no 'race at exit' bug on this OS release;
3927  // - initialization of the critical section failed (unlikely);
3928  // - the current thread has stored its handle and left the critical section;
3929  // - the process-exiting thread has raised the flag and left the critical section.
3930  if (what == EPT_THREAD) {
3931    _endthreadex((unsigned)exit_code);
3932  } else if (what == EPT_PROCESS) {
3933    ::exit(exit_code);
3934  } else {
3935    _exit(exit_code);
3936  }
3937
3938  // Should not reach here
3939  return exit_code;
3940}
3941
3942#undef EXIT_TIMEOUT
3943
3944void os::win32::setmode_streams() {
3945  _setmode(_fileno(stdin), _O_BINARY);
3946  _setmode(_fileno(stdout), _O_BINARY);
3947  _setmode(_fileno(stderr), _O_BINARY);
3948}
3949
3950
3951bool os::is_debugger_attached() {
3952  return IsDebuggerPresent() ? true : false;
3953}
3954
3955
3956void os::wait_for_keypress_at_exit(void) {
3957  if (PauseAtExit) {
3958    fprintf(stderr, "Press any key to continue...\n");
3959    fgetc(stdin);
3960  }
3961}
3962
3963
3964int os::message_box(const char* title, const char* message) {
3965  int result = MessageBox(NULL, message, title,
3966                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3967  return result == IDYES;
3968}
3969
3970int os::allocate_thread_local_storage() {
3971  return TlsAlloc();
3972}
3973
3974
3975void os::free_thread_local_storage(int index) {
3976  TlsFree(index);
3977}
3978
3979
3980void os::thread_local_storage_at_put(int index, void* value) {
3981  TlsSetValue(index, value);
3982  assert(thread_local_storage_at(index) == value, "Just checking");
3983}
3984
3985
3986void* os::thread_local_storage_at(int index) {
3987  return TlsGetValue(index);
3988}
3989
3990
3991#ifndef PRODUCT
3992#ifndef _WIN64
3993// Helpers to check whether NX protection is enabled
3994int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3995  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3996      pex->ExceptionRecord->NumberParameters > 0 &&
3997      pex->ExceptionRecord->ExceptionInformation[0] ==
3998      EXCEPTION_INFO_EXEC_VIOLATION) {
3999    return EXCEPTION_EXECUTE_HANDLER;
4000  }
4001  return EXCEPTION_CONTINUE_SEARCH;
4002}
4003
4004void nx_check_protection() {
4005  // If NX is enabled we'll get an exception calling into code on the stack
4006  char code[] = { (char)0xC3 }; // ret
4007  void *code_ptr = (void *)code;
4008  __try {
4009    __asm call code_ptr
4010  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4011    tty->print_raw_cr("NX protection detected.");
4012  }
4013}
4014#endif // _WIN64
4015#endif // PRODUCT
4016
4017// this is called _before_ the global arguments have been parsed
4018void os::init(void) {
4019  _initial_pid = _getpid();
4020
4021  init_random(1234567);
4022
4023  win32::initialize_system_info();
4024  win32::setmode_streams();
4025  init_page_sizes((size_t) win32::vm_page_size());
4026
4027  // This may be overridden later when argument processing is done.
4028  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4029                os::win32::is_windows_2003());
4030
4031  // Initialize main_process and main_thread
4032  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4033  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4034                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4035    fatal("DuplicateHandle failed\n");
4036  }
4037  main_thread_id = (int) GetCurrentThreadId();
4038}
4039
4040// To install functions for atexit processing
4041extern "C" {
4042  static void perfMemory_exit_helper() {
4043    perfMemory_exit();
4044  }
4045}
4046
4047static jint initSock();
4048
4049// this is called _after_ the global arguments have been parsed
4050jint os::init_2(void) {
4051  // Allocate a single page and mark it as readable for safepoint polling
4052  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4053  guarantee(polling_page != NULL, "Reserve Failed for polling page");
4054
4055  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4056  guarantee(return_page != NULL, "Commit Failed for polling page");
4057
4058  os::set_polling_page(polling_page);
4059
4060#ifndef PRODUCT
4061  if (Verbose && PrintMiscellaneous) {
4062    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4063               (intptr_t)polling_page);
4064  }
4065#endif
4066
4067  if (!UseMembar) {
4068    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4069    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4070
4071    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4072    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4073
4074    os::set_memory_serialize_page(mem_serialize_page);
4075
4076#ifndef PRODUCT
4077    if (Verbose && PrintMiscellaneous) {
4078      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4079                 (intptr_t)mem_serialize_page);
4080    }
4081#endif
4082  }
4083
4084  // Setup Windows Exceptions
4085
4086  // for debugging float code generation bugs
4087  if (ForceFloatExceptions) {
4088#ifndef  _WIN64
4089    static long fp_control_word = 0;
4090    __asm { fstcw fp_control_word }
4091    // see Intel PPro Manual, Vol. 2, p 7-16
4092    const long precision = 0x20;
4093    const long underflow = 0x10;
4094    const long overflow  = 0x08;
4095    const long zero_div  = 0x04;
4096    const long denorm    = 0x02;
4097    const long invalid   = 0x01;
4098    fp_control_word |= invalid;
4099    __asm { fldcw fp_control_word }
4100#endif
4101  }
4102
4103  // If stack_commit_size is 0, windows will reserve the default size,
4104  // but only commit a small portion of it.
4105  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4106  size_t default_reserve_size = os::win32::default_stack_size();
4107  size_t actual_reserve_size = stack_commit_size;
4108  if (stack_commit_size < default_reserve_size) {
4109    // If stack_commit_size == 0, we want this too
4110    actual_reserve_size = default_reserve_size;
4111  }
4112
4113  // Check minimum allowable stack size for thread creation and to initialize
4114  // the java system classes, including StackOverflowError - depends on page
4115  // size.  Add a page for compiler2 recursion in main thread.
4116  // Add in 2*BytesPerWord times page size to account for VM stack during
4117  // class initialization depending on 32 or 64 bit VM.
4118  size_t min_stack_allowed =
4119            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4120                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4121  if (actual_reserve_size < min_stack_allowed) {
4122    tty->print_cr("\nThe stack size specified is too small, "
4123                  "Specify at least %dk",
4124                  min_stack_allowed / K);
4125    return JNI_ERR;
4126  }
4127
4128  JavaThread::set_stack_size_at_create(stack_commit_size);
4129
4130  // Calculate theoretical max. size of Threads to guard gainst artifical
4131  // out-of-memory situations, where all available address-space has been
4132  // reserved by thread stacks.
4133  assert(actual_reserve_size != 0, "Must have a stack");
4134
4135  // Calculate the thread limit when we should start doing Virtual Memory
4136  // banging. Currently when the threads will have used all but 200Mb of space.
4137  //
4138  // TODO: consider performing a similar calculation for commit size instead
4139  // as reserve size, since on a 64-bit platform we'll run into that more
4140  // often than running out of virtual memory space.  We can use the
4141  // lower value of the two calculations as the os_thread_limit.
4142  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4143  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4144
4145  // at exit methods are called in the reverse order of their registration.
4146  // there is no limit to the number of functions registered. atexit does
4147  // not set errno.
4148
4149  if (PerfAllowAtExitRegistration) {
4150    // only register atexit functions if PerfAllowAtExitRegistration is set.
4151    // atexit functions can be delayed until process exit time, which
4152    // can be problematic for embedded VM situations. Embedded VMs should
4153    // call DestroyJavaVM() to assure that VM resources are released.
4154
4155    // note: perfMemory_exit_helper atexit function may be removed in
4156    // the future if the appropriate cleanup code can be added to the
4157    // VM_Exit VMOperation's doit method.
4158    if (atexit(perfMemory_exit_helper) != 0) {
4159      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4160    }
4161  }
4162
4163#ifndef _WIN64
4164  // Print something if NX is enabled (win32 on AMD64)
4165  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4166#endif
4167
4168  // initialize thread priority policy
4169  prio_init();
4170
4171  if (UseNUMA && !ForceNUMA) {
4172    UseNUMA = false; // We don't fully support this yet
4173  }
4174
4175  if (UseNUMAInterleaving) {
4176    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4177    bool success = numa_interleaving_init();
4178    if (!success) UseNUMAInterleaving = false;
4179  }
4180
4181  if (initSock() != JNI_OK) {
4182    return JNI_ERR;
4183  }
4184
4185  return JNI_OK;
4186}
4187
4188// Mark the polling page as unreadable
4189void os::make_polling_page_unreadable(void) {
4190  DWORD old_status;
4191  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4192                      PAGE_NOACCESS, &old_status)) {
4193    fatal("Could not disable polling page");
4194  }
4195}
4196
4197// Mark the polling page as readable
4198void os::make_polling_page_readable(void) {
4199  DWORD old_status;
4200  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4201                      PAGE_READONLY, &old_status)) {
4202    fatal("Could not enable polling page");
4203  }
4204}
4205
4206
4207int os::stat(const char *path, struct stat *sbuf) {
4208  char pathbuf[MAX_PATH];
4209  if (strlen(path) > MAX_PATH - 1) {
4210    errno = ENAMETOOLONG;
4211    return -1;
4212  }
4213  os::native_path(strcpy(pathbuf, path));
4214  int ret = ::stat(pathbuf, sbuf);
4215  if (sbuf != NULL && UseUTCFileTimestamp) {
4216    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4217    // the system timezone and so can return different values for the
4218    // same file if/when daylight savings time changes.  This adjustment
4219    // makes sure the same timestamp is returned regardless of the TZ.
4220    //
4221    // See:
4222    // http://msdn.microsoft.com/library/
4223    //   default.asp?url=/library/en-us/sysinfo/base/
4224    //   time_zone_information_str.asp
4225    // and
4226    // http://msdn.microsoft.com/library/default.asp?url=
4227    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4228    //
4229    // NOTE: there is a insidious bug here:  If the timezone is changed
4230    // after the call to stat() but before 'GetTimeZoneInformation()', then
4231    // the adjustment we do here will be wrong and we'll return the wrong
4232    // value (which will likely end up creating an invalid class data
4233    // archive).  Absent a better API for this, or some time zone locking
4234    // mechanism, we'll have to live with this risk.
4235    TIME_ZONE_INFORMATION tz;
4236    DWORD tzid = GetTimeZoneInformation(&tz);
4237    int daylightBias =
4238      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4239    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4240  }
4241  return ret;
4242}
4243
4244
4245#define FT2INT64(ft) \
4246  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4247
4248
4249// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4250// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4251// of a thread.
4252//
4253// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4254// the fast estimate available on the platform.
4255
4256// current_thread_cpu_time() is not optimized for Windows yet
4257jlong os::current_thread_cpu_time() {
4258  // return user + sys since the cost is the same
4259  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4260}
4261
4262jlong os::thread_cpu_time(Thread* thread) {
4263  // consistent with what current_thread_cpu_time() returns.
4264  return os::thread_cpu_time(thread, true /* user+sys */);
4265}
4266
4267jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4268  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4269}
4270
4271jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4272  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4273  // If this function changes, os::is_thread_cpu_time_supported() should too
4274  if (os::win32::is_nt()) {
4275    FILETIME CreationTime;
4276    FILETIME ExitTime;
4277    FILETIME KernelTime;
4278    FILETIME UserTime;
4279
4280    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4281                       &ExitTime, &KernelTime, &UserTime) == 0) {
4282      return -1;
4283    } else if (user_sys_cpu_time) {
4284      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4285    } else {
4286      return FT2INT64(UserTime) * 100;
4287    }
4288  } else {
4289    return (jlong) timeGetTime() * 1000000;
4290  }
4291}
4292
4293void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4294  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4295  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4296  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4297  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4298}
4299
4300void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4301  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4302  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4303  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4304  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4305}
4306
4307bool os::is_thread_cpu_time_supported() {
4308  // see os::thread_cpu_time
4309  if (os::win32::is_nt()) {
4310    FILETIME CreationTime;
4311    FILETIME ExitTime;
4312    FILETIME KernelTime;
4313    FILETIME UserTime;
4314
4315    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4316                       &KernelTime, &UserTime) == 0) {
4317      return false;
4318    } else {
4319      return true;
4320    }
4321  } else {
4322    return false;
4323  }
4324}
4325
4326// Windows does't provide a loadavg primitive so this is stubbed out for now.
4327// It does have primitives (PDH API) to get CPU usage and run queue length.
4328// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4329// If we wanted to implement loadavg on Windows, we have a few options:
4330//
4331// a) Query CPU usage and run queue length and "fake" an answer by
4332//    returning the CPU usage if it's under 100%, and the run queue
4333//    length otherwise.  It turns out that querying is pretty slow
4334//    on Windows, on the order of 200 microseconds on a fast machine.
4335//    Note that on the Windows the CPU usage value is the % usage
4336//    since the last time the API was called (and the first call
4337//    returns 100%), so we'd have to deal with that as well.
4338//
4339// b) Sample the "fake" answer using a sampling thread and store
4340//    the answer in a global variable.  The call to loadavg would
4341//    just return the value of the global, avoiding the slow query.
4342//
4343// c) Sample a better answer using exponential decay to smooth the
4344//    value.  This is basically the algorithm used by UNIX kernels.
4345//
4346// Note that sampling thread starvation could affect both (b) and (c).
4347int os::loadavg(double loadavg[], int nelem) {
4348  return -1;
4349}
4350
4351
4352// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4353bool os::dont_yield() {
4354  return DontYieldALot;
4355}
4356
4357// This method is a slightly reworked copy of JDK's sysOpen
4358// from src/windows/hpi/src/sys_api_md.c
4359
4360int os::open(const char *path, int oflag, int mode) {
4361  char pathbuf[MAX_PATH];
4362
4363  if (strlen(path) > MAX_PATH - 1) {
4364    errno = ENAMETOOLONG;
4365    return -1;
4366  }
4367  os::native_path(strcpy(pathbuf, path));
4368  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4369}
4370
4371FILE* os::open(int fd, const char* mode) {
4372  return ::_fdopen(fd, mode);
4373}
4374
4375// Is a (classpath) directory empty?
4376bool os::dir_is_empty(const char* path) {
4377  WIN32_FIND_DATA fd;
4378  HANDLE f = FindFirstFile(path, &fd);
4379  if (f == INVALID_HANDLE_VALUE) {
4380    return true;
4381  }
4382  FindClose(f);
4383  return false;
4384}
4385
4386// create binary file, rewriting existing file if required
4387int os::create_binary_file(const char* path, bool rewrite_existing) {
4388  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4389  if (!rewrite_existing) {
4390    oflags |= _O_EXCL;
4391  }
4392  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4393}
4394
4395// return current position of file pointer
4396jlong os::current_file_offset(int fd) {
4397  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4398}
4399
4400// move file pointer to the specified offset
4401jlong os::seek_to_file_offset(int fd, jlong offset) {
4402  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4403}
4404
4405
4406jlong os::lseek(int fd, jlong offset, int whence) {
4407  return (jlong) ::_lseeki64(fd, offset, whence);
4408}
4409
4410size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4411  OVERLAPPED ov;
4412  DWORD nread;
4413  BOOL result;
4414
4415  ZeroMemory(&ov, sizeof(ov));
4416  ov.Offset = (DWORD)offset;
4417  ov.OffsetHigh = (DWORD)(offset >> 32);
4418
4419  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4420
4421  result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4422
4423  return result ? nread : 0;
4424}
4425
4426
4427// This method is a slightly reworked copy of JDK's sysNativePath
4428// from src/windows/hpi/src/path_md.c
4429
4430// Convert a pathname to native format.  On win32, this involves forcing all
4431// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4432// sometimes rejects '/') and removing redundant separators.  The input path is
4433// assumed to have been converted into the character encoding used by the local
4434// system.  Because this might be a double-byte encoding, care is taken to
4435// treat double-byte lead characters correctly.
4436//
4437// This procedure modifies the given path in place, as the result is never
4438// longer than the original.  There is no error return; this operation always
4439// succeeds.
4440char * os::native_path(char *path) {
4441  char *src = path, *dst = path, *end = path;
4442  char *colon = NULL;  // If a drive specifier is found, this will
4443                       // point to the colon following the drive letter
4444
4445  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4446  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4447          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4448
4449  // Check for leading separators
4450#define isfilesep(c) ((c) == '/' || (c) == '\\')
4451  while (isfilesep(*src)) {
4452    src++;
4453  }
4454
4455  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4456    // Remove leading separators if followed by drive specifier.  This
4457    // hack is necessary to support file URLs containing drive
4458    // specifiers (e.g., "file://c:/path").  As a side effect,
4459    // "/c:/path" can be used as an alternative to "c:/path".
4460    *dst++ = *src++;
4461    colon = dst;
4462    *dst++ = ':';
4463    src++;
4464  } else {
4465    src = path;
4466    if (isfilesep(src[0]) && isfilesep(src[1])) {
4467      // UNC pathname: Retain first separator; leave src pointed at
4468      // second separator so that further separators will be collapsed
4469      // into the second separator.  The result will be a pathname
4470      // beginning with "\\\\" followed (most likely) by a host name.
4471      src = dst = path + 1;
4472      path[0] = '\\';     // Force first separator to '\\'
4473    }
4474  }
4475
4476  end = dst;
4477
4478  // Remove redundant separators from remainder of path, forcing all
4479  // separators to be '\\' rather than '/'. Also, single byte space
4480  // characters are removed from the end of the path because those
4481  // are not legal ending characters on this operating system.
4482  //
4483  while (*src != '\0') {
4484    if (isfilesep(*src)) {
4485      *dst++ = '\\'; src++;
4486      while (isfilesep(*src)) src++;
4487      if (*src == '\0') {
4488        // Check for trailing separator
4489        end = dst;
4490        if (colon == dst - 2) break;  // "z:\\"
4491        if (dst == path + 1) break;   // "\\"
4492        if (dst == path + 2 && isfilesep(path[0])) {
4493          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4494          // beginning of a UNC pathname.  Even though it is not, by
4495          // itself, a valid UNC pathname, we leave it as is in order
4496          // to be consistent with the path canonicalizer as well
4497          // as the win32 APIs, which treat this case as an invalid
4498          // UNC pathname rather than as an alias for the root
4499          // directory of the current drive.
4500          break;
4501        }
4502        end = --dst;  // Path does not denote a root directory, so
4503                      // remove trailing separator
4504        break;
4505      }
4506      end = dst;
4507    } else {
4508      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4509        *dst++ = *src++;
4510        if (*src) *dst++ = *src++;
4511        end = dst;
4512      } else {  // Copy a single-byte character
4513        char c = *src++;
4514        *dst++ = c;
4515        // Space is not a legal ending character
4516        if (c != ' ') end = dst;
4517      }
4518    }
4519  }
4520
4521  *end = '\0';
4522
4523  // For "z:", add "." to work around a bug in the C runtime library
4524  if (colon == dst - 1) {
4525    path[2] = '.';
4526    path[3] = '\0';
4527  }
4528
4529  return path;
4530}
4531
4532// This code is a copy of JDK's sysSetLength
4533// from src/windows/hpi/src/sys_api_md.c
4534
4535int os::ftruncate(int fd, jlong length) {
4536  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4537  long high = (long)(length >> 32);
4538  DWORD ret;
4539
4540  if (h == (HANDLE)(-1)) {
4541    return -1;
4542  }
4543
4544  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4545  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4546    return -1;
4547  }
4548
4549  if (::SetEndOfFile(h) == FALSE) {
4550    return -1;
4551  }
4552
4553  return 0;
4554}
4555
4556
4557// This code is a copy of JDK's sysSync
4558// from src/windows/hpi/src/sys_api_md.c
4559// except for the legacy workaround for a bug in Win 98
4560
4561int os::fsync(int fd) {
4562  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4563
4564  if ((!::FlushFileBuffers(handle)) &&
4565      (GetLastError() != ERROR_ACCESS_DENIED)) {
4566    // from winerror.h
4567    return -1;
4568  }
4569  return 0;
4570}
4571
4572static int nonSeekAvailable(int, long *);
4573static int stdinAvailable(int, long *);
4574
4575#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4576#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4577
4578// This code is a copy of JDK's sysAvailable
4579// from src/windows/hpi/src/sys_api_md.c
4580
4581int os::available(int fd, jlong *bytes) {
4582  jlong cur, end;
4583  struct _stati64 stbuf64;
4584
4585  if (::_fstati64(fd, &stbuf64) >= 0) {
4586    int mode = stbuf64.st_mode;
4587    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4588      int ret;
4589      long lpbytes;
4590      if (fd == 0) {
4591        ret = stdinAvailable(fd, &lpbytes);
4592      } else {
4593        ret = nonSeekAvailable(fd, &lpbytes);
4594      }
4595      (*bytes) = (jlong)(lpbytes);
4596      return ret;
4597    }
4598    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4599      return FALSE;
4600    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4601      return FALSE;
4602    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4603      return FALSE;
4604    }
4605    *bytes = end - cur;
4606    return TRUE;
4607  } else {
4608    return FALSE;
4609  }
4610}
4611
4612// This code is a copy of JDK's nonSeekAvailable
4613// from src/windows/hpi/src/sys_api_md.c
4614
4615static int nonSeekAvailable(int fd, long *pbytes) {
4616  // This is used for available on non-seekable devices
4617  // (like both named and anonymous pipes, such as pipes
4618  //  connected to an exec'd process).
4619  // Standard Input is a special case.
4620  HANDLE han;
4621
4622  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4623    return FALSE;
4624  }
4625
4626  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4627    // PeekNamedPipe fails when at EOF.  In that case we
4628    // simply make *pbytes = 0 which is consistent with the
4629    // behavior we get on Solaris when an fd is at EOF.
4630    // The only alternative is to raise an Exception,
4631    // which isn't really warranted.
4632    //
4633    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4634      return FALSE;
4635    }
4636    *pbytes = 0;
4637  }
4638  return TRUE;
4639}
4640
4641#define MAX_INPUT_EVENTS 2000
4642
4643// This code is a copy of JDK's stdinAvailable
4644// from src/windows/hpi/src/sys_api_md.c
4645
4646static int stdinAvailable(int fd, long *pbytes) {
4647  HANDLE han;
4648  DWORD numEventsRead = 0;  // Number of events read from buffer
4649  DWORD numEvents = 0;      // Number of events in buffer
4650  DWORD i = 0;              // Loop index
4651  DWORD curLength = 0;      // Position marker
4652  DWORD actualLength = 0;   // Number of bytes readable
4653  BOOL error = FALSE;       // Error holder
4654  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4655
4656  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4657    return FALSE;
4658  }
4659
4660  // Construct an array of input records in the console buffer
4661  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4662  if (error == 0) {
4663    return nonSeekAvailable(fd, pbytes);
4664  }
4665
4666  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4667  if (numEvents > MAX_INPUT_EVENTS) {
4668    numEvents = MAX_INPUT_EVENTS;
4669  }
4670
4671  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4672  if (lpBuffer == NULL) {
4673    return FALSE;
4674  }
4675
4676  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4677  if (error == 0) {
4678    os::free(lpBuffer);
4679    return FALSE;
4680  }
4681
4682  // Examine input records for the number of bytes available
4683  for (i=0; i<numEvents; i++) {
4684    if (lpBuffer[i].EventType == KEY_EVENT) {
4685
4686      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4687                                      &(lpBuffer[i].Event);
4688      if (keyRecord->bKeyDown == TRUE) {
4689        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4690        curLength++;
4691        if (*keyPressed == '\r') {
4692          actualLength = curLength;
4693        }
4694      }
4695    }
4696  }
4697
4698  if (lpBuffer != NULL) {
4699    os::free(lpBuffer);
4700  }
4701
4702  *pbytes = (long) actualLength;
4703  return TRUE;
4704}
4705
4706// Map a block of memory.
4707char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4708                        char *addr, size_t bytes, bool read_only,
4709                        bool allow_exec) {
4710  HANDLE hFile;
4711  char* base;
4712
4713  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4714                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4715  if (hFile == NULL) {
4716    if (PrintMiscellaneous && Verbose) {
4717      DWORD err = GetLastError();
4718      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4719    }
4720    return NULL;
4721  }
4722
4723  if (allow_exec) {
4724    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4725    // unless it comes from a PE image (which the shared archive is not.)
4726    // Even VirtualProtect refuses to give execute access to mapped memory
4727    // that was not previously executable.
4728    //
4729    // Instead, stick the executable region in anonymous memory.  Yuck.
4730    // Penalty is that ~4 pages will not be shareable - in the future
4731    // we might consider DLLizing the shared archive with a proper PE
4732    // header so that mapping executable + sharing is possible.
4733
4734    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4735                                PAGE_READWRITE);
4736    if (base == NULL) {
4737      if (PrintMiscellaneous && Verbose) {
4738        DWORD err = GetLastError();
4739        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4740      }
4741      CloseHandle(hFile);
4742      return NULL;
4743    }
4744
4745    DWORD bytes_read;
4746    OVERLAPPED overlapped;
4747    overlapped.Offset = (DWORD)file_offset;
4748    overlapped.OffsetHigh = 0;
4749    overlapped.hEvent = NULL;
4750    // ReadFile guarantees that if the return value is true, the requested
4751    // number of bytes were read before returning.
4752    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4753    if (!res) {
4754      if (PrintMiscellaneous && Verbose) {
4755        DWORD err = GetLastError();
4756        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4757      }
4758      release_memory(base, bytes);
4759      CloseHandle(hFile);
4760      return NULL;
4761    }
4762  } else {
4763    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4764                                    NULL /* file_name */);
4765    if (hMap == NULL) {
4766      if (PrintMiscellaneous && Verbose) {
4767        DWORD err = GetLastError();
4768        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4769      }
4770      CloseHandle(hFile);
4771      return NULL;
4772    }
4773
4774    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4775    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4776                                  (DWORD)bytes, addr);
4777    if (base == NULL) {
4778      if (PrintMiscellaneous && Verbose) {
4779        DWORD err = GetLastError();
4780        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4781      }
4782      CloseHandle(hMap);
4783      CloseHandle(hFile);
4784      return NULL;
4785    }
4786
4787    if (CloseHandle(hMap) == 0) {
4788      if (PrintMiscellaneous && Verbose) {
4789        DWORD err = GetLastError();
4790        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4791      }
4792      CloseHandle(hFile);
4793      return base;
4794    }
4795  }
4796
4797  if (allow_exec) {
4798    DWORD old_protect;
4799    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4800    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4801
4802    if (!res) {
4803      if (PrintMiscellaneous && Verbose) {
4804        DWORD err = GetLastError();
4805        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4806      }
4807      // Don't consider this a hard error, on IA32 even if the
4808      // VirtualProtect fails, we should still be able to execute
4809      CloseHandle(hFile);
4810      return base;
4811    }
4812  }
4813
4814  if (CloseHandle(hFile) == 0) {
4815    if (PrintMiscellaneous && Verbose) {
4816      DWORD err = GetLastError();
4817      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4818    }
4819    return base;
4820  }
4821
4822  return base;
4823}
4824
4825
4826// Remap a block of memory.
4827char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4828                          char *addr, size_t bytes, bool read_only,
4829                          bool allow_exec) {
4830  // This OS does not allow existing memory maps to be remapped so we
4831  // have to unmap the memory before we remap it.
4832  if (!os::unmap_memory(addr, bytes)) {
4833    return NULL;
4834  }
4835
4836  // There is a very small theoretical window between the unmap_memory()
4837  // call above and the map_memory() call below where a thread in native
4838  // code may be able to access an address that is no longer mapped.
4839
4840  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4841                        read_only, allow_exec);
4842}
4843
4844
4845// Unmap a block of memory.
4846// Returns true=success, otherwise false.
4847
4848bool os::pd_unmap_memory(char* addr, size_t bytes) {
4849  BOOL result = UnmapViewOfFile(addr);
4850  if (result == 0) {
4851    if (PrintMiscellaneous && Verbose) {
4852      DWORD err = GetLastError();
4853      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4854    }
4855    return false;
4856  }
4857  return true;
4858}
4859
4860void os::pause() {
4861  char filename[MAX_PATH];
4862  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4863    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4864  } else {
4865    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4866  }
4867
4868  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4869  if (fd != -1) {
4870    struct stat buf;
4871    ::close(fd);
4872    while (::stat(filename, &buf) == 0) {
4873      Sleep(100);
4874    }
4875  } else {
4876    jio_fprintf(stderr,
4877                "Could not open pause file '%s', continuing immediately.\n", filename);
4878  }
4879}
4880
4881os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4882  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4883}
4884
4885// See the caveats for this class in os_windows.hpp
4886// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4887// into this method and returns false. If no OS EXCEPTION was raised, returns
4888// true.
4889// The callback is supposed to provide the method that should be protected.
4890//
4891bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4892  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4893  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4894         "crash_protection already set?");
4895
4896  bool success = true;
4897  __try {
4898    WatcherThread::watcher_thread()->set_crash_protection(this);
4899    cb.call();
4900  } __except(EXCEPTION_EXECUTE_HANDLER) {
4901    // only for protection, nothing to do
4902    success = false;
4903  }
4904  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4905  return success;
4906}
4907
4908// An Event wraps a win32 "CreateEvent" kernel handle.
4909//
4910// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4911//
4912// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4913//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4914//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4915//     In addition, an unpark() operation might fetch the handle field, but the
4916//     event could recycle between the fetch and the SetEvent() operation.
4917//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4918//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4919//     on an stale but recycled handle would be harmless, but in practice this might
4920//     confuse other non-Sun code, so it's not a viable approach.
4921//
4922// 2:  Once a win32 event handle is associated with an Event, it remains associated
4923//     with the Event.  The event handle is never closed.  This could be construed
4924//     as handle leakage, but only up to the maximum # of threads that have been extant
4925//     at any one time.  This shouldn't be an issue, as windows platforms typically
4926//     permit a process to have hundreds of thousands of open handles.
4927//
4928// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4929//     and release unused handles.
4930//
4931// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4932//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4933//
4934// 5.  Use an RCU-like mechanism (Read-Copy Update).
4935//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4936//
4937// We use (2).
4938//
4939// TODO-FIXME:
4940// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4941// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4942//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4943// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4944//     into a single win32 CreateEvent() handle.
4945//
4946// Assumption:
4947//    Only one parker can exist on an event, which is why we allocate
4948//    them per-thread. Multiple unparkers can coexist.
4949//
4950// _Event transitions in park()
4951//   -1 => -1 : illegal
4952//    1 =>  0 : pass - return immediately
4953//    0 => -1 : block; then set _Event to 0 before returning
4954//
4955// _Event transitions in unpark()
4956//    0 => 1 : just return
4957//    1 => 1 : just return
4958//   -1 => either 0 or 1; must signal target thread
4959//         That is, we can safely transition _Event from -1 to either
4960//         0 or 1.
4961//
4962// _Event serves as a restricted-range semaphore.
4963//   -1 : thread is blocked, i.e. there is a waiter
4964//    0 : neutral: thread is running or ready,
4965//        could have been signaled after a wait started
4966//    1 : signaled - thread is running or ready
4967//
4968// Another possible encoding of _Event would be with
4969// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4970//
4971
4972int os::PlatformEvent::park(jlong Millis) {
4973  // Transitions for _Event:
4974  //   -1 => -1 : illegal
4975  //    1 =>  0 : pass - return immediately
4976  //    0 => -1 : block; then set _Event to 0 before returning
4977
4978  guarantee(_ParkHandle != NULL , "Invariant");
4979  guarantee(Millis > 0          , "Invariant");
4980
4981  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4982  // the initial park() operation.
4983  // Consider: use atomic decrement instead of CAS-loop
4984
4985  int v;
4986  for (;;) {
4987    v = _Event;
4988    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4989  }
4990  guarantee((v == 0) || (v == 1), "invariant");
4991  if (v != 0) return OS_OK;
4992
4993  // Do this the hard way by blocking ...
4994  // TODO: consider a brief spin here, gated on the success of recent
4995  // spin attempts by this thread.
4996  //
4997  // We decompose long timeouts into series of shorter timed waits.
4998  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4999  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5000  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5001  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5002  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5003  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5004  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5005  // for the already waited time.  This policy does not admit any new outcomes.
5006  // In the future, however, we might want to track the accumulated wait time and
5007  // adjust Millis accordingly if we encounter a spurious wakeup.
5008
5009  const int MAXTIMEOUT = 0x10000000;
5010  DWORD rv = WAIT_TIMEOUT;
5011  while (_Event < 0 && Millis > 0) {
5012    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5013    if (Millis > MAXTIMEOUT) {
5014      prd = MAXTIMEOUT;
5015    }
5016    rv = ::WaitForSingleObject(_ParkHandle, prd);
5017    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5018    if (rv == WAIT_TIMEOUT) {
5019      Millis -= prd;
5020    }
5021  }
5022  v = _Event;
5023  _Event = 0;
5024  // see comment at end of os::PlatformEvent::park() below:
5025  OrderAccess::fence();
5026  // If we encounter a nearly simultanous timeout expiry and unpark()
5027  // we return OS_OK indicating we awoke via unpark().
5028  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5029  return (v >= 0) ? OS_OK : OS_TIMEOUT;
5030}
5031
5032void os::PlatformEvent::park() {
5033  // Transitions for _Event:
5034  //   -1 => -1 : illegal
5035  //    1 =>  0 : pass - return immediately
5036  //    0 => -1 : block; then set _Event to 0 before returning
5037
5038  guarantee(_ParkHandle != NULL, "Invariant");
5039  // Invariant: Only the thread associated with the Event/PlatformEvent
5040  // may call park().
5041  // Consider: use atomic decrement instead of CAS-loop
5042  int v;
5043  for (;;) {
5044    v = _Event;
5045    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5046  }
5047  guarantee((v == 0) || (v == 1), "invariant");
5048  if (v != 0) return;
5049
5050  // Do this the hard way by blocking ...
5051  // TODO: consider a brief spin here, gated on the success of recent
5052  // spin attempts by this thread.
5053  while (_Event < 0) {
5054    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5055    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5056  }
5057
5058  // Usually we'll find _Event == 0 at this point, but as
5059  // an optional optimization we clear it, just in case can
5060  // multiple unpark() operations drove _Event up to 1.
5061  _Event = 0;
5062  OrderAccess::fence();
5063  guarantee(_Event >= 0, "invariant");
5064}
5065
5066void os::PlatformEvent::unpark() {
5067  guarantee(_ParkHandle != NULL, "Invariant");
5068
5069  // Transitions for _Event:
5070  //    0 => 1 : just return
5071  //    1 => 1 : just return
5072  //   -1 => either 0 or 1; must signal target thread
5073  //         That is, we can safely transition _Event from -1 to either
5074  //         0 or 1.
5075  // See also: "Semaphores in Plan 9" by Mullender & Cox
5076  //
5077  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5078  // that it will take two back-to-back park() calls for the owning
5079  // thread to block. This has the benefit of forcing a spurious return
5080  // from the first park() call after an unpark() call which will help
5081  // shake out uses of park() and unpark() without condition variables.
5082
5083  if (Atomic::xchg(1, &_Event) >= 0) return;
5084
5085  ::SetEvent(_ParkHandle);
5086}
5087
5088
5089// JSR166
5090// -------------------------------------------------------
5091
5092// The Windows implementation of Park is very straightforward: Basic
5093// operations on Win32 Events turn out to have the right semantics to
5094// use them directly. We opportunistically resuse the event inherited
5095// from Monitor.
5096
5097void Parker::park(bool isAbsolute, jlong time) {
5098  guarantee(_ParkEvent != NULL, "invariant");
5099  // First, demultiplex/decode time arguments
5100  if (time < 0) { // don't wait
5101    return;
5102  } else if (time == 0 && !isAbsolute) {
5103    time = INFINITE;
5104  } else if (isAbsolute) {
5105    time -= os::javaTimeMillis(); // convert to relative time
5106    if (time <= 0) {  // already elapsed
5107      return;
5108    }
5109  } else { // relative
5110    time /= 1000000;  // Must coarsen from nanos to millis
5111    if (time == 0) {  // Wait for the minimal time unit if zero
5112      time = 1;
5113    }
5114  }
5115
5116  JavaThread* thread = (JavaThread*)(Thread::current());
5117  assert(thread->is_Java_thread(), "Must be JavaThread");
5118  JavaThread *jt = (JavaThread *)thread;
5119
5120  // Don't wait if interrupted or already triggered
5121  if (Thread::is_interrupted(thread, false) ||
5122      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5123    ResetEvent(_ParkEvent);
5124    return;
5125  } else {
5126    ThreadBlockInVM tbivm(jt);
5127    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5128    jt->set_suspend_equivalent();
5129
5130    WaitForSingleObject(_ParkEvent, time);
5131    ResetEvent(_ParkEvent);
5132
5133    // If externally suspended while waiting, re-suspend
5134    if (jt->handle_special_suspend_equivalent_condition()) {
5135      jt->java_suspend_self();
5136    }
5137  }
5138}
5139
5140void Parker::unpark() {
5141  guarantee(_ParkEvent != NULL, "invariant");
5142  SetEvent(_ParkEvent);
5143}
5144
5145// Run the specified command in a separate process. Return its exit value,
5146// or -1 on failure (e.g. can't create a new process).
5147int os::fork_and_exec(char* cmd) {
5148  STARTUPINFO si;
5149  PROCESS_INFORMATION pi;
5150
5151  memset(&si, 0, sizeof(si));
5152  si.cb = sizeof(si);
5153  memset(&pi, 0, sizeof(pi));
5154  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5155                            cmd,    // command line
5156                            NULL,   // process security attribute
5157                            NULL,   // thread security attribute
5158                            TRUE,   // inherits system handles
5159                            0,      // no creation flags
5160                            NULL,   // use parent's environment block
5161                            NULL,   // use parent's starting directory
5162                            &si,    // (in) startup information
5163                            &pi);   // (out) process information
5164
5165  if (rslt) {
5166    // Wait until child process exits.
5167    WaitForSingleObject(pi.hProcess, INFINITE);
5168
5169    DWORD exit_code;
5170    GetExitCodeProcess(pi.hProcess, &exit_code);
5171
5172    // Close process and thread handles.
5173    CloseHandle(pi.hProcess);
5174    CloseHandle(pi.hThread);
5175
5176    return (int)exit_code;
5177  } else {
5178    return -1;
5179  }
5180}
5181
5182//--------------------------------------------------------------------------------------------------
5183// Non-product code
5184
5185static int mallocDebugIntervalCounter = 0;
5186static int mallocDebugCounter = 0;
5187bool os::check_heap(bool force) {
5188  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5189  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5190    // Note: HeapValidate executes two hardware breakpoints when it finds something
5191    // wrong; at these points, eax contains the address of the offending block (I think).
5192    // To get to the exlicit error message(s) below, just continue twice.
5193    HANDLE heap = GetProcessHeap();
5194
5195    // If we fail to lock the heap, then gflags.exe has been used
5196    // or some other special heap flag has been set that prevents
5197    // locking. We don't try to walk a heap we can't lock.
5198    if (HeapLock(heap) != 0) {
5199      PROCESS_HEAP_ENTRY phe;
5200      phe.lpData = NULL;
5201      while (HeapWalk(heap, &phe) != 0) {
5202        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5203            !HeapValidate(heap, 0, phe.lpData)) {
5204          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5205          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5206          fatal("corrupted C heap");
5207        }
5208      }
5209      DWORD err = GetLastError();
5210      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5211        fatal(err_msg("heap walk aborted with error %d", err));
5212      }
5213      HeapUnlock(heap);
5214    }
5215    mallocDebugIntervalCounter = 0;
5216  }
5217  return true;
5218}
5219
5220
5221bool os::find(address addr, outputStream* st) {
5222  // Nothing yet
5223  return false;
5224}
5225
5226LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5227  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5228
5229  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5230    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5231    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5232    address addr = (address) exceptionRecord->ExceptionInformation[1];
5233
5234    if (os::is_memory_serialize_page(thread, addr)) {
5235      return EXCEPTION_CONTINUE_EXECUTION;
5236    }
5237  }
5238
5239  return EXCEPTION_CONTINUE_SEARCH;
5240}
5241
5242// We don't build a headless jre for Windows
5243bool os::is_headless_jre() { return false; }
5244
5245static jint initSock() {
5246  WSADATA wsadata;
5247
5248  if (!os::WinSock2Dll::WinSock2Available()) {
5249    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5250                ::GetLastError());
5251    return JNI_ERR;
5252  }
5253
5254  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5255    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5256                ::GetLastError());
5257    return JNI_ERR;
5258  }
5259  return JNI_OK;
5260}
5261
5262struct hostent* os::get_host_by_name(char* name) {
5263  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5264}
5265
5266int os::socket_close(int fd) {
5267  return ::closesocket(fd);
5268}
5269
5270int os::socket(int domain, int type, int protocol) {
5271  return ::socket(domain, type, protocol);
5272}
5273
5274int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5275  return ::connect(fd, him, len);
5276}
5277
5278int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5279  return ::recv(fd, buf, (int)nBytes, flags);
5280}
5281
5282int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5283  return ::send(fd, buf, (int)nBytes, flags);
5284}
5285
5286int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5287  return ::send(fd, buf, (int)nBytes, flags);
5288}
5289
5290// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5291#if defined(IA32)
5292  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5293#elif defined (AMD64)
5294  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5295#endif
5296
5297// returns true if thread could be suspended,
5298// false otherwise
5299static bool do_suspend(HANDLE* h) {
5300  if (h != NULL) {
5301    if (SuspendThread(*h) != ~0) {
5302      return true;
5303    }
5304  }
5305  return false;
5306}
5307
5308// resume the thread
5309// calling resume on an active thread is a no-op
5310static void do_resume(HANDLE* h) {
5311  if (h != NULL) {
5312    ResumeThread(*h);
5313  }
5314}
5315
5316// retrieve a suspend/resume context capable handle
5317// from the tid. Caller validates handle return value.
5318void get_thread_handle_for_extended_context(HANDLE* h,
5319                                            OSThread::thread_id_t tid) {
5320  if (h != NULL) {
5321    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5322  }
5323}
5324
5325// Thread sampling implementation
5326//
5327void os::SuspendedThreadTask::internal_do_task() {
5328  CONTEXT    ctxt;
5329  HANDLE     h = NULL;
5330
5331  // get context capable handle for thread
5332  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5333
5334  // sanity
5335  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5336    return;
5337  }
5338
5339  // suspend the thread
5340  if (do_suspend(&h)) {
5341    ctxt.ContextFlags = sampling_context_flags;
5342    // get thread context
5343    GetThreadContext(h, &ctxt);
5344    SuspendedThreadTaskContext context(_thread, &ctxt);
5345    // pass context to Thread Sampling impl
5346    do_task(context);
5347    // resume thread
5348    do_resume(&h);
5349  }
5350
5351  // close handle
5352  CloseHandle(h);
5353}
5354
5355
5356// Kernel32 API
5357typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5358typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5359typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5360typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5361typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5362
5363GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5364VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5365GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5366GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5367RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5368
5369
5370BOOL                        os::Kernel32Dll::initialized = FALSE;
5371SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5372  assert(initialized && _GetLargePageMinimum != NULL,
5373         "GetLargePageMinimumAvailable() not yet called");
5374  return _GetLargePageMinimum();
5375}
5376
5377BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5378  if (!initialized) {
5379    initialize();
5380  }
5381  return _GetLargePageMinimum != NULL;
5382}
5383
5384BOOL os::Kernel32Dll::NumaCallsAvailable() {
5385  if (!initialized) {
5386    initialize();
5387  }
5388  return _VirtualAllocExNuma != NULL;
5389}
5390
5391LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5392                                           SIZE_T bytes, DWORD flags,
5393                                           DWORD prot, DWORD node) {
5394  assert(initialized && _VirtualAllocExNuma != NULL,
5395         "NUMACallsAvailable() not yet called");
5396
5397  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5398}
5399
5400BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5401  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5402         "NUMACallsAvailable() not yet called");
5403
5404  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5405}
5406
5407BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5408                                               PULONGLONG proc_mask) {
5409  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5410         "NUMACallsAvailable() not yet called");
5411
5412  return _GetNumaNodeProcessorMask(node, proc_mask);
5413}
5414
5415USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5416                                                 ULONG FrameToCapture,
5417                                                 PVOID* BackTrace,
5418                                                 PULONG BackTraceHash) {
5419  if (!initialized) {
5420    initialize();
5421  }
5422
5423  if (_RtlCaptureStackBackTrace != NULL) {
5424    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5425                                     BackTrace, BackTraceHash);
5426  } else {
5427    return 0;
5428  }
5429}
5430
5431void os::Kernel32Dll::initializeCommon() {
5432  if (!initialized) {
5433    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5434    assert(handle != NULL, "Just check");
5435    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5436    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5437    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5438    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5439    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5440    initialized = TRUE;
5441  }
5442}
5443
5444
5445
5446#ifndef JDK6_OR_EARLIER
5447
5448void os::Kernel32Dll::initialize() {
5449  initializeCommon();
5450}
5451
5452
5453// Kernel32 API
5454inline BOOL os::Kernel32Dll::SwitchToThread() {
5455  return ::SwitchToThread();
5456}
5457
5458inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5459  return true;
5460}
5461
5462// Help tools
5463inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5464  return true;
5465}
5466
5467inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5468                                                        DWORD th32ProcessId) {
5469  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5470}
5471
5472inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5473                                           LPMODULEENTRY32 lpme) {
5474  return ::Module32First(hSnapshot, lpme);
5475}
5476
5477inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5478                                          LPMODULEENTRY32 lpme) {
5479  return ::Module32Next(hSnapshot, lpme);
5480}
5481
5482inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5483  ::GetNativeSystemInfo(lpSystemInfo);
5484}
5485
5486// PSAPI API
5487inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5488                                             HMODULE *lpModule, DWORD cb,
5489                                             LPDWORD lpcbNeeded) {
5490  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5491}
5492
5493inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5494                                               HMODULE hModule,
5495                                               LPTSTR lpFilename,
5496                                               DWORD nSize) {
5497  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5498}
5499
5500inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5501                                               HMODULE hModule,
5502                                               LPMODULEINFO lpmodinfo,
5503                                               DWORD cb) {
5504  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5505}
5506
5507inline BOOL os::PSApiDll::PSApiAvailable() {
5508  return true;
5509}
5510
5511
5512// WinSock2 API
5513inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5514                                        LPWSADATA lpWSAData) {
5515  return ::WSAStartup(wVersionRequested, lpWSAData);
5516}
5517
5518inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5519  return ::gethostbyname(name);
5520}
5521
5522inline BOOL os::WinSock2Dll::WinSock2Available() {
5523  return true;
5524}
5525
5526// Advapi API
5527inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5528                                                   BOOL DisableAllPrivileges,
5529                                                   PTOKEN_PRIVILEGES NewState,
5530                                                   DWORD BufferLength,
5531                                                   PTOKEN_PRIVILEGES PreviousState,
5532                                                   PDWORD ReturnLength) {
5533  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5534                                 BufferLength, PreviousState, ReturnLength);
5535}
5536
5537inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5538                                              DWORD DesiredAccess,
5539                                              PHANDLE TokenHandle) {
5540  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5541}
5542
5543inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5544                                                  LPCTSTR lpName,
5545                                                  PLUID lpLuid) {
5546  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5547}
5548
5549inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5550  return true;
5551}
5552
5553void* os::get_default_process_handle() {
5554  return (void*)GetModuleHandle(NULL);
5555}
5556
5557// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5558// which is used to find statically linked in agents.
5559// Additionally for windows, takes into account __stdcall names.
5560// Parameters:
5561//            sym_name: Symbol in library we are looking for
5562//            lib_name: Name of library to look in, NULL for shared libs.
5563//            is_absolute_path == true if lib_name is absolute path to agent
5564//                                     such as "C:/a/b/L.dll"
5565//            == false if only the base name of the library is passed in
5566//               such as "L"
5567char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5568                                    bool is_absolute_path) {
5569  char *agent_entry_name;
5570  size_t len;
5571  size_t name_len;
5572  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5573  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5574  const char *start;
5575
5576  if (lib_name != NULL) {
5577    len = name_len = strlen(lib_name);
5578    if (is_absolute_path) {
5579      // Need to strip path, prefix and suffix
5580      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5581        lib_name = ++start;
5582      } else {
5583        // Need to check for drive prefix
5584        if ((start = strchr(lib_name, ':')) != NULL) {
5585          lib_name = ++start;
5586        }
5587      }
5588      if (len <= (prefix_len + suffix_len)) {
5589        return NULL;
5590      }
5591      lib_name += prefix_len;
5592      name_len = strlen(lib_name) - suffix_len;
5593    }
5594  }
5595  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5596  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5597  if (agent_entry_name == NULL) {
5598    return NULL;
5599  }
5600  if (lib_name != NULL) {
5601    const char *p = strrchr(sym_name, '@');
5602    if (p != NULL && p != sym_name) {
5603      // sym_name == _Agent_OnLoad@XX
5604      strncpy(agent_entry_name, sym_name, (p - sym_name));
5605      agent_entry_name[(p-sym_name)] = '\0';
5606      // agent_entry_name == _Agent_OnLoad
5607      strcat(agent_entry_name, "_");
5608      strncat(agent_entry_name, lib_name, name_len);
5609      strcat(agent_entry_name, p);
5610      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5611    } else {
5612      strcpy(agent_entry_name, sym_name);
5613      strcat(agent_entry_name, "_");
5614      strncat(agent_entry_name, lib_name, name_len);
5615    }
5616  } else {
5617    strcpy(agent_entry_name, sym_name);
5618  }
5619  return agent_entry_name;
5620}
5621
5622#else
5623// Kernel32 API
5624typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5625typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5626typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5627typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5628typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5629
5630SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5631CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5632Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5633Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5634GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5635
5636void os::Kernel32Dll::initialize() {
5637  if (!initialized) {
5638    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5639    assert(handle != NULL, "Just check");
5640
5641    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5642    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5643      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5644    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5645    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5646    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5647    initializeCommon();  // resolve the functions that always need resolving
5648
5649    initialized = TRUE;
5650  }
5651}
5652
5653BOOL os::Kernel32Dll::SwitchToThread() {
5654  assert(initialized && _SwitchToThread != NULL,
5655         "SwitchToThreadAvailable() not yet called");
5656  return _SwitchToThread();
5657}
5658
5659
5660BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5661  if (!initialized) {
5662    initialize();
5663  }
5664  return _SwitchToThread != NULL;
5665}
5666
5667// Help tools
5668BOOL os::Kernel32Dll::HelpToolsAvailable() {
5669  if (!initialized) {
5670    initialize();
5671  }
5672  return _CreateToolhelp32Snapshot != NULL &&
5673         _Module32First != NULL &&
5674         _Module32Next != NULL;
5675}
5676
5677HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5678                                                 DWORD th32ProcessId) {
5679  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5680         "HelpToolsAvailable() not yet called");
5681
5682  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5683}
5684
5685BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5686  assert(initialized && _Module32First != NULL,
5687         "HelpToolsAvailable() not yet called");
5688
5689  return _Module32First(hSnapshot, lpme);
5690}
5691
5692inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5693                                          LPMODULEENTRY32 lpme) {
5694  assert(initialized && _Module32Next != NULL,
5695         "HelpToolsAvailable() not yet called");
5696
5697  return _Module32Next(hSnapshot, lpme);
5698}
5699
5700
5701BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5702  if (!initialized) {
5703    initialize();
5704  }
5705  return _GetNativeSystemInfo != NULL;
5706}
5707
5708void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5709  assert(initialized && _GetNativeSystemInfo != NULL,
5710         "GetNativeSystemInfoAvailable() not yet called");
5711
5712  _GetNativeSystemInfo(lpSystemInfo);
5713}
5714
5715// PSAPI API
5716
5717
5718typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5719typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5720typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5721
5722EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5723GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5724GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5725BOOL                    os::PSApiDll::initialized = FALSE;
5726
5727void os::PSApiDll::initialize() {
5728  if (!initialized) {
5729    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5730    if (handle != NULL) {
5731      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5732                                                                    "EnumProcessModules");
5733      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5734                                                                      "GetModuleFileNameExA");
5735      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5736                                                                        "GetModuleInformation");
5737    }
5738    initialized = TRUE;
5739  }
5740}
5741
5742
5743
5744BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5745                                      DWORD cb, LPDWORD lpcbNeeded) {
5746  assert(initialized && _EnumProcessModules != NULL,
5747         "PSApiAvailable() not yet called");
5748  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5749}
5750
5751DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5752                                        LPTSTR lpFilename, DWORD nSize) {
5753  assert(initialized && _GetModuleFileNameEx != NULL,
5754         "PSApiAvailable() not yet called");
5755  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5756}
5757
5758BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5759                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5760  assert(initialized && _GetModuleInformation != NULL,
5761         "PSApiAvailable() not yet called");
5762  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5763}
5764
5765BOOL os::PSApiDll::PSApiAvailable() {
5766  if (!initialized) {
5767    initialize();
5768  }
5769  return _EnumProcessModules != NULL &&
5770    _GetModuleFileNameEx != NULL &&
5771    _GetModuleInformation != NULL;
5772}
5773
5774
5775// WinSock2 API
5776typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5777typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5778
5779WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5780gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5781BOOL             os::WinSock2Dll::initialized = FALSE;
5782
5783void os::WinSock2Dll::initialize() {
5784  if (!initialized) {
5785    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5786    if (handle != NULL) {
5787      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5788      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5789    }
5790    initialized = TRUE;
5791  }
5792}
5793
5794
5795BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5796  assert(initialized && _WSAStartup != NULL,
5797         "WinSock2Available() not yet called");
5798  return _WSAStartup(wVersionRequested, lpWSAData);
5799}
5800
5801struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5802  assert(initialized && _gethostbyname != NULL,
5803         "WinSock2Available() not yet called");
5804  return _gethostbyname(name);
5805}
5806
5807BOOL os::WinSock2Dll::WinSock2Available() {
5808  if (!initialized) {
5809    initialize();
5810  }
5811  return _WSAStartup != NULL &&
5812    _gethostbyname != NULL;
5813}
5814
5815typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5816typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5817typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5818
5819AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5820OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5821LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5822BOOL                     os::Advapi32Dll::initialized = FALSE;
5823
5824void os::Advapi32Dll::initialize() {
5825  if (!initialized) {
5826    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5827    if (handle != NULL) {
5828      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5829                                                                          "AdjustTokenPrivileges");
5830      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5831                                                                "OpenProcessToken");
5832      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5833                                                                        "LookupPrivilegeValueA");
5834    }
5835    initialized = TRUE;
5836  }
5837}
5838
5839BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5840                                            BOOL DisableAllPrivileges,
5841                                            PTOKEN_PRIVILEGES NewState,
5842                                            DWORD BufferLength,
5843                                            PTOKEN_PRIVILEGES PreviousState,
5844                                            PDWORD ReturnLength) {
5845  assert(initialized && _AdjustTokenPrivileges != NULL,
5846         "AdvapiAvailable() not yet called");
5847  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5848                                BufferLength, PreviousState, ReturnLength);
5849}
5850
5851BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5852                                       DWORD DesiredAccess,
5853                                       PHANDLE TokenHandle) {
5854  assert(initialized && _OpenProcessToken != NULL,
5855         "AdvapiAvailable() not yet called");
5856  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5857}
5858
5859BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5860                                           LPCTSTR lpName, PLUID lpLuid) {
5861  assert(initialized && _LookupPrivilegeValue != NULL,
5862         "AdvapiAvailable() not yet called");
5863  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5864}
5865
5866BOOL os::Advapi32Dll::AdvapiAvailable() {
5867  if (!initialized) {
5868    initialize();
5869  }
5870  return _AdjustTokenPrivileges != NULL &&
5871    _OpenProcessToken != NULL &&
5872    _LookupPrivilegeValue != NULL;
5873}
5874
5875#endif
5876
5877#ifndef PRODUCT
5878
5879// test the code path in reserve_memory_special() that tries to allocate memory in a single
5880// contiguous memory block at a particular address.
5881// The test first tries to find a good approximate address to allocate at by using the same
5882// method to allocate some memory at any address. The test then tries to allocate memory in
5883// the vicinity (not directly after it to avoid possible by-chance use of that location)
5884// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5885// the previously allocated memory is available for allocation. The only actual failure
5886// that is reported is when the test tries to allocate at a particular location but gets a
5887// different valid one. A NULL return value at this point is not considered an error but may
5888// be legitimate.
5889// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5890void TestReserveMemorySpecial_test() {
5891  if (!UseLargePages) {
5892    if (VerboseInternalVMTests) {
5893      gclog_or_tty->print("Skipping test because large pages are disabled");
5894    }
5895    return;
5896  }
5897  // save current value of globals
5898  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5899  bool old_use_numa_interleaving = UseNUMAInterleaving;
5900
5901  // set globals to make sure we hit the correct code path
5902  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5903
5904  // do an allocation at an address selected by the OS to get a good one.
5905  const size_t large_allocation_size = os::large_page_size() * 4;
5906  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5907  if (result == NULL) {
5908    if (VerboseInternalVMTests) {
5909      gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5910                          large_allocation_size);
5911    }
5912  } else {
5913    os::release_memory_special(result, large_allocation_size);
5914
5915    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5916    // we managed to get it once.
5917    const size_t expected_allocation_size = os::large_page_size();
5918    char* expected_location = result + os::large_page_size();
5919    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5920    if (actual_location == NULL) {
5921      if (VerboseInternalVMTests) {
5922        gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5923                            expected_location, large_allocation_size);
5924      }
5925    } else {
5926      // release memory
5927      os::release_memory_special(actual_location, expected_allocation_size);
5928      // only now check, after releasing any memory to avoid any leaks.
5929      assert(actual_location == expected_location,
5930             err_msg("Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5931             expected_location, expected_allocation_size, actual_location));
5932    }
5933  }
5934
5935  // restore globals
5936  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5937  UseNUMAInterleaving = old_use_numa_interleaving;
5938}
5939#endif // PRODUCT
5940