os_windows.cpp revision 8435:13fa184842fa
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "services/attachListener.hpp"
67#include "services/memTracker.hpp"
68#include "services/runtimeService.hpp"
69#include "utilities/decoder.hpp"
70#include "utilities/defaultStream.hpp"
71#include "utilities/events.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/vmError.hpp"
74
75#ifdef _DEBUG
76#include <crtdbg.h>
77#endif
78
79
80#include <windows.h>
81#include <sys/types.h>
82#include <sys/stat.h>
83#include <sys/timeb.h>
84#include <objidl.h>
85#include <shlobj.h>
86
87#include <malloc.h>
88#include <signal.h>
89#include <direct.h>
90#include <errno.h>
91#include <fcntl.h>
92#include <io.h>
93#include <process.h>              // For _beginthreadex(), _endthreadex()
94#include <imagehlp.h>             // For os::dll_address_to_function_name
95// for enumerating dll libraries
96#include <vdmdbg.h>
97
98// for timer info max values which include all bits
99#define ALL_64_BITS CONST64(-1)
100
101// For DLL loading/load error detection
102// Values of PE COFF
103#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
104#define IMAGE_FILE_SIGNATURE_LENGTH 4
105
106static HANDLE main_process;
107static HANDLE main_thread;
108static int    main_thread_id;
109
110static FILETIME process_creation_time;
111static FILETIME process_exit_time;
112static FILETIME process_user_time;
113static FILETIME process_kernel_time;
114
115#ifdef _M_IA64
116  #define __CPU__ ia64
117#else
118  #ifdef _M_AMD64
119    #define __CPU__ amd64
120  #else
121    #define __CPU__ i486
122  #endif
123#endif
124
125// save DLL module handle, used by GetModuleFileName
126
127HINSTANCE vm_lib_handle;
128
129BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
130  switch (reason) {
131  case DLL_PROCESS_ATTACH:
132    vm_lib_handle = hinst;
133    if (ForceTimeHighResolution) {
134      timeBeginPeriod(1L);
135    }
136    break;
137  case DLL_PROCESS_DETACH:
138    if (ForceTimeHighResolution) {
139      timeEndPeriod(1L);
140    }
141    break;
142  default:
143    break;
144  }
145  return true;
146}
147
148static inline double fileTimeAsDouble(FILETIME* time) {
149  const double high  = (double) ((unsigned int) ~0);
150  const double split = 10000000.0;
151  double result = (time->dwLowDateTime / split) +
152                   time->dwHighDateTime * (high/split);
153  return result;
154}
155
156// Implementation of os
157
158bool os::unsetenv(const char* name) {
159  assert(name != NULL, "Null pointer");
160  return (SetEnvironmentVariable(name, NULL) == TRUE);
161}
162
163// No setuid programs under Windows.
164bool os::have_special_privileges() {
165  return false;
166}
167
168
169// This method is  a periodic task to check for misbehaving JNI applications
170// under CheckJNI, we can add any periodic checks here.
171// For Windows at the moment does nothing
172void os::run_periodic_checks() {
173  return;
174}
175
176// previous UnhandledExceptionFilter, if there is one
177static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
178
179LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
180
181void os::init_system_properties_values() {
182  // sysclasspath, java_home, dll_dir
183  {
184    char *home_path;
185    char *dll_path;
186    char *pslash;
187    char *bin = "\\bin";
188    char home_dir[MAX_PATH + 1];
189    char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
190
191    if (alt_home_dir != NULL)  {
192      strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
193      home_dir[MAX_PATH] = '\0';
194    } else {
195      os::jvm_path(home_dir, sizeof(home_dir));
196      // Found the full path to jvm.dll.
197      // Now cut the path to <java_home>/jre if we can.
198      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
199      pslash = strrchr(home_dir, '\\');
200      if (pslash != NULL) {
201        *pslash = '\0';                   // get rid of \{client|server}
202        pslash = strrchr(home_dir, '\\');
203        if (pslash != NULL) {
204          *pslash = '\0';                 // get rid of \bin
205        }
206      }
207    }
208
209    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
210    if (home_path == NULL) {
211      return;
212    }
213    strcpy(home_path, home_dir);
214    Arguments::set_java_home(home_path);
215    FREE_C_HEAP_ARRAY(char, home_path);
216
217    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
218                                mtInternal);
219    if (dll_path == NULL) {
220      return;
221    }
222    strcpy(dll_path, home_dir);
223    strcat(dll_path, bin);
224    Arguments::set_dll_dir(dll_path);
225    FREE_C_HEAP_ARRAY(char, dll_path);
226
227    if (!set_boot_path('\\', ';')) {
228      return;
229    }
230  }
231
232// library_path
233#define EXT_DIR "\\lib\\ext"
234#define BIN_DIR "\\bin"
235#define PACKAGE_DIR "\\Sun\\Java"
236  {
237    // Win32 library search order (See the documentation for LoadLibrary):
238    //
239    // 1. The directory from which application is loaded.
240    // 2. The system wide Java Extensions directory (Java only)
241    // 3. System directory (GetSystemDirectory)
242    // 4. Windows directory (GetWindowsDirectory)
243    // 5. The PATH environment variable
244    // 6. The current directory
245
246    char *library_path;
247    char tmp[MAX_PATH];
248    char *path_str = ::getenv("PATH");
249
250    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
251                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
252
253    library_path[0] = '\0';
254
255    GetModuleFileName(NULL, tmp, sizeof(tmp));
256    *(strrchr(tmp, '\\')) = '\0';
257    strcat(library_path, tmp);
258
259    GetWindowsDirectory(tmp, sizeof(tmp));
260    strcat(library_path, ";");
261    strcat(library_path, tmp);
262    strcat(library_path, PACKAGE_DIR BIN_DIR);
263
264    GetSystemDirectory(tmp, sizeof(tmp));
265    strcat(library_path, ";");
266    strcat(library_path, tmp);
267
268    GetWindowsDirectory(tmp, sizeof(tmp));
269    strcat(library_path, ";");
270    strcat(library_path, tmp);
271
272    if (path_str) {
273      strcat(library_path, ";");
274      strcat(library_path, path_str);
275    }
276
277    strcat(library_path, ";.");
278
279    Arguments::set_library_path(library_path);
280    FREE_C_HEAP_ARRAY(char, library_path);
281  }
282
283  // Default extensions directory
284  {
285    char path[MAX_PATH];
286    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
287    GetWindowsDirectory(path, MAX_PATH);
288    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
289            path, PACKAGE_DIR, EXT_DIR);
290    Arguments::set_ext_dirs(buf);
291  }
292  #undef EXT_DIR
293  #undef BIN_DIR
294  #undef PACKAGE_DIR
295
296#ifndef _WIN64
297  // set our UnhandledExceptionFilter and save any previous one
298  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
299#endif
300
301  // Done
302  return;
303}
304
305void os::breakpoint() {
306  DebugBreak();
307}
308
309// Invoked from the BREAKPOINT Macro
310extern "C" void breakpoint() {
311  os::breakpoint();
312}
313
314// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
315// So far, this method is only used by Native Memory Tracking, which is
316// only supported on Windows XP or later.
317//
318int os::get_native_stack(address* stack, int frames, int toSkip) {
319#ifdef _NMT_NOINLINE_
320  toSkip++;
321#endif
322  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
323                                                       (PVOID*)stack, NULL);
324  for (int index = captured; index < frames; index ++) {
325    stack[index] = NULL;
326  }
327  return captured;
328}
329
330
331// os::current_stack_base()
332//
333//   Returns the base of the stack, which is the stack's
334//   starting address.  This function must be called
335//   while running on the stack of the thread being queried.
336
337address os::current_stack_base() {
338  MEMORY_BASIC_INFORMATION minfo;
339  address stack_bottom;
340  size_t stack_size;
341
342  VirtualQuery(&minfo, &minfo, sizeof(minfo));
343  stack_bottom =  (address)minfo.AllocationBase;
344  stack_size = minfo.RegionSize;
345
346  // Add up the sizes of all the regions with the same
347  // AllocationBase.
348  while (1) {
349    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
350    if (stack_bottom == (address)minfo.AllocationBase) {
351      stack_size += minfo.RegionSize;
352    } else {
353      break;
354    }
355  }
356
357#ifdef _M_IA64
358  // IA64 has memory and register stacks
359  //
360  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
361  // at thread creation (1MB backing store growing upwards, 1MB memory stack
362  // growing downwards, 2MB summed up)
363  //
364  // ...
365  // ------- top of stack (high address) -----
366  // |
367  // |      1MB
368  // |      Backing Store (Register Stack)
369  // |
370  // |         / \
371  // |          |
372  // |          |
373  // |          |
374  // ------------------------ stack base -----
375  // |      1MB
376  // |      Memory Stack
377  // |
378  // |          |
379  // |          |
380  // |          |
381  // |         \ /
382  // |
383  // ----- bottom of stack (low address) -----
384  // ...
385
386  stack_size = stack_size / 2;
387#endif
388  return stack_bottom + stack_size;
389}
390
391size_t os::current_stack_size() {
392  size_t sz;
393  MEMORY_BASIC_INFORMATION minfo;
394  VirtualQuery(&minfo, &minfo, sizeof(minfo));
395  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
396  return sz;
397}
398
399struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
400  const struct tm* time_struct_ptr = localtime(clock);
401  if (time_struct_ptr != NULL) {
402    *res = *time_struct_ptr;
403    return res;
404  }
405  return NULL;
406}
407
408LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
409
410// Thread start routine for all new Java threads
411static unsigned __stdcall java_start(Thread* thread) {
412  // Try to randomize the cache line index of hot stack frames.
413  // This helps when threads of the same stack traces evict each other's
414  // cache lines. The threads can be either from the same JVM instance, or
415  // from different JVM instances. The benefit is especially true for
416  // processors with hyperthreading technology.
417  static int counter = 0;
418  int pid = os::current_process_id();
419  _alloca(((pid ^ counter++) & 7) * 128);
420
421  OSThread* osthr = thread->osthread();
422  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
423
424  if (UseNUMA) {
425    int lgrp_id = os::numa_get_group_id();
426    if (lgrp_id != -1) {
427      thread->set_lgrp_id(lgrp_id);
428    }
429  }
430
431  // Diagnostic code to investigate JDK-6573254
432  int res = 30115;  // non-java thread
433  if (thread->is_Java_thread()) {
434    res = 20115;    // java thread
435  }
436
437  // Install a win32 structured exception handler around every thread created
438  // by VM, so VM can generate error dump when an exception occurred in non-
439  // Java thread (e.g. VM thread).
440  __try {
441    thread->run();
442  } __except(topLevelExceptionFilter(
443                                     (_EXCEPTION_POINTERS*)_exception_info())) {
444    // Nothing to do.
445  }
446
447  // One less thread is executing
448  // When the VMThread gets here, the main thread may have already exited
449  // which frees the CodeHeap containing the Atomic::add code
450  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
451    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
452  }
453
454  // Thread must not return from exit_process_or_thread(), but if it does,
455  // let it proceed to exit normally
456  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
457}
458
459static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
460                                  int thread_id) {
461  // Allocate the OSThread object
462  OSThread* osthread = new OSThread(NULL, NULL);
463  if (osthread == NULL) return NULL;
464
465  // Initialize support for Java interrupts
466  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
467  if (interrupt_event == NULL) {
468    delete osthread;
469    return NULL;
470  }
471  osthread->set_interrupt_event(interrupt_event);
472
473  // Store info on the Win32 thread into the OSThread
474  osthread->set_thread_handle(thread_handle);
475  osthread->set_thread_id(thread_id);
476
477  if (UseNUMA) {
478    int lgrp_id = os::numa_get_group_id();
479    if (lgrp_id != -1) {
480      thread->set_lgrp_id(lgrp_id);
481    }
482  }
483
484  // Initial thread state is INITIALIZED, not SUSPENDED
485  osthread->set_state(INITIALIZED);
486
487  return osthread;
488}
489
490
491bool os::create_attached_thread(JavaThread* thread) {
492#ifdef ASSERT
493  thread->verify_not_published();
494#endif
495  HANDLE thread_h;
496  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
497                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
498    fatal("DuplicateHandle failed\n");
499  }
500  OSThread* osthread = create_os_thread(thread, thread_h,
501                                        (int)current_thread_id());
502  if (osthread == NULL) {
503    return false;
504  }
505
506  // Initial thread state is RUNNABLE
507  osthread->set_state(RUNNABLE);
508
509  thread->set_osthread(osthread);
510  return true;
511}
512
513bool os::create_main_thread(JavaThread* thread) {
514#ifdef ASSERT
515  thread->verify_not_published();
516#endif
517  if (_starting_thread == NULL) {
518    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
519    if (_starting_thread == NULL) {
520      return false;
521    }
522  }
523
524  // The primordial thread is runnable from the start)
525  _starting_thread->set_state(RUNNABLE);
526
527  thread->set_osthread(_starting_thread);
528  return true;
529}
530
531// Allocate and initialize a new OSThread
532bool os::create_thread(Thread* thread, ThreadType thr_type,
533                       size_t stack_size) {
534  unsigned thread_id;
535
536  // Allocate the OSThread object
537  OSThread* osthread = new OSThread(NULL, NULL);
538  if (osthread == NULL) {
539    return false;
540  }
541
542  // Initialize support for Java interrupts
543  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
544  if (interrupt_event == NULL) {
545    delete osthread;
546    return NULL;
547  }
548  osthread->set_interrupt_event(interrupt_event);
549  osthread->set_interrupted(false);
550
551  thread->set_osthread(osthread);
552
553  if (stack_size == 0) {
554    switch (thr_type) {
555    case os::java_thread:
556      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
557      if (JavaThread::stack_size_at_create() > 0) {
558        stack_size = JavaThread::stack_size_at_create();
559      }
560      break;
561    case os::compiler_thread:
562      if (CompilerThreadStackSize > 0) {
563        stack_size = (size_t)(CompilerThreadStackSize * K);
564        break;
565      } // else fall through:
566        // use VMThreadStackSize if CompilerThreadStackSize is not defined
567    case os::vm_thread:
568    case os::pgc_thread:
569    case os::cgc_thread:
570    case os::watcher_thread:
571      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
572      break;
573    }
574  }
575
576  // Create the Win32 thread
577  //
578  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
579  // does not specify stack size. Instead, it specifies the size of
580  // initially committed space. The stack size is determined by
581  // PE header in the executable. If the committed "stack_size" is larger
582  // than default value in the PE header, the stack is rounded up to the
583  // nearest multiple of 1MB. For example if the launcher has default
584  // stack size of 320k, specifying any size less than 320k does not
585  // affect the actual stack size at all, it only affects the initial
586  // commitment. On the other hand, specifying 'stack_size' larger than
587  // default value may cause significant increase in memory usage, because
588  // not only the stack space will be rounded up to MB, but also the
589  // entire space is committed upfront.
590  //
591  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
592  // for CreateThread() that can treat 'stack_size' as stack size. However we
593  // are not supposed to call CreateThread() directly according to MSDN
594  // document because JVM uses C runtime library. The good news is that the
595  // flag appears to work with _beginthredex() as well.
596
597#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
598  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
599#endif
600
601  HANDLE thread_handle =
602    (HANDLE)_beginthreadex(NULL,
603                           (unsigned)stack_size,
604                           (unsigned (__stdcall *)(void*)) java_start,
605                           thread,
606                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
607                           &thread_id);
608  if (thread_handle == NULL) {
609    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
610    // without the flag.
611    thread_handle =
612      (HANDLE)_beginthreadex(NULL,
613                             (unsigned)stack_size,
614                             (unsigned (__stdcall *)(void*)) java_start,
615                             thread,
616                             CREATE_SUSPENDED,
617                             &thread_id);
618  }
619  if (thread_handle == NULL) {
620    // Need to clean up stuff we've allocated so far
621    CloseHandle(osthread->interrupt_event());
622    thread->set_osthread(NULL);
623    delete osthread;
624    return NULL;
625  }
626
627  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
628
629  // Store info on the Win32 thread into the OSThread
630  osthread->set_thread_handle(thread_handle);
631  osthread->set_thread_id(thread_id);
632
633  // Initial thread state is INITIALIZED, not SUSPENDED
634  osthread->set_state(INITIALIZED);
635
636  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
637  return true;
638}
639
640
641// Free Win32 resources related to the OSThread
642void os::free_thread(OSThread* osthread) {
643  assert(osthread != NULL, "osthread not set");
644  CloseHandle(osthread->thread_handle());
645  CloseHandle(osthread->interrupt_event());
646  delete osthread;
647}
648
649static jlong first_filetime;
650static jlong initial_performance_count;
651static jlong performance_frequency;
652
653
654jlong as_long(LARGE_INTEGER x) {
655  jlong result = 0; // initialization to avoid warning
656  set_high(&result, x.HighPart);
657  set_low(&result, x.LowPart);
658  return result;
659}
660
661
662jlong os::elapsed_counter() {
663  LARGE_INTEGER count;
664  if (win32::_has_performance_count) {
665    QueryPerformanceCounter(&count);
666    return as_long(count) - initial_performance_count;
667  } else {
668    FILETIME wt;
669    GetSystemTimeAsFileTime(&wt);
670    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
671  }
672}
673
674
675jlong os::elapsed_frequency() {
676  if (win32::_has_performance_count) {
677    return performance_frequency;
678  } else {
679    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
680    return 10000000;
681  }
682}
683
684
685julong os::available_memory() {
686  return win32::available_memory();
687}
688
689julong os::win32::available_memory() {
690  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
691  // value if total memory is larger than 4GB
692  MEMORYSTATUSEX ms;
693  ms.dwLength = sizeof(ms);
694  GlobalMemoryStatusEx(&ms);
695
696  return (julong)ms.ullAvailPhys;
697}
698
699julong os::physical_memory() {
700  return win32::physical_memory();
701}
702
703bool os::has_allocatable_memory_limit(julong* limit) {
704  MEMORYSTATUSEX ms;
705  ms.dwLength = sizeof(ms);
706  GlobalMemoryStatusEx(&ms);
707#ifdef _LP64
708  *limit = (julong)ms.ullAvailVirtual;
709  return true;
710#else
711  // Limit to 1400m because of the 2gb address space wall
712  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
713  return true;
714#endif
715}
716
717// VC6 lacks DWORD_PTR
718#if _MSC_VER < 1300
719typedef UINT_PTR DWORD_PTR;
720#endif
721
722int os::active_processor_count() {
723  DWORD_PTR lpProcessAffinityMask = 0;
724  DWORD_PTR lpSystemAffinityMask = 0;
725  int proc_count = processor_count();
726  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
727      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
728    // Nof active processors is number of bits in process affinity mask
729    int bitcount = 0;
730    while (lpProcessAffinityMask != 0) {
731      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
732      bitcount++;
733    }
734    return bitcount;
735  } else {
736    return proc_count;
737  }
738}
739
740void os::set_native_thread_name(const char *name) {
741
742  // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
743  //
744  // Note that unfortunately this only works if the process
745  // is already attached to a debugger; debugger must observe
746  // the exception below to show the correct name.
747
748  const DWORD MS_VC_EXCEPTION = 0x406D1388;
749  struct {
750    DWORD dwType;     // must be 0x1000
751    LPCSTR szName;    // pointer to name (in user addr space)
752    DWORD dwThreadID; // thread ID (-1=caller thread)
753    DWORD dwFlags;    // reserved for future use, must be zero
754  } info;
755
756  info.dwType = 0x1000;
757  info.szName = name;
758  info.dwThreadID = -1;
759  info.dwFlags = 0;
760
761  __try {
762    RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
763  } __except(EXCEPTION_CONTINUE_EXECUTION) {}
764}
765
766bool os::distribute_processes(uint length, uint* distribution) {
767  // Not yet implemented.
768  return false;
769}
770
771bool os::bind_to_processor(uint processor_id) {
772  // Not yet implemented.
773  return false;
774}
775
776void os::win32::initialize_performance_counter() {
777  LARGE_INTEGER count;
778  if (QueryPerformanceFrequency(&count)) {
779    win32::_has_performance_count = 1;
780    performance_frequency = as_long(count);
781    QueryPerformanceCounter(&count);
782    initial_performance_count = as_long(count);
783  } else {
784    win32::_has_performance_count = 0;
785    FILETIME wt;
786    GetSystemTimeAsFileTime(&wt);
787    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
788  }
789}
790
791
792double os::elapsedTime() {
793  return (double) elapsed_counter() / (double) elapsed_frequency();
794}
795
796
797// Windows format:
798//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
799// Java format:
800//   Java standards require the number of milliseconds since 1/1/1970
801
802// Constant offset - calculated using offset()
803static jlong  _offset   = 116444736000000000;
804// Fake time counter for reproducible results when debugging
805static jlong  fake_time = 0;
806
807#ifdef ASSERT
808// Just to be safe, recalculate the offset in debug mode
809static jlong _calculated_offset = 0;
810static int   _has_calculated_offset = 0;
811
812jlong offset() {
813  if (_has_calculated_offset) return _calculated_offset;
814  SYSTEMTIME java_origin;
815  java_origin.wYear          = 1970;
816  java_origin.wMonth         = 1;
817  java_origin.wDayOfWeek     = 0; // ignored
818  java_origin.wDay           = 1;
819  java_origin.wHour          = 0;
820  java_origin.wMinute        = 0;
821  java_origin.wSecond        = 0;
822  java_origin.wMilliseconds  = 0;
823  FILETIME jot;
824  if (!SystemTimeToFileTime(&java_origin, &jot)) {
825    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
826  }
827  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
828  _has_calculated_offset = 1;
829  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
830  return _calculated_offset;
831}
832#else
833jlong offset() {
834  return _offset;
835}
836#endif
837
838jlong windows_to_java_time(FILETIME wt) {
839  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
840  return (a - offset()) / 10000;
841}
842
843// Returns time ticks in (10th of micro seconds)
844jlong windows_to_time_ticks(FILETIME wt) {
845  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
846  return (a - offset());
847}
848
849FILETIME java_to_windows_time(jlong l) {
850  jlong a = (l * 10000) + offset();
851  FILETIME result;
852  result.dwHighDateTime = high(a);
853  result.dwLowDateTime  = low(a);
854  return result;
855}
856
857bool os::supports_vtime() { return true; }
858bool os::enable_vtime() { return false; }
859bool os::vtime_enabled() { return false; }
860
861double os::elapsedVTime() {
862  FILETIME created;
863  FILETIME exited;
864  FILETIME kernel;
865  FILETIME user;
866  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
867    // the resolution of windows_to_java_time() should be sufficient (ms)
868    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
869  } else {
870    return elapsedTime();
871  }
872}
873
874jlong os::javaTimeMillis() {
875  if (UseFakeTimers) {
876    return fake_time++;
877  } else {
878    FILETIME wt;
879    GetSystemTimeAsFileTime(&wt);
880    return windows_to_java_time(wt);
881  }
882}
883
884void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
885  FILETIME wt;
886  GetSystemTimeAsFileTime(&wt);
887  jlong ticks = windows_to_time_ticks(wt); // 10th of micros
888  jlong secs = jlong(ticks / 10000000); // 10000 * 1000
889  seconds = secs;
890  nanos = jlong(ticks - (secs*10000000)) * 100;
891}
892
893jlong os::javaTimeNanos() {
894  if (!win32::_has_performance_count) {
895    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
896  } else {
897    LARGE_INTEGER current_count;
898    QueryPerformanceCounter(&current_count);
899    double current = as_long(current_count);
900    double freq = performance_frequency;
901    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
902    return time;
903  }
904}
905
906void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
907  if (!win32::_has_performance_count) {
908    // javaTimeMillis() doesn't have much percision,
909    // but it is not going to wrap -- so all 64 bits
910    info_ptr->max_value = ALL_64_BITS;
911
912    // this is a wall clock timer, so may skip
913    info_ptr->may_skip_backward = true;
914    info_ptr->may_skip_forward = true;
915  } else {
916    jlong freq = performance_frequency;
917    if (freq < NANOSECS_PER_SEC) {
918      // the performance counter is 64 bits and we will
919      // be multiplying it -- so no wrap in 64 bits
920      info_ptr->max_value = ALL_64_BITS;
921    } else if (freq > NANOSECS_PER_SEC) {
922      // use the max value the counter can reach to
923      // determine the max value which could be returned
924      julong max_counter = (julong)ALL_64_BITS;
925      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
926    } else {
927      // the performance counter is 64 bits and we will
928      // be using it directly -- so no wrap in 64 bits
929      info_ptr->max_value = ALL_64_BITS;
930    }
931
932    // using a counter, so no skipping
933    info_ptr->may_skip_backward = false;
934    info_ptr->may_skip_forward = false;
935  }
936  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
937}
938
939char* os::local_time_string(char *buf, size_t buflen) {
940  SYSTEMTIME st;
941  GetLocalTime(&st);
942  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
943               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
944  return buf;
945}
946
947bool os::getTimesSecs(double* process_real_time,
948                      double* process_user_time,
949                      double* process_system_time) {
950  HANDLE h_process = GetCurrentProcess();
951  FILETIME create_time, exit_time, kernel_time, user_time;
952  BOOL result = GetProcessTimes(h_process,
953                                &create_time,
954                                &exit_time,
955                                &kernel_time,
956                                &user_time);
957  if (result != 0) {
958    FILETIME wt;
959    GetSystemTimeAsFileTime(&wt);
960    jlong rtc_millis = windows_to_java_time(wt);
961    jlong user_millis = windows_to_java_time(user_time);
962    jlong system_millis = windows_to_java_time(kernel_time);
963    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
964    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
965    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
966    return true;
967  } else {
968    return false;
969  }
970}
971
972void os::shutdown() {
973  // allow PerfMemory to attempt cleanup of any persistent resources
974  perfMemory_exit();
975
976  // flush buffered output, finish log files
977  ostream_abort();
978
979  // Check for abort hook
980  abort_hook_t abort_hook = Arguments::abort_hook();
981  if (abort_hook != NULL) {
982    abort_hook();
983  }
984}
985
986
987static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
988                                         PMINIDUMP_EXCEPTION_INFORMATION,
989                                         PMINIDUMP_USER_STREAM_INFORMATION,
990                                         PMINIDUMP_CALLBACK_INFORMATION);
991
992static HANDLE dumpFile = NULL;
993
994// Check if dump file can be created.
995void os::check_dump_limit(char* buffer, size_t buffsz) {
996  bool status = true;
997  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
998    jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
999    status = false;
1000  } else {
1001    const char* cwd = get_current_directory(NULL, 0);
1002    int pid = current_process_id();
1003    if (cwd != NULL) {
1004      jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1005    } else {
1006      jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1007    }
1008
1009    if (dumpFile == NULL &&
1010       (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1011                 == INVALID_HANDLE_VALUE) {
1012      jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1013      status = false;
1014    }
1015  }
1016  VMError::record_coredump_status(buffer, status);
1017}
1018
1019void os::abort(bool dump_core, void* siginfo, void* context) {
1020  HINSTANCE dbghelp;
1021  EXCEPTION_POINTERS ep;
1022  MINIDUMP_EXCEPTION_INFORMATION mei;
1023  MINIDUMP_EXCEPTION_INFORMATION* pmei;
1024
1025  HANDLE hProcess = GetCurrentProcess();
1026  DWORD processId = GetCurrentProcessId();
1027  MINIDUMP_TYPE dumpType;
1028
1029  shutdown();
1030  if (!dump_core || dumpFile == NULL) {
1031    if (dumpFile != NULL) {
1032      CloseHandle(dumpFile);
1033    }
1034    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1035  }
1036
1037  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1038
1039  if (dbghelp == NULL) {
1040    jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1041    CloseHandle(dumpFile);
1042    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1043  }
1044
1045  _MiniDumpWriteDump =
1046      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1047                                    PMINIDUMP_EXCEPTION_INFORMATION,
1048                                    PMINIDUMP_USER_STREAM_INFORMATION,
1049                                    PMINIDUMP_CALLBACK_INFORMATION),
1050                                    GetProcAddress(dbghelp,
1051                                    "MiniDumpWriteDump"));
1052
1053  if (_MiniDumpWriteDump == NULL) {
1054    jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1055    CloseHandle(dumpFile);
1056    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1057  }
1058
1059  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1060
1061  // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1062  // API_VERSION_NUMBER 11 or higher contains the ones we want though
1063#if API_VERSION_NUMBER >= 11
1064  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1065                             MiniDumpWithUnloadedModules);
1066#endif
1067
1068  if (siginfo != NULL && context != NULL) {
1069    ep.ContextRecord = (PCONTEXT) context;
1070    ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1071
1072    mei.ThreadId = GetCurrentThreadId();
1073    mei.ExceptionPointers = &ep;
1074    pmei = &mei;
1075  } else {
1076    pmei = NULL;
1077  }
1078
1079  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1080  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1081  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1082      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1083    jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1084  }
1085  CloseHandle(dumpFile);
1086  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1087}
1088
1089void os::abort(bool dump_core) {
1090  abort(dump_core, NULL, NULL);
1091}
1092
1093// Die immediately, no exit hook, no abort hook, no cleanup.
1094void os::die() {
1095  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1096}
1097
1098// Directory routines copied from src/win32/native/java/io/dirent_md.c
1099//  * dirent_md.c       1.15 00/02/02
1100//
1101// The declarations for DIR and struct dirent are in jvm_win32.h.
1102
1103// Caller must have already run dirname through JVM_NativePath, which removes
1104// duplicate slashes and converts all instances of '/' into '\\'.
1105
1106DIR * os::opendir(const char *dirname) {
1107  assert(dirname != NULL, "just checking");   // hotspot change
1108  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1109  DWORD fattr;                                // hotspot change
1110  char alt_dirname[4] = { 0, 0, 0, 0 };
1111
1112  if (dirp == 0) {
1113    errno = ENOMEM;
1114    return 0;
1115  }
1116
1117  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1118  // as a directory in FindFirstFile().  We detect this case here and
1119  // prepend the current drive name.
1120  //
1121  if (dirname[1] == '\0' && dirname[0] == '\\') {
1122    alt_dirname[0] = _getdrive() + 'A' - 1;
1123    alt_dirname[1] = ':';
1124    alt_dirname[2] = '\\';
1125    alt_dirname[3] = '\0';
1126    dirname = alt_dirname;
1127  }
1128
1129  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1130  if (dirp->path == 0) {
1131    free(dirp);
1132    errno = ENOMEM;
1133    return 0;
1134  }
1135  strcpy(dirp->path, dirname);
1136
1137  fattr = GetFileAttributes(dirp->path);
1138  if (fattr == 0xffffffff) {
1139    free(dirp->path);
1140    free(dirp);
1141    errno = ENOENT;
1142    return 0;
1143  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1144    free(dirp->path);
1145    free(dirp);
1146    errno = ENOTDIR;
1147    return 0;
1148  }
1149
1150  // Append "*.*", or possibly "\\*.*", to path
1151  if (dirp->path[1] == ':' &&
1152      (dirp->path[2] == '\0' ||
1153      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1154    // No '\\' needed for cases like "Z:" or "Z:\"
1155    strcat(dirp->path, "*.*");
1156  } else {
1157    strcat(dirp->path, "\\*.*");
1158  }
1159
1160  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1161  if (dirp->handle == INVALID_HANDLE_VALUE) {
1162    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1163      free(dirp->path);
1164      free(dirp);
1165      errno = EACCES;
1166      return 0;
1167    }
1168  }
1169  return dirp;
1170}
1171
1172// parameter dbuf unused on Windows
1173struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1174  assert(dirp != NULL, "just checking");      // hotspot change
1175  if (dirp->handle == INVALID_HANDLE_VALUE) {
1176    return 0;
1177  }
1178
1179  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1180
1181  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1182    if (GetLastError() == ERROR_INVALID_HANDLE) {
1183      errno = EBADF;
1184      return 0;
1185    }
1186    FindClose(dirp->handle);
1187    dirp->handle = INVALID_HANDLE_VALUE;
1188  }
1189
1190  return &dirp->dirent;
1191}
1192
1193int os::closedir(DIR *dirp) {
1194  assert(dirp != NULL, "just checking");      // hotspot change
1195  if (dirp->handle != INVALID_HANDLE_VALUE) {
1196    if (!FindClose(dirp->handle)) {
1197      errno = EBADF;
1198      return -1;
1199    }
1200    dirp->handle = INVALID_HANDLE_VALUE;
1201  }
1202  free(dirp->path);
1203  free(dirp);
1204  return 0;
1205}
1206
1207// This must be hard coded because it's the system's temporary
1208// directory not the java application's temp directory, ala java.io.tmpdir.
1209const char* os::get_temp_directory() {
1210  static char path_buf[MAX_PATH];
1211  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1212    return path_buf;
1213  } else {
1214    path_buf[0] = '\0';
1215    return path_buf;
1216  }
1217}
1218
1219static bool file_exists(const char* filename) {
1220  if (filename == NULL || strlen(filename) == 0) {
1221    return false;
1222  }
1223  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1224}
1225
1226bool os::dll_build_name(char *buffer, size_t buflen,
1227                        const char* pname, const char* fname) {
1228  bool retval = false;
1229  const size_t pnamelen = pname ? strlen(pname) : 0;
1230  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1231
1232  // Return error on buffer overflow.
1233  if (pnamelen + strlen(fname) + 10 > buflen) {
1234    return retval;
1235  }
1236
1237  if (pnamelen == 0) {
1238    jio_snprintf(buffer, buflen, "%s.dll", fname);
1239    retval = true;
1240  } else if (c == ':' || c == '\\') {
1241    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1242    retval = true;
1243  } else if (strchr(pname, *os::path_separator()) != NULL) {
1244    int n;
1245    char** pelements = split_path(pname, &n);
1246    if (pelements == NULL) {
1247      return false;
1248    }
1249    for (int i = 0; i < n; i++) {
1250      char* path = pelements[i];
1251      // Really shouldn't be NULL, but check can't hurt
1252      size_t plen = (path == NULL) ? 0 : strlen(path);
1253      if (plen == 0) {
1254        continue; // skip the empty path values
1255      }
1256      const char lastchar = path[plen - 1];
1257      if (lastchar == ':' || lastchar == '\\') {
1258        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1259      } else {
1260        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1261      }
1262      if (file_exists(buffer)) {
1263        retval = true;
1264        break;
1265      }
1266    }
1267    // release the storage
1268    for (int i = 0; i < n; i++) {
1269      if (pelements[i] != NULL) {
1270        FREE_C_HEAP_ARRAY(char, pelements[i]);
1271      }
1272    }
1273    if (pelements != NULL) {
1274      FREE_C_HEAP_ARRAY(char*, pelements);
1275    }
1276  } else {
1277    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1278    retval = true;
1279  }
1280  return retval;
1281}
1282
1283// Needs to be in os specific directory because windows requires another
1284// header file <direct.h>
1285const char* os::get_current_directory(char *buf, size_t buflen) {
1286  int n = static_cast<int>(buflen);
1287  if (buflen > INT_MAX)  n = INT_MAX;
1288  return _getcwd(buf, n);
1289}
1290
1291//-----------------------------------------------------------
1292// Helper functions for fatal error handler
1293#ifdef _WIN64
1294// Helper routine which returns true if address in
1295// within the NTDLL address space.
1296//
1297static bool _addr_in_ntdll(address addr) {
1298  HMODULE hmod;
1299  MODULEINFO minfo;
1300
1301  hmod = GetModuleHandle("NTDLL.DLL");
1302  if (hmod == NULL) return false;
1303  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1304                                          &minfo, sizeof(MODULEINFO))) {
1305    return false;
1306  }
1307
1308  if ((addr >= minfo.lpBaseOfDll) &&
1309      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1310    return true;
1311  } else {
1312    return false;
1313  }
1314}
1315#endif
1316
1317struct _modinfo {
1318  address addr;
1319  char*   full_path;   // point to a char buffer
1320  int     buflen;      // size of the buffer
1321  address base_addr;
1322};
1323
1324static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1325                                  address top_address, void * param) {
1326  struct _modinfo *pmod = (struct _modinfo *)param;
1327  if (!pmod) return -1;
1328
1329  if (base_addr   <= pmod->addr &&
1330      top_address > pmod->addr) {
1331    // if a buffer is provided, copy path name to the buffer
1332    if (pmod->full_path) {
1333      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1334    }
1335    pmod->base_addr = base_addr;
1336    return 1;
1337  }
1338  return 0;
1339}
1340
1341bool os::dll_address_to_library_name(address addr, char* buf,
1342                                     int buflen, int* offset) {
1343  // buf is not optional, but offset is optional
1344  assert(buf != NULL, "sanity check");
1345
1346// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1347//       return the full path to the DLL file, sometimes it returns path
1348//       to the corresponding PDB file (debug info); sometimes it only
1349//       returns partial path, which makes life painful.
1350
1351  struct _modinfo mi;
1352  mi.addr      = addr;
1353  mi.full_path = buf;
1354  mi.buflen    = buflen;
1355  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1356    // buf already contains path name
1357    if (offset) *offset = addr - mi.base_addr;
1358    return true;
1359  }
1360
1361  buf[0] = '\0';
1362  if (offset) *offset = -1;
1363  return false;
1364}
1365
1366bool os::dll_address_to_function_name(address addr, char *buf,
1367                                      int buflen, int *offset) {
1368  // buf is not optional, but offset is optional
1369  assert(buf != NULL, "sanity check");
1370
1371  if (Decoder::decode(addr, buf, buflen, offset)) {
1372    return true;
1373  }
1374  if (offset != NULL)  *offset  = -1;
1375  buf[0] = '\0';
1376  return false;
1377}
1378
1379// save the start and end address of jvm.dll into param[0] and param[1]
1380static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1381                           address top_address, void * param) {
1382  if (!param) return -1;
1383
1384  if (base_addr   <= (address)_locate_jvm_dll &&
1385      top_address > (address)_locate_jvm_dll) {
1386    ((address*)param)[0] = base_addr;
1387    ((address*)param)[1] = top_address;
1388    return 1;
1389  }
1390  return 0;
1391}
1392
1393address vm_lib_location[2];    // start and end address of jvm.dll
1394
1395// check if addr is inside jvm.dll
1396bool os::address_is_in_vm(address addr) {
1397  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1398    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1399      assert(false, "Can't find jvm module.");
1400      return false;
1401    }
1402  }
1403
1404  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1405}
1406
1407// print module info; param is outputStream*
1408static int _print_module(const char* fname, address base_address,
1409                         address top_address, void* param) {
1410  if (!param) return -1;
1411
1412  outputStream* st = (outputStream*)param;
1413
1414  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1415  return 0;
1416}
1417
1418// Loads .dll/.so and
1419// in case of error it checks if .dll/.so was built for the
1420// same architecture as Hotspot is running on
1421void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1422  void * result = LoadLibrary(name);
1423  if (result != NULL) {
1424    return result;
1425  }
1426
1427  DWORD errcode = GetLastError();
1428  if (errcode == ERROR_MOD_NOT_FOUND) {
1429    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1430    ebuf[ebuflen - 1] = '\0';
1431    return NULL;
1432  }
1433
1434  // Parsing dll below
1435  // If we can read dll-info and find that dll was built
1436  // for an architecture other than Hotspot is running in
1437  // - then print to buffer "DLL was built for a different architecture"
1438  // else call os::lasterror to obtain system error message
1439
1440  // Read system error message into ebuf
1441  // It may or may not be overwritten below (in the for loop and just above)
1442  lasterror(ebuf, (size_t) ebuflen);
1443  ebuf[ebuflen - 1] = '\0';
1444  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1445  if (fd < 0) {
1446    return NULL;
1447  }
1448
1449  uint32_t signature_offset;
1450  uint16_t lib_arch = 0;
1451  bool failed_to_get_lib_arch =
1452    ( // Go to position 3c in the dll
1453     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1454     ||
1455     // Read location of signature
1456     (sizeof(signature_offset) !=
1457     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1458     ||
1459     // Go to COFF File Header in dll
1460     // that is located after "signature" (4 bytes long)
1461     (os::seek_to_file_offset(fd,
1462     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1463     ||
1464     // Read field that contains code of architecture
1465     // that dll was built for
1466     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1467    );
1468
1469  ::close(fd);
1470  if (failed_to_get_lib_arch) {
1471    // file i/o error - report os::lasterror(...) msg
1472    return NULL;
1473  }
1474
1475  typedef struct {
1476    uint16_t arch_code;
1477    char* arch_name;
1478  } arch_t;
1479
1480  static const arch_t arch_array[] = {
1481    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1482    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1483    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1484  };
1485#if   (defined _M_IA64)
1486  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1487#elif (defined _M_AMD64)
1488  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1489#elif (defined _M_IX86)
1490  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1491#else
1492  #error Method os::dll_load requires that one of following \
1493         is defined :_M_IA64,_M_AMD64 or _M_IX86
1494#endif
1495
1496
1497  // Obtain a string for printf operation
1498  // lib_arch_str shall contain string what platform this .dll was built for
1499  // running_arch_str shall string contain what platform Hotspot was built for
1500  char *running_arch_str = NULL, *lib_arch_str = NULL;
1501  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1502    if (lib_arch == arch_array[i].arch_code) {
1503      lib_arch_str = arch_array[i].arch_name;
1504    }
1505    if (running_arch == arch_array[i].arch_code) {
1506      running_arch_str = arch_array[i].arch_name;
1507    }
1508  }
1509
1510  assert(running_arch_str,
1511         "Didn't find running architecture code in arch_array");
1512
1513  // If the architecture is right
1514  // but some other error took place - report os::lasterror(...) msg
1515  if (lib_arch == running_arch) {
1516    return NULL;
1517  }
1518
1519  if (lib_arch_str != NULL) {
1520    ::_snprintf(ebuf, ebuflen - 1,
1521                "Can't load %s-bit .dll on a %s-bit platform",
1522                lib_arch_str, running_arch_str);
1523  } else {
1524    // don't know what architecture this dll was build for
1525    ::_snprintf(ebuf, ebuflen - 1,
1526                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1527                lib_arch, running_arch_str);
1528  }
1529
1530  return NULL;
1531}
1532
1533void os::print_dll_info(outputStream *st) {
1534  st->print_cr("Dynamic libraries:");
1535  get_loaded_modules_info(_print_module, (void *)st);
1536}
1537
1538int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1539  HANDLE   hProcess;
1540
1541# define MAX_NUM_MODULES 128
1542  HMODULE     modules[MAX_NUM_MODULES];
1543  static char filename[MAX_PATH];
1544  int         result = 0;
1545
1546  if (!os::PSApiDll::PSApiAvailable()) {
1547    return 0;
1548  }
1549
1550  int pid = os::current_process_id();
1551  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1552                         FALSE, pid);
1553  if (hProcess == NULL) return 0;
1554
1555  DWORD size_needed;
1556  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1557                                        sizeof(modules), &size_needed)) {
1558    CloseHandle(hProcess);
1559    return 0;
1560  }
1561
1562  // number of modules that are currently loaded
1563  int num_modules = size_needed / sizeof(HMODULE);
1564
1565  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1566    // Get Full pathname:
1567    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1568                                           filename, sizeof(filename))) {
1569      filename[0] = '\0';
1570    }
1571
1572    MODULEINFO modinfo;
1573    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1574                                            &modinfo, sizeof(modinfo))) {
1575      modinfo.lpBaseOfDll = NULL;
1576      modinfo.SizeOfImage = 0;
1577    }
1578
1579    // Invoke callback function
1580    result = callback(filename, (address)modinfo.lpBaseOfDll,
1581                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1582    if (result) break;
1583  }
1584
1585  CloseHandle(hProcess);
1586  return result;
1587}
1588
1589void os::print_os_info_brief(outputStream* st) {
1590  os::print_os_info(st);
1591}
1592
1593void os::print_os_info(outputStream* st) {
1594#ifdef ASSERT
1595  char buffer[1024];
1596  DWORD size = sizeof(buffer);
1597  st->print(" HostName: ");
1598  if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1599    st->print("%s", buffer);
1600  } else {
1601    st->print("N/A");
1602  }
1603#endif
1604  st->print(" OS:");
1605  os::win32::print_windows_version(st);
1606}
1607
1608void os::win32::print_windows_version(outputStream* st) {
1609  OSVERSIONINFOEX osvi;
1610  VS_FIXEDFILEINFO *file_info;
1611  TCHAR kernel32_path[MAX_PATH];
1612  UINT len, ret;
1613
1614  // Use the GetVersionEx information to see if we're on a server or
1615  // workstation edition of Windows. Starting with Windows 8.1 we can't
1616  // trust the OS version information returned by this API.
1617  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1618  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1619  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1620    st->print_cr("Call to GetVersionEx failed");
1621    return;
1622  }
1623  bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1624
1625  // Get the full path to \Windows\System32\kernel32.dll and use that for
1626  // determining what version of Windows we're running on.
1627  len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1628  ret = GetSystemDirectory(kernel32_path, len);
1629  if (ret == 0 || ret > len) {
1630    st->print_cr("Call to GetSystemDirectory failed");
1631    return;
1632  }
1633  strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1634
1635  DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1636  if (version_size == 0) {
1637    st->print_cr("Call to GetFileVersionInfoSize failed");
1638    return;
1639  }
1640
1641  LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1642  if (version_info == NULL) {
1643    st->print_cr("Failed to allocate version_info");
1644    return;
1645  }
1646
1647  if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1648    os::free(version_info);
1649    st->print_cr("Call to GetFileVersionInfo failed");
1650    return;
1651  }
1652
1653  if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1654    os::free(version_info);
1655    st->print_cr("Call to VerQueryValue failed");
1656    return;
1657  }
1658
1659  int major_version = HIWORD(file_info->dwProductVersionMS);
1660  int minor_version = LOWORD(file_info->dwProductVersionMS);
1661  int build_number = HIWORD(file_info->dwProductVersionLS);
1662  int build_minor = LOWORD(file_info->dwProductVersionLS);
1663  int os_vers = major_version * 1000 + minor_version;
1664  os::free(version_info);
1665
1666  st->print(" Windows ");
1667  switch (os_vers) {
1668
1669  case 6000:
1670    if (is_workstation) {
1671      st->print("Vista");
1672    } else {
1673      st->print("Server 2008");
1674    }
1675    break;
1676
1677  case 6001:
1678    if (is_workstation) {
1679      st->print("7");
1680    } else {
1681      st->print("Server 2008 R2");
1682    }
1683    break;
1684
1685  case 6002:
1686    if (is_workstation) {
1687      st->print("8");
1688    } else {
1689      st->print("Server 2012");
1690    }
1691    break;
1692
1693  case 6003:
1694    if (is_workstation) {
1695      st->print("8.1");
1696    } else {
1697      st->print("Server 2012 R2");
1698    }
1699    break;
1700
1701  case 10000:
1702    if (is_workstation) {
1703      st->print("10");
1704    } else {
1705      // The server version name of Windows 10 is not known at this time
1706      st->print("%d.%d", major_version, minor_version);
1707    }
1708    break;
1709
1710  default:
1711    // Unrecognized windows, print out its major and minor versions
1712    st->print("%d.%d", major_version, minor_version);
1713    break;
1714  }
1715
1716  // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1717  // find out whether we are running on 64 bit processor or not
1718  SYSTEM_INFO si;
1719  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1720  os::Kernel32Dll::GetNativeSystemInfo(&si);
1721  if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1722    st->print(" , 64 bit");
1723  }
1724
1725  st->print(" Build %d", build_number);
1726  st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1727  st->cr();
1728}
1729
1730void os::pd_print_cpu_info(outputStream* st) {
1731  // Nothing to do for now.
1732}
1733
1734void os::print_memory_info(outputStream* st) {
1735  st->print("Memory:");
1736  st->print(" %dk page", os::vm_page_size()>>10);
1737
1738  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1739  // value if total memory is larger than 4GB
1740  MEMORYSTATUSEX ms;
1741  ms.dwLength = sizeof(ms);
1742  GlobalMemoryStatusEx(&ms);
1743
1744  st->print(", physical %uk", os::physical_memory() >> 10);
1745  st->print("(%uk free)", os::available_memory() >> 10);
1746
1747  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1748  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1749  st->cr();
1750}
1751
1752void os::print_siginfo(outputStream *st, void *siginfo) {
1753  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1754  st->print("siginfo:");
1755  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1756
1757  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1758      er->NumberParameters >= 2) {
1759    switch (er->ExceptionInformation[0]) {
1760    case 0: st->print(", reading address"); break;
1761    case 1: st->print(", writing address"); break;
1762    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1763                       er->ExceptionInformation[0]);
1764    }
1765    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1766  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1767             er->NumberParameters >= 2 && UseSharedSpaces) {
1768    FileMapInfo* mapinfo = FileMapInfo::current_info();
1769    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1770      st->print("\n\nError accessing class data sharing archive."       \
1771                " Mapped file inaccessible during execution, "          \
1772                " possible disk/network problem.");
1773    }
1774  } else {
1775    int num = er->NumberParameters;
1776    if (num > 0) {
1777      st->print(", ExceptionInformation=");
1778      for (int i = 0; i < num; i++) {
1779        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1780      }
1781    }
1782  }
1783  st->cr();
1784}
1785
1786void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1787  // do nothing
1788}
1789
1790static char saved_jvm_path[MAX_PATH] = {0};
1791
1792// Find the full path to the current module, jvm.dll
1793void os::jvm_path(char *buf, jint buflen) {
1794  // Error checking.
1795  if (buflen < MAX_PATH) {
1796    assert(false, "must use a large-enough buffer");
1797    buf[0] = '\0';
1798    return;
1799  }
1800  // Lazy resolve the path to current module.
1801  if (saved_jvm_path[0] != 0) {
1802    strcpy(buf, saved_jvm_path);
1803    return;
1804  }
1805
1806  buf[0] = '\0';
1807  if (Arguments::sun_java_launcher_is_altjvm()) {
1808    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1809    // for a JAVA_HOME environment variable and fix up the path so it
1810    // looks like jvm.dll is installed there (append a fake suffix
1811    // hotspot/jvm.dll).
1812    char* java_home_var = ::getenv("JAVA_HOME");
1813    if (java_home_var != NULL && java_home_var[0] != 0 &&
1814        strlen(java_home_var) < (size_t)buflen) {
1815      strncpy(buf, java_home_var, buflen);
1816
1817      // determine if this is a legacy image or modules image
1818      // modules image doesn't have "jre" subdirectory
1819      size_t len = strlen(buf);
1820      char* jrebin_p = buf + len;
1821      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1822      if (0 != _access(buf, 0)) {
1823        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1824      }
1825      len = strlen(buf);
1826      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1827    }
1828  }
1829
1830  if (buf[0] == '\0') {
1831    GetModuleFileName(vm_lib_handle, buf, buflen);
1832  }
1833  strncpy(saved_jvm_path, buf, MAX_PATH);
1834  saved_jvm_path[MAX_PATH - 1] = '\0';
1835}
1836
1837
1838void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1839#ifndef _WIN64
1840  st->print("_");
1841#endif
1842}
1843
1844
1845void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1846#ifndef _WIN64
1847  st->print("@%d", args_size  * sizeof(int));
1848#endif
1849}
1850
1851// This method is a copy of JDK's sysGetLastErrorString
1852// from src/windows/hpi/src/system_md.c
1853
1854size_t os::lasterror(char* buf, size_t len) {
1855  DWORD errval;
1856
1857  if ((errval = GetLastError()) != 0) {
1858    // DOS error
1859    size_t n = (size_t)FormatMessage(
1860                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1861                                     NULL,
1862                                     errval,
1863                                     0,
1864                                     buf,
1865                                     (DWORD)len,
1866                                     NULL);
1867    if (n > 3) {
1868      // Drop final '.', CR, LF
1869      if (buf[n - 1] == '\n') n--;
1870      if (buf[n - 1] == '\r') n--;
1871      if (buf[n - 1] == '.') n--;
1872      buf[n] = '\0';
1873    }
1874    return n;
1875  }
1876
1877  if (errno != 0) {
1878    // C runtime error that has no corresponding DOS error code
1879    const char* s = strerror(errno);
1880    size_t n = strlen(s);
1881    if (n >= len) n = len - 1;
1882    strncpy(buf, s, n);
1883    buf[n] = '\0';
1884    return n;
1885  }
1886
1887  return 0;
1888}
1889
1890int os::get_last_error() {
1891  DWORD error = GetLastError();
1892  if (error == 0) {
1893    error = errno;
1894  }
1895  return (int)error;
1896}
1897
1898// sun.misc.Signal
1899// NOTE that this is a workaround for an apparent kernel bug where if
1900// a signal handler for SIGBREAK is installed then that signal handler
1901// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1902// See bug 4416763.
1903static void (*sigbreakHandler)(int) = NULL;
1904
1905static void UserHandler(int sig, void *siginfo, void *context) {
1906  os::signal_notify(sig);
1907  // We need to reinstate the signal handler each time...
1908  os::signal(sig, (void*)UserHandler);
1909}
1910
1911void* os::user_handler() {
1912  return (void*) UserHandler;
1913}
1914
1915void* os::signal(int signal_number, void* handler) {
1916  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1917    void (*oldHandler)(int) = sigbreakHandler;
1918    sigbreakHandler = (void (*)(int)) handler;
1919    return (void*) oldHandler;
1920  } else {
1921    return (void*)::signal(signal_number, (void (*)(int))handler);
1922  }
1923}
1924
1925void os::signal_raise(int signal_number) {
1926  raise(signal_number);
1927}
1928
1929// The Win32 C runtime library maps all console control events other than ^C
1930// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1931// logoff, and shutdown events.  We therefore install our own console handler
1932// that raises SIGTERM for the latter cases.
1933//
1934static BOOL WINAPI consoleHandler(DWORD event) {
1935  switch (event) {
1936  case CTRL_C_EVENT:
1937    if (is_error_reported()) {
1938      // Ctrl-C is pressed during error reporting, likely because the error
1939      // handler fails to abort. Let VM die immediately.
1940      os::die();
1941    }
1942
1943    os::signal_raise(SIGINT);
1944    return TRUE;
1945    break;
1946  case CTRL_BREAK_EVENT:
1947    if (sigbreakHandler != NULL) {
1948      (*sigbreakHandler)(SIGBREAK);
1949    }
1950    return TRUE;
1951    break;
1952  case CTRL_LOGOFF_EVENT: {
1953    // Don't terminate JVM if it is running in a non-interactive session,
1954    // such as a service process.
1955    USEROBJECTFLAGS flags;
1956    HANDLE handle = GetProcessWindowStation();
1957    if (handle != NULL &&
1958        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1959        sizeof(USEROBJECTFLAGS), NULL)) {
1960      // If it is a non-interactive session, let next handler to deal
1961      // with it.
1962      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1963        return FALSE;
1964      }
1965    }
1966  }
1967  case CTRL_CLOSE_EVENT:
1968  case CTRL_SHUTDOWN_EVENT:
1969    os::signal_raise(SIGTERM);
1970    return TRUE;
1971    break;
1972  default:
1973    break;
1974  }
1975  return FALSE;
1976}
1977
1978// The following code is moved from os.cpp for making this
1979// code platform specific, which it is by its very nature.
1980
1981// Return maximum OS signal used + 1 for internal use only
1982// Used as exit signal for signal_thread
1983int os::sigexitnum_pd() {
1984  return NSIG;
1985}
1986
1987// a counter for each possible signal value, including signal_thread exit signal
1988static volatile jint pending_signals[NSIG+1] = { 0 };
1989static HANDLE sig_sem = NULL;
1990
1991void os::signal_init_pd() {
1992  // Initialize signal structures
1993  memset((void*)pending_signals, 0, sizeof(pending_signals));
1994
1995  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1996
1997  // Programs embedding the VM do not want it to attempt to receive
1998  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1999  // shutdown hooks mechanism introduced in 1.3.  For example, when
2000  // the VM is run as part of a Windows NT service (i.e., a servlet
2001  // engine in a web server), the correct behavior is for any console
2002  // control handler to return FALSE, not TRUE, because the OS's
2003  // "final" handler for such events allows the process to continue if
2004  // it is a service (while terminating it if it is not a service).
2005  // To make this behavior uniform and the mechanism simpler, we
2006  // completely disable the VM's usage of these console events if -Xrs
2007  // (=ReduceSignalUsage) is specified.  This means, for example, that
2008  // the CTRL-BREAK thread dump mechanism is also disabled in this
2009  // case.  See bugs 4323062, 4345157, and related bugs.
2010
2011  if (!ReduceSignalUsage) {
2012    // Add a CTRL-C handler
2013    SetConsoleCtrlHandler(consoleHandler, TRUE);
2014  }
2015}
2016
2017void os::signal_notify(int signal_number) {
2018  BOOL ret;
2019  if (sig_sem != NULL) {
2020    Atomic::inc(&pending_signals[signal_number]);
2021    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2022    assert(ret != 0, "ReleaseSemaphore() failed");
2023  }
2024}
2025
2026static int check_pending_signals(bool wait_for_signal) {
2027  DWORD ret;
2028  while (true) {
2029    for (int i = 0; i < NSIG + 1; i++) {
2030      jint n = pending_signals[i];
2031      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2032        return i;
2033      }
2034    }
2035    if (!wait_for_signal) {
2036      return -1;
2037    }
2038
2039    JavaThread *thread = JavaThread::current();
2040
2041    ThreadBlockInVM tbivm(thread);
2042
2043    bool threadIsSuspended;
2044    do {
2045      thread->set_suspend_equivalent();
2046      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2047      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2048      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2049
2050      // were we externally suspended while we were waiting?
2051      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2052      if (threadIsSuspended) {
2053        // The semaphore has been incremented, but while we were waiting
2054        // another thread suspended us. We don't want to continue running
2055        // while suspended because that would surprise the thread that
2056        // suspended us.
2057        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2058        assert(ret != 0, "ReleaseSemaphore() failed");
2059
2060        thread->java_suspend_self();
2061      }
2062    } while (threadIsSuspended);
2063  }
2064}
2065
2066int os::signal_lookup() {
2067  return check_pending_signals(false);
2068}
2069
2070int os::signal_wait() {
2071  return check_pending_signals(true);
2072}
2073
2074// Implicit OS exception handling
2075
2076LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2077                      address handler) {
2078  JavaThread* thread = JavaThread::current();
2079  // Save pc in thread
2080#ifdef _M_IA64
2081  // Do not blow up if no thread info available.
2082  if (thread) {
2083    // Saving PRECISE pc (with slot information) in thread.
2084    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2085    // Convert precise PC into "Unix" format
2086    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2087    thread->set_saved_exception_pc((address)precise_pc);
2088  }
2089  // Set pc to handler
2090  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2091  // Clear out psr.ri (= Restart Instruction) in order to continue
2092  // at the beginning of the target bundle.
2093  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2094  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2095#else
2096  #ifdef _M_AMD64
2097  // Do not blow up if no thread info available.
2098  if (thread) {
2099    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2100  }
2101  // Set pc to handler
2102  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2103  #else
2104  // Do not blow up if no thread info available.
2105  if (thread) {
2106    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2107  }
2108  // Set pc to handler
2109  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2110  #endif
2111#endif
2112
2113  // Continue the execution
2114  return EXCEPTION_CONTINUE_EXECUTION;
2115}
2116
2117
2118// Used for PostMortemDump
2119extern "C" void safepoints();
2120extern "C" void find(int x);
2121extern "C" void events();
2122
2123// According to Windows API documentation, an illegal instruction sequence should generate
2124// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2125// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2126// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2127
2128#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2129
2130// From "Execution Protection in the Windows Operating System" draft 0.35
2131// Once a system header becomes available, the "real" define should be
2132// included or copied here.
2133#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2134
2135// Handle NAT Bit consumption on IA64.
2136#ifdef _M_IA64
2137  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2138#endif
2139
2140// Windows Vista/2008 heap corruption check
2141#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2142
2143#define def_excpt(val) #val, val
2144
2145struct siglabel {
2146  char *name;
2147  int   number;
2148};
2149
2150// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2151// C++ compiler contain this error code. Because this is a compiler-generated
2152// error, the code is not listed in the Win32 API header files.
2153// The code is actually a cryptic mnemonic device, with the initial "E"
2154// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2155// ASCII values of "msc".
2156
2157#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2158
2159
2160struct siglabel exceptlabels[] = {
2161    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2162    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2163    def_excpt(EXCEPTION_BREAKPOINT),
2164    def_excpt(EXCEPTION_SINGLE_STEP),
2165    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2166    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2167    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2168    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2169    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2170    def_excpt(EXCEPTION_FLT_OVERFLOW),
2171    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2172    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2173    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2174    def_excpt(EXCEPTION_INT_OVERFLOW),
2175    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2176    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2177    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2178    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2179    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2180    def_excpt(EXCEPTION_STACK_OVERFLOW),
2181    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2182    def_excpt(EXCEPTION_GUARD_PAGE),
2183    def_excpt(EXCEPTION_INVALID_HANDLE),
2184    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2185    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2186#ifdef _M_IA64
2187    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2188#endif
2189    NULL, 0
2190};
2191
2192const char* os::exception_name(int exception_code, char *buf, size_t size) {
2193  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2194    if (exceptlabels[i].number == exception_code) {
2195      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2196      return buf;
2197    }
2198  }
2199
2200  return NULL;
2201}
2202
2203//-----------------------------------------------------------------------------
2204LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2205  // handle exception caused by idiv; should only happen for -MinInt/-1
2206  // (division by zero is handled explicitly)
2207#ifdef _M_IA64
2208  assert(0, "Fix Handle_IDiv_Exception");
2209#else
2210  #ifdef  _M_AMD64
2211  PCONTEXT ctx = exceptionInfo->ContextRecord;
2212  address pc = (address)ctx->Rip;
2213  assert(pc[0] == 0xF7, "not an idiv opcode");
2214  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2215  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2216  // set correct result values and continue after idiv instruction
2217  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2218  ctx->Rax = (DWORD)min_jint;      // result
2219  ctx->Rdx = (DWORD)0;             // remainder
2220  // Continue the execution
2221  #else
2222  PCONTEXT ctx = exceptionInfo->ContextRecord;
2223  address pc = (address)ctx->Eip;
2224  assert(pc[0] == 0xF7, "not an idiv opcode");
2225  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2226  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2227  // set correct result values and continue after idiv instruction
2228  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2229  ctx->Eax = (DWORD)min_jint;      // result
2230  ctx->Edx = (DWORD)0;             // remainder
2231  // Continue the execution
2232  #endif
2233#endif
2234  return EXCEPTION_CONTINUE_EXECUTION;
2235}
2236
2237//-----------------------------------------------------------------------------
2238LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2239  PCONTEXT ctx = exceptionInfo->ContextRecord;
2240#ifndef  _WIN64
2241  // handle exception caused by native method modifying control word
2242  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2243
2244  switch (exception_code) {
2245  case EXCEPTION_FLT_DENORMAL_OPERAND:
2246  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2247  case EXCEPTION_FLT_INEXACT_RESULT:
2248  case EXCEPTION_FLT_INVALID_OPERATION:
2249  case EXCEPTION_FLT_OVERFLOW:
2250  case EXCEPTION_FLT_STACK_CHECK:
2251  case EXCEPTION_FLT_UNDERFLOW:
2252    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2253    if (fp_control_word != ctx->FloatSave.ControlWord) {
2254      // Restore FPCW and mask out FLT exceptions
2255      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2256      // Mask out pending FLT exceptions
2257      ctx->FloatSave.StatusWord &=  0xffffff00;
2258      return EXCEPTION_CONTINUE_EXECUTION;
2259    }
2260  }
2261
2262  if (prev_uef_handler != NULL) {
2263    // We didn't handle this exception so pass it to the previous
2264    // UnhandledExceptionFilter.
2265    return (prev_uef_handler)(exceptionInfo);
2266  }
2267#else // !_WIN64
2268  // On Windows, the mxcsr control bits are non-volatile across calls
2269  // See also CR 6192333
2270  //
2271  jint MxCsr = INITIAL_MXCSR;
2272  // we can't use StubRoutines::addr_mxcsr_std()
2273  // because in Win64 mxcsr is not saved there
2274  if (MxCsr != ctx->MxCsr) {
2275    ctx->MxCsr = MxCsr;
2276    return EXCEPTION_CONTINUE_EXECUTION;
2277  }
2278#endif // !_WIN64
2279
2280  return EXCEPTION_CONTINUE_SEARCH;
2281}
2282
2283static inline void report_error(Thread* t, DWORD exception_code,
2284                                address addr, void* siginfo, void* context) {
2285  VMError err(t, exception_code, addr, siginfo, context);
2286  err.report_and_die();
2287
2288  // If UseOsErrorReporting, this will return here and save the error file
2289  // somewhere where we can find it in the minidump.
2290}
2291
2292//-----------------------------------------------------------------------------
2293LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2294  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2295  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2296#ifdef _M_IA64
2297  // On Itanium, we need the "precise pc", which has the slot number coded
2298  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2299  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2300  // Convert the pc to "Unix format", which has the slot number coded
2301  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2302  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2303  // information is saved in the Unix format.
2304  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2305#else
2306  #ifdef _M_AMD64
2307  address pc = (address) exceptionInfo->ContextRecord->Rip;
2308  #else
2309  address pc = (address) exceptionInfo->ContextRecord->Eip;
2310  #endif
2311#endif
2312  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2313
2314  // Handle SafeFetch32 and SafeFetchN exceptions.
2315  if (StubRoutines::is_safefetch_fault(pc)) {
2316    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2317  }
2318
2319#ifndef _WIN64
2320  // Execution protection violation - win32 running on AMD64 only
2321  // Handled first to avoid misdiagnosis as a "normal" access violation;
2322  // This is safe to do because we have a new/unique ExceptionInformation
2323  // code for this condition.
2324  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2325    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2326    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2327    address addr = (address) exceptionRecord->ExceptionInformation[1];
2328
2329    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2330      int page_size = os::vm_page_size();
2331
2332      // Make sure the pc and the faulting address are sane.
2333      //
2334      // If an instruction spans a page boundary, and the page containing
2335      // the beginning of the instruction is executable but the following
2336      // page is not, the pc and the faulting address might be slightly
2337      // different - we still want to unguard the 2nd page in this case.
2338      //
2339      // 15 bytes seems to be a (very) safe value for max instruction size.
2340      bool pc_is_near_addr =
2341        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2342      bool instr_spans_page_boundary =
2343        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2344                         (intptr_t) page_size) > 0);
2345
2346      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2347        static volatile address last_addr =
2348          (address) os::non_memory_address_word();
2349
2350        // In conservative mode, don't unguard unless the address is in the VM
2351        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2352            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2353
2354          // Set memory to RWX and retry
2355          address page_start =
2356            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2357          bool res = os::protect_memory((char*) page_start, page_size,
2358                                        os::MEM_PROT_RWX);
2359
2360          if (PrintMiscellaneous && Verbose) {
2361            char buf[256];
2362            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2363                         "at " INTPTR_FORMAT
2364                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2365                         page_start, (res ? "success" : strerror(errno)));
2366            tty->print_raw_cr(buf);
2367          }
2368
2369          // Set last_addr so if we fault again at the same address, we don't
2370          // end up in an endless loop.
2371          //
2372          // There are two potential complications here.  Two threads trapping
2373          // at the same address at the same time could cause one of the
2374          // threads to think it already unguarded, and abort the VM.  Likely
2375          // very rare.
2376          //
2377          // The other race involves two threads alternately trapping at
2378          // different addresses and failing to unguard the page, resulting in
2379          // an endless loop.  This condition is probably even more unlikely
2380          // than the first.
2381          //
2382          // Although both cases could be avoided by using locks or thread
2383          // local last_addr, these solutions are unnecessary complication:
2384          // this handler is a best-effort safety net, not a complete solution.
2385          // It is disabled by default and should only be used as a workaround
2386          // in case we missed any no-execute-unsafe VM code.
2387
2388          last_addr = addr;
2389
2390          return EXCEPTION_CONTINUE_EXECUTION;
2391        }
2392      }
2393
2394      // Last unguard failed or not unguarding
2395      tty->print_raw_cr("Execution protection violation");
2396      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2397                   exceptionInfo->ContextRecord);
2398      return EXCEPTION_CONTINUE_SEARCH;
2399    }
2400  }
2401#endif // _WIN64
2402
2403  // Check to see if we caught the safepoint code in the
2404  // process of write protecting the memory serialization page.
2405  // It write enables the page immediately after protecting it
2406  // so just return.
2407  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2408    JavaThread* thread = (JavaThread*) t;
2409    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2410    address addr = (address) exceptionRecord->ExceptionInformation[1];
2411    if (os::is_memory_serialize_page(thread, addr)) {
2412      // Block current thread until the memory serialize page permission restored.
2413      os::block_on_serialize_page_trap();
2414      return EXCEPTION_CONTINUE_EXECUTION;
2415    }
2416  }
2417
2418  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2419      VM_Version::is_cpuinfo_segv_addr(pc)) {
2420    // Verify that OS save/restore AVX registers.
2421    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2422  }
2423
2424  if (t != NULL && t->is_Java_thread()) {
2425    JavaThread* thread = (JavaThread*) t;
2426    bool in_java = thread->thread_state() == _thread_in_Java;
2427
2428    // Handle potential stack overflows up front.
2429    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2430      if (os::uses_stack_guard_pages()) {
2431#ifdef _M_IA64
2432        // Use guard page for register stack.
2433        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2434        address addr = (address) exceptionRecord->ExceptionInformation[1];
2435        // Check for a register stack overflow on Itanium
2436        if (thread->addr_inside_register_stack_red_zone(addr)) {
2437          // Fatal red zone violation happens if the Java program
2438          // catches a StackOverflow error and does so much processing
2439          // that it runs beyond the unprotected yellow guard zone. As
2440          // a result, we are out of here.
2441          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2442        } else if(thread->addr_inside_register_stack(addr)) {
2443          // Disable the yellow zone which sets the state that
2444          // we've got a stack overflow problem.
2445          if (thread->stack_yellow_zone_enabled()) {
2446            thread->disable_stack_yellow_zone();
2447          }
2448          // Give us some room to process the exception.
2449          thread->disable_register_stack_guard();
2450          // Tracing with +Verbose.
2451          if (Verbose) {
2452            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2453            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2454            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2455            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2456                          thread->register_stack_base(),
2457                          thread->register_stack_base() + thread->stack_size());
2458          }
2459
2460          // Reguard the permanent register stack red zone just to be sure.
2461          // We saw Windows silently disabling this without telling us.
2462          thread->enable_register_stack_red_zone();
2463
2464          return Handle_Exception(exceptionInfo,
2465                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2466        }
2467#endif
2468        if (thread->stack_yellow_zone_enabled()) {
2469          // Yellow zone violation.  The o/s has unprotected the first yellow
2470          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2471          // update the enabled status, even if the zone contains only one page.
2472          thread->disable_stack_yellow_zone();
2473          // If not in java code, return and hope for the best.
2474          return in_java
2475              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2476              :  EXCEPTION_CONTINUE_EXECUTION;
2477        } else {
2478          // Fatal red zone violation.
2479          thread->disable_stack_red_zone();
2480          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2481          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2482                       exceptionInfo->ContextRecord);
2483          return EXCEPTION_CONTINUE_SEARCH;
2484        }
2485      } else if (in_java) {
2486        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2487        // a one-time-only guard page, which it has released to us.  The next
2488        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2489        return Handle_Exception(exceptionInfo,
2490                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2491      } else {
2492        // Can only return and hope for the best.  Further stack growth will
2493        // result in an ACCESS_VIOLATION.
2494        return EXCEPTION_CONTINUE_EXECUTION;
2495      }
2496    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2497      // Either stack overflow or null pointer exception.
2498      if (in_java) {
2499        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2500        address addr = (address) exceptionRecord->ExceptionInformation[1];
2501        address stack_end = thread->stack_base() - thread->stack_size();
2502        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2503          // Stack overflow.
2504          assert(!os::uses_stack_guard_pages(),
2505                 "should be caught by red zone code above.");
2506          return Handle_Exception(exceptionInfo,
2507                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2508        }
2509        // Check for safepoint polling and implicit null
2510        // We only expect null pointers in the stubs (vtable)
2511        // the rest are checked explicitly now.
2512        CodeBlob* cb = CodeCache::find_blob(pc);
2513        if (cb != NULL) {
2514          if (os::is_poll_address(addr)) {
2515            address stub = SharedRuntime::get_poll_stub(pc);
2516            return Handle_Exception(exceptionInfo, stub);
2517          }
2518        }
2519        {
2520#ifdef _WIN64
2521          // If it's a legal stack address map the entire region in
2522          //
2523          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2524          address addr = (address) exceptionRecord->ExceptionInformation[1];
2525          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2526            addr = (address)((uintptr_t)addr &
2527                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2528            os::commit_memory((char *)addr, thread->stack_base() - addr,
2529                              !ExecMem);
2530            return EXCEPTION_CONTINUE_EXECUTION;
2531          } else
2532#endif
2533          {
2534            // Null pointer exception.
2535#ifdef _M_IA64
2536            // Process implicit null checks in compiled code. Note: Implicit null checks
2537            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2538            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2539              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2540              // Handle implicit null check in UEP method entry
2541              if (cb && (cb->is_frame_complete_at(pc) ||
2542                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2543                if (Verbose) {
2544                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2545                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2546                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2547                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2548                                *(bundle_start + 1), *bundle_start);
2549                }
2550                return Handle_Exception(exceptionInfo,
2551                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2552              }
2553            }
2554
2555            // Implicit null checks were processed above.  Hence, we should not reach
2556            // here in the usual case => die!
2557            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2558            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2559                         exceptionInfo->ContextRecord);
2560            return EXCEPTION_CONTINUE_SEARCH;
2561
2562#else // !IA64
2563
2564            // Windows 98 reports faulting addresses incorrectly
2565            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2566                !os::win32::is_nt()) {
2567              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2568              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2569            }
2570            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2571                         exceptionInfo->ContextRecord);
2572            return EXCEPTION_CONTINUE_SEARCH;
2573#endif
2574          }
2575        }
2576      }
2577
2578#ifdef _WIN64
2579      // Special care for fast JNI field accessors.
2580      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2581      // in and the heap gets shrunk before the field access.
2582      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2583        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2584        if (addr != (address)-1) {
2585          return Handle_Exception(exceptionInfo, addr);
2586        }
2587      }
2588#endif
2589
2590      // Stack overflow or null pointer exception in native code.
2591      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2592                   exceptionInfo->ContextRecord);
2593      return EXCEPTION_CONTINUE_SEARCH;
2594    } // /EXCEPTION_ACCESS_VIOLATION
2595    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2596#if defined _M_IA64
2597    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2598              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2599      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2600
2601      // Compiled method patched to be non entrant? Following conditions must apply:
2602      // 1. must be first instruction in bundle
2603      // 2. must be a break instruction with appropriate code
2604      if ((((uint64_t) pc & 0x0F) == 0) &&
2605          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2606        return Handle_Exception(exceptionInfo,
2607                                (address)SharedRuntime::get_handle_wrong_method_stub());
2608      }
2609    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2610#endif
2611
2612
2613    if (in_java) {
2614      switch (exception_code) {
2615      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2616        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2617
2618      case EXCEPTION_INT_OVERFLOW:
2619        return Handle_IDiv_Exception(exceptionInfo);
2620
2621      } // switch
2622    }
2623    if (((thread->thread_state() == _thread_in_Java) ||
2624         (thread->thread_state() == _thread_in_native)) &&
2625         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2626      LONG result=Handle_FLT_Exception(exceptionInfo);
2627      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2628    }
2629  }
2630
2631  if (exception_code != EXCEPTION_BREAKPOINT) {
2632    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2633                 exceptionInfo->ContextRecord);
2634  }
2635  return EXCEPTION_CONTINUE_SEARCH;
2636}
2637
2638#ifndef _WIN64
2639// Special care for fast JNI accessors.
2640// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2641// the heap gets shrunk before the field access.
2642// Need to install our own structured exception handler since native code may
2643// install its own.
2644LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2645  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2646  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2647    address pc = (address) exceptionInfo->ContextRecord->Eip;
2648    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2649    if (addr != (address)-1) {
2650      return Handle_Exception(exceptionInfo, addr);
2651    }
2652  }
2653  return EXCEPTION_CONTINUE_SEARCH;
2654}
2655
2656#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2657  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2658                                                     jobject obj,           \
2659                                                     jfieldID fieldID) {    \
2660    __try {                                                                 \
2661      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2662                                                                 obj,       \
2663                                                                 fieldID);  \
2664    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2665                                              _exception_info())) {         \
2666    }                                                                       \
2667    return 0;                                                               \
2668  }
2669
2670DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2671DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2672DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2673DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2674DEFINE_FAST_GETFIELD(jint,     int,    Int)
2675DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2676DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2677DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2678
2679address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2680  switch (type) {
2681  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2682  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2683  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2684  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2685  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2686  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2687  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2688  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2689  default:        ShouldNotReachHere();
2690  }
2691  return (address)-1;
2692}
2693#endif
2694
2695// Virtual Memory
2696
2697int os::vm_page_size() { return os::win32::vm_page_size(); }
2698int os::vm_allocation_granularity() {
2699  return os::win32::vm_allocation_granularity();
2700}
2701
2702// Windows large page support is available on Windows 2003. In order to use
2703// large page memory, the administrator must first assign additional privilege
2704// to the user:
2705//   + select Control Panel -> Administrative Tools -> Local Security Policy
2706//   + select Local Policies -> User Rights Assignment
2707//   + double click "Lock pages in memory", add users and/or groups
2708//   + reboot
2709// Note the above steps are needed for administrator as well, as administrators
2710// by default do not have the privilege to lock pages in memory.
2711//
2712// Note about Windows 2003: although the API supports committing large page
2713// memory on a page-by-page basis and VirtualAlloc() returns success under this
2714// scenario, I found through experiment it only uses large page if the entire
2715// memory region is reserved and committed in a single VirtualAlloc() call.
2716// This makes Windows large page support more or less like Solaris ISM, in
2717// that the entire heap must be committed upfront. This probably will change
2718// in the future, if so the code below needs to be revisited.
2719
2720#ifndef MEM_LARGE_PAGES
2721  #define MEM_LARGE_PAGES 0x20000000
2722#endif
2723
2724static HANDLE    _hProcess;
2725static HANDLE    _hToken;
2726
2727// Container for NUMA node list info
2728class NUMANodeListHolder {
2729 private:
2730  int *_numa_used_node_list;  // allocated below
2731  int _numa_used_node_count;
2732
2733  void free_node_list() {
2734    if (_numa_used_node_list != NULL) {
2735      FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2736    }
2737  }
2738
2739 public:
2740  NUMANodeListHolder() {
2741    _numa_used_node_count = 0;
2742    _numa_used_node_list = NULL;
2743    // do rest of initialization in build routine (after function pointers are set up)
2744  }
2745
2746  ~NUMANodeListHolder() {
2747    free_node_list();
2748  }
2749
2750  bool build() {
2751    DWORD_PTR proc_aff_mask;
2752    DWORD_PTR sys_aff_mask;
2753    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2754    ULONG highest_node_number;
2755    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2756    free_node_list();
2757    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2758    for (unsigned int i = 0; i <= highest_node_number; i++) {
2759      ULONGLONG proc_mask_numa_node;
2760      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2761      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2762        _numa_used_node_list[_numa_used_node_count++] = i;
2763      }
2764    }
2765    return (_numa_used_node_count > 1);
2766  }
2767
2768  int get_count() { return _numa_used_node_count; }
2769  int get_node_list_entry(int n) {
2770    // for indexes out of range, returns -1
2771    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2772  }
2773
2774} numa_node_list_holder;
2775
2776
2777
2778static size_t _large_page_size = 0;
2779
2780static bool resolve_functions_for_large_page_init() {
2781  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2782    os::Advapi32Dll::AdvapiAvailable();
2783}
2784
2785static bool request_lock_memory_privilege() {
2786  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2787                          os::current_process_id());
2788
2789  LUID luid;
2790  if (_hProcess != NULL &&
2791      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2792      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2793
2794    TOKEN_PRIVILEGES tp;
2795    tp.PrivilegeCount = 1;
2796    tp.Privileges[0].Luid = luid;
2797    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2798
2799    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2800    // privilege. Check GetLastError() too. See MSDN document.
2801    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2802        (GetLastError() == ERROR_SUCCESS)) {
2803      return true;
2804    }
2805  }
2806
2807  return false;
2808}
2809
2810static void cleanup_after_large_page_init() {
2811  if (_hProcess) CloseHandle(_hProcess);
2812  _hProcess = NULL;
2813  if (_hToken) CloseHandle(_hToken);
2814  _hToken = NULL;
2815}
2816
2817static bool numa_interleaving_init() {
2818  bool success = false;
2819  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2820
2821  // print a warning if UseNUMAInterleaving flag is specified on command line
2822  bool warn_on_failure = use_numa_interleaving_specified;
2823#define WARN(msg) if (warn_on_failure) { warning(msg); }
2824
2825  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2826  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2827  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2828
2829  if (os::Kernel32Dll::NumaCallsAvailable()) {
2830    if (numa_node_list_holder.build()) {
2831      if (PrintMiscellaneous && Verbose) {
2832        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2833        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2834          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2835        }
2836        tty->print("\n");
2837      }
2838      success = true;
2839    } else {
2840      WARN("Process does not cover multiple NUMA nodes.");
2841    }
2842  } else {
2843    WARN("NUMA Interleaving is not supported by the operating system.");
2844  }
2845  if (!success) {
2846    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2847  }
2848  return success;
2849#undef WARN
2850}
2851
2852// this routine is used whenever we need to reserve a contiguous VA range
2853// but we need to make separate VirtualAlloc calls for each piece of the range
2854// Reasons for doing this:
2855//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2856//  * UseNUMAInterleaving requires a separate node for each piece
2857static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2858                                         DWORD prot,
2859                                         bool should_inject_error = false) {
2860  char * p_buf;
2861  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2862  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2863  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2864
2865  // first reserve enough address space in advance since we want to be
2866  // able to break a single contiguous virtual address range into multiple
2867  // large page commits but WS2003 does not allow reserving large page space
2868  // so we just use 4K pages for reserve, this gives us a legal contiguous
2869  // address space. then we will deallocate that reservation, and re alloc
2870  // using large pages
2871  const size_t size_of_reserve = bytes + chunk_size;
2872  if (bytes > size_of_reserve) {
2873    // Overflowed.
2874    return NULL;
2875  }
2876  p_buf = (char *) VirtualAlloc(addr,
2877                                size_of_reserve,  // size of Reserve
2878                                MEM_RESERVE,
2879                                PAGE_READWRITE);
2880  // If reservation failed, return NULL
2881  if (p_buf == NULL) return NULL;
2882  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2883  os::release_memory(p_buf, bytes + chunk_size);
2884
2885  // we still need to round up to a page boundary (in case we are using large pages)
2886  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2887  // instead we handle this in the bytes_to_rq computation below
2888  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2889
2890  // now go through and allocate one chunk at a time until all bytes are
2891  // allocated
2892  size_t  bytes_remaining = bytes;
2893  // An overflow of align_size_up() would have been caught above
2894  // in the calculation of size_of_reserve.
2895  char * next_alloc_addr = p_buf;
2896  HANDLE hProc = GetCurrentProcess();
2897
2898#ifdef ASSERT
2899  // Variable for the failure injection
2900  long ran_num = os::random();
2901  size_t fail_after = ran_num % bytes;
2902#endif
2903
2904  int count=0;
2905  while (bytes_remaining) {
2906    // select bytes_to_rq to get to the next chunk_size boundary
2907
2908    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2909    // Note allocate and commit
2910    char * p_new;
2911
2912#ifdef ASSERT
2913    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2914#else
2915    const bool inject_error_now = false;
2916#endif
2917
2918    if (inject_error_now) {
2919      p_new = NULL;
2920    } else {
2921      if (!UseNUMAInterleaving) {
2922        p_new = (char *) VirtualAlloc(next_alloc_addr,
2923                                      bytes_to_rq,
2924                                      flags,
2925                                      prot);
2926      } else {
2927        // get the next node to use from the used_node_list
2928        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2929        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2930        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2931                                                            next_alloc_addr,
2932                                                            bytes_to_rq,
2933                                                            flags,
2934                                                            prot,
2935                                                            node);
2936      }
2937    }
2938
2939    if (p_new == NULL) {
2940      // Free any allocated pages
2941      if (next_alloc_addr > p_buf) {
2942        // Some memory was committed so release it.
2943        size_t bytes_to_release = bytes - bytes_remaining;
2944        // NMT has yet to record any individual blocks, so it
2945        // need to create a dummy 'reserve' record to match
2946        // the release.
2947        MemTracker::record_virtual_memory_reserve((address)p_buf,
2948                                                  bytes_to_release, CALLER_PC);
2949        os::release_memory(p_buf, bytes_to_release);
2950      }
2951#ifdef ASSERT
2952      if (should_inject_error) {
2953        if (TracePageSizes && Verbose) {
2954          tty->print_cr("Reserving pages individually failed.");
2955        }
2956      }
2957#endif
2958      return NULL;
2959    }
2960
2961    bytes_remaining -= bytes_to_rq;
2962    next_alloc_addr += bytes_to_rq;
2963    count++;
2964  }
2965  // Although the memory is allocated individually, it is returned as one.
2966  // NMT records it as one block.
2967  if ((flags & MEM_COMMIT) != 0) {
2968    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2969  } else {
2970    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2971  }
2972
2973  // made it this far, success
2974  return p_buf;
2975}
2976
2977
2978
2979void os::large_page_init() {
2980  if (!UseLargePages) return;
2981
2982  // print a warning if any large page related flag is specified on command line
2983  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2984                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2985  bool success = false;
2986
2987#define WARN(msg) if (warn_on_failure) { warning(msg); }
2988  if (resolve_functions_for_large_page_init()) {
2989    if (request_lock_memory_privilege()) {
2990      size_t s = os::Kernel32Dll::GetLargePageMinimum();
2991      if (s) {
2992#if defined(IA32) || defined(AMD64)
2993        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2994          WARN("JVM cannot use large pages bigger than 4mb.");
2995        } else {
2996#endif
2997          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2998            _large_page_size = LargePageSizeInBytes;
2999          } else {
3000            _large_page_size = s;
3001          }
3002          success = true;
3003#if defined(IA32) || defined(AMD64)
3004        }
3005#endif
3006      } else {
3007        WARN("Large page is not supported by the processor.");
3008      }
3009    } else {
3010      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3011    }
3012  } else {
3013    WARN("Large page is not supported by the operating system.");
3014  }
3015#undef WARN
3016
3017  const size_t default_page_size = (size_t) vm_page_size();
3018  if (success && _large_page_size > default_page_size) {
3019    _page_sizes[0] = _large_page_size;
3020    _page_sizes[1] = default_page_size;
3021    _page_sizes[2] = 0;
3022  }
3023
3024  cleanup_after_large_page_init();
3025  UseLargePages = success;
3026}
3027
3028// On win32, one cannot release just a part of reserved memory, it's an
3029// all or nothing deal.  When we split a reservation, we must break the
3030// reservation into two reservations.
3031void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3032                                  bool realloc) {
3033  if (size > 0) {
3034    release_memory(base, size);
3035    if (realloc) {
3036      reserve_memory(split, base);
3037    }
3038    if (size != split) {
3039      reserve_memory(size - split, base + split);
3040    }
3041  }
3042}
3043
3044// Multiple threads can race in this code but it's not possible to unmap small sections of
3045// virtual space to get requested alignment, like posix-like os's.
3046// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3047char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3048  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3049         "Alignment must be a multiple of allocation granularity (page size)");
3050  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3051
3052  size_t extra_size = size + alignment;
3053  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3054
3055  char* aligned_base = NULL;
3056
3057  do {
3058    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3059    if (extra_base == NULL) {
3060      return NULL;
3061    }
3062    // Do manual alignment
3063    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3064
3065    os::release_memory(extra_base, extra_size);
3066
3067    aligned_base = os::reserve_memory(size, aligned_base);
3068
3069  } while (aligned_base == NULL);
3070
3071  return aligned_base;
3072}
3073
3074char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3075  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3076         "reserve alignment");
3077  assert(bytes % os::vm_page_size() == 0, "reserve page size");
3078  char* res;
3079  // note that if UseLargePages is on, all the areas that require interleaving
3080  // will go thru reserve_memory_special rather than thru here.
3081  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3082  if (!use_individual) {
3083    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3084  } else {
3085    elapsedTimer reserveTimer;
3086    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3087    // in numa interleaving, we have to allocate pages individually
3088    // (well really chunks of NUMAInterleaveGranularity size)
3089    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3090    if (res == NULL) {
3091      warning("NUMA page allocation failed");
3092    }
3093    if (Verbose && PrintMiscellaneous) {
3094      reserveTimer.stop();
3095      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3096                    reserveTimer.milliseconds(), reserveTimer.ticks());
3097    }
3098  }
3099  assert(res == NULL || addr == NULL || addr == res,
3100         "Unexpected address from reserve.");
3101
3102  return res;
3103}
3104
3105// Reserve memory at an arbitrary address, only if that area is
3106// available (and not reserved for something else).
3107char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3108  // Windows os::reserve_memory() fails of the requested address range is
3109  // not avilable.
3110  return reserve_memory(bytes, requested_addr);
3111}
3112
3113size_t os::large_page_size() {
3114  return _large_page_size;
3115}
3116
3117bool os::can_commit_large_page_memory() {
3118  // Windows only uses large page memory when the entire region is reserved
3119  // and committed in a single VirtualAlloc() call. This may change in the
3120  // future, but with Windows 2003 it's not possible to commit on demand.
3121  return false;
3122}
3123
3124bool os::can_execute_large_page_memory() {
3125  return true;
3126}
3127
3128char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3129                                 bool exec) {
3130  assert(UseLargePages, "only for large pages");
3131
3132  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3133    return NULL; // Fallback to small pages.
3134  }
3135
3136  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3137  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3138
3139  // with large pages, there are two cases where we need to use Individual Allocation
3140  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3141  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3142  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3143    if (TracePageSizes && Verbose) {
3144      tty->print_cr("Reserving large pages individually.");
3145    }
3146    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3147    if (p_buf == NULL) {
3148      // give an appropriate warning message
3149      if (UseNUMAInterleaving) {
3150        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3151      }
3152      if (UseLargePagesIndividualAllocation) {
3153        warning("Individually allocated large pages failed, "
3154                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3155      }
3156      return NULL;
3157    }
3158
3159    return p_buf;
3160
3161  } else {
3162    if (TracePageSizes && Verbose) {
3163      tty->print_cr("Reserving large pages in a single large chunk.");
3164    }
3165    // normal policy just allocate it all at once
3166    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3167    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3168    if (res != NULL) {
3169      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3170    }
3171
3172    return res;
3173  }
3174}
3175
3176bool os::release_memory_special(char* base, size_t bytes) {
3177  assert(base != NULL, "Sanity check");
3178  return release_memory(base, bytes);
3179}
3180
3181void os::print_statistics() {
3182}
3183
3184static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3185  int err = os::get_last_error();
3186  char buf[256];
3187  size_t buf_len = os::lasterror(buf, sizeof(buf));
3188  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3189          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3190          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3191}
3192
3193bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3194  if (bytes == 0) {
3195    // Don't bother the OS with noops.
3196    return true;
3197  }
3198  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3199  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3200  // Don't attempt to print anything if the OS call fails. We're
3201  // probably low on resources, so the print itself may cause crashes.
3202
3203  // unless we have NUMAInterleaving enabled, the range of a commit
3204  // is always within a reserve covered by a single VirtualAlloc
3205  // in that case we can just do a single commit for the requested size
3206  if (!UseNUMAInterleaving) {
3207    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3208      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3209      return false;
3210    }
3211    if (exec) {
3212      DWORD oldprot;
3213      // Windows doc says to use VirtualProtect to get execute permissions
3214      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3215        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3216        return false;
3217      }
3218    }
3219    return true;
3220  } else {
3221
3222    // when NUMAInterleaving is enabled, the commit might cover a range that
3223    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3224    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3225    // returns represents the number of bytes that can be committed in one step.
3226    size_t bytes_remaining = bytes;
3227    char * next_alloc_addr = addr;
3228    while (bytes_remaining > 0) {
3229      MEMORY_BASIC_INFORMATION alloc_info;
3230      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3231      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3232      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3233                       PAGE_READWRITE) == NULL) {
3234        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3235                                            exec);)
3236        return false;
3237      }
3238      if (exec) {
3239        DWORD oldprot;
3240        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3241                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3242          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3243                                              exec);)
3244          return false;
3245        }
3246      }
3247      bytes_remaining -= bytes_to_rq;
3248      next_alloc_addr += bytes_to_rq;
3249    }
3250  }
3251  // if we made it this far, return true
3252  return true;
3253}
3254
3255bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3256                          bool exec) {
3257  // alignment_hint is ignored on this OS
3258  return pd_commit_memory(addr, size, exec);
3259}
3260
3261void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3262                                  const char* mesg) {
3263  assert(mesg != NULL, "mesg must be specified");
3264  if (!pd_commit_memory(addr, size, exec)) {
3265    warn_fail_commit_memory(addr, size, exec);
3266    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3267  }
3268}
3269
3270void os::pd_commit_memory_or_exit(char* addr, size_t size,
3271                                  size_t alignment_hint, bool exec,
3272                                  const char* mesg) {
3273  // alignment_hint is ignored on this OS
3274  pd_commit_memory_or_exit(addr, size, exec, mesg);
3275}
3276
3277bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3278  if (bytes == 0) {
3279    // Don't bother the OS with noops.
3280    return true;
3281  }
3282  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3283  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3284  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3285}
3286
3287bool os::pd_release_memory(char* addr, size_t bytes) {
3288  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3289}
3290
3291bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3292  return os::commit_memory(addr, size, !ExecMem);
3293}
3294
3295bool os::remove_stack_guard_pages(char* addr, size_t size) {
3296  return os::uncommit_memory(addr, size);
3297}
3298
3299// Set protections specified
3300bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3301                        bool is_committed) {
3302  unsigned int p = 0;
3303  switch (prot) {
3304  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3305  case MEM_PROT_READ: p = PAGE_READONLY; break;
3306  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3307  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3308  default:
3309    ShouldNotReachHere();
3310  }
3311
3312  DWORD old_status;
3313
3314  // Strange enough, but on Win32 one can change protection only for committed
3315  // memory, not a big deal anyway, as bytes less or equal than 64K
3316  if (!is_committed) {
3317    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3318                          "cannot commit protection page");
3319  }
3320  // One cannot use os::guard_memory() here, as on Win32 guard page
3321  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3322  //
3323  // Pages in the region become guard pages. Any attempt to access a guard page
3324  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3325  // the guard page status. Guard pages thus act as a one-time access alarm.
3326  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3327}
3328
3329bool os::guard_memory(char* addr, size_t bytes) {
3330  DWORD old_status;
3331  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3332}
3333
3334bool os::unguard_memory(char* addr, size_t bytes) {
3335  DWORD old_status;
3336  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3337}
3338
3339void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3340void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3341void os::numa_make_global(char *addr, size_t bytes)    { }
3342void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3343bool os::numa_topology_changed()                       { return false; }
3344size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3345int os::numa_get_group_id()                            { return 0; }
3346size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3347  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3348    // Provide an answer for UMA systems
3349    ids[0] = 0;
3350    return 1;
3351  } else {
3352    // check for size bigger than actual groups_num
3353    size = MIN2(size, numa_get_groups_num());
3354    for (int i = 0; i < (int)size; i++) {
3355      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3356    }
3357    return size;
3358  }
3359}
3360
3361bool os::get_page_info(char *start, page_info* info) {
3362  return false;
3363}
3364
3365char *os::scan_pages(char *start, char* end, page_info* page_expected,
3366                     page_info* page_found) {
3367  return end;
3368}
3369
3370char* os::non_memory_address_word() {
3371  // Must never look like an address returned by reserve_memory,
3372  // even in its subfields (as defined by the CPU immediate fields,
3373  // if the CPU splits constants across multiple instructions).
3374  return (char*)-1;
3375}
3376
3377#define MAX_ERROR_COUNT 100
3378#define SYS_THREAD_ERROR 0xffffffffUL
3379
3380void os::pd_start_thread(Thread* thread) {
3381  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3382  // Returns previous suspend state:
3383  // 0:  Thread was not suspended
3384  // 1:  Thread is running now
3385  // >1: Thread is still suspended.
3386  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3387}
3388
3389class HighResolutionInterval : public CHeapObj<mtThread> {
3390  // The default timer resolution seems to be 10 milliseconds.
3391  // (Where is this written down?)
3392  // If someone wants to sleep for only a fraction of the default,
3393  // then we set the timer resolution down to 1 millisecond for
3394  // the duration of their interval.
3395  // We carefully set the resolution back, since otherwise we
3396  // seem to incur an overhead (3%?) that we don't need.
3397  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3398  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3399  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3400  // timeBeginPeriod() if the relative error exceeded some threshold.
3401  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3402  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3403  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3404  // resolution timers running.
3405 private:
3406  jlong resolution;
3407 public:
3408  HighResolutionInterval(jlong ms) {
3409    resolution = ms % 10L;
3410    if (resolution != 0) {
3411      MMRESULT result = timeBeginPeriod(1L);
3412    }
3413  }
3414  ~HighResolutionInterval() {
3415    if (resolution != 0) {
3416      MMRESULT result = timeEndPeriod(1L);
3417    }
3418    resolution = 0L;
3419  }
3420};
3421
3422int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3423  jlong limit = (jlong) MAXDWORD;
3424
3425  while (ms > limit) {
3426    int res;
3427    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3428      return res;
3429    }
3430    ms -= limit;
3431  }
3432
3433  assert(thread == Thread::current(), "thread consistency check");
3434  OSThread* osthread = thread->osthread();
3435  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3436  int result;
3437  if (interruptable) {
3438    assert(thread->is_Java_thread(), "must be java thread");
3439    JavaThread *jt = (JavaThread *) thread;
3440    ThreadBlockInVM tbivm(jt);
3441
3442    jt->set_suspend_equivalent();
3443    // cleared by handle_special_suspend_equivalent_condition() or
3444    // java_suspend_self() via check_and_wait_while_suspended()
3445
3446    HANDLE events[1];
3447    events[0] = osthread->interrupt_event();
3448    HighResolutionInterval *phri=NULL;
3449    if (!ForceTimeHighResolution) {
3450      phri = new HighResolutionInterval(ms);
3451    }
3452    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3453      result = OS_TIMEOUT;
3454    } else {
3455      ResetEvent(osthread->interrupt_event());
3456      osthread->set_interrupted(false);
3457      result = OS_INTRPT;
3458    }
3459    delete phri; //if it is NULL, harmless
3460
3461    // were we externally suspended while we were waiting?
3462    jt->check_and_wait_while_suspended();
3463  } else {
3464    assert(!thread->is_Java_thread(), "must not be java thread");
3465    Sleep((long) ms);
3466    result = OS_TIMEOUT;
3467  }
3468  return result;
3469}
3470
3471// Short sleep, direct OS call.
3472//
3473// ms = 0, means allow others (if any) to run.
3474//
3475void os::naked_short_sleep(jlong ms) {
3476  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3477  Sleep(ms);
3478}
3479
3480// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3481void os::infinite_sleep() {
3482  while (true) {    // sleep forever ...
3483    Sleep(100000);  // ... 100 seconds at a time
3484  }
3485}
3486
3487typedef BOOL (WINAPI * STTSignature)(void);
3488
3489void os::naked_yield() {
3490  // Use either SwitchToThread() or Sleep(0)
3491  // Consider passing back the return value from SwitchToThread().
3492  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3493    SwitchToThread();
3494  } else {
3495    Sleep(0);
3496  }
3497}
3498
3499// Win32 only gives you access to seven real priorities at a time,
3500// so we compress Java's ten down to seven.  It would be better
3501// if we dynamically adjusted relative priorities.
3502
3503int os::java_to_os_priority[CriticalPriority + 1] = {
3504  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3505  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3506  THREAD_PRIORITY_LOWEST,                       // 2
3507  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3508  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3509  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3510  THREAD_PRIORITY_NORMAL,                       // 6
3511  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3512  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3513  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3514  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3515  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3516};
3517
3518int prio_policy1[CriticalPriority + 1] = {
3519  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3520  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3521  THREAD_PRIORITY_LOWEST,                       // 2
3522  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3523  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3524  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3525  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3526  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3527  THREAD_PRIORITY_HIGHEST,                      // 8
3528  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3529  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3530  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3531};
3532
3533static int prio_init() {
3534  // If ThreadPriorityPolicy is 1, switch tables
3535  if (ThreadPriorityPolicy == 1) {
3536    int i;
3537    for (i = 0; i < CriticalPriority + 1; i++) {
3538      os::java_to_os_priority[i] = prio_policy1[i];
3539    }
3540  }
3541  if (UseCriticalJavaThreadPriority) {
3542    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3543  }
3544  return 0;
3545}
3546
3547OSReturn os::set_native_priority(Thread* thread, int priority) {
3548  if (!UseThreadPriorities) return OS_OK;
3549  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3550  return ret ? OS_OK : OS_ERR;
3551}
3552
3553OSReturn os::get_native_priority(const Thread* const thread,
3554                                 int* priority_ptr) {
3555  if (!UseThreadPriorities) {
3556    *priority_ptr = java_to_os_priority[NormPriority];
3557    return OS_OK;
3558  }
3559  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3560  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3561    assert(false, "GetThreadPriority failed");
3562    return OS_ERR;
3563  }
3564  *priority_ptr = os_prio;
3565  return OS_OK;
3566}
3567
3568
3569// Hint to the underlying OS that a task switch would not be good.
3570// Void return because it's a hint and can fail.
3571void os::hint_no_preempt() {}
3572
3573void os::interrupt(Thread* thread) {
3574  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3575         Threads_lock->owned_by_self(),
3576         "possibility of dangling Thread pointer");
3577
3578  OSThread* osthread = thread->osthread();
3579  osthread->set_interrupted(true);
3580  // More than one thread can get here with the same value of osthread,
3581  // resulting in multiple notifications.  We do, however, want the store
3582  // to interrupted() to be visible to other threads before we post
3583  // the interrupt event.
3584  OrderAccess::release();
3585  SetEvent(osthread->interrupt_event());
3586  // For JSR166:  unpark after setting status
3587  if (thread->is_Java_thread()) {
3588    ((JavaThread*)thread)->parker()->unpark();
3589  }
3590
3591  ParkEvent * ev = thread->_ParkEvent;
3592  if (ev != NULL) ev->unpark();
3593}
3594
3595
3596bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3597  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3598         "possibility of dangling Thread pointer");
3599
3600  OSThread* osthread = thread->osthread();
3601  // There is no synchronization between the setting of the interrupt
3602  // and it being cleared here. It is critical - see 6535709 - that
3603  // we only clear the interrupt state, and reset the interrupt event,
3604  // if we are going to report that we were indeed interrupted - else
3605  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3606  // depending on the timing. By checking thread interrupt event to see
3607  // if the thread gets real interrupt thus prevent spurious wakeup.
3608  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3609  if (interrupted && clear_interrupted) {
3610    osthread->set_interrupted(false);
3611    ResetEvent(osthread->interrupt_event());
3612  } // Otherwise leave the interrupted state alone
3613
3614  return interrupted;
3615}
3616
3617// Get's a pc (hint) for a running thread. Currently used only for profiling.
3618ExtendedPC os::get_thread_pc(Thread* thread) {
3619  CONTEXT context;
3620  context.ContextFlags = CONTEXT_CONTROL;
3621  HANDLE handle = thread->osthread()->thread_handle();
3622#ifdef _M_IA64
3623  assert(0, "Fix get_thread_pc");
3624  return ExtendedPC(NULL);
3625#else
3626  if (GetThreadContext(handle, &context)) {
3627#ifdef _M_AMD64
3628    return ExtendedPC((address) context.Rip);
3629#else
3630    return ExtendedPC((address) context.Eip);
3631#endif
3632  } else {
3633    return ExtendedPC(NULL);
3634  }
3635#endif
3636}
3637
3638// GetCurrentThreadId() returns DWORD
3639intx os::current_thread_id()  { return GetCurrentThreadId(); }
3640
3641static int _initial_pid = 0;
3642
3643int os::current_process_id() {
3644  return (_initial_pid ? _initial_pid : _getpid());
3645}
3646
3647int    os::win32::_vm_page_size              = 0;
3648int    os::win32::_vm_allocation_granularity = 0;
3649int    os::win32::_processor_type            = 0;
3650// Processor level is not available on non-NT systems, use vm_version instead
3651int    os::win32::_processor_level           = 0;
3652julong os::win32::_physical_memory           = 0;
3653size_t os::win32::_default_stack_size        = 0;
3654
3655intx          os::win32::_os_thread_limit    = 0;
3656volatile intx os::win32::_os_thread_count    = 0;
3657
3658bool   os::win32::_is_nt                     = false;
3659bool   os::win32::_is_windows_2003           = false;
3660bool   os::win32::_is_windows_server         = false;
3661
3662// 6573254
3663// Currently, the bug is observed across all the supported Windows releases,
3664// including the latest one (as of this writing - Windows Server 2012 R2)
3665bool   os::win32::_has_exit_bug              = true;
3666bool   os::win32::_has_performance_count     = 0;
3667
3668void os::win32::initialize_system_info() {
3669  SYSTEM_INFO si;
3670  GetSystemInfo(&si);
3671  _vm_page_size    = si.dwPageSize;
3672  _vm_allocation_granularity = si.dwAllocationGranularity;
3673  _processor_type  = si.dwProcessorType;
3674  _processor_level = si.wProcessorLevel;
3675  set_processor_count(si.dwNumberOfProcessors);
3676
3677  MEMORYSTATUSEX ms;
3678  ms.dwLength = sizeof(ms);
3679
3680  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3681  // dwMemoryLoad (% of memory in use)
3682  GlobalMemoryStatusEx(&ms);
3683  _physical_memory = ms.ullTotalPhys;
3684
3685  OSVERSIONINFOEX oi;
3686  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3687  GetVersionEx((OSVERSIONINFO*)&oi);
3688  switch (oi.dwPlatformId) {
3689  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3690  case VER_PLATFORM_WIN32_NT:
3691    _is_nt = true;
3692    {
3693      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3694      if (os_vers == 5002) {
3695        _is_windows_2003 = true;
3696      }
3697      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3698          oi.wProductType == VER_NT_SERVER) {
3699        _is_windows_server = true;
3700      }
3701    }
3702    break;
3703  default: fatal("Unknown platform");
3704  }
3705
3706  _default_stack_size = os::current_stack_size();
3707  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3708  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3709         "stack size not a multiple of page size");
3710
3711  initialize_performance_counter();
3712
3713  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3714  // known to deadlock the system, if the VM issues to thread operations with
3715  // a too high frequency, e.g., such as changing the priorities.
3716  // The 6000 seems to work well - no deadlocks has been notices on the test
3717  // programs that we have seen experience this problem.
3718  if (!os::win32::is_nt()) {
3719    StarvationMonitorInterval = 6000;
3720  }
3721}
3722
3723
3724HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3725                                      int ebuflen) {
3726  char path[MAX_PATH];
3727  DWORD size;
3728  DWORD pathLen = (DWORD)sizeof(path);
3729  HINSTANCE result = NULL;
3730
3731  // only allow library name without path component
3732  assert(strchr(name, '\\') == NULL, "path not allowed");
3733  assert(strchr(name, ':') == NULL, "path not allowed");
3734  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3735    jio_snprintf(ebuf, ebuflen,
3736                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3737    return NULL;
3738  }
3739
3740  // search system directory
3741  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3742    if (size >= pathLen) {
3743      return NULL; // truncated
3744    }
3745    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3746      return NULL; // truncated
3747    }
3748    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3749      return result;
3750    }
3751  }
3752
3753  // try Windows directory
3754  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3755    if (size >= pathLen) {
3756      return NULL; // truncated
3757    }
3758    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3759      return NULL; // truncated
3760    }
3761    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3762      return result;
3763    }
3764  }
3765
3766  jio_snprintf(ebuf, ebuflen,
3767               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3768  return NULL;
3769}
3770
3771#define EXIT_TIMEOUT 300000 /* 5 minutes */
3772
3773static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3774  InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3775  return TRUE;
3776}
3777
3778int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3779  // Basic approach:
3780  //  - Each exiting thread registers its intent to exit and then does so.
3781  //  - A thread trying to terminate the process must wait for all
3782  //    threads currently exiting to complete their exit.
3783
3784  if (os::win32::has_exit_bug()) {
3785    // The array holds handles of the threads that have started exiting by calling
3786    // _endthreadex().
3787    // Should be large enough to avoid blocking the exiting thread due to lack of
3788    // a free slot.
3789    static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3790    static int handle_count = 0;
3791
3792    static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3793    static CRITICAL_SECTION crit_sect;
3794    static volatile jint process_exiting = 0;
3795    int i, j;
3796    DWORD res;
3797    HANDLE hproc, hthr;
3798
3799    // The first thread that reached this point, initializes the critical section.
3800    if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3801      warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3802    } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3803      EnterCriticalSection(&crit_sect);
3804
3805      if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3806        // Remove from the array those handles of the threads that have completed exiting.
3807        for (i = 0, j = 0; i < handle_count; ++i) {
3808          res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3809          if (res == WAIT_TIMEOUT) {
3810            handles[j++] = handles[i];
3811          } else {
3812            if (res == WAIT_FAILED) {
3813              warning("WaitForSingleObject failed (%u) in %s: %d\n",
3814                      GetLastError(), __FILE__, __LINE__);
3815            }
3816            // Don't keep the handle, if we failed waiting for it.
3817            CloseHandle(handles[i]);
3818          }
3819        }
3820
3821        // If there's no free slot in the array of the kept handles, we'll have to
3822        // wait until at least one thread completes exiting.
3823        if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3824          // Raise the priority of the oldest exiting thread to increase its chances
3825          // to complete sooner.
3826          SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3827          res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3828          if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3829            i = (res - WAIT_OBJECT_0);
3830            handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3831            for (; i < handle_count; ++i) {
3832              handles[i] = handles[i + 1];
3833            }
3834          } else {
3835            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3836                    (res == WAIT_FAILED ? "failed" : "timed out"),
3837                    GetLastError(), __FILE__, __LINE__);
3838            // Don't keep handles, if we failed waiting for them.
3839            for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3840              CloseHandle(handles[i]);
3841            }
3842            handle_count = 0;
3843          }
3844        }
3845
3846        // Store a duplicate of the current thread handle in the array of handles.
3847        hproc = GetCurrentProcess();
3848        hthr = GetCurrentThread();
3849        if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3850                             0, FALSE, DUPLICATE_SAME_ACCESS)) {
3851          warning("DuplicateHandle failed (%u) in %s: %d\n",
3852                  GetLastError(), __FILE__, __LINE__);
3853        } else {
3854          ++handle_count;
3855        }
3856
3857        // The current exiting thread has stored its handle in the array, and now
3858        // should leave the critical section before calling _endthreadex().
3859
3860      } else if (what != EPT_THREAD) {
3861        if (handle_count > 0) {
3862          // Before ending the process, make sure all the threads that had called
3863          // _endthreadex() completed.
3864
3865          // Set the priority level of the current thread to the same value as
3866          // the priority level of exiting threads.
3867          // This is to ensure it will be given a fair chance to execute if
3868          // the timeout expires.
3869          hthr = GetCurrentThread();
3870          SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3871          for (i = 0; i < handle_count; ++i) {
3872            SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3873          }
3874          res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3875          if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3876            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3877                    (res == WAIT_FAILED ? "failed" : "timed out"),
3878                    GetLastError(), __FILE__, __LINE__);
3879          }
3880          for (i = 0; i < handle_count; ++i) {
3881            CloseHandle(handles[i]);
3882          }
3883          handle_count = 0;
3884        }
3885
3886        OrderAccess::release_store(&process_exiting, 1);
3887      }
3888
3889      LeaveCriticalSection(&crit_sect);
3890    }
3891
3892    if (what == EPT_THREAD) {
3893      while (OrderAccess::load_acquire(&process_exiting) != 0) {
3894        // Some other thread is about to call exit(), so we
3895        // don't let the current thread proceed to _endthreadex()
3896        SuspendThread(GetCurrentThread());
3897        // Avoid busy-wait loop, if SuspendThread() failed.
3898        Sleep(EXIT_TIMEOUT);
3899      }
3900    }
3901  }
3902
3903  // We are here if either
3904  // - there's no 'race at exit' bug on this OS release;
3905  // - initialization of the critical section failed (unlikely);
3906  // - the current thread has stored its handle and left the critical section;
3907  // - the process-exiting thread has raised the flag and left the critical section.
3908  if (what == EPT_THREAD) {
3909    _endthreadex((unsigned)exit_code);
3910  } else if (what == EPT_PROCESS) {
3911    ::exit(exit_code);
3912  } else {
3913    _exit(exit_code);
3914  }
3915
3916  // Should not reach here
3917  return exit_code;
3918}
3919
3920#undef EXIT_TIMEOUT
3921
3922void os::win32::setmode_streams() {
3923  _setmode(_fileno(stdin), _O_BINARY);
3924  _setmode(_fileno(stdout), _O_BINARY);
3925  _setmode(_fileno(stderr), _O_BINARY);
3926}
3927
3928
3929bool os::is_debugger_attached() {
3930  return IsDebuggerPresent() ? true : false;
3931}
3932
3933
3934void os::wait_for_keypress_at_exit(void) {
3935  if (PauseAtExit) {
3936    fprintf(stderr, "Press any key to continue...\n");
3937    fgetc(stdin);
3938  }
3939}
3940
3941
3942int os::message_box(const char* title, const char* message) {
3943  int result = MessageBox(NULL, message, title,
3944                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3945  return result == IDYES;
3946}
3947
3948int os::allocate_thread_local_storage() {
3949  return TlsAlloc();
3950}
3951
3952
3953void os::free_thread_local_storage(int index) {
3954  TlsFree(index);
3955}
3956
3957
3958void os::thread_local_storage_at_put(int index, void* value) {
3959  TlsSetValue(index, value);
3960  assert(thread_local_storage_at(index) == value, "Just checking");
3961}
3962
3963
3964void* os::thread_local_storage_at(int index) {
3965  return TlsGetValue(index);
3966}
3967
3968
3969#ifndef PRODUCT
3970#ifndef _WIN64
3971// Helpers to check whether NX protection is enabled
3972int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3973  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3974      pex->ExceptionRecord->NumberParameters > 0 &&
3975      pex->ExceptionRecord->ExceptionInformation[0] ==
3976      EXCEPTION_INFO_EXEC_VIOLATION) {
3977    return EXCEPTION_EXECUTE_HANDLER;
3978  }
3979  return EXCEPTION_CONTINUE_SEARCH;
3980}
3981
3982void nx_check_protection() {
3983  // If NX is enabled we'll get an exception calling into code on the stack
3984  char code[] = { (char)0xC3 }; // ret
3985  void *code_ptr = (void *)code;
3986  __try {
3987    __asm call code_ptr
3988  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3989    tty->print_raw_cr("NX protection detected.");
3990  }
3991}
3992#endif // _WIN64
3993#endif // PRODUCT
3994
3995// this is called _before_ the global arguments have been parsed
3996void os::init(void) {
3997  _initial_pid = _getpid();
3998
3999  init_random(1234567);
4000
4001  win32::initialize_system_info();
4002  win32::setmode_streams();
4003  init_page_sizes((size_t) win32::vm_page_size());
4004
4005  // This may be overridden later when argument processing is done.
4006  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4007                os::win32::is_windows_2003());
4008
4009  // Initialize main_process and main_thread
4010  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4011  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4012                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4013    fatal("DuplicateHandle failed\n");
4014  }
4015  main_thread_id = (int) GetCurrentThreadId();
4016}
4017
4018// To install functions for atexit processing
4019extern "C" {
4020  static void perfMemory_exit_helper() {
4021    perfMemory_exit();
4022  }
4023}
4024
4025static jint initSock();
4026
4027// this is called _after_ the global arguments have been parsed
4028jint os::init_2(void) {
4029  // Allocate a single page and mark it as readable for safepoint polling
4030  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4031  guarantee(polling_page != NULL, "Reserve Failed for polling page");
4032
4033  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4034  guarantee(return_page != NULL, "Commit Failed for polling page");
4035
4036  os::set_polling_page(polling_page);
4037
4038#ifndef PRODUCT
4039  if (Verbose && PrintMiscellaneous) {
4040    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4041               (intptr_t)polling_page);
4042  }
4043#endif
4044
4045  if (!UseMembar) {
4046    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4047    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4048
4049    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4050    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4051
4052    os::set_memory_serialize_page(mem_serialize_page);
4053
4054#ifndef PRODUCT
4055    if (Verbose && PrintMiscellaneous) {
4056      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4057                 (intptr_t)mem_serialize_page);
4058    }
4059#endif
4060  }
4061
4062  // Setup Windows Exceptions
4063
4064  // for debugging float code generation bugs
4065  if (ForceFloatExceptions) {
4066#ifndef  _WIN64
4067    static long fp_control_word = 0;
4068    __asm { fstcw fp_control_word }
4069    // see Intel PPro Manual, Vol. 2, p 7-16
4070    const long precision = 0x20;
4071    const long underflow = 0x10;
4072    const long overflow  = 0x08;
4073    const long zero_div  = 0x04;
4074    const long denorm    = 0x02;
4075    const long invalid   = 0x01;
4076    fp_control_word |= invalid;
4077    __asm { fldcw fp_control_word }
4078#endif
4079  }
4080
4081  // If stack_commit_size is 0, windows will reserve the default size,
4082  // but only commit a small portion of it.
4083  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4084  size_t default_reserve_size = os::win32::default_stack_size();
4085  size_t actual_reserve_size = stack_commit_size;
4086  if (stack_commit_size < default_reserve_size) {
4087    // If stack_commit_size == 0, we want this too
4088    actual_reserve_size = default_reserve_size;
4089  }
4090
4091  // Check minimum allowable stack size for thread creation and to initialize
4092  // the java system classes, including StackOverflowError - depends on page
4093  // size.  Add a page for compiler2 recursion in main thread.
4094  // Add in 2*BytesPerWord times page size to account for VM stack during
4095  // class initialization depending on 32 or 64 bit VM.
4096  size_t min_stack_allowed =
4097            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4098                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4099  if (actual_reserve_size < min_stack_allowed) {
4100    tty->print_cr("\nThe stack size specified is too small, "
4101                  "Specify at least %dk",
4102                  min_stack_allowed / K);
4103    return JNI_ERR;
4104  }
4105
4106  JavaThread::set_stack_size_at_create(stack_commit_size);
4107
4108  // Calculate theoretical max. size of Threads to guard gainst artifical
4109  // out-of-memory situations, where all available address-space has been
4110  // reserved by thread stacks.
4111  assert(actual_reserve_size != 0, "Must have a stack");
4112
4113  // Calculate the thread limit when we should start doing Virtual Memory
4114  // banging. Currently when the threads will have used all but 200Mb of space.
4115  //
4116  // TODO: consider performing a similar calculation for commit size instead
4117  // as reserve size, since on a 64-bit platform we'll run into that more
4118  // often than running out of virtual memory space.  We can use the
4119  // lower value of the two calculations as the os_thread_limit.
4120  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4121  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4122
4123  // at exit methods are called in the reverse order of their registration.
4124  // there is no limit to the number of functions registered. atexit does
4125  // not set errno.
4126
4127  if (PerfAllowAtExitRegistration) {
4128    // only register atexit functions if PerfAllowAtExitRegistration is set.
4129    // atexit functions can be delayed until process exit time, which
4130    // can be problematic for embedded VM situations. Embedded VMs should
4131    // call DestroyJavaVM() to assure that VM resources are released.
4132
4133    // note: perfMemory_exit_helper atexit function may be removed in
4134    // the future if the appropriate cleanup code can be added to the
4135    // VM_Exit VMOperation's doit method.
4136    if (atexit(perfMemory_exit_helper) != 0) {
4137      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4138    }
4139  }
4140
4141#ifndef _WIN64
4142  // Print something if NX is enabled (win32 on AMD64)
4143  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4144#endif
4145
4146  // initialize thread priority policy
4147  prio_init();
4148
4149  if (UseNUMA && !ForceNUMA) {
4150    UseNUMA = false; // We don't fully support this yet
4151  }
4152
4153  if (UseNUMAInterleaving) {
4154    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4155    bool success = numa_interleaving_init();
4156    if (!success) UseNUMAInterleaving = false;
4157  }
4158
4159  if (initSock() != JNI_OK) {
4160    return JNI_ERR;
4161  }
4162
4163  return JNI_OK;
4164}
4165
4166// Mark the polling page as unreadable
4167void os::make_polling_page_unreadable(void) {
4168  DWORD old_status;
4169  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4170                      PAGE_NOACCESS, &old_status)) {
4171    fatal("Could not disable polling page");
4172  }
4173}
4174
4175// Mark the polling page as readable
4176void os::make_polling_page_readable(void) {
4177  DWORD old_status;
4178  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4179                      PAGE_READONLY, &old_status)) {
4180    fatal("Could not enable polling page");
4181  }
4182}
4183
4184
4185int os::stat(const char *path, struct stat *sbuf) {
4186  char pathbuf[MAX_PATH];
4187  if (strlen(path) > MAX_PATH - 1) {
4188    errno = ENAMETOOLONG;
4189    return -1;
4190  }
4191  os::native_path(strcpy(pathbuf, path));
4192  int ret = ::stat(pathbuf, sbuf);
4193  if (sbuf != NULL && UseUTCFileTimestamp) {
4194    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4195    // the system timezone and so can return different values for the
4196    // same file if/when daylight savings time changes.  This adjustment
4197    // makes sure the same timestamp is returned regardless of the TZ.
4198    //
4199    // See:
4200    // http://msdn.microsoft.com/library/
4201    //   default.asp?url=/library/en-us/sysinfo/base/
4202    //   time_zone_information_str.asp
4203    // and
4204    // http://msdn.microsoft.com/library/default.asp?url=
4205    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4206    //
4207    // NOTE: there is a insidious bug here:  If the timezone is changed
4208    // after the call to stat() but before 'GetTimeZoneInformation()', then
4209    // the adjustment we do here will be wrong and we'll return the wrong
4210    // value (which will likely end up creating an invalid class data
4211    // archive).  Absent a better API for this, or some time zone locking
4212    // mechanism, we'll have to live with this risk.
4213    TIME_ZONE_INFORMATION tz;
4214    DWORD tzid = GetTimeZoneInformation(&tz);
4215    int daylightBias =
4216      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4217    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4218  }
4219  return ret;
4220}
4221
4222
4223#define FT2INT64(ft) \
4224  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4225
4226
4227// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4228// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4229// of a thread.
4230//
4231// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4232// the fast estimate available on the platform.
4233
4234// current_thread_cpu_time() is not optimized for Windows yet
4235jlong os::current_thread_cpu_time() {
4236  // return user + sys since the cost is the same
4237  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4238}
4239
4240jlong os::thread_cpu_time(Thread* thread) {
4241  // consistent with what current_thread_cpu_time() returns.
4242  return os::thread_cpu_time(thread, true /* user+sys */);
4243}
4244
4245jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4246  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4247}
4248
4249jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4250  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4251  // If this function changes, os::is_thread_cpu_time_supported() should too
4252  if (os::win32::is_nt()) {
4253    FILETIME CreationTime;
4254    FILETIME ExitTime;
4255    FILETIME KernelTime;
4256    FILETIME UserTime;
4257
4258    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4259                       &ExitTime, &KernelTime, &UserTime) == 0) {
4260      return -1;
4261    } else if (user_sys_cpu_time) {
4262      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4263    } else {
4264      return FT2INT64(UserTime) * 100;
4265    }
4266  } else {
4267    return (jlong) timeGetTime() * 1000000;
4268  }
4269}
4270
4271void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4272  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4273  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4274  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4275  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4276}
4277
4278void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4279  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4280  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4281  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4282  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4283}
4284
4285bool os::is_thread_cpu_time_supported() {
4286  // see os::thread_cpu_time
4287  if (os::win32::is_nt()) {
4288    FILETIME CreationTime;
4289    FILETIME ExitTime;
4290    FILETIME KernelTime;
4291    FILETIME UserTime;
4292
4293    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4294                       &KernelTime, &UserTime) == 0) {
4295      return false;
4296    } else {
4297      return true;
4298    }
4299  } else {
4300    return false;
4301  }
4302}
4303
4304// Windows does't provide a loadavg primitive so this is stubbed out for now.
4305// It does have primitives (PDH API) to get CPU usage and run queue length.
4306// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4307// If we wanted to implement loadavg on Windows, we have a few options:
4308//
4309// a) Query CPU usage and run queue length and "fake" an answer by
4310//    returning the CPU usage if it's under 100%, and the run queue
4311//    length otherwise.  It turns out that querying is pretty slow
4312//    on Windows, on the order of 200 microseconds on a fast machine.
4313//    Note that on the Windows the CPU usage value is the % usage
4314//    since the last time the API was called (and the first call
4315//    returns 100%), so we'd have to deal with that as well.
4316//
4317// b) Sample the "fake" answer using a sampling thread and store
4318//    the answer in a global variable.  The call to loadavg would
4319//    just return the value of the global, avoiding the slow query.
4320//
4321// c) Sample a better answer using exponential decay to smooth the
4322//    value.  This is basically the algorithm used by UNIX kernels.
4323//
4324// Note that sampling thread starvation could affect both (b) and (c).
4325int os::loadavg(double loadavg[], int nelem) {
4326  return -1;
4327}
4328
4329
4330// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4331bool os::dont_yield() {
4332  return DontYieldALot;
4333}
4334
4335// This method is a slightly reworked copy of JDK's sysOpen
4336// from src/windows/hpi/src/sys_api_md.c
4337
4338int os::open(const char *path, int oflag, int mode) {
4339  char pathbuf[MAX_PATH];
4340
4341  if (strlen(path) > MAX_PATH - 1) {
4342    errno = ENAMETOOLONG;
4343    return -1;
4344  }
4345  os::native_path(strcpy(pathbuf, path));
4346  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4347}
4348
4349FILE* os::open(int fd, const char* mode) {
4350  return ::_fdopen(fd, mode);
4351}
4352
4353// Is a (classpath) directory empty?
4354bool os::dir_is_empty(const char* path) {
4355  WIN32_FIND_DATA fd;
4356  HANDLE f = FindFirstFile(path, &fd);
4357  if (f == INVALID_HANDLE_VALUE) {
4358    return true;
4359  }
4360  FindClose(f);
4361  return false;
4362}
4363
4364// create binary file, rewriting existing file if required
4365int os::create_binary_file(const char* path, bool rewrite_existing) {
4366  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4367  if (!rewrite_existing) {
4368    oflags |= _O_EXCL;
4369  }
4370  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4371}
4372
4373// return current position of file pointer
4374jlong os::current_file_offset(int fd) {
4375  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4376}
4377
4378// move file pointer to the specified offset
4379jlong os::seek_to_file_offset(int fd, jlong offset) {
4380  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4381}
4382
4383
4384jlong os::lseek(int fd, jlong offset, int whence) {
4385  return (jlong) ::_lseeki64(fd, offset, whence);
4386}
4387
4388size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4389  OVERLAPPED ov;
4390  DWORD nread;
4391  BOOL result;
4392
4393  ZeroMemory(&ov, sizeof(ov));
4394  ov.Offset = (DWORD)offset;
4395  ov.OffsetHigh = (DWORD)(offset >> 32);
4396
4397  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4398
4399  result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4400
4401  return result ? nread : 0;
4402}
4403
4404
4405// This method is a slightly reworked copy of JDK's sysNativePath
4406// from src/windows/hpi/src/path_md.c
4407
4408// Convert a pathname to native format.  On win32, this involves forcing all
4409// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4410// sometimes rejects '/') and removing redundant separators.  The input path is
4411// assumed to have been converted into the character encoding used by the local
4412// system.  Because this might be a double-byte encoding, care is taken to
4413// treat double-byte lead characters correctly.
4414//
4415// This procedure modifies the given path in place, as the result is never
4416// longer than the original.  There is no error return; this operation always
4417// succeeds.
4418char * os::native_path(char *path) {
4419  char *src = path, *dst = path, *end = path;
4420  char *colon = NULL;  // If a drive specifier is found, this will
4421                       // point to the colon following the drive letter
4422
4423  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4424  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4425          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4426
4427  // Check for leading separators
4428#define isfilesep(c) ((c) == '/' || (c) == '\\')
4429  while (isfilesep(*src)) {
4430    src++;
4431  }
4432
4433  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4434    // Remove leading separators if followed by drive specifier.  This
4435    // hack is necessary to support file URLs containing drive
4436    // specifiers (e.g., "file://c:/path").  As a side effect,
4437    // "/c:/path" can be used as an alternative to "c:/path".
4438    *dst++ = *src++;
4439    colon = dst;
4440    *dst++ = ':';
4441    src++;
4442  } else {
4443    src = path;
4444    if (isfilesep(src[0]) && isfilesep(src[1])) {
4445      // UNC pathname: Retain first separator; leave src pointed at
4446      // second separator so that further separators will be collapsed
4447      // into the second separator.  The result will be a pathname
4448      // beginning with "\\\\" followed (most likely) by a host name.
4449      src = dst = path + 1;
4450      path[0] = '\\';     // Force first separator to '\\'
4451    }
4452  }
4453
4454  end = dst;
4455
4456  // Remove redundant separators from remainder of path, forcing all
4457  // separators to be '\\' rather than '/'. Also, single byte space
4458  // characters are removed from the end of the path because those
4459  // are not legal ending characters on this operating system.
4460  //
4461  while (*src != '\0') {
4462    if (isfilesep(*src)) {
4463      *dst++ = '\\'; src++;
4464      while (isfilesep(*src)) src++;
4465      if (*src == '\0') {
4466        // Check for trailing separator
4467        end = dst;
4468        if (colon == dst - 2) break;  // "z:\\"
4469        if (dst == path + 1) break;   // "\\"
4470        if (dst == path + 2 && isfilesep(path[0])) {
4471          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4472          // beginning of a UNC pathname.  Even though it is not, by
4473          // itself, a valid UNC pathname, we leave it as is in order
4474          // to be consistent with the path canonicalizer as well
4475          // as the win32 APIs, which treat this case as an invalid
4476          // UNC pathname rather than as an alias for the root
4477          // directory of the current drive.
4478          break;
4479        }
4480        end = --dst;  // Path does not denote a root directory, so
4481                      // remove trailing separator
4482        break;
4483      }
4484      end = dst;
4485    } else {
4486      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4487        *dst++ = *src++;
4488        if (*src) *dst++ = *src++;
4489        end = dst;
4490      } else {  // Copy a single-byte character
4491        char c = *src++;
4492        *dst++ = c;
4493        // Space is not a legal ending character
4494        if (c != ' ') end = dst;
4495      }
4496    }
4497  }
4498
4499  *end = '\0';
4500
4501  // For "z:", add "." to work around a bug in the C runtime library
4502  if (colon == dst - 1) {
4503    path[2] = '.';
4504    path[3] = '\0';
4505  }
4506
4507  return path;
4508}
4509
4510// This code is a copy of JDK's sysSetLength
4511// from src/windows/hpi/src/sys_api_md.c
4512
4513int os::ftruncate(int fd, jlong length) {
4514  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4515  long high = (long)(length >> 32);
4516  DWORD ret;
4517
4518  if (h == (HANDLE)(-1)) {
4519    return -1;
4520  }
4521
4522  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4523  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4524    return -1;
4525  }
4526
4527  if (::SetEndOfFile(h) == FALSE) {
4528    return -1;
4529  }
4530
4531  return 0;
4532}
4533
4534
4535// This code is a copy of JDK's sysSync
4536// from src/windows/hpi/src/sys_api_md.c
4537// except for the legacy workaround for a bug in Win 98
4538
4539int os::fsync(int fd) {
4540  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4541
4542  if ((!::FlushFileBuffers(handle)) &&
4543      (GetLastError() != ERROR_ACCESS_DENIED)) {
4544    // from winerror.h
4545    return -1;
4546  }
4547  return 0;
4548}
4549
4550static int nonSeekAvailable(int, long *);
4551static int stdinAvailable(int, long *);
4552
4553#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4554#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4555
4556// This code is a copy of JDK's sysAvailable
4557// from src/windows/hpi/src/sys_api_md.c
4558
4559int os::available(int fd, jlong *bytes) {
4560  jlong cur, end;
4561  struct _stati64 stbuf64;
4562
4563  if (::_fstati64(fd, &stbuf64) >= 0) {
4564    int mode = stbuf64.st_mode;
4565    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4566      int ret;
4567      long lpbytes;
4568      if (fd == 0) {
4569        ret = stdinAvailable(fd, &lpbytes);
4570      } else {
4571        ret = nonSeekAvailable(fd, &lpbytes);
4572      }
4573      (*bytes) = (jlong)(lpbytes);
4574      return ret;
4575    }
4576    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4577      return FALSE;
4578    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4579      return FALSE;
4580    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4581      return FALSE;
4582    }
4583    *bytes = end - cur;
4584    return TRUE;
4585  } else {
4586    return FALSE;
4587  }
4588}
4589
4590// This code is a copy of JDK's nonSeekAvailable
4591// from src/windows/hpi/src/sys_api_md.c
4592
4593static int nonSeekAvailable(int fd, long *pbytes) {
4594  // This is used for available on non-seekable devices
4595  // (like both named and anonymous pipes, such as pipes
4596  //  connected to an exec'd process).
4597  // Standard Input is a special case.
4598  HANDLE han;
4599
4600  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4601    return FALSE;
4602  }
4603
4604  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4605    // PeekNamedPipe fails when at EOF.  In that case we
4606    // simply make *pbytes = 0 which is consistent with the
4607    // behavior we get on Solaris when an fd is at EOF.
4608    // The only alternative is to raise an Exception,
4609    // which isn't really warranted.
4610    //
4611    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4612      return FALSE;
4613    }
4614    *pbytes = 0;
4615  }
4616  return TRUE;
4617}
4618
4619#define MAX_INPUT_EVENTS 2000
4620
4621// This code is a copy of JDK's stdinAvailable
4622// from src/windows/hpi/src/sys_api_md.c
4623
4624static int stdinAvailable(int fd, long *pbytes) {
4625  HANDLE han;
4626  DWORD numEventsRead = 0;  // Number of events read from buffer
4627  DWORD numEvents = 0;      // Number of events in buffer
4628  DWORD i = 0;              // Loop index
4629  DWORD curLength = 0;      // Position marker
4630  DWORD actualLength = 0;   // Number of bytes readable
4631  BOOL error = FALSE;       // Error holder
4632  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4633
4634  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4635    return FALSE;
4636  }
4637
4638  // Construct an array of input records in the console buffer
4639  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4640  if (error == 0) {
4641    return nonSeekAvailable(fd, pbytes);
4642  }
4643
4644  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4645  if (numEvents > MAX_INPUT_EVENTS) {
4646    numEvents = MAX_INPUT_EVENTS;
4647  }
4648
4649  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4650  if (lpBuffer == NULL) {
4651    return FALSE;
4652  }
4653
4654  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4655  if (error == 0) {
4656    os::free(lpBuffer);
4657    return FALSE;
4658  }
4659
4660  // Examine input records for the number of bytes available
4661  for (i=0; i<numEvents; i++) {
4662    if (lpBuffer[i].EventType == KEY_EVENT) {
4663
4664      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4665                                      &(lpBuffer[i].Event);
4666      if (keyRecord->bKeyDown == TRUE) {
4667        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4668        curLength++;
4669        if (*keyPressed == '\r') {
4670          actualLength = curLength;
4671        }
4672      }
4673    }
4674  }
4675
4676  if (lpBuffer != NULL) {
4677    os::free(lpBuffer);
4678  }
4679
4680  *pbytes = (long) actualLength;
4681  return TRUE;
4682}
4683
4684// Map a block of memory.
4685char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4686                        char *addr, size_t bytes, bool read_only,
4687                        bool allow_exec) {
4688  HANDLE hFile;
4689  char* base;
4690
4691  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4692                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4693  if (hFile == NULL) {
4694    if (PrintMiscellaneous && Verbose) {
4695      DWORD err = GetLastError();
4696      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4697    }
4698    return NULL;
4699  }
4700
4701  if (allow_exec) {
4702    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4703    // unless it comes from a PE image (which the shared archive is not.)
4704    // Even VirtualProtect refuses to give execute access to mapped memory
4705    // that was not previously executable.
4706    //
4707    // Instead, stick the executable region in anonymous memory.  Yuck.
4708    // Penalty is that ~4 pages will not be shareable - in the future
4709    // we might consider DLLizing the shared archive with a proper PE
4710    // header so that mapping executable + sharing is possible.
4711
4712    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4713                                PAGE_READWRITE);
4714    if (base == NULL) {
4715      if (PrintMiscellaneous && Verbose) {
4716        DWORD err = GetLastError();
4717        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4718      }
4719      CloseHandle(hFile);
4720      return NULL;
4721    }
4722
4723    DWORD bytes_read;
4724    OVERLAPPED overlapped;
4725    overlapped.Offset = (DWORD)file_offset;
4726    overlapped.OffsetHigh = 0;
4727    overlapped.hEvent = NULL;
4728    // ReadFile guarantees that if the return value is true, the requested
4729    // number of bytes were read before returning.
4730    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4731    if (!res) {
4732      if (PrintMiscellaneous && Verbose) {
4733        DWORD err = GetLastError();
4734        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4735      }
4736      release_memory(base, bytes);
4737      CloseHandle(hFile);
4738      return NULL;
4739    }
4740  } else {
4741    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4742                                    NULL /* file_name */);
4743    if (hMap == NULL) {
4744      if (PrintMiscellaneous && Verbose) {
4745        DWORD err = GetLastError();
4746        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4747      }
4748      CloseHandle(hFile);
4749      return NULL;
4750    }
4751
4752    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4753    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4754                                  (DWORD)bytes, addr);
4755    if (base == NULL) {
4756      if (PrintMiscellaneous && Verbose) {
4757        DWORD err = GetLastError();
4758        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4759      }
4760      CloseHandle(hMap);
4761      CloseHandle(hFile);
4762      return NULL;
4763    }
4764
4765    if (CloseHandle(hMap) == 0) {
4766      if (PrintMiscellaneous && Verbose) {
4767        DWORD err = GetLastError();
4768        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4769      }
4770      CloseHandle(hFile);
4771      return base;
4772    }
4773  }
4774
4775  if (allow_exec) {
4776    DWORD old_protect;
4777    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4778    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4779
4780    if (!res) {
4781      if (PrintMiscellaneous && Verbose) {
4782        DWORD err = GetLastError();
4783        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4784      }
4785      // Don't consider this a hard error, on IA32 even if the
4786      // VirtualProtect fails, we should still be able to execute
4787      CloseHandle(hFile);
4788      return base;
4789    }
4790  }
4791
4792  if (CloseHandle(hFile) == 0) {
4793    if (PrintMiscellaneous && Verbose) {
4794      DWORD err = GetLastError();
4795      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4796    }
4797    return base;
4798  }
4799
4800  return base;
4801}
4802
4803
4804// Remap a block of memory.
4805char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4806                          char *addr, size_t bytes, bool read_only,
4807                          bool allow_exec) {
4808  // This OS does not allow existing memory maps to be remapped so we
4809  // have to unmap the memory before we remap it.
4810  if (!os::unmap_memory(addr, bytes)) {
4811    return NULL;
4812  }
4813
4814  // There is a very small theoretical window between the unmap_memory()
4815  // call above and the map_memory() call below where a thread in native
4816  // code may be able to access an address that is no longer mapped.
4817
4818  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4819                        read_only, allow_exec);
4820}
4821
4822
4823// Unmap a block of memory.
4824// Returns true=success, otherwise false.
4825
4826bool os::pd_unmap_memory(char* addr, size_t bytes) {
4827  BOOL result = UnmapViewOfFile(addr);
4828  if (result == 0) {
4829    if (PrintMiscellaneous && Verbose) {
4830      DWORD err = GetLastError();
4831      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4832    }
4833    return false;
4834  }
4835  return true;
4836}
4837
4838void os::pause() {
4839  char filename[MAX_PATH];
4840  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4841    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4842  } else {
4843    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4844  }
4845
4846  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4847  if (fd != -1) {
4848    struct stat buf;
4849    ::close(fd);
4850    while (::stat(filename, &buf) == 0) {
4851      Sleep(100);
4852    }
4853  } else {
4854    jio_fprintf(stderr,
4855                "Could not open pause file '%s', continuing immediately.\n", filename);
4856  }
4857}
4858
4859os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4860  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4861}
4862
4863// See the caveats for this class in os_windows.hpp
4864// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4865// into this method and returns false. If no OS EXCEPTION was raised, returns
4866// true.
4867// The callback is supposed to provide the method that should be protected.
4868//
4869bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4870  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4871  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4872         "crash_protection already set?");
4873
4874  bool success = true;
4875  __try {
4876    WatcherThread::watcher_thread()->set_crash_protection(this);
4877    cb.call();
4878  } __except(EXCEPTION_EXECUTE_HANDLER) {
4879    // only for protection, nothing to do
4880    success = false;
4881  }
4882  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4883  return success;
4884}
4885
4886// An Event wraps a win32 "CreateEvent" kernel handle.
4887//
4888// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4889//
4890// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4891//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4892//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4893//     In addition, an unpark() operation might fetch the handle field, but the
4894//     event could recycle between the fetch and the SetEvent() operation.
4895//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4896//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4897//     on an stale but recycled handle would be harmless, but in practice this might
4898//     confuse other non-Sun code, so it's not a viable approach.
4899//
4900// 2:  Once a win32 event handle is associated with an Event, it remains associated
4901//     with the Event.  The event handle is never closed.  This could be construed
4902//     as handle leakage, but only up to the maximum # of threads that have been extant
4903//     at any one time.  This shouldn't be an issue, as windows platforms typically
4904//     permit a process to have hundreds of thousands of open handles.
4905//
4906// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4907//     and release unused handles.
4908//
4909// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4910//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4911//
4912// 5.  Use an RCU-like mechanism (Read-Copy Update).
4913//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4914//
4915// We use (2).
4916//
4917// TODO-FIXME:
4918// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4919// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4920//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4921// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4922//     into a single win32 CreateEvent() handle.
4923//
4924// Assumption:
4925//    Only one parker can exist on an event, which is why we allocate
4926//    them per-thread. Multiple unparkers can coexist.
4927//
4928// _Event transitions in park()
4929//   -1 => -1 : illegal
4930//    1 =>  0 : pass - return immediately
4931//    0 => -1 : block; then set _Event to 0 before returning
4932//
4933// _Event transitions in unpark()
4934//    0 => 1 : just return
4935//    1 => 1 : just return
4936//   -1 => either 0 or 1; must signal target thread
4937//         That is, we can safely transition _Event from -1 to either
4938//         0 or 1.
4939//
4940// _Event serves as a restricted-range semaphore.
4941//   -1 : thread is blocked, i.e. there is a waiter
4942//    0 : neutral: thread is running or ready,
4943//        could have been signaled after a wait started
4944//    1 : signaled - thread is running or ready
4945//
4946// Another possible encoding of _Event would be with
4947// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4948//
4949
4950int os::PlatformEvent::park(jlong Millis) {
4951  // Transitions for _Event:
4952  //   -1 => -1 : illegal
4953  //    1 =>  0 : pass - return immediately
4954  //    0 => -1 : block; then set _Event to 0 before returning
4955
4956  guarantee(_ParkHandle != NULL , "Invariant");
4957  guarantee(Millis > 0          , "Invariant");
4958
4959  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4960  // the initial park() operation.
4961  // Consider: use atomic decrement instead of CAS-loop
4962
4963  int v;
4964  for (;;) {
4965    v = _Event;
4966    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4967  }
4968  guarantee((v == 0) || (v == 1), "invariant");
4969  if (v != 0) return OS_OK;
4970
4971  // Do this the hard way by blocking ...
4972  // TODO: consider a brief spin here, gated on the success of recent
4973  // spin attempts by this thread.
4974  //
4975  // We decompose long timeouts into series of shorter timed waits.
4976  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4977  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4978  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4979  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4980  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4981  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4982  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4983  // for the already waited time.  This policy does not admit any new outcomes.
4984  // In the future, however, we might want to track the accumulated wait time and
4985  // adjust Millis accordingly if we encounter a spurious wakeup.
4986
4987  const int MAXTIMEOUT = 0x10000000;
4988  DWORD rv = WAIT_TIMEOUT;
4989  while (_Event < 0 && Millis > 0) {
4990    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4991    if (Millis > MAXTIMEOUT) {
4992      prd = MAXTIMEOUT;
4993    }
4994    rv = ::WaitForSingleObject(_ParkHandle, prd);
4995    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4996    if (rv == WAIT_TIMEOUT) {
4997      Millis -= prd;
4998    }
4999  }
5000  v = _Event;
5001  _Event = 0;
5002  // see comment at end of os::PlatformEvent::park() below:
5003  OrderAccess::fence();
5004  // If we encounter a nearly simultanous timeout expiry and unpark()
5005  // we return OS_OK indicating we awoke via unpark().
5006  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5007  return (v >= 0) ? OS_OK : OS_TIMEOUT;
5008}
5009
5010void os::PlatformEvent::park() {
5011  // Transitions for _Event:
5012  //   -1 => -1 : illegal
5013  //    1 =>  0 : pass - return immediately
5014  //    0 => -1 : block; then set _Event to 0 before returning
5015
5016  guarantee(_ParkHandle != NULL, "Invariant");
5017  // Invariant: Only the thread associated with the Event/PlatformEvent
5018  // may call park().
5019  // Consider: use atomic decrement instead of CAS-loop
5020  int v;
5021  for (;;) {
5022    v = _Event;
5023    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5024  }
5025  guarantee((v == 0) || (v == 1), "invariant");
5026  if (v != 0) return;
5027
5028  // Do this the hard way by blocking ...
5029  // TODO: consider a brief spin here, gated on the success of recent
5030  // spin attempts by this thread.
5031  while (_Event < 0) {
5032    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5033    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5034  }
5035
5036  // Usually we'll find _Event == 0 at this point, but as
5037  // an optional optimization we clear it, just in case can
5038  // multiple unpark() operations drove _Event up to 1.
5039  _Event = 0;
5040  OrderAccess::fence();
5041  guarantee(_Event >= 0, "invariant");
5042}
5043
5044void os::PlatformEvent::unpark() {
5045  guarantee(_ParkHandle != NULL, "Invariant");
5046
5047  // Transitions for _Event:
5048  //    0 => 1 : just return
5049  //    1 => 1 : just return
5050  //   -1 => either 0 or 1; must signal target thread
5051  //         That is, we can safely transition _Event from -1 to either
5052  //         0 or 1.
5053  // See also: "Semaphores in Plan 9" by Mullender & Cox
5054  //
5055  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5056  // that it will take two back-to-back park() calls for the owning
5057  // thread to block. This has the benefit of forcing a spurious return
5058  // from the first park() call after an unpark() call which will help
5059  // shake out uses of park() and unpark() without condition variables.
5060
5061  if (Atomic::xchg(1, &_Event) >= 0) return;
5062
5063  ::SetEvent(_ParkHandle);
5064}
5065
5066
5067// JSR166
5068// -------------------------------------------------------
5069
5070// The Windows implementation of Park is very straightforward: Basic
5071// operations on Win32 Events turn out to have the right semantics to
5072// use them directly. We opportunistically resuse the event inherited
5073// from Monitor.
5074
5075void Parker::park(bool isAbsolute, jlong time) {
5076  guarantee(_ParkEvent != NULL, "invariant");
5077  // First, demultiplex/decode time arguments
5078  if (time < 0) { // don't wait
5079    return;
5080  } else if (time == 0 && !isAbsolute) {
5081    time = INFINITE;
5082  } else if (isAbsolute) {
5083    time -= os::javaTimeMillis(); // convert to relative time
5084    if (time <= 0) {  // already elapsed
5085      return;
5086    }
5087  } else { // relative
5088    time /= 1000000;  // Must coarsen from nanos to millis
5089    if (time == 0) {  // Wait for the minimal time unit if zero
5090      time = 1;
5091    }
5092  }
5093
5094  JavaThread* thread = (JavaThread*)(Thread::current());
5095  assert(thread->is_Java_thread(), "Must be JavaThread");
5096  JavaThread *jt = (JavaThread *)thread;
5097
5098  // Don't wait if interrupted or already triggered
5099  if (Thread::is_interrupted(thread, false) ||
5100      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5101    ResetEvent(_ParkEvent);
5102    return;
5103  } else {
5104    ThreadBlockInVM tbivm(jt);
5105    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5106    jt->set_suspend_equivalent();
5107
5108    WaitForSingleObject(_ParkEvent, time);
5109    ResetEvent(_ParkEvent);
5110
5111    // If externally suspended while waiting, re-suspend
5112    if (jt->handle_special_suspend_equivalent_condition()) {
5113      jt->java_suspend_self();
5114    }
5115  }
5116}
5117
5118void Parker::unpark() {
5119  guarantee(_ParkEvent != NULL, "invariant");
5120  SetEvent(_ParkEvent);
5121}
5122
5123// Run the specified command in a separate process. Return its exit value,
5124// or -1 on failure (e.g. can't create a new process).
5125int os::fork_and_exec(char* cmd) {
5126  STARTUPINFO si;
5127  PROCESS_INFORMATION pi;
5128
5129  memset(&si, 0, sizeof(si));
5130  si.cb = sizeof(si);
5131  memset(&pi, 0, sizeof(pi));
5132  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5133                            cmd,    // command line
5134                            NULL,   // process security attribute
5135                            NULL,   // thread security attribute
5136                            TRUE,   // inherits system handles
5137                            0,      // no creation flags
5138                            NULL,   // use parent's environment block
5139                            NULL,   // use parent's starting directory
5140                            &si,    // (in) startup information
5141                            &pi);   // (out) process information
5142
5143  if (rslt) {
5144    // Wait until child process exits.
5145    WaitForSingleObject(pi.hProcess, INFINITE);
5146
5147    DWORD exit_code;
5148    GetExitCodeProcess(pi.hProcess, &exit_code);
5149
5150    // Close process and thread handles.
5151    CloseHandle(pi.hProcess);
5152    CloseHandle(pi.hThread);
5153
5154    return (int)exit_code;
5155  } else {
5156    return -1;
5157  }
5158}
5159
5160//--------------------------------------------------------------------------------------------------
5161// Non-product code
5162
5163static int mallocDebugIntervalCounter = 0;
5164static int mallocDebugCounter = 0;
5165bool os::check_heap(bool force) {
5166  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5167  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5168    // Note: HeapValidate executes two hardware breakpoints when it finds something
5169    // wrong; at these points, eax contains the address of the offending block (I think).
5170    // To get to the exlicit error message(s) below, just continue twice.
5171    HANDLE heap = GetProcessHeap();
5172
5173    // If we fail to lock the heap, then gflags.exe has been used
5174    // or some other special heap flag has been set that prevents
5175    // locking. We don't try to walk a heap we can't lock.
5176    if (HeapLock(heap) != 0) {
5177      PROCESS_HEAP_ENTRY phe;
5178      phe.lpData = NULL;
5179      while (HeapWalk(heap, &phe) != 0) {
5180        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5181            !HeapValidate(heap, 0, phe.lpData)) {
5182          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5183          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5184          fatal("corrupted C heap");
5185        }
5186      }
5187      DWORD err = GetLastError();
5188      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5189        fatal(err_msg("heap walk aborted with error %d", err));
5190      }
5191      HeapUnlock(heap);
5192    }
5193    mallocDebugIntervalCounter = 0;
5194  }
5195  return true;
5196}
5197
5198
5199bool os::find(address addr, outputStream* st) {
5200  // Nothing yet
5201  return false;
5202}
5203
5204LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5205  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5206
5207  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5208    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5209    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5210    address addr = (address) exceptionRecord->ExceptionInformation[1];
5211
5212    if (os::is_memory_serialize_page(thread, addr)) {
5213      return EXCEPTION_CONTINUE_EXECUTION;
5214    }
5215  }
5216
5217  return EXCEPTION_CONTINUE_SEARCH;
5218}
5219
5220// We don't build a headless jre for Windows
5221bool os::is_headless_jre() { return false; }
5222
5223static jint initSock() {
5224  WSADATA wsadata;
5225
5226  if (!os::WinSock2Dll::WinSock2Available()) {
5227    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5228                ::GetLastError());
5229    return JNI_ERR;
5230  }
5231
5232  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5233    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5234                ::GetLastError());
5235    return JNI_ERR;
5236  }
5237  return JNI_OK;
5238}
5239
5240struct hostent* os::get_host_by_name(char* name) {
5241  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5242}
5243
5244int os::socket_close(int fd) {
5245  return ::closesocket(fd);
5246}
5247
5248int os::socket(int domain, int type, int protocol) {
5249  return ::socket(domain, type, protocol);
5250}
5251
5252int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5253  return ::connect(fd, him, len);
5254}
5255
5256int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5257  return ::recv(fd, buf, (int)nBytes, flags);
5258}
5259
5260int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5261  return ::send(fd, buf, (int)nBytes, flags);
5262}
5263
5264int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5265  return ::send(fd, buf, (int)nBytes, flags);
5266}
5267
5268// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5269#if defined(IA32)
5270  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5271#elif defined (AMD64)
5272  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5273#endif
5274
5275// returns true if thread could be suspended,
5276// false otherwise
5277static bool do_suspend(HANDLE* h) {
5278  if (h != NULL) {
5279    if (SuspendThread(*h) != ~0) {
5280      return true;
5281    }
5282  }
5283  return false;
5284}
5285
5286// resume the thread
5287// calling resume on an active thread is a no-op
5288static void do_resume(HANDLE* h) {
5289  if (h != NULL) {
5290    ResumeThread(*h);
5291  }
5292}
5293
5294// retrieve a suspend/resume context capable handle
5295// from the tid. Caller validates handle return value.
5296void get_thread_handle_for_extended_context(HANDLE* h,
5297                                            OSThread::thread_id_t tid) {
5298  if (h != NULL) {
5299    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5300  }
5301}
5302
5303// Thread sampling implementation
5304//
5305void os::SuspendedThreadTask::internal_do_task() {
5306  CONTEXT    ctxt;
5307  HANDLE     h = NULL;
5308
5309  // get context capable handle for thread
5310  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5311
5312  // sanity
5313  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5314    return;
5315  }
5316
5317  // suspend the thread
5318  if (do_suspend(&h)) {
5319    ctxt.ContextFlags = sampling_context_flags;
5320    // get thread context
5321    GetThreadContext(h, &ctxt);
5322    SuspendedThreadTaskContext context(_thread, &ctxt);
5323    // pass context to Thread Sampling impl
5324    do_task(context);
5325    // resume thread
5326    do_resume(&h);
5327  }
5328
5329  // close handle
5330  CloseHandle(h);
5331}
5332
5333
5334// Kernel32 API
5335typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5336typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5337typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5338typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5339typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5340
5341GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5342VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5343GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5344GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5345RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5346
5347
5348BOOL                        os::Kernel32Dll::initialized = FALSE;
5349SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5350  assert(initialized && _GetLargePageMinimum != NULL,
5351         "GetLargePageMinimumAvailable() not yet called");
5352  return _GetLargePageMinimum();
5353}
5354
5355BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5356  if (!initialized) {
5357    initialize();
5358  }
5359  return _GetLargePageMinimum != NULL;
5360}
5361
5362BOOL os::Kernel32Dll::NumaCallsAvailable() {
5363  if (!initialized) {
5364    initialize();
5365  }
5366  return _VirtualAllocExNuma != NULL;
5367}
5368
5369LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5370                                           SIZE_T bytes, DWORD flags,
5371                                           DWORD prot, DWORD node) {
5372  assert(initialized && _VirtualAllocExNuma != NULL,
5373         "NUMACallsAvailable() not yet called");
5374
5375  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5376}
5377
5378BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5379  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5380         "NUMACallsAvailable() not yet called");
5381
5382  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5383}
5384
5385BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5386                                               PULONGLONG proc_mask) {
5387  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5388         "NUMACallsAvailable() not yet called");
5389
5390  return _GetNumaNodeProcessorMask(node, proc_mask);
5391}
5392
5393USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5394                                                 ULONG FrameToCapture,
5395                                                 PVOID* BackTrace,
5396                                                 PULONG BackTraceHash) {
5397  if (!initialized) {
5398    initialize();
5399  }
5400
5401  if (_RtlCaptureStackBackTrace != NULL) {
5402    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5403                                     BackTrace, BackTraceHash);
5404  } else {
5405    return 0;
5406  }
5407}
5408
5409void os::Kernel32Dll::initializeCommon() {
5410  if (!initialized) {
5411    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5412    assert(handle != NULL, "Just check");
5413    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5414    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5415    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5416    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5417    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5418    initialized = TRUE;
5419  }
5420}
5421
5422
5423
5424#ifndef JDK6_OR_EARLIER
5425
5426void os::Kernel32Dll::initialize() {
5427  initializeCommon();
5428}
5429
5430
5431// Kernel32 API
5432inline BOOL os::Kernel32Dll::SwitchToThread() {
5433  return ::SwitchToThread();
5434}
5435
5436inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5437  return true;
5438}
5439
5440// Help tools
5441inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5442  return true;
5443}
5444
5445inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5446                                                        DWORD th32ProcessId) {
5447  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5448}
5449
5450inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5451                                           LPMODULEENTRY32 lpme) {
5452  return ::Module32First(hSnapshot, lpme);
5453}
5454
5455inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5456                                          LPMODULEENTRY32 lpme) {
5457  return ::Module32Next(hSnapshot, lpme);
5458}
5459
5460inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5461  ::GetNativeSystemInfo(lpSystemInfo);
5462}
5463
5464// PSAPI API
5465inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5466                                             HMODULE *lpModule, DWORD cb,
5467                                             LPDWORD lpcbNeeded) {
5468  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5469}
5470
5471inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5472                                               HMODULE hModule,
5473                                               LPTSTR lpFilename,
5474                                               DWORD nSize) {
5475  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5476}
5477
5478inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5479                                               HMODULE hModule,
5480                                               LPMODULEINFO lpmodinfo,
5481                                               DWORD cb) {
5482  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5483}
5484
5485inline BOOL os::PSApiDll::PSApiAvailable() {
5486  return true;
5487}
5488
5489
5490// WinSock2 API
5491inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5492                                        LPWSADATA lpWSAData) {
5493  return ::WSAStartup(wVersionRequested, lpWSAData);
5494}
5495
5496inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5497  return ::gethostbyname(name);
5498}
5499
5500inline BOOL os::WinSock2Dll::WinSock2Available() {
5501  return true;
5502}
5503
5504// Advapi API
5505inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5506                                                   BOOL DisableAllPrivileges,
5507                                                   PTOKEN_PRIVILEGES NewState,
5508                                                   DWORD BufferLength,
5509                                                   PTOKEN_PRIVILEGES PreviousState,
5510                                                   PDWORD ReturnLength) {
5511  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5512                                 BufferLength, PreviousState, ReturnLength);
5513}
5514
5515inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5516                                              DWORD DesiredAccess,
5517                                              PHANDLE TokenHandle) {
5518  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5519}
5520
5521inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5522                                                  LPCTSTR lpName,
5523                                                  PLUID lpLuid) {
5524  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5525}
5526
5527inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5528  return true;
5529}
5530
5531void* os::get_default_process_handle() {
5532  return (void*)GetModuleHandle(NULL);
5533}
5534
5535// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5536// which is used to find statically linked in agents.
5537// Additionally for windows, takes into account __stdcall names.
5538// Parameters:
5539//            sym_name: Symbol in library we are looking for
5540//            lib_name: Name of library to look in, NULL for shared libs.
5541//            is_absolute_path == true if lib_name is absolute path to agent
5542//                                     such as "C:/a/b/L.dll"
5543//            == false if only the base name of the library is passed in
5544//               such as "L"
5545char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5546                                    bool is_absolute_path) {
5547  char *agent_entry_name;
5548  size_t len;
5549  size_t name_len;
5550  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5551  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5552  const char *start;
5553
5554  if (lib_name != NULL) {
5555    len = name_len = strlen(lib_name);
5556    if (is_absolute_path) {
5557      // Need to strip path, prefix and suffix
5558      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5559        lib_name = ++start;
5560      } else {
5561        // Need to check for drive prefix
5562        if ((start = strchr(lib_name, ':')) != NULL) {
5563          lib_name = ++start;
5564        }
5565      }
5566      if (len <= (prefix_len + suffix_len)) {
5567        return NULL;
5568      }
5569      lib_name += prefix_len;
5570      name_len = strlen(lib_name) - suffix_len;
5571    }
5572  }
5573  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5574  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5575  if (agent_entry_name == NULL) {
5576    return NULL;
5577  }
5578  if (lib_name != NULL) {
5579    const char *p = strrchr(sym_name, '@');
5580    if (p != NULL && p != sym_name) {
5581      // sym_name == _Agent_OnLoad@XX
5582      strncpy(agent_entry_name, sym_name, (p - sym_name));
5583      agent_entry_name[(p-sym_name)] = '\0';
5584      // agent_entry_name == _Agent_OnLoad
5585      strcat(agent_entry_name, "_");
5586      strncat(agent_entry_name, lib_name, name_len);
5587      strcat(agent_entry_name, p);
5588      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5589    } else {
5590      strcpy(agent_entry_name, sym_name);
5591      strcat(agent_entry_name, "_");
5592      strncat(agent_entry_name, lib_name, name_len);
5593    }
5594  } else {
5595    strcpy(agent_entry_name, sym_name);
5596  }
5597  return agent_entry_name;
5598}
5599
5600#else
5601// Kernel32 API
5602typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5603typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5604typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5605typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5606typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5607
5608SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5609CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5610Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5611Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5612GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5613
5614void os::Kernel32Dll::initialize() {
5615  if (!initialized) {
5616    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5617    assert(handle != NULL, "Just check");
5618
5619    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5620    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5621      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5622    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5623    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5624    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5625    initializeCommon();  // resolve the functions that always need resolving
5626
5627    initialized = TRUE;
5628  }
5629}
5630
5631BOOL os::Kernel32Dll::SwitchToThread() {
5632  assert(initialized && _SwitchToThread != NULL,
5633         "SwitchToThreadAvailable() not yet called");
5634  return _SwitchToThread();
5635}
5636
5637
5638BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5639  if (!initialized) {
5640    initialize();
5641  }
5642  return _SwitchToThread != NULL;
5643}
5644
5645// Help tools
5646BOOL os::Kernel32Dll::HelpToolsAvailable() {
5647  if (!initialized) {
5648    initialize();
5649  }
5650  return _CreateToolhelp32Snapshot != NULL &&
5651         _Module32First != NULL &&
5652         _Module32Next != NULL;
5653}
5654
5655HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5656                                                 DWORD th32ProcessId) {
5657  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5658         "HelpToolsAvailable() not yet called");
5659
5660  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5661}
5662
5663BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5664  assert(initialized && _Module32First != NULL,
5665         "HelpToolsAvailable() not yet called");
5666
5667  return _Module32First(hSnapshot, lpme);
5668}
5669
5670inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5671                                          LPMODULEENTRY32 lpme) {
5672  assert(initialized && _Module32Next != NULL,
5673         "HelpToolsAvailable() not yet called");
5674
5675  return _Module32Next(hSnapshot, lpme);
5676}
5677
5678
5679BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5680  if (!initialized) {
5681    initialize();
5682  }
5683  return _GetNativeSystemInfo != NULL;
5684}
5685
5686void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5687  assert(initialized && _GetNativeSystemInfo != NULL,
5688         "GetNativeSystemInfoAvailable() not yet called");
5689
5690  _GetNativeSystemInfo(lpSystemInfo);
5691}
5692
5693// PSAPI API
5694
5695
5696typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5697typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5698typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5699
5700EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5701GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5702GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5703BOOL                    os::PSApiDll::initialized = FALSE;
5704
5705void os::PSApiDll::initialize() {
5706  if (!initialized) {
5707    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5708    if (handle != NULL) {
5709      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5710                                                                    "EnumProcessModules");
5711      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5712                                                                      "GetModuleFileNameExA");
5713      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5714                                                                        "GetModuleInformation");
5715    }
5716    initialized = TRUE;
5717  }
5718}
5719
5720
5721
5722BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5723                                      DWORD cb, LPDWORD lpcbNeeded) {
5724  assert(initialized && _EnumProcessModules != NULL,
5725         "PSApiAvailable() not yet called");
5726  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5727}
5728
5729DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5730                                        LPTSTR lpFilename, DWORD nSize) {
5731  assert(initialized && _GetModuleFileNameEx != NULL,
5732         "PSApiAvailable() not yet called");
5733  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5734}
5735
5736BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5737                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5738  assert(initialized && _GetModuleInformation != NULL,
5739         "PSApiAvailable() not yet called");
5740  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5741}
5742
5743BOOL os::PSApiDll::PSApiAvailable() {
5744  if (!initialized) {
5745    initialize();
5746  }
5747  return _EnumProcessModules != NULL &&
5748    _GetModuleFileNameEx != NULL &&
5749    _GetModuleInformation != NULL;
5750}
5751
5752
5753// WinSock2 API
5754typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5755typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5756
5757WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5758gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5759BOOL             os::WinSock2Dll::initialized = FALSE;
5760
5761void os::WinSock2Dll::initialize() {
5762  if (!initialized) {
5763    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5764    if (handle != NULL) {
5765      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5766      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5767    }
5768    initialized = TRUE;
5769  }
5770}
5771
5772
5773BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5774  assert(initialized && _WSAStartup != NULL,
5775         "WinSock2Available() not yet called");
5776  return _WSAStartup(wVersionRequested, lpWSAData);
5777}
5778
5779struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5780  assert(initialized && _gethostbyname != NULL,
5781         "WinSock2Available() not yet called");
5782  return _gethostbyname(name);
5783}
5784
5785BOOL os::WinSock2Dll::WinSock2Available() {
5786  if (!initialized) {
5787    initialize();
5788  }
5789  return _WSAStartup != NULL &&
5790    _gethostbyname != NULL;
5791}
5792
5793typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5794typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5795typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5796
5797AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5798OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5799LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5800BOOL                     os::Advapi32Dll::initialized = FALSE;
5801
5802void os::Advapi32Dll::initialize() {
5803  if (!initialized) {
5804    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5805    if (handle != NULL) {
5806      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5807                                                                          "AdjustTokenPrivileges");
5808      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5809                                                                "OpenProcessToken");
5810      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5811                                                                        "LookupPrivilegeValueA");
5812    }
5813    initialized = TRUE;
5814  }
5815}
5816
5817BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5818                                            BOOL DisableAllPrivileges,
5819                                            PTOKEN_PRIVILEGES NewState,
5820                                            DWORD BufferLength,
5821                                            PTOKEN_PRIVILEGES PreviousState,
5822                                            PDWORD ReturnLength) {
5823  assert(initialized && _AdjustTokenPrivileges != NULL,
5824         "AdvapiAvailable() not yet called");
5825  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5826                                BufferLength, PreviousState, ReturnLength);
5827}
5828
5829BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5830                                       DWORD DesiredAccess,
5831                                       PHANDLE TokenHandle) {
5832  assert(initialized && _OpenProcessToken != NULL,
5833         "AdvapiAvailable() not yet called");
5834  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5835}
5836
5837BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5838                                           LPCTSTR lpName, PLUID lpLuid) {
5839  assert(initialized && _LookupPrivilegeValue != NULL,
5840         "AdvapiAvailable() not yet called");
5841  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5842}
5843
5844BOOL os::Advapi32Dll::AdvapiAvailable() {
5845  if (!initialized) {
5846    initialize();
5847  }
5848  return _AdjustTokenPrivileges != NULL &&
5849    _OpenProcessToken != NULL &&
5850    _LookupPrivilegeValue != NULL;
5851}
5852
5853#endif
5854
5855#ifndef PRODUCT
5856
5857// test the code path in reserve_memory_special() that tries to allocate memory in a single
5858// contiguous memory block at a particular address.
5859// The test first tries to find a good approximate address to allocate at by using the same
5860// method to allocate some memory at any address. The test then tries to allocate memory in
5861// the vicinity (not directly after it to avoid possible by-chance use of that location)
5862// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5863// the previously allocated memory is available for allocation. The only actual failure
5864// that is reported is when the test tries to allocate at a particular location but gets a
5865// different valid one. A NULL return value at this point is not considered an error but may
5866// be legitimate.
5867// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5868void TestReserveMemorySpecial_test() {
5869  if (!UseLargePages) {
5870    if (VerboseInternalVMTests) {
5871      gclog_or_tty->print("Skipping test because large pages are disabled");
5872    }
5873    return;
5874  }
5875  // save current value of globals
5876  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5877  bool old_use_numa_interleaving = UseNUMAInterleaving;
5878
5879  // set globals to make sure we hit the correct code path
5880  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5881
5882  // do an allocation at an address selected by the OS to get a good one.
5883  const size_t large_allocation_size = os::large_page_size() * 4;
5884  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5885  if (result == NULL) {
5886    if (VerboseInternalVMTests) {
5887      gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5888                          large_allocation_size);
5889    }
5890  } else {
5891    os::release_memory_special(result, large_allocation_size);
5892
5893    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5894    // we managed to get it once.
5895    const size_t expected_allocation_size = os::large_page_size();
5896    char* expected_location = result + os::large_page_size();
5897    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5898    if (actual_location == NULL) {
5899      if (VerboseInternalVMTests) {
5900        gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5901                            expected_location, large_allocation_size);
5902      }
5903    } else {
5904      // release memory
5905      os::release_memory_special(actual_location, expected_allocation_size);
5906      // only now check, after releasing any memory to avoid any leaks.
5907      assert(actual_location == expected_location,
5908             err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5909             expected_location, expected_allocation_size, actual_location));
5910    }
5911  }
5912
5913  // restore globals
5914  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5915  UseNUMAInterleaving = old_use_numa_interleaving;
5916}
5917#endif // PRODUCT
5918