os_windows.cpp revision 8110:f5dbba218597
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "services/attachListener.hpp"
67#include "services/memTracker.hpp"
68#include "services/runtimeService.hpp"
69#include "utilities/decoder.hpp"
70#include "utilities/defaultStream.hpp"
71#include "utilities/events.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/vmError.hpp"
74
75#ifdef _DEBUG
76#include <crtdbg.h>
77#endif
78
79
80#include <windows.h>
81#include <sys/types.h>
82#include <sys/stat.h>
83#include <sys/timeb.h>
84#include <objidl.h>
85#include <shlobj.h>
86
87#include <malloc.h>
88#include <signal.h>
89#include <direct.h>
90#include <errno.h>
91#include <fcntl.h>
92#include <io.h>
93#include <process.h>              // For _beginthreadex(), _endthreadex()
94#include <imagehlp.h>             // For os::dll_address_to_function_name
95// for enumerating dll libraries
96#include <vdmdbg.h>
97
98// for timer info max values which include all bits
99#define ALL_64_BITS CONST64(-1)
100
101// For DLL loading/load error detection
102// Values of PE COFF
103#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
104#define IMAGE_FILE_SIGNATURE_LENGTH 4
105
106static HANDLE main_process;
107static HANDLE main_thread;
108static int    main_thread_id;
109
110static FILETIME process_creation_time;
111static FILETIME process_exit_time;
112static FILETIME process_user_time;
113static FILETIME process_kernel_time;
114
115#ifdef _M_IA64
116  #define __CPU__ ia64
117#elif _M_AMD64
118  #define __CPU__ amd64
119#else
120  #define __CPU__ i486
121#endif
122
123// save DLL module handle, used by GetModuleFileName
124
125HINSTANCE vm_lib_handle;
126
127BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
128  switch (reason) {
129  case DLL_PROCESS_ATTACH:
130    vm_lib_handle = hinst;
131    if (ForceTimeHighResolution) {
132      timeBeginPeriod(1L);
133    }
134    break;
135  case DLL_PROCESS_DETACH:
136    if (ForceTimeHighResolution) {
137      timeEndPeriod(1L);
138    }
139    break;
140  default:
141    break;
142  }
143  return true;
144}
145
146static inline double fileTimeAsDouble(FILETIME* time) {
147  const double high  = (double) ((unsigned int) ~0);
148  const double split = 10000000.0;
149  double result = (time->dwLowDateTime / split) +
150                   time->dwHighDateTime * (high/split);
151  return result;
152}
153
154// Implementation of os
155
156bool os::unsetenv(const char* name) {
157  assert(name != NULL, "Null pointer");
158  return (SetEnvironmentVariable(name, NULL) == TRUE);
159}
160
161// No setuid programs under Windows.
162bool os::have_special_privileges() {
163  return false;
164}
165
166
167// This method is  a periodic task to check for misbehaving JNI applications
168// under CheckJNI, we can add any periodic checks here.
169// For Windows at the moment does nothing
170void os::run_periodic_checks() {
171  return;
172}
173
174// previous UnhandledExceptionFilter, if there is one
175static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
176
177LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
178
179void os::init_system_properties_values() {
180  // sysclasspath, java_home, dll_dir
181  {
182    char *home_path;
183    char *dll_path;
184    char *pslash;
185    char *bin = "\\bin";
186    char home_dir[MAX_PATH + 1];
187    char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
188
189    if (alt_home_dir != NULL)  {
190      strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
191      home_dir[MAX_PATH] = '\0';
192    } else {
193      os::jvm_path(home_dir, sizeof(home_dir));
194      // Found the full path to jvm.dll.
195      // Now cut the path to <java_home>/jre if we can.
196      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
197      pslash = strrchr(home_dir, '\\');
198      if (pslash != NULL) {
199        *pslash = '\0';                   // get rid of \{client|server}
200        pslash = strrchr(home_dir, '\\');
201        if (pslash != NULL) {
202          *pslash = '\0';                 // get rid of \bin
203        }
204      }
205    }
206
207    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
208    if (home_path == NULL) {
209      return;
210    }
211    strcpy(home_path, home_dir);
212    Arguments::set_java_home(home_path);
213    FREE_C_HEAP_ARRAY(char, home_path);
214
215    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
216                                mtInternal);
217    if (dll_path == NULL) {
218      return;
219    }
220    strcpy(dll_path, home_dir);
221    strcat(dll_path, bin);
222    Arguments::set_dll_dir(dll_path);
223    FREE_C_HEAP_ARRAY(char, dll_path);
224
225    if (!set_boot_path('\\', ';')) {
226      return;
227    }
228  }
229
230// library_path
231#define EXT_DIR "\\lib\\ext"
232#define BIN_DIR "\\bin"
233#define PACKAGE_DIR "\\Sun\\Java"
234  {
235    // Win32 library search order (See the documentation for LoadLibrary):
236    //
237    // 1. The directory from which application is loaded.
238    // 2. The system wide Java Extensions directory (Java only)
239    // 3. System directory (GetSystemDirectory)
240    // 4. Windows directory (GetWindowsDirectory)
241    // 5. The PATH environment variable
242    // 6. The current directory
243
244    char *library_path;
245    char tmp[MAX_PATH];
246    char *path_str = ::getenv("PATH");
247
248    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
249                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
250
251    library_path[0] = '\0';
252
253    GetModuleFileName(NULL, tmp, sizeof(tmp));
254    *(strrchr(tmp, '\\')) = '\0';
255    strcat(library_path, tmp);
256
257    GetWindowsDirectory(tmp, sizeof(tmp));
258    strcat(library_path, ";");
259    strcat(library_path, tmp);
260    strcat(library_path, PACKAGE_DIR BIN_DIR);
261
262    GetSystemDirectory(tmp, sizeof(tmp));
263    strcat(library_path, ";");
264    strcat(library_path, tmp);
265
266    GetWindowsDirectory(tmp, sizeof(tmp));
267    strcat(library_path, ";");
268    strcat(library_path, tmp);
269
270    if (path_str) {
271      strcat(library_path, ";");
272      strcat(library_path, path_str);
273    }
274
275    strcat(library_path, ";.");
276
277    Arguments::set_library_path(library_path);
278    FREE_C_HEAP_ARRAY(char, library_path);
279  }
280
281  // Default extensions directory
282  {
283    char path[MAX_PATH];
284    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
285    GetWindowsDirectory(path, MAX_PATH);
286    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
287            path, PACKAGE_DIR, EXT_DIR);
288    Arguments::set_ext_dirs(buf);
289  }
290  #undef EXT_DIR
291  #undef BIN_DIR
292  #undef PACKAGE_DIR
293
294#ifndef _WIN64
295  // set our UnhandledExceptionFilter and save any previous one
296  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
297#endif
298
299  // Done
300  return;
301}
302
303void os::breakpoint() {
304  DebugBreak();
305}
306
307// Invoked from the BREAKPOINT Macro
308extern "C" void breakpoint() {
309  os::breakpoint();
310}
311
312// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
313// So far, this method is only used by Native Memory Tracking, which is
314// only supported on Windows XP or later.
315//
316int os::get_native_stack(address* stack, int frames, int toSkip) {
317#ifdef _NMT_NOINLINE_
318  toSkip++;
319#endif
320  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
321                                                       (PVOID*)stack, NULL);
322  for (int index = captured; index < frames; index ++) {
323    stack[index] = NULL;
324  }
325  return captured;
326}
327
328
329// os::current_stack_base()
330//
331//   Returns the base of the stack, which is the stack's
332//   starting address.  This function must be called
333//   while running on the stack of the thread being queried.
334
335address os::current_stack_base() {
336  MEMORY_BASIC_INFORMATION minfo;
337  address stack_bottom;
338  size_t stack_size;
339
340  VirtualQuery(&minfo, &minfo, sizeof(minfo));
341  stack_bottom =  (address)minfo.AllocationBase;
342  stack_size = minfo.RegionSize;
343
344  // Add up the sizes of all the regions with the same
345  // AllocationBase.
346  while (1) {
347    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
348    if (stack_bottom == (address)minfo.AllocationBase) {
349      stack_size += minfo.RegionSize;
350    } else {
351      break;
352    }
353  }
354
355#ifdef _M_IA64
356  // IA64 has memory and register stacks
357  //
358  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
359  // at thread creation (1MB backing store growing upwards, 1MB memory stack
360  // growing downwards, 2MB summed up)
361  //
362  // ...
363  // ------- top of stack (high address) -----
364  // |
365  // |      1MB
366  // |      Backing Store (Register Stack)
367  // |
368  // |         / \
369  // |          |
370  // |          |
371  // |          |
372  // ------------------------ stack base -----
373  // |      1MB
374  // |      Memory Stack
375  // |
376  // |          |
377  // |          |
378  // |          |
379  // |         \ /
380  // |
381  // ----- bottom of stack (low address) -----
382  // ...
383
384  stack_size = stack_size / 2;
385#endif
386  return stack_bottom + stack_size;
387}
388
389size_t os::current_stack_size() {
390  size_t sz;
391  MEMORY_BASIC_INFORMATION minfo;
392  VirtualQuery(&minfo, &minfo, sizeof(minfo));
393  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
394  return sz;
395}
396
397struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
398  const struct tm* time_struct_ptr = localtime(clock);
399  if (time_struct_ptr != NULL) {
400    *res = *time_struct_ptr;
401    return res;
402  }
403  return NULL;
404}
405
406LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
407
408// Thread start routine for all new Java threads
409static unsigned __stdcall java_start(Thread* thread) {
410  // Try to randomize the cache line index of hot stack frames.
411  // This helps when threads of the same stack traces evict each other's
412  // cache lines. The threads can be either from the same JVM instance, or
413  // from different JVM instances. The benefit is especially true for
414  // processors with hyperthreading technology.
415  static int counter = 0;
416  int pid = os::current_process_id();
417  _alloca(((pid ^ counter++) & 7) * 128);
418
419  OSThread* osthr = thread->osthread();
420  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
421
422  if (UseNUMA) {
423    int lgrp_id = os::numa_get_group_id();
424    if (lgrp_id != -1) {
425      thread->set_lgrp_id(lgrp_id);
426    }
427  }
428
429  // Diagnostic code to investigate JDK-6573254
430  int res = 30115;  // non-java thread
431  if (thread->is_Java_thread()) {
432    res = 20115;    // java thread
433  }
434
435  // Install a win32 structured exception handler around every thread created
436  // by VM, so VM can generate error dump when an exception occurred in non-
437  // Java thread (e.g. VM thread).
438  __try {
439    thread->run();
440  } __except(topLevelExceptionFilter(
441                                     (_EXCEPTION_POINTERS*)_exception_info())) {
442    // Nothing to do.
443  }
444
445  // One less thread is executing
446  // When the VMThread gets here, the main thread may have already exited
447  // which frees the CodeHeap containing the Atomic::add code
448  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
449    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
450  }
451
452  // Thread must not return from exit_process_or_thread(), but if it does,
453  // let it proceed to exit normally
454  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
455}
456
457static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
458                                  int thread_id) {
459  // Allocate the OSThread object
460  OSThread* osthread = new OSThread(NULL, NULL);
461  if (osthread == NULL) return NULL;
462
463  // Initialize support for Java interrupts
464  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
465  if (interrupt_event == NULL) {
466    delete osthread;
467    return NULL;
468  }
469  osthread->set_interrupt_event(interrupt_event);
470
471  // Store info on the Win32 thread into the OSThread
472  osthread->set_thread_handle(thread_handle);
473  osthread->set_thread_id(thread_id);
474
475  if (UseNUMA) {
476    int lgrp_id = os::numa_get_group_id();
477    if (lgrp_id != -1) {
478      thread->set_lgrp_id(lgrp_id);
479    }
480  }
481
482  // Initial thread state is INITIALIZED, not SUSPENDED
483  osthread->set_state(INITIALIZED);
484
485  return osthread;
486}
487
488
489bool os::create_attached_thread(JavaThread* thread) {
490#ifdef ASSERT
491  thread->verify_not_published();
492#endif
493  HANDLE thread_h;
494  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
495                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
496    fatal("DuplicateHandle failed\n");
497  }
498  OSThread* osthread = create_os_thread(thread, thread_h,
499                                        (int)current_thread_id());
500  if (osthread == NULL) {
501    return false;
502  }
503
504  // Initial thread state is RUNNABLE
505  osthread->set_state(RUNNABLE);
506
507  thread->set_osthread(osthread);
508  return true;
509}
510
511bool os::create_main_thread(JavaThread* thread) {
512#ifdef ASSERT
513  thread->verify_not_published();
514#endif
515  if (_starting_thread == NULL) {
516    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
517    if (_starting_thread == NULL) {
518      return false;
519    }
520  }
521
522  // The primordial thread is runnable from the start)
523  _starting_thread->set_state(RUNNABLE);
524
525  thread->set_osthread(_starting_thread);
526  return true;
527}
528
529// Allocate and initialize a new OSThread
530bool os::create_thread(Thread* thread, ThreadType thr_type,
531                       size_t stack_size) {
532  unsigned thread_id;
533
534  // Allocate the OSThread object
535  OSThread* osthread = new OSThread(NULL, NULL);
536  if (osthread == NULL) {
537    return false;
538  }
539
540  // Initialize support for Java interrupts
541  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
542  if (interrupt_event == NULL) {
543    delete osthread;
544    return NULL;
545  }
546  osthread->set_interrupt_event(interrupt_event);
547  osthread->set_interrupted(false);
548
549  thread->set_osthread(osthread);
550
551  if (stack_size == 0) {
552    switch (thr_type) {
553    case os::java_thread:
554      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
555      if (JavaThread::stack_size_at_create() > 0) {
556        stack_size = JavaThread::stack_size_at_create();
557      }
558      break;
559    case os::compiler_thread:
560      if (CompilerThreadStackSize > 0) {
561        stack_size = (size_t)(CompilerThreadStackSize * K);
562        break;
563      } // else fall through:
564        // use VMThreadStackSize if CompilerThreadStackSize is not defined
565    case os::vm_thread:
566    case os::pgc_thread:
567    case os::cgc_thread:
568    case os::watcher_thread:
569      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
570      break;
571    }
572  }
573
574  // Create the Win32 thread
575  //
576  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
577  // does not specify stack size. Instead, it specifies the size of
578  // initially committed space. The stack size is determined by
579  // PE header in the executable. If the committed "stack_size" is larger
580  // than default value in the PE header, the stack is rounded up to the
581  // nearest multiple of 1MB. For example if the launcher has default
582  // stack size of 320k, specifying any size less than 320k does not
583  // affect the actual stack size at all, it only affects the initial
584  // commitment. On the other hand, specifying 'stack_size' larger than
585  // default value may cause significant increase in memory usage, because
586  // not only the stack space will be rounded up to MB, but also the
587  // entire space is committed upfront.
588  //
589  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
590  // for CreateThread() that can treat 'stack_size' as stack size. However we
591  // are not supposed to call CreateThread() directly according to MSDN
592  // document because JVM uses C runtime library. The good news is that the
593  // flag appears to work with _beginthredex() as well.
594
595#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
596  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
597#endif
598
599  HANDLE thread_handle =
600    (HANDLE)_beginthreadex(NULL,
601                           (unsigned)stack_size,
602                           (unsigned (__stdcall *)(void*)) java_start,
603                           thread,
604                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
605                           &thread_id);
606  if (thread_handle == NULL) {
607    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
608    // without the flag.
609    thread_handle =
610      (HANDLE)_beginthreadex(NULL,
611                             (unsigned)stack_size,
612                             (unsigned (__stdcall *)(void*)) java_start,
613                             thread,
614                             CREATE_SUSPENDED,
615                             &thread_id);
616  }
617  if (thread_handle == NULL) {
618    // Need to clean up stuff we've allocated so far
619    CloseHandle(osthread->interrupt_event());
620    thread->set_osthread(NULL);
621    delete osthread;
622    return NULL;
623  }
624
625  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
626
627  // Store info on the Win32 thread into the OSThread
628  osthread->set_thread_handle(thread_handle);
629  osthread->set_thread_id(thread_id);
630
631  // Initial thread state is INITIALIZED, not SUSPENDED
632  osthread->set_state(INITIALIZED);
633
634  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
635  return true;
636}
637
638
639// Free Win32 resources related to the OSThread
640void os::free_thread(OSThread* osthread) {
641  assert(osthread != NULL, "osthread not set");
642  CloseHandle(osthread->thread_handle());
643  CloseHandle(osthread->interrupt_event());
644  delete osthread;
645}
646
647static jlong first_filetime;
648static jlong initial_performance_count;
649static jlong performance_frequency;
650
651
652jlong as_long(LARGE_INTEGER x) {
653  jlong result = 0; // initialization to avoid warning
654  set_high(&result, x.HighPart);
655  set_low(&result, x.LowPart);
656  return result;
657}
658
659
660jlong os::elapsed_counter() {
661  LARGE_INTEGER count;
662  if (win32::_has_performance_count) {
663    QueryPerformanceCounter(&count);
664    return as_long(count) - initial_performance_count;
665  } else {
666    FILETIME wt;
667    GetSystemTimeAsFileTime(&wt);
668    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
669  }
670}
671
672
673jlong os::elapsed_frequency() {
674  if (win32::_has_performance_count) {
675    return performance_frequency;
676  } else {
677    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
678    return 10000000;
679  }
680}
681
682
683julong os::available_memory() {
684  return win32::available_memory();
685}
686
687julong os::win32::available_memory() {
688  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
689  // value if total memory is larger than 4GB
690  MEMORYSTATUSEX ms;
691  ms.dwLength = sizeof(ms);
692  GlobalMemoryStatusEx(&ms);
693
694  return (julong)ms.ullAvailPhys;
695}
696
697julong os::physical_memory() {
698  return win32::physical_memory();
699}
700
701bool os::has_allocatable_memory_limit(julong* limit) {
702  MEMORYSTATUSEX ms;
703  ms.dwLength = sizeof(ms);
704  GlobalMemoryStatusEx(&ms);
705#ifdef _LP64
706  *limit = (julong)ms.ullAvailVirtual;
707  return true;
708#else
709  // Limit to 1400m because of the 2gb address space wall
710  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
711  return true;
712#endif
713}
714
715// VC6 lacks DWORD_PTR
716#if _MSC_VER < 1300
717typedef UINT_PTR DWORD_PTR;
718#endif
719
720int os::active_processor_count() {
721  DWORD_PTR lpProcessAffinityMask = 0;
722  DWORD_PTR lpSystemAffinityMask = 0;
723  int proc_count = processor_count();
724  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
725      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
726    // Nof active processors is number of bits in process affinity mask
727    int bitcount = 0;
728    while (lpProcessAffinityMask != 0) {
729      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
730      bitcount++;
731    }
732    return bitcount;
733  } else {
734    return proc_count;
735  }
736}
737
738void os::set_native_thread_name(const char *name) {
739
740  // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
741  //
742  // Note that unfortunately this only works if the process
743  // is already attached to a debugger; debugger must observe
744  // the exception below to show the correct name.
745
746  const DWORD MS_VC_EXCEPTION = 0x406D1388;
747  struct {
748    DWORD dwType;     // must be 0x1000
749    LPCSTR szName;    // pointer to name (in user addr space)
750    DWORD dwThreadID; // thread ID (-1=caller thread)
751    DWORD dwFlags;    // reserved for future use, must be zero
752  } info;
753
754  info.dwType = 0x1000;
755  info.szName = name;
756  info.dwThreadID = -1;
757  info.dwFlags = 0;
758
759  __try {
760    RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
761  } __except(EXCEPTION_CONTINUE_EXECUTION) {}
762}
763
764bool os::distribute_processes(uint length, uint* distribution) {
765  // Not yet implemented.
766  return false;
767}
768
769bool os::bind_to_processor(uint processor_id) {
770  // Not yet implemented.
771  return false;
772}
773
774void os::win32::initialize_performance_counter() {
775  LARGE_INTEGER count;
776  if (QueryPerformanceFrequency(&count)) {
777    win32::_has_performance_count = 1;
778    performance_frequency = as_long(count);
779    QueryPerformanceCounter(&count);
780    initial_performance_count = as_long(count);
781  } else {
782    win32::_has_performance_count = 0;
783    FILETIME wt;
784    GetSystemTimeAsFileTime(&wt);
785    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
786  }
787}
788
789
790double os::elapsedTime() {
791  return (double) elapsed_counter() / (double) elapsed_frequency();
792}
793
794
795// Windows format:
796//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
797// Java format:
798//   Java standards require the number of milliseconds since 1/1/1970
799
800// Constant offset - calculated using offset()
801static jlong  _offset   = 116444736000000000;
802// Fake time counter for reproducible results when debugging
803static jlong  fake_time = 0;
804
805#ifdef ASSERT
806// Just to be safe, recalculate the offset in debug mode
807static jlong _calculated_offset = 0;
808static int   _has_calculated_offset = 0;
809
810jlong offset() {
811  if (_has_calculated_offset) return _calculated_offset;
812  SYSTEMTIME java_origin;
813  java_origin.wYear          = 1970;
814  java_origin.wMonth         = 1;
815  java_origin.wDayOfWeek     = 0; // ignored
816  java_origin.wDay           = 1;
817  java_origin.wHour          = 0;
818  java_origin.wMinute        = 0;
819  java_origin.wSecond        = 0;
820  java_origin.wMilliseconds  = 0;
821  FILETIME jot;
822  if (!SystemTimeToFileTime(&java_origin, &jot)) {
823    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
824  }
825  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
826  _has_calculated_offset = 1;
827  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
828  return _calculated_offset;
829}
830#else
831jlong offset() {
832  return _offset;
833}
834#endif
835
836jlong windows_to_java_time(FILETIME wt) {
837  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
838  return (a - offset()) / 10000;
839}
840
841// Returns time ticks in (10th of micro seconds)
842jlong windows_to_time_ticks(FILETIME wt) {
843  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
844  return (a - offset());
845}
846
847FILETIME java_to_windows_time(jlong l) {
848  jlong a = (l * 10000) + offset();
849  FILETIME result;
850  result.dwHighDateTime = high(a);
851  result.dwLowDateTime  = low(a);
852  return result;
853}
854
855bool os::supports_vtime() { return true; }
856bool os::enable_vtime() { return false; }
857bool os::vtime_enabled() { return false; }
858
859double os::elapsedVTime() {
860  FILETIME created;
861  FILETIME exited;
862  FILETIME kernel;
863  FILETIME user;
864  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
865    // the resolution of windows_to_java_time() should be sufficient (ms)
866    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
867  } else {
868    return elapsedTime();
869  }
870}
871
872jlong os::javaTimeMillis() {
873  if (UseFakeTimers) {
874    return fake_time++;
875  } else {
876    FILETIME wt;
877    GetSystemTimeAsFileTime(&wt);
878    return windows_to_java_time(wt);
879  }
880}
881
882void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
883  FILETIME wt;
884  GetSystemTimeAsFileTime(&wt);
885  jlong ticks = windows_to_time_ticks(wt); // 10th of micros
886  jlong secs = jlong(ticks / 10000000); // 10000 * 1000
887  seconds = secs;
888  nanos = jlong(ticks - (secs*10000000)) * 100;
889}
890
891jlong os::javaTimeNanos() {
892  if (!win32::_has_performance_count) {
893    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
894  } else {
895    LARGE_INTEGER current_count;
896    QueryPerformanceCounter(&current_count);
897    double current = as_long(current_count);
898    double freq = performance_frequency;
899    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
900    return time;
901  }
902}
903
904void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
905  if (!win32::_has_performance_count) {
906    // javaTimeMillis() doesn't have much percision,
907    // but it is not going to wrap -- so all 64 bits
908    info_ptr->max_value = ALL_64_BITS;
909
910    // this is a wall clock timer, so may skip
911    info_ptr->may_skip_backward = true;
912    info_ptr->may_skip_forward = true;
913  } else {
914    jlong freq = performance_frequency;
915    if (freq < NANOSECS_PER_SEC) {
916      // the performance counter is 64 bits and we will
917      // be multiplying it -- so no wrap in 64 bits
918      info_ptr->max_value = ALL_64_BITS;
919    } else if (freq > NANOSECS_PER_SEC) {
920      // use the max value the counter can reach to
921      // determine the max value which could be returned
922      julong max_counter = (julong)ALL_64_BITS;
923      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
924    } else {
925      // the performance counter is 64 bits and we will
926      // be using it directly -- so no wrap in 64 bits
927      info_ptr->max_value = ALL_64_BITS;
928    }
929
930    // using a counter, so no skipping
931    info_ptr->may_skip_backward = false;
932    info_ptr->may_skip_forward = false;
933  }
934  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
935}
936
937char* os::local_time_string(char *buf, size_t buflen) {
938  SYSTEMTIME st;
939  GetLocalTime(&st);
940  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
941               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
942  return buf;
943}
944
945bool os::getTimesSecs(double* process_real_time,
946                      double* process_user_time,
947                      double* process_system_time) {
948  HANDLE h_process = GetCurrentProcess();
949  FILETIME create_time, exit_time, kernel_time, user_time;
950  BOOL result = GetProcessTimes(h_process,
951                                &create_time,
952                                &exit_time,
953                                &kernel_time,
954                                &user_time);
955  if (result != 0) {
956    FILETIME wt;
957    GetSystemTimeAsFileTime(&wt);
958    jlong rtc_millis = windows_to_java_time(wt);
959    jlong user_millis = windows_to_java_time(user_time);
960    jlong system_millis = windows_to_java_time(kernel_time);
961    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
962    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
963    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
964    return true;
965  } else {
966    return false;
967  }
968}
969
970void os::shutdown() {
971  // allow PerfMemory to attempt cleanup of any persistent resources
972  perfMemory_exit();
973
974  // flush buffered output, finish log files
975  ostream_abort();
976
977  // Check for abort hook
978  abort_hook_t abort_hook = Arguments::abort_hook();
979  if (abort_hook != NULL) {
980    abort_hook();
981  }
982}
983
984
985static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
986                                         PMINIDUMP_EXCEPTION_INFORMATION,
987                                         PMINIDUMP_USER_STREAM_INFORMATION,
988                                         PMINIDUMP_CALLBACK_INFORMATION);
989
990void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
991  HINSTANCE dbghelp;
992  EXCEPTION_POINTERS ep;
993  MINIDUMP_EXCEPTION_INFORMATION mei;
994  MINIDUMP_EXCEPTION_INFORMATION* pmei;
995
996  HANDLE hProcess = GetCurrentProcess();
997  DWORD processId = GetCurrentProcessId();
998  HANDLE dumpFile;
999  MINIDUMP_TYPE dumpType;
1000  static const char* cwd;
1001
1002// Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
1003#ifndef ASSERT
1004  // If running on a client version of Windows and user has not explicitly enabled dumping
1005  if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
1006    VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
1007    return;
1008    // If running on a server version of Windows and user has explictly disabled dumping
1009  } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1010    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1011    return;
1012  }
1013#else
1014  if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1015    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1016    return;
1017  }
1018#endif
1019
1020  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1021
1022  if (dbghelp == NULL) {
1023    VMError::report_coredump_status("Failed to load dbghelp.dll", false);
1024    return;
1025  }
1026
1027  _MiniDumpWriteDump =
1028      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1029                                    PMINIDUMP_EXCEPTION_INFORMATION,
1030                                    PMINIDUMP_USER_STREAM_INFORMATION,
1031                                    PMINIDUMP_CALLBACK_INFORMATION),
1032                                    GetProcAddress(dbghelp,
1033                                    "MiniDumpWriteDump"));
1034
1035  if (_MiniDumpWriteDump == NULL) {
1036    VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
1037    return;
1038  }
1039
1040  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1041
1042// Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1043// API_VERSION_NUMBER 11 or higher contains the ones we want though
1044#if API_VERSION_NUMBER >= 11
1045  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1046                             MiniDumpWithUnloadedModules);
1047#endif
1048
1049  cwd = get_current_directory(NULL, 0);
1050  jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1051  dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1052
1053  if (dumpFile == INVALID_HANDLE_VALUE) {
1054    VMError::report_coredump_status("Failed to create file for dumping", false);
1055    return;
1056  }
1057  if (exceptionRecord != NULL && contextRecord != NULL) {
1058    ep.ContextRecord = (PCONTEXT) contextRecord;
1059    ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1060
1061    mei.ThreadId = GetCurrentThreadId();
1062    mei.ExceptionPointers = &ep;
1063    pmei = &mei;
1064  } else {
1065    pmei = NULL;
1066  }
1067
1068
1069  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1070  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1071  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1072      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1073    DWORD error = GetLastError();
1074    LPTSTR msgbuf = NULL;
1075
1076    if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1077                      FORMAT_MESSAGE_FROM_SYSTEM |
1078                      FORMAT_MESSAGE_IGNORE_INSERTS,
1079                      NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1080
1081      jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1082      LocalFree(msgbuf);
1083    } else {
1084      // Call to FormatMessage failed, just include the result from GetLastError
1085      jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1086    }
1087    VMError::report_coredump_status(buffer, false);
1088  } else {
1089    VMError::report_coredump_status(buffer, true);
1090  }
1091
1092  CloseHandle(dumpFile);
1093}
1094
1095
1096void os::abort(bool dump_core) {
1097  os::shutdown();
1098  // no core dump on Windows
1099  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1100}
1101
1102// Die immediately, no exit hook, no abort hook, no cleanup.
1103void os::die() {
1104  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1105}
1106
1107// Directory routines copied from src/win32/native/java/io/dirent_md.c
1108//  * dirent_md.c       1.15 00/02/02
1109//
1110// The declarations for DIR and struct dirent are in jvm_win32.h.
1111
1112// Caller must have already run dirname through JVM_NativePath, which removes
1113// duplicate slashes and converts all instances of '/' into '\\'.
1114
1115DIR * os::opendir(const char *dirname) {
1116  assert(dirname != NULL, "just checking");   // hotspot change
1117  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1118  DWORD fattr;                                // hotspot change
1119  char alt_dirname[4] = { 0, 0, 0, 0 };
1120
1121  if (dirp == 0) {
1122    errno = ENOMEM;
1123    return 0;
1124  }
1125
1126  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1127  // as a directory in FindFirstFile().  We detect this case here and
1128  // prepend the current drive name.
1129  //
1130  if (dirname[1] == '\0' && dirname[0] == '\\') {
1131    alt_dirname[0] = _getdrive() + 'A' - 1;
1132    alt_dirname[1] = ':';
1133    alt_dirname[2] = '\\';
1134    alt_dirname[3] = '\0';
1135    dirname = alt_dirname;
1136  }
1137
1138  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1139  if (dirp->path == 0) {
1140    free(dirp);
1141    errno = ENOMEM;
1142    return 0;
1143  }
1144  strcpy(dirp->path, dirname);
1145
1146  fattr = GetFileAttributes(dirp->path);
1147  if (fattr == 0xffffffff) {
1148    free(dirp->path);
1149    free(dirp);
1150    errno = ENOENT;
1151    return 0;
1152  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1153    free(dirp->path);
1154    free(dirp);
1155    errno = ENOTDIR;
1156    return 0;
1157  }
1158
1159  // Append "*.*", or possibly "\\*.*", to path
1160  if (dirp->path[1] == ':' &&
1161      (dirp->path[2] == '\0' ||
1162      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1163    // No '\\' needed for cases like "Z:" or "Z:\"
1164    strcat(dirp->path, "*.*");
1165  } else {
1166    strcat(dirp->path, "\\*.*");
1167  }
1168
1169  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1170  if (dirp->handle == INVALID_HANDLE_VALUE) {
1171    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1172      free(dirp->path);
1173      free(dirp);
1174      errno = EACCES;
1175      return 0;
1176    }
1177  }
1178  return dirp;
1179}
1180
1181// parameter dbuf unused on Windows
1182struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1183  assert(dirp != NULL, "just checking");      // hotspot change
1184  if (dirp->handle == INVALID_HANDLE_VALUE) {
1185    return 0;
1186  }
1187
1188  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1189
1190  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1191    if (GetLastError() == ERROR_INVALID_HANDLE) {
1192      errno = EBADF;
1193      return 0;
1194    }
1195    FindClose(dirp->handle);
1196    dirp->handle = INVALID_HANDLE_VALUE;
1197  }
1198
1199  return &dirp->dirent;
1200}
1201
1202int os::closedir(DIR *dirp) {
1203  assert(dirp != NULL, "just checking");      // hotspot change
1204  if (dirp->handle != INVALID_HANDLE_VALUE) {
1205    if (!FindClose(dirp->handle)) {
1206      errno = EBADF;
1207      return -1;
1208    }
1209    dirp->handle = INVALID_HANDLE_VALUE;
1210  }
1211  free(dirp->path);
1212  free(dirp);
1213  return 0;
1214}
1215
1216// This must be hard coded because it's the system's temporary
1217// directory not the java application's temp directory, ala java.io.tmpdir.
1218const char* os::get_temp_directory() {
1219  static char path_buf[MAX_PATH];
1220  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1221    return path_buf;
1222  } else {
1223    path_buf[0] = '\0';
1224    return path_buf;
1225  }
1226}
1227
1228static bool file_exists(const char* filename) {
1229  if (filename == NULL || strlen(filename) == 0) {
1230    return false;
1231  }
1232  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1233}
1234
1235bool os::dll_build_name(char *buffer, size_t buflen,
1236                        const char* pname, const char* fname) {
1237  bool retval = false;
1238  const size_t pnamelen = pname ? strlen(pname) : 0;
1239  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1240
1241  // Return error on buffer overflow.
1242  if (pnamelen + strlen(fname) + 10 > buflen) {
1243    return retval;
1244  }
1245
1246  if (pnamelen == 0) {
1247    jio_snprintf(buffer, buflen, "%s.dll", fname);
1248    retval = true;
1249  } else if (c == ':' || c == '\\') {
1250    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1251    retval = true;
1252  } else if (strchr(pname, *os::path_separator()) != NULL) {
1253    int n;
1254    char** pelements = split_path(pname, &n);
1255    if (pelements == NULL) {
1256      return false;
1257    }
1258    for (int i = 0; i < n; i++) {
1259      char* path = pelements[i];
1260      // Really shouldn't be NULL, but check can't hurt
1261      size_t plen = (path == NULL) ? 0 : strlen(path);
1262      if (plen == 0) {
1263        continue; // skip the empty path values
1264      }
1265      const char lastchar = path[plen - 1];
1266      if (lastchar == ':' || lastchar == '\\') {
1267        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1268      } else {
1269        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1270      }
1271      if (file_exists(buffer)) {
1272        retval = true;
1273        break;
1274      }
1275    }
1276    // release the storage
1277    for (int i = 0; i < n; i++) {
1278      if (pelements[i] != NULL) {
1279        FREE_C_HEAP_ARRAY(char, pelements[i]);
1280      }
1281    }
1282    if (pelements != NULL) {
1283      FREE_C_HEAP_ARRAY(char*, pelements);
1284    }
1285  } else {
1286    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1287    retval = true;
1288  }
1289  return retval;
1290}
1291
1292// Needs to be in os specific directory because windows requires another
1293// header file <direct.h>
1294const char* os::get_current_directory(char *buf, size_t buflen) {
1295  int n = static_cast<int>(buflen);
1296  if (buflen > INT_MAX)  n = INT_MAX;
1297  return _getcwd(buf, n);
1298}
1299
1300//-----------------------------------------------------------
1301// Helper functions for fatal error handler
1302#ifdef _WIN64
1303// Helper routine which returns true if address in
1304// within the NTDLL address space.
1305//
1306static bool _addr_in_ntdll(address addr) {
1307  HMODULE hmod;
1308  MODULEINFO minfo;
1309
1310  hmod = GetModuleHandle("NTDLL.DLL");
1311  if (hmod == NULL) return false;
1312  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1313                                          &minfo, sizeof(MODULEINFO))) {
1314    return false;
1315  }
1316
1317  if ((addr >= minfo.lpBaseOfDll) &&
1318      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1319    return true;
1320  } else {
1321    return false;
1322  }
1323}
1324#endif
1325
1326struct _modinfo {
1327  address addr;
1328  char*   full_path;   // point to a char buffer
1329  int     buflen;      // size of the buffer
1330  address base_addr;
1331};
1332
1333static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1334                                  address top_address, void * param) {
1335  struct _modinfo *pmod = (struct _modinfo *)param;
1336  if (!pmod) return -1;
1337
1338  if (base_addr   <= pmod->addr &&
1339      top_address > pmod->addr) {
1340    // if a buffer is provided, copy path name to the buffer
1341    if (pmod->full_path) {
1342      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1343    }
1344    pmod->base_addr = base_addr;
1345    return 1;
1346  }
1347  return 0;
1348}
1349
1350bool os::dll_address_to_library_name(address addr, char* buf,
1351                                     int buflen, int* offset) {
1352  // buf is not optional, but offset is optional
1353  assert(buf != NULL, "sanity check");
1354
1355// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1356//       return the full path to the DLL file, sometimes it returns path
1357//       to the corresponding PDB file (debug info); sometimes it only
1358//       returns partial path, which makes life painful.
1359
1360  struct _modinfo mi;
1361  mi.addr      = addr;
1362  mi.full_path = buf;
1363  mi.buflen    = buflen;
1364  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1365    // buf already contains path name
1366    if (offset) *offset = addr - mi.base_addr;
1367    return true;
1368  }
1369
1370  buf[0] = '\0';
1371  if (offset) *offset = -1;
1372  return false;
1373}
1374
1375bool os::dll_address_to_function_name(address addr, char *buf,
1376                                      int buflen, int *offset) {
1377  // buf is not optional, but offset is optional
1378  assert(buf != NULL, "sanity check");
1379
1380  if (Decoder::decode(addr, buf, buflen, offset)) {
1381    return true;
1382  }
1383  if (offset != NULL)  *offset  = -1;
1384  buf[0] = '\0';
1385  return false;
1386}
1387
1388// save the start and end address of jvm.dll into param[0] and param[1]
1389static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1390                           address top_address, void * param) {
1391  if (!param) return -1;
1392
1393  if (base_addr   <= (address)_locate_jvm_dll &&
1394      top_address > (address)_locate_jvm_dll) {
1395    ((address*)param)[0] = base_addr;
1396    ((address*)param)[1] = top_address;
1397    return 1;
1398  }
1399  return 0;
1400}
1401
1402address vm_lib_location[2];    // start and end address of jvm.dll
1403
1404// check if addr is inside jvm.dll
1405bool os::address_is_in_vm(address addr) {
1406  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1407    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1408      assert(false, "Can't find jvm module.");
1409      return false;
1410    }
1411  }
1412
1413  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1414}
1415
1416// print module info; param is outputStream*
1417static int _print_module(const char* fname, address base_address,
1418                         address top_address, void* param) {
1419  if (!param) return -1;
1420
1421  outputStream* st = (outputStream*)param;
1422
1423  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1424  return 0;
1425}
1426
1427// Loads .dll/.so and
1428// in case of error it checks if .dll/.so was built for the
1429// same architecture as Hotspot is running on
1430void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1431  void * result = LoadLibrary(name);
1432  if (result != NULL) {
1433    return result;
1434  }
1435
1436  DWORD errcode = GetLastError();
1437  if (errcode == ERROR_MOD_NOT_FOUND) {
1438    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1439    ebuf[ebuflen - 1] = '\0';
1440    return NULL;
1441  }
1442
1443  // Parsing dll below
1444  // If we can read dll-info and find that dll was built
1445  // for an architecture other than Hotspot is running in
1446  // - then print to buffer "DLL was built for a different architecture"
1447  // else call os::lasterror to obtain system error message
1448
1449  // Read system error message into ebuf
1450  // It may or may not be overwritten below (in the for loop and just above)
1451  lasterror(ebuf, (size_t) ebuflen);
1452  ebuf[ebuflen - 1] = '\0';
1453  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1454  if (fd < 0) {
1455    return NULL;
1456  }
1457
1458  uint32_t signature_offset;
1459  uint16_t lib_arch = 0;
1460  bool failed_to_get_lib_arch =
1461    ( // Go to position 3c in the dll
1462     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1463     ||
1464     // Read location of signature
1465     (sizeof(signature_offset) !=
1466     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1467     ||
1468     // Go to COFF File Header in dll
1469     // that is located after "signature" (4 bytes long)
1470     (os::seek_to_file_offset(fd,
1471     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1472     ||
1473     // Read field that contains code of architecture
1474     // that dll was built for
1475     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1476    );
1477
1478  ::close(fd);
1479  if (failed_to_get_lib_arch) {
1480    // file i/o error - report os::lasterror(...) msg
1481    return NULL;
1482  }
1483
1484  typedef struct {
1485    uint16_t arch_code;
1486    char* arch_name;
1487  } arch_t;
1488
1489  static const arch_t arch_array[] = {
1490    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1491    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1492    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1493  };
1494#if   (defined _M_IA64)
1495  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1496#elif (defined _M_AMD64)
1497  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1498#elif (defined _M_IX86)
1499  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1500#else
1501  #error Method os::dll_load requires that one of following \
1502         is defined :_M_IA64,_M_AMD64 or _M_IX86
1503#endif
1504
1505
1506  // Obtain a string for printf operation
1507  // lib_arch_str shall contain string what platform this .dll was built for
1508  // running_arch_str shall string contain what platform Hotspot was built for
1509  char *running_arch_str = NULL, *lib_arch_str = NULL;
1510  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1511    if (lib_arch == arch_array[i].arch_code) {
1512      lib_arch_str = arch_array[i].arch_name;
1513    }
1514    if (running_arch == arch_array[i].arch_code) {
1515      running_arch_str = arch_array[i].arch_name;
1516    }
1517  }
1518
1519  assert(running_arch_str,
1520         "Didn't find running architecture code in arch_array");
1521
1522  // If the architecture is right
1523  // but some other error took place - report os::lasterror(...) msg
1524  if (lib_arch == running_arch) {
1525    return NULL;
1526  }
1527
1528  if (lib_arch_str != NULL) {
1529    ::_snprintf(ebuf, ebuflen - 1,
1530                "Can't load %s-bit .dll on a %s-bit platform",
1531                lib_arch_str, running_arch_str);
1532  } else {
1533    // don't know what architecture this dll was build for
1534    ::_snprintf(ebuf, ebuflen - 1,
1535                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1536                lib_arch, running_arch_str);
1537  }
1538
1539  return NULL;
1540}
1541
1542void os::print_dll_info(outputStream *st) {
1543  st->print_cr("Dynamic libraries:");
1544  get_loaded_modules_info(_print_module, (void *)st);
1545}
1546
1547int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1548  HANDLE   hProcess;
1549
1550# define MAX_NUM_MODULES 128
1551  HMODULE     modules[MAX_NUM_MODULES];
1552  static char filename[MAX_PATH];
1553  int         result = 0;
1554
1555  if (!os::PSApiDll::PSApiAvailable()) {
1556    return 0;
1557  }
1558
1559  int pid = os::current_process_id();
1560  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1561                         FALSE, pid);
1562  if (hProcess == NULL) return 0;
1563
1564  DWORD size_needed;
1565  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1566                                        sizeof(modules), &size_needed)) {
1567    CloseHandle(hProcess);
1568    return 0;
1569  }
1570
1571  // number of modules that are currently loaded
1572  int num_modules = size_needed / sizeof(HMODULE);
1573
1574  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1575    // Get Full pathname:
1576    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1577                                           filename, sizeof(filename))) {
1578      filename[0] = '\0';
1579    }
1580
1581    MODULEINFO modinfo;
1582    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1583                                            &modinfo, sizeof(modinfo))) {
1584      modinfo.lpBaseOfDll = NULL;
1585      modinfo.SizeOfImage = 0;
1586    }
1587
1588    // Invoke callback function
1589    result = callback(filename, (address)modinfo.lpBaseOfDll,
1590                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1591    if (result) break;
1592  }
1593
1594  CloseHandle(hProcess);
1595  return result;
1596}
1597
1598void os::print_os_info_brief(outputStream* st) {
1599  os::print_os_info(st);
1600}
1601
1602void os::print_os_info(outputStream* st) {
1603#ifdef ASSERT
1604  char buffer[1024];
1605  DWORD size = sizeof(buffer);
1606  st->print(" HostName: ");
1607  if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1608    st->print("%s", buffer);
1609  } else {
1610    st->print("N/A");
1611  }
1612#endif
1613  st->print(" OS:");
1614  os::win32::print_windows_version(st);
1615}
1616
1617void os::win32::print_windows_version(outputStream* st) {
1618  OSVERSIONINFOEX osvi;
1619  VS_FIXEDFILEINFO *file_info;
1620  TCHAR kernel32_path[MAX_PATH];
1621  UINT len, ret;
1622
1623  // Use the GetVersionEx information to see if we're on a server or
1624  // workstation edition of Windows. Starting with Windows 8.1 we can't
1625  // trust the OS version information returned by this API.
1626  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1627  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1628  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1629    st->print_cr("Call to GetVersionEx failed");
1630    return;
1631  }
1632  bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1633
1634  // Get the full path to \Windows\System32\kernel32.dll and use that for
1635  // determining what version of Windows we're running on.
1636  len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1637  ret = GetSystemDirectory(kernel32_path, len);
1638  if (ret == 0 || ret > len) {
1639    st->print_cr("Call to GetSystemDirectory failed");
1640    return;
1641  }
1642  strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1643
1644  DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1645  if (version_size == 0) {
1646    st->print_cr("Call to GetFileVersionInfoSize failed");
1647    return;
1648  }
1649
1650  LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1651  if (version_info == NULL) {
1652    st->print_cr("Failed to allocate version_info");
1653    return;
1654  }
1655
1656  if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1657    os::free(version_info);
1658    st->print_cr("Call to GetFileVersionInfo failed");
1659    return;
1660  }
1661
1662  if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1663    os::free(version_info);
1664    st->print_cr("Call to VerQueryValue failed");
1665    return;
1666  }
1667
1668  int major_version = HIWORD(file_info->dwProductVersionMS);
1669  int minor_version = LOWORD(file_info->dwProductVersionMS);
1670  int build_number = HIWORD(file_info->dwProductVersionLS);
1671  int build_minor = LOWORD(file_info->dwProductVersionLS);
1672  int os_vers = major_version * 1000 + minor_version;
1673  os::free(version_info);
1674
1675  st->print(" Windows ");
1676  switch (os_vers) {
1677
1678  case 6000:
1679    if (is_workstation) {
1680      st->print("Vista");
1681    } else {
1682      st->print("Server 2008");
1683    }
1684    break;
1685
1686  case 6001:
1687    if (is_workstation) {
1688      st->print("7");
1689    } else {
1690      st->print("Server 2008 R2");
1691    }
1692    break;
1693
1694  case 6002:
1695    if (is_workstation) {
1696      st->print("8");
1697    } else {
1698      st->print("Server 2012");
1699    }
1700    break;
1701
1702  case 6003:
1703    if (is_workstation) {
1704      st->print("8.1");
1705    } else {
1706      st->print("Server 2012 R2");
1707    }
1708    break;
1709
1710  case 10000:
1711    if (is_workstation) {
1712      st->print("10");
1713    } else {
1714      // The server version name of Windows 10 is not known at this time
1715      st->print("%d.%d", major_version, minor_version);
1716    }
1717    break;
1718
1719  default:
1720    // Unrecognized windows, print out its major and minor versions
1721    st->print("%d.%d", major_version, minor_version);
1722    break;
1723  }
1724
1725  // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1726  // find out whether we are running on 64 bit processor or not
1727  SYSTEM_INFO si;
1728  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1729  os::Kernel32Dll::GetNativeSystemInfo(&si);
1730  if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1731    st->print(" , 64 bit");
1732  }
1733
1734  st->print(" Build %d", build_number);
1735  st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1736  st->cr();
1737}
1738
1739void os::pd_print_cpu_info(outputStream* st) {
1740  // Nothing to do for now.
1741}
1742
1743void os::print_memory_info(outputStream* st) {
1744  st->print("Memory:");
1745  st->print(" %dk page", os::vm_page_size()>>10);
1746
1747  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1748  // value if total memory is larger than 4GB
1749  MEMORYSTATUSEX ms;
1750  ms.dwLength = sizeof(ms);
1751  GlobalMemoryStatusEx(&ms);
1752
1753  st->print(", physical %uk", os::physical_memory() >> 10);
1754  st->print("(%uk free)", os::available_memory() >> 10);
1755
1756  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1757  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1758  st->cr();
1759}
1760
1761void os::print_siginfo(outputStream *st, void *siginfo) {
1762  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1763  st->print("siginfo:");
1764  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1765
1766  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1767      er->NumberParameters >= 2) {
1768    switch (er->ExceptionInformation[0]) {
1769    case 0: st->print(", reading address"); break;
1770    case 1: st->print(", writing address"); break;
1771    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1772                       er->ExceptionInformation[0]);
1773    }
1774    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1775  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1776             er->NumberParameters >= 2 && UseSharedSpaces) {
1777    FileMapInfo* mapinfo = FileMapInfo::current_info();
1778    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1779      st->print("\n\nError accessing class data sharing archive."       \
1780                " Mapped file inaccessible during execution, "          \
1781                " possible disk/network problem.");
1782    }
1783  } else {
1784    int num = er->NumberParameters;
1785    if (num > 0) {
1786      st->print(", ExceptionInformation=");
1787      for (int i = 0; i < num; i++) {
1788        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1789      }
1790    }
1791  }
1792  st->cr();
1793}
1794
1795void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1796  // do nothing
1797}
1798
1799static char saved_jvm_path[MAX_PATH] = {0};
1800
1801// Find the full path to the current module, jvm.dll
1802void os::jvm_path(char *buf, jint buflen) {
1803  // Error checking.
1804  if (buflen < MAX_PATH) {
1805    assert(false, "must use a large-enough buffer");
1806    buf[0] = '\0';
1807    return;
1808  }
1809  // Lazy resolve the path to current module.
1810  if (saved_jvm_path[0] != 0) {
1811    strcpy(buf, saved_jvm_path);
1812    return;
1813  }
1814
1815  buf[0] = '\0';
1816  if (Arguments::sun_java_launcher_is_altjvm()) {
1817    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1818    // for a JAVA_HOME environment variable and fix up the path so it
1819    // looks like jvm.dll is installed there (append a fake suffix
1820    // hotspot/jvm.dll).
1821    char* java_home_var = ::getenv("JAVA_HOME");
1822    if (java_home_var != NULL && java_home_var[0] != 0 &&
1823        strlen(java_home_var) < (size_t)buflen) {
1824      strncpy(buf, java_home_var, buflen);
1825
1826      // determine if this is a legacy image or modules image
1827      // modules image doesn't have "jre" subdirectory
1828      size_t len = strlen(buf);
1829      char* jrebin_p = buf + len;
1830      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1831      if (0 != _access(buf, 0)) {
1832        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1833      }
1834      len = strlen(buf);
1835      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1836    }
1837  }
1838
1839  if (buf[0] == '\0') {
1840    GetModuleFileName(vm_lib_handle, buf, buflen);
1841  }
1842  strncpy(saved_jvm_path, buf, MAX_PATH);
1843  saved_jvm_path[MAX_PATH - 1] = '\0';
1844}
1845
1846
1847void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1848#ifndef _WIN64
1849  st->print("_");
1850#endif
1851}
1852
1853
1854void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1855#ifndef _WIN64
1856  st->print("@%d", args_size  * sizeof(int));
1857#endif
1858}
1859
1860// This method is a copy of JDK's sysGetLastErrorString
1861// from src/windows/hpi/src/system_md.c
1862
1863size_t os::lasterror(char* buf, size_t len) {
1864  DWORD errval;
1865
1866  if ((errval = GetLastError()) != 0) {
1867    // DOS error
1868    size_t n = (size_t)FormatMessage(
1869                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1870                                     NULL,
1871                                     errval,
1872                                     0,
1873                                     buf,
1874                                     (DWORD)len,
1875                                     NULL);
1876    if (n > 3) {
1877      // Drop final '.', CR, LF
1878      if (buf[n - 1] == '\n') n--;
1879      if (buf[n - 1] == '\r') n--;
1880      if (buf[n - 1] == '.') n--;
1881      buf[n] = '\0';
1882    }
1883    return n;
1884  }
1885
1886  if (errno != 0) {
1887    // C runtime error that has no corresponding DOS error code
1888    const char* s = strerror(errno);
1889    size_t n = strlen(s);
1890    if (n >= len) n = len - 1;
1891    strncpy(buf, s, n);
1892    buf[n] = '\0';
1893    return n;
1894  }
1895
1896  return 0;
1897}
1898
1899int os::get_last_error() {
1900  DWORD error = GetLastError();
1901  if (error == 0) {
1902    error = errno;
1903  }
1904  return (int)error;
1905}
1906
1907// sun.misc.Signal
1908// NOTE that this is a workaround for an apparent kernel bug where if
1909// a signal handler for SIGBREAK is installed then that signal handler
1910// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1911// See bug 4416763.
1912static void (*sigbreakHandler)(int) = NULL;
1913
1914static void UserHandler(int sig, void *siginfo, void *context) {
1915  os::signal_notify(sig);
1916  // We need to reinstate the signal handler each time...
1917  os::signal(sig, (void*)UserHandler);
1918}
1919
1920void* os::user_handler() {
1921  return (void*) UserHandler;
1922}
1923
1924void* os::signal(int signal_number, void* handler) {
1925  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1926    void (*oldHandler)(int) = sigbreakHandler;
1927    sigbreakHandler = (void (*)(int)) handler;
1928    return (void*) oldHandler;
1929  } else {
1930    return (void*)::signal(signal_number, (void (*)(int))handler);
1931  }
1932}
1933
1934void os::signal_raise(int signal_number) {
1935  raise(signal_number);
1936}
1937
1938// The Win32 C runtime library maps all console control events other than ^C
1939// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1940// logoff, and shutdown events.  We therefore install our own console handler
1941// that raises SIGTERM for the latter cases.
1942//
1943static BOOL WINAPI consoleHandler(DWORD event) {
1944  switch (event) {
1945  case CTRL_C_EVENT:
1946    if (is_error_reported()) {
1947      // Ctrl-C is pressed during error reporting, likely because the error
1948      // handler fails to abort. Let VM die immediately.
1949      os::die();
1950    }
1951
1952    os::signal_raise(SIGINT);
1953    return TRUE;
1954    break;
1955  case CTRL_BREAK_EVENT:
1956    if (sigbreakHandler != NULL) {
1957      (*sigbreakHandler)(SIGBREAK);
1958    }
1959    return TRUE;
1960    break;
1961  case CTRL_LOGOFF_EVENT: {
1962    // Don't terminate JVM if it is running in a non-interactive session,
1963    // such as a service process.
1964    USEROBJECTFLAGS flags;
1965    HANDLE handle = GetProcessWindowStation();
1966    if (handle != NULL &&
1967        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1968        sizeof(USEROBJECTFLAGS), NULL)) {
1969      // If it is a non-interactive session, let next handler to deal
1970      // with it.
1971      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1972        return FALSE;
1973      }
1974    }
1975  }
1976  case CTRL_CLOSE_EVENT:
1977  case CTRL_SHUTDOWN_EVENT:
1978    os::signal_raise(SIGTERM);
1979    return TRUE;
1980    break;
1981  default:
1982    break;
1983  }
1984  return FALSE;
1985}
1986
1987// The following code is moved from os.cpp for making this
1988// code platform specific, which it is by its very nature.
1989
1990// Return maximum OS signal used + 1 for internal use only
1991// Used as exit signal for signal_thread
1992int os::sigexitnum_pd() {
1993  return NSIG;
1994}
1995
1996// a counter for each possible signal value, including signal_thread exit signal
1997static volatile jint pending_signals[NSIG+1] = { 0 };
1998static HANDLE sig_sem = NULL;
1999
2000void os::signal_init_pd() {
2001  // Initialize signal structures
2002  memset((void*)pending_signals, 0, sizeof(pending_signals));
2003
2004  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2005
2006  // Programs embedding the VM do not want it to attempt to receive
2007  // events like CTRL_LOGOFF_EVENT, which are used to implement the
2008  // shutdown hooks mechanism introduced in 1.3.  For example, when
2009  // the VM is run as part of a Windows NT service (i.e., a servlet
2010  // engine in a web server), the correct behavior is for any console
2011  // control handler to return FALSE, not TRUE, because the OS's
2012  // "final" handler for such events allows the process to continue if
2013  // it is a service (while terminating it if it is not a service).
2014  // To make this behavior uniform and the mechanism simpler, we
2015  // completely disable the VM's usage of these console events if -Xrs
2016  // (=ReduceSignalUsage) is specified.  This means, for example, that
2017  // the CTRL-BREAK thread dump mechanism is also disabled in this
2018  // case.  See bugs 4323062, 4345157, and related bugs.
2019
2020  if (!ReduceSignalUsage) {
2021    // Add a CTRL-C handler
2022    SetConsoleCtrlHandler(consoleHandler, TRUE);
2023  }
2024}
2025
2026void os::signal_notify(int signal_number) {
2027  BOOL ret;
2028  if (sig_sem != NULL) {
2029    Atomic::inc(&pending_signals[signal_number]);
2030    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2031    assert(ret != 0, "ReleaseSemaphore() failed");
2032  }
2033}
2034
2035static int check_pending_signals(bool wait_for_signal) {
2036  DWORD ret;
2037  while (true) {
2038    for (int i = 0; i < NSIG + 1; i++) {
2039      jint n = pending_signals[i];
2040      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2041        return i;
2042      }
2043    }
2044    if (!wait_for_signal) {
2045      return -1;
2046    }
2047
2048    JavaThread *thread = JavaThread::current();
2049
2050    ThreadBlockInVM tbivm(thread);
2051
2052    bool threadIsSuspended;
2053    do {
2054      thread->set_suspend_equivalent();
2055      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2056      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2057      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2058
2059      // were we externally suspended while we were waiting?
2060      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2061      if (threadIsSuspended) {
2062        // The semaphore has been incremented, but while we were waiting
2063        // another thread suspended us. We don't want to continue running
2064        // while suspended because that would surprise the thread that
2065        // suspended us.
2066        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2067        assert(ret != 0, "ReleaseSemaphore() failed");
2068
2069        thread->java_suspend_self();
2070      }
2071    } while (threadIsSuspended);
2072  }
2073}
2074
2075int os::signal_lookup() {
2076  return check_pending_signals(false);
2077}
2078
2079int os::signal_wait() {
2080  return check_pending_signals(true);
2081}
2082
2083// Implicit OS exception handling
2084
2085LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2086                      address handler) {
2087  JavaThread* thread = JavaThread::current();
2088  // Save pc in thread
2089#ifdef _M_IA64
2090  // Do not blow up if no thread info available.
2091  if (thread) {
2092    // Saving PRECISE pc (with slot information) in thread.
2093    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2094    // Convert precise PC into "Unix" format
2095    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2096    thread->set_saved_exception_pc((address)precise_pc);
2097  }
2098  // Set pc to handler
2099  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2100  // Clear out psr.ri (= Restart Instruction) in order to continue
2101  // at the beginning of the target bundle.
2102  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2103  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2104#elif _M_AMD64
2105  // Do not blow up if no thread info available.
2106  if (thread) {
2107    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2108  }
2109  // Set pc to handler
2110  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2111#else
2112  // Do not blow up if no thread info available.
2113  if (thread) {
2114    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2115  }
2116  // Set pc to handler
2117  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2118#endif
2119
2120  // Continue the execution
2121  return EXCEPTION_CONTINUE_EXECUTION;
2122}
2123
2124
2125// Used for PostMortemDump
2126extern "C" void safepoints();
2127extern "C" void find(int x);
2128extern "C" void events();
2129
2130// According to Windows API documentation, an illegal instruction sequence should generate
2131// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2132// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2133// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2134
2135#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2136
2137// From "Execution Protection in the Windows Operating System" draft 0.35
2138// Once a system header becomes available, the "real" define should be
2139// included or copied here.
2140#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2141
2142// Handle NAT Bit consumption on IA64.
2143#ifdef _M_IA64
2144  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2145#endif
2146
2147// Windows Vista/2008 heap corruption check
2148#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2149
2150#define def_excpt(val) #val, val
2151
2152struct siglabel {
2153  char *name;
2154  int   number;
2155};
2156
2157// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2158// C++ compiler contain this error code. Because this is a compiler-generated
2159// error, the code is not listed in the Win32 API header files.
2160// The code is actually a cryptic mnemonic device, with the initial "E"
2161// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2162// ASCII values of "msc".
2163
2164#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2165
2166
2167struct siglabel exceptlabels[] = {
2168    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2169    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2170    def_excpt(EXCEPTION_BREAKPOINT),
2171    def_excpt(EXCEPTION_SINGLE_STEP),
2172    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2173    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2174    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2175    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2176    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2177    def_excpt(EXCEPTION_FLT_OVERFLOW),
2178    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2179    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2180    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2181    def_excpt(EXCEPTION_INT_OVERFLOW),
2182    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2183    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2184    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2185    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2186    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2187    def_excpt(EXCEPTION_STACK_OVERFLOW),
2188    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2189    def_excpt(EXCEPTION_GUARD_PAGE),
2190    def_excpt(EXCEPTION_INVALID_HANDLE),
2191    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2192    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2193#ifdef _M_IA64
2194    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2195#endif
2196    NULL, 0
2197};
2198
2199const char* os::exception_name(int exception_code, char *buf, size_t size) {
2200  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2201    if (exceptlabels[i].number == exception_code) {
2202      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2203      return buf;
2204    }
2205  }
2206
2207  return NULL;
2208}
2209
2210//-----------------------------------------------------------------------------
2211LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2212  // handle exception caused by idiv; should only happen for -MinInt/-1
2213  // (division by zero is handled explicitly)
2214#ifdef _M_IA64
2215  assert(0, "Fix Handle_IDiv_Exception");
2216#elif _M_AMD64
2217  PCONTEXT ctx = exceptionInfo->ContextRecord;
2218  address pc = (address)ctx->Rip;
2219  assert(pc[0] == 0xF7, "not an idiv opcode");
2220  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2221  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2222  // set correct result values and continue after idiv instruction
2223  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2224  ctx->Rax = (DWORD)min_jint;      // result
2225  ctx->Rdx = (DWORD)0;             // remainder
2226  // Continue the execution
2227#else
2228  PCONTEXT ctx = exceptionInfo->ContextRecord;
2229  address pc = (address)ctx->Eip;
2230  assert(pc[0] == 0xF7, "not an idiv opcode");
2231  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2232  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2233  // set correct result values and continue after idiv instruction
2234  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2235  ctx->Eax = (DWORD)min_jint;      // result
2236  ctx->Edx = (DWORD)0;             // remainder
2237  // Continue the execution
2238#endif
2239  return EXCEPTION_CONTINUE_EXECUTION;
2240}
2241
2242//-----------------------------------------------------------------------------
2243LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2244  PCONTEXT ctx = exceptionInfo->ContextRecord;
2245#ifndef  _WIN64
2246  // handle exception caused by native method modifying control word
2247  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2248
2249  switch (exception_code) {
2250  case EXCEPTION_FLT_DENORMAL_OPERAND:
2251  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2252  case EXCEPTION_FLT_INEXACT_RESULT:
2253  case EXCEPTION_FLT_INVALID_OPERATION:
2254  case EXCEPTION_FLT_OVERFLOW:
2255  case EXCEPTION_FLT_STACK_CHECK:
2256  case EXCEPTION_FLT_UNDERFLOW:
2257    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2258    if (fp_control_word != ctx->FloatSave.ControlWord) {
2259      // Restore FPCW and mask out FLT exceptions
2260      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2261      // Mask out pending FLT exceptions
2262      ctx->FloatSave.StatusWord &=  0xffffff00;
2263      return EXCEPTION_CONTINUE_EXECUTION;
2264    }
2265  }
2266
2267  if (prev_uef_handler != NULL) {
2268    // We didn't handle this exception so pass it to the previous
2269    // UnhandledExceptionFilter.
2270    return (prev_uef_handler)(exceptionInfo);
2271  }
2272#else // !_WIN64
2273  // On Windows, the mxcsr control bits are non-volatile across calls
2274  // See also CR 6192333
2275  //
2276  jint MxCsr = INITIAL_MXCSR;
2277  // we can't use StubRoutines::addr_mxcsr_std()
2278  // because in Win64 mxcsr is not saved there
2279  if (MxCsr != ctx->MxCsr) {
2280    ctx->MxCsr = MxCsr;
2281    return EXCEPTION_CONTINUE_EXECUTION;
2282  }
2283#endif // !_WIN64
2284
2285  return EXCEPTION_CONTINUE_SEARCH;
2286}
2287
2288static inline void report_error(Thread* t, DWORD exception_code,
2289                                address addr, void* siginfo, void* context) {
2290  VMError err(t, exception_code, addr, siginfo, context);
2291  err.report_and_die();
2292
2293  // If UseOsErrorReporting, this will return here and save the error file
2294  // somewhere where we can find it in the minidump.
2295}
2296
2297//-----------------------------------------------------------------------------
2298LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2299  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2300  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2301#ifdef _M_IA64
2302  // On Itanium, we need the "precise pc", which has the slot number coded
2303  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2304  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2305  // Convert the pc to "Unix format", which has the slot number coded
2306  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2307  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2308  // information is saved in the Unix format.
2309  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2310#elif _M_AMD64
2311  address pc = (address) exceptionInfo->ContextRecord->Rip;
2312#else
2313  address pc = (address) exceptionInfo->ContextRecord->Eip;
2314#endif
2315  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2316
2317  // Handle SafeFetch32 and SafeFetchN exceptions.
2318  if (StubRoutines::is_safefetch_fault(pc)) {
2319    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2320  }
2321
2322#ifndef _WIN64
2323  // Execution protection violation - win32 running on AMD64 only
2324  // Handled first to avoid misdiagnosis as a "normal" access violation;
2325  // This is safe to do because we have a new/unique ExceptionInformation
2326  // code for this condition.
2327  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2328    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2329    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2330    address addr = (address) exceptionRecord->ExceptionInformation[1];
2331
2332    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2333      int page_size = os::vm_page_size();
2334
2335      // Make sure the pc and the faulting address are sane.
2336      //
2337      // If an instruction spans a page boundary, and the page containing
2338      // the beginning of the instruction is executable but the following
2339      // page is not, the pc and the faulting address might be slightly
2340      // different - we still want to unguard the 2nd page in this case.
2341      //
2342      // 15 bytes seems to be a (very) safe value for max instruction size.
2343      bool pc_is_near_addr =
2344        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2345      bool instr_spans_page_boundary =
2346        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2347                         (intptr_t) page_size) > 0);
2348
2349      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2350        static volatile address last_addr =
2351          (address) os::non_memory_address_word();
2352
2353        // In conservative mode, don't unguard unless the address is in the VM
2354        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2355            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2356
2357          // Set memory to RWX and retry
2358          address page_start =
2359            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2360          bool res = os::protect_memory((char*) page_start, page_size,
2361                                        os::MEM_PROT_RWX);
2362
2363          if (PrintMiscellaneous && Verbose) {
2364            char buf[256];
2365            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2366                         "at " INTPTR_FORMAT
2367                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2368                         page_start, (res ? "success" : strerror(errno)));
2369            tty->print_raw_cr(buf);
2370          }
2371
2372          // Set last_addr so if we fault again at the same address, we don't
2373          // end up in an endless loop.
2374          //
2375          // There are two potential complications here.  Two threads trapping
2376          // at the same address at the same time could cause one of the
2377          // threads to think it already unguarded, and abort the VM.  Likely
2378          // very rare.
2379          //
2380          // The other race involves two threads alternately trapping at
2381          // different addresses and failing to unguard the page, resulting in
2382          // an endless loop.  This condition is probably even more unlikely
2383          // than the first.
2384          //
2385          // Although both cases could be avoided by using locks or thread
2386          // local last_addr, these solutions are unnecessary complication:
2387          // this handler is a best-effort safety net, not a complete solution.
2388          // It is disabled by default and should only be used as a workaround
2389          // in case we missed any no-execute-unsafe VM code.
2390
2391          last_addr = addr;
2392
2393          return EXCEPTION_CONTINUE_EXECUTION;
2394        }
2395      }
2396
2397      // Last unguard failed or not unguarding
2398      tty->print_raw_cr("Execution protection violation");
2399      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2400                   exceptionInfo->ContextRecord);
2401      return EXCEPTION_CONTINUE_SEARCH;
2402    }
2403  }
2404#endif // _WIN64
2405
2406  // Check to see if we caught the safepoint code in the
2407  // process of write protecting the memory serialization page.
2408  // It write enables the page immediately after protecting it
2409  // so just return.
2410  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2411    JavaThread* thread = (JavaThread*) t;
2412    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2413    address addr = (address) exceptionRecord->ExceptionInformation[1];
2414    if (os::is_memory_serialize_page(thread, addr)) {
2415      // Block current thread until the memory serialize page permission restored.
2416      os::block_on_serialize_page_trap();
2417      return EXCEPTION_CONTINUE_EXECUTION;
2418    }
2419  }
2420
2421  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2422      VM_Version::is_cpuinfo_segv_addr(pc)) {
2423    // Verify that OS save/restore AVX registers.
2424    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2425  }
2426
2427  if (t != NULL && t->is_Java_thread()) {
2428    JavaThread* thread = (JavaThread*) t;
2429    bool in_java = thread->thread_state() == _thread_in_Java;
2430
2431    // Handle potential stack overflows up front.
2432    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2433      if (os::uses_stack_guard_pages()) {
2434#ifdef _M_IA64
2435        // Use guard page for register stack.
2436        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2437        address addr = (address) exceptionRecord->ExceptionInformation[1];
2438        // Check for a register stack overflow on Itanium
2439        if (thread->addr_inside_register_stack_red_zone(addr)) {
2440          // Fatal red zone violation happens if the Java program
2441          // catches a StackOverflow error and does so much processing
2442          // that it runs beyond the unprotected yellow guard zone. As
2443          // a result, we are out of here.
2444          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2445        } else if(thread->addr_inside_register_stack(addr)) {
2446          // Disable the yellow zone which sets the state that
2447          // we've got a stack overflow problem.
2448          if (thread->stack_yellow_zone_enabled()) {
2449            thread->disable_stack_yellow_zone();
2450          }
2451          // Give us some room to process the exception.
2452          thread->disable_register_stack_guard();
2453          // Tracing with +Verbose.
2454          if (Verbose) {
2455            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2456            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2457            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2458            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2459                          thread->register_stack_base(),
2460                          thread->register_stack_base() + thread->stack_size());
2461          }
2462
2463          // Reguard the permanent register stack red zone just to be sure.
2464          // We saw Windows silently disabling this without telling us.
2465          thread->enable_register_stack_red_zone();
2466
2467          return Handle_Exception(exceptionInfo,
2468                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2469        }
2470#endif
2471        if (thread->stack_yellow_zone_enabled()) {
2472          // Yellow zone violation.  The o/s has unprotected the first yellow
2473          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2474          // update the enabled status, even if the zone contains only one page.
2475          thread->disable_stack_yellow_zone();
2476          // If not in java code, return and hope for the best.
2477          return in_java
2478              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2479              :  EXCEPTION_CONTINUE_EXECUTION;
2480        } else {
2481          // Fatal red zone violation.
2482          thread->disable_stack_red_zone();
2483          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2484          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2485                       exceptionInfo->ContextRecord);
2486          return EXCEPTION_CONTINUE_SEARCH;
2487        }
2488      } else if (in_java) {
2489        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2490        // a one-time-only guard page, which it has released to us.  The next
2491        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2492        return Handle_Exception(exceptionInfo,
2493                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2494      } else {
2495        // Can only return and hope for the best.  Further stack growth will
2496        // result in an ACCESS_VIOLATION.
2497        return EXCEPTION_CONTINUE_EXECUTION;
2498      }
2499    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2500      // Either stack overflow or null pointer exception.
2501      if (in_java) {
2502        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2503        address addr = (address) exceptionRecord->ExceptionInformation[1];
2504        address stack_end = thread->stack_base() - thread->stack_size();
2505        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2506          // Stack overflow.
2507          assert(!os::uses_stack_guard_pages(),
2508                 "should be caught by red zone code above.");
2509          return Handle_Exception(exceptionInfo,
2510                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2511        }
2512        // Check for safepoint polling and implicit null
2513        // We only expect null pointers in the stubs (vtable)
2514        // the rest are checked explicitly now.
2515        CodeBlob* cb = CodeCache::find_blob(pc);
2516        if (cb != NULL) {
2517          if (os::is_poll_address(addr)) {
2518            address stub = SharedRuntime::get_poll_stub(pc);
2519            return Handle_Exception(exceptionInfo, stub);
2520          }
2521        }
2522        {
2523#ifdef _WIN64
2524          // If it's a legal stack address map the entire region in
2525          //
2526          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2527          address addr = (address) exceptionRecord->ExceptionInformation[1];
2528          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2529            addr = (address)((uintptr_t)addr &
2530                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2531            os::commit_memory((char *)addr, thread->stack_base() - addr,
2532                              !ExecMem);
2533            return EXCEPTION_CONTINUE_EXECUTION;
2534          } else
2535#endif
2536          {
2537            // Null pointer exception.
2538#ifdef _M_IA64
2539            // Process implicit null checks in compiled code. Note: Implicit null checks
2540            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2541            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2542              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2543              // Handle implicit null check in UEP method entry
2544              if (cb && (cb->is_frame_complete_at(pc) ||
2545                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2546                if (Verbose) {
2547                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2548                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2549                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2550                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2551                                *(bundle_start + 1), *bundle_start);
2552                }
2553                return Handle_Exception(exceptionInfo,
2554                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2555              }
2556            }
2557
2558            // Implicit null checks were processed above.  Hence, we should not reach
2559            // here in the usual case => die!
2560            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2561            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2562                         exceptionInfo->ContextRecord);
2563            return EXCEPTION_CONTINUE_SEARCH;
2564
2565#else // !IA64
2566
2567            // Windows 98 reports faulting addresses incorrectly
2568            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2569                !os::win32::is_nt()) {
2570              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2571              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2572            }
2573            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2574                         exceptionInfo->ContextRecord);
2575            return EXCEPTION_CONTINUE_SEARCH;
2576#endif
2577          }
2578        }
2579      }
2580
2581#ifdef _WIN64
2582      // Special care for fast JNI field accessors.
2583      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2584      // in and the heap gets shrunk before the field access.
2585      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2586        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2587        if (addr != (address)-1) {
2588          return Handle_Exception(exceptionInfo, addr);
2589        }
2590      }
2591#endif
2592
2593      // Stack overflow or null pointer exception in native code.
2594      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2595                   exceptionInfo->ContextRecord);
2596      return EXCEPTION_CONTINUE_SEARCH;
2597    } // /EXCEPTION_ACCESS_VIOLATION
2598    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2599#if defined _M_IA64
2600    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2601              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2602      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2603
2604      // Compiled method patched to be non entrant? Following conditions must apply:
2605      // 1. must be first instruction in bundle
2606      // 2. must be a break instruction with appropriate code
2607      if ((((uint64_t) pc & 0x0F) == 0) &&
2608          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2609        return Handle_Exception(exceptionInfo,
2610                                (address)SharedRuntime::get_handle_wrong_method_stub());
2611      }
2612    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2613#endif
2614
2615
2616    if (in_java) {
2617      switch (exception_code) {
2618      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2619        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2620
2621      case EXCEPTION_INT_OVERFLOW:
2622        return Handle_IDiv_Exception(exceptionInfo);
2623
2624      } // switch
2625    }
2626    if (((thread->thread_state() == _thread_in_Java) ||
2627         (thread->thread_state() == _thread_in_native)) &&
2628         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2629      LONG result=Handle_FLT_Exception(exceptionInfo);
2630      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2631    }
2632  }
2633
2634  if (exception_code != EXCEPTION_BREAKPOINT) {
2635    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2636                 exceptionInfo->ContextRecord);
2637  }
2638  return EXCEPTION_CONTINUE_SEARCH;
2639}
2640
2641#ifndef _WIN64
2642// Special care for fast JNI accessors.
2643// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2644// the heap gets shrunk before the field access.
2645// Need to install our own structured exception handler since native code may
2646// install its own.
2647LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2648  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2649  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2650    address pc = (address) exceptionInfo->ContextRecord->Eip;
2651    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2652    if (addr != (address)-1) {
2653      return Handle_Exception(exceptionInfo, addr);
2654    }
2655  }
2656  return EXCEPTION_CONTINUE_SEARCH;
2657}
2658
2659#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2660  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2661                                                     jobject obj,           \
2662                                                     jfieldID fieldID) {    \
2663    __try {                                                                 \
2664      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2665                                                                 obj,       \
2666                                                                 fieldID);  \
2667    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2668                                              _exception_info())) {         \
2669    }                                                                       \
2670    return 0;                                                               \
2671  }
2672
2673DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2674DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2675DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2676DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2677DEFINE_FAST_GETFIELD(jint,     int,    Int)
2678DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2679DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2680DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2681
2682address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2683  switch (type) {
2684  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2685  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2686  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2687  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2688  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2689  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2690  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2691  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2692  default:        ShouldNotReachHere();
2693  }
2694  return (address)-1;
2695}
2696#endif
2697
2698void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2699  // Install a win32 structured exception handler around the test
2700  // function call so the VM can generate an error dump if needed.
2701  __try {
2702    (*funcPtr)();
2703  } __except(topLevelExceptionFilter(
2704                                     (_EXCEPTION_POINTERS*)_exception_info())) {
2705    // Nothing to do.
2706  }
2707}
2708
2709// Virtual Memory
2710
2711int os::vm_page_size() { return os::win32::vm_page_size(); }
2712int os::vm_allocation_granularity() {
2713  return os::win32::vm_allocation_granularity();
2714}
2715
2716// Windows large page support is available on Windows 2003. In order to use
2717// large page memory, the administrator must first assign additional privilege
2718// to the user:
2719//   + select Control Panel -> Administrative Tools -> Local Security Policy
2720//   + select Local Policies -> User Rights Assignment
2721//   + double click "Lock pages in memory", add users and/or groups
2722//   + reboot
2723// Note the above steps are needed for administrator as well, as administrators
2724// by default do not have the privilege to lock pages in memory.
2725//
2726// Note about Windows 2003: although the API supports committing large page
2727// memory on a page-by-page basis and VirtualAlloc() returns success under this
2728// scenario, I found through experiment it only uses large page if the entire
2729// memory region is reserved and committed in a single VirtualAlloc() call.
2730// This makes Windows large page support more or less like Solaris ISM, in
2731// that the entire heap must be committed upfront. This probably will change
2732// in the future, if so the code below needs to be revisited.
2733
2734#ifndef MEM_LARGE_PAGES
2735  #define MEM_LARGE_PAGES 0x20000000
2736#endif
2737
2738static HANDLE    _hProcess;
2739static HANDLE    _hToken;
2740
2741// Container for NUMA node list info
2742class NUMANodeListHolder {
2743 private:
2744  int *_numa_used_node_list;  // allocated below
2745  int _numa_used_node_count;
2746
2747  void free_node_list() {
2748    if (_numa_used_node_list != NULL) {
2749      FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2750    }
2751  }
2752
2753 public:
2754  NUMANodeListHolder() {
2755    _numa_used_node_count = 0;
2756    _numa_used_node_list = NULL;
2757    // do rest of initialization in build routine (after function pointers are set up)
2758  }
2759
2760  ~NUMANodeListHolder() {
2761    free_node_list();
2762  }
2763
2764  bool build() {
2765    DWORD_PTR proc_aff_mask;
2766    DWORD_PTR sys_aff_mask;
2767    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2768    ULONG highest_node_number;
2769    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2770    free_node_list();
2771    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2772    for (unsigned int i = 0; i <= highest_node_number; i++) {
2773      ULONGLONG proc_mask_numa_node;
2774      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2775      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2776        _numa_used_node_list[_numa_used_node_count++] = i;
2777      }
2778    }
2779    return (_numa_used_node_count > 1);
2780  }
2781
2782  int get_count() { return _numa_used_node_count; }
2783  int get_node_list_entry(int n) {
2784    // for indexes out of range, returns -1
2785    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2786  }
2787
2788} numa_node_list_holder;
2789
2790
2791
2792static size_t _large_page_size = 0;
2793
2794static bool resolve_functions_for_large_page_init() {
2795  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2796    os::Advapi32Dll::AdvapiAvailable();
2797}
2798
2799static bool request_lock_memory_privilege() {
2800  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2801                          os::current_process_id());
2802
2803  LUID luid;
2804  if (_hProcess != NULL &&
2805      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2806      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2807
2808    TOKEN_PRIVILEGES tp;
2809    tp.PrivilegeCount = 1;
2810    tp.Privileges[0].Luid = luid;
2811    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2812
2813    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2814    // privilege. Check GetLastError() too. See MSDN document.
2815    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2816        (GetLastError() == ERROR_SUCCESS)) {
2817      return true;
2818    }
2819  }
2820
2821  return false;
2822}
2823
2824static void cleanup_after_large_page_init() {
2825  if (_hProcess) CloseHandle(_hProcess);
2826  _hProcess = NULL;
2827  if (_hToken) CloseHandle(_hToken);
2828  _hToken = NULL;
2829}
2830
2831static bool numa_interleaving_init() {
2832  bool success = false;
2833  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2834
2835  // print a warning if UseNUMAInterleaving flag is specified on command line
2836  bool warn_on_failure = use_numa_interleaving_specified;
2837#define WARN(msg) if (warn_on_failure) { warning(msg); }
2838
2839  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2840  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2841  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2842
2843  if (os::Kernel32Dll::NumaCallsAvailable()) {
2844    if (numa_node_list_holder.build()) {
2845      if (PrintMiscellaneous && Verbose) {
2846        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2847        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2848          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2849        }
2850        tty->print("\n");
2851      }
2852      success = true;
2853    } else {
2854      WARN("Process does not cover multiple NUMA nodes.");
2855    }
2856  } else {
2857    WARN("NUMA Interleaving is not supported by the operating system.");
2858  }
2859  if (!success) {
2860    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2861  }
2862  return success;
2863#undef WARN
2864}
2865
2866// this routine is used whenever we need to reserve a contiguous VA range
2867// but we need to make separate VirtualAlloc calls for each piece of the range
2868// Reasons for doing this:
2869//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2870//  * UseNUMAInterleaving requires a separate node for each piece
2871static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2872                                         DWORD prot,
2873                                         bool should_inject_error = false) {
2874  char * p_buf;
2875  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2876  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2877  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2878
2879  // first reserve enough address space in advance since we want to be
2880  // able to break a single contiguous virtual address range into multiple
2881  // large page commits but WS2003 does not allow reserving large page space
2882  // so we just use 4K pages for reserve, this gives us a legal contiguous
2883  // address space. then we will deallocate that reservation, and re alloc
2884  // using large pages
2885  const size_t size_of_reserve = bytes + chunk_size;
2886  if (bytes > size_of_reserve) {
2887    // Overflowed.
2888    return NULL;
2889  }
2890  p_buf = (char *) VirtualAlloc(addr,
2891                                size_of_reserve,  // size of Reserve
2892                                MEM_RESERVE,
2893                                PAGE_READWRITE);
2894  // If reservation failed, return NULL
2895  if (p_buf == NULL) return NULL;
2896  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2897  os::release_memory(p_buf, bytes + chunk_size);
2898
2899  // we still need to round up to a page boundary (in case we are using large pages)
2900  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2901  // instead we handle this in the bytes_to_rq computation below
2902  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2903
2904  // now go through and allocate one chunk at a time until all bytes are
2905  // allocated
2906  size_t  bytes_remaining = bytes;
2907  // An overflow of align_size_up() would have been caught above
2908  // in the calculation of size_of_reserve.
2909  char * next_alloc_addr = p_buf;
2910  HANDLE hProc = GetCurrentProcess();
2911
2912#ifdef ASSERT
2913  // Variable for the failure injection
2914  long ran_num = os::random();
2915  size_t fail_after = ran_num % bytes;
2916#endif
2917
2918  int count=0;
2919  while (bytes_remaining) {
2920    // select bytes_to_rq to get to the next chunk_size boundary
2921
2922    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2923    // Note allocate and commit
2924    char * p_new;
2925
2926#ifdef ASSERT
2927    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2928#else
2929    const bool inject_error_now = false;
2930#endif
2931
2932    if (inject_error_now) {
2933      p_new = NULL;
2934    } else {
2935      if (!UseNUMAInterleaving) {
2936        p_new = (char *) VirtualAlloc(next_alloc_addr,
2937                                      bytes_to_rq,
2938                                      flags,
2939                                      prot);
2940      } else {
2941        // get the next node to use from the used_node_list
2942        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2943        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2944        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2945                                                            next_alloc_addr,
2946                                                            bytes_to_rq,
2947                                                            flags,
2948                                                            prot,
2949                                                            node);
2950      }
2951    }
2952
2953    if (p_new == NULL) {
2954      // Free any allocated pages
2955      if (next_alloc_addr > p_buf) {
2956        // Some memory was committed so release it.
2957        size_t bytes_to_release = bytes - bytes_remaining;
2958        // NMT has yet to record any individual blocks, so it
2959        // need to create a dummy 'reserve' record to match
2960        // the release.
2961        MemTracker::record_virtual_memory_reserve((address)p_buf,
2962                                                  bytes_to_release, CALLER_PC);
2963        os::release_memory(p_buf, bytes_to_release);
2964      }
2965#ifdef ASSERT
2966      if (should_inject_error) {
2967        if (TracePageSizes && Verbose) {
2968          tty->print_cr("Reserving pages individually failed.");
2969        }
2970      }
2971#endif
2972      return NULL;
2973    }
2974
2975    bytes_remaining -= bytes_to_rq;
2976    next_alloc_addr += bytes_to_rq;
2977    count++;
2978  }
2979  // Although the memory is allocated individually, it is returned as one.
2980  // NMT records it as one block.
2981  if ((flags & MEM_COMMIT) != 0) {
2982    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2983  } else {
2984    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2985  }
2986
2987  // made it this far, success
2988  return p_buf;
2989}
2990
2991
2992
2993void os::large_page_init() {
2994  if (!UseLargePages) return;
2995
2996  // print a warning if any large page related flag is specified on command line
2997  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2998                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2999  bool success = false;
3000
3001#define WARN(msg) if (warn_on_failure) { warning(msg); }
3002  if (resolve_functions_for_large_page_init()) {
3003    if (request_lock_memory_privilege()) {
3004      size_t s = os::Kernel32Dll::GetLargePageMinimum();
3005      if (s) {
3006#if defined(IA32) || defined(AMD64)
3007        if (s > 4*M || LargePageSizeInBytes > 4*M) {
3008          WARN("JVM cannot use large pages bigger than 4mb.");
3009        } else {
3010#endif
3011          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3012            _large_page_size = LargePageSizeInBytes;
3013          } else {
3014            _large_page_size = s;
3015          }
3016          success = true;
3017#if defined(IA32) || defined(AMD64)
3018        }
3019#endif
3020      } else {
3021        WARN("Large page is not supported by the processor.");
3022      }
3023    } else {
3024      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3025    }
3026  } else {
3027    WARN("Large page is not supported by the operating system.");
3028  }
3029#undef WARN
3030
3031  const size_t default_page_size = (size_t) vm_page_size();
3032  if (success && _large_page_size > default_page_size) {
3033    _page_sizes[0] = _large_page_size;
3034    _page_sizes[1] = default_page_size;
3035    _page_sizes[2] = 0;
3036  }
3037
3038  cleanup_after_large_page_init();
3039  UseLargePages = success;
3040}
3041
3042// On win32, one cannot release just a part of reserved memory, it's an
3043// all or nothing deal.  When we split a reservation, we must break the
3044// reservation into two reservations.
3045void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3046                                  bool realloc) {
3047  if (size > 0) {
3048    release_memory(base, size);
3049    if (realloc) {
3050      reserve_memory(split, base);
3051    }
3052    if (size != split) {
3053      reserve_memory(size - split, base + split);
3054    }
3055  }
3056}
3057
3058// Multiple threads can race in this code but it's not possible to unmap small sections of
3059// virtual space to get requested alignment, like posix-like os's.
3060// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3061char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3062  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3063         "Alignment must be a multiple of allocation granularity (page size)");
3064  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3065
3066  size_t extra_size = size + alignment;
3067  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3068
3069  char* aligned_base = NULL;
3070
3071  do {
3072    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3073    if (extra_base == NULL) {
3074      return NULL;
3075    }
3076    // Do manual alignment
3077    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3078
3079    os::release_memory(extra_base, extra_size);
3080
3081    aligned_base = os::reserve_memory(size, aligned_base);
3082
3083  } while (aligned_base == NULL);
3084
3085  return aligned_base;
3086}
3087
3088char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3089  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3090         "reserve alignment");
3091  assert(bytes % os::vm_page_size() == 0, "reserve page size");
3092  char* res;
3093  // note that if UseLargePages is on, all the areas that require interleaving
3094  // will go thru reserve_memory_special rather than thru here.
3095  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3096  if (!use_individual) {
3097    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3098  } else {
3099    elapsedTimer reserveTimer;
3100    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3101    // in numa interleaving, we have to allocate pages individually
3102    // (well really chunks of NUMAInterleaveGranularity size)
3103    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3104    if (res == NULL) {
3105      warning("NUMA page allocation failed");
3106    }
3107    if (Verbose && PrintMiscellaneous) {
3108      reserveTimer.stop();
3109      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3110                    reserveTimer.milliseconds(), reserveTimer.ticks());
3111    }
3112  }
3113  assert(res == NULL || addr == NULL || addr == res,
3114         "Unexpected address from reserve.");
3115
3116  return res;
3117}
3118
3119// Reserve memory at an arbitrary address, only if that area is
3120// available (and not reserved for something else).
3121char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3122  // Windows os::reserve_memory() fails of the requested address range is
3123  // not avilable.
3124  return reserve_memory(bytes, requested_addr);
3125}
3126
3127size_t os::large_page_size() {
3128  return _large_page_size;
3129}
3130
3131bool os::can_commit_large_page_memory() {
3132  // Windows only uses large page memory when the entire region is reserved
3133  // and committed in a single VirtualAlloc() call. This may change in the
3134  // future, but with Windows 2003 it's not possible to commit on demand.
3135  return false;
3136}
3137
3138bool os::can_execute_large_page_memory() {
3139  return true;
3140}
3141
3142char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3143                                 bool exec) {
3144  assert(UseLargePages, "only for large pages");
3145
3146  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3147    return NULL; // Fallback to small pages.
3148  }
3149
3150  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3151  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3152
3153  // with large pages, there are two cases where we need to use Individual Allocation
3154  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3155  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3156  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3157    if (TracePageSizes && Verbose) {
3158      tty->print_cr("Reserving large pages individually.");
3159    }
3160    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3161    if (p_buf == NULL) {
3162      // give an appropriate warning message
3163      if (UseNUMAInterleaving) {
3164        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3165      }
3166      if (UseLargePagesIndividualAllocation) {
3167        warning("Individually allocated large pages failed, "
3168                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3169      }
3170      return NULL;
3171    }
3172
3173    return p_buf;
3174
3175  } else {
3176    if (TracePageSizes && Verbose) {
3177      tty->print_cr("Reserving large pages in a single large chunk.");
3178    }
3179    // normal policy just allocate it all at once
3180    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3181    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3182    if (res != NULL) {
3183      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3184    }
3185
3186    return res;
3187  }
3188}
3189
3190bool os::release_memory_special(char* base, size_t bytes) {
3191  assert(base != NULL, "Sanity check");
3192  return release_memory(base, bytes);
3193}
3194
3195void os::print_statistics() {
3196}
3197
3198static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3199  int err = os::get_last_error();
3200  char buf[256];
3201  size_t buf_len = os::lasterror(buf, sizeof(buf));
3202  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3203          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3204          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3205}
3206
3207bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3208  if (bytes == 0) {
3209    // Don't bother the OS with noops.
3210    return true;
3211  }
3212  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3213  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3214  // Don't attempt to print anything if the OS call fails. We're
3215  // probably low on resources, so the print itself may cause crashes.
3216
3217  // unless we have NUMAInterleaving enabled, the range of a commit
3218  // is always within a reserve covered by a single VirtualAlloc
3219  // in that case we can just do a single commit for the requested size
3220  if (!UseNUMAInterleaving) {
3221    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3222      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3223      return false;
3224    }
3225    if (exec) {
3226      DWORD oldprot;
3227      // Windows doc says to use VirtualProtect to get execute permissions
3228      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3229        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3230        return false;
3231      }
3232    }
3233    return true;
3234  } else {
3235
3236    // when NUMAInterleaving is enabled, the commit might cover a range that
3237    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3238    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3239    // returns represents the number of bytes that can be committed in one step.
3240    size_t bytes_remaining = bytes;
3241    char * next_alloc_addr = addr;
3242    while (bytes_remaining > 0) {
3243      MEMORY_BASIC_INFORMATION alloc_info;
3244      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3245      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3246      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3247                       PAGE_READWRITE) == NULL) {
3248        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3249                                            exec);)
3250        return false;
3251      }
3252      if (exec) {
3253        DWORD oldprot;
3254        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3255                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3256          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3257                                              exec);)
3258          return false;
3259        }
3260      }
3261      bytes_remaining -= bytes_to_rq;
3262      next_alloc_addr += bytes_to_rq;
3263    }
3264  }
3265  // if we made it this far, return true
3266  return true;
3267}
3268
3269bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3270                          bool exec) {
3271  // alignment_hint is ignored on this OS
3272  return pd_commit_memory(addr, size, exec);
3273}
3274
3275void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3276                                  const char* mesg) {
3277  assert(mesg != NULL, "mesg must be specified");
3278  if (!pd_commit_memory(addr, size, exec)) {
3279    warn_fail_commit_memory(addr, size, exec);
3280    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3281  }
3282}
3283
3284void os::pd_commit_memory_or_exit(char* addr, size_t size,
3285                                  size_t alignment_hint, bool exec,
3286                                  const char* mesg) {
3287  // alignment_hint is ignored on this OS
3288  pd_commit_memory_or_exit(addr, size, exec, mesg);
3289}
3290
3291bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3292  if (bytes == 0) {
3293    // Don't bother the OS with noops.
3294    return true;
3295  }
3296  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3297  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3298  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3299}
3300
3301bool os::pd_release_memory(char* addr, size_t bytes) {
3302  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3303}
3304
3305bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3306  return os::commit_memory(addr, size, !ExecMem);
3307}
3308
3309bool os::remove_stack_guard_pages(char* addr, size_t size) {
3310  return os::uncommit_memory(addr, size);
3311}
3312
3313// Set protections specified
3314bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3315                        bool is_committed) {
3316  unsigned int p = 0;
3317  switch (prot) {
3318  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3319  case MEM_PROT_READ: p = PAGE_READONLY; break;
3320  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3321  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3322  default:
3323    ShouldNotReachHere();
3324  }
3325
3326  DWORD old_status;
3327
3328  // Strange enough, but on Win32 one can change protection only for committed
3329  // memory, not a big deal anyway, as bytes less or equal than 64K
3330  if (!is_committed) {
3331    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3332                          "cannot commit protection page");
3333  }
3334  // One cannot use os::guard_memory() here, as on Win32 guard page
3335  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3336  //
3337  // Pages in the region become guard pages. Any attempt to access a guard page
3338  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3339  // the guard page status. Guard pages thus act as a one-time access alarm.
3340  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3341}
3342
3343bool os::guard_memory(char* addr, size_t bytes) {
3344  DWORD old_status;
3345  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3346}
3347
3348bool os::unguard_memory(char* addr, size_t bytes) {
3349  DWORD old_status;
3350  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3351}
3352
3353void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3354void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3355void os::numa_make_global(char *addr, size_t bytes)    { }
3356void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3357bool os::numa_topology_changed()                       { return false; }
3358size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3359int os::numa_get_group_id()                            { return 0; }
3360size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3361  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3362    // Provide an answer for UMA systems
3363    ids[0] = 0;
3364    return 1;
3365  } else {
3366    // check for size bigger than actual groups_num
3367    size = MIN2(size, numa_get_groups_num());
3368    for (int i = 0; i < (int)size; i++) {
3369      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3370    }
3371    return size;
3372  }
3373}
3374
3375bool os::get_page_info(char *start, page_info* info) {
3376  return false;
3377}
3378
3379char *os::scan_pages(char *start, char* end, page_info* page_expected,
3380                     page_info* page_found) {
3381  return end;
3382}
3383
3384char* os::non_memory_address_word() {
3385  // Must never look like an address returned by reserve_memory,
3386  // even in its subfields (as defined by the CPU immediate fields,
3387  // if the CPU splits constants across multiple instructions).
3388  return (char*)-1;
3389}
3390
3391#define MAX_ERROR_COUNT 100
3392#define SYS_THREAD_ERROR 0xffffffffUL
3393
3394void os::pd_start_thread(Thread* thread) {
3395  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3396  // Returns previous suspend state:
3397  // 0:  Thread was not suspended
3398  // 1:  Thread is running now
3399  // >1: Thread is still suspended.
3400  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3401}
3402
3403class HighResolutionInterval : public CHeapObj<mtThread> {
3404  // The default timer resolution seems to be 10 milliseconds.
3405  // (Where is this written down?)
3406  // If someone wants to sleep for only a fraction of the default,
3407  // then we set the timer resolution down to 1 millisecond for
3408  // the duration of their interval.
3409  // We carefully set the resolution back, since otherwise we
3410  // seem to incur an overhead (3%?) that we don't need.
3411  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3412  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3413  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3414  // timeBeginPeriod() if the relative error exceeded some threshold.
3415  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3416  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3417  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3418  // resolution timers running.
3419 private:
3420  jlong resolution;
3421 public:
3422  HighResolutionInterval(jlong ms) {
3423    resolution = ms % 10L;
3424    if (resolution != 0) {
3425      MMRESULT result = timeBeginPeriod(1L);
3426    }
3427  }
3428  ~HighResolutionInterval() {
3429    if (resolution != 0) {
3430      MMRESULT result = timeEndPeriod(1L);
3431    }
3432    resolution = 0L;
3433  }
3434};
3435
3436int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3437  jlong limit = (jlong) MAXDWORD;
3438
3439  while (ms > limit) {
3440    int res;
3441    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3442      return res;
3443    }
3444    ms -= limit;
3445  }
3446
3447  assert(thread == Thread::current(), "thread consistency check");
3448  OSThread* osthread = thread->osthread();
3449  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3450  int result;
3451  if (interruptable) {
3452    assert(thread->is_Java_thread(), "must be java thread");
3453    JavaThread *jt = (JavaThread *) thread;
3454    ThreadBlockInVM tbivm(jt);
3455
3456    jt->set_suspend_equivalent();
3457    // cleared by handle_special_suspend_equivalent_condition() or
3458    // java_suspend_self() via check_and_wait_while_suspended()
3459
3460    HANDLE events[1];
3461    events[0] = osthread->interrupt_event();
3462    HighResolutionInterval *phri=NULL;
3463    if (!ForceTimeHighResolution) {
3464      phri = new HighResolutionInterval(ms);
3465    }
3466    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3467      result = OS_TIMEOUT;
3468    } else {
3469      ResetEvent(osthread->interrupt_event());
3470      osthread->set_interrupted(false);
3471      result = OS_INTRPT;
3472    }
3473    delete phri; //if it is NULL, harmless
3474
3475    // were we externally suspended while we were waiting?
3476    jt->check_and_wait_while_suspended();
3477  } else {
3478    assert(!thread->is_Java_thread(), "must not be java thread");
3479    Sleep((long) ms);
3480    result = OS_TIMEOUT;
3481  }
3482  return result;
3483}
3484
3485// Short sleep, direct OS call.
3486//
3487// ms = 0, means allow others (if any) to run.
3488//
3489void os::naked_short_sleep(jlong ms) {
3490  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3491  Sleep(ms);
3492}
3493
3494// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3495void os::infinite_sleep() {
3496  while (true) {    // sleep forever ...
3497    Sleep(100000);  // ... 100 seconds at a time
3498  }
3499}
3500
3501typedef BOOL (WINAPI * STTSignature)(void);
3502
3503void os::naked_yield() {
3504  // Use either SwitchToThread() or Sleep(0)
3505  // Consider passing back the return value from SwitchToThread().
3506  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3507    SwitchToThread();
3508  } else {
3509    Sleep(0);
3510  }
3511}
3512
3513// Win32 only gives you access to seven real priorities at a time,
3514// so we compress Java's ten down to seven.  It would be better
3515// if we dynamically adjusted relative priorities.
3516
3517int os::java_to_os_priority[CriticalPriority + 1] = {
3518  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3519  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3520  THREAD_PRIORITY_LOWEST,                       // 2
3521  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3522  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3523  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3524  THREAD_PRIORITY_NORMAL,                       // 6
3525  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3526  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3527  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3528  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3529  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3530};
3531
3532int prio_policy1[CriticalPriority + 1] = {
3533  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3534  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3535  THREAD_PRIORITY_LOWEST,                       // 2
3536  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3537  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3538  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3539  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3540  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3541  THREAD_PRIORITY_HIGHEST,                      // 8
3542  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3543  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3544  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3545};
3546
3547static int prio_init() {
3548  // If ThreadPriorityPolicy is 1, switch tables
3549  if (ThreadPriorityPolicy == 1) {
3550    int i;
3551    for (i = 0; i < CriticalPriority + 1; i++) {
3552      os::java_to_os_priority[i] = prio_policy1[i];
3553    }
3554  }
3555  if (UseCriticalJavaThreadPriority) {
3556    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3557  }
3558  return 0;
3559}
3560
3561OSReturn os::set_native_priority(Thread* thread, int priority) {
3562  if (!UseThreadPriorities) return OS_OK;
3563  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3564  return ret ? OS_OK : OS_ERR;
3565}
3566
3567OSReturn os::get_native_priority(const Thread* const thread,
3568                                 int* priority_ptr) {
3569  if (!UseThreadPriorities) {
3570    *priority_ptr = java_to_os_priority[NormPriority];
3571    return OS_OK;
3572  }
3573  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3574  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3575    assert(false, "GetThreadPriority failed");
3576    return OS_ERR;
3577  }
3578  *priority_ptr = os_prio;
3579  return OS_OK;
3580}
3581
3582
3583// Hint to the underlying OS that a task switch would not be good.
3584// Void return because it's a hint and can fail.
3585void os::hint_no_preempt() {}
3586
3587void os::interrupt(Thread* thread) {
3588  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3589         Threads_lock->owned_by_self(),
3590         "possibility of dangling Thread pointer");
3591
3592  OSThread* osthread = thread->osthread();
3593  osthread->set_interrupted(true);
3594  // More than one thread can get here with the same value of osthread,
3595  // resulting in multiple notifications.  We do, however, want the store
3596  // to interrupted() to be visible to other threads before we post
3597  // the interrupt event.
3598  OrderAccess::release();
3599  SetEvent(osthread->interrupt_event());
3600  // For JSR166:  unpark after setting status
3601  if (thread->is_Java_thread()) {
3602    ((JavaThread*)thread)->parker()->unpark();
3603  }
3604
3605  ParkEvent * ev = thread->_ParkEvent;
3606  if (ev != NULL) ev->unpark();
3607}
3608
3609
3610bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3611  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3612         "possibility of dangling Thread pointer");
3613
3614  OSThread* osthread = thread->osthread();
3615  // There is no synchronization between the setting of the interrupt
3616  // and it being cleared here. It is critical - see 6535709 - that
3617  // we only clear the interrupt state, and reset the interrupt event,
3618  // if we are going to report that we were indeed interrupted - else
3619  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3620  // depending on the timing. By checking thread interrupt event to see
3621  // if the thread gets real interrupt thus prevent spurious wakeup.
3622  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3623  if (interrupted && clear_interrupted) {
3624    osthread->set_interrupted(false);
3625    ResetEvent(osthread->interrupt_event());
3626  } // Otherwise leave the interrupted state alone
3627
3628  return interrupted;
3629}
3630
3631// Get's a pc (hint) for a running thread. Currently used only for profiling.
3632ExtendedPC os::get_thread_pc(Thread* thread) {
3633  CONTEXT context;
3634  context.ContextFlags = CONTEXT_CONTROL;
3635  HANDLE handle = thread->osthread()->thread_handle();
3636#ifdef _M_IA64
3637  assert(0, "Fix get_thread_pc");
3638  return ExtendedPC(NULL);
3639#else
3640  if (GetThreadContext(handle, &context)) {
3641#ifdef _M_AMD64
3642    return ExtendedPC((address) context.Rip);
3643#else
3644    return ExtendedPC((address) context.Eip);
3645#endif
3646  } else {
3647    return ExtendedPC(NULL);
3648  }
3649#endif
3650}
3651
3652// GetCurrentThreadId() returns DWORD
3653intx os::current_thread_id()  { return GetCurrentThreadId(); }
3654
3655static int _initial_pid = 0;
3656
3657int os::current_process_id() {
3658  return (_initial_pid ? _initial_pid : _getpid());
3659}
3660
3661int    os::win32::_vm_page_size              = 0;
3662int    os::win32::_vm_allocation_granularity = 0;
3663int    os::win32::_processor_type            = 0;
3664// Processor level is not available on non-NT systems, use vm_version instead
3665int    os::win32::_processor_level           = 0;
3666julong os::win32::_physical_memory           = 0;
3667size_t os::win32::_default_stack_size        = 0;
3668
3669intx          os::win32::_os_thread_limit    = 0;
3670volatile intx os::win32::_os_thread_count    = 0;
3671
3672bool   os::win32::_is_nt                     = false;
3673bool   os::win32::_is_windows_2003           = false;
3674bool   os::win32::_is_windows_server         = false;
3675
3676// 6573254
3677// Currently, the bug is observed across all the supported Windows releases,
3678// including the latest one (as of this writing - Windows Server 2012 R2)
3679bool   os::win32::_has_exit_bug              = true;
3680bool   os::win32::_has_performance_count     = 0;
3681
3682void os::win32::initialize_system_info() {
3683  SYSTEM_INFO si;
3684  GetSystemInfo(&si);
3685  _vm_page_size    = si.dwPageSize;
3686  _vm_allocation_granularity = si.dwAllocationGranularity;
3687  _processor_type  = si.dwProcessorType;
3688  _processor_level = si.wProcessorLevel;
3689  set_processor_count(si.dwNumberOfProcessors);
3690
3691  MEMORYSTATUSEX ms;
3692  ms.dwLength = sizeof(ms);
3693
3694  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3695  // dwMemoryLoad (% of memory in use)
3696  GlobalMemoryStatusEx(&ms);
3697  _physical_memory = ms.ullTotalPhys;
3698
3699  OSVERSIONINFOEX oi;
3700  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3701  GetVersionEx((OSVERSIONINFO*)&oi);
3702  switch (oi.dwPlatformId) {
3703  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3704  case VER_PLATFORM_WIN32_NT:
3705    _is_nt = true;
3706    {
3707      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3708      if (os_vers == 5002) {
3709        _is_windows_2003 = true;
3710      }
3711      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3712          oi.wProductType == VER_NT_SERVER) {
3713        _is_windows_server = true;
3714      }
3715    }
3716    break;
3717  default: fatal("Unknown platform");
3718  }
3719
3720  _default_stack_size = os::current_stack_size();
3721  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3722  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3723         "stack size not a multiple of page size");
3724
3725  initialize_performance_counter();
3726
3727  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3728  // known to deadlock the system, if the VM issues to thread operations with
3729  // a too high frequency, e.g., such as changing the priorities.
3730  // The 6000 seems to work well - no deadlocks has been notices on the test
3731  // programs that we have seen experience this problem.
3732  if (!os::win32::is_nt()) {
3733    StarvationMonitorInterval = 6000;
3734  }
3735}
3736
3737
3738HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3739                                      int ebuflen) {
3740  char path[MAX_PATH];
3741  DWORD size;
3742  DWORD pathLen = (DWORD)sizeof(path);
3743  HINSTANCE result = NULL;
3744
3745  // only allow library name without path component
3746  assert(strchr(name, '\\') == NULL, "path not allowed");
3747  assert(strchr(name, ':') == NULL, "path not allowed");
3748  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3749    jio_snprintf(ebuf, ebuflen,
3750                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3751    return NULL;
3752  }
3753
3754  // search system directory
3755  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3756    if (size >= pathLen) {
3757      return NULL; // truncated
3758    }
3759    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3760      return NULL; // truncated
3761    }
3762    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3763      return result;
3764    }
3765  }
3766
3767  // try Windows directory
3768  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3769    if (size >= pathLen) {
3770      return NULL; // truncated
3771    }
3772    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3773      return NULL; // truncated
3774    }
3775    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3776      return result;
3777    }
3778  }
3779
3780  jio_snprintf(ebuf, ebuflen,
3781               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3782  return NULL;
3783}
3784
3785#define EXIT_TIMEOUT     PRODUCT_ONLY(1000) NOT_PRODUCT(4000) /* 1 sec in product, 4 sec in debug */
3786
3787static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3788  InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3789  return TRUE;
3790}
3791
3792int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3793  // Basic approach:
3794  //  - Each exiting thread registers its intent to exit and then does so.
3795  //  - A thread trying to terminate the process must wait for all
3796  //    threads currently exiting to complete their exit.
3797
3798  if (os::win32::has_exit_bug()) {
3799    // The array holds handles of the threads that have started exiting by calling
3800    // _endthreadex().
3801    // Should be large enough to avoid blocking the exiting thread due to lack of
3802    // a free slot.
3803    static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3804    static int handle_count = 0;
3805
3806    static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3807    static CRITICAL_SECTION crit_sect;
3808    static volatile jint process_exiting = 0;
3809    int i, j;
3810    DWORD res;
3811    HANDLE hproc, hthr;
3812
3813    // The first thread that reached this point, initializes the critical section.
3814    if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3815      warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3816    } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3817      EnterCriticalSection(&crit_sect);
3818
3819      if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3820        // Remove from the array those handles of the threads that have completed exiting.
3821        for (i = 0, j = 0; i < handle_count; ++i) {
3822          res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3823          if (res == WAIT_TIMEOUT) {
3824            handles[j++] = handles[i];
3825          } else {
3826            if (res == WAIT_FAILED) {
3827              warning("WaitForSingleObject failed (%u) in %s: %d\n",
3828                      GetLastError(), __FILE__, __LINE__);
3829            }
3830            // Don't keep the handle, if we failed waiting for it.
3831            CloseHandle(handles[i]);
3832          }
3833        }
3834
3835        // If there's no free slot in the array of the kept handles, we'll have to
3836        // wait until at least one thread completes exiting.
3837        if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3838          // Raise the priority of the oldest exiting thread to increase its chances
3839          // to complete sooner.
3840          SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3841          res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3842          if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3843            i = (res - WAIT_OBJECT_0);
3844            handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3845            for (; i < handle_count; ++i) {
3846              handles[i] = handles[i + 1];
3847            }
3848          } else {
3849            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3850                    (res == WAIT_FAILED ? "failed" : "timed out"),
3851                    GetLastError(), __FILE__, __LINE__);
3852            // Don't keep handles, if we failed waiting for them.
3853            for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3854              CloseHandle(handles[i]);
3855            }
3856            handle_count = 0;
3857          }
3858        }
3859
3860        // Store a duplicate of the current thread handle in the array of handles.
3861        hproc = GetCurrentProcess();
3862        hthr = GetCurrentThread();
3863        if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3864                             0, FALSE, DUPLICATE_SAME_ACCESS)) {
3865          warning("DuplicateHandle failed (%u) in %s: %d\n",
3866                  GetLastError(), __FILE__, __LINE__);
3867        } else {
3868          ++handle_count;
3869        }
3870
3871        // The current exiting thread has stored its handle in the array, and now
3872        // should leave the critical section before calling _endthreadex().
3873
3874      } else if (what != EPT_THREAD) {
3875        if (handle_count > 0) {
3876          // Before ending the process, make sure all the threads that had called
3877          // _endthreadex() completed.
3878
3879          // Set the priority level of the current thread to the same value as
3880          // the priority level of exiting threads.
3881          // This is to ensure it will be given a fair chance to execute if
3882          // the timeout expires.
3883          hthr = GetCurrentThread();
3884          SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3885          for (i = 0; i < handle_count; ++i) {
3886            SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3887          }
3888          res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3889          if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3890            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3891                    (res == WAIT_FAILED ? "failed" : "timed out"),
3892                    GetLastError(), __FILE__, __LINE__);
3893          }
3894          for (i = 0; i < handle_count; ++i) {
3895            CloseHandle(handles[i]);
3896          }
3897          handle_count = 0;
3898        }
3899
3900        OrderAccess::release_store(&process_exiting, 1);
3901      }
3902
3903      LeaveCriticalSection(&crit_sect);
3904    }
3905
3906    if (what == EPT_THREAD) {
3907      while (OrderAccess::load_acquire(&process_exiting) != 0) {
3908        // Some other thread is about to call exit(), so we
3909        // don't let the current thread proceed to _endthreadex()
3910        SuspendThread(GetCurrentThread());
3911        // Avoid busy-wait loop, if SuspendThread() failed.
3912        Sleep(EXIT_TIMEOUT);
3913      }
3914    }
3915  }
3916
3917  // We are here if either
3918  // - there's no 'race at exit' bug on this OS release;
3919  // - initialization of the critical section failed (unlikely);
3920  // - the current thread has stored its handle and left the critical section;
3921  // - the process-exiting thread has raised the flag and left the critical section.
3922  if (what == EPT_THREAD) {
3923    _endthreadex((unsigned)exit_code);
3924  } else if (what == EPT_PROCESS) {
3925    ::exit(exit_code);
3926  } else {
3927    _exit(exit_code);
3928  }
3929
3930  // Should not reach here
3931  return exit_code;
3932}
3933
3934#undef EXIT_TIMEOUT
3935
3936void os::win32::setmode_streams() {
3937  _setmode(_fileno(stdin), _O_BINARY);
3938  _setmode(_fileno(stdout), _O_BINARY);
3939  _setmode(_fileno(stderr), _O_BINARY);
3940}
3941
3942
3943bool os::is_debugger_attached() {
3944  return IsDebuggerPresent() ? true : false;
3945}
3946
3947
3948void os::wait_for_keypress_at_exit(void) {
3949  if (PauseAtExit) {
3950    fprintf(stderr, "Press any key to continue...\n");
3951    fgetc(stdin);
3952  }
3953}
3954
3955
3956int os::message_box(const char* title, const char* message) {
3957  int result = MessageBox(NULL, message, title,
3958                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3959  return result == IDYES;
3960}
3961
3962int os::allocate_thread_local_storage() {
3963  return TlsAlloc();
3964}
3965
3966
3967void os::free_thread_local_storage(int index) {
3968  TlsFree(index);
3969}
3970
3971
3972void os::thread_local_storage_at_put(int index, void* value) {
3973  TlsSetValue(index, value);
3974  assert(thread_local_storage_at(index) == value, "Just checking");
3975}
3976
3977
3978void* os::thread_local_storage_at(int index) {
3979  return TlsGetValue(index);
3980}
3981
3982
3983#ifndef PRODUCT
3984#ifndef _WIN64
3985// Helpers to check whether NX protection is enabled
3986int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3987  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3988      pex->ExceptionRecord->NumberParameters > 0 &&
3989      pex->ExceptionRecord->ExceptionInformation[0] ==
3990      EXCEPTION_INFO_EXEC_VIOLATION) {
3991    return EXCEPTION_EXECUTE_HANDLER;
3992  }
3993  return EXCEPTION_CONTINUE_SEARCH;
3994}
3995
3996void nx_check_protection() {
3997  // If NX is enabled we'll get an exception calling into code on the stack
3998  char code[] = { (char)0xC3 }; // ret
3999  void *code_ptr = (void *)code;
4000  __try {
4001    __asm call code_ptr
4002  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4003    tty->print_raw_cr("NX protection detected.");
4004  }
4005}
4006#endif // _WIN64
4007#endif // PRODUCT
4008
4009// this is called _before_ the global arguments have been parsed
4010void os::init(void) {
4011  _initial_pid = _getpid();
4012
4013  init_random(1234567);
4014
4015  win32::initialize_system_info();
4016  win32::setmode_streams();
4017  init_page_sizes((size_t) win32::vm_page_size());
4018
4019  // This may be overridden later when argument processing is done.
4020  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4021                os::win32::is_windows_2003());
4022
4023  // Initialize main_process and main_thread
4024  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4025  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4026                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4027    fatal("DuplicateHandle failed\n");
4028  }
4029  main_thread_id = (int) GetCurrentThreadId();
4030}
4031
4032// To install functions for atexit processing
4033extern "C" {
4034  static void perfMemory_exit_helper() {
4035    perfMemory_exit();
4036  }
4037}
4038
4039static jint initSock();
4040
4041// this is called _after_ the global arguments have been parsed
4042jint os::init_2(void) {
4043  // Allocate a single page and mark it as readable for safepoint polling
4044  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4045  guarantee(polling_page != NULL, "Reserve Failed for polling page");
4046
4047  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4048  guarantee(return_page != NULL, "Commit Failed for polling page");
4049
4050  os::set_polling_page(polling_page);
4051
4052#ifndef PRODUCT
4053  if (Verbose && PrintMiscellaneous) {
4054    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4055               (intptr_t)polling_page);
4056  }
4057#endif
4058
4059  if (!UseMembar) {
4060    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4061    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4062
4063    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4064    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4065
4066    os::set_memory_serialize_page(mem_serialize_page);
4067
4068#ifndef PRODUCT
4069    if (Verbose && PrintMiscellaneous) {
4070      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4071                 (intptr_t)mem_serialize_page);
4072    }
4073#endif
4074  }
4075
4076  // Setup Windows Exceptions
4077
4078  // for debugging float code generation bugs
4079  if (ForceFloatExceptions) {
4080#ifndef  _WIN64
4081    static long fp_control_word = 0;
4082    __asm { fstcw fp_control_word }
4083    // see Intel PPro Manual, Vol. 2, p 7-16
4084    const long precision = 0x20;
4085    const long underflow = 0x10;
4086    const long overflow  = 0x08;
4087    const long zero_div  = 0x04;
4088    const long denorm    = 0x02;
4089    const long invalid   = 0x01;
4090    fp_control_word |= invalid;
4091    __asm { fldcw fp_control_word }
4092#endif
4093  }
4094
4095  // If stack_commit_size is 0, windows will reserve the default size,
4096  // but only commit a small portion of it.
4097  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4098  size_t default_reserve_size = os::win32::default_stack_size();
4099  size_t actual_reserve_size = stack_commit_size;
4100  if (stack_commit_size < default_reserve_size) {
4101    // If stack_commit_size == 0, we want this too
4102    actual_reserve_size = default_reserve_size;
4103  }
4104
4105  // Check minimum allowable stack size for thread creation and to initialize
4106  // the java system classes, including StackOverflowError - depends on page
4107  // size.  Add a page for compiler2 recursion in main thread.
4108  // Add in 2*BytesPerWord times page size to account for VM stack during
4109  // class initialization depending on 32 or 64 bit VM.
4110  size_t min_stack_allowed =
4111            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4112                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4113  if (actual_reserve_size < min_stack_allowed) {
4114    tty->print_cr("\nThe stack size specified is too small, "
4115                  "Specify at least %dk",
4116                  min_stack_allowed / K);
4117    return JNI_ERR;
4118  }
4119
4120  JavaThread::set_stack_size_at_create(stack_commit_size);
4121
4122  // Calculate theoretical max. size of Threads to guard gainst artifical
4123  // out-of-memory situations, where all available address-space has been
4124  // reserved by thread stacks.
4125  assert(actual_reserve_size != 0, "Must have a stack");
4126
4127  // Calculate the thread limit when we should start doing Virtual Memory
4128  // banging. Currently when the threads will have used all but 200Mb of space.
4129  //
4130  // TODO: consider performing a similar calculation for commit size instead
4131  // as reserve size, since on a 64-bit platform we'll run into that more
4132  // often than running out of virtual memory space.  We can use the
4133  // lower value of the two calculations as the os_thread_limit.
4134  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4135  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4136
4137  // at exit methods are called in the reverse order of their registration.
4138  // there is no limit to the number of functions registered. atexit does
4139  // not set errno.
4140
4141  if (PerfAllowAtExitRegistration) {
4142    // only register atexit functions if PerfAllowAtExitRegistration is set.
4143    // atexit functions can be delayed until process exit time, which
4144    // can be problematic for embedded VM situations. Embedded VMs should
4145    // call DestroyJavaVM() to assure that VM resources are released.
4146
4147    // note: perfMemory_exit_helper atexit function may be removed in
4148    // the future if the appropriate cleanup code can be added to the
4149    // VM_Exit VMOperation's doit method.
4150    if (atexit(perfMemory_exit_helper) != 0) {
4151      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4152    }
4153  }
4154
4155#ifndef _WIN64
4156  // Print something if NX is enabled (win32 on AMD64)
4157  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4158#endif
4159
4160  // initialize thread priority policy
4161  prio_init();
4162
4163  if (UseNUMA && !ForceNUMA) {
4164    UseNUMA = false; // We don't fully support this yet
4165  }
4166
4167  if (UseNUMAInterleaving) {
4168    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4169    bool success = numa_interleaving_init();
4170    if (!success) UseNUMAInterleaving = false;
4171  }
4172
4173  if (initSock() != JNI_OK) {
4174    return JNI_ERR;
4175  }
4176
4177  return JNI_OK;
4178}
4179
4180// Mark the polling page as unreadable
4181void os::make_polling_page_unreadable(void) {
4182  DWORD old_status;
4183  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4184                      PAGE_NOACCESS, &old_status)) {
4185    fatal("Could not disable polling page");
4186  }
4187}
4188
4189// Mark the polling page as readable
4190void os::make_polling_page_readable(void) {
4191  DWORD old_status;
4192  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4193                      PAGE_READONLY, &old_status)) {
4194    fatal("Could not enable polling page");
4195  }
4196}
4197
4198
4199int os::stat(const char *path, struct stat *sbuf) {
4200  char pathbuf[MAX_PATH];
4201  if (strlen(path) > MAX_PATH - 1) {
4202    errno = ENAMETOOLONG;
4203    return -1;
4204  }
4205  os::native_path(strcpy(pathbuf, path));
4206  int ret = ::stat(pathbuf, sbuf);
4207  if (sbuf != NULL && UseUTCFileTimestamp) {
4208    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4209    // the system timezone and so can return different values for the
4210    // same file if/when daylight savings time changes.  This adjustment
4211    // makes sure the same timestamp is returned regardless of the TZ.
4212    //
4213    // See:
4214    // http://msdn.microsoft.com/library/
4215    //   default.asp?url=/library/en-us/sysinfo/base/
4216    //   time_zone_information_str.asp
4217    // and
4218    // http://msdn.microsoft.com/library/default.asp?url=
4219    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4220    //
4221    // NOTE: there is a insidious bug here:  If the timezone is changed
4222    // after the call to stat() but before 'GetTimeZoneInformation()', then
4223    // the adjustment we do here will be wrong and we'll return the wrong
4224    // value (which will likely end up creating an invalid class data
4225    // archive).  Absent a better API for this, or some time zone locking
4226    // mechanism, we'll have to live with this risk.
4227    TIME_ZONE_INFORMATION tz;
4228    DWORD tzid = GetTimeZoneInformation(&tz);
4229    int daylightBias =
4230      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4231    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4232  }
4233  return ret;
4234}
4235
4236
4237#define FT2INT64(ft) \
4238  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4239
4240
4241// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4242// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4243// of a thread.
4244//
4245// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4246// the fast estimate available on the platform.
4247
4248// current_thread_cpu_time() is not optimized for Windows yet
4249jlong os::current_thread_cpu_time() {
4250  // return user + sys since the cost is the same
4251  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4252}
4253
4254jlong os::thread_cpu_time(Thread* thread) {
4255  // consistent with what current_thread_cpu_time() returns.
4256  return os::thread_cpu_time(thread, true /* user+sys */);
4257}
4258
4259jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4260  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4261}
4262
4263jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4264  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4265  // If this function changes, os::is_thread_cpu_time_supported() should too
4266  if (os::win32::is_nt()) {
4267    FILETIME CreationTime;
4268    FILETIME ExitTime;
4269    FILETIME KernelTime;
4270    FILETIME UserTime;
4271
4272    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4273                       &ExitTime, &KernelTime, &UserTime) == 0) {
4274      return -1;
4275    } else if (user_sys_cpu_time) {
4276      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4277    } else {
4278      return FT2INT64(UserTime) * 100;
4279    }
4280  } else {
4281    return (jlong) timeGetTime() * 1000000;
4282  }
4283}
4284
4285void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4286  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4287  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4288  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4289  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4290}
4291
4292void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4293  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4294  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4295  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4296  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4297}
4298
4299bool os::is_thread_cpu_time_supported() {
4300  // see os::thread_cpu_time
4301  if (os::win32::is_nt()) {
4302    FILETIME CreationTime;
4303    FILETIME ExitTime;
4304    FILETIME KernelTime;
4305    FILETIME UserTime;
4306
4307    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4308                       &KernelTime, &UserTime) == 0) {
4309      return false;
4310    } else {
4311      return true;
4312    }
4313  } else {
4314    return false;
4315  }
4316}
4317
4318// Windows does't provide a loadavg primitive so this is stubbed out for now.
4319// It does have primitives (PDH API) to get CPU usage and run queue length.
4320// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4321// If we wanted to implement loadavg on Windows, we have a few options:
4322//
4323// a) Query CPU usage and run queue length and "fake" an answer by
4324//    returning the CPU usage if it's under 100%, and the run queue
4325//    length otherwise.  It turns out that querying is pretty slow
4326//    on Windows, on the order of 200 microseconds on a fast machine.
4327//    Note that on the Windows the CPU usage value is the % usage
4328//    since the last time the API was called (and the first call
4329//    returns 100%), so we'd have to deal with that as well.
4330//
4331// b) Sample the "fake" answer using a sampling thread and store
4332//    the answer in a global variable.  The call to loadavg would
4333//    just return the value of the global, avoiding the slow query.
4334//
4335// c) Sample a better answer using exponential decay to smooth the
4336//    value.  This is basically the algorithm used by UNIX kernels.
4337//
4338// Note that sampling thread starvation could affect both (b) and (c).
4339int os::loadavg(double loadavg[], int nelem) {
4340  return -1;
4341}
4342
4343
4344// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4345bool os::dont_yield() {
4346  return DontYieldALot;
4347}
4348
4349// This method is a slightly reworked copy of JDK's sysOpen
4350// from src/windows/hpi/src/sys_api_md.c
4351
4352int os::open(const char *path, int oflag, int mode) {
4353  char pathbuf[MAX_PATH];
4354
4355  if (strlen(path) > MAX_PATH - 1) {
4356    errno = ENAMETOOLONG;
4357    return -1;
4358  }
4359  os::native_path(strcpy(pathbuf, path));
4360  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4361}
4362
4363FILE* os::open(int fd, const char* mode) {
4364  return ::_fdopen(fd, mode);
4365}
4366
4367// Is a (classpath) directory empty?
4368bool os::dir_is_empty(const char* path) {
4369  WIN32_FIND_DATA fd;
4370  HANDLE f = FindFirstFile(path, &fd);
4371  if (f == INVALID_HANDLE_VALUE) {
4372    return true;
4373  }
4374  FindClose(f);
4375  return false;
4376}
4377
4378// create binary file, rewriting existing file if required
4379int os::create_binary_file(const char* path, bool rewrite_existing) {
4380  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4381  if (!rewrite_existing) {
4382    oflags |= _O_EXCL;
4383  }
4384  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4385}
4386
4387// return current position of file pointer
4388jlong os::current_file_offset(int fd) {
4389  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4390}
4391
4392// move file pointer to the specified offset
4393jlong os::seek_to_file_offset(int fd, jlong offset) {
4394  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4395}
4396
4397
4398jlong os::lseek(int fd, jlong offset, int whence) {
4399  return (jlong) ::_lseeki64(fd, offset, whence);
4400}
4401
4402size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4403  OVERLAPPED ov;
4404  DWORD nread;
4405  BOOL result;
4406
4407  ZeroMemory(&ov, sizeof(ov));
4408  ov.Offset = (DWORD)offset;
4409  ov.OffsetHigh = (DWORD)(offset >> 32);
4410
4411  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4412
4413  result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4414
4415  return result ? nread : 0;
4416}
4417
4418
4419// This method is a slightly reworked copy of JDK's sysNativePath
4420// from src/windows/hpi/src/path_md.c
4421
4422// Convert a pathname to native format.  On win32, this involves forcing all
4423// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4424// sometimes rejects '/') and removing redundant separators.  The input path is
4425// assumed to have been converted into the character encoding used by the local
4426// system.  Because this might be a double-byte encoding, care is taken to
4427// treat double-byte lead characters correctly.
4428//
4429// This procedure modifies the given path in place, as the result is never
4430// longer than the original.  There is no error return; this operation always
4431// succeeds.
4432char * os::native_path(char *path) {
4433  char *src = path, *dst = path, *end = path;
4434  char *colon = NULL;  // If a drive specifier is found, this will
4435                       // point to the colon following the drive letter
4436
4437  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4438  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4439          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4440
4441  // Check for leading separators
4442#define isfilesep(c) ((c) == '/' || (c) == '\\')
4443  while (isfilesep(*src)) {
4444    src++;
4445  }
4446
4447  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4448    // Remove leading separators if followed by drive specifier.  This
4449    // hack is necessary to support file URLs containing drive
4450    // specifiers (e.g., "file://c:/path").  As a side effect,
4451    // "/c:/path" can be used as an alternative to "c:/path".
4452    *dst++ = *src++;
4453    colon = dst;
4454    *dst++ = ':';
4455    src++;
4456  } else {
4457    src = path;
4458    if (isfilesep(src[0]) && isfilesep(src[1])) {
4459      // UNC pathname: Retain first separator; leave src pointed at
4460      // second separator so that further separators will be collapsed
4461      // into the second separator.  The result will be a pathname
4462      // beginning with "\\\\" followed (most likely) by a host name.
4463      src = dst = path + 1;
4464      path[0] = '\\';     // Force first separator to '\\'
4465    }
4466  }
4467
4468  end = dst;
4469
4470  // Remove redundant separators from remainder of path, forcing all
4471  // separators to be '\\' rather than '/'. Also, single byte space
4472  // characters are removed from the end of the path because those
4473  // are not legal ending characters on this operating system.
4474  //
4475  while (*src != '\0') {
4476    if (isfilesep(*src)) {
4477      *dst++ = '\\'; src++;
4478      while (isfilesep(*src)) src++;
4479      if (*src == '\0') {
4480        // Check for trailing separator
4481        end = dst;
4482        if (colon == dst - 2) break;  // "z:\\"
4483        if (dst == path + 1) break;   // "\\"
4484        if (dst == path + 2 && isfilesep(path[0])) {
4485          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4486          // beginning of a UNC pathname.  Even though it is not, by
4487          // itself, a valid UNC pathname, we leave it as is in order
4488          // to be consistent with the path canonicalizer as well
4489          // as the win32 APIs, which treat this case as an invalid
4490          // UNC pathname rather than as an alias for the root
4491          // directory of the current drive.
4492          break;
4493        }
4494        end = --dst;  // Path does not denote a root directory, so
4495                      // remove trailing separator
4496        break;
4497      }
4498      end = dst;
4499    } else {
4500      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4501        *dst++ = *src++;
4502        if (*src) *dst++ = *src++;
4503        end = dst;
4504      } else {  // Copy a single-byte character
4505        char c = *src++;
4506        *dst++ = c;
4507        // Space is not a legal ending character
4508        if (c != ' ') end = dst;
4509      }
4510    }
4511  }
4512
4513  *end = '\0';
4514
4515  // For "z:", add "." to work around a bug in the C runtime library
4516  if (colon == dst - 1) {
4517    path[2] = '.';
4518    path[3] = '\0';
4519  }
4520
4521  return path;
4522}
4523
4524// This code is a copy of JDK's sysSetLength
4525// from src/windows/hpi/src/sys_api_md.c
4526
4527int os::ftruncate(int fd, jlong length) {
4528  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4529  long high = (long)(length >> 32);
4530  DWORD ret;
4531
4532  if (h == (HANDLE)(-1)) {
4533    return -1;
4534  }
4535
4536  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4537  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4538    return -1;
4539  }
4540
4541  if (::SetEndOfFile(h) == FALSE) {
4542    return -1;
4543  }
4544
4545  return 0;
4546}
4547
4548
4549// This code is a copy of JDK's sysSync
4550// from src/windows/hpi/src/sys_api_md.c
4551// except for the legacy workaround for a bug in Win 98
4552
4553int os::fsync(int fd) {
4554  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4555
4556  if ((!::FlushFileBuffers(handle)) &&
4557      (GetLastError() != ERROR_ACCESS_DENIED)) {
4558    // from winerror.h
4559    return -1;
4560  }
4561  return 0;
4562}
4563
4564static int nonSeekAvailable(int, long *);
4565static int stdinAvailable(int, long *);
4566
4567#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4568#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4569
4570// This code is a copy of JDK's sysAvailable
4571// from src/windows/hpi/src/sys_api_md.c
4572
4573int os::available(int fd, jlong *bytes) {
4574  jlong cur, end;
4575  struct _stati64 stbuf64;
4576
4577  if (::_fstati64(fd, &stbuf64) >= 0) {
4578    int mode = stbuf64.st_mode;
4579    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4580      int ret;
4581      long lpbytes;
4582      if (fd == 0) {
4583        ret = stdinAvailable(fd, &lpbytes);
4584      } else {
4585        ret = nonSeekAvailable(fd, &lpbytes);
4586      }
4587      (*bytes) = (jlong)(lpbytes);
4588      return ret;
4589    }
4590    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4591      return FALSE;
4592    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4593      return FALSE;
4594    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4595      return FALSE;
4596    }
4597    *bytes = end - cur;
4598    return TRUE;
4599  } else {
4600    return FALSE;
4601  }
4602}
4603
4604// This code is a copy of JDK's nonSeekAvailable
4605// from src/windows/hpi/src/sys_api_md.c
4606
4607static int nonSeekAvailable(int fd, long *pbytes) {
4608  // This is used for available on non-seekable devices
4609  // (like both named and anonymous pipes, such as pipes
4610  //  connected to an exec'd process).
4611  // Standard Input is a special case.
4612  HANDLE han;
4613
4614  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4615    return FALSE;
4616  }
4617
4618  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4619    // PeekNamedPipe fails when at EOF.  In that case we
4620    // simply make *pbytes = 0 which is consistent with the
4621    // behavior we get on Solaris when an fd is at EOF.
4622    // The only alternative is to raise an Exception,
4623    // which isn't really warranted.
4624    //
4625    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4626      return FALSE;
4627    }
4628    *pbytes = 0;
4629  }
4630  return TRUE;
4631}
4632
4633#define MAX_INPUT_EVENTS 2000
4634
4635// This code is a copy of JDK's stdinAvailable
4636// from src/windows/hpi/src/sys_api_md.c
4637
4638static int stdinAvailable(int fd, long *pbytes) {
4639  HANDLE han;
4640  DWORD numEventsRead = 0;  // Number of events read from buffer
4641  DWORD numEvents = 0;      // Number of events in buffer
4642  DWORD i = 0;              // Loop index
4643  DWORD curLength = 0;      // Position marker
4644  DWORD actualLength = 0;   // Number of bytes readable
4645  BOOL error = FALSE;       // Error holder
4646  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4647
4648  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4649    return FALSE;
4650  }
4651
4652  // Construct an array of input records in the console buffer
4653  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4654  if (error == 0) {
4655    return nonSeekAvailable(fd, pbytes);
4656  }
4657
4658  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4659  if (numEvents > MAX_INPUT_EVENTS) {
4660    numEvents = MAX_INPUT_EVENTS;
4661  }
4662
4663  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4664  if (lpBuffer == NULL) {
4665    return FALSE;
4666  }
4667
4668  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4669  if (error == 0) {
4670    os::free(lpBuffer);
4671    return FALSE;
4672  }
4673
4674  // Examine input records for the number of bytes available
4675  for (i=0; i<numEvents; i++) {
4676    if (lpBuffer[i].EventType == KEY_EVENT) {
4677
4678      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4679                                      &(lpBuffer[i].Event);
4680      if (keyRecord->bKeyDown == TRUE) {
4681        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4682        curLength++;
4683        if (*keyPressed == '\r') {
4684          actualLength = curLength;
4685        }
4686      }
4687    }
4688  }
4689
4690  if (lpBuffer != NULL) {
4691    os::free(lpBuffer);
4692  }
4693
4694  *pbytes = (long) actualLength;
4695  return TRUE;
4696}
4697
4698// Map a block of memory.
4699char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4700                        char *addr, size_t bytes, bool read_only,
4701                        bool allow_exec) {
4702  HANDLE hFile;
4703  char* base;
4704
4705  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4706                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4707  if (hFile == NULL) {
4708    if (PrintMiscellaneous && Verbose) {
4709      DWORD err = GetLastError();
4710      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4711    }
4712    return NULL;
4713  }
4714
4715  if (allow_exec) {
4716    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4717    // unless it comes from a PE image (which the shared archive is not.)
4718    // Even VirtualProtect refuses to give execute access to mapped memory
4719    // that was not previously executable.
4720    //
4721    // Instead, stick the executable region in anonymous memory.  Yuck.
4722    // Penalty is that ~4 pages will not be shareable - in the future
4723    // we might consider DLLizing the shared archive with a proper PE
4724    // header so that mapping executable + sharing is possible.
4725
4726    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4727                                PAGE_READWRITE);
4728    if (base == NULL) {
4729      if (PrintMiscellaneous && Verbose) {
4730        DWORD err = GetLastError();
4731        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4732      }
4733      CloseHandle(hFile);
4734      return NULL;
4735    }
4736
4737    DWORD bytes_read;
4738    OVERLAPPED overlapped;
4739    overlapped.Offset = (DWORD)file_offset;
4740    overlapped.OffsetHigh = 0;
4741    overlapped.hEvent = NULL;
4742    // ReadFile guarantees that if the return value is true, the requested
4743    // number of bytes were read before returning.
4744    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4745    if (!res) {
4746      if (PrintMiscellaneous && Verbose) {
4747        DWORD err = GetLastError();
4748        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4749      }
4750      release_memory(base, bytes);
4751      CloseHandle(hFile);
4752      return NULL;
4753    }
4754  } else {
4755    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4756                                    NULL /* file_name */);
4757    if (hMap == NULL) {
4758      if (PrintMiscellaneous && Verbose) {
4759        DWORD err = GetLastError();
4760        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4761      }
4762      CloseHandle(hFile);
4763      return NULL;
4764    }
4765
4766    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4767    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4768                                  (DWORD)bytes, addr);
4769    if (base == NULL) {
4770      if (PrintMiscellaneous && Verbose) {
4771        DWORD err = GetLastError();
4772        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4773      }
4774      CloseHandle(hMap);
4775      CloseHandle(hFile);
4776      return NULL;
4777    }
4778
4779    if (CloseHandle(hMap) == 0) {
4780      if (PrintMiscellaneous && Verbose) {
4781        DWORD err = GetLastError();
4782        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4783      }
4784      CloseHandle(hFile);
4785      return base;
4786    }
4787  }
4788
4789  if (allow_exec) {
4790    DWORD old_protect;
4791    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4792    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4793
4794    if (!res) {
4795      if (PrintMiscellaneous && Verbose) {
4796        DWORD err = GetLastError();
4797        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4798      }
4799      // Don't consider this a hard error, on IA32 even if the
4800      // VirtualProtect fails, we should still be able to execute
4801      CloseHandle(hFile);
4802      return base;
4803    }
4804  }
4805
4806  if (CloseHandle(hFile) == 0) {
4807    if (PrintMiscellaneous && Verbose) {
4808      DWORD err = GetLastError();
4809      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4810    }
4811    return base;
4812  }
4813
4814  return base;
4815}
4816
4817
4818// Remap a block of memory.
4819char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4820                          char *addr, size_t bytes, bool read_only,
4821                          bool allow_exec) {
4822  // This OS does not allow existing memory maps to be remapped so we
4823  // have to unmap the memory before we remap it.
4824  if (!os::unmap_memory(addr, bytes)) {
4825    return NULL;
4826  }
4827
4828  // There is a very small theoretical window between the unmap_memory()
4829  // call above and the map_memory() call below where a thread in native
4830  // code may be able to access an address that is no longer mapped.
4831
4832  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4833                        read_only, allow_exec);
4834}
4835
4836
4837// Unmap a block of memory.
4838// Returns true=success, otherwise false.
4839
4840bool os::pd_unmap_memory(char* addr, size_t bytes) {
4841  BOOL result = UnmapViewOfFile(addr);
4842  if (result == 0) {
4843    if (PrintMiscellaneous && Verbose) {
4844      DWORD err = GetLastError();
4845      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4846    }
4847    return false;
4848  }
4849  return true;
4850}
4851
4852void os::pause() {
4853  char filename[MAX_PATH];
4854  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4855    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4856  } else {
4857    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4858  }
4859
4860  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4861  if (fd != -1) {
4862    struct stat buf;
4863    ::close(fd);
4864    while (::stat(filename, &buf) == 0) {
4865      Sleep(100);
4866    }
4867  } else {
4868    jio_fprintf(stderr,
4869                "Could not open pause file '%s', continuing immediately.\n", filename);
4870  }
4871}
4872
4873os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4874  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4875}
4876
4877// See the caveats for this class in os_windows.hpp
4878// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4879// into this method and returns false. If no OS EXCEPTION was raised, returns
4880// true.
4881// The callback is supposed to provide the method that should be protected.
4882//
4883bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4884  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4885  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4886         "crash_protection already set?");
4887
4888  bool success = true;
4889  __try {
4890    WatcherThread::watcher_thread()->set_crash_protection(this);
4891    cb.call();
4892  } __except(EXCEPTION_EXECUTE_HANDLER) {
4893    // only for protection, nothing to do
4894    success = false;
4895  }
4896  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4897  return success;
4898}
4899
4900// An Event wraps a win32 "CreateEvent" kernel handle.
4901//
4902// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4903//
4904// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4905//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4906//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4907//     In addition, an unpark() operation might fetch the handle field, but the
4908//     event could recycle between the fetch and the SetEvent() operation.
4909//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4910//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4911//     on an stale but recycled handle would be harmless, but in practice this might
4912//     confuse other non-Sun code, so it's not a viable approach.
4913//
4914// 2:  Once a win32 event handle is associated with an Event, it remains associated
4915//     with the Event.  The event handle is never closed.  This could be construed
4916//     as handle leakage, but only up to the maximum # of threads that have been extant
4917//     at any one time.  This shouldn't be an issue, as windows platforms typically
4918//     permit a process to have hundreds of thousands of open handles.
4919//
4920// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4921//     and release unused handles.
4922//
4923// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4924//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4925//
4926// 5.  Use an RCU-like mechanism (Read-Copy Update).
4927//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4928//
4929// We use (2).
4930//
4931// TODO-FIXME:
4932// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4933// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4934//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4935// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4936//     into a single win32 CreateEvent() handle.
4937//
4938// Assumption:
4939//    Only one parker can exist on an event, which is why we allocate
4940//    them per-thread. Multiple unparkers can coexist.
4941//
4942// _Event transitions in park()
4943//   -1 => -1 : illegal
4944//    1 =>  0 : pass - return immediately
4945//    0 => -1 : block; then set _Event to 0 before returning
4946//
4947// _Event transitions in unpark()
4948//    0 => 1 : just return
4949//    1 => 1 : just return
4950//   -1 => either 0 or 1; must signal target thread
4951//         That is, we can safely transition _Event from -1 to either
4952//         0 or 1.
4953//
4954// _Event serves as a restricted-range semaphore.
4955//   -1 : thread is blocked, i.e. there is a waiter
4956//    0 : neutral: thread is running or ready,
4957//        could have been signaled after a wait started
4958//    1 : signaled - thread is running or ready
4959//
4960// Another possible encoding of _Event would be with
4961// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4962//
4963
4964int os::PlatformEvent::park(jlong Millis) {
4965  // Transitions for _Event:
4966  //   -1 => -1 : illegal
4967  //    1 =>  0 : pass - return immediately
4968  //    0 => -1 : block; then set _Event to 0 before returning
4969
4970  guarantee(_ParkHandle != NULL , "Invariant");
4971  guarantee(Millis > 0          , "Invariant");
4972
4973  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4974  // the initial park() operation.
4975  // Consider: use atomic decrement instead of CAS-loop
4976
4977  int v;
4978  for (;;) {
4979    v = _Event;
4980    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4981  }
4982  guarantee((v == 0) || (v == 1), "invariant");
4983  if (v != 0) return OS_OK;
4984
4985  // Do this the hard way by blocking ...
4986  // TODO: consider a brief spin here, gated on the success of recent
4987  // spin attempts by this thread.
4988  //
4989  // We decompose long timeouts into series of shorter timed waits.
4990  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4991  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4992  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4993  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4994  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4995  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4996  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4997  // for the already waited time.  This policy does not admit any new outcomes.
4998  // In the future, however, we might want to track the accumulated wait time and
4999  // adjust Millis accordingly if we encounter a spurious wakeup.
5000
5001  const int MAXTIMEOUT = 0x10000000;
5002  DWORD rv = WAIT_TIMEOUT;
5003  while (_Event < 0 && Millis > 0) {
5004    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5005    if (Millis > MAXTIMEOUT) {
5006      prd = MAXTIMEOUT;
5007    }
5008    rv = ::WaitForSingleObject(_ParkHandle, prd);
5009    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5010    if (rv == WAIT_TIMEOUT) {
5011      Millis -= prd;
5012    }
5013  }
5014  v = _Event;
5015  _Event = 0;
5016  // see comment at end of os::PlatformEvent::park() below:
5017  OrderAccess::fence();
5018  // If we encounter a nearly simultanous timeout expiry and unpark()
5019  // we return OS_OK indicating we awoke via unpark().
5020  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5021  return (v >= 0) ? OS_OK : OS_TIMEOUT;
5022}
5023
5024void os::PlatformEvent::park() {
5025  // Transitions for _Event:
5026  //   -1 => -1 : illegal
5027  //    1 =>  0 : pass - return immediately
5028  //    0 => -1 : block; then set _Event to 0 before returning
5029
5030  guarantee(_ParkHandle != NULL, "Invariant");
5031  // Invariant: Only the thread associated with the Event/PlatformEvent
5032  // may call park().
5033  // Consider: use atomic decrement instead of CAS-loop
5034  int v;
5035  for (;;) {
5036    v = _Event;
5037    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5038  }
5039  guarantee((v == 0) || (v == 1), "invariant");
5040  if (v != 0) return;
5041
5042  // Do this the hard way by blocking ...
5043  // TODO: consider a brief spin here, gated on the success of recent
5044  // spin attempts by this thread.
5045  while (_Event < 0) {
5046    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5047    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5048  }
5049
5050  // Usually we'll find _Event == 0 at this point, but as
5051  // an optional optimization we clear it, just in case can
5052  // multiple unpark() operations drove _Event up to 1.
5053  _Event = 0;
5054  OrderAccess::fence();
5055  guarantee(_Event >= 0, "invariant");
5056}
5057
5058void os::PlatformEvent::unpark() {
5059  guarantee(_ParkHandle != NULL, "Invariant");
5060
5061  // Transitions for _Event:
5062  //    0 => 1 : just return
5063  //    1 => 1 : just return
5064  //   -1 => either 0 or 1; must signal target thread
5065  //         That is, we can safely transition _Event from -1 to either
5066  //         0 or 1.
5067  // See also: "Semaphores in Plan 9" by Mullender & Cox
5068  //
5069  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5070  // that it will take two back-to-back park() calls for the owning
5071  // thread to block. This has the benefit of forcing a spurious return
5072  // from the first park() call after an unpark() call which will help
5073  // shake out uses of park() and unpark() without condition variables.
5074
5075  if (Atomic::xchg(1, &_Event) >= 0) return;
5076
5077  ::SetEvent(_ParkHandle);
5078}
5079
5080
5081// JSR166
5082// -------------------------------------------------------
5083
5084// The Windows implementation of Park is very straightforward: Basic
5085// operations on Win32 Events turn out to have the right semantics to
5086// use them directly. We opportunistically resuse the event inherited
5087// from Monitor.
5088
5089void Parker::park(bool isAbsolute, jlong time) {
5090  guarantee(_ParkEvent != NULL, "invariant");
5091  // First, demultiplex/decode time arguments
5092  if (time < 0) { // don't wait
5093    return;
5094  } else if (time == 0 && !isAbsolute) {
5095    time = INFINITE;
5096  } else if (isAbsolute) {
5097    time -= os::javaTimeMillis(); // convert to relative time
5098    if (time <= 0) {  // already elapsed
5099      return;
5100    }
5101  } else { // relative
5102    time /= 1000000;  // Must coarsen from nanos to millis
5103    if (time == 0) {  // Wait for the minimal time unit if zero
5104      time = 1;
5105    }
5106  }
5107
5108  JavaThread* thread = (JavaThread*)(Thread::current());
5109  assert(thread->is_Java_thread(), "Must be JavaThread");
5110  JavaThread *jt = (JavaThread *)thread;
5111
5112  // Don't wait if interrupted or already triggered
5113  if (Thread::is_interrupted(thread, false) ||
5114      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5115    ResetEvent(_ParkEvent);
5116    return;
5117  } else {
5118    ThreadBlockInVM tbivm(jt);
5119    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5120    jt->set_suspend_equivalent();
5121
5122    WaitForSingleObject(_ParkEvent, time);
5123    ResetEvent(_ParkEvent);
5124
5125    // If externally suspended while waiting, re-suspend
5126    if (jt->handle_special_suspend_equivalent_condition()) {
5127      jt->java_suspend_self();
5128    }
5129  }
5130}
5131
5132void Parker::unpark() {
5133  guarantee(_ParkEvent != NULL, "invariant");
5134  SetEvent(_ParkEvent);
5135}
5136
5137// Run the specified command in a separate process. Return its exit value,
5138// or -1 on failure (e.g. can't create a new process).
5139int os::fork_and_exec(char* cmd) {
5140  STARTUPINFO si;
5141  PROCESS_INFORMATION pi;
5142
5143  memset(&si, 0, sizeof(si));
5144  si.cb = sizeof(si);
5145  memset(&pi, 0, sizeof(pi));
5146  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5147                            cmd,    // command line
5148                            NULL,   // process security attribute
5149                            NULL,   // thread security attribute
5150                            TRUE,   // inherits system handles
5151                            0,      // no creation flags
5152                            NULL,   // use parent's environment block
5153                            NULL,   // use parent's starting directory
5154                            &si,    // (in) startup information
5155                            &pi);   // (out) process information
5156
5157  if (rslt) {
5158    // Wait until child process exits.
5159    WaitForSingleObject(pi.hProcess, INFINITE);
5160
5161    DWORD exit_code;
5162    GetExitCodeProcess(pi.hProcess, &exit_code);
5163
5164    // Close process and thread handles.
5165    CloseHandle(pi.hProcess);
5166    CloseHandle(pi.hThread);
5167
5168    return (int)exit_code;
5169  } else {
5170    return -1;
5171  }
5172}
5173
5174//--------------------------------------------------------------------------------------------------
5175// Non-product code
5176
5177static int mallocDebugIntervalCounter = 0;
5178static int mallocDebugCounter = 0;
5179bool os::check_heap(bool force) {
5180  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5181  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5182    // Note: HeapValidate executes two hardware breakpoints when it finds something
5183    // wrong; at these points, eax contains the address of the offending block (I think).
5184    // To get to the exlicit error message(s) below, just continue twice.
5185    HANDLE heap = GetProcessHeap();
5186
5187    // If we fail to lock the heap, then gflags.exe has been used
5188    // or some other special heap flag has been set that prevents
5189    // locking. We don't try to walk a heap we can't lock.
5190    if (HeapLock(heap) != 0) {
5191      PROCESS_HEAP_ENTRY phe;
5192      phe.lpData = NULL;
5193      while (HeapWalk(heap, &phe) != 0) {
5194        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5195            !HeapValidate(heap, 0, phe.lpData)) {
5196          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5197          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5198          fatal("corrupted C heap");
5199        }
5200      }
5201      DWORD err = GetLastError();
5202      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5203        fatal(err_msg("heap walk aborted with error %d", err));
5204      }
5205      HeapUnlock(heap);
5206    }
5207    mallocDebugIntervalCounter = 0;
5208  }
5209  return true;
5210}
5211
5212
5213bool os::find(address addr, outputStream* st) {
5214  // Nothing yet
5215  return false;
5216}
5217
5218LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5219  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5220
5221  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5222    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5223    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5224    address addr = (address) exceptionRecord->ExceptionInformation[1];
5225
5226    if (os::is_memory_serialize_page(thread, addr)) {
5227      return EXCEPTION_CONTINUE_EXECUTION;
5228    }
5229  }
5230
5231  return EXCEPTION_CONTINUE_SEARCH;
5232}
5233
5234// We don't build a headless jre for Windows
5235bool os::is_headless_jre() { return false; }
5236
5237static jint initSock() {
5238  WSADATA wsadata;
5239
5240  if (!os::WinSock2Dll::WinSock2Available()) {
5241    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5242                ::GetLastError());
5243    return JNI_ERR;
5244  }
5245
5246  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5247    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5248                ::GetLastError());
5249    return JNI_ERR;
5250  }
5251  return JNI_OK;
5252}
5253
5254struct hostent* os::get_host_by_name(char* name) {
5255  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5256}
5257
5258int os::socket_close(int fd) {
5259  return ::closesocket(fd);
5260}
5261
5262int os::socket(int domain, int type, int protocol) {
5263  return ::socket(domain, type, protocol);
5264}
5265
5266int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5267  return ::connect(fd, him, len);
5268}
5269
5270int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5271  return ::recv(fd, buf, (int)nBytes, flags);
5272}
5273
5274int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5275  return ::send(fd, buf, (int)nBytes, flags);
5276}
5277
5278int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5279  return ::send(fd, buf, (int)nBytes, flags);
5280}
5281
5282// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5283#if defined(IA32)
5284  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5285#elif defined (AMD64)
5286  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5287#endif
5288
5289// returns true if thread could be suspended,
5290// false otherwise
5291static bool do_suspend(HANDLE* h) {
5292  if (h != NULL) {
5293    if (SuspendThread(*h) != ~0) {
5294      return true;
5295    }
5296  }
5297  return false;
5298}
5299
5300// resume the thread
5301// calling resume on an active thread is a no-op
5302static void do_resume(HANDLE* h) {
5303  if (h != NULL) {
5304    ResumeThread(*h);
5305  }
5306}
5307
5308// retrieve a suspend/resume context capable handle
5309// from the tid. Caller validates handle return value.
5310void get_thread_handle_for_extended_context(HANDLE* h,
5311                                            OSThread::thread_id_t tid) {
5312  if (h != NULL) {
5313    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5314  }
5315}
5316
5317// Thread sampling implementation
5318//
5319void os::SuspendedThreadTask::internal_do_task() {
5320  CONTEXT    ctxt;
5321  HANDLE     h = NULL;
5322
5323  // get context capable handle for thread
5324  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5325
5326  // sanity
5327  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5328    return;
5329  }
5330
5331  // suspend the thread
5332  if (do_suspend(&h)) {
5333    ctxt.ContextFlags = sampling_context_flags;
5334    // get thread context
5335    GetThreadContext(h, &ctxt);
5336    SuspendedThreadTaskContext context(_thread, &ctxt);
5337    // pass context to Thread Sampling impl
5338    do_task(context);
5339    // resume thread
5340    do_resume(&h);
5341  }
5342
5343  // close handle
5344  CloseHandle(h);
5345}
5346
5347
5348// Kernel32 API
5349typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5350typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5351typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5352typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5353typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5354
5355GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5356VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5357GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5358GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5359RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5360
5361
5362BOOL                        os::Kernel32Dll::initialized = FALSE;
5363SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5364  assert(initialized && _GetLargePageMinimum != NULL,
5365         "GetLargePageMinimumAvailable() not yet called");
5366  return _GetLargePageMinimum();
5367}
5368
5369BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5370  if (!initialized) {
5371    initialize();
5372  }
5373  return _GetLargePageMinimum != NULL;
5374}
5375
5376BOOL os::Kernel32Dll::NumaCallsAvailable() {
5377  if (!initialized) {
5378    initialize();
5379  }
5380  return _VirtualAllocExNuma != NULL;
5381}
5382
5383LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5384                                           SIZE_T bytes, DWORD flags,
5385                                           DWORD prot, DWORD node) {
5386  assert(initialized && _VirtualAllocExNuma != NULL,
5387         "NUMACallsAvailable() not yet called");
5388
5389  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5390}
5391
5392BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5393  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5394         "NUMACallsAvailable() not yet called");
5395
5396  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5397}
5398
5399BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5400                                               PULONGLONG proc_mask) {
5401  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5402         "NUMACallsAvailable() not yet called");
5403
5404  return _GetNumaNodeProcessorMask(node, proc_mask);
5405}
5406
5407USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5408                                                 ULONG FrameToCapture,
5409                                                 PVOID* BackTrace,
5410                                                 PULONG BackTraceHash) {
5411  if (!initialized) {
5412    initialize();
5413  }
5414
5415  if (_RtlCaptureStackBackTrace != NULL) {
5416    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5417                                     BackTrace, BackTraceHash);
5418  } else {
5419    return 0;
5420  }
5421}
5422
5423void os::Kernel32Dll::initializeCommon() {
5424  if (!initialized) {
5425    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5426    assert(handle != NULL, "Just check");
5427    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5428    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5429    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5430    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5431    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5432    initialized = TRUE;
5433  }
5434}
5435
5436
5437
5438#ifndef JDK6_OR_EARLIER
5439
5440void os::Kernel32Dll::initialize() {
5441  initializeCommon();
5442}
5443
5444
5445// Kernel32 API
5446inline BOOL os::Kernel32Dll::SwitchToThread() {
5447  return ::SwitchToThread();
5448}
5449
5450inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5451  return true;
5452}
5453
5454// Help tools
5455inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5456  return true;
5457}
5458
5459inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5460                                                        DWORD th32ProcessId) {
5461  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5462}
5463
5464inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5465                                           LPMODULEENTRY32 lpme) {
5466  return ::Module32First(hSnapshot, lpme);
5467}
5468
5469inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5470                                          LPMODULEENTRY32 lpme) {
5471  return ::Module32Next(hSnapshot, lpme);
5472}
5473
5474inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5475  ::GetNativeSystemInfo(lpSystemInfo);
5476}
5477
5478// PSAPI API
5479inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5480                                             HMODULE *lpModule, DWORD cb,
5481                                             LPDWORD lpcbNeeded) {
5482  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5483}
5484
5485inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5486                                               HMODULE hModule,
5487                                               LPTSTR lpFilename,
5488                                               DWORD nSize) {
5489  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5490}
5491
5492inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5493                                               HMODULE hModule,
5494                                               LPMODULEINFO lpmodinfo,
5495                                               DWORD cb) {
5496  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5497}
5498
5499inline BOOL os::PSApiDll::PSApiAvailable() {
5500  return true;
5501}
5502
5503
5504// WinSock2 API
5505inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5506                                        LPWSADATA lpWSAData) {
5507  return ::WSAStartup(wVersionRequested, lpWSAData);
5508}
5509
5510inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5511  return ::gethostbyname(name);
5512}
5513
5514inline BOOL os::WinSock2Dll::WinSock2Available() {
5515  return true;
5516}
5517
5518// Advapi API
5519inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5520                                                   BOOL DisableAllPrivileges,
5521                                                   PTOKEN_PRIVILEGES NewState,
5522                                                   DWORD BufferLength,
5523                                                   PTOKEN_PRIVILEGES PreviousState,
5524                                                   PDWORD ReturnLength) {
5525  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5526                                 BufferLength, PreviousState, ReturnLength);
5527}
5528
5529inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5530                                              DWORD DesiredAccess,
5531                                              PHANDLE TokenHandle) {
5532  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5533}
5534
5535inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5536                                                  LPCTSTR lpName,
5537                                                  PLUID lpLuid) {
5538  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5539}
5540
5541inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5542  return true;
5543}
5544
5545void* os::get_default_process_handle() {
5546  return (void*)GetModuleHandle(NULL);
5547}
5548
5549// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5550// which is used to find statically linked in agents.
5551// Additionally for windows, takes into account __stdcall names.
5552// Parameters:
5553//            sym_name: Symbol in library we are looking for
5554//            lib_name: Name of library to look in, NULL for shared libs.
5555//            is_absolute_path == true if lib_name is absolute path to agent
5556//                                     such as "C:/a/b/L.dll"
5557//            == false if only the base name of the library is passed in
5558//               such as "L"
5559char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5560                                    bool is_absolute_path) {
5561  char *agent_entry_name;
5562  size_t len;
5563  size_t name_len;
5564  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5565  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5566  const char *start;
5567
5568  if (lib_name != NULL) {
5569    len = name_len = strlen(lib_name);
5570    if (is_absolute_path) {
5571      // Need to strip path, prefix and suffix
5572      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5573        lib_name = ++start;
5574      } else {
5575        // Need to check for drive prefix
5576        if ((start = strchr(lib_name, ':')) != NULL) {
5577          lib_name = ++start;
5578        }
5579      }
5580      if (len <= (prefix_len + suffix_len)) {
5581        return NULL;
5582      }
5583      lib_name += prefix_len;
5584      name_len = strlen(lib_name) - suffix_len;
5585    }
5586  }
5587  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5588  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5589  if (agent_entry_name == NULL) {
5590    return NULL;
5591  }
5592  if (lib_name != NULL) {
5593    const char *p = strrchr(sym_name, '@');
5594    if (p != NULL && p != sym_name) {
5595      // sym_name == _Agent_OnLoad@XX
5596      strncpy(agent_entry_name, sym_name, (p - sym_name));
5597      agent_entry_name[(p-sym_name)] = '\0';
5598      // agent_entry_name == _Agent_OnLoad
5599      strcat(agent_entry_name, "_");
5600      strncat(agent_entry_name, lib_name, name_len);
5601      strcat(agent_entry_name, p);
5602      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5603    } else {
5604      strcpy(agent_entry_name, sym_name);
5605      strcat(agent_entry_name, "_");
5606      strncat(agent_entry_name, lib_name, name_len);
5607    }
5608  } else {
5609    strcpy(agent_entry_name, sym_name);
5610  }
5611  return agent_entry_name;
5612}
5613
5614#else
5615// Kernel32 API
5616typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5617typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5618typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5619typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5620typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5621
5622SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5623CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5624Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5625Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5626GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5627
5628void os::Kernel32Dll::initialize() {
5629  if (!initialized) {
5630    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5631    assert(handle != NULL, "Just check");
5632
5633    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5634    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5635      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5636    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5637    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5638    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5639    initializeCommon();  // resolve the functions that always need resolving
5640
5641    initialized = TRUE;
5642  }
5643}
5644
5645BOOL os::Kernel32Dll::SwitchToThread() {
5646  assert(initialized && _SwitchToThread != NULL,
5647         "SwitchToThreadAvailable() not yet called");
5648  return _SwitchToThread();
5649}
5650
5651
5652BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5653  if (!initialized) {
5654    initialize();
5655  }
5656  return _SwitchToThread != NULL;
5657}
5658
5659// Help tools
5660BOOL os::Kernel32Dll::HelpToolsAvailable() {
5661  if (!initialized) {
5662    initialize();
5663  }
5664  return _CreateToolhelp32Snapshot != NULL &&
5665         _Module32First != NULL &&
5666         _Module32Next != NULL;
5667}
5668
5669HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5670                                                 DWORD th32ProcessId) {
5671  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5672         "HelpToolsAvailable() not yet called");
5673
5674  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5675}
5676
5677BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5678  assert(initialized && _Module32First != NULL,
5679         "HelpToolsAvailable() not yet called");
5680
5681  return _Module32First(hSnapshot, lpme);
5682}
5683
5684inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5685                                          LPMODULEENTRY32 lpme) {
5686  assert(initialized && _Module32Next != NULL,
5687         "HelpToolsAvailable() not yet called");
5688
5689  return _Module32Next(hSnapshot, lpme);
5690}
5691
5692
5693BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5694  if (!initialized) {
5695    initialize();
5696  }
5697  return _GetNativeSystemInfo != NULL;
5698}
5699
5700void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5701  assert(initialized && _GetNativeSystemInfo != NULL,
5702         "GetNativeSystemInfoAvailable() not yet called");
5703
5704  _GetNativeSystemInfo(lpSystemInfo);
5705}
5706
5707// PSAPI API
5708
5709
5710typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5711typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5712typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5713
5714EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5715GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5716GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5717BOOL                    os::PSApiDll::initialized = FALSE;
5718
5719void os::PSApiDll::initialize() {
5720  if (!initialized) {
5721    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5722    if (handle != NULL) {
5723      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5724                                                                    "EnumProcessModules");
5725      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5726                                                                      "GetModuleFileNameExA");
5727      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5728                                                                        "GetModuleInformation");
5729    }
5730    initialized = TRUE;
5731  }
5732}
5733
5734
5735
5736BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5737                                      DWORD cb, LPDWORD lpcbNeeded) {
5738  assert(initialized && _EnumProcessModules != NULL,
5739         "PSApiAvailable() not yet called");
5740  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5741}
5742
5743DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5744                                        LPTSTR lpFilename, DWORD nSize) {
5745  assert(initialized && _GetModuleFileNameEx != NULL,
5746         "PSApiAvailable() not yet called");
5747  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5748}
5749
5750BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5751                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5752  assert(initialized && _GetModuleInformation != NULL,
5753         "PSApiAvailable() not yet called");
5754  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5755}
5756
5757BOOL os::PSApiDll::PSApiAvailable() {
5758  if (!initialized) {
5759    initialize();
5760  }
5761  return _EnumProcessModules != NULL &&
5762    _GetModuleFileNameEx != NULL &&
5763    _GetModuleInformation != NULL;
5764}
5765
5766
5767// WinSock2 API
5768typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5769typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5770
5771WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5772gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5773BOOL             os::WinSock2Dll::initialized = FALSE;
5774
5775void os::WinSock2Dll::initialize() {
5776  if (!initialized) {
5777    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5778    if (handle != NULL) {
5779      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5780      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5781    }
5782    initialized = TRUE;
5783  }
5784}
5785
5786
5787BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5788  assert(initialized && _WSAStartup != NULL,
5789         "WinSock2Available() not yet called");
5790  return _WSAStartup(wVersionRequested, lpWSAData);
5791}
5792
5793struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5794  assert(initialized && _gethostbyname != NULL,
5795         "WinSock2Available() not yet called");
5796  return _gethostbyname(name);
5797}
5798
5799BOOL os::WinSock2Dll::WinSock2Available() {
5800  if (!initialized) {
5801    initialize();
5802  }
5803  return _WSAStartup != NULL &&
5804    _gethostbyname != NULL;
5805}
5806
5807typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5808typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5809typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5810
5811AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5812OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5813LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5814BOOL                     os::Advapi32Dll::initialized = FALSE;
5815
5816void os::Advapi32Dll::initialize() {
5817  if (!initialized) {
5818    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5819    if (handle != NULL) {
5820      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5821                                                                          "AdjustTokenPrivileges");
5822      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5823                                                                "OpenProcessToken");
5824      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5825                                                                        "LookupPrivilegeValueA");
5826    }
5827    initialized = TRUE;
5828  }
5829}
5830
5831BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5832                                            BOOL DisableAllPrivileges,
5833                                            PTOKEN_PRIVILEGES NewState,
5834                                            DWORD BufferLength,
5835                                            PTOKEN_PRIVILEGES PreviousState,
5836                                            PDWORD ReturnLength) {
5837  assert(initialized && _AdjustTokenPrivileges != NULL,
5838         "AdvapiAvailable() not yet called");
5839  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5840                                BufferLength, PreviousState, ReturnLength);
5841}
5842
5843BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5844                                       DWORD DesiredAccess,
5845                                       PHANDLE TokenHandle) {
5846  assert(initialized && _OpenProcessToken != NULL,
5847         "AdvapiAvailable() not yet called");
5848  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5849}
5850
5851BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5852                                           LPCTSTR lpName, PLUID lpLuid) {
5853  assert(initialized && _LookupPrivilegeValue != NULL,
5854         "AdvapiAvailable() not yet called");
5855  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5856}
5857
5858BOOL os::Advapi32Dll::AdvapiAvailable() {
5859  if (!initialized) {
5860    initialize();
5861  }
5862  return _AdjustTokenPrivileges != NULL &&
5863    _OpenProcessToken != NULL &&
5864    _LookupPrivilegeValue != NULL;
5865}
5866
5867#endif
5868
5869#ifndef PRODUCT
5870
5871// test the code path in reserve_memory_special() that tries to allocate memory in a single
5872// contiguous memory block at a particular address.
5873// The test first tries to find a good approximate address to allocate at by using the same
5874// method to allocate some memory at any address. The test then tries to allocate memory in
5875// the vicinity (not directly after it to avoid possible by-chance use of that location)
5876// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5877// the previously allocated memory is available for allocation. The only actual failure
5878// that is reported is when the test tries to allocate at a particular location but gets a
5879// different valid one. A NULL return value at this point is not considered an error but may
5880// be legitimate.
5881// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5882void TestReserveMemorySpecial_test() {
5883  if (!UseLargePages) {
5884    if (VerboseInternalVMTests) {
5885      gclog_or_tty->print("Skipping test because large pages are disabled");
5886    }
5887    return;
5888  }
5889  // save current value of globals
5890  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5891  bool old_use_numa_interleaving = UseNUMAInterleaving;
5892
5893  // set globals to make sure we hit the correct code path
5894  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5895
5896  // do an allocation at an address selected by the OS to get a good one.
5897  const size_t large_allocation_size = os::large_page_size() * 4;
5898  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5899  if (result == NULL) {
5900    if (VerboseInternalVMTests) {
5901      gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5902                          large_allocation_size);
5903    }
5904  } else {
5905    os::release_memory_special(result, large_allocation_size);
5906
5907    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5908    // we managed to get it once.
5909    const size_t expected_allocation_size = os::large_page_size();
5910    char* expected_location = result + os::large_page_size();
5911    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5912    if (actual_location == NULL) {
5913      if (VerboseInternalVMTests) {
5914        gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5915                            expected_location, large_allocation_size);
5916      }
5917    } else {
5918      // release memory
5919      os::release_memory_special(actual_location, expected_allocation_size);
5920      // only now check, after releasing any memory to avoid any leaks.
5921      assert(actual_location == expected_location,
5922             err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5923             expected_location, expected_allocation_size, actual_location));
5924    }
5925  }
5926
5927  // restore globals
5928  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5929  UseNUMAInterleaving = old_use_numa_interleaving;
5930}
5931#endif // PRODUCT
5932