os_windows.cpp revision 7344:1d29b13e8a51
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "services/attachListener.hpp"
67#include "services/memTracker.hpp"
68#include "services/runtimeService.hpp"
69#include "utilities/decoder.hpp"
70#include "utilities/defaultStream.hpp"
71#include "utilities/events.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/vmError.hpp"
74
75#ifdef _DEBUG
76#include <crtdbg.h>
77#endif
78
79
80#include <windows.h>
81#include <sys/types.h>
82#include <sys/stat.h>
83#include <sys/timeb.h>
84#include <objidl.h>
85#include <shlobj.h>
86
87#include <malloc.h>
88#include <signal.h>
89#include <direct.h>
90#include <errno.h>
91#include <fcntl.h>
92#include <io.h>
93#include <process.h>              // For _beginthreadex(), _endthreadex()
94#include <imagehlp.h>             // For os::dll_address_to_function_name
95// for enumerating dll libraries
96#include <vdmdbg.h>
97
98// for timer info max values which include all bits
99#define ALL_64_BITS CONST64(-1)
100
101// For DLL loading/load error detection
102// Values of PE COFF
103#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
104#define IMAGE_FILE_SIGNATURE_LENGTH 4
105
106static HANDLE main_process;
107static HANDLE main_thread;
108static int    main_thread_id;
109
110static FILETIME process_creation_time;
111static FILETIME process_exit_time;
112static FILETIME process_user_time;
113static FILETIME process_kernel_time;
114
115#ifdef _M_IA64
116  #define __CPU__ ia64
117#elif _M_AMD64
118  #define __CPU__ amd64
119#else
120  #define __CPU__ i486
121#endif
122
123// save DLL module handle, used by GetModuleFileName
124
125HINSTANCE vm_lib_handle;
126
127BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
128  switch (reason) {
129  case DLL_PROCESS_ATTACH:
130    vm_lib_handle = hinst;
131    if (ForceTimeHighResolution) {
132      timeBeginPeriod(1L);
133    }
134    break;
135  case DLL_PROCESS_DETACH:
136    if (ForceTimeHighResolution) {
137      timeEndPeriod(1L);
138    }
139    break;
140  default:
141    break;
142  }
143  return true;
144}
145
146static inline double fileTimeAsDouble(FILETIME* time) {
147  const double high  = (double) ((unsigned int) ~0);
148  const double split = 10000000.0;
149  double result = (time->dwLowDateTime / split) +
150                   time->dwHighDateTime * (high/split);
151  return result;
152}
153
154// Implementation of os
155
156bool os::getenv(const char* name, char* buffer, int len) {
157  int result = GetEnvironmentVariable(name, buffer, len);
158  return result > 0 && result < len;
159}
160
161bool os::unsetenv(const char* name) {
162  assert(name != NULL, "Null pointer");
163  return (SetEnvironmentVariable(name, NULL) == TRUE);
164}
165
166// No setuid programs under Windows.
167bool os::have_special_privileges() {
168  return false;
169}
170
171
172// This method is  a periodic task to check for misbehaving JNI applications
173// under CheckJNI, we can add any periodic checks here.
174// For Windows at the moment does nothing
175void os::run_periodic_checks() {
176  return;
177}
178
179// previous UnhandledExceptionFilter, if there is one
180static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
181
182LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
183
184void os::init_system_properties_values() {
185  // sysclasspath, java_home, dll_dir
186  {
187    char *home_path;
188    char *dll_path;
189    char *pslash;
190    char *bin = "\\bin";
191    char home_dir[MAX_PATH];
192
193    if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
194      os::jvm_path(home_dir, sizeof(home_dir));
195      // Found the full path to jvm.dll.
196      // Now cut the path to <java_home>/jre if we can.
197      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
198      pslash = strrchr(home_dir, '\\');
199      if (pslash != NULL) {
200        *pslash = '\0';                   // get rid of \{client|server}
201        pslash = strrchr(home_dir, '\\');
202        if (pslash != NULL) {
203          *pslash = '\0';                 // get rid of \bin
204        }
205      }
206    }
207
208    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
209    if (home_path == NULL) {
210      return;
211    }
212    strcpy(home_path, home_dir);
213    Arguments::set_java_home(home_path);
214    FREE_C_HEAP_ARRAY(char, home_path, mtInternal);
215
216    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
217                                mtInternal);
218    if (dll_path == NULL) {
219      return;
220    }
221    strcpy(dll_path, home_dir);
222    strcat(dll_path, bin);
223    Arguments::set_dll_dir(dll_path);
224    FREE_C_HEAP_ARRAY(char, dll_path, mtInternal);
225
226    if (!set_boot_path('\\', ';')) {
227      return;
228    }
229  }
230
231// library_path
232#define EXT_DIR "\\lib\\ext"
233#define BIN_DIR "\\bin"
234#define PACKAGE_DIR "\\Sun\\Java"
235  {
236    // Win32 library search order (See the documentation for LoadLibrary):
237    //
238    // 1. The directory from which application is loaded.
239    // 2. The system wide Java Extensions directory (Java only)
240    // 3. System directory (GetSystemDirectory)
241    // 4. Windows directory (GetWindowsDirectory)
242    // 5. The PATH environment variable
243    // 6. The current directory
244
245    char *library_path;
246    char tmp[MAX_PATH];
247    char *path_str = ::getenv("PATH");
248
249    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
250                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
251
252    library_path[0] = '\0';
253
254    GetModuleFileName(NULL, tmp, sizeof(tmp));
255    *(strrchr(tmp, '\\')) = '\0';
256    strcat(library_path, tmp);
257
258    GetWindowsDirectory(tmp, sizeof(tmp));
259    strcat(library_path, ";");
260    strcat(library_path, tmp);
261    strcat(library_path, PACKAGE_DIR BIN_DIR);
262
263    GetSystemDirectory(tmp, sizeof(tmp));
264    strcat(library_path, ";");
265    strcat(library_path, tmp);
266
267    GetWindowsDirectory(tmp, sizeof(tmp));
268    strcat(library_path, ";");
269    strcat(library_path, tmp);
270
271    if (path_str) {
272      strcat(library_path, ";");
273      strcat(library_path, path_str);
274    }
275
276    strcat(library_path, ";.");
277
278    Arguments::set_library_path(library_path);
279    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
280  }
281
282  // Default extensions directory
283  {
284    char path[MAX_PATH];
285    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
286    GetWindowsDirectory(path, MAX_PATH);
287    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
288            path, PACKAGE_DIR, EXT_DIR);
289    Arguments::set_ext_dirs(buf);
290  }
291  #undef EXT_DIR
292  #undef BIN_DIR
293  #undef PACKAGE_DIR
294
295#ifndef _WIN64
296  // set our UnhandledExceptionFilter and save any previous one
297  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
298#endif
299
300  // Done
301  return;
302}
303
304void os::breakpoint() {
305  DebugBreak();
306}
307
308// Invoked from the BREAKPOINT Macro
309extern "C" void breakpoint() {
310  os::breakpoint();
311}
312
313// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
314// So far, this method is only used by Native Memory Tracking, which is
315// only supported on Windows XP or later.
316//
317int os::get_native_stack(address* stack, int frames, int toSkip) {
318#ifdef _NMT_NOINLINE_
319  toSkip++;
320#endif
321  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
322                                                       (PVOID*)stack, NULL);
323  for (int index = captured; index < frames; index ++) {
324    stack[index] = NULL;
325  }
326  return captured;
327}
328
329
330// os::current_stack_base()
331//
332//   Returns the base of the stack, which is the stack's
333//   starting address.  This function must be called
334//   while running on the stack of the thread being queried.
335
336address os::current_stack_base() {
337  MEMORY_BASIC_INFORMATION minfo;
338  address stack_bottom;
339  size_t stack_size;
340
341  VirtualQuery(&minfo, &minfo, sizeof(minfo));
342  stack_bottom =  (address)minfo.AllocationBase;
343  stack_size = minfo.RegionSize;
344
345  // Add up the sizes of all the regions with the same
346  // AllocationBase.
347  while (1) {
348    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
349    if (stack_bottom == (address)minfo.AllocationBase) {
350      stack_size += minfo.RegionSize;
351    } else {
352      break;
353    }
354  }
355
356#ifdef _M_IA64
357  // IA64 has memory and register stacks
358  //
359  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
360  // at thread creation (1MB backing store growing upwards, 1MB memory stack
361  // growing downwards, 2MB summed up)
362  //
363  // ...
364  // ------- top of stack (high address) -----
365  // |
366  // |      1MB
367  // |      Backing Store (Register Stack)
368  // |
369  // |         / \
370  // |          |
371  // |          |
372  // |          |
373  // ------------------------ stack base -----
374  // |      1MB
375  // |      Memory Stack
376  // |
377  // |          |
378  // |          |
379  // |          |
380  // |         \ /
381  // |
382  // ----- bottom of stack (low address) -----
383  // ...
384
385  stack_size = stack_size / 2;
386#endif
387  return stack_bottom + stack_size;
388}
389
390size_t os::current_stack_size() {
391  size_t sz;
392  MEMORY_BASIC_INFORMATION minfo;
393  VirtualQuery(&minfo, &minfo, sizeof(minfo));
394  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
395  return sz;
396}
397
398struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
399  const struct tm* time_struct_ptr = localtime(clock);
400  if (time_struct_ptr != NULL) {
401    *res = *time_struct_ptr;
402    return res;
403  }
404  return NULL;
405}
406
407LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
408
409// Thread start routine for all new Java threads
410static unsigned __stdcall java_start(Thread* thread) {
411  // Try to randomize the cache line index of hot stack frames.
412  // This helps when threads of the same stack traces evict each other's
413  // cache lines. The threads can be either from the same JVM instance, or
414  // from different JVM instances. The benefit is especially true for
415  // processors with hyperthreading technology.
416  static int counter = 0;
417  int pid = os::current_process_id();
418  _alloca(((pid ^ counter++) & 7) * 128);
419
420  OSThread* osthr = thread->osthread();
421  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
422
423  if (UseNUMA) {
424    int lgrp_id = os::numa_get_group_id();
425    if (lgrp_id != -1) {
426      thread->set_lgrp_id(lgrp_id);
427    }
428  }
429
430  // Diagnostic code to investigate JDK-6573254
431  int res = 50115;  // non-java thread
432  if (thread->is_Java_thread()) {
433    res = 40115;    // java thread
434  }
435
436  // Install a win32 structured exception handler around every thread created
437  // by VM, so VM can generate error dump when an exception occurred in non-
438  // Java thread (e.g. VM thread).
439  __try {
440    thread->run();
441  } __except(topLevelExceptionFilter(
442                                     (_EXCEPTION_POINTERS*)_exception_info())) {
443    // Nothing to do.
444  }
445
446  // One less thread is executing
447  // When the VMThread gets here, the main thread may have already exited
448  // which frees the CodeHeap containing the Atomic::add code
449  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
450    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
451  }
452
453  // Thread must not return from exit_process_or_thread(), but if it does,
454  // let it proceed to exit normally
455  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
456}
457
458static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
459                                  int thread_id) {
460  // Allocate the OSThread object
461  OSThread* osthread = new OSThread(NULL, NULL);
462  if (osthread == NULL) return NULL;
463
464  // Initialize support for Java interrupts
465  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
466  if (interrupt_event == NULL) {
467    delete osthread;
468    return NULL;
469  }
470  osthread->set_interrupt_event(interrupt_event);
471
472  // Store info on the Win32 thread into the OSThread
473  osthread->set_thread_handle(thread_handle);
474  osthread->set_thread_id(thread_id);
475
476  if (UseNUMA) {
477    int lgrp_id = os::numa_get_group_id();
478    if (lgrp_id != -1) {
479      thread->set_lgrp_id(lgrp_id);
480    }
481  }
482
483  // Initial thread state is INITIALIZED, not SUSPENDED
484  osthread->set_state(INITIALIZED);
485
486  return osthread;
487}
488
489
490bool os::create_attached_thread(JavaThread* thread) {
491#ifdef ASSERT
492  thread->verify_not_published();
493#endif
494  HANDLE thread_h;
495  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
496                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
497    fatal("DuplicateHandle failed\n");
498  }
499  OSThread* osthread = create_os_thread(thread, thread_h,
500                                        (int)current_thread_id());
501  if (osthread == NULL) {
502    return false;
503  }
504
505  // Initial thread state is RUNNABLE
506  osthread->set_state(RUNNABLE);
507
508  thread->set_osthread(osthread);
509  return true;
510}
511
512bool os::create_main_thread(JavaThread* thread) {
513#ifdef ASSERT
514  thread->verify_not_published();
515#endif
516  if (_starting_thread == NULL) {
517    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
518    if (_starting_thread == NULL) {
519      return false;
520    }
521  }
522
523  // The primordial thread is runnable from the start)
524  _starting_thread->set_state(RUNNABLE);
525
526  thread->set_osthread(_starting_thread);
527  return true;
528}
529
530// Allocate and initialize a new OSThread
531bool os::create_thread(Thread* thread, ThreadType thr_type,
532                       size_t stack_size) {
533  unsigned thread_id;
534
535  // Allocate the OSThread object
536  OSThread* osthread = new OSThread(NULL, NULL);
537  if (osthread == NULL) {
538    return false;
539  }
540
541  // Initialize support for Java interrupts
542  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
543  if (interrupt_event == NULL) {
544    delete osthread;
545    return NULL;
546  }
547  osthread->set_interrupt_event(interrupt_event);
548  osthread->set_interrupted(false);
549
550  thread->set_osthread(osthread);
551
552  if (stack_size == 0) {
553    switch (thr_type) {
554    case os::java_thread:
555      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
556      if (JavaThread::stack_size_at_create() > 0) {
557        stack_size = JavaThread::stack_size_at_create();
558      }
559      break;
560    case os::compiler_thread:
561      if (CompilerThreadStackSize > 0) {
562        stack_size = (size_t)(CompilerThreadStackSize * K);
563        break;
564      } // else fall through:
565        // use VMThreadStackSize if CompilerThreadStackSize is not defined
566    case os::vm_thread:
567    case os::pgc_thread:
568    case os::cgc_thread:
569    case os::watcher_thread:
570      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
571      break;
572    }
573  }
574
575  // Create the Win32 thread
576  //
577  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
578  // does not specify stack size. Instead, it specifies the size of
579  // initially committed space. The stack size is determined by
580  // PE header in the executable. If the committed "stack_size" is larger
581  // than default value in the PE header, the stack is rounded up to the
582  // nearest multiple of 1MB. For example if the launcher has default
583  // stack size of 320k, specifying any size less than 320k does not
584  // affect the actual stack size at all, it only affects the initial
585  // commitment. On the other hand, specifying 'stack_size' larger than
586  // default value may cause significant increase in memory usage, because
587  // not only the stack space will be rounded up to MB, but also the
588  // entire space is committed upfront.
589  //
590  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
591  // for CreateThread() that can treat 'stack_size' as stack size. However we
592  // are not supposed to call CreateThread() directly according to MSDN
593  // document because JVM uses C runtime library. The good news is that the
594  // flag appears to work with _beginthredex() as well.
595
596#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
597  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
598#endif
599
600  HANDLE thread_handle =
601    (HANDLE)_beginthreadex(NULL,
602                           (unsigned)stack_size,
603                           (unsigned (__stdcall *)(void*)) java_start,
604                           thread,
605                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
606                           &thread_id);
607  if (thread_handle == NULL) {
608    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
609    // without the flag.
610    thread_handle =
611      (HANDLE)_beginthreadex(NULL,
612                             (unsigned)stack_size,
613                             (unsigned (__stdcall *)(void*)) java_start,
614                             thread,
615                             CREATE_SUSPENDED,
616                             &thread_id);
617  }
618  if (thread_handle == NULL) {
619    // Need to clean up stuff we've allocated so far
620    CloseHandle(osthread->interrupt_event());
621    thread->set_osthread(NULL);
622    delete osthread;
623    return NULL;
624  }
625
626  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
627
628  // Store info on the Win32 thread into the OSThread
629  osthread->set_thread_handle(thread_handle);
630  osthread->set_thread_id(thread_id);
631
632  // Initial thread state is INITIALIZED, not SUSPENDED
633  osthread->set_state(INITIALIZED);
634
635  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
636  return true;
637}
638
639
640// Free Win32 resources related to the OSThread
641void os::free_thread(OSThread* osthread) {
642  assert(osthread != NULL, "osthread not set");
643  CloseHandle(osthread->thread_handle());
644  CloseHandle(osthread->interrupt_event());
645  delete osthread;
646}
647
648static jlong first_filetime;
649static jlong initial_performance_count;
650static jlong performance_frequency;
651
652
653jlong as_long(LARGE_INTEGER x) {
654  jlong result = 0; // initialization to avoid warning
655  set_high(&result, x.HighPart);
656  set_low(&result, x.LowPart);
657  return result;
658}
659
660
661jlong os::elapsed_counter() {
662  LARGE_INTEGER count;
663  if (win32::_has_performance_count) {
664    QueryPerformanceCounter(&count);
665    return as_long(count) - initial_performance_count;
666  } else {
667    FILETIME wt;
668    GetSystemTimeAsFileTime(&wt);
669    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
670  }
671}
672
673
674jlong os::elapsed_frequency() {
675  if (win32::_has_performance_count) {
676    return performance_frequency;
677  } else {
678    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
679    return 10000000;
680  }
681}
682
683
684julong os::available_memory() {
685  return win32::available_memory();
686}
687
688julong os::win32::available_memory() {
689  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
690  // value if total memory is larger than 4GB
691  MEMORYSTATUSEX ms;
692  ms.dwLength = sizeof(ms);
693  GlobalMemoryStatusEx(&ms);
694
695  return (julong)ms.ullAvailPhys;
696}
697
698julong os::physical_memory() {
699  return win32::physical_memory();
700}
701
702bool os::has_allocatable_memory_limit(julong* limit) {
703  MEMORYSTATUSEX ms;
704  ms.dwLength = sizeof(ms);
705  GlobalMemoryStatusEx(&ms);
706#ifdef _LP64
707  *limit = (julong)ms.ullAvailVirtual;
708  return true;
709#else
710  // Limit to 1400m because of the 2gb address space wall
711  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
712  return true;
713#endif
714}
715
716// VC6 lacks DWORD_PTR
717#if _MSC_VER < 1300
718typedef UINT_PTR DWORD_PTR;
719#endif
720
721int os::active_processor_count() {
722  DWORD_PTR lpProcessAffinityMask = 0;
723  DWORD_PTR lpSystemAffinityMask = 0;
724  int proc_count = processor_count();
725  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
726      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
727    // Nof active processors is number of bits in process affinity mask
728    int bitcount = 0;
729    while (lpProcessAffinityMask != 0) {
730      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
731      bitcount++;
732    }
733    return bitcount;
734  } else {
735    return proc_count;
736  }
737}
738
739void os::set_native_thread_name(const char *name) {
740
741  // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
742  //
743  // Note that unfortunately this only works if the process
744  // is already attached to a debugger; debugger must observe
745  // the exception below to show the correct name.
746
747  const DWORD MS_VC_EXCEPTION = 0x406D1388;
748  struct {
749    DWORD dwType;     // must be 0x1000
750    LPCSTR szName;    // pointer to name (in user addr space)
751    DWORD dwThreadID; // thread ID (-1=caller thread)
752    DWORD dwFlags;    // reserved for future use, must be zero
753  } info;
754
755  info.dwType = 0x1000;
756  info.szName = name;
757  info.dwThreadID = -1;
758  info.dwFlags = 0;
759
760  __try {
761    RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
762  } __except(EXCEPTION_CONTINUE_EXECUTION) {}
763}
764
765bool os::distribute_processes(uint length, uint* distribution) {
766  // Not yet implemented.
767  return false;
768}
769
770bool os::bind_to_processor(uint processor_id) {
771  // Not yet implemented.
772  return false;
773}
774
775void os::win32::initialize_performance_counter() {
776  LARGE_INTEGER count;
777  if (QueryPerformanceFrequency(&count)) {
778    win32::_has_performance_count = 1;
779    performance_frequency = as_long(count);
780    QueryPerformanceCounter(&count);
781    initial_performance_count = as_long(count);
782  } else {
783    win32::_has_performance_count = 0;
784    FILETIME wt;
785    GetSystemTimeAsFileTime(&wt);
786    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
787  }
788}
789
790
791double os::elapsedTime() {
792  return (double) elapsed_counter() / (double) elapsed_frequency();
793}
794
795
796// Windows format:
797//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
798// Java format:
799//   Java standards require the number of milliseconds since 1/1/1970
800
801// Constant offset - calculated using offset()
802static jlong  _offset   = 116444736000000000;
803// Fake time counter for reproducible results when debugging
804static jlong  fake_time = 0;
805
806#ifdef ASSERT
807// Just to be safe, recalculate the offset in debug mode
808static jlong _calculated_offset = 0;
809static int   _has_calculated_offset = 0;
810
811jlong offset() {
812  if (_has_calculated_offset) return _calculated_offset;
813  SYSTEMTIME java_origin;
814  java_origin.wYear          = 1970;
815  java_origin.wMonth         = 1;
816  java_origin.wDayOfWeek     = 0; // ignored
817  java_origin.wDay           = 1;
818  java_origin.wHour          = 0;
819  java_origin.wMinute        = 0;
820  java_origin.wSecond        = 0;
821  java_origin.wMilliseconds  = 0;
822  FILETIME jot;
823  if (!SystemTimeToFileTime(&java_origin, &jot)) {
824    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
825  }
826  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
827  _has_calculated_offset = 1;
828  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
829  return _calculated_offset;
830}
831#else
832jlong offset() {
833  return _offset;
834}
835#endif
836
837jlong windows_to_java_time(FILETIME wt) {
838  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
839  return (a - offset()) / 10000;
840}
841
842FILETIME java_to_windows_time(jlong l) {
843  jlong a = (l * 10000) + offset();
844  FILETIME result;
845  result.dwHighDateTime = high(a);
846  result.dwLowDateTime  = low(a);
847  return result;
848}
849
850bool os::supports_vtime() { return true; }
851bool os::enable_vtime() { return false; }
852bool os::vtime_enabled() { return false; }
853
854double os::elapsedVTime() {
855  FILETIME created;
856  FILETIME exited;
857  FILETIME kernel;
858  FILETIME user;
859  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
860    // the resolution of windows_to_java_time() should be sufficient (ms)
861    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
862  } else {
863    return elapsedTime();
864  }
865}
866
867jlong os::javaTimeMillis() {
868  if (UseFakeTimers) {
869    return fake_time++;
870  } else {
871    FILETIME wt;
872    GetSystemTimeAsFileTime(&wt);
873    return windows_to_java_time(wt);
874  }
875}
876
877jlong os::javaTimeNanos() {
878  if (!win32::_has_performance_count) {
879    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
880  } else {
881    LARGE_INTEGER current_count;
882    QueryPerformanceCounter(&current_count);
883    double current = as_long(current_count);
884    double freq = performance_frequency;
885    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
886    return time;
887  }
888}
889
890void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
891  if (!win32::_has_performance_count) {
892    // javaTimeMillis() doesn't have much percision,
893    // but it is not going to wrap -- so all 64 bits
894    info_ptr->max_value = ALL_64_BITS;
895
896    // this is a wall clock timer, so may skip
897    info_ptr->may_skip_backward = true;
898    info_ptr->may_skip_forward = true;
899  } else {
900    jlong freq = performance_frequency;
901    if (freq < NANOSECS_PER_SEC) {
902      // the performance counter is 64 bits and we will
903      // be multiplying it -- so no wrap in 64 bits
904      info_ptr->max_value = ALL_64_BITS;
905    } else if (freq > NANOSECS_PER_SEC) {
906      // use the max value the counter can reach to
907      // determine the max value which could be returned
908      julong max_counter = (julong)ALL_64_BITS;
909      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
910    } else {
911      // the performance counter is 64 bits and we will
912      // be using it directly -- so no wrap in 64 bits
913      info_ptr->max_value = ALL_64_BITS;
914    }
915
916    // using a counter, so no skipping
917    info_ptr->may_skip_backward = false;
918    info_ptr->may_skip_forward = false;
919  }
920  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
921}
922
923char* os::local_time_string(char *buf, size_t buflen) {
924  SYSTEMTIME st;
925  GetLocalTime(&st);
926  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
927               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
928  return buf;
929}
930
931bool os::getTimesSecs(double* process_real_time,
932                      double* process_user_time,
933                      double* process_system_time) {
934  HANDLE h_process = GetCurrentProcess();
935  FILETIME create_time, exit_time, kernel_time, user_time;
936  BOOL result = GetProcessTimes(h_process,
937                                &create_time,
938                                &exit_time,
939                                &kernel_time,
940                                &user_time);
941  if (result != 0) {
942    FILETIME wt;
943    GetSystemTimeAsFileTime(&wt);
944    jlong rtc_millis = windows_to_java_time(wt);
945    jlong user_millis = windows_to_java_time(user_time);
946    jlong system_millis = windows_to_java_time(kernel_time);
947    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
948    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
949    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
950    return true;
951  } else {
952    return false;
953  }
954}
955
956void os::shutdown() {
957  // allow PerfMemory to attempt cleanup of any persistent resources
958  perfMemory_exit();
959
960  // flush buffered output, finish log files
961  ostream_abort();
962
963  // Check for abort hook
964  abort_hook_t abort_hook = Arguments::abort_hook();
965  if (abort_hook != NULL) {
966    abort_hook();
967  }
968}
969
970
971static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
972                                         PMINIDUMP_EXCEPTION_INFORMATION,
973                                         PMINIDUMP_USER_STREAM_INFORMATION,
974                                         PMINIDUMP_CALLBACK_INFORMATION);
975
976void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
977  HINSTANCE dbghelp;
978  EXCEPTION_POINTERS ep;
979  MINIDUMP_EXCEPTION_INFORMATION mei;
980  MINIDUMP_EXCEPTION_INFORMATION* pmei;
981
982  HANDLE hProcess = GetCurrentProcess();
983  DWORD processId = GetCurrentProcessId();
984  HANDLE dumpFile;
985  MINIDUMP_TYPE dumpType;
986  static const char* cwd;
987
988// Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
989#ifndef ASSERT
990  // If running on a client version of Windows and user has not explicitly enabled dumping
991  if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
992    VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
993    return;
994    // If running on a server version of Windows and user has explictly disabled dumping
995  } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
996    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
997    return;
998  }
999#else
1000  if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1001    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1002    return;
1003  }
1004#endif
1005
1006  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1007
1008  if (dbghelp == NULL) {
1009    VMError::report_coredump_status("Failed to load dbghelp.dll", false);
1010    return;
1011  }
1012
1013  _MiniDumpWriteDump =
1014      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1015                                    PMINIDUMP_EXCEPTION_INFORMATION,
1016                                    PMINIDUMP_USER_STREAM_INFORMATION,
1017                                    PMINIDUMP_CALLBACK_INFORMATION),
1018                                    GetProcAddress(dbghelp,
1019                                    "MiniDumpWriteDump"));
1020
1021  if (_MiniDumpWriteDump == NULL) {
1022    VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
1023    return;
1024  }
1025
1026  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1027
1028// Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1029// API_VERSION_NUMBER 11 or higher contains the ones we want though
1030#if API_VERSION_NUMBER >= 11
1031  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1032                             MiniDumpWithUnloadedModules);
1033#endif
1034
1035  cwd = get_current_directory(NULL, 0);
1036  jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1037  dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1038
1039  if (dumpFile == INVALID_HANDLE_VALUE) {
1040    VMError::report_coredump_status("Failed to create file for dumping", false);
1041    return;
1042  }
1043  if (exceptionRecord != NULL && contextRecord != NULL) {
1044    ep.ContextRecord = (PCONTEXT) contextRecord;
1045    ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1046
1047    mei.ThreadId = GetCurrentThreadId();
1048    mei.ExceptionPointers = &ep;
1049    pmei = &mei;
1050  } else {
1051    pmei = NULL;
1052  }
1053
1054
1055  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1056  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1057  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1058      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1059    DWORD error = GetLastError();
1060    LPTSTR msgbuf = NULL;
1061
1062    if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1063                      FORMAT_MESSAGE_FROM_SYSTEM |
1064                      FORMAT_MESSAGE_IGNORE_INSERTS,
1065                      NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1066
1067      jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1068      LocalFree(msgbuf);
1069    } else {
1070      // Call to FormatMessage failed, just include the result from GetLastError
1071      jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1072    }
1073    VMError::report_coredump_status(buffer, false);
1074  } else {
1075    VMError::report_coredump_status(buffer, true);
1076  }
1077
1078  CloseHandle(dumpFile);
1079}
1080
1081
1082void os::abort(bool dump_core) {
1083  os::shutdown();
1084  // no core dump on Windows
1085  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1086}
1087
1088// Die immediately, no exit hook, no abort hook, no cleanup.
1089void os::die() {
1090  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1091}
1092
1093// Directory routines copied from src/win32/native/java/io/dirent_md.c
1094//  * dirent_md.c       1.15 00/02/02
1095//
1096// The declarations for DIR and struct dirent are in jvm_win32.h.
1097
1098// Caller must have already run dirname through JVM_NativePath, which removes
1099// duplicate slashes and converts all instances of '/' into '\\'.
1100
1101DIR * os::opendir(const char *dirname) {
1102  assert(dirname != NULL, "just checking");   // hotspot change
1103  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1104  DWORD fattr;                                // hotspot change
1105  char alt_dirname[4] = { 0, 0, 0, 0 };
1106
1107  if (dirp == 0) {
1108    errno = ENOMEM;
1109    return 0;
1110  }
1111
1112  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1113  // as a directory in FindFirstFile().  We detect this case here and
1114  // prepend the current drive name.
1115  //
1116  if (dirname[1] == '\0' && dirname[0] == '\\') {
1117    alt_dirname[0] = _getdrive() + 'A' - 1;
1118    alt_dirname[1] = ':';
1119    alt_dirname[2] = '\\';
1120    alt_dirname[3] = '\0';
1121    dirname = alt_dirname;
1122  }
1123
1124  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1125  if (dirp->path == 0) {
1126    free(dirp, mtInternal);
1127    errno = ENOMEM;
1128    return 0;
1129  }
1130  strcpy(dirp->path, dirname);
1131
1132  fattr = GetFileAttributes(dirp->path);
1133  if (fattr == 0xffffffff) {
1134    free(dirp->path, mtInternal);
1135    free(dirp, mtInternal);
1136    errno = ENOENT;
1137    return 0;
1138  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1139    free(dirp->path, mtInternal);
1140    free(dirp, mtInternal);
1141    errno = ENOTDIR;
1142    return 0;
1143  }
1144
1145  // Append "*.*", or possibly "\\*.*", to path
1146  if (dirp->path[1] == ':' &&
1147      (dirp->path[2] == '\0' ||
1148      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1149    // No '\\' needed for cases like "Z:" or "Z:\"
1150    strcat(dirp->path, "*.*");
1151  } else {
1152    strcat(dirp->path, "\\*.*");
1153  }
1154
1155  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1156  if (dirp->handle == INVALID_HANDLE_VALUE) {
1157    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1158      free(dirp->path, mtInternal);
1159      free(dirp, mtInternal);
1160      errno = EACCES;
1161      return 0;
1162    }
1163  }
1164  return dirp;
1165}
1166
1167// parameter dbuf unused on Windows
1168struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1169  assert(dirp != NULL, "just checking");      // hotspot change
1170  if (dirp->handle == INVALID_HANDLE_VALUE) {
1171    return 0;
1172  }
1173
1174  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1175
1176  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1177    if (GetLastError() == ERROR_INVALID_HANDLE) {
1178      errno = EBADF;
1179      return 0;
1180    }
1181    FindClose(dirp->handle);
1182    dirp->handle = INVALID_HANDLE_VALUE;
1183  }
1184
1185  return &dirp->dirent;
1186}
1187
1188int os::closedir(DIR *dirp) {
1189  assert(dirp != NULL, "just checking");      // hotspot change
1190  if (dirp->handle != INVALID_HANDLE_VALUE) {
1191    if (!FindClose(dirp->handle)) {
1192      errno = EBADF;
1193      return -1;
1194    }
1195    dirp->handle = INVALID_HANDLE_VALUE;
1196  }
1197  free(dirp->path, mtInternal);
1198  free(dirp, mtInternal);
1199  return 0;
1200}
1201
1202// This must be hard coded because it's the system's temporary
1203// directory not the java application's temp directory, ala java.io.tmpdir.
1204const char* os::get_temp_directory() {
1205  static char path_buf[MAX_PATH];
1206  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1207    return path_buf;
1208  } else {
1209    path_buf[0] = '\0';
1210    return path_buf;
1211  }
1212}
1213
1214static bool file_exists(const char* filename) {
1215  if (filename == NULL || strlen(filename) == 0) {
1216    return false;
1217  }
1218  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1219}
1220
1221bool os::dll_build_name(char *buffer, size_t buflen,
1222                        const char* pname, const char* fname) {
1223  bool retval = false;
1224  const size_t pnamelen = pname ? strlen(pname) : 0;
1225  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1226
1227  // Return error on buffer overflow.
1228  if (pnamelen + strlen(fname) + 10 > buflen) {
1229    return retval;
1230  }
1231
1232  if (pnamelen == 0) {
1233    jio_snprintf(buffer, buflen, "%s.dll", fname);
1234    retval = true;
1235  } else if (c == ':' || c == '\\') {
1236    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1237    retval = true;
1238  } else if (strchr(pname, *os::path_separator()) != NULL) {
1239    int n;
1240    char** pelements = split_path(pname, &n);
1241    if (pelements == NULL) {
1242      return false;
1243    }
1244    for (int i = 0; i < n; i++) {
1245      char* path = pelements[i];
1246      // Really shouldn't be NULL, but check can't hurt
1247      size_t plen = (path == NULL) ? 0 : strlen(path);
1248      if (plen == 0) {
1249        continue; // skip the empty path values
1250      }
1251      const char lastchar = path[plen - 1];
1252      if (lastchar == ':' || lastchar == '\\') {
1253        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1254      } else {
1255        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1256      }
1257      if (file_exists(buffer)) {
1258        retval = true;
1259        break;
1260      }
1261    }
1262    // release the storage
1263    for (int i = 0; i < n; i++) {
1264      if (pelements[i] != NULL) {
1265        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1266      }
1267    }
1268    if (pelements != NULL) {
1269      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1270    }
1271  } else {
1272    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1273    retval = true;
1274  }
1275  return retval;
1276}
1277
1278// Needs to be in os specific directory because windows requires another
1279// header file <direct.h>
1280const char* os::get_current_directory(char *buf, size_t buflen) {
1281  int n = static_cast<int>(buflen);
1282  if (buflen > INT_MAX)  n = INT_MAX;
1283  return _getcwd(buf, n);
1284}
1285
1286//-----------------------------------------------------------
1287// Helper functions for fatal error handler
1288#ifdef _WIN64
1289// Helper routine which returns true if address in
1290// within the NTDLL address space.
1291//
1292static bool _addr_in_ntdll(address addr) {
1293  HMODULE hmod;
1294  MODULEINFO minfo;
1295
1296  hmod = GetModuleHandle("NTDLL.DLL");
1297  if (hmod == NULL) return false;
1298  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1299                                          &minfo, sizeof(MODULEINFO))) {
1300    return false;
1301  }
1302
1303  if ((addr >= minfo.lpBaseOfDll) &&
1304      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1305    return true;
1306  } else {
1307    return false;
1308  }
1309}
1310#endif
1311
1312struct _modinfo {
1313  address addr;
1314  char*   full_path;   // point to a char buffer
1315  int     buflen;      // size of the buffer
1316  address base_addr;
1317};
1318
1319static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1320                                  address top_address, void * param) {
1321  struct _modinfo *pmod = (struct _modinfo *)param;
1322  if (!pmod) return -1;
1323
1324  if (base_addr   <= pmod->addr &&
1325      top_address > pmod->addr) {
1326    // if a buffer is provided, copy path name to the buffer
1327    if (pmod->full_path) {
1328      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1329    }
1330    pmod->base_addr = base_addr;
1331    return 1;
1332  }
1333  return 0;
1334}
1335
1336bool os::dll_address_to_library_name(address addr, char* buf,
1337                                     int buflen, int* offset) {
1338  // buf is not optional, but offset is optional
1339  assert(buf != NULL, "sanity check");
1340
1341// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1342//       return the full path to the DLL file, sometimes it returns path
1343//       to the corresponding PDB file (debug info); sometimes it only
1344//       returns partial path, which makes life painful.
1345
1346  struct _modinfo mi;
1347  mi.addr      = addr;
1348  mi.full_path = buf;
1349  mi.buflen    = buflen;
1350  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1351    // buf already contains path name
1352    if (offset) *offset = addr - mi.base_addr;
1353    return true;
1354  }
1355
1356  buf[0] = '\0';
1357  if (offset) *offset = -1;
1358  return false;
1359}
1360
1361bool os::dll_address_to_function_name(address addr, char *buf,
1362                                      int buflen, int *offset) {
1363  // buf is not optional, but offset is optional
1364  assert(buf != NULL, "sanity check");
1365
1366  if (Decoder::decode(addr, buf, buflen, offset)) {
1367    return true;
1368  }
1369  if (offset != NULL)  *offset  = -1;
1370  buf[0] = '\0';
1371  return false;
1372}
1373
1374// save the start and end address of jvm.dll into param[0] and param[1]
1375static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1376                           address top_address, void * param) {
1377  if (!param) return -1;
1378
1379  if (base_addr   <= (address)_locate_jvm_dll &&
1380      top_address > (address)_locate_jvm_dll) {
1381    ((address*)param)[0] = base_addr;
1382    ((address*)param)[1] = top_address;
1383    return 1;
1384  }
1385  return 0;
1386}
1387
1388address vm_lib_location[2];    // start and end address of jvm.dll
1389
1390// check if addr is inside jvm.dll
1391bool os::address_is_in_vm(address addr) {
1392  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1393    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1394      assert(false, "Can't find jvm module.");
1395      return false;
1396    }
1397  }
1398
1399  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1400}
1401
1402// print module info; param is outputStream*
1403static int _print_module(const char* fname, address base_address,
1404                         address top_address, void* param) {
1405  if (!param) return -1;
1406
1407  outputStream* st = (outputStream*)param;
1408
1409  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1410  return 0;
1411}
1412
1413// Loads .dll/.so and
1414// in case of error it checks if .dll/.so was built for the
1415// same architecture as Hotspot is running on
1416void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1417  void * result = LoadLibrary(name);
1418  if (result != NULL) {
1419    return result;
1420  }
1421
1422  DWORD errcode = GetLastError();
1423  if (errcode == ERROR_MOD_NOT_FOUND) {
1424    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1425    ebuf[ebuflen - 1] = '\0';
1426    return NULL;
1427  }
1428
1429  // Parsing dll below
1430  // If we can read dll-info and find that dll was built
1431  // for an architecture other than Hotspot is running in
1432  // - then print to buffer "DLL was built for a different architecture"
1433  // else call os::lasterror to obtain system error message
1434
1435  // Read system error message into ebuf
1436  // It may or may not be overwritten below (in the for loop and just above)
1437  lasterror(ebuf, (size_t) ebuflen);
1438  ebuf[ebuflen - 1] = '\0';
1439  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1440  if (fd < 0) {
1441    return NULL;
1442  }
1443
1444  uint32_t signature_offset;
1445  uint16_t lib_arch = 0;
1446  bool failed_to_get_lib_arch =
1447    ( // Go to position 3c in the dll
1448     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1449     ||
1450     // Read location of signature
1451     (sizeof(signature_offset) !=
1452     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1453     ||
1454     // Go to COFF File Header in dll
1455     // that is located after "signature" (4 bytes long)
1456     (os::seek_to_file_offset(fd,
1457     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1458     ||
1459     // Read field that contains code of architecture
1460     // that dll was built for
1461     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1462    );
1463
1464  ::close(fd);
1465  if (failed_to_get_lib_arch) {
1466    // file i/o error - report os::lasterror(...) msg
1467    return NULL;
1468  }
1469
1470  typedef struct {
1471    uint16_t arch_code;
1472    char* arch_name;
1473  } arch_t;
1474
1475  static const arch_t arch_array[] = {
1476    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1477    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1478    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1479  };
1480#if   (defined _M_IA64)
1481  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1482#elif (defined _M_AMD64)
1483  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1484#elif (defined _M_IX86)
1485  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1486#else
1487  #error Method os::dll_load requires that one of following \
1488         is defined :_M_IA64,_M_AMD64 or _M_IX86
1489#endif
1490
1491
1492  // Obtain a string for printf operation
1493  // lib_arch_str shall contain string what platform this .dll was built for
1494  // running_arch_str shall string contain what platform Hotspot was built for
1495  char *running_arch_str = NULL, *lib_arch_str = NULL;
1496  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1497    if (lib_arch == arch_array[i].arch_code) {
1498      lib_arch_str = arch_array[i].arch_name;
1499    }
1500    if (running_arch == arch_array[i].arch_code) {
1501      running_arch_str = arch_array[i].arch_name;
1502    }
1503  }
1504
1505  assert(running_arch_str,
1506         "Didn't find running architecture code in arch_array");
1507
1508  // If the architecture is right
1509  // but some other error took place - report os::lasterror(...) msg
1510  if (lib_arch == running_arch) {
1511    return NULL;
1512  }
1513
1514  if (lib_arch_str != NULL) {
1515    ::_snprintf(ebuf, ebuflen - 1,
1516                "Can't load %s-bit .dll on a %s-bit platform",
1517                lib_arch_str, running_arch_str);
1518  } else {
1519    // don't know what architecture this dll was build for
1520    ::_snprintf(ebuf, ebuflen - 1,
1521                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1522                lib_arch, running_arch_str);
1523  }
1524
1525  return NULL;
1526}
1527
1528void os::print_dll_info(outputStream *st) {
1529  st->print_cr("Dynamic libraries:");
1530  get_loaded_modules_info(_print_module, (void *)st);
1531}
1532
1533int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1534  HANDLE   hProcess;
1535
1536# define MAX_NUM_MODULES 128
1537  HMODULE     modules[MAX_NUM_MODULES];
1538  static char filename[MAX_PATH];
1539  int         result = 0;
1540
1541  if (!os::PSApiDll::PSApiAvailable()) {
1542    return 0;
1543  }
1544
1545  int pid = os::current_process_id();
1546  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1547                         FALSE, pid);
1548  if (hProcess == NULL) return 0;
1549
1550  DWORD size_needed;
1551  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1552                                        sizeof(modules), &size_needed)) {
1553    CloseHandle(hProcess);
1554    return 0;
1555  }
1556
1557  // number of modules that are currently loaded
1558  int num_modules = size_needed / sizeof(HMODULE);
1559
1560  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1561    // Get Full pathname:
1562    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1563                                           filename, sizeof(filename))) {
1564      filename[0] = '\0';
1565    }
1566
1567    MODULEINFO modinfo;
1568    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1569                                            &modinfo, sizeof(modinfo))) {
1570      modinfo.lpBaseOfDll = NULL;
1571      modinfo.SizeOfImage = 0;
1572    }
1573
1574    // Invoke callback function
1575    result = callback(filename, (address)modinfo.lpBaseOfDll,
1576                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1577    if (result) break;
1578  }
1579
1580  CloseHandle(hProcess);
1581  return result;
1582}
1583
1584void os::print_os_info_brief(outputStream* st) {
1585  os::print_os_info(st);
1586}
1587
1588void os::print_os_info(outputStream* st) {
1589#ifdef ASSERT
1590  char buffer[1024];
1591  DWORD size = sizeof(buffer);
1592  st->print(" HostName: ");
1593  if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1594    st->print("%s", buffer);
1595  } else {
1596    st->print("N/A");
1597  }
1598#endif
1599  st->print(" OS:");
1600  os::win32::print_windows_version(st);
1601}
1602
1603void os::win32::print_windows_version(outputStream* st) {
1604  OSVERSIONINFOEX osvi;
1605  VS_FIXEDFILEINFO *file_info;
1606  TCHAR kernel32_path[MAX_PATH];
1607  UINT len, ret;
1608
1609  // Use the GetVersionEx information to see if we're on a server or
1610  // workstation edition of Windows. Starting with Windows 8.1 we can't
1611  // trust the OS version information returned by this API.
1612  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1613  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1614  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1615    st->print_cr("Call to GetVersionEx failed");
1616    return;
1617  }
1618  bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1619
1620  // Get the full path to \Windows\System32\kernel32.dll and use that for
1621  // determining what version of Windows we're running on.
1622  len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1623  ret = GetSystemDirectory(kernel32_path, len);
1624  if (ret == 0 || ret > len) {
1625    st->print_cr("Call to GetSystemDirectory failed");
1626    return;
1627  }
1628  strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1629
1630  DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1631  if (version_size == 0) {
1632    st->print_cr("Call to GetFileVersionInfoSize failed");
1633    return;
1634  }
1635
1636  LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1637  if (version_info == NULL) {
1638    st->print_cr("Failed to allocate version_info");
1639    return;
1640  }
1641
1642  if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1643    os::free(version_info);
1644    st->print_cr("Call to GetFileVersionInfo failed");
1645    return;
1646  }
1647
1648  if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1649    os::free(version_info);
1650    st->print_cr("Call to VerQueryValue failed");
1651    return;
1652  }
1653
1654  int major_version = HIWORD(file_info->dwProductVersionMS);
1655  int minor_version = LOWORD(file_info->dwProductVersionMS);
1656  int build_number = HIWORD(file_info->dwProductVersionLS);
1657  int build_minor = LOWORD(file_info->dwProductVersionLS);
1658  int os_vers = major_version * 1000 + minor_version;
1659  os::free(version_info);
1660
1661  st->print(" Windows ");
1662  switch (os_vers) {
1663
1664  case 6000:
1665    if (is_workstation) {
1666      st->print("Vista");
1667    } else {
1668      st->print("Server 2008");
1669    }
1670    break;
1671
1672  case 6001:
1673    if (is_workstation) {
1674      st->print("7");
1675    } else {
1676      st->print("Server 2008 R2");
1677    }
1678    break;
1679
1680  case 6002:
1681    if (is_workstation) {
1682      st->print("8");
1683    } else {
1684      st->print("Server 2012");
1685    }
1686    break;
1687
1688  case 6003:
1689    if (is_workstation) {
1690      st->print("8.1");
1691    } else {
1692      st->print("Server 2012 R2");
1693    }
1694    break;
1695
1696  case 6004:
1697    if (is_workstation) {
1698      st->print("10");
1699    } else {
1700      // The server version name of Windows 10 is not known at this time
1701      st->print("%d.%d", major_version, minor_version);
1702    }
1703    break;
1704
1705  default:
1706    // Unrecognized windows, print out its major and minor versions
1707    st->print("%d.%d", major_version, minor_version);
1708    break;
1709  }
1710
1711  // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1712  // find out whether we are running on 64 bit processor or not
1713  SYSTEM_INFO si;
1714  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1715  os::Kernel32Dll::GetNativeSystemInfo(&si);
1716  if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1717    st->print(" , 64 bit");
1718  }
1719
1720  st->print(" Build %d", build_number);
1721  st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1722  st->cr();
1723}
1724
1725void os::pd_print_cpu_info(outputStream* st) {
1726  // Nothing to do for now.
1727}
1728
1729void os::print_memory_info(outputStream* st) {
1730  st->print("Memory:");
1731  st->print(" %dk page", os::vm_page_size()>>10);
1732
1733  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1734  // value if total memory is larger than 4GB
1735  MEMORYSTATUSEX ms;
1736  ms.dwLength = sizeof(ms);
1737  GlobalMemoryStatusEx(&ms);
1738
1739  st->print(", physical %uk", os::physical_memory() >> 10);
1740  st->print("(%uk free)", os::available_memory() >> 10);
1741
1742  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1743  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1744  st->cr();
1745}
1746
1747void os::print_siginfo(outputStream *st, void *siginfo) {
1748  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1749  st->print("siginfo:");
1750  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1751
1752  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1753      er->NumberParameters >= 2) {
1754    switch (er->ExceptionInformation[0]) {
1755    case 0: st->print(", reading address"); break;
1756    case 1: st->print(", writing address"); break;
1757    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1758                       er->ExceptionInformation[0]);
1759    }
1760    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1761  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1762             er->NumberParameters >= 2 && UseSharedSpaces) {
1763    FileMapInfo* mapinfo = FileMapInfo::current_info();
1764    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1765      st->print("\n\nError accessing class data sharing archive."       \
1766                " Mapped file inaccessible during execution, "          \
1767                " possible disk/network problem.");
1768    }
1769  } else {
1770    int num = er->NumberParameters;
1771    if (num > 0) {
1772      st->print(", ExceptionInformation=");
1773      for (int i = 0; i < num; i++) {
1774        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1775      }
1776    }
1777  }
1778  st->cr();
1779}
1780
1781void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1782  // do nothing
1783}
1784
1785static char saved_jvm_path[MAX_PATH] = {0};
1786
1787// Find the full path to the current module, jvm.dll
1788void os::jvm_path(char *buf, jint buflen) {
1789  // Error checking.
1790  if (buflen < MAX_PATH) {
1791    assert(false, "must use a large-enough buffer");
1792    buf[0] = '\0';
1793    return;
1794  }
1795  // Lazy resolve the path to current module.
1796  if (saved_jvm_path[0] != 0) {
1797    strcpy(buf, saved_jvm_path);
1798    return;
1799  }
1800
1801  buf[0] = '\0';
1802  if (Arguments::sun_java_launcher_is_altjvm()) {
1803    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1804    // for a JAVA_HOME environment variable and fix up the path so it
1805    // looks like jvm.dll is installed there (append a fake suffix
1806    // hotspot/jvm.dll).
1807    char* java_home_var = ::getenv("JAVA_HOME");
1808    if (java_home_var != NULL && java_home_var[0] != 0 &&
1809        strlen(java_home_var) < (size_t)buflen) {
1810      strncpy(buf, java_home_var, buflen);
1811
1812      // determine if this is a legacy image or modules image
1813      // modules image doesn't have "jre" subdirectory
1814      size_t len = strlen(buf);
1815      char* jrebin_p = buf + len;
1816      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1817      if (0 != _access(buf, 0)) {
1818        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1819      }
1820      len = strlen(buf);
1821      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1822    }
1823  }
1824
1825  if (buf[0] == '\0') {
1826    GetModuleFileName(vm_lib_handle, buf, buflen);
1827  }
1828  strncpy(saved_jvm_path, buf, MAX_PATH);
1829  saved_jvm_path[MAX_PATH - 1] = '\0';
1830}
1831
1832
1833void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1834#ifndef _WIN64
1835  st->print("_");
1836#endif
1837}
1838
1839
1840void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1841#ifndef _WIN64
1842  st->print("@%d", args_size  * sizeof(int));
1843#endif
1844}
1845
1846// This method is a copy of JDK's sysGetLastErrorString
1847// from src/windows/hpi/src/system_md.c
1848
1849size_t os::lasterror(char* buf, size_t len) {
1850  DWORD errval;
1851
1852  if ((errval = GetLastError()) != 0) {
1853    // DOS error
1854    size_t n = (size_t)FormatMessage(
1855                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1856                                     NULL,
1857                                     errval,
1858                                     0,
1859                                     buf,
1860                                     (DWORD)len,
1861                                     NULL);
1862    if (n > 3) {
1863      // Drop final '.', CR, LF
1864      if (buf[n - 1] == '\n') n--;
1865      if (buf[n - 1] == '\r') n--;
1866      if (buf[n - 1] == '.') n--;
1867      buf[n] = '\0';
1868    }
1869    return n;
1870  }
1871
1872  if (errno != 0) {
1873    // C runtime error that has no corresponding DOS error code
1874    const char* s = strerror(errno);
1875    size_t n = strlen(s);
1876    if (n >= len) n = len - 1;
1877    strncpy(buf, s, n);
1878    buf[n] = '\0';
1879    return n;
1880  }
1881
1882  return 0;
1883}
1884
1885int os::get_last_error() {
1886  DWORD error = GetLastError();
1887  if (error == 0) {
1888    error = errno;
1889  }
1890  return (int)error;
1891}
1892
1893// sun.misc.Signal
1894// NOTE that this is a workaround for an apparent kernel bug where if
1895// a signal handler for SIGBREAK is installed then that signal handler
1896// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1897// See bug 4416763.
1898static void (*sigbreakHandler)(int) = NULL;
1899
1900static void UserHandler(int sig, void *siginfo, void *context) {
1901  os::signal_notify(sig);
1902  // We need to reinstate the signal handler each time...
1903  os::signal(sig, (void*)UserHandler);
1904}
1905
1906void* os::user_handler() {
1907  return (void*) UserHandler;
1908}
1909
1910void* os::signal(int signal_number, void* handler) {
1911  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1912    void (*oldHandler)(int) = sigbreakHandler;
1913    sigbreakHandler = (void (*)(int)) handler;
1914    return (void*) oldHandler;
1915  } else {
1916    return (void*)::signal(signal_number, (void (*)(int))handler);
1917  }
1918}
1919
1920void os::signal_raise(int signal_number) {
1921  raise(signal_number);
1922}
1923
1924// The Win32 C runtime library maps all console control events other than ^C
1925// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1926// logoff, and shutdown events.  We therefore install our own console handler
1927// that raises SIGTERM for the latter cases.
1928//
1929static BOOL WINAPI consoleHandler(DWORD event) {
1930  switch (event) {
1931  case CTRL_C_EVENT:
1932    if (is_error_reported()) {
1933      // Ctrl-C is pressed during error reporting, likely because the error
1934      // handler fails to abort. Let VM die immediately.
1935      os::die();
1936    }
1937
1938    os::signal_raise(SIGINT);
1939    return TRUE;
1940    break;
1941  case CTRL_BREAK_EVENT:
1942    if (sigbreakHandler != NULL) {
1943      (*sigbreakHandler)(SIGBREAK);
1944    }
1945    return TRUE;
1946    break;
1947  case CTRL_LOGOFF_EVENT: {
1948    // Don't terminate JVM if it is running in a non-interactive session,
1949    // such as a service process.
1950    USEROBJECTFLAGS flags;
1951    HANDLE handle = GetProcessWindowStation();
1952    if (handle != NULL &&
1953        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1954        sizeof(USEROBJECTFLAGS), NULL)) {
1955      // If it is a non-interactive session, let next handler to deal
1956      // with it.
1957      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1958        return FALSE;
1959      }
1960    }
1961  }
1962  case CTRL_CLOSE_EVENT:
1963  case CTRL_SHUTDOWN_EVENT:
1964    os::signal_raise(SIGTERM);
1965    return TRUE;
1966    break;
1967  default:
1968    break;
1969  }
1970  return FALSE;
1971}
1972
1973// The following code is moved from os.cpp for making this
1974// code platform specific, which it is by its very nature.
1975
1976// Return maximum OS signal used + 1 for internal use only
1977// Used as exit signal for signal_thread
1978int os::sigexitnum_pd() {
1979  return NSIG;
1980}
1981
1982// a counter for each possible signal value, including signal_thread exit signal
1983static volatile jint pending_signals[NSIG+1] = { 0 };
1984static HANDLE sig_sem = NULL;
1985
1986void os::signal_init_pd() {
1987  // Initialize signal structures
1988  memset((void*)pending_signals, 0, sizeof(pending_signals));
1989
1990  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1991
1992  // Programs embedding the VM do not want it to attempt to receive
1993  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1994  // shutdown hooks mechanism introduced in 1.3.  For example, when
1995  // the VM is run as part of a Windows NT service (i.e., a servlet
1996  // engine in a web server), the correct behavior is for any console
1997  // control handler to return FALSE, not TRUE, because the OS's
1998  // "final" handler for such events allows the process to continue if
1999  // it is a service (while terminating it if it is not a service).
2000  // To make this behavior uniform and the mechanism simpler, we
2001  // completely disable the VM's usage of these console events if -Xrs
2002  // (=ReduceSignalUsage) is specified.  This means, for example, that
2003  // the CTRL-BREAK thread dump mechanism is also disabled in this
2004  // case.  See bugs 4323062, 4345157, and related bugs.
2005
2006  if (!ReduceSignalUsage) {
2007    // Add a CTRL-C handler
2008    SetConsoleCtrlHandler(consoleHandler, TRUE);
2009  }
2010}
2011
2012void os::signal_notify(int signal_number) {
2013  BOOL ret;
2014  if (sig_sem != NULL) {
2015    Atomic::inc(&pending_signals[signal_number]);
2016    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2017    assert(ret != 0, "ReleaseSemaphore() failed");
2018  }
2019}
2020
2021static int check_pending_signals(bool wait_for_signal) {
2022  DWORD ret;
2023  while (true) {
2024    for (int i = 0; i < NSIG + 1; i++) {
2025      jint n = pending_signals[i];
2026      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2027        return i;
2028      }
2029    }
2030    if (!wait_for_signal) {
2031      return -1;
2032    }
2033
2034    JavaThread *thread = JavaThread::current();
2035
2036    ThreadBlockInVM tbivm(thread);
2037
2038    bool threadIsSuspended;
2039    do {
2040      thread->set_suspend_equivalent();
2041      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2042      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2043      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2044
2045      // were we externally suspended while we were waiting?
2046      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2047      if (threadIsSuspended) {
2048        // The semaphore has been incremented, but while we were waiting
2049        // another thread suspended us. We don't want to continue running
2050        // while suspended because that would surprise the thread that
2051        // suspended us.
2052        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2053        assert(ret != 0, "ReleaseSemaphore() failed");
2054
2055        thread->java_suspend_self();
2056      }
2057    } while (threadIsSuspended);
2058  }
2059}
2060
2061int os::signal_lookup() {
2062  return check_pending_signals(false);
2063}
2064
2065int os::signal_wait() {
2066  return check_pending_signals(true);
2067}
2068
2069// Implicit OS exception handling
2070
2071LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2072                      address handler) {
2073  JavaThread* thread = JavaThread::current();
2074  // Save pc in thread
2075#ifdef _M_IA64
2076  // Do not blow up if no thread info available.
2077  if (thread) {
2078    // Saving PRECISE pc (with slot information) in thread.
2079    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2080    // Convert precise PC into "Unix" format
2081    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2082    thread->set_saved_exception_pc((address)precise_pc);
2083  }
2084  // Set pc to handler
2085  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2086  // Clear out psr.ri (= Restart Instruction) in order to continue
2087  // at the beginning of the target bundle.
2088  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2089  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2090#elif _M_AMD64
2091  // Do not blow up if no thread info available.
2092  if (thread) {
2093    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2094  }
2095  // Set pc to handler
2096  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2097#else
2098  // Do not blow up if no thread info available.
2099  if (thread) {
2100    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2101  }
2102  // Set pc to handler
2103  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2104#endif
2105
2106  // Continue the execution
2107  return EXCEPTION_CONTINUE_EXECUTION;
2108}
2109
2110
2111// Used for PostMortemDump
2112extern "C" void safepoints();
2113extern "C" void find(int x);
2114extern "C" void events();
2115
2116// According to Windows API documentation, an illegal instruction sequence should generate
2117// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2118// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2119// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2120
2121#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2122
2123// From "Execution Protection in the Windows Operating System" draft 0.35
2124// Once a system header becomes available, the "real" define should be
2125// included or copied here.
2126#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2127
2128// Handle NAT Bit consumption on IA64.
2129#ifdef _M_IA64
2130  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2131#endif
2132
2133// Windows Vista/2008 heap corruption check
2134#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2135
2136#define def_excpt(val) #val, val
2137
2138struct siglabel {
2139  char *name;
2140  int   number;
2141};
2142
2143// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2144// C++ compiler contain this error code. Because this is a compiler-generated
2145// error, the code is not listed in the Win32 API header files.
2146// The code is actually a cryptic mnemonic device, with the initial "E"
2147// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2148// ASCII values of "msc".
2149
2150#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2151
2152
2153struct siglabel exceptlabels[] = {
2154    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2155    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2156    def_excpt(EXCEPTION_BREAKPOINT),
2157    def_excpt(EXCEPTION_SINGLE_STEP),
2158    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2159    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2160    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2161    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2162    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2163    def_excpt(EXCEPTION_FLT_OVERFLOW),
2164    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2165    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2166    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2167    def_excpt(EXCEPTION_INT_OVERFLOW),
2168    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2169    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2170    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2171    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2172    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2173    def_excpt(EXCEPTION_STACK_OVERFLOW),
2174    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2175    def_excpt(EXCEPTION_GUARD_PAGE),
2176    def_excpt(EXCEPTION_INVALID_HANDLE),
2177    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2178    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2179#ifdef _M_IA64
2180    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2181#endif
2182    NULL, 0
2183};
2184
2185const char* os::exception_name(int exception_code, char *buf, size_t size) {
2186  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2187    if (exceptlabels[i].number == exception_code) {
2188      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2189      return buf;
2190    }
2191  }
2192
2193  return NULL;
2194}
2195
2196//-----------------------------------------------------------------------------
2197LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2198  // handle exception caused by idiv; should only happen for -MinInt/-1
2199  // (division by zero is handled explicitly)
2200#ifdef _M_IA64
2201  assert(0, "Fix Handle_IDiv_Exception");
2202#elif _M_AMD64
2203  PCONTEXT ctx = exceptionInfo->ContextRecord;
2204  address pc = (address)ctx->Rip;
2205  assert(pc[0] == 0xF7, "not an idiv opcode");
2206  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2207  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2208  // set correct result values and continue after idiv instruction
2209  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2210  ctx->Rax = (DWORD)min_jint;      // result
2211  ctx->Rdx = (DWORD)0;             // remainder
2212  // Continue the execution
2213#else
2214  PCONTEXT ctx = exceptionInfo->ContextRecord;
2215  address pc = (address)ctx->Eip;
2216  assert(pc[0] == 0xF7, "not an idiv opcode");
2217  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2218  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2219  // set correct result values and continue after idiv instruction
2220  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2221  ctx->Eax = (DWORD)min_jint;      // result
2222  ctx->Edx = (DWORD)0;             // remainder
2223  // Continue the execution
2224#endif
2225  return EXCEPTION_CONTINUE_EXECUTION;
2226}
2227
2228//-----------------------------------------------------------------------------
2229LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2230  PCONTEXT ctx = exceptionInfo->ContextRecord;
2231#ifndef  _WIN64
2232  // handle exception caused by native method modifying control word
2233  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2234
2235  switch (exception_code) {
2236  case EXCEPTION_FLT_DENORMAL_OPERAND:
2237  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2238  case EXCEPTION_FLT_INEXACT_RESULT:
2239  case EXCEPTION_FLT_INVALID_OPERATION:
2240  case EXCEPTION_FLT_OVERFLOW:
2241  case EXCEPTION_FLT_STACK_CHECK:
2242  case EXCEPTION_FLT_UNDERFLOW:
2243    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2244    if (fp_control_word != ctx->FloatSave.ControlWord) {
2245      // Restore FPCW and mask out FLT exceptions
2246      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2247      // Mask out pending FLT exceptions
2248      ctx->FloatSave.StatusWord &=  0xffffff00;
2249      return EXCEPTION_CONTINUE_EXECUTION;
2250    }
2251  }
2252
2253  if (prev_uef_handler != NULL) {
2254    // We didn't handle this exception so pass it to the previous
2255    // UnhandledExceptionFilter.
2256    return (prev_uef_handler)(exceptionInfo);
2257  }
2258#else // !_WIN64
2259  // On Windows, the mxcsr control bits are non-volatile across calls
2260  // See also CR 6192333
2261  //
2262  jint MxCsr = INITIAL_MXCSR;
2263  // we can't use StubRoutines::addr_mxcsr_std()
2264  // because in Win64 mxcsr is not saved there
2265  if (MxCsr != ctx->MxCsr) {
2266    ctx->MxCsr = MxCsr;
2267    return EXCEPTION_CONTINUE_EXECUTION;
2268  }
2269#endif // !_WIN64
2270
2271  return EXCEPTION_CONTINUE_SEARCH;
2272}
2273
2274static inline void report_error(Thread* t, DWORD exception_code,
2275                                address addr, void* siginfo, void* context) {
2276  VMError err(t, exception_code, addr, siginfo, context);
2277  err.report_and_die();
2278
2279  // If UseOsErrorReporting, this will return here and save the error file
2280  // somewhere where we can find it in the minidump.
2281}
2282
2283//-----------------------------------------------------------------------------
2284LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2285  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2286  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2287#ifdef _M_IA64
2288  // On Itanium, we need the "precise pc", which has the slot number coded
2289  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2290  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2291  // Convert the pc to "Unix format", which has the slot number coded
2292  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2293  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2294  // information is saved in the Unix format.
2295  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2296#elif _M_AMD64
2297  address pc = (address) exceptionInfo->ContextRecord->Rip;
2298#else
2299  address pc = (address) exceptionInfo->ContextRecord->Eip;
2300#endif
2301  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2302
2303  // Handle SafeFetch32 and SafeFetchN exceptions.
2304  if (StubRoutines::is_safefetch_fault(pc)) {
2305    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2306  }
2307
2308#ifndef _WIN64
2309  // Execution protection violation - win32 running on AMD64 only
2310  // Handled first to avoid misdiagnosis as a "normal" access violation;
2311  // This is safe to do because we have a new/unique ExceptionInformation
2312  // code for this condition.
2313  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2314    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2315    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2316    address addr = (address) exceptionRecord->ExceptionInformation[1];
2317
2318    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2319      int page_size = os::vm_page_size();
2320
2321      // Make sure the pc and the faulting address are sane.
2322      //
2323      // If an instruction spans a page boundary, and the page containing
2324      // the beginning of the instruction is executable but the following
2325      // page is not, the pc and the faulting address might be slightly
2326      // different - we still want to unguard the 2nd page in this case.
2327      //
2328      // 15 bytes seems to be a (very) safe value for max instruction size.
2329      bool pc_is_near_addr =
2330        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2331      bool instr_spans_page_boundary =
2332        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2333                         (intptr_t) page_size) > 0);
2334
2335      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2336        static volatile address last_addr =
2337          (address) os::non_memory_address_word();
2338
2339        // In conservative mode, don't unguard unless the address is in the VM
2340        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2341            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2342
2343          // Set memory to RWX and retry
2344          address page_start =
2345            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2346          bool res = os::protect_memory((char*) page_start, page_size,
2347                                        os::MEM_PROT_RWX);
2348
2349          if (PrintMiscellaneous && Verbose) {
2350            char buf[256];
2351            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2352                         "at " INTPTR_FORMAT
2353                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2354                         page_start, (res ? "success" : strerror(errno)));
2355            tty->print_raw_cr(buf);
2356          }
2357
2358          // Set last_addr so if we fault again at the same address, we don't
2359          // end up in an endless loop.
2360          //
2361          // There are two potential complications here.  Two threads trapping
2362          // at the same address at the same time could cause one of the
2363          // threads to think it already unguarded, and abort the VM.  Likely
2364          // very rare.
2365          //
2366          // The other race involves two threads alternately trapping at
2367          // different addresses and failing to unguard the page, resulting in
2368          // an endless loop.  This condition is probably even more unlikely
2369          // than the first.
2370          //
2371          // Although both cases could be avoided by using locks or thread
2372          // local last_addr, these solutions are unnecessary complication:
2373          // this handler is a best-effort safety net, not a complete solution.
2374          // It is disabled by default and should only be used as a workaround
2375          // in case we missed any no-execute-unsafe VM code.
2376
2377          last_addr = addr;
2378
2379          return EXCEPTION_CONTINUE_EXECUTION;
2380        }
2381      }
2382
2383      // Last unguard failed or not unguarding
2384      tty->print_raw_cr("Execution protection violation");
2385      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2386                   exceptionInfo->ContextRecord);
2387      return EXCEPTION_CONTINUE_SEARCH;
2388    }
2389  }
2390#endif // _WIN64
2391
2392  // Check to see if we caught the safepoint code in the
2393  // process of write protecting the memory serialization page.
2394  // It write enables the page immediately after protecting it
2395  // so just return.
2396  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2397    JavaThread* thread = (JavaThread*) t;
2398    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2399    address addr = (address) exceptionRecord->ExceptionInformation[1];
2400    if (os::is_memory_serialize_page(thread, addr)) {
2401      // Block current thread until the memory serialize page permission restored.
2402      os::block_on_serialize_page_trap();
2403      return EXCEPTION_CONTINUE_EXECUTION;
2404    }
2405  }
2406
2407  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2408      VM_Version::is_cpuinfo_segv_addr(pc)) {
2409    // Verify that OS save/restore AVX registers.
2410    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2411  }
2412
2413  if (t != NULL && t->is_Java_thread()) {
2414    JavaThread* thread = (JavaThread*) t;
2415    bool in_java = thread->thread_state() == _thread_in_Java;
2416
2417    // Handle potential stack overflows up front.
2418    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2419      if (os::uses_stack_guard_pages()) {
2420#ifdef _M_IA64
2421        // Use guard page for register stack.
2422        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2423        address addr = (address) exceptionRecord->ExceptionInformation[1];
2424        // Check for a register stack overflow on Itanium
2425        if (thread->addr_inside_register_stack_red_zone(addr)) {
2426          // Fatal red zone violation happens if the Java program
2427          // catches a StackOverflow error and does so much processing
2428          // that it runs beyond the unprotected yellow guard zone. As
2429          // a result, we are out of here.
2430          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2431        } else if(thread->addr_inside_register_stack(addr)) {
2432          // Disable the yellow zone which sets the state that
2433          // we've got a stack overflow problem.
2434          if (thread->stack_yellow_zone_enabled()) {
2435            thread->disable_stack_yellow_zone();
2436          }
2437          // Give us some room to process the exception.
2438          thread->disable_register_stack_guard();
2439          // Tracing with +Verbose.
2440          if (Verbose) {
2441            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2442            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2443            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2444            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2445                          thread->register_stack_base(),
2446                          thread->register_stack_base() + thread->stack_size());
2447          }
2448
2449          // Reguard the permanent register stack red zone just to be sure.
2450          // We saw Windows silently disabling this without telling us.
2451          thread->enable_register_stack_red_zone();
2452
2453          return Handle_Exception(exceptionInfo,
2454                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2455        }
2456#endif
2457        if (thread->stack_yellow_zone_enabled()) {
2458          // Yellow zone violation.  The o/s has unprotected the first yellow
2459          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2460          // update the enabled status, even if the zone contains only one page.
2461          thread->disable_stack_yellow_zone();
2462          // If not in java code, return and hope for the best.
2463          return in_java
2464              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2465              :  EXCEPTION_CONTINUE_EXECUTION;
2466        } else {
2467          // Fatal red zone violation.
2468          thread->disable_stack_red_zone();
2469          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2470          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2471                       exceptionInfo->ContextRecord);
2472          return EXCEPTION_CONTINUE_SEARCH;
2473        }
2474      } else if (in_java) {
2475        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2476        // a one-time-only guard page, which it has released to us.  The next
2477        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2478        return Handle_Exception(exceptionInfo,
2479                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2480      } else {
2481        // Can only return and hope for the best.  Further stack growth will
2482        // result in an ACCESS_VIOLATION.
2483        return EXCEPTION_CONTINUE_EXECUTION;
2484      }
2485    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2486      // Either stack overflow or null pointer exception.
2487      if (in_java) {
2488        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2489        address addr = (address) exceptionRecord->ExceptionInformation[1];
2490        address stack_end = thread->stack_base() - thread->stack_size();
2491        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2492          // Stack overflow.
2493          assert(!os::uses_stack_guard_pages(),
2494                 "should be caught by red zone code above.");
2495          return Handle_Exception(exceptionInfo,
2496                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2497        }
2498        // Check for safepoint polling and implicit null
2499        // We only expect null pointers in the stubs (vtable)
2500        // the rest are checked explicitly now.
2501        CodeBlob* cb = CodeCache::find_blob(pc);
2502        if (cb != NULL) {
2503          if (os::is_poll_address(addr)) {
2504            address stub = SharedRuntime::get_poll_stub(pc);
2505            return Handle_Exception(exceptionInfo, stub);
2506          }
2507        }
2508        {
2509#ifdef _WIN64
2510          // If it's a legal stack address map the entire region in
2511          //
2512          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2513          address addr = (address) exceptionRecord->ExceptionInformation[1];
2514          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2515            addr = (address)((uintptr_t)addr &
2516                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2517            os::commit_memory((char *)addr, thread->stack_base() - addr,
2518                              !ExecMem);
2519            return EXCEPTION_CONTINUE_EXECUTION;
2520          } else
2521#endif
2522          {
2523            // Null pointer exception.
2524#ifdef _M_IA64
2525            // Process implicit null checks in compiled code. Note: Implicit null checks
2526            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2527            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2528              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2529              // Handle implicit null check in UEP method entry
2530              if (cb && (cb->is_frame_complete_at(pc) ||
2531                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2532                if (Verbose) {
2533                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2534                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2535                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2536                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2537                                *(bundle_start + 1), *bundle_start);
2538                }
2539                return Handle_Exception(exceptionInfo,
2540                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2541              }
2542            }
2543
2544            // Implicit null checks were processed above.  Hence, we should not reach
2545            // here in the usual case => die!
2546            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2547            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2548                         exceptionInfo->ContextRecord);
2549            return EXCEPTION_CONTINUE_SEARCH;
2550
2551#else // !IA64
2552
2553            // Windows 98 reports faulting addresses incorrectly
2554            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2555                !os::win32::is_nt()) {
2556              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2557              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2558            }
2559            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2560                         exceptionInfo->ContextRecord);
2561            return EXCEPTION_CONTINUE_SEARCH;
2562#endif
2563          }
2564        }
2565      }
2566
2567#ifdef _WIN64
2568      // Special care for fast JNI field accessors.
2569      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2570      // in and the heap gets shrunk before the field access.
2571      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2572        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2573        if (addr != (address)-1) {
2574          return Handle_Exception(exceptionInfo, addr);
2575        }
2576      }
2577#endif
2578
2579      // Stack overflow or null pointer exception in native code.
2580      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2581                   exceptionInfo->ContextRecord);
2582      return EXCEPTION_CONTINUE_SEARCH;
2583    } // /EXCEPTION_ACCESS_VIOLATION
2584    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2585#if defined _M_IA64
2586    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2587              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2588      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2589
2590      // Compiled method patched to be non entrant? Following conditions must apply:
2591      // 1. must be first instruction in bundle
2592      // 2. must be a break instruction with appropriate code
2593      if ((((uint64_t) pc & 0x0F) == 0) &&
2594          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2595        return Handle_Exception(exceptionInfo,
2596                                (address)SharedRuntime::get_handle_wrong_method_stub());
2597      }
2598    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2599#endif
2600
2601
2602    if (in_java) {
2603      switch (exception_code) {
2604      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2605        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2606
2607      case EXCEPTION_INT_OVERFLOW:
2608        return Handle_IDiv_Exception(exceptionInfo);
2609
2610      } // switch
2611    }
2612    if (((thread->thread_state() == _thread_in_Java) ||
2613         (thread->thread_state() == _thread_in_native)) &&
2614         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2615      LONG result=Handle_FLT_Exception(exceptionInfo);
2616      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2617    }
2618  }
2619
2620  if (exception_code != EXCEPTION_BREAKPOINT) {
2621    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2622                 exceptionInfo->ContextRecord);
2623  }
2624  return EXCEPTION_CONTINUE_SEARCH;
2625}
2626
2627#ifndef _WIN64
2628// Special care for fast JNI accessors.
2629// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2630// the heap gets shrunk before the field access.
2631// Need to install our own structured exception handler since native code may
2632// install its own.
2633LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2634  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2635  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2636    address pc = (address) exceptionInfo->ContextRecord->Eip;
2637    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2638    if (addr != (address)-1) {
2639      return Handle_Exception(exceptionInfo, addr);
2640    }
2641  }
2642  return EXCEPTION_CONTINUE_SEARCH;
2643}
2644
2645#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2646  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2647                                                     jobject obj,           \
2648                                                     jfieldID fieldID) {    \
2649    __try {                                                                 \
2650      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2651                                                                 obj,       \
2652                                                                 fieldID);  \
2653    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2654                                              _exception_info())) {         \
2655    }                                                                       \
2656    return 0;                                                               \
2657  }
2658
2659DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2660DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2661DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2662DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2663DEFINE_FAST_GETFIELD(jint,     int,    Int)
2664DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2665DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2666DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2667
2668address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2669  switch (type) {
2670  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2671  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2672  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2673  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2674  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2675  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2676  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2677  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2678  default:        ShouldNotReachHere();
2679  }
2680  return (address)-1;
2681}
2682#endif
2683
2684void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2685  // Install a win32 structured exception handler around the test
2686  // function call so the VM can generate an error dump if needed.
2687  __try {
2688    (*funcPtr)();
2689  } __except(topLevelExceptionFilter(
2690                                     (_EXCEPTION_POINTERS*)_exception_info())) {
2691    // Nothing to do.
2692  }
2693}
2694
2695// Virtual Memory
2696
2697int os::vm_page_size() { return os::win32::vm_page_size(); }
2698int os::vm_allocation_granularity() {
2699  return os::win32::vm_allocation_granularity();
2700}
2701
2702// Windows large page support is available on Windows 2003. In order to use
2703// large page memory, the administrator must first assign additional privilege
2704// to the user:
2705//   + select Control Panel -> Administrative Tools -> Local Security Policy
2706//   + select Local Policies -> User Rights Assignment
2707//   + double click "Lock pages in memory", add users and/or groups
2708//   + reboot
2709// Note the above steps are needed for administrator as well, as administrators
2710// by default do not have the privilege to lock pages in memory.
2711//
2712// Note about Windows 2003: although the API supports committing large page
2713// memory on a page-by-page basis and VirtualAlloc() returns success under this
2714// scenario, I found through experiment it only uses large page if the entire
2715// memory region is reserved and committed in a single VirtualAlloc() call.
2716// This makes Windows large page support more or less like Solaris ISM, in
2717// that the entire heap must be committed upfront. This probably will change
2718// in the future, if so the code below needs to be revisited.
2719
2720#ifndef MEM_LARGE_PAGES
2721  #define MEM_LARGE_PAGES 0x20000000
2722#endif
2723
2724static HANDLE    _hProcess;
2725static HANDLE    _hToken;
2726
2727// Container for NUMA node list info
2728class NUMANodeListHolder {
2729 private:
2730  int *_numa_used_node_list;  // allocated below
2731  int _numa_used_node_count;
2732
2733  void free_node_list() {
2734    if (_numa_used_node_list != NULL) {
2735      FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2736    }
2737  }
2738
2739 public:
2740  NUMANodeListHolder() {
2741    _numa_used_node_count = 0;
2742    _numa_used_node_list = NULL;
2743    // do rest of initialization in build routine (after function pointers are set up)
2744  }
2745
2746  ~NUMANodeListHolder() {
2747    free_node_list();
2748  }
2749
2750  bool build() {
2751    DWORD_PTR proc_aff_mask;
2752    DWORD_PTR sys_aff_mask;
2753    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2754    ULONG highest_node_number;
2755    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2756    free_node_list();
2757    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2758    for (unsigned int i = 0; i <= highest_node_number; i++) {
2759      ULONGLONG proc_mask_numa_node;
2760      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2761      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2762        _numa_used_node_list[_numa_used_node_count++] = i;
2763      }
2764    }
2765    return (_numa_used_node_count > 1);
2766  }
2767
2768  int get_count() { return _numa_used_node_count; }
2769  int get_node_list_entry(int n) {
2770    // for indexes out of range, returns -1
2771    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2772  }
2773
2774} numa_node_list_holder;
2775
2776
2777
2778static size_t _large_page_size = 0;
2779
2780static bool resolve_functions_for_large_page_init() {
2781  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2782    os::Advapi32Dll::AdvapiAvailable();
2783}
2784
2785static bool request_lock_memory_privilege() {
2786  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2787                          os::current_process_id());
2788
2789  LUID luid;
2790  if (_hProcess != NULL &&
2791      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2792      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2793
2794    TOKEN_PRIVILEGES tp;
2795    tp.PrivilegeCount = 1;
2796    tp.Privileges[0].Luid = luid;
2797    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2798
2799    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2800    // privilege. Check GetLastError() too. See MSDN document.
2801    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2802        (GetLastError() == ERROR_SUCCESS)) {
2803      return true;
2804    }
2805  }
2806
2807  return false;
2808}
2809
2810static void cleanup_after_large_page_init() {
2811  if (_hProcess) CloseHandle(_hProcess);
2812  _hProcess = NULL;
2813  if (_hToken) CloseHandle(_hToken);
2814  _hToken = NULL;
2815}
2816
2817static bool numa_interleaving_init() {
2818  bool success = false;
2819  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2820
2821  // print a warning if UseNUMAInterleaving flag is specified on command line
2822  bool warn_on_failure = use_numa_interleaving_specified;
2823#define WARN(msg) if (warn_on_failure) { warning(msg); }
2824
2825  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2826  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2827  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2828
2829  if (os::Kernel32Dll::NumaCallsAvailable()) {
2830    if (numa_node_list_holder.build()) {
2831      if (PrintMiscellaneous && Verbose) {
2832        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2833        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2834          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2835        }
2836        tty->print("\n");
2837      }
2838      success = true;
2839    } else {
2840      WARN("Process does not cover multiple NUMA nodes.");
2841    }
2842  } else {
2843    WARN("NUMA Interleaving is not supported by the operating system.");
2844  }
2845  if (!success) {
2846    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2847  }
2848  return success;
2849#undef WARN
2850}
2851
2852// this routine is used whenever we need to reserve a contiguous VA range
2853// but we need to make separate VirtualAlloc calls for each piece of the range
2854// Reasons for doing this:
2855//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2856//  * UseNUMAInterleaving requires a separate node for each piece
2857static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2858                                         DWORD prot,
2859                                         bool should_inject_error = false) {
2860  char * p_buf;
2861  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2862  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2863  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2864
2865  // first reserve enough address space in advance since we want to be
2866  // able to break a single contiguous virtual address range into multiple
2867  // large page commits but WS2003 does not allow reserving large page space
2868  // so we just use 4K pages for reserve, this gives us a legal contiguous
2869  // address space. then we will deallocate that reservation, and re alloc
2870  // using large pages
2871  const size_t size_of_reserve = bytes + chunk_size;
2872  if (bytes > size_of_reserve) {
2873    // Overflowed.
2874    return NULL;
2875  }
2876  p_buf = (char *) VirtualAlloc(addr,
2877                                size_of_reserve,  // size of Reserve
2878                                MEM_RESERVE,
2879                                PAGE_READWRITE);
2880  // If reservation failed, return NULL
2881  if (p_buf == NULL) return NULL;
2882  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2883  os::release_memory(p_buf, bytes + chunk_size);
2884
2885  // we still need to round up to a page boundary (in case we are using large pages)
2886  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2887  // instead we handle this in the bytes_to_rq computation below
2888  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2889
2890  // now go through and allocate one chunk at a time until all bytes are
2891  // allocated
2892  size_t  bytes_remaining = bytes;
2893  // An overflow of align_size_up() would have been caught above
2894  // in the calculation of size_of_reserve.
2895  char * next_alloc_addr = p_buf;
2896  HANDLE hProc = GetCurrentProcess();
2897
2898#ifdef ASSERT
2899  // Variable for the failure injection
2900  long ran_num = os::random();
2901  size_t fail_after = ran_num % bytes;
2902#endif
2903
2904  int count=0;
2905  while (bytes_remaining) {
2906    // select bytes_to_rq to get to the next chunk_size boundary
2907
2908    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2909    // Note allocate and commit
2910    char * p_new;
2911
2912#ifdef ASSERT
2913    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2914#else
2915    const bool inject_error_now = false;
2916#endif
2917
2918    if (inject_error_now) {
2919      p_new = NULL;
2920    } else {
2921      if (!UseNUMAInterleaving) {
2922        p_new = (char *) VirtualAlloc(next_alloc_addr,
2923                                      bytes_to_rq,
2924                                      flags,
2925                                      prot);
2926      } else {
2927        // get the next node to use from the used_node_list
2928        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2929        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2930        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2931                                                            next_alloc_addr,
2932                                                            bytes_to_rq,
2933                                                            flags,
2934                                                            prot,
2935                                                            node);
2936      }
2937    }
2938
2939    if (p_new == NULL) {
2940      // Free any allocated pages
2941      if (next_alloc_addr > p_buf) {
2942        // Some memory was committed so release it.
2943        size_t bytes_to_release = bytes - bytes_remaining;
2944        // NMT has yet to record any individual blocks, so it
2945        // need to create a dummy 'reserve' record to match
2946        // the release.
2947        MemTracker::record_virtual_memory_reserve((address)p_buf,
2948                                                  bytes_to_release, CALLER_PC);
2949        os::release_memory(p_buf, bytes_to_release);
2950      }
2951#ifdef ASSERT
2952      if (should_inject_error) {
2953        if (TracePageSizes && Verbose) {
2954          tty->print_cr("Reserving pages individually failed.");
2955        }
2956      }
2957#endif
2958      return NULL;
2959    }
2960
2961    bytes_remaining -= bytes_to_rq;
2962    next_alloc_addr += bytes_to_rq;
2963    count++;
2964  }
2965  // Although the memory is allocated individually, it is returned as one.
2966  // NMT records it as one block.
2967  if ((flags & MEM_COMMIT) != 0) {
2968    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2969  } else {
2970    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2971  }
2972
2973  // made it this far, success
2974  return p_buf;
2975}
2976
2977
2978
2979void os::large_page_init() {
2980  if (!UseLargePages) return;
2981
2982  // print a warning if any large page related flag is specified on command line
2983  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2984                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2985  bool success = false;
2986
2987#define WARN(msg) if (warn_on_failure) { warning(msg); }
2988  if (resolve_functions_for_large_page_init()) {
2989    if (request_lock_memory_privilege()) {
2990      size_t s = os::Kernel32Dll::GetLargePageMinimum();
2991      if (s) {
2992#if defined(IA32) || defined(AMD64)
2993        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2994          WARN("JVM cannot use large pages bigger than 4mb.");
2995        } else {
2996#endif
2997          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2998            _large_page_size = LargePageSizeInBytes;
2999          } else {
3000            _large_page_size = s;
3001          }
3002          success = true;
3003#if defined(IA32) || defined(AMD64)
3004        }
3005#endif
3006      } else {
3007        WARN("Large page is not supported by the processor.");
3008      }
3009    } else {
3010      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3011    }
3012  } else {
3013    WARN("Large page is not supported by the operating system.");
3014  }
3015#undef WARN
3016
3017  const size_t default_page_size = (size_t) vm_page_size();
3018  if (success && _large_page_size > default_page_size) {
3019    _page_sizes[0] = _large_page_size;
3020    _page_sizes[1] = default_page_size;
3021    _page_sizes[2] = 0;
3022  }
3023
3024  cleanup_after_large_page_init();
3025  UseLargePages = success;
3026}
3027
3028// On win32, one cannot release just a part of reserved memory, it's an
3029// all or nothing deal.  When we split a reservation, we must break the
3030// reservation into two reservations.
3031void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3032                                  bool realloc) {
3033  if (size > 0) {
3034    release_memory(base, size);
3035    if (realloc) {
3036      reserve_memory(split, base);
3037    }
3038    if (size != split) {
3039      reserve_memory(size - split, base + split);
3040    }
3041  }
3042}
3043
3044// Multiple threads can race in this code but it's not possible to unmap small sections of
3045// virtual space to get requested alignment, like posix-like os's.
3046// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3047char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3048  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3049         "Alignment must be a multiple of allocation granularity (page size)");
3050  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3051
3052  size_t extra_size = size + alignment;
3053  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3054
3055  char* aligned_base = NULL;
3056
3057  do {
3058    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3059    if (extra_base == NULL) {
3060      return NULL;
3061    }
3062    // Do manual alignment
3063    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3064
3065    os::release_memory(extra_base, extra_size);
3066
3067    aligned_base = os::reserve_memory(size, aligned_base);
3068
3069  } while (aligned_base == NULL);
3070
3071  return aligned_base;
3072}
3073
3074char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3075  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3076         "reserve alignment");
3077  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3078  char* res;
3079  // note that if UseLargePages is on, all the areas that require interleaving
3080  // will go thru reserve_memory_special rather than thru here.
3081  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3082  if (!use_individual) {
3083    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3084  } else {
3085    elapsedTimer reserveTimer;
3086    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3087    // in numa interleaving, we have to allocate pages individually
3088    // (well really chunks of NUMAInterleaveGranularity size)
3089    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3090    if (res == NULL) {
3091      warning("NUMA page allocation failed");
3092    }
3093    if (Verbose && PrintMiscellaneous) {
3094      reserveTimer.stop();
3095      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3096                    reserveTimer.milliseconds(), reserveTimer.ticks());
3097    }
3098  }
3099  assert(res == NULL || addr == NULL || addr == res,
3100         "Unexpected address from reserve.");
3101
3102  return res;
3103}
3104
3105// Reserve memory at an arbitrary address, only if that area is
3106// available (and not reserved for something else).
3107char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3108  // Windows os::reserve_memory() fails of the requested address range is
3109  // not avilable.
3110  return reserve_memory(bytes, requested_addr);
3111}
3112
3113size_t os::large_page_size() {
3114  return _large_page_size;
3115}
3116
3117bool os::can_commit_large_page_memory() {
3118  // Windows only uses large page memory when the entire region is reserved
3119  // and committed in a single VirtualAlloc() call. This may change in the
3120  // future, but with Windows 2003 it's not possible to commit on demand.
3121  return false;
3122}
3123
3124bool os::can_execute_large_page_memory() {
3125  return true;
3126}
3127
3128char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3129                                 bool exec) {
3130  assert(UseLargePages, "only for large pages");
3131
3132  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3133    return NULL; // Fallback to small pages.
3134  }
3135
3136  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3137  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3138
3139  // with large pages, there are two cases where we need to use Individual Allocation
3140  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3141  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3142  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3143    if (TracePageSizes && Verbose) {
3144      tty->print_cr("Reserving large pages individually.");
3145    }
3146    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3147    if (p_buf == NULL) {
3148      // give an appropriate warning message
3149      if (UseNUMAInterleaving) {
3150        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3151      }
3152      if (UseLargePagesIndividualAllocation) {
3153        warning("Individually allocated large pages failed, "
3154                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3155      }
3156      return NULL;
3157    }
3158
3159    return p_buf;
3160
3161  } else {
3162    if (TracePageSizes && Verbose) {
3163      tty->print_cr("Reserving large pages in a single large chunk.");
3164    }
3165    // normal policy just allocate it all at once
3166    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3167    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3168    if (res != NULL) {
3169      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3170    }
3171
3172    return res;
3173  }
3174}
3175
3176bool os::release_memory_special(char* base, size_t bytes) {
3177  assert(base != NULL, "Sanity check");
3178  return release_memory(base, bytes);
3179}
3180
3181void os::print_statistics() {
3182}
3183
3184static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3185  int err = os::get_last_error();
3186  char buf[256];
3187  size_t buf_len = os::lasterror(buf, sizeof(buf));
3188  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3189          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3190          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3191}
3192
3193bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3194  if (bytes == 0) {
3195    // Don't bother the OS with noops.
3196    return true;
3197  }
3198  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3199  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3200  // Don't attempt to print anything if the OS call fails. We're
3201  // probably low on resources, so the print itself may cause crashes.
3202
3203  // unless we have NUMAInterleaving enabled, the range of a commit
3204  // is always within a reserve covered by a single VirtualAlloc
3205  // in that case we can just do a single commit for the requested size
3206  if (!UseNUMAInterleaving) {
3207    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3208      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3209      return false;
3210    }
3211    if (exec) {
3212      DWORD oldprot;
3213      // Windows doc says to use VirtualProtect to get execute permissions
3214      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3215        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3216        return false;
3217      }
3218    }
3219    return true;
3220  } else {
3221
3222    // when NUMAInterleaving is enabled, the commit might cover a range that
3223    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3224    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3225    // returns represents the number of bytes that can be committed in one step.
3226    size_t bytes_remaining = bytes;
3227    char * next_alloc_addr = addr;
3228    while (bytes_remaining > 0) {
3229      MEMORY_BASIC_INFORMATION alloc_info;
3230      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3231      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3232      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3233                       PAGE_READWRITE) == NULL) {
3234        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3235                                            exec);)
3236        return false;
3237      }
3238      if (exec) {
3239        DWORD oldprot;
3240        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3241                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3242          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3243                                              exec);)
3244          return false;
3245        }
3246      }
3247      bytes_remaining -= bytes_to_rq;
3248      next_alloc_addr += bytes_to_rq;
3249    }
3250  }
3251  // if we made it this far, return true
3252  return true;
3253}
3254
3255bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3256                          bool exec) {
3257  // alignment_hint is ignored on this OS
3258  return pd_commit_memory(addr, size, exec);
3259}
3260
3261void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3262                                  const char* mesg) {
3263  assert(mesg != NULL, "mesg must be specified");
3264  if (!pd_commit_memory(addr, size, exec)) {
3265    warn_fail_commit_memory(addr, size, exec);
3266    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3267  }
3268}
3269
3270void os::pd_commit_memory_or_exit(char* addr, size_t size,
3271                                  size_t alignment_hint, bool exec,
3272                                  const char* mesg) {
3273  // alignment_hint is ignored on this OS
3274  pd_commit_memory_or_exit(addr, size, exec, mesg);
3275}
3276
3277bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3278  if (bytes == 0) {
3279    // Don't bother the OS with noops.
3280    return true;
3281  }
3282  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3283  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3284  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3285}
3286
3287bool os::pd_release_memory(char* addr, size_t bytes) {
3288  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3289}
3290
3291bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3292  return os::commit_memory(addr, size, !ExecMem);
3293}
3294
3295bool os::remove_stack_guard_pages(char* addr, size_t size) {
3296  return os::uncommit_memory(addr, size);
3297}
3298
3299// Set protections specified
3300bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3301                        bool is_committed) {
3302  unsigned int p = 0;
3303  switch (prot) {
3304  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3305  case MEM_PROT_READ: p = PAGE_READONLY; break;
3306  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3307  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3308  default:
3309    ShouldNotReachHere();
3310  }
3311
3312  DWORD old_status;
3313
3314  // Strange enough, but on Win32 one can change protection only for committed
3315  // memory, not a big deal anyway, as bytes less or equal than 64K
3316  if (!is_committed) {
3317    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3318                          "cannot commit protection page");
3319  }
3320  // One cannot use os::guard_memory() here, as on Win32 guard page
3321  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3322  //
3323  // Pages in the region become guard pages. Any attempt to access a guard page
3324  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3325  // the guard page status. Guard pages thus act as a one-time access alarm.
3326  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3327}
3328
3329bool os::guard_memory(char* addr, size_t bytes) {
3330  DWORD old_status;
3331  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3332}
3333
3334bool os::unguard_memory(char* addr, size_t bytes) {
3335  DWORD old_status;
3336  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3337}
3338
3339void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3340void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3341void os::numa_make_global(char *addr, size_t bytes)    { }
3342void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3343bool os::numa_topology_changed()                       { return false; }
3344size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3345int os::numa_get_group_id()                            { return 0; }
3346size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3347  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3348    // Provide an answer for UMA systems
3349    ids[0] = 0;
3350    return 1;
3351  } else {
3352    // check for size bigger than actual groups_num
3353    size = MIN2(size, numa_get_groups_num());
3354    for (int i = 0; i < (int)size; i++) {
3355      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3356    }
3357    return size;
3358  }
3359}
3360
3361bool os::get_page_info(char *start, page_info* info) {
3362  return false;
3363}
3364
3365char *os::scan_pages(char *start, char* end, page_info* page_expected,
3366                     page_info* page_found) {
3367  return end;
3368}
3369
3370char* os::non_memory_address_word() {
3371  // Must never look like an address returned by reserve_memory,
3372  // even in its subfields (as defined by the CPU immediate fields,
3373  // if the CPU splits constants across multiple instructions).
3374  return (char*)-1;
3375}
3376
3377#define MAX_ERROR_COUNT 100
3378#define SYS_THREAD_ERROR 0xffffffffUL
3379
3380void os::pd_start_thread(Thread* thread) {
3381  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3382  // Returns previous suspend state:
3383  // 0:  Thread was not suspended
3384  // 1:  Thread is running now
3385  // >1: Thread is still suspended.
3386  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3387}
3388
3389class HighResolutionInterval : public CHeapObj<mtThread> {
3390  // The default timer resolution seems to be 10 milliseconds.
3391  // (Where is this written down?)
3392  // If someone wants to sleep for only a fraction of the default,
3393  // then we set the timer resolution down to 1 millisecond for
3394  // the duration of their interval.
3395  // We carefully set the resolution back, since otherwise we
3396  // seem to incur an overhead (3%?) that we don't need.
3397  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3398  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3399  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3400  // timeBeginPeriod() if the relative error exceeded some threshold.
3401  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3402  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3403  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3404  // resolution timers running.
3405 private:
3406  jlong resolution;
3407 public:
3408  HighResolutionInterval(jlong ms) {
3409    resolution = ms % 10L;
3410    if (resolution != 0) {
3411      MMRESULT result = timeBeginPeriod(1L);
3412    }
3413  }
3414  ~HighResolutionInterval() {
3415    if (resolution != 0) {
3416      MMRESULT result = timeEndPeriod(1L);
3417    }
3418    resolution = 0L;
3419  }
3420};
3421
3422int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3423  jlong limit = (jlong) MAXDWORD;
3424
3425  while (ms > limit) {
3426    int res;
3427    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3428      return res;
3429    }
3430    ms -= limit;
3431  }
3432
3433  assert(thread == Thread::current(), "thread consistency check");
3434  OSThread* osthread = thread->osthread();
3435  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3436  int result;
3437  if (interruptable) {
3438    assert(thread->is_Java_thread(), "must be java thread");
3439    JavaThread *jt = (JavaThread *) thread;
3440    ThreadBlockInVM tbivm(jt);
3441
3442    jt->set_suspend_equivalent();
3443    // cleared by handle_special_suspend_equivalent_condition() or
3444    // java_suspend_self() via check_and_wait_while_suspended()
3445
3446    HANDLE events[1];
3447    events[0] = osthread->interrupt_event();
3448    HighResolutionInterval *phri=NULL;
3449    if (!ForceTimeHighResolution) {
3450      phri = new HighResolutionInterval(ms);
3451    }
3452    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3453      result = OS_TIMEOUT;
3454    } else {
3455      ResetEvent(osthread->interrupt_event());
3456      osthread->set_interrupted(false);
3457      result = OS_INTRPT;
3458    }
3459    delete phri; //if it is NULL, harmless
3460
3461    // were we externally suspended while we were waiting?
3462    jt->check_and_wait_while_suspended();
3463  } else {
3464    assert(!thread->is_Java_thread(), "must not be java thread");
3465    Sleep((long) ms);
3466    result = OS_TIMEOUT;
3467  }
3468  return result;
3469}
3470
3471// Short sleep, direct OS call.
3472//
3473// ms = 0, means allow others (if any) to run.
3474//
3475void os::naked_short_sleep(jlong ms) {
3476  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3477  Sleep(ms);
3478}
3479
3480// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3481void os::infinite_sleep() {
3482  while (true) {    // sleep forever ...
3483    Sleep(100000);  // ... 100 seconds at a time
3484  }
3485}
3486
3487typedef BOOL (WINAPI * STTSignature)(void);
3488
3489void os::naked_yield() {
3490  // Use either SwitchToThread() or Sleep(0)
3491  // Consider passing back the return value from SwitchToThread().
3492  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3493    SwitchToThread();
3494  } else {
3495    Sleep(0);
3496  }
3497}
3498
3499// Win32 only gives you access to seven real priorities at a time,
3500// so we compress Java's ten down to seven.  It would be better
3501// if we dynamically adjusted relative priorities.
3502
3503int os::java_to_os_priority[CriticalPriority + 1] = {
3504  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3505  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3506  THREAD_PRIORITY_LOWEST,                       // 2
3507  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3508  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3509  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3510  THREAD_PRIORITY_NORMAL,                       // 6
3511  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3512  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3513  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3514  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3515  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3516};
3517
3518int prio_policy1[CriticalPriority + 1] = {
3519  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3520  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3521  THREAD_PRIORITY_LOWEST,                       // 2
3522  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3523  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3524  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3525  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3526  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3527  THREAD_PRIORITY_HIGHEST,                      // 8
3528  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3529  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3530  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3531};
3532
3533static int prio_init() {
3534  // If ThreadPriorityPolicy is 1, switch tables
3535  if (ThreadPriorityPolicy == 1) {
3536    int i;
3537    for (i = 0; i < CriticalPriority + 1; i++) {
3538      os::java_to_os_priority[i] = prio_policy1[i];
3539    }
3540  }
3541  if (UseCriticalJavaThreadPriority) {
3542    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3543  }
3544  return 0;
3545}
3546
3547OSReturn os::set_native_priority(Thread* thread, int priority) {
3548  if (!UseThreadPriorities) return OS_OK;
3549  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3550  return ret ? OS_OK : OS_ERR;
3551}
3552
3553OSReturn os::get_native_priority(const Thread* const thread,
3554                                 int* priority_ptr) {
3555  if (!UseThreadPriorities) {
3556    *priority_ptr = java_to_os_priority[NormPriority];
3557    return OS_OK;
3558  }
3559  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3560  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3561    assert(false, "GetThreadPriority failed");
3562    return OS_ERR;
3563  }
3564  *priority_ptr = os_prio;
3565  return OS_OK;
3566}
3567
3568
3569// Hint to the underlying OS that a task switch would not be good.
3570// Void return because it's a hint and can fail.
3571void os::hint_no_preempt() {}
3572
3573void os::interrupt(Thread* thread) {
3574  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3575         Threads_lock->owned_by_self(),
3576         "possibility of dangling Thread pointer");
3577
3578  OSThread* osthread = thread->osthread();
3579  osthread->set_interrupted(true);
3580  // More than one thread can get here with the same value of osthread,
3581  // resulting in multiple notifications.  We do, however, want the store
3582  // to interrupted() to be visible to other threads before we post
3583  // the interrupt event.
3584  OrderAccess::release();
3585  SetEvent(osthread->interrupt_event());
3586  // For JSR166:  unpark after setting status
3587  if (thread->is_Java_thread()) {
3588    ((JavaThread*)thread)->parker()->unpark();
3589  }
3590
3591  ParkEvent * ev = thread->_ParkEvent;
3592  if (ev != NULL) ev->unpark();
3593}
3594
3595
3596bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3597  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3598         "possibility of dangling Thread pointer");
3599
3600  OSThread* osthread = thread->osthread();
3601  // There is no synchronization between the setting of the interrupt
3602  // and it being cleared here. It is critical - see 6535709 - that
3603  // we only clear the interrupt state, and reset the interrupt event,
3604  // if we are going to report that we were indeed interrupted - else
3605  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3606  // depending on the timing. By checking thread interrupt event to see
3607  // if the thread gets real interrupt thus prevent spurious wakeup.
3608  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3609  if (interrupted && clear_interrupted) {
3610    osthread->set_interrupted(false);
3611    ResetEvent(osthread->interrupt_event());
3612  } // Otherwise leave the interrupted state alone
3613
3614  return interrupted;
3615}
3616
3617// Get's a pc (hint) for a running thread. Currently used only for profiling.
3618ExtendedPC os::get_thread_pc(Thread* thread) {
3619  CONTEXT context;
3620  context.ContextFlags = CONTEXT_CONTROL;
3621  HANDLE handle = thread->osthread()->thread_handle();
3622#ifdef _M_IA64
3623  assert(0, "Fix get_thread_pc");
3624  return ExtendedPC(NULL);
3625#else
3626  if (GetThreadContext(handle, &context)) {
3627#ifdef _M_AMD64
3628    return ExtendedPC((address) context.Rip);
3629#else
3630    return ExtendedPC((address) context.Eip);
3631#endif
3632  } else {
3633    return ExtendedPC(NULL);
3634  }
3635#endif
3636}
3637
3638// GetCurrentThreadId() returns DWORD
3639intx os::current_thread_id()  { return GetCurrentThreadId(); }
3640
3641static int _initial_pid = 0;
3642
3643int os::current_process_id() {
3644  return (_initial_pid ? _initial_pid : _getpid());
3645}
3646
3647int    os::win32::_vm_page_size              = 0;
3648int    os::win32::_vm_allocation_granularity = 0;
3649int    os::win32::_processor_type            = 0;
3650// Processor level is not available on non-NT systems, use vm_version instead
3651int    os::win32::_processor_level           = 0;
3652julong os::win32::_physical_memory           = 0;
3653size_t os::win32::_default_stack_size        = 0;
3654
3655intx          os::win32::_os_thread_limit    = 0;
3656volatile intx os::win32::_os_thread_count    = 0;
3657
3658bool   os::win32::_is_nt                     = false;
3659bool   os::win32::_is_windows_2003           = false;
3660bool   os::win32::_is_windows_server         = false;
3661
3662// 6573254
3663// Currently, the bug is observed across all the supported Windows releases,
3664// including the latest one (as of this writing - Windows Server 2012 R2)
3665bool   os::win32::_has_exit_bug              = true;
3666bool   os::win32::_has_performance_count     = 0;
3667
3668void os::win32::initialize_system_info() {
3669  SYSTEM_INFO si;
3670  GetSystemInfo(&si);
3671  _vm_page_size    = si.dwPageSize;
3672  _vm_allocation_granularity = si.dwAllocationGranularity;
3673  _processor_type  = si.dwProcessorType;
3674  _processor_level = si.wProcessorLevel;
3675  set_processor_count(si.dwNumberOfProcessors);
3676
3677  MEMORYSTATUSEX ms;
3678  ms.dwLength = sizeof(ms);
3679
3680  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3681  // dwMemoryLoad (% of memory in use)
3682  GlobalMemoryStatusEx(&ms);
3683  _physical_memory = ms.ullTotalPhys;
3684
3685  OSVERSIONINFOEX oi;
3686  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3687  GetVersionEx((OSVERSIONINFO*)&oi);
3688  switch (oi.dwPlatformId) {
3689  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3690  case VER_PLATFORM_WIN32_NT:
3691    _is_nt = true;
3692    {
3693      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3694      if (os_vers == 5002) {
3695        _is_windows_2003 = true;
3696      }
3697      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3698          oi.wProductType == VER_NT_SERVER) {
3699        _is_windows_server = true;
3700      }
3701    }
3702    break;
3703  default: fatal("Unknown platform");
3704  }
3705
3706  _default_stack_size = os::current_stack_size();
3707  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3708  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3709         "stack size not a multiple of page size");
3710
3711  initialize_performance_counter();
3712
3713  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3714  // known to deadlock the system, if the VM issues to thread operations with
3715  // a too high frequency, e.g., such as changing the priorities.
3716  // The 6000 seems to work well - no deadlocks has been notices on the test
3717  // programs that we have seen experience this problem.
3718  if (!os::win32::is_nt()) {
3719    StarvationMonitorInterval = 6000;
3720  }
3721}
3722
3723
3724HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3725                                      int ebuflen) {
3726  char path[MAX_PATH];
3727  DWORD size;
3728  DWORD pathLen = (DWORD)sizeof(path);
3729  HINSTANCE result = NULL;
3730
3731  // only allow library name without path component
3732  assert(strchr(name, '\\') == NULL, "path not allowed");
3733  assert(strchr(name, ':') == NULL, "path not allowed");
3734  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3735    jio_snprintf(ebuf, ebuflen,
3736                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3737    return NULL;
3738  }
3739
3740  // search system directory
3741  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3742    if (size >= pathLen) {
3743      return NULL; // truncated
3744    }
3745    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3746      return NULL; // truncated
3747    }
3748    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3749      return result;
3750    }
3751  }
3752
3753  // try Windows directory
3754  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3755    if (size >= pathLen) {
3756      return NULL; // truncated
3757    }
3758    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3759      return NULL; // truncated
3760    }
3761    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3762      return result;
3763    }
3764  }
3765
3766  jio_snprintf(ebuf, ebuflen,
3767               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3768  return NULL;
3769}
3770
3771#define MAX_EXIT_HANDLES    16
3772#define EXIT_TIMEOUT      1000 /* 1 sec */
3773
3774static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3775  InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3776  return TRUE;
3777}
3778
3779int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3780  // Basic approach:
3781  //  - Each exiting thread registers its intent to exit and then does so.
3782  //  - A thread trying to terminate the process must wait for all
3783  //    threads currently exiting to complete their exit.
3784
3785  if (os::win32::has_exit_bug()) {
3786    // The array holds handles of the threads that have started exiting by calling
3787    // _endthreadex().
3788    // Should be large enough to avoid blocking the exiting thread due to lack of
3789    // a free slot.
3790    static HANDLE handles[MAX_EXIT_HANDLES];
3791    static int handle_count = 0;
3792
3793    static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3794    static CRITICAL_SECTION crit_sect;
3795    int i, j;
3796    DWORD res;
3797    HANDLE hproc, hthr;
3798
3799    // The first thread that reached this point, initializes the critical section.
3800    if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3801      warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3802    } else {
3803      EnterCriticalSection(&crit_sect);
3804
3805      if (what == EPT_THREAD) {
3806        // Remove from the array those handles of the threads that have completed exiting.
3807        for (i = 0, j = 0; i < handle_count; ++i) {
3808          res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3809          if (res == WAIT_TIMEOUT) {
3810            handles[j++] = handles[i];
3811          } else {
3812            if (res != WAIT_OBJECT_0) {
3813              warning("WaitForSingleObject failed in %s: %d\n", __FILE__, __LINE__);
3814              // Don't keep the handle, if we failed waiting for it.
3815            }
3816            CloseHandle(handles[i]);
3817          }
3818        }
3819
3820        // If there's no free slot in the array of the kept handles, we'll have to
3821        // wait until at least one thread completes exiting.
3822        if ((handle_count = j) == MAX_EXIT_HANDLES) {
3823          res = WaitForMultipleObjects(MAX_EXIT_HANDLES, handles, FALSE, EXIT_TIMEOUT);
3824          if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAX_EXIT_HANDLES)) {
3825            i = (res - WAIT_OBJECT_0);
3826            handle_count = MAX_EXIT_HANDLES - 1;
3827            for (; i < handle_count; ++i) {
3828              handles[i] = handles[i + 1];
3829            }
3830          } else {
3831            warning("WaitForMultipleObjects failed in %s: %d\n", __FILE__, __LINE__);
3832            // Don't keep handles, if we failed waiting for them.
3833            for (i = 0; i < MAX_EXIT_HANDLES; ++i) {
3834              CloseHandle(handles[i]);
3835            }
3836            handle_count = 0;
3837          }
3838        }
3839
3840        // Store a duplicate of the current thread handle in the array of handles.
3841        hproc = GetCurrentProcess();
3842        hthr = GetCurrentThread();
3843        if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3844                             0, FALSE, DUPLICATE_SAME_ACCESS)) {
3845          warning("DuplicateHandle failed in %s: %d\n", __FILE__, __LINE__);
3846        } else {
3847          ++handle_count;
3848        }
3849
3850        // The current exiting thread has stored its handle in the array, and now
3851        // should leave the critical section before calling _endthreadex().
3852
3853      } else { // what != EPT_THREAD
3854        if (handle_count > 0) {
3855          // Before ending the process, make sure all the threads that had called
3856          // _endthreadex() completed.
3857          res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3858          if (res == WAIT_FAILED) {
3859            warning("WaitForMultipleObjects failed in %s: %d\n", __FILE__, __LINE__);
3860          }
3861          for (i = 0; i < handle_count; ++i) {
3862            CloseHandle(handles[i]);
3863          }
3864          handle_count = 0;
3865        }
3866
3867        // End the process, not leaving critical section.
3868        // This makes sure no other thread executes exit-related code at the same
3869        // time, thus a race is avoided.
3870        if (what == EPT_PROCESS) {
3871          ::exit(exit_code);
3872        } else {
3873          _exit(exit_code);
3874        }
3875      }
3876
3877      LeaveCriticalSection(&crit_sect);
3878    }
3879  }
3880
3881  // We are here if either
3882  // - there's no 'race at exit' bug on this OS release;
3883  // - initialization of the critical section failed (unlikely);
3884  // - the current thread has stored its handle and left the critical section.
3885  if (what == EPT_THREAD) {
3886    _endthreadex((unsigned)exit_code);
3887  } else if (what == EPT_PROCESS) {
3888    ::exit(exit_code);
3889  } else {
3890    _exit(exit_code);
3891  }
3892
3893  // Should not reach here
3894  return exit_code;
3895}
3896
3897#undef MAX_EXIT_HANDLES
3898#undef EXIT_TIMEOUT
3899
3900void os::win32::setmode_streams() {
3901  _setmode(_fileno(stdin), _O_BINARY);
3902  _setmode(_fileno(stdout), _O_BINARY);
3903  _setmode(_fileno(stderr), _O_BINARY);
3904}
3905
3906
3907bool os::is_debugger_attached() {
3908  return IsDebuggerPresent() ? true : false;
3909}
3910
3911
3912void os::wait_for_keypress_at_exit(void) {
3913  if (PauseAtExit) {
3914    fprintf(stderr, "Press any key to continue...\n");
3915    fgetc(stdin);
3916  }
3917}
3918
3919
3920int os::message_box(const char* title, const char* message) {
3921  int result = MessageBox(NULL, message, title,
3922                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3923  return result == IDYES;
3924}
3925
3926int os::allocate_thread_local_storage() {
3927  return TlsAlloc();
3928}
3929
3930
3931void os::free_thread_local_storage(int index) {
3932  TlsFree(index);
3933}
3934
3935
3936void os::thread_local_storage_at_put(int index, void* value) {
3937  TlsSetValue(index, value);
3938  assert(thread_local_storage_at(index) == value, "Just checking");
3939}
3940
3941
3942void* os::thread_local_storage_at(int index) {
3943  return TlsGetValue(index);
3944}
3945
3946
3947#ifndef PRODUCT
3948#ifndef _WIN64
3949// Helpers to check whether NX protection is enabled
3950int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3951  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3952      pex->ExceptionRecord->NumberParameters > 0 &&
3953      pex->ExceptionRecord->ExceptionInformation[0] ==
3954      EXCEPTION_INFO_EXEC_VIOLATION) {
3955    return EXCEPTION_EXECUTE_HANDLER;
3956  }
3957  return EXCEPTION_CONTINUE_SEARCH;
3958}
3959
3960void nx_check_protection() {
3961  // If NX is enabled we'll get an exception calling into code on the stack
3962  char code[] = { (char)0xC3 }; // ret
3963  void *code_ptr = (void *)code;
3964  __try {
3965    __asm call code_ptr
3966  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3967    tty->print_raw_cr("NX protection detected.");
3968  }
3969}
3970#endif // _WIN64
3971#endif // PRODUCT
3972
3973// this is called _before_ the global arguments have been parsed
3974void os::init(void) {
3975  _initial_pid = _getpid();
3976
3977  init_random(1234567);
3978
3979  win32::initialize_system_info();
3980  win32::setmode_streams();
3981  init_page_sizes((size_t) win32::vm_page_size());
3982
3983  // This may be overridden later when argument processing is done.
3984  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3985                os::win32::is_windows_2003());
3986
3987  // Initialize main_process and main_thread
3988  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3989  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3990                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3991    fatal("DuplicateHandle failed\n");
3992  }
3993  main_thread_id = (int) GetCurrentThreadId();
3994}
3995
3996// To install functions for atexit processing
3997extern "C" {
3998  static void perfMemory_exit_helper() {
3999    perfMemory_exit();
4000  }
4001}
4002
4003static jint initSock();
4004
4005// this is called _after_ the global arguments have been parsed
4006jint os::init_2(void) {
4007  // Allocate a single page and mark it as readable for safepoint polling
4008  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4009  guarantee(polling_page != NULL, "Reserve Failed for polling page");
4010
4011  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4012  guarantee(return_page != NULL, "Commit Failed for polling page");
4013
4014  os::set_polling_page(polling_page);
4015
4016#ifndef PRODUCT
4017  if (Verbose && PrintMiscellaneous) {
4018    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4019               (intptr_t)polling_page);
4020  }
4021#endif
4022
4023  if (!UseMembar) {
4024    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4025    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4026
4027    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4028    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4029
4030    os::set_memory_serialize_page(mem_serialize_page);
4031
4032#ifndef PRODUCT
4033    if (Verbose && PrintMiscellaneous) {
4034      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4035                 (intptr_t)mem_serialize_page);
4036    }
4037#endif
4038  }
4039
4040  // Setup Windows Exceptions
4041
4042  // for debugging float code generation bugs
4043  if (ForceFloatExceptions) {
4044#ifndef  _WIN64
4045    static long fp_control_word = 0;
4046    __asm { fstcw fp_control_word }
4047    // see Intel PPro Manual, Vol. 2, p 7-16
4048    const long precision = 0x20;
4049    const long underflow = 0x10;
4050    const long overflow  = 0x08;
4051    const long zero_div  = 0x04;
4052    const long denorm    = 0x02;
4053    const long invalid   = 0x01;
4054    fp_control_word |= invalid;
4055    __asm { fldcw fp_control_word }
4056#endif
4057  }
4058
4059  // If stack_commit_size is 0, windows will reserve the default size,
4060  // but only commit a small portion of it.
4061  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4062  size_t default_reserve_size = os::win32::default_stack_size();
4063  size_t actual_reserve_size = stack_commit_size;
4064  if (stack_commit_size < default_reserve_size) {
4065    // If stack_commit_size == 0, we want this too
4066    actual_reserve_size = default_reserve_size;
4067  }
4068
4069  // Check minimum allowable stack size for thread creation and to initialize
4070  // the java system classes, including StackOverflowError - depends on page
4071  // size.  Add a page for compiler2 recursion in main thread.
4072  // Add in 2*BytesPerWord times page size to account for VM stack during
4073  // class initialization depending on 32 or 64 bit VM.
4074  size_t min_stack_allowed =
4075            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4076                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4077  if (actual_reserve_size < min_stack_allowed) {
4078    tty->print_cr("\nThe stack size specified is too small, "
4079                  "Specify at least %dk",
4080                  min_stack_allowed / K);
4081    return JNI_ERR;
4082  }
4083
4084  JavaThread::set_stack_size_at_create(stack_commit_size);
4085
4086  // Calculate theoretical max. size of Threads to guard gainst artifical
4087  // out-of-memory situations, where all available address-space has been
4088  // reserved by thread stacks.
4089  assert(actual_reserve_size != 0, "Must have a stack");
4090
4091  // Calculate the thread limit when we should start doing Virtual Memory
4092  // banging. Currently when the threads will have used all but 200Mb of space.
4093  //
4094  // TODO: consider performing a similar calculation for commit size instead
4095  // as reserve size, since on a 64-bit platform we'll run into that more
4096  // often than running out of virtual memory space.  We can use the
4097  // lower value of the two calculations as the os_thread_limit.
4098  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4099  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4100
4101  // at exit methods are called in the reverse order of their registration.
4102  // there is no limit to the number of functions registered. atexit does
4103  // not set errno.
4104
4105  if (PerfAllowAtExitRegistration) {
4106    // only register atexit functions if PerfAllowAtExitRegistration is set.
4107    // atexit functions can be delayed until process exit time, which
4108    // can be problematic for embedded VM situations. Embedded VMs should
4109    // call DestroyJavaVM() to assure that VM resources are released.
4110
4111    // note: perfMemory_exit_helper atexit function may be removed in
4112    // the future if the appropriate cleanup code can be added to the
4113    // VM_Exit VMOperation's doit method.
4114    if (atexit(perfMemory_exit_helper) != 0) {
4115      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4116    }
4117  }
4118
4119#ifndef _WIN64
4120  // Print something if NX is enabled (win32 on AMD64)
4121  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4122#endif
4123
4124  // initialize thread priority policy
4125  prio_init();
4126
4127  if (UseNUMA && !ForceNUMA) {
4128    UseNUMA = false; // We don't fully support this yet
4129  }
4130
4131  if (UseNUMAInterleaving) {
4132    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4133    bool success = numa_interleaving_init();
4134    if (!success) UseNUMAInterleaving = false;
4135  }
4136
4137  if (initSock() != JNI_OK) {
4138    return JNI_ERR;
4139  }
4140
4141  return JNI_OK;
4142}
4143
4144// Mark the polling page as unreadable
4145void os::make_polling_page_unreadable(void) {
4146  DWORD old_status;
4147  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4148                      PAGE_NOACCESS, &old_status)) {
4149    fatal("Could not disable polling page");
4150  }
4151}
4152
4153// Mark the polling page as readable
4154void os::make_polling_page_readable(void) {
4155  DWORD old_status;
4156  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4157                      PAGE_READONLY, &old_status)) {
4158    fatal("Could not enable polling page");
4159  }
4160}
4161
4162
4163int os::stat(const char *path, struct stat *sbuf) {
4164  char pathbuf[MAX_PATH];
4165  if (strlen(path) > MAX_PATH - 1) {
4166    errno = ENAMETOOLONG;
4167    return -1;
4168  }
4169  os::native_path(strcpy(pathbuf, path));
4170  int ret = ::stat(pathbuf, sbuf);
4171  if (sbuf != NULL && UseUTCFileTimestamp) {
4172    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4173    // the system timezone and so can return different values for the
4174    // same file if/when daylight savings time changes.  This adjustment
4175    // makes sure the same timestamp is returned regardless of the TZ.
4176    //
4177    // See:
4178    // http://msdn.microsoft.com/library/
4179    //   default.asp?url=/library/en-us/sysinfo/base/
4180    //   time_zone_information_str.asp
4181    // and
4182    // http://msdn.microsoft.com/library/default.asp?url=
4183    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4184    //
4185    // NOTE: there is a insidious bug here:  If the timezone is changed
4186    // after the call to stat() but before 'GetTimeZoneInformation()', then
4187    // the adjustment we do here will be wrong and we'll return the wrong
4188    // value (which will likely end up creating an invalid class data
4189    // archive).  Absent a better API for this, or some time zone locking
4190    // mechanism, we'll have to live with this risk.
4191    TIME_ZONE_INFORMATION tz;
4192    DWORD tzid = GetTimeZoneInformation(&tz);
4193    int daylightBias =
4194      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4195    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4196  }
4197  return ret;
4198}
4199
4200
4201#define FT2INT64(ft) \
4202  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4203
4204
4205// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4206// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4207// of a thread.
4208//
4209// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4210// the fast estimate available on the platform.
4211
4212// current_thread_cpu_time() is not optimized for Windows yet
4213jlong os::current_thread_cpu_time() {
4214  // return user + sys since the cost is the same
4215  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4216}
4217
4218jlong os::thread_cpu_time(Thread* thread) {
4219  // consistent with what current_thread_cpu_time() returns.
4220  return os::thread_cpu_time(thread, true /* user+sys */);
4221}
4222
4223jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4224  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4225}
4226
4227jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4228  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4229  // If this function changes, os::is_thread_cpu_time_supported() should too
4230  if (os::win32::is_nt()) {
4231    FILETIME CreationTime;
4232    FILETIME ExitTime;
4233    FILETIME KernelTime;
4234    FILETIME UserTime;
4235
4236    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4237                       &ExitTime, &KernelTime, &UserTime) == 0) {
4238      return -1;
4239    } else if (user_sys_cpu_time) {
4240      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4241    } else {
4242      return FT2INT64(UserTime) * 100;
4243    }
4244  } else {
4245    return (jlong) timeGetTime() * 1000000;
4246  }
4247}
4248
4249void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4250  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4251  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4252  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4253  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4254}
4255
4256void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4257  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4258  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4259  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4260  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4261}
4262
4263bool os::is_thread_cpu_time_supported() {
4264  // see os::thread_cpu_time
4265  if (os::win32::is_nt()) {
4266    FILETIME CreationTime;
4267    FILETIME ExitTime;
4268    FILETIME KernelTime;
4269    FILETIME UserTime;
4270
4271    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4272                       &KernelTime, &UserTime) == 0) {
4273      return false;
4274    } else {
4275      return true;
4276    }
4277  } else {
4278    return false;
4279  }
4280}
4281
4282// Windows does't provide a loadavg primitive so this is stubbed out for now.
4283// It does have primitives (PDH API) to get CPU usage and run queue length.
4284// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4285// If we wanted to implement loadavg on Windows, we have a few options:
4286//
4287// a) Query CPU usage and run queue length and "fake" an answer by
4288//    returning the CPU usage if it's under 100%, and the run queue
4289//    length otherwise.  It turns out that querying is pretty slow
4290//    on Windows, on the order of 200 microseconds on a fast machine.
4291//    Note that on the Windows the CPU usage value is the % usage
4292//    since the last time the API was called (and the first call
4293//    returns 100%), so we'd have to deal with that as well.
4294//
4295// b) Sample the "fake" answer using a sampling thread and store
4296//    the answer in a global variable.  The call to loadavg would
4297//    just return the value of the global, avoiding the slow query.
4298//
4299// c) Sample a better answer using exponential decay to smooth the
4300//    value.  This is basically the algorithm used by UNIX kernels.
4301//
4302// Note that sampling thread starvation could affect both (b) and (c).
4303int os::loadavg(double loadavg[], int nelem) {
4304  return -1;
4305}
4306
4307
4308// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4309bool os::dont_yield() {
4310  return DontYieldALot;
4311}
4312
4313// This method is a slightly reworked copy of JDK's sysOpen
4314// from src/windows/hpi/src/sys_api_md.c
4315
4316int os::open(const char *path, int oflag, int mode) {
4317  char pathbuf[MAX_PATH];
4318
4319  if (strlen(path) > MAX_PATH - 1) {
4320    errno = ENAMETOOLONG;
4321    return -1;
4322  }
4323  os::native_path(strcpy(pathbuf, path));
4324  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4325}
4326
4327FILE* os::open(int fd, const char* mode) {
4328  return ::_fdopen(fd, mode);
4329}
4330
4331// Is a (classpath) directory empty?
4332bool os::dir_is_empty(const char* path) {
4333  WIN32_FIND_DATA fd;
4334  HANDLE f = FindFirstFile(path, &fd);
4335  if (f == INVALID_HANDLE_VALUE) {
4336    return true;
4337  }
4338  FindClose(f);
4339  return false;
4340}
4341
4342// create binary file, rewriting existing file if required
4343int os::create_binary_file(const char* path, bool rewrite_existing) {
4344  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4345  if (!rewrite_existing) {
4346    oflags |= _O_EXCL;
4347  }
4348  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4349}
4350
4351// return current position of file pointer
4352jlong os::current_file_offset(int fd) {
4353  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4354}
4355
4356// move file pointer to the specified offset
4357jlong os::seek_to_file_offset(int fd, jlong offset) {
4358  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4359}
4360
4361
4362jlong os::lseek(int fd, jlong offset, int whence) {
4363  return (jlong) ::_lseeki64(fd, offset, whence);
4364}
4365
4366size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4367  OVERLAPPED ov;
4368  DWORD nread;
4369  BOOL result;
4370
4371  ZeroMemory(&ov, sizeof(ov));
4372  ov.Offset = (DWORD)offset;
4373  ov.OffsetHigh = (DWORD)(offset >> 32);
4374
4375  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4376
4377  result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4378
4379  return result ? nread : 0;
4380}
4381
4382
4383// This method is a slightly reworked copy of JDK's sysNativePath
4384// from src/windows/hpi/src/path_md.c
4385
4386// Convert a pathname to native format.  On win32, this involves forcing all
4387// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4388// sometimes rejects '/') and removing redundant separators.  The input path is
4389// assumed to have been converted into the character encoding used by the local
4390// system.  Because this might be a double-byte encoding, care is taken to
4391// treat double-byte lead characters correctly.
4392//
4393// This procedure modifies the given path in place, as the result is never
4394// longer than the original.  There is no error return; this operation always
4395// succeeds.
4396char * os::native_path(char *path) {
4397  char *src = path, *dst = path, *end = path;
4398  char *colon = NULL;  // If a drive specifier is found, this will
4399                       // point to the colon following the drive letter
4400
4401  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4402  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4403          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4404
4405  // Check for leading separators
4406#define isfilesep(c) ((c) == '/' || (c) == '\\')
4407  while (isfilesep(*src)) {
4408    src++;
4409  }
4410
4411  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4412    // Remove leading separators if followed by drive specifier.  This
4413    // hack is necessary to support file URLs containing drive
4414    // specifiers (e.g., "file://c:/path").  As a side effect,
4415    // "/c:/path" can be used as an alternative to "c:/path".
4416    *dst++ = *src++;
4417    colon = dst;
4418    *dst++ = ':';
4419    src++;
4420  } else {
4421    src = path;
4422    if (isfilesep(src[0]) && isfilesep(src[1])) {
4423      // UNC pathname: Retain first separator; leave src pointed at
4424      // second separator so that further separators will be collapsed
4425      // into the second separator.  The result will be a pathname
4426      // beginning with "\\\\" followed (most likely) by a host name.
4427      src = dst = path + 1;
4428      path[0] = '\\';     // Force first separator to '\\'
4429    }
4430  }
4431
4432  end = dst;
4433
4434  // Remove redundant separators from remainder of path, forcing all
4435  // separators to be '\\' rather than '/'. Also, single byte space
4436  // characters are removed from the end of the path because those
4437  // are not legal ending characters on this operating system.
4438  //
4439  while (*src != '\0') {
4440    if (isfilesep(*src)) {
4441      *dst++ = '\\'; src++;
4442      while (isfilesep(*src)) src++;
4443      if (*src == '\0') {
4444        // Check for trailing separator
4445        end = dst;
4446        if (colon == dst - 2) break;  // "z:\\"
4447        if (dst == path + 1) break;   // "\\"
4448        if (dst == path + 2 && isfilesep(path[0])) {
4449          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4450          // beginning of a UNC pathname.  Even though it is not, by
4451          // itself, a valid UNC pathname, we leave it as is in order
4452          // to be consistent with the path canonicalizer as well
4453          // as the win32 APIs, which treat this case as an invalid
4454          // UNC pathname rather than as an alias for the root
4455          // directory of the current drive.
4456          break;
4457        }
4458        end = --dst;  // Path does not denote a root directory, so
4459                      // remove trailing separator
4460        break;
4461      }
4462      end = dst;
4463    } else {
4464      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4465        *dst++ = *src++;
4466        if (*src) *dst++ = *src++;
4467        end = dst;
4468      } else {  // Copy a single-byte character
4469        char c = *src++;
4470        *dst++ = c;
4471        // Space is not a legal ending character
4472        if (c != ' ') end = dst;
4473      }
4474    }
4475  }
4476
4477  *end = '\0';
4478
4479  // For "z:", add "." to work around a bug in the C runtime library
4480  if (colon == dst - 1) {
4481    path[2] = '.';
4482    path[3] = '\0';
4483  }
4484
4485  return path;
4486}
4487
4488// This code is a copy of JDK's sysSetLength
4489// from src/windows/hpi/src/sys_api_md.c
4490
4491int os::ftruncate(int fd, jlong length) {
4492  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4493  long high = (long)(length >> 32);
4494  DWORD ret;
4495
4496  if (h == (HANDLE)(-1)) {
4497    return -1;
4498  }
4499
4500  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4501  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4502    return -1;
4503  }
4504
4505  if (::SetEndOfFile(h) == FALSE) {
4506    return -1;
4507  }
4508
4509  return 0;
4510}
4511
4512
4513// This code is a copy of JDK's sysSync
4514// from src/windows/hpi/src/sys_api_md.c
4515// except for the legacy workaround for a bug in Win 98
4516
4517int os::fsync(int fd) {
4518  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4519
4520  if ((!::FlushFileBuffers(handle)) &&
4521      (GetLastError() != ERROR_ACCESS_DENIED)) {
4522    // from winerror.h
4523    return -1;
4524  }
4525  return 0;
4526}
4527
4528static int nonSeekAvailable(int, long *);
4529static int stdinAvailable(int, long *);
4530
4531#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4532#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4533
4534// This code is a copy of JDK's sysAvailable
4535// from src/windows/hpi/src/sys_api_md.c
4536
4537int os::available(int fd, jlong *bytes) {
4538  jlong cur, end;
4539  struct _stati64 stbuf64;
4540
4541  if (::_fstati64(fd, &stbuf64) >= 0) {
4542    int mode = stbuf64.st_mode;
4543    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4544      int ret;
4545      long lpbytes;
4546      if (fd == 0) {
4547        ret = stdinAvailable(fd, &lpbytes);
4548      } else {
4549        ret = nonSeekAvailable(fd, &lpbytes);
4550      }
4551      (*bytes) = (jlong)(lpbytes);
4552      return ret;
4553    }
4554    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4555      return FALSE;
4556    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4557      return FALSE;
4558    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4559      return FALSE;
4560    }
4561    *bytes = end - cur;
4562    return TRUE;
4563  } else {
4564    return FALSE;
4565  }
4566}
4567
4568// This code is a copy of JDK's nonSeekAvailable
4569// from src/windows/hpi/src/sys_api_md.c
4570
4571static int nonSeekAvailable(int fd, long *pbytes) {
4572  // This is used for available on non-seekable devices
4573  // (like both named and anonymous pipes, such as pipes
4574  //  connected to an exec'd process).
4575  // Standard Input is a special case.
4576  HANDLE han;
4577
4578  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4579    return FALSE;
4580  }
4581
4582  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4583    // PeekNamedPipe fails when at EOF.  In that case we
4584    // simply make *pbytes = 0 which is consistent with the
4585    // behavior we get on Solaris when an fd is at EOF.
4586    // The only alternative is to raise an Exception,
4587    // which isn't really warranted.
4588    //
4589    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4590      return FALSE;
4591    }
4592    *pbytes = 0;
4593  }
4594  return TRUE;
4595}
4596
4597#define MAX_INPUT_EVENTS 2000
4598
4599// This code is a copy of JDK's stdinAvailable
4600// from src/windows/hpi/src/sys_api_md.c
4601
4602static int stdinAvailable(int fd, long *pbytes) {
4603  HANDLE han;
4604  DWORD numEventsRead = 0;  // Number of events read from buffer
4605  DWORD numEvents = 0;      // Number of events in buffer
4606  DWORD i = 0;              // Loop index
4607  DWORD curLength = 0;      // Position marker
4608  DWORD actualLength = 0;   // Number of bytes readable
4609  BOOL error = FALSE;       // Error holder
4610  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4611
4612  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4613    return FALSE;
4614  }
4615
4616  // Construct an array of input records in the console buffer
4617  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4618  if (error == 0) {
4619    return nonSeekAvailable(fd, pbytes);
4620  }
4621
4622  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4623  if (numEvents > MAX_INPUT_EVENTS) {
4624    numEvents = MAX_INPUT_EVENTS;
4625  }
4626
4627  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4628  if (lpBuffer == NULL) {
4629    return FALSE;
4630  }
4631
4632  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4633  if (error == 0) {
4634    os::free(lpBuffer, mtInternal);
4635    return FALSE;
4636  }
4637
4638  // Examine input records for the number of bytes available
4639  for (i=0; i<numEvents; i++) {
4640    if (lpBuffer[i].EventType == KEY_EVENT) {
4641
4642      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4643                                      &(lpBuffer[i].Event);
4644      if (keyRecord->bKeyDown == TRUE) {
4645        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4646        curLength++;
4647        if (*keyPressed == '\r') {
4648          actualLength = curLength;
4649        }
4650      }
4651    }
4652  }
4653
4654  if (lpBuffer != NULL) {
4655    os::free(lpBuffer, mtInternal);
4656  }
4657
4658  *pbytes = (long) actualLength;
4659  return TRUE;
4660}
4661
4662// Map a block of memory.
4663char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4664                        char *addr, size_t bytes, bool read_only,
4665                        bool allow_exec) {
4666  HANDLE hFile;
4667  char* base;
4668
4669  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4670                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4671  if (hFile == NULL) {
4672    if (PrintMiscellaneous && Verbose) {
4673      DWORD err = GetLastError();
4674      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4675    }
4676    return NULL;
4677  }
4678
4679  if (allow_exec) {
4680    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4681    // unless it comes from a PE image (which the shared archive is not.)
4682    // Even VirtualProtect refuses to give execute access to mapped memory
4683    // that was not previously executable.
4684    //
4685    // Instead, stick the executable region in anonymous memory.  Yuck.
4686    // Penalty is that ~4 pages will not be shareable - in the future
4687    // we might consider DLLizing the shared archive with a proper PE
4688    // header so that mapping executable + sharing is possible.
4689
4690    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4691                                PAGE_READWRITE);
4692    if (base == NULL) {
4693      if (PrintMiscellaneous && Verbose) {
4694        DWORD err = GetLastError();
4695        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4696      }
4697      CloseHandle(hFile);
4698      return NULL;
4699    }
4700
4701    DWORD bytes_read;
4702    OVERLAPPED overlapped;
4703    overlapped.Offset = (DWORD)file_offset;
4704    overlapped.OffsetHigh = 0;
4705    overlapped.hEvent = NULL;
4706    // ReadFile guarantees that if the return value is true, the requested
4707    // number of bytes were read before returning.
4708    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4709    if (!res) {
4710      if (PrintMiscellaneous && Verbose) {
4711        DWORD err = GetLastError();
4712        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4713      }
4714      release_memory(base, bytes);
4715      CloseHandle(hFile);
4716      return NULL;
4717    }
4718  } else {
4719    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4720                                    NULL /* file_name */);
4721    if (hMap == NULL) {
4722      if (PrintMiscellaneous && Verbose) {
4723        DWORD err = GetLastError();
4724        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4725      }
4726      CloseHandle(hFile);
4727      return NULL;
4728    }
4729
4730    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4731    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4732                                  (DWORD)bytes, addr);
4733    if (base == NULL) {
4734      if (PrintMiscellaneous && Verbose) {
4735        DWORD err = GetLastError();
4736        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4737      }
4738      CloseHandle(hMap);
4739      CloseHandle(hFile);
4740      return NULL;
4741    }
4742
4743    if (CloseHandle(hMap) == 0) {
4744      if (PrintMiscellaneous && Verbose) {
4745        DWORD err = GetLastError();
4746        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4747      }
4748      CloseHandle(hFile);
4749      return base;
4750    }
4751  }
4752
4753  if (allow_exec) {
4754    DWORD old_protect;
4755    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4756    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4757
4758    if (!res) {
4759      if (PrintMiscellaneous && Verbose) {
4760        DWORD err = GetLastError();
4761        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4762      }
4763      // Don't consider this a hard error, on IA32 even if the
4764      // VirtualProtect fails, we should still be able to execute
4765      CloseHandle(hFile);
4766      return base;
4767    }
4768  }
4769
4770  if (CloseHandle(hFile) == 0) {
4771    if (PrintMiscellaneous && Verbose) {
4772      DWORD err = GetLastError();
4773      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4774    }
4775    return base;
4776  }
4777
4778  return base;
4779}
4780
4781
4782// Remap a block of memory.
4783char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4784                          char *addr, size_t bytes, bool read_only,
4785                          bool allow_exec) {
4786  // This OS does not allow existing memory maps to be remapped so we
4787  // have to unmap the memory before we remap it.
4788  if (!os::unmap_memory(addr, bytes)) {
4789    return NULL;
4790  }
4791
4792  // There is a very small theoretical window between the unmap_memory()
4793  // call above and the map_memory() call below where a thread in native
4794  // code may be able to access an address that is no longer mapped.
4795
4796  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4797                        read_only, allow_exec);
4798}
4799
4800
4801// Unmap a block of memory.
4802// Returns true=success, otherwise false.
4803
4804bool os::pd_unmap_memory(char* addr, size_t bytes) {
4805  BOOL result = UnmapViewOfFile(addr);
4806  if (result == 0) {
4807    if (PrintMiscellaneous && Verbose) {
4808      DWORD err = GetLastError();
4809      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4810    }
4811    return false;
4812  }
4813  return true;
4814}
4815
4816void os::pause() {
4817  char filename[MAX_PATH];
4818  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4819    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4820  } else {
4821    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4822  }
4823
4824  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4825  if (fd != -1) {
4826    struct stat buf;
4827    ::close(fd);
4828    while (::stat(filename, &buf) == 0) {
4829      Sleep(100);
4830    }
4831  } else {
4832    jio_fprintf(stderr,
4833                "Could not open pause file '%s', continuing immediately.\n", filename);
4834  }
4835}
4836
4837os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4838  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4839}
4840
4841// See the caveats for this class in os_windows.hpp
4842// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4843// into this method and returns false. If no OS EXCEPTION was raised, returns
4844// true.
4845// The callback is supposed to provide the method that should be protected.
4846//
4847bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4848  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4849  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4850         "crash_protection already set?");
4851
4852  bool success = true;
4853  __try {
4854    WatcherThread::watcher_thread()->set_crash_protection(this);
4855    cb.call();
4856  } __except(EXCEPTION_EXECUTE_HANDLER) {
4857    // only for protection, nothing to do
4858    success = false;
4859  }
4860  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4861  return success;
4862}
4863
4864// An Event wraps a win32 "CreateEvent" kernel handle.
4865//
4866// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4867//
4868// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4869//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4870//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4871//     In addition, an unpark() operation might fetch the handle field, but the
4872//     event could recycle between the fetch and the SetEvent() operation.
4873//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4874//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4875//     on an stale but recycled handle would be harmless, but in practice this might
4876//     confuse other non-Sun code, so it's not a viable approach.
4877//
4878// 2:  Once a win32 event handle is associated with an Event, it remains associated
4879//     with the Event.  The event handle is never closed.  This could be construed
4880//     as handle leakage, but only up to the maximum # of threads that have been extant
4881//     at any one time.  This shouldn't be an issue, as windows platforms typically
4882//     permit a process to have hundreds of thousands of open handles.
4883//
4884// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4885//     and release unused handles.
4886//
4887// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4888//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4889//
4890// 5.  Use an RCU-like mechanism (Read-Copy Update).
4891//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4892//
4893// We use (2).
4894//
4895// TODO-FIXME:
4896// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4897// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4898//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4899// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4900//     into a single win32 CreateEvent() handle.
4901//
4902// Assumption:
4903//    Only one parker can exist on an event, which is why we allocate
4904//    them per-thread. Multiple unparkers can coexist.
4905//
4906// _Event transitions in park()
4907//   -1 => -1 : illegal
4908//    1 =>  0 : pass - return immediately
4909//    0 => -1 : block; then set _Event to 0 before returning
4910//
4911// _Event transitions in unpark()
4912//    0 => 1 : just return
4913//    1 => 1 : just return
4914//   -1 => either 0 or 1; must signal target thread
4915//         That is, we can safely transition _Event from -1 to either
4916//         0 or 1.
4917//
4918// _Event serves as a restricted-range semaphore.
4919//   -1 : thread is blocked, i.e. there is a waiter
4920//    0 : neutral: thread is running or ready,
4921//        could have been signaled after a wait started
4922//    1 : signaled - thread is running or ready
4923//
4924// Another possible encoding of _Event would be with
4925// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4926//
4927
4928int os::PlatformEvent::park(jlong Millis) {
4929  // Transitions for _Event:
4930  //   -1 => -1 : illegal
4931  //    1 =>  0 : pass - return immediately
4932  //    0 => -1 : block; then set _Event to 0 before returning
4933
4934  guarantee(_ParkHandle != NULL , "Invariant");
4935  guarantee(Millis > 0          , "Invariant");
4936
4937  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4938  // the initial park() operation.
4939  // Consider: use atomic decrement instead of CAS-loop
4940
4941  int v;
4942  for (;;) {
4943    v = _Event;
4944    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4945  }
4946  guarantee((v == 0) || (v == 1), "invariant");
4947  if (v != 0) return OS_OK;
4948
4949  // Do this the hard way by blocking ...
4950  // TODO: consider a brief spin here, gated on the success of recent
4951  // spin attempts by this thread.
4952  //
4953  // We decompose long timeouts into series of shorter timed waits.
4954  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4955  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4956  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4957  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4958  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4959  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4960  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4961  // for the already waited time.  This policy does not admit any new outcomes.
4962  // In the future, however, we might want to track the accumulated wait time and
4963  // adjust Millis accordingly if we encounter a spurious wakeup.
4964
4965  const int MAXTIMEOUT = 0x10000000;
4966  DWORD rv = WAIT_TIMEOUT;
4967  while (_Event < 0 && Millis > 0) {
4968    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4969    if (Millis > MAXTIMEOUT) {
4970      prd = MAXTIMEOUT;
4971    }
4972    rv = ::WaitForSingleObject(_ParkHandle, prd);
4973    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4974    if (rv == WAIT_TIMEOUT) {
4975      Millis -= prd;
4976    }
4977  }
4978  v = _Event;
4979  _Event = 0;
4980  // see comment at end of os::PlatformEvent::park() below:
4981  OrderAccess::fence();
4982  // If we encounter a nearly simultanous timeout expiry and unpark()
4983  // we return OS_OK indicating we awoke via unpark().
4984  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4985  return (v >= 0) ? OS_OK : OS_TIMEOUT;
4986}
4987
4988void os::PlatformEvent::park() {
4989  // Transitions for _Event:
4990  //   -1 => -1 : illegal
4991  //    1 =>  0 : pass - return immediately
4992  //    0 => -1 : block; then set _Event to 0 before returning
4993
4994  guarantee(_ParkHandle != NULL, "Invariant");
4995  // Invariant: Only the thread associated with the Event/PlatformEvent
4996  // may call park().
4997  // Consider: use atomic decrement instead of CAS-loop
4998  int v;
4999  for (;;) {
5000    v = _Event;
5001    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5002  }
5003  guarantee((v == 0) || (v == 1), "invariant");
5004  if (v != 0) return;
5005
5006  // Do this the hard way by blocking ...
5007  // TODO: consider a brief spin here, gated on the success of recent
5008  // spin attempts by this thread.
5009  while (_Event < 0) {
5010    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5011    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5012  }
5013
5014  // Usually we'll find _Event == 0 at this point, but as
5015  // an optional optimization we clear it, just in case can
5016  // multiple unpark() operations drove _Event up to 1.
5017  _Event = 0;
5018  OrderAccess::fence();
5019  guarantee(_Event >= 0, "invariant");
5020}
5021
5022void os::PlatformEvent::unpark() {
5023  guarantee(_ParkHandle != NULL, "Invariant");
5024
5025  // Transitions for _Event:
5026  //    0 => 1 : just return
5027  //    1 => 1 : just return
5028  //   -1 => either 0 or 1; must signal target thread
5029  //         That is, we can safely transition _Event from -1 to either
5030  //         0 or 1.
5031  // See also: "Semaphores in Plan 9" by Mullender & Cox
5032  //
5033  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5034  // that it will take two back-to-back park() calls for the owning
5035  // thread to block. This has the benefit of forcing a spurious return
5036  // from the first park() call after an unpark() call which will help
5037  // shake out uses of park() and unpark() without condition variables.
5038
5039  if (Atomic::xchg(1, &_Event) >= 0) return;
5040
5041  ::SetEvent(_ParkHandle);
5042}
5043
5044
5045// JSR166
5046// -------------------------------------------------------
5047
5048// The Windows implementation of Park is very straightforward: Basic
5049// operations on Win32 Events turn out to have the right semantics to
5050// use them directly. We opportunistically resuse the event inherited
5051// from Monitor.
5052
5053void Parker::park(bool isAbsolute, jlong time) {
5054  guarantee(_ParkEvent != NULL, "invariant");
5055  // First, demultiplex/decode time arguments
5056  if (time < 0) { // don't wait
5057    return;
5058  } else if (time == 0 && !isAbsolute) {
5059    time = INFINITE;
5060  } else if (isAbsolute) {
5061    time -= os::javaTimeMillis(); // convert to relative time
5062    if (time <= 0) {  // already elapsed
5063      return;
5064    }
5065  } else { // relative
5066    time /= 1000000;  // Must coarsen from nanos to millis
5067    if (time == 0) {  // Wait for the minimal time unit if zero
5068      time = 1;
5069    }
5070  }
5071
5072  JavaThread* thread = (JavaThread*)(Thread::current());
5073  assert(thread->is_Java_thread(), "Must be JavaThread");
5074  JavaThread *jt = (JavaThread *)thread;
5075
5076  // Don't wait if interrupted or already triggered
5077  if (Thread::is_interrupted(thread, false) ||
5078      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5079    ResetEvent(_ParkEvent);
5080    return;
5081  } else {
5082    ThreadBlockInVM tbivm(jt);
5083    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5084    jt->set_suspend_equivalent();
5085
5086    WaitForSingleObject(_ParkEvent, time);
5087    ResetEvent(_ParkEvent);
5088
5089    // If externally suspended while waiting, re-suspend
5090    if (jt->handle_special_suspend_equivalent_condition()) {
5091      jt->java_suspend_self();
5092    }
5093  }
5094}
5095
5096void Parker::unpark() {
5097  guarantee(_ParkEvent != NULL, "invariant");
5098  SetEvent(_ParkEvent);
5099}
5100
5101// Run the specified command in a separate process. Return its exit value,
5102// or -1 on failure (e.g. can't create a new process).
5103int os::fork_and_exec(char* cmd) {
5104  STARTUPINFO si;
5105  PROCESS_INFORMATION pi;
5106
5107  memset(&si, 0, sizeof(si));
5108  si.cb = sizeof(si);
5109  memset(&pi, 0, sizeof(pi));
5110  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5111                            cmd,    // command line
5112                            NULL,   // process security attribute
5113                            NULL,   // thread security attribute
5114                            TRUE,   // inherits system handles
5115                            0,      // no creation flags
5116                            NULL,   // use parent's environment block
5117                            NULL,   // use parent's starting directory
5118                            &si,    // (in) startup information
5119                            &pi);   // (out) process information
5120
5121  if (rslt) {
5122    // Wait until child process exits.
5123    WaitForSingleObject(pi.hProcess, INFINITE);
5124
5125    DWORD exit_code;
5126    GetExitCodeProcess(pi.hProcess, &exit_code);
5127
5128    // Close process and thread handles.
5129    CloseHandle(pi.hProcess);
5130    CloseHandle(pi.hThread);
5131
5132    return (int)exit_code;
5133  } else {
5134    return -1;
5135  }
5136}
5137
5138//--------------------------------------------------------------------------------------------------
5139// Non-product code
5140
5141static int mallocDebugIntervalCounter = 0;
5142static int mallocDebugCounter = 0;
5143bool os::check_heap(bool force) {
5144  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5145  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5146    // Note: HeapValidate executes two hardware breakpoints when it finds something
5147    // wrong; at these points, eax contains the address of the offending block (I think).
5148    // To get to the exlicit error message(s) below, just continue twice.
5149    HANDLE heap = GetProcessHeap();
5150
5151    // If we fail to lock the heap, then gflags.exe has been used
5152    // or some other special heap flag has been set that prevents
5153    // locking. We don't try to walk a heap we can't lock.
5154    if (HeapLock(heap) != 0) {
5155      PROCESS_HEAP_ENTRY phe;
5156      phe.lpData = NULL;
5157      while (HeapWalk(heap, &phe) != 0) {
5158        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5159            !HeapValidate(heap, 0, phe.lpData)) {
5160          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5161          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5162          fatal("corrupted C heap");
5163        }
5164      }
5165      DWORD err = GetLastError();
5166      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5167        fatal(err_msg("heap walk aborted with error %d", err));
5168      }
5169      HeapUnlock(heap);
5170    }
5171    mallocDebugIntervalCounter = 0;
5172  }
5173  return true;
5174}
5175
5176
5177bool os::find(address addr, outputStream* st) {
5178  // Nothing yet
5179  return false;
5180}
5181
5182LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5183  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5184
5185  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5186    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5187    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5188    address addr = (address) exceptionRecord->ExceptionInformation[1];
5189
5190    if (os::is_memory_serialize_page(thread, addr)) {
5191      return EXCEPTION_CONTINUE_EXECUTION;
5192    }
5193  }
5194
5195  return EXCEPTION_CONTINUE_SEARCH;
5196}
5197
5198// We don't build a headless jre for Windows
5199bool os::is_headless_jre() { return false; }
5200
5201static jint initSock() {
5202  WSADATA wsadata;
5203
5204  if (!os::WinSock2Dll::WinSock2Available()) {
5205    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5206                ::GetLastError());
5207    return JNI_ERR;
5208  }
5209
5210  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5211    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5212                ::GetLastError());
5213    return JNI_ERR;
5214  }
5215  return JNI_OK;
5216}
5217
5218struct hostent* os::get_host_by_name(char* name) {
5219  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5220}
5221
5222int os::socket_close(int fd) {
5223  return ::closesocket(fd);
5224}
5225
5226int os::socket(int domain, int type, int protocol) {
5227  return ::socket(domain, type, protocol);
5228}
5229
5230int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5231  return ::connect(fd, him, len);
5232}
5233
5234int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5235  return ::recv(fd, buf, (int)nBytes, flags);
5236}
5237
5238int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5239  return ::send(fd, buf, (int)nBytes, flags);
5240}
5241
5242int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5243  return ::send(fd, buf, (int)nBytes, flags);
5244}
5245
5246// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5247#if defined(IA32)
5248  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5249#elif defined (AMD64)
5250  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5251#endif
5252
5253// returns true if thread could be suspended,
5254// false otherwise
5255static bool do_suspend(HANDLE* h) {
5256  if (h != NULL) {
5257    if (SuspendThread(*h) != ~0) {
5258      return true;
5259    }
5260  }
5261  return false;
5262}
5263
5264// resume the thread
5265// calling resume on an active thread is a no-op
5266static void do_resume(HANDLE* h) {
5267  if (h != NULL) {
5268    ResumeThread(*h);
5269  }
5270}
5271
5272// retrieve a suspend/resume context capable handle
5273// from the tid. Caller validates handle return value.
5274void get_thread_handle_for_extended_context(HANDLE* h,
5275                                            OSThread::thread_id_t tid) {
5276  if (h != NULL) {
5277    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5278  }
5279}
5280
5281// Thread sampling implementation
5282//
5283void os::SuspendedThreadTask::internal_do_task() {
5284  CONTEXT    ctxt;
5285  HANDLE     h = NULL;
5286
5287  // get context capable handle for thread
5288  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5289
5290  // sanity
5291  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5292    return;
5293  }
5294
5295  // suspend the thread
5296  if (do_suspend(&h)) {
5297    ctxt.ContextFlags = sampling_context_flags;
5298    // get thread context
5299    GetThreadContext(h, &ctxt);
5300    SuspendedThreadTaskContext context(_thread, &ctxt);
5301    // pass context to Thread Sampling impl
5302    do_task(context);
5303    // resume thread
5304    do_resume(&h);
5305  }
5306
5307  // close handle
5308  CloseHandle(h);
5309}
5310
5311
5312// Kernel32 API
5313typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5314typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5315typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5316typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5317typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5318
5319GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5320VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5321GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5322GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5323RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5324
5325
5326BOOL                        os::Kernel32Dll::initialized = FALSE;
5327SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5328  assert(initialized && _GetLargePageMinimum != NULL,
5329         "GetLargePageMinimumAvailable() not yet called");
5330  return _GetLargePageMinimum();
5331}
5332
5333BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5334  if (!initialized) {
5335    initialize();
5336  }
5337  return _GetLargePageMinimum != NULL;
5338}
5339
5340BOOL os::Kernel32Dll::NumaCallsAvailable() {
5341  if (!initialized) {
5342    initialize();
5343  }
5344  return _VirtualAllocExNuma != NULL;
5345}
5346
5347LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5348                                           SIZE_T bytes, DWORD flags,
5349                                           DWORD prot, DWORD node) {
5350  assert(initialized && _VirtualAllocExNuma != NULL,
5351         "NUMACallsAvailable() not yet called");
5352
5353  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5354}
5355
5356BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5357  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5358         "NUMACallsAvailable() not yet called");
5359
5360  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5361}
5362
5363BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5364                                               PULONGLONG proc_mask) {
5365  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5366         "NUMACallsAvailable() not yet called");
5367
5368  return _GetNumaNodeProcessorMask(node, proc_mask);
5369}
5370
5371USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5372                                                 ULONG FrameToCapture,
5373                                                 PVOID* BackTrace,
5374                                                 PULONG BackTraceHash) {
5375  if (!initialized) {
5376    initialize();
5377  }
5378
5379  if (_RtlCaptureStackBackTrace != NULL) {
5380    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5381                                     BackTrace, BackTraceHash);
5382  } else {
5383    return 0;
5384  }
5385}
5386
5387void os::Kernel32Dll::initializeCommon() {
5388  if (!initialized) {
5389    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5390    assert(handle != NULL, "Just check");
5391    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5392    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5393    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5394    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5395    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5396    initialized = TRUE;
5397  }
5398}
5399
5400
5401
5402#ifndef JDK6_OR_EARLIER
5403
5404void os::Kernel32Dll::initialize() {
5405  initializeCommon();
5406}
5407
5408
5409// Kernel32 API
5410inline BOOL os::Kernel32Dll::SwitchToThread() {
5411  return ::SwitchToThread();
5412}
5413
5414inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5415  return true;
5416}
5417
5418// Help tools
5419inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5420  return true;
5421}
5422
5423inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5424                                                        DWORD th32ProcessId) {
5425  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5426}
5427
5428inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5429                                           LPMODULEENTRY32 lpme) {
5430  return ::Module32First(hSnapshot, lpme);
5431}
5432
5433inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5434                                          LPMODULEENTRY32 lpme) {
5435  return ::Module32Next(hSnapshot, lpme);
5436}
5437
5438inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5439  ::GetNativeSystemInfo(lpSystemInfo);
5440}
5441
5442// PSAPI API
5443inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5444                                             HMODULE *lpModule, DWORD cb,
5445                                             LPDWORD lpcbNeeded) {
5446  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5447}
5448
5449inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5450                                               HMODULE hModule,
5451                                               LPTSTR lpFilename,
5452                                               DWORD nSize) {
5453  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5454}
5455
5456inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5457                                               HMODULE hModule,
5458                                               LPMODULEINFO lpmodinfo,
5459                                               DWORD cb) {
5460  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5461}
5462
5463inline BOOL os::PSApiDll::PSApiAvailable() {
5464  return true;
5465}
5466
5467
5468// WinSock2 API
5469inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5470                                        LPWSADATA lpWSAData) {
5471  return ::WSAStartup(wVersionRequested, lpWSAData);
5472}
5473
5474inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5475  return ::gethostbyname(name);
5476}
5477
5478inline BOOL os::WinSock2Dll::WinSock2Available() {
5479  return true;
5480}
5481
5482// Advapi API
5483inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5484                                                   BOOL DisableAllPrivileges,
5485                                                   PTOKEN_PRIVILEGES NewState,
5486                                                   DWORD BufferLength,
5487                                                   PTOKEN_PRIVILEGES PreviousState,
5488                                                   PDWORD ReturnLength) {
5489  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5490                                 BufferLength, PreviousState, ReturnLength);
5491}
5492
5493inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5494                                              DWORD DesiredAccess,
5495                                              PHANDLE TokenHandle) {
5496  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5497}
5498
5499inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5500                                                  LPCTSTR lpName,
5501                                                  PLUID lpLuid) {
5502  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5503}
5504
5505inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5506  return true;
5507}
5508
5509void* os::get_default_process_handle() {
5510  return (void*)GetModuleHandle(NULL);
5511}
5512
5513// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5514// which is used to find statically linked in agents.
5515// Additionally for windows, takes into account __stdcall names.
5516// Parameters:
5517//            sym_name: Symbol in library we are looking for
5518//            lib_name: Name of library to look in, NULL for shared libs.
5519//            is_absolute_path == true if lib_name is absolute path to agent
5520//                                     such as "C:/a/b/L.dll"
5521//            == false if only the base name of the library is passed in
5522//               such as "L"
5523char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5524                                    bool is_absolute_path) {
5525  char *agent_entry_name;
5526  size_t len;
5527  size_t name_len;
5528  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5529  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5530  const char *start;
5531
5532  if (lib_name != NULL) {
5533    len = name_len = strlen(lib_name);
5534    if (is_absolute_path) {
5535      // Need to strip path, prefix and suffix
5536      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5537        lib_name = ++start;
5538      } else {
5539        // Need to check for drive prefix
5540        if ((start = strchr(lib_name, ':')) != NULL) {
5541          lib_name = ++start;
5542        }
5543      }
5544      if (len <= (prefix_len + suffix_len)) {
5545        return NULL;
5546      }
5547      lib_name += prefix_len;
5548      name_len = strlen(lib_name) - suffix_len;
5549    }
5550  }
5551  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5552  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5553  if (agent_entry_name == NULL) {
5554    return NULL;
5555  }
5556  if (lib_name != NULL) {
5557    const char *p = strrchr(sym_name, '@');
5558    if (p != NULL && p != sym_name) {
5559      // sym_name == _Agent_OnLoad@XX
5560      strncpy(agent_entry_name, sym_name, (p - sym_name));
5561      agent_entry_name[(p-sym_name)] = '\0';
5562      // agent_entry_name == _Agent_OnLoad
5563      strcat(agent_entry_name, "_");
5564      strncat(agent_entry_name, lib_name, name_len);
5565      strcat(agent_entry_name, p);
5566      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5567    } else {
5568      strcpy(agent_entry_name, sym_name);
5569      strcat(agent_entry_name, "_");
5570      strncat(agent_entry_name, lib_name, name_len);
5571    }
5572  } else {
5573    strcpy(agent_entry_name, sym_name);
5574  }
5575  return agent_entry_name;
5576}
5577
5578#else
5579// Kernel32 API
5580typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5581typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5582typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5583typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5584typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5585
5586SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5587CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5588Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5589Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5590GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5591
5592void os::Kernel32Dll::initialize() {
5593  if (!initialized) {
5594    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5595    assert(handle != NULL, "Just check");
5596
5597    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5598    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5599      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5600    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5601    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5602    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5603    initializeCommon();  // resolve the functions that always need resolving
5604
5605    initialized = TRUE;
5606  }
5607}
5608
5609BOOL os::Kernel32Dll::SwitchToThread() {
5610  assert(initialized && _SwitchToThread != NULL,
5611         "SwitchToThreadAvailable() not yet called");
5612  return _SwitchToThread();
5613}
5614
5615
5616BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5617  if (!initialized) {
5618    initialize();
5619  }
5620  return _SwitchToThread != NULL;
5621}
5622
5623// Help tools
5624BOOL os::Kernel32Dll::HelpToolsAvailable() {
5625  if (!initialized) {
5626    initialize();
5627  }
5628  return _CreateToolhelp32Snapshot != NULL &&
5629         _Module32First != NULL &&
5630         _Module32Next != NULL;
5631}
5632
5633HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5634                                                 DWORD th32ProcessId) {
5635  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5636         "HelpToolsAvailable() not yet called");
5637
5638  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5639}
5640
5641BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5642  assert(initialized && _Module32First != NULL,
5643         "HelpToolsAvailable() not yet called");
5644
5645  return _Module32First(hSnapshot, lpme);
5646}
5647
5648inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5649                                          LPMODULEENTRY32 lpme) {
5650  assert(initialized && _Module32Next != NULL,
5651         "HelpToolsAvailable() not yet called");
5652
5653  return _Module32Next(hSnapshot, lpme);
5654}
5655
5656
5657BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5658  if (!initialized) {
5659    initialize();
5660  }
5661  return _GetNativeSystemInfo != NULL;
5662}
5663
5664void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5665  assert(initialized && _GetNativeSystemInfo != NULL,
5666         "GetNativeSystemInfoAvailable() not yet called");
5667
5668  _GetNativeSystemInfo(lpSystemInfo);
5669}
5670
5671// PSAPI API
5672
5673
5674typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5675typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5676typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5677
5678EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5679GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5680GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5681BOOL                    os::PSApiDll::initialized = FALSE;
5682
5683void os::PSApiDll::initialize() {
5684  if (!initialized) {
5685    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5686    if (handle != NULL) {
5687      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5688                                                                    "EnumProcessModules");
5689      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5690                                                                      "GetModuleFileNameExA");
5691      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5692                                                                        "GetModuleInformation");
5693    }
5694    initialized = TRUE;
5695  }
5696}
5697
5698
5699
5700BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5701                                      DWORD cb, LPDWORD lpcbNeeded) {
5702  assert(initialized && _EnumProcessModules != NULL,
5703         "PSApiAvailable() not yet called");
5704  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5705}
5706
5707DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5708                                        LPTSTR lpFilename, DWORD nSize) {
5709  assert(initialized && _GetModuleFileNameEx != NULL,
5710         "PSApiAvailable() not yet called");
5711  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5712}
5713
5714BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5715                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5716  assert(initialized && _GetModuleInformation != NULL,
5717         "PSApiAvailable() not yet called");
5718  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5719}
5720
5721BOOL os::PSApiDll::PSApiAvailable() {
5722  if (!initialized) {
5723    initialize();
5724  }
5725  return _EnumProcessModules != NULL &&
5726    _GetModuleFileNameEx != NULL &&
5727    _GetModuleInformation != NULL;
5728}
5729
5730
5731// WinSock2 API
5732typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5733typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5734
5735WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5736gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5737BOOL             os::WinSock2Dll::initialized = FALSE;
5738
5739void os::WinSock2Dll::initialize() {
5740  if (!initialized) {
5741    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5742    if (handle != NULL) {
5743      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5744      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5745    }
5746    initialized = TRUE;
5747  }
5748}
5749
5750
5751BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5752  assert(initialized && _WSAStartup != NULL,
5753         "WinSock2Available() not yet called");
5754  return _WSAStartup(wVersionRequested, lpWSAData);
5755}
5756
5757struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5758  assert(initialized && _gethostbyname != NULL,
5759         "WinSock2Available() not yet called");
5760  return _gethostbyname(name);
5761}
5762
5763BOOL os::WinSock2Dll::WinSock2Available() {
5764  if (!initialized) {
5765    initialize();
5766  }
5767  return _WSAStartup != NULL &&
5768    _gethostbyname != NULL;
5769}
5770
5771typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5772typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5773typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5774
5775AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5776OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5777LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5778BOOL                     os::Advapi32Dll::initialized = FALSE;
5779
5780void os::Advapi32Dll::initialize() {
5781  if (!initialized) {
5782    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5783    if (handle != NULL) {
5784      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5785                                                                          "AdjustTokenPrivileges");
5786      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5787                                                                "OpenProcessToken");
5788      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5789                                                                        "LookupPrivilegeValueA");
5790    }
5791    initialized = TRUE;
5792  }
5793}
5794
5795BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5796                                            BOOL DisableAllPrivileges,
5797                                            PTOKEN_PRIVILEGES NewState,
5798                                            DWORD BufferLength,
5799                                            PTOKEN_PRIVILEGES PreviousState,
5800                                            PDWORD ReturnLength) {
5801  assert(initialized && _AdjustTokenPrivileges != NULL,
5802         "AdvapiAvailable() not yet called");
5803  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5804                                BufferLength, PreviousState, ReturnLength);
5805}
5806
5807BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5808                                       DWORD DesiredAccess,
5809                                       PHANDLE TokenHandle) {
5810  assert(initialized && _OpenProcessToken != NULL,
5811         "AdvapiAvailable() not yet called");
5812  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5813}
5814
5815BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5816                                           LPCTSTR lpName, PLUID lpLuid) {
5817  assert(initialized && _LookupPrivilegeValue != NULL,
5818         "AdvapiAvailable() not yet called");
5819  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5820}
5821
5822BOOL os::Advapi32Dll::AdvapiAvailable() {
5823  if (!initialized) {
5824    initialize();
5825  }
5826  return _AdjustTokenPrivileges != NULL &&
5827    _OpenProcessToken != NULL &&
5828    _LookupPrivilegeValue != NULL;
5829}
5830
5831#endif
5832
5833#ifndef PRODUCT
5834
5835// test the code path in reserve_memory_special() that tries to allocate memory in a single
5836// contiguous memory block at a particular address.
5837// The test first tries to find a good approximate address to allocate at by using the same
5838// method to allocate some memory at any address. The test then tries to allocate memory in
5839// the vicinity (not directly after it to avoid possible by-chance use of that location)
5840// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5841// the previously allocated memory is available for allocation. The only actual failure
5842// that is reported is when the test tries to allocate at a particular location but gets a
5843// different valid one. A NULL return value at this point is not considered an error but may
5844// be legitimate.
5845// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5846void TestReserveMemorySpecial_test() {
5847  if (!UseLargePages) {
5848    if (VerboseInternalVMTests) {
5849      gclog_or_tty->print("Skipping test because large pages are disabled");
5850    }
5851    return;
5852  }
5853  // save current value of globals
5854  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5855  bool old_use_numa_interleaving = UseNUMAInterleaving;
5856
5857  // set globals to make sure we hit the correct code path
5858  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5859
5860  // do an allocation at an address selected by the OS to get a good one.
5861  const size_t large_allocation_size = os::large_page_size() * 4;
5862  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5863  if (result == NULL) {
5864    if (VerboseInternalVMTests) {
5865      gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5866                          large_allocation_size);
5867    }
5868  } else {
5869    os::release_memory_special(result, large_allocation_size);
5870
5871    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5872    // we managed to get it once.
5873    const size_t expected_allocation_size = os::large_page_size();
5874    char* expected_location = result + os::large_page_size();
5875    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5876    if (actual_location == NULL) {
5877      if (VerboseInternalVMTests) {
5878        gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5879                            expected_location, large_allocation_size);
5880      }
5881    } else {
5882      // release memory
5883      os::release_memory_special(actual_location, expected_allocation_size);
5884      // only now check, after releasing any memory to avoid any leaks.
5885      assert(actual_location == expected_location,
5886             err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5887             expected_location, expected_allocation_size, actual_location));
5888    }
5889  }
5890
5891  // restore globals
5892  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5893  UseNUMAInterleaving = old_use_numa_interleaving;
5894}
5895#endif // PRODUCT
5896
5897