os_windows.cpp revision 7334:24d57d9d65af
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "services/attachListener.hpp"
67#include "services/memTracker.hpp"
68#include "services/runtimeService.hpp"
69#include "utilities/decoder.hpp"
70#include "utilities/defaultStream.hpp"
71#include "utilities/events.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/vmError.hpp"
74
75#ifdef _DEBUG
76#include <crtdbg.h>
77#endif
78
79
80#include <windows.h>
81#include <sys/types.h>
82#include <sys/stat.h>
83#include <sys/timeb.h>
84#include <objidl.h>
85#include <shlobj.h>
86
87#include <malloc.h>
88#include <signal.h>
89#include <direct.h>
90#include <errno.h>
91#include <fcntl.h>
92#include <io.h>
93#include <process.h>              // For _beginthreadex(), _endthreadex()
94#include <imagehlp.h>             // For os::dll_address_to_function_name
95// for enumerating dll libraries
96#include <vdmdbg.h>
97
98// for timer info max values which include all bits
99#define ALL_64_BITS CONST64(-1)
100
101// For DLL loading/load error detection
102// Values of PE COFF
103#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
104#define IMAGE_FILE_SIGNATURE_LENGTH 4
105
106static HANDLE main_process;
107static HANDLE main_thread;
108static int    main_thread_id;
109
110static FILETIME process_creation_time;
111static FILETIME process_exit_time;
112static FILETIME process_user_time;
113static FILETIME process_kernel_time;
114
115#ifdef _M_IA64
116  #define __CPU__ ia64
117#elif _M_AMD64
118  #define __CPU__ amd64
119#else
120  #define __CPU__ i486
121#endif
122
123// save DLL module handle, used by GetModuleFileName
124
125HINSTANCE vm_lib_handle;
126
127BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
128  switch (reason) {
129  case DLL_PROCESS_ATTACH:
130    vm_lib_handle = hinst;
131    if (ForceTimeHighResolution) {
132      timeBeginPeriod(1L);
133    }
134    break;
135  case DLL_PROCESS_DETACH:
136    if (ForceTimeHighResolution) {
137      timeEndPeriod(1L);
138    }
139    break;
140  default:
141    break;
142  }
143  return true;
144}
145
146static inline double fileTimeAsDouble(FILETIME* time) {
147  const double high  = (double) ((unsigned int) ~0);
148  const double split = 10000000.0;
149  double result = (time->dwLowDateTime / split) +
150                   time->dwHighDateTime * (high/split);
151  return result;
152}
153
154// Implementation of os
155
156bool os::getenv(const char* name, char* buffer, int len) {
157  int result = GetEnvironmentVariable(name, buffer, len);
158  return result > 0 && result < len;
159}
160
161bool os::unsetenv(const char* name) {
162  assert(name != NULL, "Null pointer");
163  return (SetEnvironmentVariable(name, NULL) == TRUE);
164}
165
166// No setuid programs under Windows.
167bool os::have_special_privileges() {
168  return false;
169}
170
171
172// This method is  a periodic task to check for misbehaving JNI applications
173// under CheckJNI, we can add any periodic checks here.
174// For Windows at the moment does nothing
175void os::run_periodic_checks() {
176  return;
177}
178
179// previous UnhandledExceptionFilter, if there is one
180static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
181
182LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
183
184void os::init_system_properties_values() {
185  // sysclasspath, java_home, dll_dir
186  {
187    char *home_path;
188    char *dll_path;
189    char *pslash;
190    char *bin = "\\bin";
191    char home_dir[MAX_PATH];
192
193    if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
194      os::jvm_path(home_dir, sizeof(home_dir));
195      // Found the full path to jvm.dll.
196      // Now cut the path to <java_home>/jre if we can.
197      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
198      pslash = strrchr(home_dir, '\\');
199      if (pslash != NULL) {
200        *pslash = '\0';                   // get rid of \{client|server}
201        pslash = strrchr(home_dir, '\\');
202        if (pslash != NULL) {
203          *pslash = '\0';                 // get rid of \bin
204        }
205      }
206    }
207
208    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
209    if (home_path == NULL) {
210      return;
211    }
212    strcpy(home_path, home_dir);
213    Arguments::set_java_home(home_path);
214    FREE_C_HEAP_ARRAY(char, home_path, mtInternal);
215
216    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
217                                mtInternal);
218    if (dll_path == NULL) {
219      return;
220    }
221    strcpy(dll_path, home_dir);
222    strcat(dll_path, bin);
223    Arguments::set_dll_dir(dll_path);
224    FREE_C_HEAP_ARRAY(char, dll_path, mtInternal);
225
226    if (!set_boot_path('\\', ';')) {
227      return;
228    }
229  }
230
231// library_path
232#define EXT_DIR "\\lib\\ext"
233#define BIN_DIR "\\bin"
234#define PACKAGE_DIR "\\Sun\\Java"
235  {
236    // Win32 library search order (See the documentation for LoadLibrary):
237    //
238    // 1. The directory from which application is loaded.
239    // 2. The system wide Java Extensions directory (Java only)
240    // 3. System directory (GetSystemDirectory)
241    // 4. Windows directory (GetWindowsDirectory)
242    // 5. The PATH environment variable
243    // 6. The current directory
244
245    char *library_path;
246    char tmp[MAX_PATH];
247    char *path_str = ::getenv("PATH");
248
249    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
250                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
251
252    library_path[0] = '\0';
253
254    GetModuleFileName(NULL, tmp, sizeof(tmp));
255    *(strrchr(tmp, '\\')) = '\0';
256    strcat(library_path, tmp);
257
258    GetWindowsDirectory(tmp, sizeof(tmp));
259    strcat(library_path, ";");
260    strcat(library_path, tmp);
261    strcat(library_path, PACKAGE_DIR BIN_DIR);
262
263    GetSystemDirectory(tmp, sizeof(tmp));
264    strcat(library_path, ";");
265    strcat(library_path, tmp);
266
267    GetWindowsDirectory(tmp, sizeof(tmp));
268    strcat(library_path, ";");
269    strcat(library_path, tmp);
270
271    if (path_str) {
272      strcat(library_path, ";");
273      strcat(library_path, path_str);
274    }
275
276    strcat(library_path, ";.");
277
278    Arguments::set_library_path(library_path);
279    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
280  }
281
282  // Default extensions directory
283  {
284    char path[MAX_PATH];
285    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
286    GetWindowsDirectory(path, MAX_PATH);
287    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
288            path, PACKAGE_DIR, EXT_DIR);
289    Arguments::set_ext_dirs(buf);
290  }
291  #undef EXT_DIR
292  #undef BIN_DIR
293  #undef PACKAGE_DIR
294
295  // Default endorsed standards directory.
296  {
297#define ENDORSED_DIR "\\lib\\endorsed"
298    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
299    char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
300    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
301    Arguments::set_endorsed_dirs(buf);
302    // (Arguments::set_endorsed_dirs() calls SystemProperty::set_value(), which
303    //  duplicates the input.)
304    FREE_C_HEAP_ARRAY(char, buf, mtInternal);
305#undef ENDORSED_DIR
306  }
307
308#ifndef _WIN64
309  // set our UnhandledExceptionFilter and save any previous one
310  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
311#endif
312
313  // Done
314  return;
315}
316
317void os::breakpoint() {
318  DebugBreak();
319}
320
321// Invoked from the BREAKPOINT Macro
322extern "C" void breakpoint() {
323  os::breakpoint();
324}
325
326// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
327// So far, this method is only used by Native Memory Tracking, which is
328// only supported on Windows XP or later.
329//
330int os::get_native_stack(address* stack, int frames, int toSkip) {
331#ifdef _NMT_NOINLINE_
332  toSkip++;
333#endif
334  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
335                                                       (PVOID*)stack, NULL);
336  for (int index = captured; index < frames; index ++) {
337    stack[index] = NULL;
338  }
339  return captured;
340}
341
342
343// os::current_stack_base()
344//
345//   Returns the base of the stack, which is the stack's
346//   starting address.  This function must be called
347//   while running on the stack of the thread being queried.
348
349address os::current_stack_base() {
350  MEMORY_BASIC_INFORMATION minfo;
351  address stack_bottom;
352  size_t stack_size;
353
354  VirtualQuery(&minfo, &minfo, sizeof(minfo));
355  stack_bottom =  (address)minfo.AllocationBase;
356  stack_size = minfo.RegionSize;
357
358  // Add up the sizes of all the regions with the same
359  // AllocationBase.
360  while (1) {
361    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
362    if (stack_bottom == (address)minfo.AllocationBase) {
363      stack_size += minfo.RegionSize;
364    } else {
365      break;
366    }
367  }
368
369#ifdef _M_IA64
370  // IA64 has memory and register stacks
371  //
372  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
373  // at thread creation (1MB backing store growing upwards, 1MB memory stack
374  // growing downwards, 2MB summed up)
375  //
376  // ...
377  // ------- top of stack (high address) -----
378  // |
379  // |      1MB
380  // |      Backing Store (Register Stack)
381  // |
382  // |         / \
383  // |          |
384  // |          |
385  // |          |
386  // ------------------------ stack base -----
387  // |      1MB
388  // |      Memory Stack
389  // |
390  // |          |
391  // |          |
392  // |          |
393  // |         \ /
394  // |
395  // ----- bottom of stack (low address) -----
396  // ...
397
398  stack_size = stack_size / 2;
399#endif
400  return stack_bottom + stack_size;
401}
402
403size_t os::current_stack_size() {
404  size_t sz;
405  MEMORY_BASIC_INFORMATION minfo;
406  VirtualQuery(&minfo, &minfo, sizeof(minfo));
407  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
408  return sz;
409}
410
411struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
412  const struct tm* time_struct_ptr = localtime(clock);
413  if (time_struct_ptr != NULL) {
414    *res = *time_struct_ptr;
415    return res;
416  }
417  return NULL;
418}
419
420LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
421
422// Thread start routine for all new Java threads
423static unsigned __stdcall java_start(Thread* thread) {
424  // Try to randomize the cache line index of hot stack frames.
425  // This helps when threads of the same stack traces evict each other's
426  // cache lines. The threads can be either from the same JVM instance, or
427  // from different JVM instances. The benefit is especially true for
428  // processors with hyperthreading technology.
429  static int counter = 0;
430  int pid = os::current_process_id();
431  _alloca(((pid ^ counter++) & 7) * 128);
432
433  OSThread* osthr = thread->osthread();
434  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
435
436  if (UseNUMA) {
437    int lgrp_id = os::numa_get_group_id();
438    if (lgrp_id != -1) {
439      thread->set_lgrp_id(lgrp_id);
440    }
441  }
442
443  // Diagnostic code to investigate JDK-6573254
444  int res = 50115;  // non-java thread
445  if (thread->is_Java_thread()) {
446    res = 40115;    // java thread
447  }
448
449  // Install a win32 structured exception handler around every thread created
450  // by VM, so VM can generate error dump when an exception occurred in non-
451  // Java thread (e.g. VM thread).
452  __try {
453    thread->run();
454  } __except(topLevelExceptionFilter(
455                                     (_EXCEPTION_POINTERS*)_exception_info())) {
456    // Nothing to do.
457  }
458
459  // One less thread is executing
460  // When the VMThread gets here, the main thread may have already exited
461  // which frees the CodeHeap containing the Atomic::add code
462  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
463    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
464  }
465
466  // Thread must not return from exit_process_or_thread(), but if it does,
467  // let it proceed to exit normally
468  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
469}
470
471static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
472                                  int thread_id) {
473  // Allocate the OSThread object
474  OSThread* osthread = new OSThread(NULL, NULL);
475  if (osthread == NULL) return NULL;
476
477  // Initialize support for Java interrupts
478  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
479  if (interrupt_event == NULL) {
480    delete osthread;
481    return NULL;
482  }
483  osthread->set_interrupt_event(interrupt_event);
484
485  // Store info on the Win32 thread into the OSThread
486  osthread->set_thread_handle(thread_handle);
487  osthread->set_thread_id(thread_id);
488
489  if (UseNUMA) {
490    int lgrp_id = os::numa_get_group_id();
491    if (lgrp_id != -1) {
492      thread->set_lgrp_id(lgrp_id);
493    }
494  }
495
496  // Initial thread state is INITIALIZED, not SUSPENDED
497  osthread->set_state(INITIALIZED);
498
499  return osthread;
500}
501
502
503bool os::create_attached_thread(JavaThread* thread) {
504#ifdef ASSERT
505  thread->verify_not_published();
506#endif
507  HANDLE thread_h;
508  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
509                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
510    fatal("DuplicateHandle failed\n");
511  }
512  OSThread* osthread = create_os_thread(thread, thread_h,
513                                        (int)current_thread_id());
514  if (osthread == NULL) {
515    return false;
516  }
517
518  // Initial thread state is RUNNABLE
519  osthread->set_state(RUNNABLE);
520
521  thread->set_osthread(osthread);
522  return true;
523}
524
525bool os::create_main_thread(JavaThread* thread) {
526#ifdef ASSERT
527  thread->verify_not_published();
528#endif
529  if (_starting_thread == NULL) {
530    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
531    if (_starting_thread == NULL) {
532      return false;
533    }
534  }
535
536  // The primordial thread is runnable from the start)
537  _starting_thread->set_state(RUNNABLE);
538
539  thread->set_osthread(_starting_thread);
540  return true;
541}
542
543// Allocate and initialize a new OSThread
544bool os::create_thread(Thread* thread, ThreadType thr_type,
545                       size_t stack_size) {
546  unsigned thread_id;
547
548  // Allocate the OSThread object
549  OSThread* osthread = new OSThread(NULL, NULL);
550  if (osthread == NULL) {
551    return false;
552  }
553
554  // Initialize support for Java interrupts
555  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
556  if (interrupt_event == NULL) {
557    delete osthread;
558    return NULL;
559  }
560  osthread->set_interrupt_event(interrupt_event);
561  osthread->set_interrupted(false);
562
563  thread->set_osthread(osthread);
564
565  if (stack_size == 0) {
566    switch (thr_type) {
567    case os::java_thread:
568      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
569      if (JavaThread::stack_size_at_create() > 0) {
570        stack_size = JavaThread::stack_size_at_create();
571      }
572      break;
573    case os::compiler_thread:
574      if (CompilerThreadStackSize > 0) {
575        stack_size = (size_t)(CompilerThreadStackSize * K);
576        break;
577      } // else fall through:
578        // use VMThreadStackSize if CompilerThreadStackSize is not defined
579    case os::vm_thread:
580    case os::pgc_thread:
581    case os::cgc_thread:
582    case os::watcher_thread:
583      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
584      break;
585    }
586  }
587
588  // Create the Win32 thread
589  //
590  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
591  // does not specify stack size. Instead, it specifies the size of
592  // initially committed space. The stack size is determined by
593  // PE header in the executable. If the committed "stack_size" is larger
594  // than default value in the PE header, the stack is rounded up to the
595  // nearest multiple of 1MB. For example if the launcher has default
596  // stack size of 320k, specifying any size less than 320k does not
597  // affect the actual stack size at all, it only affects the initial
598  // commitment. On the other hand, specifying 'stack_size' larger than
599  // default value may cause significant increase in memory usage, because
600  // not only the stack space will be rounded up to MB, but also the
601  // entire space is committed upfront.
602  //
603  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
604  // for CreateThread() that can treat 'stack_size' as stack size. However we
605  // are not supposed to call CreateThread() directly according to MSDN
606  // document because JVM uses C runtime library. The good news is that the
607  // flag appears to work with _beginthredex() as well.
608
609#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
610  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
611#endif
612
613  HANDLE thread_handle =
614    (HANDLE)_beginthreadex(NULL,
615                           (unsigned)stack_size,
616                           (unsigned (__stdcall *)(void*)) java_start,
617                           thread,
618                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
619                           &thread_id);
620  if (thread_handle == NULL) {
621    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
622    // without the flag.
623    thread_handle =
624      (HANDLE)_beginthreadex(NULL,
625                             (unsigned)stack_size,
626                             (unsigned (__stdcall *)(void*)) java_start,
627                             thread,
628                             CREATE_SUSPENDED,
629                             &thread_id);
630  }
631  if (thread_handle == NULL) {
632    // Need to clean up stuff we've allocated so far
633    CloseHandle(osthread->interrupt_event());
634    thread->set_osthread(NULL);
635    delete osthread;
636    return NULL;
637  }
638
639  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
640
641  // Store info on the Win32 thread into the OSThread
642  osthread->set_thread_handle(thread_handle);
643  osthread->set_thread_id(thread_id);
644
645  // Initial thread state is INITIALIZED, not SUSPENDED
646  osthread->set_state(INITIALIZED);
647
648  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
649  return true;
650}
651
652
653// Free Win32 resources related to the OSThread
654void os::free_thread(OSThread* osthread) {
655  assert(osthread != NULL, "osthread not set");
656  CloseHandle(osthread->thread_handle());
657  CloseHandle(osthread->interrupt_event());
658  delete osthread;
659}
660
661static jlong first_filetime;
662static jlong initial_performance_count;
663static jlong performance_frequency;
664
665
666jlong as_long(LARGE_INTEGER x) {
667  jlong result = 0; // initialization to avoid warning
668  set_high(&result, x.HighPart);
669  set_low(&result, x.LowPart);
670  return result;
671}
672
673
674jlong os::elapsed_counter() {
675  LARGE_INTEGER count;
676  if (win32::_has_performance_count) {
677    QueryPerformanceCounter(&count);
678    return as_long(count) - initial_performance_count;
679  } else {
680    FILETIME wt;
681    GetSystemTimeAsFileTime(&wt);
682    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
683  }
684}
685
686
687jlong os::elapsed_frequency() {
688  if (win32::_has_performance_count) {
689    return performance_frequency;
690  } else {
691    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
692    return 10000000;
693  }
694}
695
696
697julong os::available_memory() {
698  return win32::available_memory();
699}
700
701julong os::win32::available_memory() {
702  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
703  // value if total memory is larger than 4GB
704  MEMORYSTATUSEX ms;
705  ms.dwLength = sizeof(ms);
706  GlobalMemoryStatusEx(&ms);
707
708  return (julong)ms.ullAvailPhys;
709}
710
711julong os::physical_memory() {
712  return win32::physical_memory();
713}
714
715bool os::has_allocatable_memory_limit(julong* limit) {
716  MEMORYSTATUSEX ms;
717  ms.dwLength = sizeof(ms);
718  GlobalMemoryStatusEx(&ms);
719#ifdef _LP64
720  *limit = (julong)ms.ullAvailVirtual;
721  return true;
722#else
723  // Limit to 1400m because of the 2gb address space wall
724  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
725  return true;
726#endif
727}
728
729// VC6 lacks DWORD_PTR
730#if _MSC_VER < 1300
731typedef UINT_PTR DWORD_PTR;
732#endif
733
734int os::active_processor_count() {
735  DWORD_PTR lpProcessAffinityMask = 0;
736  DWORD_PTR lpSystemAffinityMask = 0;
737  int proc_count = processor_count();
738  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
739      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
740    // Nof active processors is number of bits in process affinity mask
741    int bitcount = 0;
742    while (lpProcessAffinityMask != 0) {
743      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
744      bitcount++;
745    }
746    return bitcount;
747  } else {
748    return proc_count;
749  }
750}
751
752void os::set_native_thread_name(const char *name) {
753
754  // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
755  //
756  // Note that unfortunately this only works if the process
757  // is already attached to a debugger; debugger must observe
758  // the exception below to show the correct name.
759
760  const DWORD MS_VC_EXCEPTION = 0x406D1388;
761  struct {
762    DWORD dwType;     // must be 0x1000
763    LPCSTR szName;    // pointer to name (in user addr space)
764    DWORD dwThreadID; // thread ID (-1=caller thread)
765    DWORD dwFlags;    // reserved for future use, must be zero
766  } info;
767
768  info.dwType = 0x1000;
769  info.szName = name;
770  info.dwThreadID = -1;
771  info.dwFlags = 0;
772
773  __try {
774    RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
775  } __except(EXCEPTION_CONTINUE_EXECUTION) {}
776}
777
778bool os::distribute_processes(uint length, uint* distribution) {
779  // Not yet implemented.
780  return false;
781}
782
783bool os::bind_to_processor(uint processor_id) {
784  // Not yet implemented.
785  return false;
786}
787
788void os::win32::initialize_performance_counter() {
789  LARGE_INTEGER count;
790  if (QueryPerformanceFrequency(&count)) {
791    win32::_has_performance_count = 1;
792    performance_frequency = as_long(count);
793    QueryPerformanceCounter(&count);
794    initial_performance_count = as_long(count);
795  } else {
796    win32::_has_performance_count = 0;
797    FILETIME wt;
798    GetSystemTimeAsFileTime(&wt);
799    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
800  }
801}
802
803
804double os::elapsedTime() {
805  return (double) elapsed_counter() / (double) elapsed_frequency();
806}
807
808
809// Windows format:
810//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
811// Java format:
812//   Java standards require the number of milliseconds since 1/1/1970
813
814// Constant offset - calculated using offset()
815static jlong  _offset   = 116444736000000000;
816// Fake time counter for reproducible results when debugging
817static jlong  fake_time = 0;
818
819#ifdef ASSERT
820// Just to be safe, recalculate the offset in debug mode
821static jlong _calculated_offset = 0;
822static int   _has_calculated_offset = 0;
823
824jlong offset() {
825  if (_has_calculated_offset) return _calculated_offset;
826  SYSTEMTIME java_origin;
827  java_origin.wYear          = 1970;
828  java_origin.wMonth         = 1;
829  java_origin.wDayOfWeek     = 0; // ignored
830  java_origin.wDay           = 1;
831  java_origin.wHour          = 0;
832  java_origin.wMinute        = 0;
833  java_origin.wSecond        = 0;
834  java_origin.wMilliseconds  = 0;
835  FILETIME jot;
836  if (!SystemTimeToFileTime(&java_origin, &jot)) {
837    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
838  }
839  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
840  _has_calculated_offset = 1;
841  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
842  return _calculated_offset;
843}
844#else
845jlong offset() {
846  return _offset;
847}
848#endif
849
850jlong windows_to_java_time(FILETIME wt) {
851  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
852  return (a - offset()) / 10000;
853}
854
855FILETIME java_to_windows_time(jlong l) {
856  jlong a = (l * 10000) + offset();
857  FILETIME result;
858  result.dwHighDateTime = high(a);
859  result.dwLowDateTime  = low(a);
860  return result;
861}
862
863bool os::supports_vtime() { return true; }
864bool os::enable_vtime() { return false; }
865bool os::vtime_enabled() { return false; }
866
867double os::elapsedVTime() {
868  FILETIME created;
869  FILETIME exited;
870  FILETIME kernel;
871  FILETIME user;
872  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
873    // the resolution of windows_to_java_time() should be sufficient (ms)
874    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
875  } else {
876    return elapsedTime();
877  }
878}
879
880jlong os::javaTimeMillis() {
881  if (UseFakeTimers) {
882    return fake_time++;
883  } else {
884    FILETIME wt;
885    GetSystemTimeAsFileTime(&wt);
886    return windows_to_java_time(wt);
887  }
888}
889
890jlong os::javaTimeNanos() {
891  if (!win32::_has_performance_count) {
892    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
893  } else {
894    LARGE_INTEGER current_count;
895    QueryPerformanceCounter(&current_count);
896    double current = as_long(current_count);
897    double freq = performance_frequency;
898    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
899    return time;
900  }
901}
902
903void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
904  if (!win32::_has_performance_count) {
905    // javaTimeMillis() doesn't have much percision,
906    // but it is not going to wrap -- so all 64 bits
907    info_ptr->max_value = ALL_64_BITS;
908
909    // this is a wall clock timer, so may skip
910    info_ptr->may_skip_backward = true;
911    info_ptr->may_skip_forward = true;
912  } else {
913    jlong freq = performance_frequency;
914    if (freq < NANOSECS_PER_SEC) {
915      // the performance counter is 64 bits and we will
916      // be multiplying it -- so no wrap in 64 bits
917      info_ptr->max_value = ALL_64_BITS;
918    } else if (freq > NANOSECS_PER_SEC) {
919      // use the max value the counter can reach to
920      // determine the max value which could be returned
921      julong max_counter = (julong)ALL_64_BITS;
922      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
923    } else {
924      // the performance counter is 64 bits and we will
925      // be using it directly -- so no wrap in 64 bits
926      info_ptr->max_value = ALL_64_BITS;
927    }
928
929    // using a counter, so no skipping
930    info_ptr->may_skip_backward = false;
931    info_ptr->may_skip_forward = false;
932  }
933  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
934}
935
936char* os::local_time_string(char *buf, size_t buflen) {
937  SYSTEMTIME st;
938  GetLocalTime(&st);
939  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
940               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
941  return buf;
942}
943
944bool os::getTimesSecs(double* process_real_time,
945                      double* process_user_time,
946                      double* process_system_time) {
947  HANDLE h_process = GetCurrentProcess();
948  FILETIME create_time, exit_time, kernel_time, user_time;
949  BOOL result = GetProcessTimes(h_process,
950                                &create_time,
951                                &exit_time,
952                                &kernel_time,
953                                &user_time);
954  if (result != 0) {
955    FILETIME wt;
956    GetSystemTimeAsFileTime(&wt);
957    jlong rtc_millis = windows_to_java_time(wt);
958    jlong user_millis = windows_to_java_time(user_time);
959    jlong system_millis = windows_to_java_time(kernel_time);
960    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
961    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
962    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
963    return true;
964  } else {
965    return false;
966  }
967}
968
969void os::shutdown() {
970  // allow PerfMemory to attempt cleanup of any persistent resources
971  perfMemory_exit();
972
973  // flush buffered output, finish log files
974  ostream_abort();
975
976  // Check for abort hook
977  abort_hook_t abort_hook = Arguments::abort_hook();
978  if (abort_hook != NULL) {
979    abort_hook();
980  }
981}
982
983
984static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
985                                         PMINIDUMP_EXCEPTION_INFORMATION,
986                                         PMINIDUMP_USER_STREAM_INFORMATION,
987                                         PMINIDUMP_CALLBACK_INFORMATION);
988
989void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
990  HINSTANCE dbghelp;
991  EXCEPTION_POINTERS ep;
992  MINIDUMP_EXCEPTION_INFORMATION mei;
993  MINIDUMP_EXCEPTION_INFORMATION* pmei;
994
995  HANDLE hProcess = GetCurrentProcess();
996  DWORD processId = GetCurrentProcessId();
997  HANDLE dumpFile;
998  MINIDUMP_TYPE dumpType;
999  static const char* cwd;
1000
1001// Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
1002#ifndef ASSERT
1003  // If running on a client version of Windows and user has not explicitly enabled dumping
1004  if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
1005    VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
1006    return;
1007    // If running on a server version of Windows and user has explictly disabled dumping
1008  } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1009    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1010    return;
1011  }
1012#else
1013  if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1014    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1015    return;
1016  }
1017#endif
1018
1019  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1020
1021  if (dbghelp == NULL) {
1022    VMError::report_coredump_status("Failed to load dbghelp.dll", false);
1023    return;
1024  }
1025
1026  _MiniDumpWriteDump =
1027      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1028                                    PMINIDUMP_EXCEPTION_INFORMATION,
1029                                    PMINIDUMP_USER_STREAM_INFORMATION,
1030                                    PMINIDUMP_CALLBACK_INFORMATION),
1031                                    GetProcAddress(dbghelp,
1032                                    "MiniDumpWriteDump"));
1033
1034  if (_MiniDumpWriteDump == NULL) {
1035    VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
1036    return;
1037  }
1038
1039  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1040
1041// Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1042// API_VERSION_NUMBER 11 or higher contains the ones we want though
1043#if API_VERSION_NUMBER >= 11
1044  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1045                             MiniDumpWithUnloadedModules);
1046#endif
1047
1048  cwd = get_current_directory(NULL, 0);
1049  jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1050  dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1051
1052  if (dumpFile == INVALID_HANDLE_VALUE) {
1053    VMError::report_coredump_status("Failed to create file for dumping", false);
1054    return;
1055  }
1056  if (exceptionRecord != NULL && contextRecord != NULL) {
1057    ep.ContextRecord = (PCONTEXT) contextRecord;
1058    ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1059
1060    mei.ThreadId = GetCurrentThreadId();
1061    mei.ExceptionPointers = &ep;
1062    pmei = &mei;
1063  } else {
1064    pmei = NULL;
1065  }
1066
1067
1068  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1069  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1070  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1071      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1072    DWORD error = GetLastError();
1073    LPTSTR msgbuf = NULL;
1074
1075    if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1076                      FORMAT_MESSAGE_FROM_SYSTEM |
1077                      FORMAT_MESSAGE_IGNORE_INSERTS,
1078                      NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1079
1080      jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1081      LocalFree(msgbuf);
1082    } else {
1083      // Call to FormatMessage failed, just include the result from GetLastError
1084      jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1085    }
1086    VMError::report_coredump_status(buffer, false);
1087  } else {
1088    VMError::report_coredump_status(buffer, true);
1089  }
1090
1091  CloseHandle(dumpFile);
1092}
1093
1094
1095void os::abort(bool dump_core) {
1096  os::shutdown();
1097  // no core dump on Windows
1098  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1099}
1100
1101// Die immediately, no exit hook, no abort hook, no cleanup.
1102void os::die() {
1103  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1104}
1105
1106// Directory routines copied from src/win32/native/java/io/dirent_md.c
1107//  * dirent_md.c       1.15 00/02/02
1108//
1109// The declarations for DIR and struct dirent are in jvm_win32.h.
1110
1111// Caller must have already run dirname through JVM_NativePath, which removes
1112// duplicate slashes and converts all instances of '/' into '\\'.
1113
1114DIR * os::opendir(const char *dirname) {
1115  assert(dirname != NULL, "just checking");   // hotspot change
1116  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1117  DWORD fattr;                                // hotspot change
1118  char alt_dirname[4] = { 0, 0, 0, 0 };
1119
1120  if (dirp == 0) {
1121    errno = ENOMEM;
1122    return 0;
1123  }
1124
1125  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1126  // as a directory in FindFirstFile().  We detect this case here and
1127  // prepend the current drive name.
1128  //
1129  if (dirname[1] == '\0' && dirname[0] == '\\') {
1130    alt_dirname[0] = _getdrive() + 'A' - 1;
1131    alt_dirname[1] = ':';
1132    alt_dirname[2] = '\\';
1133    alt_dirname[3] = '\0';
1134    dirname = alt_dirname;
1135  }
1136
1137  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1138  if (dirp->path == 0) {
1139    free(dirp, mtInternal);
1140    errno = ENOMEM;
1141    return 0;
1142  }
1143  strcpy(dirp->path, dirname);
1144
1145  fattr = GetFileAttributes(dirp->path);
1146  if (fattr == 0xffffffff) {
1147    free(dirp->path, mtInternal);
1148    free(dirp, mtInternal);
1149    errno = ENOENT;
1150    return 0;
1151  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1152    free(dirp->path, mtInternal);
1153    free(dirp, mtInternal);
1154    errno = ENOTDIR;
1155    return 0;
1156  }
1157
1158  // Append "*.*", or possibly "\\*.*", to path
1159  if (dirp->path[1] == ':' &&
1160      (dirp->path[2] == '\0' ||
1161      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1162    // No '\\' needed for cases like "Z:" or "Z:\"
1163    strcat(dirp->path, "*.*");
1164  } else {
1165    strcat(dirp->path, "\\*.*");
1166  }
1167
1168  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1169  if (dirp->handle == INVALID_HANDLE_VALUE) {
1170    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1171      free(dirp->path, mtInternal);
1172      free(dirp, mtInternal);
1173      errno = EACCES;
1174      return 0;
1175    }
1176  }
1177  return dirp;
1178}
1179
1180// parameter dbuf unused on Windows
1181struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1182  assert(dirp != NULL, "just checking");      // hotspot change
1183  if (dirp->handle == INVALID_HANDLE_VALUE) {
1184    return 0;
1185  }
1186
1187  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1188
1189  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1190    if (GetLastError() == ERROR_INVALID_HANDLE) {
1191      errno = EBADF;
1192      return 0;
1193    }
1194    FindClose(dirp->handle);
1195    dirp->handle = INVALID_HANDLE_VALUE;
1196  }
1197
1198  return &dirp->dirent;
1199}
1200
1201int os::closedir(DIR *dirp) {
1202  assert(dirp != NULL, "just checking");      // hotspot change
1203  if (dirp->handle != INVALID_HANDLE_VALUE) {
1204    if (!FindClose(dirp->handle)) {
1205      errno = EBADF;
1206      return -1;
1207    }
1208    dirp->handle = INVALID_HANDLE_VALUE;
1209  }
1210  free(dirp->path, mtInternal);
1211  free(dirp, mtInternal);
1212  return 0;
1213}
1214
1215// This must be hard coded because it's the system's temporary
1216// directory not the java application's temp directory, ala java.io.tmpdir.
1217const char* os::get_temp_directory() {
1218  static char path_buf[MAX_PATH];
1219  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1220    return path_buf;
1221  } else {
1222    path_buf[0] = '\0';
1223    return path_buf;
1224  }
1225}
1226
1227static bool file_exists(const char* filename) {
1228  if (filename == NULL || strlen(filename) == 0) {
1229    return false;
1230  }
1231  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1232}
1233
1234bool os::dll_build_name(char *buffer, size_t buflen,
1235                        const char* pname, const char* fname) {
1236  bool retval = false;
1237  const size_t pnamelen = pname ? strlen(pname) : 0;
1238  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1239
1240  // Return error on buffer overflow.
1241  if (pnamelen + strlen(fname) + 10 > buflen) {
1242    return retval;
1243  }
1244
1245  if (pnamelen == 0) {
1246    jio_snprintf(buffer, buflen, "%s.dll", fname);
1247    retval = true;
1248  } else if (c == ':' || c == '\\') {
1249    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1250    retval = true;
1251  } else if (strchr(pname, *os::path_separator()) != NULL) {
1252    int n;
1253    char** pelements = split_path(pname, &n);
1254    if (pelements == NULL) {
1255      return false;
1256    }
1257    for (int i = 0; i < n; i++) {
1258      char* path = pelements[i];
1259      // Really shouldn't be NULL, but check can't hurt
1260      size_t plen = (path == NULL) ? 0 : strlen(path);
1261      if (plen == 0) {
1262        continue; // skip the empty path values
1263      }
1264      const char lastchar = path[plen - 1];
1265      if (lastchar == ':' || lastchar == '\\') {
1266        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1267      } else {
1268        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1269      }
1270      if (file_exists(buffer)) {
1271        retval = true;
1272        break;
1273      }
1274    }
1275    // release the storage
1276    for (int i = 0; i < n; i++) {
1277      if (pelements[i] != NULL) {
1278        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1279      }
1280    }
1281    if (pelements != NULL) {
1282      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1283    }
1284  } else {
1285    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1286    retval = true;
1287  }
1288  return retval;
1289}
1290
1291// Needs to be in os specific directory because windows requires another
1292// header file <direct.h>
1293const char* os::get_current_directory(char *buf, size_t buflen) {
1294  int n = static_cast<int>(buflen);
1295  if (buflen > INT_MAX)  n = INT_MAX;
1296  return _getcwd(buf, n);
1297}
1298
1299//-----------------------------------------------------------
1300// Helper functions for fatal error handler
1301#ifdef _WIN64
1302// Helper routine which returns true if address in
1303// within the NTDLL address space.
1304//
1305static bool _addr_in_ntdll(address addr) {
1306  HMODULE hmod;
1307  MODULEINFO minfo;
1308
1309  hmod = GetModuleHandle("NTDLL.DLL");
1310  if (hmod == NULL) return false;
1311  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1312                                          &minfo, sizeof(MODULEINFO))) {
1313    return false;
1314  }
1315
1316  if ((addr >= minfo.lpBaseOfDll) &&
1317      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1318    return true;
1319  } else {
1320    return false;
1321  }
1322}
1323#endif
1324
1325struct _modinfo {
1326  address addr;
1327  char*   full_path;   // point to a char buffer
1328  int     buflen;      // size of the buffer
1329  address base_addr;
1330};
1331
1332static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1333                                  address top_address, void * param) {
1334  struct _modinfo *pmod = (struct _modinfo *)param;
1335  if (!pmod) return -1;
1336
1337  if (base_addr   <= pmod->addr &&
1338      top_address > pmod->addr) {
1339    // if a buffer is provided, copy path name to the buffer
1340    if (pmod->full_path) {
1341      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1342    }
1343    pmod->base_addr = base_addr;
1344    return 1;
1345  }
1346  return 0;
1347}
1348
1349bool os::dll_address_to_library_name(address addr, char* buf,
1350                                     int buflen, int* offset) {
1351  // buf is not optional, but offset is optional
1352  assert(buf != NULL, "sanity check");
1353
1354// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1355//       return the full path to the DLL file, sometimes it returns path
1356//       to the corresponding PDB file (debug info); sometimes it only
1357//       returns partial path, which makes life painful.
1358
1359  struct _modinfo mi;
1360  mi.addr      = addr;
1361  mi.full_path = buf;
1362  mi.buflen    = buflen;
1363  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1364    // buf already contains path name
1365    if (offset) *offset = addr - mi.base_addr;
1366    return true;
1367  }
1368
1369  buf[0] = '\0';
1370  if (offset) *offset = -1;
1371  return false;
1372}
1373
1374bool os::dll_address_to_function_name(address addr, char *buf,
1375                                      int buflen, int *offset) {
1376  // buf is not optional, but offset is optional
1377  assert(buf != NULL, "sanity check");
1378
1379  if (Decoder::decode(addr, buf, buflen, offset)) {
1380    return true;
1381  }
1382  if (offset != NULL)  *offset  = -1;
1383  buf[0] = '\0';
1384  return false;
1385}
1386
1387// save the start and end address of jvm.dll into param[0] and param[1]
1388static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1389                           address top_address, void * param) {
1390  if (!param) return -1;
1391
1392  if (base_addr   <= (address)_locate_jvm_dll &&
1393      top_address > (address)_locate_jvm_dll) {
1394    ((address*)param)[0] = base_addr;
1395    ((address*)param)[1] = top_address;
1396    return 1;
1397  }
1398  return 0;
1399}
1400
1401address vm_lib_location[2];    // start and end address of jvm.dll
1402
1403// check if addr is inside jvm.dll
1404bool os::address_is_in_vm(address addr) {
1405  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1406    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1407      assert(false, "Can't find jvm module.");
1408      return false;
1409    }
1410  }
1411
1412  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1413}
1414
1415// print module info; param is outputStream*
1416static int _print_module(const char* fname, address base_address,
1417                         address top_address, void* param) {
1418  if (!param) return -1;
1419
1420  outputStream* st = (outputStream*)param;
1421
1422  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1423  return 0;
1424}
1425
1426// Loads .dll/.so and
1427// in case of error it checks if .dll/.so was built for the
1428// same architecture as Hotspot is running on
1429void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1430  void * result = LoadLibrary(name);
1431  if (result != NULL) {
1432    return result;
1433  }
1434
1435  DWORD errcode = GetLastError();
1436  if (errcode == ERROR_MOD_NOT_FOUND) {
1437    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1438    ebuf[ebuflen - 1] = '\0';
1439    return NULL;
1440  }
1441
1442  // Parsing dll below
1443  // If we can read dll-info and find that dll was built
1444  // for an architecture other than Hotspot is running in
1445  // - then print to buffer "DLL was built for a different architecture"
1446  // else call os::lasterror to obtain system error message
1447
1448  // Read system error message into ebuf
1449  // It may or may not be overwritten below (in the for loop and just above)
1450  lasterror(ebuf, (size_t) ebuflen);
1451  ebuf[ebuflen - 1] = '\0';
1452  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1453  if (fd < 0) {
1454    return NULL;
1455  }
1456
1457  uint32_t signature_offset;
1458  uint16_t lib_arch = 0;
1459  bool failed_to_get_lib_arch =
1460    ( // Go to position 3c in the dll
1461     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1462     ||
1463     // Read location of signature
1464     (sizeof(signature_offset) !=
1465     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1466     ||
1467     // Go to COFF File Header in dll
1468     // that is located after "signature" (4 bytes long)
1469     (os::seek_to_file_offset(fd,
1470     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1471     ||
1472     // Read field that contains code of architecture
1473     // that dll was built for
1474     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1475    );
1476
1477  ::close(fd);
1478  if (failed_to_get_lib_arch) {
1479    // file i/o error - report os::lasterror(...) msg
1480    return NULL;
1481  }
1482
1483  typedef struct {
1484    uint16_t arch_code;
1485    char* arch_name;
1486  } arch_t;
1487
1488  static const arch_t arch_array[] = {
1489    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1490    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1491    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1492  };
1493#if   (defined _M_IA64)
1494  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1495#elif (defined _M_AMD64)
1496  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1497#elif (defined _M_IX86)
1498  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1499#else
1500  #error Method os::dll_load requires that one of following \
1501         is defined :_M_IA64,_M_AMD64 or _M_IX86
1502#endif
1503
1504
1505  // Obtain a string for printf operation
1506  // lib_arch_str shall contain string what platform this .dll was built for
1507  // running_arch_str shall string contain what platform Hotspot was built for
1508  char *running_arch_str = NULL, *lib_arch_str = NULL;
1509  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1510    if (lib_arch == arch_array[i].arch_code) {
1511      lib_arch_str = arch_array[i].arch_name;
1512    }
1513    if (running_arch == arch_array[i].arch_code) {
1514      running_arch_str = arch_array[i].arch_name;
1515    }
1516  }
1517
1518  assert(running_arch_str,
1519         "Didn't find running architecture code in arch_array");
1520
1521  // If the architecture is right
1522  // but some other error took place - report os::lasterror(...) msg
1523  if (lib_arch == running_arch) {
1524    return NULL;
1525  }
1526
1527  if (lib_arch_str != NULL) {
1528    ::_snprintf(ebuf, ebuflen - 1,
1529                "Can't load %s-bit .dll on a %s-bit platform",
1530                lib_arch_str, running_arch_str);
1531  } else {
1532    // don't know what architecture this dll was build for
1533    ::_snprintf(ebuf, ebuflen - 1,
1534                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1535                lib_arch, running_arch_str);
1536  }
1537
1538  return NULL;
1539}
1540
1541void os::print_dll_info(outputStream *st) {
1542  st->print_cr("Dynamic libraries:");
1543  get_loaded_modules_info(_print_module, (void *)st);
1544}
1545
1546int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1547  HANDLE   hProcess;
1548
1549# define MAX_NUM_MODULES 128
1550  HMODULE     modules[MAX_NUM_MODULES];
1551  static char filename[MAX_PATH];
1552  int         result = 0;
1553
1554  if (!os::PSApiDll::PSApiAvailable()) {
1555    return 0;
1556  }
1557
1558  int pid = os::current_process_id();
1559  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1560                         FALSE, pid);
1561  if (hProcess == NULL) return 0;
1562
1563  DWORD size_needed;
1564  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1565                                        sizeof(modules), &size_needed)) {
1566    CloseHandle(hProcess);
1567    return 0;
1568  }
1569
1570  // number of modules that are currently loaded
1571  int num_modules = size_needed / sizeof(HMODULE);
1572
1573  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1574    // Get Full pathname:
1575    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1576                                           filename, sizeof(filename))) {
1577      filename[0] = '\0';
1578    }
1579
1580    MODULEINFO modinfo;
1581    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1582                                            &modinfo, sizeof(modinfo))) {
1583      modinfo.lpBaseOfDll = NULL;
1584      modinfo.SizeOfImage = 0;
1585    }
1586
1587    // Invoke callback function
1588    result = callback(filename, (address)modinfo.lpBaseOfDll,
1589                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1590    if (result) break;
1591  }
1592
1593  CloseHandle(hProcess);
1594  return result;
1595}
1596
1597void os::print_os_info_brief(outputStream* st) {
1598  os::print_os_info(st);
1599}
1600
1601void os::print_os_info(outputStream* st) {
1602#ifdef ASSERT
1603  char buffer[1024];
1604  DWORD size = sizeof(buffer);
1605  st->print(" HostName: ");
1606  if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1607    st->print("%s", buffer);
1608  } else {
1609    st->print("N/A");
1610  }
1611#endif
1612  st->print(" OS:");
1613  os::win32::print_windows_version(st);
1614}
1615
1616void os::win32::print_windows_version(outputStream* st) {
1617  OSVERSIONINFOEX osvi;
1618  VS_FIXEDFILEINFO *file_info;
1619  TCHAR kernel32_path[MAX_PATH];
1620  UINT len, ret;
1621
1622  // Use the GetVersionEx information to see if we're on a server or
1623  // workstation edition of Windows. Starting with Windows 8.1 we can't
1624  // trust the OS version information returned by this API.
1625  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1626  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1627  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1628    st->print_cr("Call to GetVersionEx failed");
1629    return;
1630  }
1631  bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1632
1633  // Get the full path to \Windows\System32\kernel32.dll and use that for
1634  // determining what version of Windows we're running on.
1635  len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1636  ret = GetSystemDirectory(kernel32_path, len);
1637  if (ret == 0 || ret > len) {
1638    st->print_cr("Call to GetSystemDirectory failed");
1639    return;
1640  }
1641  strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1642
1643  DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1644  if (version_size == 0) {
1645    st->print_cr("Call to GetFileVersionInfoSize failed");
1646    return;
1647  }
1648
1649  LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1650  if (version_info == NULL) {
1651    st->print_cr("Failed to allocate version_info");
1652    return;
1653  }
1654
1655  if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1656    os::free(version_info);
1657    st->print_cr("Call to GetFileVersionInfo failed");
1658    return;
1659  }
1660
1661  if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1662    os::free(version_info);
1663    st->print_cr("Call to VerQueryValue failed");
1664    return;
1665  }
1666
1667  int major_version = HIWORD(file_info->dwProductVersionMS);
1668  int minor_version = LOWORD(file_info->dwProductVersionMS);
1669  int build_number = HIWORD(file_info->dwProductVersionLS);
1670  int build_minor = LOWORD(file_info->dwProductVersionLS);
1671  int os_vers = major_version * 1000 + minor_version;
1672  os::free(version_info);
1673
1674  st->print(" Windows ");
1675  switch (os_vers) {
1676
1677  case 6000:
1678    if (is_workstation) {
1679      st->print("Vista");
1680    } else {
1681      st->print("Server 2008");
1682    }
1683    break;
1684
1685  case 6001:
1686    if (is_workstation) {
1687      st->print("7");
1688    } else {
1689      st->print("Server 2008 R2");
1690    }
1691    break;
1692
1693  case 6002:
1694    if (is_workstation) {
1695      st->print("8");
1696    } else {
1697      st->print("Server 2012");
1698    }
1699    break;
1700
1701  case 6003:
1702    if (is_workstation) {
1703      st->print("8.1");
1704    } else {
1705      st->print("Server 2012 R2");
1706    }
1707    break;
1708
1709  case 6004:
1710    if (is_workstation) {
1711      st->print("10");
1712    } else {
1713      // The server version name of Windows 10 is not known at this time
1714      st->print("%d.%d", major_version, minor_version);
1715    }
1716    break;
1717
1718  default:
1719    // Unrecognized windows, print out its major and minor versions
1720    st->print("%d.%d", major_version, minor_version);
1721    break;
1722  }
1723
1724  // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1725  // find out whether we are running on 64 bit processor or not
1726  SYSTEM_INFO si;
1727  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1728  os::Kernel32Dll::GetNativeSystemInfo(&si);
1729  if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1730    st->print(" , 64 bit");
1731  }
1732
1733  st->print(" Build %d", build_number);
1734  st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1735  st->cr();
1736}
1737
1738void os::pd_print_cpu_info(outputStream* st) {
1739  // Nothing to do for now.
1740}
1741
1742void os::print_memory_info(outputStream* st) {
1743  st->print("Memory:");
1744  st->print(" %dk page", os::vm_page_size()>>10);
1745
1746  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1747  // value if total memory is larger than 4GB
1748  MEMORYSTATUSEX ms;
1749  ms.dwLength = sizeof(ms);
1750  GlobalMemoryStatusEx(&ms);
1751
1752  st->print(", physical %uk", os::physical_memory() >> 10);
1753  st->print("(%uk free)", os::available_memory() >> 10);
1754
1755  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1756  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1757  st->cr();
1758}
1759
1760void os::print_siginfo(outputStream *st, void *siginfo) {
1761  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1762  st->print("siginfo:");
1763  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1764
1765  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1766      er->NumberParameters >= 2) {
1767    switch (er->ExceptionInformation[0]) {
1768    case 0: st->print(", reading address"); break;
1769    case 1: st->print(", writing address"); break;
1770    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1771                       er->ExceptionInformation[0]);
1772    }
1773    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1774  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1775             er->NumberParameters >= 2 && UseSharedSpaces) {
1776    FileMapInfo* mapinfo = FileMapInfo::current_info();
1777    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1778      st->print("\n\nError accessing class data sharing archive."       \
1779                " Mapped file inaccessible during execution, "          \
1780                " possible disk/network problem.");
1781    }
1782  } else {
1783    int num = er->NumberParameters;
1784    if (num > 0) {
1785      st->print(", ExceptionInformation=");
1786      for (int i = 0; i < num; i++) {
1787        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1788      }
1789    }
1790  }
1791  st->cr();
1792}
1793
1794void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1795  // do nothing
1796}
1797
1798static char saved_jvm_path[MAX_PATH] = {0};
1799
1800// Find the full path to the current module, jvm.dll
1801void os::jvm_path(char *buf, jint buflen) {
1802  // Error checking.
1803  if (buflen < MAX_PATH) {
1804    assert(false, "must use a large-enough buffer");
1805    buf[0] = '\0';
1806    return;
1807  }
1808  // Lazy resolve the path to current module.
1809  if (saved_jvm_path[0] != 0) {
1810    strcpy(buf, saved_jvm_path);
1811    return;
1812  }
1813
1814  buf[0] = '\0';
1815  if (Arguments::sun_java_launcher_is_altjvm()) {
1816    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1817    // for a JAVA_HOME environment variable and fix up the path so it
1818    // looks like jvm.dll is installed there (append a fake suffix
1819    // hotspot/jvm.dll).
1820    char* java_home_var = ::getenv("JAVA_HOME");
1821    if (java_home_var != NULL && java_home_var[0] != 0 &&
1822        strlen(java_home_var) < (size_t)buflen) {
1823      strncpy(buf, java_home_var, buflen);
1824
1825      // determine if this is a legacy image or modules image
1826      // modules image doesn't have "jre" subdirectory
1827      size_t len = strlen(buf);
1828      char* jrebin_p = buf + len;
1829      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1830      if (0 != _access(buf, 0)) {
1831        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1832      }
1833      len = strlen(buf);
1834      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1835    }
1836  }
1837
1838  if (buf[0] == '\0') {
1839    GetModuleFileName(vm_lib_handle, buf, buflen);
1840  }
1841  strncpy(saved_jvm_path, buf, MAX_PATH);
1842  saved_jvm_path[MAX_PATH - 1] = '\0';
1843}
1844
1845
1846void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1847#ifndef _WIN64
1848  st->print("_");
1849#endif
1850}
1851
1852
1853void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1854#ifndef _WIN64
1855  st->print("@%d", args_size  * sizeof(int));
1856#endif
1857}
1858
1859// This method is a copy of JDK's sysGetLastErrorString
1860// from src/windows/hpi/src/system_md.c
1861
1862size_t os::lasterror(char* buf, size_t len) {
1863  DWORD errval;
1864
1865  if ((errval = GetLastError()) != 0) {
1866    // DOS error
1867    size_t n = (size_t)FormatMessage(
1868                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1869                                     NULL,
1870                                     errval,
1871                                     0,
1872                                     buf,
1873                                     (DWORD)len,
1874                                     NULL);
1875    if (n > 3) {
1876      // Drop final '.', CR, LF
1877      if (buf[n - 1] == '\n') n--;
1878      if (buf[n - 1] == '\r') n--;
1879      if (buf[n - 1] == '.') n--;
1880      buf[n] = '\0';
1881    }
1882    return n;
1883  }
1884
1885  if (errno != 0) {
1886    // C runtime error that has no corresponding DOS error code
1887    const char* s = strerror(errno);
1888    size_t n = strlen(s);
1889    if (n >= len) n = len - 1;
1890    strncpy(buf, s, n);
1891    buf[n] = '\0';
1892    return n;
1893  }
1894
1895  return 0;
1896}
1897
1898int os::get_last_error() {
1899  DWORD error = GetLastError();
1900  if (error == 0) {
1901    error = errno;
1902  }
1903  return (int)error;
1904}
1905
1906// sun.misc.Signal
1907// NOTE that this is a workaround for an apparent kernel bug where if
1908// a signal handler for SIGBREAK is installed then that signal handler
1909// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1910// See bug 4416763.
1911static void (*sigbreakHandler)(int) = NULL;
1912
1913static void UserHandler(int sig, void *siginfo, void *context) {
1914  os::signal_notify(sig);
1915  // We need to reinstate the signal handler each time...
1916  os::signal(sig, (void*)UserHandler);
1917}
1918
1919void* os::user_handler() {
1920  return (void*) UserHandler;
1921}
1922
1923void* os::signal(int signal_number, void* handler) {
1924  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1925    void (*oldHandler)(int) = sigbreakHandler;
1926    sigbreakHandler = (void (*)(int)) handler;
1927    return (void*) oldHandler;
1928  } else {
1929    return (void*)::signal(signal_number, (void (*)(int))handler);
1930  }
1931}
1932
1933void os::signal_raise(int signal_number) {
1934  raise(signal_number);
1935}
1936
1937// The Win32 C runtime library maps all console control events other than ^C
1938// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1939// logoff, and shutdown events.  We therefore install our own console handler
1940// that raises SIGTERM for the latter cases.
1941//
1942static BOOL WINAPI consoleHandler(DWORD event) {
1943  switch (event) {
1944  case CTRL_C_EVENT:
1945    if (is_error_reported()) {
1946      // Ctrl-C is pressed during error reporting, likely because the error
1947      // handler fails to abort. Let VM die immediately.
1948      os::die();
1949    }
1950
1951    os::signal_raise(SIGINT);
1952    return TRUE;
1953    break;
1954  case CTRL_BREAK_EVENT:
1955    if (sigbreakHandler != NULL) {
1956      (*sigbreakHandler)(SIGBREAK);
1957    }
1958    return TRUE;
1959    break;
1960  case CTRL_LOGOFF_EVENT: {
1961    // Don't terminate JVM if it is running in a non-interactive session,
1962    // such as a service process.
1963    USEROBJECTFLAGS flags;
1964    HANDLE handle = GetProcessWindowStation();
1965    if (handle != NULL &&
1966        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1967        sizeof(USEROBJECTFLAGS), NULL)) {
1968      // If it is a non-interactive session, let next handler to deal
1969      // with it.
1970      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1971        return FALSE;
1972      }
1973    }
1974  }
1975  case CTRL_CLOSE_EVENT:
1976  case CTRL_SHUTDOWN_EVENT:
1977    os::signal_raise(SIGTERM);
1978    return TRUE;
1979    break;
1980  default:
1981    break;
1982  }
1983  return FALSE;
1984}
1985
1986// The following code is moved from os.cpp for making this
1987// code platform specific, which it is by its very nature.
1988
1989// Return maximum OS signal used + 1 for internal use only
1990// Used as exit signal for signal_thread
1991int os::sigexitnum_pd() {
1992  return NSIG;
1993}
1994
1995// a counter for each possible signal value, including signal_thread exit signal
1996static volatile jint pending_signals[NSIG+1] = { 0 };
1997static HANDLE sig_sem = NULL;
1998
1999void os::signal_init_pd() {
2000  // Initialize signal structures
2001  memset((void*)pending_signals, 0, sizeof(pending_signals));
2002
2003  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2004
2005  // Programs embedding the VM do not want it to attempt to receive
2006  // events like CTRL_LOGOFF_EVENT, which are used to implement the
2007  // shutdown hooks mechanism introduced in 1.3.  For example, when
2008  // the VM is run as part of a Windows NT service (i.e., a servlet
2009  // engine in a web server), the correct behavior is for any console
2010  // control handler to return FALSE, not TRUE, because the OS's
2011  // "final" handler for such events allows the process to continue if
2012  // it is a service (while terminating it if it is not a service).
2013  // To make this behavior uniform and the mechanism simpler, we
2014  // completely disable the VM's usage of these console events if -Xrs
2015  // (=ReduceSignalUsage) is specified.  This means, for example, that
2016  // the CTRL-BREAK thread dump mechanism is also disabled in this
2017  // case.  See bugs 4323062, 4345157, and related bugs.
2018
2019  if (!ReduceSignalUsage) {
2020    // Add a CTRL-C handler
2021    SetConsoleCtrlHandler(consoleHandler, TRUE);
2022  }
2023}
2024
2025void os::signal_notify(int signal_number) {
2026  BOOL ret;
2027  if (sig_sem != NULL) {
2028    Atomic::inc(&pending_signals[signal_number]);
2029    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2030    assert(ret != 0, "ReleaseSemaphore() failed");
2031  }
2032}
2033
2034static int check_pending_signals(bool wait_for_signal) {
2035  DWORD ret;
2036  while (true) {
2037    for (int i = 0; i < NSIG + 1; i++) {
2038      jint n = pending_signals[i];
2039      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2040        return i;
2041      }
2042    }
2043    if (!wait_for_signal) {
2044      return -1;
2045    }
2046
2047    JavaThread *thread = JavaThread::current();
2048
2049    ThreadBlockInVM tbivm(thread);
2050
2051    bool threadIsSuspended;
2052    do {
2053      thread->set_suspend_equivalent();
2054      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2055      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2056      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2057
2058      // were we externally suspended while we were waiting?
2059      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2060      if (threadIsSuspended) {
2061        // The semaphore has been incremented, but while we were waiting
2062        // another thread suspended us. We don't want to continue running
2063        // while suspended because that would surprise the thread that
2064        // suspended us.
2065        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2066        assert(ret != 0, "ReleaseSemaphore() failed");
2067
2068        thread->java_suspend_self();
2069      }
2070    } while (threadIsSuspended);
2071  }
2072}
2073
2074int os::signal_lookup() {
2075  return check_pending_signals(false);
2076}
2077
2078int os::signal_wait() {
2079  return check_pending_signals(true);
2080}
2081
2082// Implicit OS exception handling
2083
2084LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2085                      address handler) {
2086  JavaThread* thread = JavaThread::current();
2087  // Save pc in thread
2088#ifdef _M_IA64
2089  // Do not blow up if no thread info available.
2090  if (thread) {
2091    // Saving PRECISE pc (with slot information) in thread.
2092    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2093    // Convert precise PC into "Unix" format
2094    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2095    thread->set_saved_exception_pc((address)precise_pc);
2096  }
2097  // Set pc to handler
2098  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2099  // Clear out psr.ri (= Restart Instruction) in order to continue
2100  // at the beginning of the target bundle.
2101  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2102  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2103#elif _M_AMD64
2104  // Do not blow up if no thread info available.
2105  if (thread) {
2106    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2107  }
2108  // Set pc to handler
2109  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2110#else
2111  // Do not blow up if no thread info available.
2112  if (thread) {
2113    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2114  }
2115  // Set pc to handler
2116  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2117#endif
2118
2119  // Continue the execution
2120  return EXCEPTION_CONTINUE_EXECUTION;
2121}
2122
2123
2124// Used for PostMortemDump
2125extern "C" void safepoints();
2126extern "C" void find(int x);
2127extern "C" void events();
2128
2129// According to Windows API documentation, an illegal instruction sequence should generate
2130// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2131// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2132// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2133
2134#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2135
2136// From "Execution Protection in the Windows Operating System" draft 0.35
2137// Once a system header becomes available, the "real" define should be
2138// included or copied here.
2139#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2140
2141// Handle NAT Bit consumption on IA64.
2142#ifdef _M_IA64
2143  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2144#endif
2145
2146// Windows Vista/2008 heap corruption check
2147#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2148
2149#define def_excpt(val) #val, val
2150
2151struct siglabel {
2152  char *name;
2153  int   number;
2154};
2155
2156// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2157// C++ compiler contain this error code. Because this is a compiler-generated
2158// error, the code is not listed in the Win32 API header files.
2159// The code is actually a cryptic mnemonic device, with the initial "E"
2160// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2161// ASCII values of "msc".
2162
2163#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2164
2165
2166struct siglabel exceptlabels[] = {
2167    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2168    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2169    def_excpt(EXCEPTION_BREAKPOINT),
2170    def_excpt(EXCEPTION_SINGLE_STEP),
2171    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2172    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2173    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2174    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2175    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2176    def_excpt(EXCEPTION_FLT_OVERFLOW),
2177    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2178    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2179    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2180    def_excpt(EXCEPTION_INT_OVERFLOW),
2181    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2182    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2183    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2184    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2185    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2186    def_excpt(EXCEPTION_STACK_OVERFLOW),
2187    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2188    def_excpt(EXCEPTION_GUARD_PAGE),
2189    def_excpt(EXCEPTION_INVALID_HANDLE),
2190    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2191    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2192#ifdef _M_IA64
2193    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2194#endif
2195    NULL, 0
2196};
2197
2198const char* os::exception_name(int exception_code, char *buf, size_t size) {
2199  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2200    if (exceptlabels[i].number == exception_code) {
2201      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2202      return buf;
2203    }
2204  }
2205
2206  return NULL;
2207}
2208
2209//-----------------------------------------------------------------------------
2210LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2211  // handle exception caused by idiv; should only happen for -MinInt/-1
2212  // (division by zero is handled explicitly)
2213#ifdef _M_IA64
2214  assert(0, "Fix Handle_IDiv_Exception");
2215#elif _M_AMD64
2216  PCONTEXT ctx = exceptionInfo->ContextRecord;
2217  address pc = (address)ctx->Rip;
2218  assert(pc[0] == 0xF7, "not an idiv opcode");
2219  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2220  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2221  // set correct result values and continue after idiv instruction
2222  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2223  ctx->Rax = (DWORD)min_jint;      // result
2224  ctx->Rdx = (DWORD)0;             // remainder
2225  // Continue the execution
2226#else
2227  PCONTEXT ctx = exceptionInfo->ContextRecord;
2228  address pc = (address)ctx->Eip;
2229  assert(pc[0] == 0xF7, "not an idiv opcode");
2230  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2231  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2232  // set correct result values and continue after idiv instruction
2233  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2234  ctx->Eax = (DWORD)min_jint;      // result
2235  ctx->Edx = (DWORD)0;             // remainder
2236  // Continue the execution
2237#endif
2238  return EXCEPTION_CONTINUE_EXECUTION;
2239}
2240
2241//-----------------------------------------------------------------------------
2242LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2243  PCONTEXT ctx = exceptionInfo->ContextRecord;
2244#ifndef  _WIN64
2245  // handle exception caused by native method modifying control word
2246  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2247
2248  switch (exception_code) {
2249  case EXCEPTION_FLT_DENORMAL_OPERAND:
2250  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2251  case EXCEPTION_FLT_INEXACT_RESULT:
2252  case EXCEPTION_FLT_INVALID_OPERATION:
2253  case EXCEPTION_FLT_OVERFLOW:
2254  case EXCEPTION_FLT_STACK_CHECK:
2255  case EXCEPTION_FLT_UNDERFLOW:
2256    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2257    if (fp_control_word != ctx->FloatSave.ControlWord) {
2258      // Restore FPCW and mask out FLT exceptions
2259      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2260      // Mask out pending FLT exceptions
2261      ctx->FloatSave.StatusWord &=  0xffffff00;
2262      return EXCEPTION_CONTINUE_EXECUTION;
2263    }
2264  }
2265
2266  if (prev_uef_handler != NULL) {
2267    // We didn't handle this exception so pass it to the previous
2268    // UnhandledExceptionFilter.
2269    return (prev_uef_handler)(exceptionInfo);
2270  }
2271#else // !_WIN64
2272  // On Windows, the mxcsr control bits are non-volatile across calls
2273  // See also CR 6192333
2274  //
2275  jint MxCsr = INITIAL_MXCSR;
2276  // we can't use StubRoutines::addr_mxcsr_std()
2277  // because in Win64 mxcsr is not saved there
2278  if (MxCsr != ctx->MxCsr) {
2279    ctx->MxCsr = MxCsr;
2280    return EXCEPTION_CONTINUE_EXECUTION;
2281  }
2282#endif // !_WIN64
2283
2284  return EXCEPTION_CONTINUE_SEARCH;
2285}
2286
2287static inline void report_error(Thread* t, DWORD exception_code,
2288                                address addr, void* siginfo, void* context) {
2289  VMError err(t, exception_code, addr, siginfo, context);
2290  err.report_and_die();
2291
2292  // If UseOsErrorReporting, this will return here and save the error file
2293  // somewhere where we can find it in the minidump.
2294}
2295
2296//-----------------------------------------------------------------------------
2297LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2298  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2299  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2300#ifdef _M_IA64
2301  // On Itanium, we need the "precise pc", which has the slot number coded
2302  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2303  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2304  // Convert the pc to "Unix format", which has the slot number coded
2305  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2306  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2307  // information is saved in the Unix format.
2308  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2309#elif _M_AMD64
2310  address pc = (address) exceptionInfo->ContextRecord->Rip;
2311#else
2312  address pc = (address) exceptionInfo->ContextRecord->Eip;
2313#endif
2314  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2315
2316  // Handle SafeFetch32 and SafeFetchN exceptions.
2317  if (StubRoutines::is_safefetch_fault(pc)) {
2318    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2319  }
2320
2321#ifndef _WIN64
2322  // Execution protection violation - win32 running on AMD64 only
2323  // Handled first to avoid misdiagnosis as a "normal" access violation;
2324  // This is safe to do because we have a new/unique ExceptionInformation
2325  // code for this condition.
2326  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2327    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2328    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2329    address addr = (address) exceptionRecord->ExceptionInformation[1];
2330
2331    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2332      int page_size = os::vm_page_size();
2333
2334      // Make sure the pc and the faulting address are sane.
2335      //
2336      // If an instruction spans a page boundary, and the page containing
2337      // the beginning of the instruction is executable but the following
2338      // page is not, the pc and the faulting address might be slightly
2339      // different - we still want to unguard the 2nd page in this case.
2340      //
2341      // 15 bytes seems to be a (very) safe value for max instruction size.
2342      bool pc_is_near_addr =
2343        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2344      bool instr_spans_page_boundary =
2345        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2346                         (intptr_t) page_size) > 0);
2347
2348      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2349        static volatile address last_addr =
2350          (address) os::non_memory_address_word();
2351
2352        // In conservative mode, don't unguard unless the address is in the VM
2353        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2354            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2355
2356          // Set memory to RWX and retry
2357          address page_start =
2358            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2359          bool res = os::protect_memory((char*) page_start, page_size,
2360                                        os::MEM_PROT_RWX);
2361
2362          if (PrintMiscellaneous && Verbose) {
2363            char buf[256];
2364            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2365                         "at " INTPTR_FORMAT
2366                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2367                         page_start, (res ? "success" : strerror(errno)));
2368            tty->print_raw_cr(buf);
2369          }
2370
2371          // Set last_addr so if we fault again at the same address, we don't
2372          // end up in an endless loop.
2373          //
2374          // There are two potential complications here.  Two threads trapping
2375          // at the same address at the same time could cause one of the
2376          // threads to think it already unguarded, and abort the VM.  Likely
2377          // very rare.
2378          //
2379          // The other race involves two threads alternately trapping at
2380          // different addresses and failing to unguard the page, resulting in
2381          // an endless loop.  This condition is probably even more unlikely
2382          // than the first.
2383          //
2384          // Although both cases could be avoided by using locks or thread
2385          // local last_addr, these solutions are unnecessary complication:
2386          // this handler is a best-effort safety net, not a complete solution.
2387          // It is disabled by default and should only be used as a workaround
2388          // in case we missed any no-execute-unsafe VM code.
2389
2390          last_addr = addr;
2391
2392          return EXCEPTION_CONTINUE_EXECUTION;
2393        }
2394      }
2395
2396      // Last unguard failed or not unguarding
2397      tty->print_raw_cr("Execution protection violation");
2398      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2399                   exceptionInfo->ContextRecord);
2400      return EXCEPTION_CONTINUE_SEARCH;
2401    }
2402  }
2403#endif // _WIN64
2404
2405  // Check to see if we caught the safepoint code in the
2406  // process of write protecting the memory serialization page.
2407  // It write enables the page immediately after protecting it
2408  // so just return.
2409  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2410    JavaThread* thread = (JavaThread*) t;
2411    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2412    address addr = (address) exceptionRecord->ExceptionInformation[1];
2413    if (os::is_memory_serialize_page(thread, addr)) {
2414      // Block current thread until the memory serialize page permission restored.
2415      os::block_on_serialize_page_trap();
2416      return EXCEPTION_CONTINUE_EXECUTION;
2417    }
2418  }
2419
2420  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2421      VM_Version::is_cpuinfo_segv_addr(pc)) {
2422    // Verify that OS save/restore AVX registers.
2423    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2424  }
2425
2426  if (t != NULL && t->is_Java_thread()) {
2427    JavaThread* thread = (JavaThread*) t;
2428    bool in_java = thread->thread_state() == _thread_in_Java;
2429
2430    // Handle potential stack overflows up front.
2431    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2432      if (os::uses_stack_guard_pages()) {
2433#ifdef _M_IA64
2434        // Use guard page for register stack.
2435        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2436        address addr = (address) exceptionRecord->ExceptionInformation[1];
2437        // Check for a register stack overflow on Itanium
2438        if (thread->addr_inside_register_stack_red_zone(addr)) {
2439          // Fatal red zone violation happens if the Java program
2440          // catches a StackOverflow error and does so much processing
2441          // that it runs beyond the unprotected yellow guard zone. As
2442          // a result, we are out of here.
2443          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2444        } else if(thread->addr_inside_register_stack(addr)) {
2445          // Disable the yellow zone which sets the state that
2446          // we've got a stack overflow problem.
2447          if (thread->stack_yellow_zone_enabled()) {
2448            thread->disable_stack_yellow_zone();
2449          }
2450          // Give us some room to process the exception.
2451          thread->disable_register_stack_guard();
2452          // Tracing with +Verbose.
2453          if (Verbose) {
2454            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2455            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2456            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2457            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2458                          thread->register_stack_base(),
2459                          thread->register_stack_base() + thread->stack_size());
2460          }
2461
2462          // Reguard the permanent register stack red zone just to be sure.
2463          // We saw Windows silently disabling this without telling us.
2464          thread->enable_register_stack_red_zone();
2465
2466          return Handle_Exception(exceptionInfo,
2467                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2468        }
2469#endif
2470        if (thread->stack_yellow_zone_enabled()) {
2471          // Yellow zone violation.  The o/s has unprotected the first yellow
2472          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2473          // update the enabled status, even if the zone contains only one page.
2474          thread->disable_stack_yellow_zone();
2475          // If not in java code, return and hope for the best.
2476          return in_java
2477              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2478              :  EXCEPTION_CONTINUE_EXECUTION;
2479        } else {
2480          // Fatal red zone violation.
2481          thread->disable_stack_red_zone();
2482          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2483          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2484                       exceptionInfo->ContextRecord);
2485          return EXCEPTION_CONTINUE_SEARCH;
2486        }
2487      } else if (in_java) {
2488        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2489        // a one-time-only guard page, which it has released to us.  The next
2490        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2491        return Handle_Exception(exceptionInfo,
2492                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2493      } else {
2494        // Can only return and hope for the best.  Further stack growth will
2495        // result in an ACCESS_VIOLATION.
2496        return EXCEPTION_CONTINUE_EXECUTION;
2497      }
2498    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2499      // Either stack overflow or null pointer exception.
2500      if (in_java) {
2501        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2502        address addr = (address) exceptionRecord->ExceptionInformation[1];
2503        address stack_end = thread->stack_base() - thread->stack_size();
2504        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2505          // Stack overflow.
2506          assert(!os::uses_stack_guard_pages(),
2507                 "should be caught by red zone code above.");
2508          return Handle_Exception(exceptionInfo,
2509                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2510        }
2511        // Check for safepoint polling and implicit null
2512        // We only expect null pointers in the stubs (vtable)
2513        // the rest are checked explicitly now.
2514        CodeBlob* cb = CodeCache::find_blob(pc);
2515        if (cb != NULL) {
2516          if (os::is_poll_address(addr)) {
2517            address stub = SharedRuntime::get_poll_stub(pc);
2518            return Handle_Exception(exceptionInfo, stub);
2519          }
2520        }
2521        {
2522#ifdef _WIN64
2523          // If it's a legal stack address map the entire region in
2524          //
2525          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2526          address addr = (address) exceptionRecord->ExceptionInformation[1];
2527          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2528            addr = (address)((uintptr_t)addr &
2529                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2530            os::commit_memory((char *)addr, thread->stack_base() - addr,
2531                              !ExecMem);
2532            return EXCEPTION_CONTINUE_EXECUTION;
2533          } else
2534#endif
2535          {
2536            // Null pointer exception.
2537#ifdef _M_IA64
2538            // Process implicit null checks in compiled code. Note: Implicit null checks
2539            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2540            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2541              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2542              // Handle implicit null check in UEP method entry
2543              if (cb && (cb->is_frame_complete_at(pc) ||
2544                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2545                if (Verbose) {
2546                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2547                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2548                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2549                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2550                                *(bundle_start + 1), *bundle_start);
2551                }
2552                return Handle_Exception(exceptionInfo,
2553                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2554              }
2555            }
2556
2557            // Implicit null checks were processed above.  Hence, we should not reach
2558            // here in the usual case => die!
2559            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2560            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2561                         exceptionInfo->ContextRecord);
2562            return EXCEPTION_CONTINUE_SEARCH;
2563
2564#else // !IA64
2565
2566            // Windows 98 reports faulting addresses incorrectly
2567            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2568                !os::win32::is_nt()) {
2569              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2570              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2571            }
2572            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2573                         exceptionInfo->ContextRecord);
2574            return EXCEPTION_CONTINUE_SEARCH;
2575#endif
2576          }
2577        }
2578      }
2579
2580#ifdef _WIN64
2581      // Special care for fast JNI field accessors.
2582      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2583      // in and the heap gets shrunk before the field access.
2584      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2585        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2586        if (addr != (address)-1) {
2587          return Handle_Exception(exceptionInfo, addr);
2588        }
2589      }
2590#endif
2591
2592      // Stack overflow or null pointer exception in native code.
2593      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2594                   exceptionInfo->ContextRecord);
2595      return EXCEPTION_CONTINUE_SEARCH;
2596    } // /EXCEPTION_ACCESS_VIOLATION
2597    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2598#if defined _M_IA64
2599    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2600              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2601      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2602
2603      // Compiled method patched to be non entrant? Following conditions must apply:
2604      // 1. must be first instruction in bundle
2605      // 2. must be a break instruction with appropriate code
2606      if ((((uint64_t) pc & 0x0F) == 0) &&
2607          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2608        return Handle_Exception(exceptionInfo,
2609                                (address)SharedRuntime::get_handle_wrong_method_stub());
2610      }
2611    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2612#endif
2613
2614
2615    if (in_java) {
2616      switch (exception_code) {
2617      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2618        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2619
2620      case EXCEPTION_INT_OVERFLOW:
2621        return Handle_IDiv_Exception(exceptionInfo);
2622
2623      } // switch
2624    }
2625    if (((thread->thread_state() == _thread_in_Java) ||
2626         (thread->thread_state() == _thread_in_native)) &&
2627         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2628      LONG result=Handle_FLT_Exception(exceptionInfo);
2629      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2630    }
2631  }
2632
2633  if (exception_code != EXCEPTION_BREAKPOINT) {
2634    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2635                 exceptionInfo->ContextRecord);
2636  }
2637  return EXCEPTION_CONTINUE_SEARCH;
2638}
2639
2640#ifndef _WIN64
2641// Special care for fast JNI accessors.
2642// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2643// the heap gets shrunk before the field access.
2644// Need to install our own structured exception handler since native code may
2645// install its own.
2646LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2647  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2648  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2649    address pc = (address) exceptionInfo->ContextRecord->Eip;
2650    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2651    if (addr != (address)-1) {
2652      return Handle_Exception(exceptionInfo, addr);
2653    }
2654  }
2655  return EXCEPTION_CONTINUE_SEARCH;
2656}
2657
2658#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2659  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2660                                                     jobject obj,           \
2661                                                     jfieldID fieldID) {    \
2662    __try {                                                                 \
2663      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2664                                                                 obj,       \
2665                                                                 fieldID);  \
2666    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2667                                              _exception_info())) {         \
2668    }                                                                       \
2669    return 0;                                                               \
2670  }
2671
2672DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2673DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2674DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2675DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2676DEFINE_FAST_GETFIELD(jint,     int,    Int)
2677DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2678DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2679DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2680
2681address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2682  switch (type) {
2683  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2684  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2685  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2686  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2687  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2688  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2689  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2690  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2691  default:        ShouldNotReachHere();
2692  }
2693  return (address)-1;
2694}
2695#endif
2696
2697void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2698  // Install a win32 structured exception handler around the test
2699  // function call so the VM can generate an error dump if needed.
2700  __try {
2701    (*funcPtr)();
2702  } __except(topLevelExceptionFilter(
2703                                     (_EXCEPTION_POINTERS*)_exception_info())) {
2704    // Nothing to do.
2705  }
2706}
2707
2708// Virtual Memory
2709
2710int os::vm_page_size() { return os::win32::vm_page_size(); }
2711int os::vm_allocation_granularity() {
2712  return os::win32::vm_allocation_granularity();
2713}
2714
2715// Windows large page support is available on Windows 2003. In order to use
2716// large page memory, the administrator must first assign additional privilege
2717// to the user:
2718//   + select Control Panel -> Administrative Tools -> Local Security Policy
2719//   + select Local Policies -> User Rights Assignment
2720//   + double click "Lock pages in memory", add users and/or groups
2721//   + reboot
2722// Note the above steps are needed for administrator as well, as administrators
2723// by default do not have the privilege to lock pages in memory.
2724//
2725// Note about Windows 2003: although the API supports committing large page
2726// memory on a page-by-page basis and VirtualAlloc() returns success under this
2727// scenario, I found through experiment it only uses large page if the entire
2728// memory region is reserved and committed in a single VirtualAlloc() call.
2729// This makes Windows large page support more or less like Solaris ISM, in
2730// that the entire heap must be committed upfront. This probably will change
2731// in the future, if so the code below needs to be revisited.
2732
2733#ifndef MEM_LARGE_PAGES
2734  #define MEM_LARGE_PAGES 0x20000000
2735#endif
2736
2737static HANDLE    _hProcess;
2738static HANDLE    _hToken;
2739
2740// Container for NUMA node list info
2741class NUMANodeListHolder {
2742 private:
2743  int *_numa_used_node_list;  // allocated below
2744  int _numa_used_node_count;
2745
2746  void free_node_list() {
2747    if (_numa_used_node_list != NULL) {
2748      FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2749    }
2750  }
2751
2752 public:
2753  NUMANodeListHolder() {
2754    _numa_used_node_count = 0;
2755    _numa_used_node_list = NULL;
2756    // do rest of initialization in build routine (after function pointers are set up)
2757  }
2758
2759  ~NUMANodeListHolder() {
2760    free_node_list();
2761  }
2762
2763  bool build() {
2764    DWORD_PTR proc_aff_mask;
2765    DWORD_PTR sys_aff_mask;
2766    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2767    ULONG highest_node_number;
2768    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2769    free_node_list();
2770    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2771    for (unsigned int i = 0; i <= highest_node_number; i++) {
2772      ULONGLONG proc_mask_numa_node;
2773      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2774      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2775        _numa_used_node_list[_numa_used_node_count++] = i;
2776      }
2777    }
2778    return (_numa_used_node_count > 1);
2779  }
2780
2781  int get_count() { return _numa_used_node_count; }
2782  int get_node_list_entry(int n) {
2783    // for indexes out of range, returns -1
2784    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2785  }
2786
2787} numa_node_list_holder;
2788
2789
2790
2791static size_t _large_page_size = 0;
2792
2793static bool resolve_functions_for_large_page_init() {
2794  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2795    os::Advapi32Dll::AdvapiAvailable();
2796}
2797
2798static bool request_lock_memory_privilege() {
2799  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2800                          os::current_process_id());
2801
2802  LUID luid;
2803  if (_hProcess != NULL &&
2804      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2805      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2806
2807    TOKEN_PRIVILEGES tp;
2808    tp.PrivilegeCount = 1;
2809    tp.Privileges[0].Luid = luid;
2810    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2811
2812    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2813    // privilege. Check GetLastError() too. See MSDN document.
2814    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2815        (GetLastError() == ERROR_SUCCESS)) {
2816      return true;
2817    }
2818  }
2819
2820  return false;
2821}
2822
2823static void cleanup_after_large_page_init() {
2824  if (_hProcess) CloseHandle(_hProcess);
2825  _hProcess = NULL;
2826  if (_hToken) CloseHandle(_hToken);
2827  _hToken = NULL;
2828}
2829
2830static bool numa_interleaving_init() {
2831  bool success = false;
2832  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2833
2834  // print a warning if UseNUMAInterleaving flag is specified on command line
2835  bool warn_on_failure = use_numa_interleaving_specified;
2836#define WARN(msg) if (warn_on_failure) { warning(msg); }
2837
2838  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2839  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2840  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2841
2842  if (os::Kernel32Dll::NumaCallsAvailable()) {
2843    if (numa_node_list_holder.build()) {
2844      if (PrintMiscellaneous && Verbose) {
2845        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2846        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2847          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2848        }
2849        tty->print("\n");
2850      }
2851      success = true;
2852    } else {
2853      WARN("Process does not cover multiple NUMA nodes.");
2854    }
2855  } else {
2856    WARN("NUMA Interleaving is not supported by the operating system.");
2857  }
2858  if (!success) {
2859    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2860  }
2861  return success;
2862#undef WARN
2863}
2864
2865// this routine is used whenever we need to reserve a contiguous VA range
2866// but we need to make separate VirtualAlloc calls for each piece of the range
2867// Reasons for doing this:
2868//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2869//  * UseNUMAInterleaving requires a separate node for each piece
2870static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2871                                         DWORD prot,
2872                                         bool should_inject_error = false) {
2873  char * p_buf;
2874  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2875  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2876  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2877
2878  // first reserve enough address space in advance since we want to be
2879  // able to break a single contiguous virtual address range into multiple
2880  // large page commits but WS2003 does not allow reserving large page space
2881  // so we just use 4K pages for reserve, this gives us a legal contiguous
2882  // address space. then we will deallocate that reservation, and re alloc
2883  // using large pages
2884  const size_t size_of_reserve = bytes + chunk_size;
2885  if (bytes > size_of_reserve) {
2886    // Overflowed.
2887    return NULL;
2888  }
2889  p_buf = (char *) VirtualAlloc(addr,
2890                                size_of_reserve,  // size of Reserve
2891                                MEM_RESERVE,
2892                                PAGE_READWRITE);
2893  // If reservation failed, return NULL
2894  if (p_buf == NULL) return NULL;
2895  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2896  os::release_memory(p_buf, bytes + chunk_size);
2897
2898  // we still need to round up to a page boundary (in case we are using large pages)
2899  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2900  // instead we handle this in the bytes_to_rq computation below
2901  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2902
2903  // now go through and allocate one chunk at a time until all bytes are
2904  // allocated
2905  size_t  bytes_remaining = bytes;
2906  // An overflow of align_size_up() would have been caught above
2907  // in the calculation of size_of_reserve.
2908  char * next_alloc_addr = p_buf;
2909  HANDLE hProc = GetCurrentProcess();
2910
2911#ifdef ASSERT
2912  // Variable for the failure injection
2913  long ran_num = os::random();
2914  size_t fail_after = ran_num % bytes;
2915#endif
2916
2917  int count=0;
2918  while (bytes_remaining) {
2919    // select bytes_to_rq to get to the next chunk_size boundary
2920
2921    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2922    // Note allocate and commit
2923    char * p_new;
2924
2925#ifdef ASSERT
2926    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2927#else
2928    const bool inject_error_now = false;
2929#endif
2930
2931    if (inject_error_now) {
2932      p_new = NULL;
2933    } else {
2934      if (!UseNUMAInterleaving) {
2935        p_new = (char *) VirtualAlloc(next_alloc_addr,
2936                                      bytes_to_rq,
2937                                      flags,
2938                                      prot);
2939      } else {
2940        // get the next node to use from the used_node_list
2941        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2942        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2943        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2944                                                            next_alloc_addr,
2945                                                            bytes_to_rq,
2946                                                            flags,
2947                                                            prot,
2948                                                            node);
2949      }
2950    }
2951
2952    if (p_new == NULL) {
2953      // Free any allocated pages
2954      if (next_alloc_addr > p_buf) {
2955        // Some memory was committed so release it.
2956        size_t bytes_to_release = bytes - bytes_remaining;
2957        // NMT has yet to record any individual blocks, so it
2958        // need to create a dummy 'reserve' record to match
2959        // the release.
2960        MemTracker::record_virtual_memory_reserve((address)p_buf,
2961                                                  bytes_to_release, CALLER_PC);
2962        os::release_memory(p_buf, bytes_to_release);
2963      }
2964#ifdef ASSERT
2965      if (should_inject_error) {
2966        if (TracePageSizes && Verbose) {
2967          tty->print_cr("Reserving pages individually failed.");
2968        }
2969      }
2970#endif
2971      return NULL;
2972    }
2973
2974    bytes_remaining -= bytes_to_rq;
2975    next_alloc_addr += bytes_to_rq;
2976    count++;
2977  }
2978  // Although the memory is allocated individually, it is returned as one.
2979  // NMT records it as one block.
2980  if ((flags & MEM_COMMIT) != 0) {
2981    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2982  } else {
2983    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2984  }
2985
2986  // made it this far, success
2987  return p_buf;
2988}
2989
2990
2991
2992void os::large_page_init() {
2993  if (!UseLargePages) return;
2994
2995  // print a warning if any large page related flag is specified on command line
2996  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2997                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2998  bool success = false;
2999
3000#define WARN(msg) if (warn_on_failure) { warning(msg); }
3001  if (resolve_functions_for_large_page_init()) {
3002    if (request_lock_memory_privilege()) {
3003      size_t s = os::Kernel32Dll::GetLargePageMinimum();
3004      if (s) {
3005#if defined(IA32) || defined(AMD64)
3006        if (s > 4*M || LargePageSizeInBytes > 4*M) {
3007          WARN("JVM cannot use large pages bigger than 4mb.");
3008        } else {
3009#endif
3010          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3011            _large_page_size = LargePageSizeInBytes;
3012          } else {
3013            _large_page_size = s;
3014          }
3015          success = true;
3016#if defined(IA32) || defined(AMD64)
3017        }
3018#endif
3019      } else {
3020        WARN("Large page is not supported by the processor.");
3021      }
3022    } else {
3023      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3024    }
3025  } else {
3026    WARN("Large page is not supported by the operating system.");
3027  }
3028#undef WARN
3029
3030  const size_t default_page_size = (size_t) vm_page_size();
3031  if (success && _large_page_size > default_page_size) {
3032    _page_sizes[0] = _large_page_size;
3033    _page_sizes[1] = default_page_size;
3034    _page_sizes[2] = 0;
3035  }
3036
3037  cleanup_after_large_page_init();
3038  UseLargePages = success;
3039}
3040
3041// On win32, one cannot release just a part of reserved memory, it's an
3042// all or nothing deal.  When we split a reservation, we must break the
3043// reservation into two reservations.
3044void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3045                                  bool realloc) {
3046  if (size > 0) {
3047    release_memory(base, size);
3048    if (realloc) {
3049      reserve_memory(split, base);
3050    }
3051    if (size != split) {
3052      reserve_memory(size - split, base + split);
3053    }
3054  }
3055}
3056
3057// Multiple threads can race in this code but it's not possible to unmap small sections of
3058// virtual space to get requested alignment, like posix-like os's.
3059// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3060char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3061  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3062         "Alignment must be a multiple of allocation granularity (page size)");
3063  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3064
3065  size_t extra_size = size + alignment;
3066  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3067
3068  char* aligned_base = NULL;
3069
3070  do {
3071    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3072    if (extra_base == NULL) {
3073      return NULL;
3074    }
3075    // Do manual alignment
3076    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3077
3078    os::release_memory(extra_base, extra_size);
3079
3080    aligned_base = os::reserve_memory(size, aligned_base);
3081
3082  } while (aligned_base == NULL);
3083
3084  return aligned_base;
3085}
3086
3087char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3088  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3089         "reserve alignment");
3090  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3091  char* res;
3092  // note that if UseLargePages is on, all the areas that require interleaving
3093  // will go thru reserve_memory_special rather than thru here.
3094  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3095  if (!use_individual) {
3096    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3097  } else {
3098    elapsedTimer reserveTimer;
3099    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3100    // in numa interleaving, we have to allocate pages individually
3101    // (well really chunks of NUMAInterleaveGranularity size)
3102    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3103    if (res == NULL) {
3104      warning("NUMA page allocation failed");
3105    }
3106    if (Verbose && PrintMiscellaneous) {
3107      reserveTimer.stop();
3108      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3109                    reserveTimer.milliseconds(), reserveTimer.ticks());
3110    }
3111  }
3112  assert(res == NULL || addr == NULL || addr == res,
3113         "Unexpected address from reserve.");
3114
3115  return res;
3116}
3117
3118// Reserve memory at an arbitrary address, only if that area is
3119// available (and not reserved for something else).
3120char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3121  // Windows os::reserve_memory() fails of the requested address range is
3122  // not avilable.
3123  return reserve_memory(bytes, requested_addr);
3124}
3125
3126size_t os::large_page_size() {
3127  return _large_page_size;
3128}
3129
3130bool os::can_commit_large_page_memory() {
3131  // Windows only uses large page memory when the entire region is reserved
3132  // and committed in a single VirtualAlloc() call. This may change in the
3133  // future, but with Windows 2003 it's not possible to commit on demand.
3134  return false;
3135}
3136
3137bool os::can_execute_large_page_memory() {
3138  return true;
3139}
3140
3141char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3142                                 bool exec) {
3143  assert(UseLargePages, "only for large pages");
3144
3145  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3146    return NULL; // Fallback to small pages.
3147  }
3148
3149  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3150  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3151
3152  // with large pages, there are two cases where we need to use Individual Allocation
3153  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3154  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3155  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3156    if (TracePageSizes && Verbose) {
3157      tty->print_cr("Reserving large pages individually.");
3158    }
3159    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3160    if (p_buf == NULL) {
3161      // give an appropriate warning message
3162      if (UseNUMAInterleaving) {
3163        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3164      }
3165      if (UseLargePagesIndividualAllocation) {
3166        warning("Individually allocated large pages failed, "
3167                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3168      }
3169      return NULL;
3170    }
3171
3172    return p_buf;
3173
3174  } else {
3175    if (TracePageSizes && Verbose) {
3176      tty->print_cr("Reserving large pages in a single large chunk.");
3177    }
3178    // normal policy just allocate it all at once
3179    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3180    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3181    if (res != NULL) {
3182      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3183    }
3184
3185    return res;
3186  }
3187}
3188
3189bool os::release_memory_special(char* base, size_t bytes) {
3190  assert(base != NULL, "Sanity check");
3191  return release_memory(base, bytes);
3192}
3193
3194void os::print_statistics() {
3195}
3196
3197static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3198  int err = os::get_last_error();
3199  char buf[256];
3200  size_t buf_len = os::lasterror(buf, sizeof(buf));
3201  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3202          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3203          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3204}
3205
3206bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3207  if (bytes == 0) {
3208    // Don't bother the OS with noops.
3209    return true;
3210  }
3211  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3212  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3213  // Don't attempt to print anything if the OS call fails. We're
3214  // probably low on resources, so the print itself may cause crashes.
3215
3216  // unless we have NUMAInterleaving enabled, the range of a commit
3217  // is always within a reserve covered by a single VirtualAlloc
3218  // in that case we can just do a single commit for the requested size
3219  if (!UseNUMAInterleaving) {
3220    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3221      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3222      return false;
3223    }
3224    if (exec) {
3225      DWORD oldprot;
3226      // Windows doc says to use VirtualProtect to get execute permissions
3227      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3228        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3229        return false;
3230      }
3231    }
3232    return true;
3233  } else {
3234
3235    // when NUMAInterleaving is enabled, the commit might cover a range that
3236    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3237    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3238    // returns represents the number of bytes that can be committed in one step.
3239    size_t bytes_remaining = bytes;
3240    char * next_alloc_addr = addr;
3241    while (bytes_remaining > 0) {
3242      MEMORY_BASIC_INFORMATION alloc_info;
3243      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3244      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3245      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3246                       PAGE_READWRITE) == NULL) {
3247        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3248                                            exec);)
3249        return false;
3250      }
3251      if (exec) {
3252        DWORD oldprot;
3253        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3254                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3255          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3256                                              exec);)
3257          return false;
3258        }
3259      }
3260      bytes_remaining -= bytes_to_rq;
3261      next_alloc_addr += bytes_to_rq;
3262    }
3263  }
3264  // if we made it this far, return true
3265  return true;
3266}
3267
3268bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3269                          bool exec) {
3270  // alignment_hint is ignored on this OS
3271  return pd_commit_memory(addr, size, exec);
3272}
3273
3274void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3275                                  const char* mesg) {
3276  assert(mesg != NULL, "mesg must be specified");
3277  if (!pd_commit_memory(addr, size, exec)) {
3278    warn_fail_commit_memory(addr, size, exec);
3279    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3280  }
3281}
3282
3283void os::pd_commit_memory_or_exit(char* addr, size_t size,
3284                                  size_t alignment_hint, bool exec,
3285                                  const char* mesg) {
3286  // alignment_hint is ignored on this OS
3287  pd_commit_memory_or_exit(addr, size, exec, mesg);
3288}
3289
3290bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3291  if (bytes == 0) {
3292    // Don't bother the OS with noops.
3293    return true;
3294  }
3295  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3296  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3297  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3298}
3299
3300bool os::pd_release_memory(char* addr, size_t bytes) {
3301  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3302}
3303
3304bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3305  return os::commit_memory(addr, size, !ExecMem);
3306}
3307
3308bool os::remove_stack_guard_pages(char* addr, size_t size) {
3309  return os::uncommit_memory(addr, size);
3310}
3311
3312// Set protections specified
3313bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3314                        bool is_committed) {
3315  unsigned int p = 0;
3316  switch (prot) {
3317  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3318  case MEM_PROT_READ: p = PAGE_READONLY; break;
3319  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3320  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3321  default:
3322    ShouldNotReachHere();
3323  }
3324
3325  DWORD old_status;
3326
3327  // Strange enough, but on Win32 one can change protection only for committed
3328  // memory, not a big deal anyway, as bytes less or equal than 64K
3329  if (!is_committed) {
3330    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3331                          "cannot commit protection page");
3332  }
3333  // One cannot use os::guard_memory() here, as on Win32 guard page
3334  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3335  //
3336  // Pages in the region become guard pages. Any attempt to access a guard page
3337  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3338  // the guard page status. Guard pages thus act as a one-time access alarm.
3339  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3340}
3341
3342bool os::guard_memory(char* addr, size_t bytes) {
3343  DWORD old_status;
3344  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3345}
3346
3347bool os::unguard_memory(char* addr, size_t bytes) {
3348  DWORD old_status;
3349  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3350}
3351
3352void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3353void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3354void os::numa_make_global(char *addr, size_t bytes)    { }
3355void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3356bool os::numa_topology_changed()                       { return false; }
3357size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3358int os::numa_get_group_id()                            { return 0; }
3359size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3360  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3361    // Provide an answer for UMA systems
3362    ids[0] = 0;
3363    return 1;
3364  } else {
3365    // check for size bigger than actual groups_num
3366    size = MIN2(size, numa_get_groups_num());
3367    for (int i = 0; i < (int)size; i++) {
3368      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3369    }
3370    return size;
3371  }
3372}
3373
3374bool os::get_page_info(char *start, page_info* info) {
3375  return false;
3376}
3377
3378char *os::scan_pages(char *start, char* end, page_info* page_expected,
3379                     page_info* page_found) {
3380  return end;
3381}
3382
3383char* os::non_memory_address_word() {
3384  // Must never look like an address returned by reserve_memory,
3385  // even in its subfields (as defined by the CPU immediate fields,
3386  // if the CPU splits constants across multiple instructions).
3387  return (char*)-1;
3388}
3389
3390#define MAX_ERROR_COUNT 100
3391#define SYS_THREAD_ERROR 0xffffffffUL
3392
3393void os::pd_start_thread(Thread* thread) {
3394  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3395  // Returns previous suspend state:
3396  // 0:  Thread was not suspended
3397  // 1:  Thread is running now
3398  // >1: Thread is still suspended.
3399  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3400}
3401
3402class HighResolutionInterval : public CHeapObj<mtThread> {
3403  // The default timer resolution seems to be 10 milliseconds.
3404  // (Where is this written down?)
3405  // If someone wants to sleep for only a fraction of the default,
3406  // then we set the timer resolution down to 1 millisecond for
3407  // the duration of their interval.
3408  // We carefully set the resolution back, since otherwise we
3409  // seem to incur an overhead (3%?) that we don't need.
3410  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3411  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3412  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3413  // timeBeginPeriod() if the relative error exceeded some threshold.
3414  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3415  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3416  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3417  // resolution timers running.
3418 private:
3419  jlong resolution;
3420 public:
3421  HighResolutionInterval(jlong ms) {
3422    resolution = ms % 10L;
3423    if (resolution != 0) {
3424      MMRESULT result = timeBeginPeriod(1L);
3425    }
3426  }
3427  ~HighResolutionInterval() {
3428    if (resolution != 0) {
3429      MMRESULT result = timeEndPeriod(1L);
3430    }
3431    resolution = 0L;
3432  }
3433};
3434
3435int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3436  jlong limit = (jlong) MAXDWORD;
3437
3438  while (ms > limit) {
3439    int res;
3440    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3441      return res;
3442    }
3443    ms -= limit;
3444  }
3445
3446  assert(thread == Thread::current(), "thread consistency check");
3447  OSThread* osthread = thread->osthread();
3448  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3449  int result;
3450  if (interruptable) {
3451    assert(thread->is_Java_thread(), "must be java thread");
3452    JavaThread *jt = (JavaThread *) thread;
3453    ThreadBlockInVM tbivm(jt);
3454
3455    jt->set_suspend_equivalent();
3456    // cleared by handle_special_suspend_equivalent_condition() or
3457    // java_suspend_self() via check_and_wait_while_suspended()
3458
3459    HANDLE events[1];
3460    events[0] = osthread->interrupt_event();
3461    HighResolutionInterval *phri=NULL;
3462    if (!ForceTimeHighResolution) {
3463      phri = new HighResolutionInterval(ms);
3464    }
3465    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3466      result = OS_TIMEOUT;
3467    } else {
3468      ResetEvent(osthread->interrupt_event());
3469      osthread->set_interrupted(false);
3470      result = OS_INTRPT;
3471    }
3472    delete phri; //if it is NULL, harmless
3473
3474    // were we externally suspended while we were waiting?
3475    jt->check_and_wait_while_suspended();
3476  } else {
3477    assert(!thread->is_Java_thread(), "must not be java thread");
3478    Sleep((long) ms);
3479    result = OS_TIMEOUT;
3480  }
3481  return result;
3482}
3483
3484// Short sleep, direct OS call.
3485//
3486// ms = 0, means allow others (if any) to run.
3487//
3488void os::naked_short_sleep(jlong ms) {
3489  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3490  Sleep(ms);
3491}
3492
3493// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3494void os::infinite_sleep() {
3495  while (true) {    // sleep forever ...
3496    Sleep(100000);  // ... 100 seconds at a time
3497  }
3498}
3499
3500typedef BOOL (WINAPI * STTSignature)(void);
3501
3502void os::naked_yield() {
3503  // Use either SwitchToThread() or Sleep(0)
3504  // Consider passing back the return value from SwitchToThread().
3505  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3506    SwitchToThread();
3507  } else {
3508    Sleep(0);
3509  }
3510}
3511
3512// Win32 only gives you access to seven real priorities at a time,
3513// so we compress Java's ten down to seven.  It would be better
3514// if we dynamically adjusted relative priorities.
3515
3516int os::java_to_os_priority[CriticalPriority + 1] = {
3517  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3518  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3519  THREAD_PRIORITY_LOWEST,                       // 2
3520  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3521  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3522  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3523  THREAD_PRIORITY_NORMAL,                       // 6
3524  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3525  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3526  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3527  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3528  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3529};
3530
3531int prio_policy1[CriticalPriority + 1] = {
3532  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3533  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3534  THREAD_PRIORITY_LOWEST,                       // 2
3535  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3536  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3537  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3538  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3539  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3540  THREAD_PRIORITY_HIGHEST,                      // 8
3541  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3542  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3543  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3544};
3545
3546static int prio_init() {
3547  // If ThreadPriorityPolicy is 1, switch tables
3548  if (ThreadPriorityPolicy == 1) {
3549    int i;
3550    for (i = 0; i < CriticalPriority + 1; i++) {
3551      os::java_to_os_priority[i] = prio_policy1[i];
3552    }
3553  }
3554  if (UseCriticalJavaThreadPriority) {
3555    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3556  }
3557  return 0;
3558}
3559
3560OSReturn os::set_native_priority(Thread* thread, int priority) {
3561  if (!UseThreadPriorities) return OS_OK;
3562  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3563  return ret ? OS_OK : OS_ERR;
3564}
3565
3566OSReturn os::get_native_priority(const Thread* const thread,
3567                                 int* priority_ptr) {
3568  if (!UseThreadPriorities) {
3569    *priority_ptr = java_to_os_priority[NormPriority];
3570    return OS_OK;
3571  }
3572  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3573  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3574    assert(false, "GetThreadPriority failed");
3575    return OS_ERR;
3576  }
3577  *priority_ptr = os_prio;
3578  return OS_OK;
3579}
3580
3581
3582// Hint to the underlying OS that a task switch would not be good.
3583// Void return because it's a hint and can fail.
3584void os::hint_no_preempt() {}
3585
3586void os::interrupt(Thread* thread) {
3587  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3588         Threads_lock->owned_by_self(),
3589         "possibility of dangling Thread pointer");
3590
3591  OSThread* osthread = thread->osthread();
3592  osthread->set_interrupted(true);
3593  // More than one thread can get here with the same value of osthread,
3594  // resulting in multiple notifications.  We do, however, want the store
3595  // to interrupted() to be visible to other threads before we post
3596  // the interrupt event.
3597  OrderAccess::release();
3598  SetEvent(osthread->interrupt_event());
3599  // For JSR166:  unpark after setting status
3600  if (thread->is_Java_thread()) {
3601    ((JavaThread*)thread)->parker()->unpark();
3602  }
3603
3604  ParkEvent * ev = thread->_ParkEvent;
3605  if (ev != NULL) ev->unpark();
3606}
3607
3608
3609bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3610  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3611         "possibility of dangling Thread pointer");
3612
3613  OSThread* osthread = thread->osthread();
3614  // There is no synchronization between the setting of the interrupt
3615  // and it being cleared here. It is critical - see 6535709 - that
3616  // we only clear the interrupt state, and reset the interrupt event,
3617  // if we are going to report that we were indeed interrupted - else
3618  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3619  // depending on the timing. By checking thread interrupt event to see
3620  // if the thread gets real interrupt thus prevent spurious wakeup.
3621  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3622  if (interrupted && clear_interrupted) {
3623    osthread->set_interrupted(false);
3624    ResetEvent(osthread->interrupt_event());
3625  } // Otherwise leave the interrupted state alone
3626
3627  return interrupted;
3628}
3629
3630// Get's a pc (hint) for a running thread. Currently used only for profiling.
3631ExtendedPC os::get_thread_pc(Thread* thread) {
3632  CONTEXT context;
3633  context.ContextFlags = CONTEXT_CONTROL;
3634  HANDLE handle = thread->osthread()->thread_handle();
3635#ifdef _M_IA64
3636  assert(0, "Fix get_thread_pc");
3637  return ExtendedPC(NULL);
3638#else
3639  if (GetThreadContext(handle, &context)) {
3640#ifdef _M_AMD64
3641    return ExtendedPC((address) context.Rip);
3642#else
3643    return ExtendedPC((address) context.Eip);
3644#endif
3645  } else {
3646    return ExtendedPC(NULL);
3647  }
3648#endif
3649}
3650
3651// GetCurrentThreadId() returns DWORD
3652intx os::current_thread_id()  { return GetCurrentThreadId(); }
3653
3654static int _initial_pid = 0;
3655
3656int os::current_process_id() {
3657  return (_initial_pid ? _initial_pid : _getpid());
3658}
3659
3660int    os::win32::_vm_page_size              = 0;
3661int    os::win32::_vm_allocation_granularity = 0;
3662int    os::win32::_processor_type            = 0;
3663// Processor level is not available on non-NT systems, use vm_version instead
3664int    os::win32::_processor_level           = 0;
3665julong os::win32::_physical_memory           = 0;
3666size_t os::win32::_default_stack_size        = 0;
3667
3668intx          os::win32::_os_thread_limit    = 0;
3669volatile intx os::win32::_os_thread_count    = 0;
3670
3671bool   os::win32::_is_nt                     = false;
3672bool   os::win32::_is_windows_2003           = false;
3673bool   os::win32::_is_windows_server         = false;
3674
3675// 6573254
3676// Currently, the bug is observed across all the supported Windows releases,
3677// including the latest one (as of this writing - Windows Server 2012 R2)
3678bool   os::win32::_has_exit_bug              = true;
3679bool   os::win32::_has_performance_count     = 0;
3680
3681void os::win32::initialize_system_info() {
3682  SYSTEM_INFO si;
3683  GetSystemInfo(&si);
3684  _vm_page_size    = si.dwPageSize;
3685  _vm_allocation_granularity = si.dwAllocationGranularity;
3686  _processor_type  = si.dwProcessorType;
3687  _processor_level = si.wProcessorLevel;
3688  set_processor_count(si.dwNumberOfProcessors);
3689
3690  MEMORYSTATUSEX ms;
3691  ms.dwLength = sizeof(ms);
3692
3693  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3694  // dwMemoryLoad (% of memory in use)
3695  GlobalMemoryStatusEx(&ms);
3696  _physical_memory = ms.ullTotalPhys;
3697
3698  OSVERSIONINFOEX oi;
3699  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3700  GetVersionEx((OSVERSIONINFO*)&oi);
3701  switch (oi.dwPlatformId) {
3702  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3703  case VER_PLATFORM_WIN32_NT:
3704    _is_nt = true;
3705    {
3706      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3707      if (os_vers == 5002) {
3708        _is_windows_2003 = true;
3709      }
3710      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3711          oi.wProductType == VER_NT_SERVER) {
3712        _is_windows_server = true;
3713      }
3714    }
3715    break;
3716  default: fatal("Unknown platform");
3717  }
3718
3719  _default_stack_size = os::current_stack_size();
3720  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3721  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3722         "stack size not a multiple of page size");
3723
3724  initialize_performance_counter();
3725
3726  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3727  // known to deadlock the system, if the VM issues to thread operations with
3728  // a too high frequency, e.g., such as changing the priorities.
3729  // The 6000 seems to work well - no deadlocks has been notices on the test
3730  // programs that we have seen experience this problem.
3731  if (!os::win32::is_nt()) {
3732    StarvationMonitorInterval = 6000;
3733  }
3734}
3735
3736
3737HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3738                                      int ebuflen) {
3739  char path[MAX_PATH];
3740  DWORD size;
3741  DWORD pathLen = (DWORD)sizeof(path);
3742  HINSTANCE result = NULL;
3743
3744  // only allow library name without path component
3745  assert(strchr(name, '\\') == NULL, "path not allowed");
3746  assert(strchr(name, ':') == NULL, "path not allowed");
3747  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3748    jio_snprintf(ebuf, ebuflen,
3749                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3750    return NULL;
3751  }
3752
3753  // search system directory
3754  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3755    if (size >= pathLen) {
3756      return NULL; // truncated
3757    }
3758    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3759      return NULL; // truncated
3760    }
3761    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3762      return result;
3763    }
3764  }
3765
3766  // try Windows directory
3767  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3768    if (size >= pathLen) {
3769      return NULL; // truncated
3770    }
3771    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3772      return NULL; // truncated
3773    }
3774    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3775      return result;
3776    }
3777  }
3778
3779  jio_snprintf(ebuf, ebuflen,
3780               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3781  return NULL;
3782}
3783
3784#define MAX_EXIT_HANDLES    16
3785#define EXIT_TIMEOUT      1000 /* 1 sec */
3786
3787static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3788  InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3789  return TRUE;
3790}
3791
3792int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3793  // Basic approach:
3794  //  - Each exiting thread registers its intent to exit and then does so.
3795  //  - A thread trying to terminate the process must wait for all
3796  //    threads currently exiting to complete their exit.
3797
3798  if (os::win32::has_exit_bug()) {
3799    // The array holds handles of the threads that have started exiting by calling
3800    // _endthreadex().
3801    // Should be large enough to avoid blocking the exiting thread due to lack of
3802    // a free slot.
3803    static HANDLE handles[MAX_EXIT_HANDLES];
3804    static int handle_count = 0;
3805
3806    static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3807    static CRITICAL_SECTION crit_sect;
3808    int i, j;
3809    DWORD res;
3810    HANDLE hproc, hthr;
3811
3812    // The first thread that reached this point, initializes the critical section.
3813    if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3814      warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3815    } else {
3816      EnterCriticalSection(&crit_sect);
3817
3818      if (what == EPT_THREAD) {
3819        // Remove from the array those handles of the threads that have completed exiting.
3820        for (i = 0, j = 0; i < handle_count; ++i) {
3821          res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3822          if (res == WAIT_TIMEOUT) {
3823            handles[j++] = handles[i];
3824          } else {
3825            if (res != WAIT_OBJECT_0) {
3826              warning("WaitForSingleObject failed in %s: %d\n", __FILE__, __LINE__);
3827              // Don't keep the handle, if we failed waiting for it.
3828            }
3829            CloseHandle(handles[i]);
3830          }
3831        }
3832
3833        // If there's no free slot in the array of the kept handles, we'll have to
3834        // wait until at least one thread completes exiting.
3835        if ((handle_count = j) == MAX_EXIT_HANDLES) {
3836          res = WaitForMultipleObjects(MAX_EXIT_HANDLES, handles, FALSE, EXIT_TIMEOUT);
3837          if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAX_EXIT_HANDLES)) {
3838            i = (res - WAIT_OBJECT_0);
3839            handle_count = MAX_EXIT_HANDLES - 1;
3840            for (; i < handle_count; ++i) {
3841              handles[i] = handles[i + 1];
3842            }
3843          } else {
3844            warning("WaitForMultipleObjects failed in %s: %d\n", __FILE__, __LINE__);
3845            // Don't keep handles, if we failed waiting for them.
3846            for (i = 0; i < MAX_EXIT_HANDLES; ++i) {
3847              CloseHandle(handles[i]);
3848            }
3849            handle_count = 0;
3850          }
3851        }
3852
3853        // Store a duplicate of the current thread handle in the array of handles.
3854        hproc = GetCurrentProcess();
3855        hthr = GetCurrentThread();
3856        if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3857                             0, FALSE, DUPLICATE_SAME_ACCESS)) {
3858          warning("DuplicateHandle failed in %s: %d\n", __FILE__, __LINE__);
3859        } else {
3860          ++handle_count;
3861        }
3862
3863        // The current exiting thread has stored its handle in the array, and now
3864        // should leave the critical section before calling _endthreadex().
3865
3866      } else { // what != EPT_THREAD
3867        if (handle_count > 0) {
3868          // Before ending the process, make sure all the threads that had called
3869          // _endthreadex() completed.
3870          res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3871          if (res == WAIT_FAILED) {
3872            warning("WaitForMultipleObjects failed in %s: %d\n", __FILE__, __LINE__);
3873          }
3874          for (i = 0; i < handle_count; ++i) {
3875            CloseHandle(handles[i]);
3876          }
3877          handle_count = 0;
3878        }
3879
3880        // End the process, not leaving critical section.
3881        // This makes sure no other thread executes exit-related code at the same
3882        // time, thus a race is avoided.
3883        if (what == EPT_PROCESS) {
3884          ::exit(exit_code);
3885        } else {
3886          _exit(exit_code);
3887        }
3888      }
3889
3890      LeaveCriticalSection(&crit_sect);
3891    }
3892  }
3893
3894  // We are here if either
3895  // - there's no 'race at exit' bug on this OS release;
3896  // - initialization of the critical section failed (unlikely);
3897  // - the current thread has stored its handle and left the critical section.
3898  if (what == EPT_THREAD) {
3899    _endthreadex((unsigned)exit_code);
3900  } else if (what == EPT_PROCESS) {
3901    ::exit(exit_code);
3902  } else {
3903    _exit(exit_code);
3904  }
3905
3906  // Should not reach here
3907  return exit_code;
3908}
3909
3910#undef MAX_EXIT_HANDLES
3911#undef EXIT_TIMEOUT
3912
3913void os::win32::setmode_streams() {
3914  _setmode(_fileno(stdin), _O_BINARY);
3915  _setmode(_fileno(stdout), _O_BINARY);
3916  _setmode(_fileno(stderr), _O_BINARY);
3917}
3918
3919
3920bool os::is_debugger_attached() {
3921  return IsDebuggerPresent() ? true : false;
3922}
3923
3924
3925void os::wait_for_keypress_at_exit(void) {
3926  if (PauseAtExit) {
3927    fprintf(stderr, "Press any key to continue...\n");
3928    fgetc(stdin);
3929  }
3930}
3931
3932
3933int os::message_box(const char* title, const char* message) {
3934  int result = MessageBox(NULL, message, title,
3935                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3936  return result == IDYES;
3937}
3938
3939int os::allocate_thread_local_storage() {
3940  return TlsAlloc();
3941}
3942
3943
3944void os::free_thread_local_storage(int index) {
3945  TlsFree(index);
3946}
3947
3948
3949void os::thread_local_storage_at_put(int index, void* value) {
3950  TlsSetValue(index, value);
3951  assert(thread_local_storage_at(index) == value, "Just checking");
3952}
3953
3954
3955void* os::thread_local_storage_at(int index) {
3956  return TlsGetValue(index);
3957}
3958
3959
3960#ifndef PRODUCT
3961#ifndef _WIN64
3962// Helpers to check whether NX protection is enabled
3963int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3964  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3965      pex->ExceptionRecord->NumberParameters > 0 &&
3966      pex->ExceptionRecord->ExceptionInformation[0] ==
3967      EXCEPTION_INFO_EXEC_VIOLATION) {
3968    return EXCEPTION_EXECUTE_HANDLER;
3969  }
3970  return EXCEPTION_CONTINUE_SEARCH;
3971}
3972
3973void nx_check_protection() {
3974  // If NX is enabled we'll get an exception calling into code on the stack
3975  char code[] = { (char)0xC3 }; // ret
3976  void *code_ptr = (void *)code;
3977  __try {
3978    __asm call code_ptr
3979  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3980    tty->print_raw_cr("NX protection detected.");
3981  }
3982}
3983#endif // _WIN64
3984#endif // PRODUCT
3985
3986// this is called _before_ the global arguments have been parsed
3987void os::init(void) {
3988  _initial_pid = _getpid();
3989
3990  init_random(1234567);
3991
3992  win32::initialize_system_info();
3993  win32::setmode_streams();
3994  init_page_sizes((size_t) win32::vm_page_size());
3995
3996  // This may be overridden later when argument processing is done.
3997  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3998                os::win32::is_windows_2003());
3999
4000  // Initialize main_process and main_thread
4001  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4002  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4003                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4004    fatal("DuplicateHandle failed\n");
4005  }
4006  main_thread_id = (int) GetCurrentThreadId();
4007}
4008
4009// To install functions for atexit processing
4010extern "C" {
4011  static void perfMemory_exit_helper() {
4012    perfMemory_exit();
4013  }
4014}
4015
4016static jint initSock();
4017
4018// this is called _after_ the global arguments have been parsed
4019jint os::init_2(void) {
4020  // Allocate a single page and mark it as readable for safepoint polling
4021  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4022  guarantee(polling_page != NULL, "Reserve Failed for polling page");
4023
4024  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4025  guarantee(return_page != NULL, "Commit Failed for polling page");
4026
4027  os::set_polling_page(polling_page);
4028
4029#ifndef PRODUCT
4030  if (Verbose && PrintMiscellaneous) {
4031    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4032               (intptr_t)polling_page);
4033  }
4034#endif
4035
4036  if (!UseMembar) {
4037    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4038    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4039
4040    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4041    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4042
4043    os::set_memory_serialize_page(mem_serialize_page);
4044
4045#ifndef PRODUCT
4046    if (Verbose && PrintMiscellaneous) {
4047      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4048                 (intptr_t)mem_serialize_page);
4049    }
4050#endif
4051  }
4052
4053  // Setup Windows Exceptions
4054
4055  // for debugging float code generation bugs
4056  if (ForceFloatExceptions) {
4057#ifndef  _WIN64
4058    static long fp_control_word = 0;
4059    __asm { fstcw fp_control_word }
4060    // see Intel PPro Manual, Vol. 2, p 7-16
4061    const long precision = 0x20;
4062    const long underflow = 0x10;
4063    const long overflow  = 0x08;
4064    const long zero_div  = 0x04;
4065    const long denorm    = 0x02;
4066    const long invalid   = 0x01;
4067    fp_control_word |= invalid;
4068    __asm { fldcw fp_control_word }
4069#endif
4070  }
4071
4072  // If stack_commit_size is 0, windows will reserve the default size,
4073  // but only commit a small portion of it.
4074  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4075  size_t default_reserve_size = os::win32::default_stack_size();
4076  size_t actual_reserve_size = stack_commit_size;
4077  if (stack_commit_size < default_reserve_size) {
4078    // If stack_commit_size == 0, we want this too
4079    actual_reserve_size = default_reserve_size;
4080  }
4081
4082  // Check minimum allowable stack size for thread creation and to initialize
4083  // the java system classes, including StackOverflowError - depends on page
4084  // size.  Add a page for compiler2 recursion in main thread.
4085  // Add in 2*BytesPerWord times page size to account for VM stack during
4086  // class initialization depending on 32 or 64 bit VM.
4087  size_t min_stack_allowed =
4088            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4089                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4090  if (actual_reserve_size < min_stack_allowed) {
4091    tty->print_cr("\nThe stack size specified is too small, "
4092                  "Specify at least %dk",
4093                  min_stack_allowed / K);
4094    return JNI_ERR;
4095  }
4096
4097  JavaThread::set_stack_size_at_create(stack_commit_size);
4098
4099  // Calculate theoretical max. size of Threads to guard gainst artifical
4100  // out-of-memory situations, where all available address-space has been
4101  // reserved by thread stacks.
4102  assert(actual_reserve_size != 0, "Must have a stack");
4103
4104  // Calculate the thread limit when we should start doing Virtual Memory
4105  // banging. Currently when the threads will have used all but 200Mb of space.
4106  //
4107  // TODO: consider performing a similar calculation for commit size instead
4108  // as reserve size, since on a 64-bit platform we'll run into that more
4109  // often than running out of virtual memory space.  We can use the
4110  // lower value of the two calculations as the os_thread_limit.
4111  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4112  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4113
4114  // at exit methods are called in the reverse order of their registration.
4115  // there is no limit to the number of functions registered. atexit does
4116  // not set errno.
4117
4118  if (PerfAllowAtExitRegistration) {
4119    // only register atexit functions if PerfAllowAtExitRegistration is set.
4120    // atexit functions can be delayed until process exit time, which
4121    // can be problematic for embedded VM situations. Embedded VMs should
4122    // call DestroyJavaVM() to assure that VM resources are released.
4123
4124    // note: perfMemory_exit_helper atexit function may be removed in
4125    // the future if the appropriate cleanup code can be added to the
4126    // VM_Exit VMOperation's doit method.
4127    if (atexit(perfMemory_exit_helper) != 0) {
4128      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4129    }
4130  }
4131
4132#ifndef _WIN64
4133  // Print something if NX is enabled (win32 on AMD64)
4134  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4135#endif
4136
4137  // initialize thread priority policy
4138  prio_init();
4139
4140  if (UseNUMA && !ForceNUMA) {
4141    UseNUMA = false; // We don't fully support this yet
4142  }
4143
4144  if (UseNUMAInterleaving) {
4145    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4146    bool success = numa_interleaving_init();
4147    if (!success) UseNUMAInterleaving = false;
4148  }
4149
4150  if (initSock() != JNI_OK) {
4151    return JNI_ERR;
4152  }
4153
4154  return JNI_OK;
4155}
4156
4157// Mark the polling page as unreadable
4158void os::make_polling_page_unreadable(void) {
4159  DWORD old_status;
4160  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4161                      PAGE_NOACCESS, &old_status)) {
4162    fatal("Could not disable polling page");
4163  }
4164}
4165
4166// Mark the polling page as readable
4167void os::make_polling_page_readable(void) {
4168  DWORD old_status;
4169  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4170                      PAGE_READONLY, &old_status)) {
4171    fatal("Could not enable polling page");
4172  }
4173}
4174
4175
4176int os::stat(const char *path, struct stat *sbuf) {
4177  char pathbuf[MAX_PATH];
4178  if (strlen(path) > MAX_PATH - 1) {
4179    errno = ENAMETOOLONG;
4180    return -1;
4181  }
4182  os::native_path(strcpy(pathbuf, path));
4183  int ret = ::stat(pathbuf, sbuf);
4184  if (sbuf != NULL && UseUTCFileTimestamp) {
4185    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4186    // the system timezone and so can return different values for the
4187    // same file if/when daylight savings time changes.  This adjustment
4188    // makes sure the same timestamp is returned regardless of the TZ.
4189    //
4190    // See:
4191    // http://msdn.microsoft.com/library/
4192    //   default.asp?url=/library/en-us/sysinfo/base/
4193    //   time_zone_information_str.asp
4194    // and
4195    // http://msdn.microsoft.com/library/default.asp?url=
4196    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4197    //
4198    // NOTE: there is a insidious bug here:  If the timezone is changed
4199    // after the call to stat() but before 'GetTimeZoneInformation()', then
4200    // the adjustment we do here will be wrong and we'll return the wrong
4201    // value (which will likely end up creating an invalid class data
4202    // archive).  Absent a better API for this, or some time zone locking
4203    // mechanism, we'll have to live with this risk.
4204    TIME_ZONE_INFORMATION tz;
4205    DWORD tzid = GetTimeZoneInformation(&tz);
4206    int daylightBias =
4207      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4208    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4209  }
4210  return ret;
4211}
4212
4213
4214#define FT2INT64(ft) \
4215  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4216
4217
4218// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4219// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4220// of a thread.
4221//
4222// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4223// the fast estimate available on the platform.
4224
4225// current_thread_cpu_time() is not optimized for Windows yet
4226jlong os::current_thread_cpu_time() {
4227  // return user + sys since the cost is the same
4228  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4229}
4230
4231jlong os::thread_cpu_time(Thread* thread) {
4232  // consistent with what current_thread_cpu_time() returns.
4233  return os::thread_cpu_time(thread, true /* user+sys */);
4234}
4235
4236jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4237  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4238}
4239
4240jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4241  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4242  // If this function changes, os::is_thread_cpu_time_supported() should too
4243  if (os::win32::is_nt()) {
4244    FILETIME CreationTime;
4245    FILETIME ExitTime;
4246    FILETIME KernelTime;
4247    FILETIME UserTime;
4248
4249    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4250                       &ExitTime, &KernelTime, &UserTime) == 0) {
4251      return -1;
4252    } else if (user_sys_cpu_time) {
4253      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4254    } else {
4255      return FT2INT64(UserTime) * 100;
4256    }
4257  } else {
4258    return (jlong) timeGetTime() * 1000000;
4259  }
4260}
4261
4262void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4263  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4264  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4265  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4266  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4267}
4268
4269void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4270  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4271  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4272  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4273  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4274}
4275
4276bool os::is_thread_cpu_time_supported() {
4277  // see os::thread_cpu_time
4278  if (os::win32::is_nt()) {
4279    FILETIME CreationTime;
4280    FILETIME ExitTime;
4281    FILETIME KernelTime;
4282    FILETIME UserTime;
4283
4284    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4285                       &KernelTime, &UserTime) == 0) {
4286      return false;
4287    } else {
4288      return true;
4289    }
4290  } else {
4291    return false;
4292  }
4293}
4294
4295// Windows does't provide a loadavg primitive so this is stubbed out for now.
4296// It does have primitives (PDH API) to get CPU usage and run queue length.
4297// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4298// If we wanted to implement loadavg on Windows, we have a few options:
4299//
4300// a) Query CPU usage and run queue length and "fake" an answer by
4301//    returning the CPU usage if it's under 100%, and the run queue
4302//    length otherwise.  It turns out that querying is pretty slow
4303//    on Windows, on the order of 200 microseconds on a fast machine.
4304//    Note that on the Windows the CPU usage value is the % usage
4305//    since the last time the API was called (and the first call
4306//    returns 100%), so we'd have to deal with that as well.
4307//
4308// b) Sample the "fake" answer using a sampling thread and store
4309//    the answer in a global variable.  The call to loadavg would
4310//    just return the value of the global, avoiding the slow query.
4311//
4312// c) Sample a better answer using exponential decay to smooth the
4313//    value.  This is basically the algorithm used by UNIX kernels.
4314//
4315// Note that sampling thread starvation could affect both (b) and (c).
4316int os::loadavg(double loadavg[], int nelem) {
4317  return -1;
4318}
4319
4320
4321// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4322bool os::dont_yield() {
4323  return DontYieldALot;
4324}
4325
4326// This method is a slightly reworked copy of JDK's sysOpen
4327// from src/windows/hpi/src/sys_api_md.c
4328
4329int os::open(const char *path, int oflag, int mode) {
4330  char pathbuf[MAX_PATH];
4331
4332  if (strlen(path) > MAX_PATH - 1) {
4333    errno = ENAMETOOLONG;
4334    return -1;
4335  }
4336  os::native_path(strcpy(pathbuf, path));
4337  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4338}
4339
4340FILE* os::open(int fd, const char* mode) {
4341  return ::_fdopen(fd, mode);
4342}
4343
4344// Is a (classpath) directory empty?
4345bool os::dir_is_empty(const char* path) {
4346  WIN32_FIND_DATA fd;
4347  HANDLE f = FindFirstFile(path, &fd);
4348  if (f == INVALID_HANDLE_VALUE) {
4349    return true;
4350  }
4351  FindClose(f);
4352  return false;
4353}
4354
4355// create binary file, rewriting existing file if required
4356int os::create_binary_file(const char* path, bool rewrite_existing) {
4357  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4358  if (!rewrite_existing) {
4359    oflags |= _O_EXCL;
4360  }
4361  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4362}
4363
4364// return current position of file pointer
4365jlong os::current_file_offset(int fd) {
4366  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4367}
4368
4369// move file pointer to the specified offset
4370jlong os::seek_to_file_offset(int fd, jlong offset) {
4371  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4372}
4373
4374
4375jlong os::lseek(int fd, jlong offset, int whence) {
4376  return (jlong) ::_lseeki64(fd, offset, whence);
4377}
4378
4379// This method is a slightly reworked copy of JDK's sysNativePath
4380// from src/windows/hpi/src/path_md.c
4381
4382// Convert a pathname to native format.  On win32, this involves forcing all
4383// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4384// sometimes rejects '/') and removing redundant separators.  The input path is
4385// assumed to have been converted into the character encoding used by the local
4386// system.  Because this might be a double-byte encoding, care is taken to
4387// treat double-byte lead characters correctly.
4388//
4389// This procedure modifies the given path in place, as the result is never
4390// longer than the original.  There is no error return; this operation always
4391// succeeds.
4392char * os::native_path(char *path) {
4393  char *src = path, *dst = path, *end = path;
4394  char *colon = NULL;  // If a drive specifier is found, this will
4395                       // point to the colon following the drive letter
4396
4397  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4398  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4399          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4400
4401  // Check for leading separators
4402#define isfilesep(c) ((c) == '/' || (c) == '\\')
4403  while (isfilesep(*src)) {
4404    src++;
4405  }
4406
4407  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4408    // Remove leading separators if followed by drive specifier.  This
4409    // hack is necessary to support file URLs containing drive
4410    // specifiers (e.g., "file://c:/path").  As a side effect,
4411    // "/c:/path" can be used as an alternative to "c:/path".
4412    *dst++ = *src++;
4413    colon = dst;
4414    *dst++ = ':';
4415    src++;
4416  } else {
4417    src = path;
4418    if (isfilesep(src[0]) && isfilesep(src[1])) {
4419      // UNC pathname: Retain first separator; leave src pointed at
4420      // second separator so that further separators will be collapsed
4421      // into the second separator.  The result will be a pathname
4422      // beginning with "\\\\" followed (most likely) by a host name.
4423      src = dst = path + 1;
4424      path[0] = '\\';     // Force first separator to '\\'
4425    }
4426  }
4427
4428  end = dst;
4429
4430  // Remove redundant separators from remainder of path, forcing all
4431  // separators to be '\\' rather than '/'. Also, single byte space
4432  // characters are removed from the end of the path because those
4433  // are not legal ending characters on this operating system.
4434  //
4435  while (*src != '\0') {
4436    if (isfilesep(*src)) {
4437      *dst++ = '\\'; src++;
4438      while (isfilesep(*src)) src++;
4439      if (*src == '\0') {
4440        // Check for trailing separator
4441        end = dst;
4442        if (colon == dst - 2) break;  // "z:\\"
4443        if (dst == path + 1) break;   // "\\"
4444        if (dst == path + 2 && isfilesep(path[0])) {
4445          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4446          // beginning of a UNC pathname.  Even though it is not, by
4447          // itself, a valid UNC pathname, we leave it as is in order
4448          // to be consistent with the path canonicalizer as well
4449          // as the win32 APIs, which treat this case as an invalid
4450          // UNC pathname rather than as an alias for the root
4451          // directory of the current drive.
4452          break;
4453        }
4454        end = --dst;  // Path does not denote a root directory, so
4455                      // remove trailing separator
4456        break;
4457      }
4458      end = dst;
4459    } else {
4460      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4461        *dst++ = *src++;
4462        if (*src) *dst++ = *src++;
4463        end = dst;
4464      } else {  // Copy a single-byte character
4465        char c = *src++;
4466        *dst++ = c;
4467        // Space is not a legal ending character
4468        if (c != ' ') end = dst;
4469      }
4470    }
4471  }
4472
4473  *end = '\0';
4474
4475  // For "z:", add "." to work around a bug in the C runtime library
4476  if (colon == dst - 1) {
4477    path[2] = '.';
4478    path[3] = '\0';
4479  }
4480
4481  return path;
4482}
4483
4484// This code is a copy of JDK's sysSetLength
4485// from src/windows/hpi/src/sys_api_md.c
4486
4487int os::ftruncate(int fd, jlong length) {
4488  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4489  long high = (long)(length >> 32);
4490  DWORD ret;
4491
4492  if (h == (HANDLE)(-1)) {
4493    return -1;
4494  }
4495
4496  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4497  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4498    return -1;
4499  }
4500
4501  if (::SetEndOfFile(h) == FALSE) {
4502    return -1;
4503  }
4504
4505  return 0;
4506}
4507
4508
4509// This code is a copy of JDK's sysSync
4510// from src/windows/hpi/src/sys_api_md.c
4511// except for the legacy workaround for a bug in Win 98
4512
4513int os::fsync(int fd) {
4514  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4515
4516  if ((!::FlushFileBuffers(handle)) &&
4517      (GetLastError() != ERROR_ACCESS_DENIED)) {
4518    // from winerror.h
4519    return -1;
4520  }
4521  return 0;
4522}
4523
4524static int nonSeekAvailable(int, long *);
4525static int stdinAvailable(int, long *);
4526
4527#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4528#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4529
4530// This code is a copy of JDK's sysAvailable
4531// from src/windows/hpi/src/sys_api_md.c
4532
4533int os::available(int fd, jlong *bytes) {
4534  jlong cur, end;
4535  struct _stati64 stbuf64;
4536
4537  if (::_fstati64(fd, &stbuf64) >= 0) {
4538    int mode = stbuf64.st_mode;
4539    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4540      int ret;
4541      long lpbytes;
4542      if (fd == 0) {
4543        ret = stdinAvailable(fd, &lpbytes);
4544      } else {
4545        ret = nonSeekAvailable(fd, &lpbytes);
4546      }
4547      (*bytes) = (jlong)(lpbytes);
4548      return ret;
4549    }
4550    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4551      return FALSE;
4552    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4553      return FALSE;
4554    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4555      return FALSE;
4556    }
4557    *bytes = end - cur;
4558    return TRUE;
4559  } else {
4560    return FALSE;
4561  }
4562}
4563
4564// This code is a copy of JDK's nonSeekAvailable
4565// from src/windows/hpi/src/sys_api_md.c
4566
4567static int nonSeekAvailable(int fd, long *pbytes) {
4568  // This is used for available on non-seekable devices
4569  // (like both named and anonymous pipes, such as pipes
4570  //  connected to an exec'd process).
4571  // Standard Input is a special case.
4572  HANDLE han;
4573
4574  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4575    return FALSE;
4576  }
4577
4578  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4579    // PeekNamedPipe fails when at EOF.  In that case we
4580    // simply make *pbytes = 0 which is consistent with the
4581    // behavior we get on Solaris when an fd is at EOF.
4582    // The only alternative is to raise an Exception,
4583    // which isn't really warranted.
4584    //
4585    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4586      return FALSE;
4587    }
4588    *pbytes = 0;
4589  }
4590  return TRUE;
4591}
4592
4593#define MAX_INPUT_EVENTS 2000
4594
4595// This code is a copy of JDK's stdinAvailable
4596// from src/windows/hpi/src/sys_api_md.c
4597
4598static int stdinAvailable(int fd, long *pbytes) {
4599  HANDLE han;
4600  DWORD numEventsRead = 0;  // Number of events read from buffer
4601  DWORD numEvents = 0;      // Number of events in buffer
4602  DWORD i = 0;              // Loop index
4603  DWORD curLength = 0;      // Position marker
4604  DWORD actualLength = 0;   // Number of bytes readable
4605  BOOL error = FALSE;       // Error holder
4606  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4607
4608  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4609    return FALSE;
4610  }
4611
4612  // Construct an array of input records in the console buffer
4613  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4614  if (error == 0) {
4615    return nonSeekAvailable(fd, pbytes);
4616  }
4617
4618  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4619  if (numEvents > MAX_INPUT_EVENTS) {
4620    numEvents = MAX_INPUT_EVENTS;
4621  }
4622
4623  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4624  if (lpBuffer == NULL) {
4625    return FALSE;
4626  }
4627
4628  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4629  if (error == 0) {
4630    os::free(lpBuffer, mtInternal);
4631    return FALSE;
4632  }
4633
4634  // Examine input records for the number of bytes available
4635  for (i=0; i<numEvents; i++) {
4636    if (lpBuffer[i].EventType == KEY_EVENT) {
4637
4638      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4639                                      &(lpBuffer[i].Event);
4640      if (keyRecord->bKeyDown == TRUE) {
4641        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4642        curLength++;
4643        if (*keyPressed == '\r') {
4644          actualLength = curLength;
4645        }
4646      }
4647    }
4648  }
4649
4650  if (lpBuffer != NULL) {
4651    os::free(lpBuffer, mtInternal);
4652  }
4653
4654  *pbytes = (long) actualLength;
4655  return TRUE;
4656}
4657
4658// Map a block of memory.
4659char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4660                        char *addr, size_t bytes, bool read_only,
4661                        bool allow_exec) {
4662  HANDLE hFile;
4663  char* base;
4664
4665  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4666                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4667  if (hFile == NULL) {
4668    if (PrintMiscellaneous && Verbose) {
4669      DWORD err = GetLastError();
4670      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4671    }
4672    return NULL;
4673  }
4674
4675  if (allow_exec) {
4676    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4677    // unless it comes from a PE image (which the shared archive is not.)
4678    // Even VirtualProtect refuses to give execute access to mapped memory
4679    // that was not previously executable.
4680    //
4681    // Instead, stick the executable region in anonymous memory.  Yuck.
4682    // Penalty is that ~4 pages will not be shareable - in the future
4683    // we might consider DLLizing the shared archive with a proper PE
4684    // header so that mapping executable + sharing is possible.
4685
4686    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4687                                PAGE_READWRITE);
4688    if (base == NULL) {
4689      if (PrintMiscellaneous && Verbose) {
4690        DWORD err = GetLastError();
4691        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4692      }
4693      CloseHandle(hFile);
4694      return NULL;
4695    }
4696
4697    DWORD bytes_read;
4698    OVERLAPPED overlapped;
4699    overlapped.Offset = (DWORD)file_offset;
4700    overlapped.OffsetHigh = 0;
4701    overlapped.hEvent = NULL;
4702    // ReadFile guarantees that if the return value is true, the requested
4703    // number of bytes were read before returning.
4704    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4705    if (!res) {
4706      if (PrintMiscellaneous && Verbose) {
4707        DWORD err = GetLastError();
4708        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4709      }
4710      release_memory(base, bytes);
4711      CloseHandle(hFile);
4712      return NULL;
4713    }
4714  } else {
4715    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4716                                    NULL /* file_name */);
4717    if (hMap == NULL) {
4718      if (PrintMiscellaneous && Verbose) {
4719        DWORD err = GetLastError();
4720        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4721      }
4722      CloseHandle(hFile);
4723      return NULL;
4724    }
4725
4726    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4727    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4728                                  (DWORD)bytes, addr);
4729    if (base == NULL) {
4730      if (PrintMiscellaneous && Verbose) {
4731        DWORD err = GetLastError();
4732        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4733      }
4734      CloseHandle(hMap);
4735      CloseHandle(hFile);
4736      return NULL;
4737    }
4738
4739    if (CloseHandle(hMap) == 0) {
4740      if (PrintMiscellaneous && Verbose) {
4741        DWORD err = GetLastError();
4742        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4743      }
4744      CloseHandle(hFile);
4745      return base;
4746    }
4747  }
4748
4749  if (allow_exec) {
4750    DWORD old_protect;
4751    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4752    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4753
4754    if (!res) {
4755      if (PrintMiscellaneous && Verbose) {
4756        DWORD err = GetLastError();
4757        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4758      }
4759      // Don't consider this a hard error, on IA32 even if the
4760      // VirtualProtect fails, we should still be able to execute
4761      CloseHandle(hFile);
4762      return base;
4763    }
4764  }
4765
4766  if (CloseHandle(hFile) == 0) {
4767    if (PrintMiscellaneous && Verbose) {
4768      DWORD err = GetLastError();
4769      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4770    }
4771    return base;
4772  }
4773
4774  return base;
4775}
4776
4777
4778// Remap a block of memory.
4779char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4780                          char *addr, size_t bytes, bool read_only,
4781                          bool allow_exec) {
4782  // This OS does not allow existing memory maps to be remapped so we
4783  // have to unmap the memory before we remap it.
4784  if (!os::unmap_memory(addr, bytes)) {
4785    return NULL;
4786  }
4787
4788  // There is a very small theoretical window between the unmap_memory()
4789  // call above and the map_memory() call below where a thread in native
4790  // code may be able to access an address that is no longer mapped.
4791
4792  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4793                        read_only, allow_exec);
4794}
4795
4796
4797// Unmap a block of memory.
4798// Returns true=success, otherwise false.
4799
4800bool os::pd_unmap_memory(char* addr, size_t bytes) {
4801  BOOL result = UnmapViewOfFile(addr);
4802  if (result == 0) {
4803    if (PrintMiscellaneous && Verbose) {
4804      DWORD err = GetLastError();
4805      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4806    }
4807    return false;
4808  }
4809  return true;
4810}
4811
4812void os::pause() {
4813  char filename[MAX_PATH];
4814  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4815    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4816  } else {
4817    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4818  }
4819
4820  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4821  if (fd != -1) {
4822    struct stat buf;
4823    ::close(fd);
4824    while (::stat(filename, &buf) == 0) {
4825      Sleep(100);
4826    }
4827  } else {
4828    jio_fprintf(stderr,
4829                "Could not open pause file '%s', continuing immediately.\n", filename);
4830  }
4831}
4832
4833os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4834  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4835}
4836
4837// See the caveats for this class in os_windows.hpp
4838// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4839// into this method and returns false. If no OS EXCEPTION was raised, returns
4840// true.
4841// The callback is supposed to provide the method that should be protected.
4842//
4843bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4844  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4845  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4846         "crash_protection already set?");
4847
4848  bool success = true;
4849  __try {
4850    WatcherThread::watcher_thread()->set_crash_protection(this);
4851    cb.call();
4852  } __except(EXCEPTION_EXECUTE_HANDLER) {
4853    // only for protection, nothing to do
4854    success = false;
4855  }
4856  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4857  return success;
4858}
4859
4860// An Event wraps a win32 "CreateEvent" kernel handle.
4861//
4862// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4863//
4864// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4865//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4866//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4867//     In addition, an unpark() operation might fetch the handle field, but the
4868//     event could recycle between the fetch and the SetEvent() operation.
4869//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4870//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4871//     on an stale but recycled handle would be harmless, but in practice this might
4872//     confuse other non-Sun code, so it's not a viable approach.
4873//
4874// 2:  Once a win32 event handle is associated with an Event, it remains associated
4875//     with the Event.  The event handle is never closed.  This could be construed
4876//     as handle leakage, but only up to the maximum # of threads that have been extant
4877//     at any one time.  This shouldn't be an issue, as windows platforms typically
4878//     permit a process to have hundreds of thousands of open handles.
4879//
4880// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4881//     and release unused handles.
4882//
4883// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4884//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4885//
4886// 5.  Use an RCU-like mechanism (Read-Copy Update).
4887//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4888//
4889// We use (2).
4890//
4891// TODO-FIXME:
4892// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4893// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4894//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4895// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4896//     into a single win32 CreateEvent() handle.
4897//
4898// Assumption:
4899//    Only one parker can exist on an event, which is why we allocate
4900//    them per-thread. Multiple unparkers can coexist.
4901//
4902// _Event transitions in park()
4903//   -1 => -1 : illegal
4904//    1 =>  0 : pass - return immediately
4905//    0 => -1 : block; then set _Event to 0 before returning
4906//
4907// _Event transitions in unpark()
4908//    0 => 1 : just return
4909//    1 => 1 : just return
4910//   -1 => either 0 or 1; must signal target thread
4911//         That is, we can safely transition _Event from -1 to either
4912//         0 or 1.
4913//
4914// _Event serves as a restricted-range semaphore.
4915//   -1 : thread is blocked, i.e. there is a waiter
4916//    0 : neutral: thread is running or ready,
4917//        could have been signaled after a wait started
4918//    1 : signaled - thread is running or ready
4919//
4920// Another possible encoding of _Event would be with
4921// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4922//
4923
4924int os::PlatformEvent::park(jlong Millis) {
4925  // Transitions for _Event:
4926  //   -1 => -1 : illegal
4927  //    1 =>  0 : pass - return immediately
4928  //    0 => -1 : block; then set _Event to 0 before returning
4929
4930  guarantee(_ParkHandle != NULL , "Invariant");
4931  guarantee(Millis > 0          , "Invariant");
4932
4933  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4934  // the initial park() operation.
4935  // Consider: use atomic decrement instead of CAS-loop
4936
4937  int v;
4938  for (;;) {
4939    v = _Event;
4940    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4941  }
4942  guarantee((v == 0) || (v == 1), "invariant");
4943  if (v != 0) return OS_OK;
4944
4945  // Do this the hard way by blocking ...
4946  // TODO: consider a brief spin here, gated on the success of recent
4947  // spin attempts by this thread.
4948  //
4949  // We decompose long timeouts into series of shorter timed waits.
4950  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4951  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4952  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4953  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4954  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4955  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4956  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4957  // for the already waited time.  This policy does not admit any new outcomes.
4958  // In the future, however, we might want to track the accumulated wait time and
4959  // adjust Millis accordingly if we encounter a spurious wakeup.
4960
4961  const int MAXTIMEOUT = 0x10000000;
4962  DWORD rv = WAIT_TIMEOUT;
4963  while (_Event < 0 && Millis > 0) {
4964    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4965    if (Millis > MAXTIMEOUT) {
4966      prd = MAXTIMEOUT;
4967    }
4968    rv = ::WaitForSingleObject(_ParkHandle, prd);
4969    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4970    if (rv == WAIT_TIMEOUT) {
4971      Millis -= prd;
4972    }
4973  }
4974  v = _Event;
4975  _Event = 0;
4976  // see comment at end of os::PlatformEvent::park() below:
4977  OrderAccess::fence();
4978  // If we encounter a nearly simultanous timeout expiry and unpark()
4979  // we return OS_OK indicating we awoke via unpark().
4980  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4981  return (v >= 0) ? OS_OK : OS_TIMEOUT;
4982}
4983
4984void os::PlatformEvent::park() {
4985  // Transitions for _Event:
4986  //   -1 => -1 : illegal
4987  //    1 =>  0 : pass - return immediately
4988  //    0 => -1 : block; then set _Event to 0 before returning
4989
4990  guarantee(_ParkHandle != NULL, "Invariant");
4991  // Invariant: Only the thread associated with the Event/PlatformEvent
4992  // may call park().
4993  // Consider: use atomic decrement instead of CAS-loop
4994  int v;
4995  for (;;) {
4996    v = _Event;
4997    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4998  }
4999  guarantee((v == 0) || (v == 1), "invariant");
5000  if (v != 0) return;
5001
5002  // Do this the hard way by blocking ...
5003  // TODO: consider a brief spin here, gated on the success of recent
5004  // spin attempts by this thread.
5005  while (_Event < 0) {
5006    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5007    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5008  }
5009
5010  // Usually we'll find _Event == 0 at this point, but as
5011  // an optional optimization we clear it, just in case can
5012  // multiple unpark() operations drove _Event up to 1.
5013  _Event = 0;
5014  OrderAccess::fence();
5015  guarantee(_Event >= 0, "invariant");
5016}
5017
5018void os::PlatformEvent::unpark() {
5019  guarantee(_ParkHandle != NULL, "Invariant");
5020
5021  // Transitions for _Event:
5022  //    0 => 1 : just return
5023  //    1 => 1 : just return
5024  //   -1 => either 0 or 1; must signal target thread
5025  //         That is, we can safely transition _Event from -1 to either
5026  //         0 or 1.
5027  // See also: "Semaphores in Plan 9" by Mullender & Cox
5028  //
5029  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5030  // that it will take two back-to-back park() calls for the owning
5031  // thread to block. This has the benefit of forcing a spurious return
5032  // from the first park() call after an unpark() call which will help
5033  // shake out uses of park() and unpark() without condition variables.
5034
5035  if (Atomic::xchg(1, &_Event) >= 0) return;
5036
5037  ::SetEvent(_ParkHandle);
5038}
5039
5040
5041// JSR166
5042// -------------------------------------------------------
5043
5044// The Windows implementation of Park is very straightforward: Basic
5045// operations on Win32 Events turn out to have the right semantics to
5046// use them directly. We opportunistically resuse the event inherited
5047// from Monitor.
5048
5049void Parker::park(bool isAbsolute, jlong time) {
5050  guarantee(_ParkEvent != NULL, "invariant");
5051  // First, demultiplex/decode time arguments
5052  if (time < 0) { // don't wait
5053    return;
5054  } else if (time == 0 && !isAbsolute) {
5055    time = INFINITE;
5056  } else if (isAbsolute) {
5057    time -= os::javaTimeMillis(); // convert to relative time
5058    if (time <= 0) {  // already elapsed
5059      return;
5060    }
5061  } else { // relative
5062    time /= 1000000;  // Must coarsen from nanos to millis
5063    if (time == 0) {  // Wait for the minimal time unit if zero
5064      time = 1;
5065    }
5066  }
5067
5068  JavaThread* thread = (JavaThread*)(Thread::current());
5069  assert(thread->is_Java_thread(), "Must be JavaThread");
5070  JavaThread *jt = (JavaThread *)thread;
5071
5072  // Don't wait if interrupted or already triggered
5073  if (Thread::is_interrupted(thread, false) ||
5074      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5075    ResetEvent(_ParkEvent);
5076    return;
5077  } else {
5078    ThreadBlockInVM tbivm(jt);
5079    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5080    jt->set_suspend_equivalent();
5081
5082    WaitForSingleObject(_ParkEvent, time);
5083    ResetEvent(_ParkEvent);
5084
5085    // If externally suspended while waiting, re-suspend
5086    if (jt->handle_special_suspend_equivalent_condition()) {
5087      jt->java_suspend_self();
5088    }
5089  }
5090}
5091
5092void Parker::unpark() {
5093  guarantee(_ParkEvent != NULL, "invariant");
5094  SetEvent(_ParkEvent);
5095}
5096
5097// Run the specified command in a separate process. Return its exit value,
5098// or -1 on failure (e.g. can't create a new process).
5099int os::fork_and_exec(char* cmd) {
5100  STARTUPINFO si;
5101  PROCESS_INFORMATION pi;
5102
5103  memset(&si, 0, sizeof(si));
5104  si.cb = sizeof(si);
5105  memset(&pi, 0, sizeof(pi));
5106  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5107                            cmd,    // command line
5108                            NULL,   // process security attribute
5109                            NULL,   // thread security attribute
5110                            TRUE,   // inherits system handles
5111                            0,      // no creation flags
5112                            NULL,   // use parent's environment block
5113                            NULL,   // use parent's starting directory
5114                            &si,    // (in) startup information
5115                            &pi);   // (out) process information
5116
5117  if (rslt) {
5118    // Wait until child process exits.
5119    WaitForSingleObject(pi.hProcess, INFINITE);
5120
5121    DWORD exit_code;
5122    GetExitCodeProcess(pi.hProcess, &exit_code);
5123
5124    // Close process and thread handles.
5125    CloseHandle(pi.hProcess);
5126    CloseHandle(pi.hThread);
5127
5128    return (int)exit_code;
5129  } else {
5130    return -1;
5131  }
5132}
5133
5134//--------------------------------------------------------------------------------------------------
5135// Non-product code
5136
5137static int mallocDebugIntervalCounter = 0;
5138static int mallocDebugCounter = 0;
5139bool os::check_heap(bool force) {
5140  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5141  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5142    // Note: HeapValidate executes two hardware breakpoints when it finds something
5143    // wrong; at these points, eax contains the address of the offending block (I think).
5144    // To get to the exlicit error message(s) below, just continue twice.
5145    HANDLE heap = GetProcessHeap();
5146
5147    // If we fail to lock the heap, then gflags.exe has been used
5148    // or some other special heap flag has been set that prevents
5149    // locking. We don't try to walk a heap we can't lock.
5150    if (HeapLock(heap) != 0) {
5151      PROCESS_HEAP_ENTRY phe;
5152      phe.lpData = NULL;
5153      while (HeapWalk(heap, &phe) != 0) {
5154        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5155            !HeapValidate(heap, 0, phe.lpData)) {
5156          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5157          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5158          fatal("corrupted C heap");
5159        }
5160      }
5161      DWORD err = GetLastError();
5162      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5163        fatal(err_msg("heap walk aborted with error %d", err));
5164      }
5165      HeapUnlock(heap);
5166    }
5167    mallocDebugIntervalCounter = 0;
5168  }
5169  return true;
5170}
5171
5172
5173bool os::find(address addr, outputStream* st) {
5174  // Nothing yet
5175  return false;
5176}
5177
5178LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5179  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5180
5181  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5182    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5183    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5184    address addr = (address) exceptionRecord->ExceptionInformation[1];
5185
5186    if (os::is_memory_serialize_page(thread, addr)) {
5187      return EXCEPTION_CONTINUE_EXECUTION;
5188    }
5189  }
5190
5191  return EXCEPTION_CONTINUE_SEARCH;
5192}
5193
5194// We don't build a headless jre for Windows
5195bool os::is_headless_jre() { return false; }
5196
5197static jint initSock() {
5198  WSADATA wsadata;
5199
5200  if (!os::WinSock2Dll::WinSock2Available()) {
5201    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5202                ::GetLastError());
5203    return JNI_ERR;
5204  }
5205
5206  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5207    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5208                ::GetLastError());
5209    return JNI_ERR;
5210  }
5211  return JNI_OK;
5212}
5213
5214struct hostent* os::get_host_by_name(char* name) {
5215  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5216}
5217
5218int os::socket_close(int fd) {
5219  return ::closesocket(fd);
5220}
5221
5222int os::socket(int domain, int type, int protocol) {
5223  return ::socket(domain, type, protocol);
5224}
5225
5226int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5227  return ::connect(fd, him, len);
5228}
5229
5230int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5231  return ::recv(fd, buf, (int)nBytes, flags);
5232}
5233
5234int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5235  return ::send(fd, buf, (int)nBytes, flags);
5236}
5237
5238int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5239  return ::send(fd, buf, (int)nBytes, flags);
5240}
5241
5242// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5243#if defined(IA32)
5244  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5245#elif defined (AMD64)
5246  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5247#endif
5248
5249// returns true if thread could be suspended,
5250// false otherwise
5251static bool do_suspend(HANDLE* h) {
5252  if (h != NULL) {
5253    if (SuspendThread(*h) != ~0) {
5254      return true;
5255    }
5256  }
5257  return false;
5258}
5259
5260// resume the thread
5261// calling resume on an active thread is a no-op
5262static void do_resume(HANDLE* h) {
5263  if (h != NULL) {
5264    ResumeThread(*h);
5265  }
5266}
5267
5268// retrieve a suspend/resume context capable handle
5269// from the tid. Caller validates handle return value.
5270void get_thread_handle_for_extended_context(HANDLE* h,
5271                                            OSThread::thread_id_t tid) {
5272  if (h != NULL) {
5273    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5274  }
5275}
5276
5277// Thread sampling implementation
5278//
5279void os::SuspendedThreadTask::internal_do_task() {
5280  CONTEXT    ctxt;
5281  HANDLE     h = NULL;
5282
5283  // get context capable handle for thread
5284  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5285
5286  // sanity
5287  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5288    return;
5289  }
5290
5291  // suspend the thread
5292  if (do_suspend(&h)) {
5293    ctxt.ContextFlags = sampling_context_flags;
5294    // get thread context
5295    GetThreadContext(h, &ctxt);
5296    SuspendedThreadTaskContext context(_thread, &ctxt);
5297    // pass context to Thread Sampling impl
5298    do_task(context);
5299    // resume thread
5300    do_resume(&h);
5301  }
5302
5303  // close handle
5304  CloseHandle(h);
5305}
5306
5307
5308// Kernel32 API
5309typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5310typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5311typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5312typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5313typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5314
5315GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5316VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5317GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5318GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5319RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5320
5321
5322BOOL                        os::Kernel32Dll::initialized = FALSE;
5323SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5324  assert(initialized && _GetLargePageMinimum != NULL,
5325         "GetLargePageMinimumAvailable() not yet called");
5326  return _GetLargePageMinimum();
5327}
5328
5329BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5330  if (!initialized) {
5331    initialize();
5332  }
5333  return _GetLargePageMinimum != NULL;
5334}
5335
5336BOOL os::Kernel32Dll::NumaCallsAvailable() {
5337  if (!initialized) {
5338    initialize();
5339  }
5340  return _VirtualAllocExNuma != NULL;
5341}
5342
5343LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5344                                           SIZE_T bytes, DWORD flags,
5345                                           DWORD prot, DWORD node) {
5346  assert(initialized && _VirtualAllocExNuma != NULL,
5347         "NUMACallsAvailable() not yet called");
5348
5349  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5350}
5351
5352BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5353  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5354         "NUMACallsAvailable() not yet called");
5355
5356  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5357}
5358
5359BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5360                                               PULONGLONG proc_mask) {
5361  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5362         "NUMACallsAvailable() not yet called");
5363
5364  return _GetNumaNodeProcessorMask(node, proc_mask);
5365}
5366
5367USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5368                                                 ULONG FrameToCapture,
5369                                                 PVOID* BackTrace,
5370                                                 PULONG BackTraceHash) {
5371  if (!initialized) {
5372    initialize();
5373  }
5374
5375  if (_RtlCaptureStackBackTrace != NULL) {
5376    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5377                                     BackTrace, BackTraceHash);
5378  } else {
5379    return 0;
5380  }
5381}
5382
5383void os::Kernel32Dll::initializeCommon() {
5384  if (!initialized) {
5385    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5386    assert(handle != NULL, "Just check");
5387    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5388    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5389    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5390    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5391    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5392    initialized = TRUE;
5393  }
5394}
5395
5396
5397
5398#ifndef JDK6_OR_EARLIER
5399
5400void os::Kernel32Dll::initialize() {
5401  initializeCommon();
5402}
5403
5404
5405// Kernel32 API
5406inline BOOL os::Kernel32Dll::SwitchToThread() {
5407  return ::SwitchToThread();
5408}
5409
5410inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5411  return true;
5412}
5413
5414// Help tools
5415inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5416  return true;
5417}
5418
5419inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5420                                                        DWORD th32ProcessId) {
5421  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5422}
5423
5424inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5425                                           LPMODULEENTRY32 lpme) {
5426  return ::Module32First(hSnapshot, lpme);
5427}
5428
5429inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5430                                          LPMODULEENTRY32 lpme) {
5431  return ::Module32Next(hSnapshot, lpme);
5432}
5433
5434inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5435  ::GetNativeSystemInfo(lpSystemInfo);
5436}
5437
5438// PSAPI API
5439inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5440                                             HMODULE *lpModule, DWORD cb,
5441                                             LPDWORD lpcbNeeded) {
5442  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5443}
5444
5445inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5446                                               HMODULE hModule,
5447                                               LPTSTR lpFilename,
5448                                               DWORD nSize) {
5449  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5450}
5451
5452inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5453                                               HMODULE hModule,
5454                                               LPMODULEINFO lpmodinfo,
5455                                               DWORD cb) {
5456  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5457}
5458
5459inline BOOL os::PSApiDll::PSApiAvailable() {
5460  return true;
5461}
5462
5463
5464// WinSock2 API
5465inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5466                                        LPWSADATA lpWSAData) {
5467  return ::WSAStartup(wVersionRequested, lpWSAData);
5468}
5469
5470inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5471  return ::gethostbyname(name);
5472}
5473
5474inline BOOL os::WinSock2Dll::WinSock2Available() {
5475  return true;
5476}
5477
5478// Advapi API
5479inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5480                                                   BOOL DisableAllPrivileges,
5481                                                   PTOKEN_PRIVILEGES NewState,
5482                                                   DWORD BufferLength,
5483                                                   PTOKEN_PRIVILEGES PreviousState,
5484                                                   PDWORD ReturnLength) {
5485  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5486                                 BufferLength, PreviousState, ReturnLength);
5487}
5488
5489inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5490                                              DWORD DesiredAccess,
5491                                              PHANDLE TokenHandle) {
5492  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5493}
5494
5495inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5496                                                  LPCTSTR lpName,
5497                                                  PLUID lpLuid) {
5498  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5499}
5500
5501inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5502  return true;
5503}
5504
5505void* os::get_default_process_handle() {
5506  return (void*)GetModuleHandle(NULL);
5507}
5508
5509// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5510// which is used to find statically linked in agents.
5511// Additionally for windows, takes into account __stdcall names.
5512// Parameters:
5513//            sym_name: Symbol in library we are looking for
5514//            lib_name: Name of library to look in, NULL for shared libs.
5515//            is_absolute_path == true if lib_name is absolute path to agent
5516//                                     such as "C:/a/b/L.dll"
5517//            == false if only the base name of the library is passed in
5518//               such as "L"
5519char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5520                                    bool is_absolute_path) {
5521  char *agent_entry_name;
5522  size_t len;
5523  size_t name_len;
5524  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5525  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5526  const char *start;
5527
5528  if (lib_name != NULL) {
5529    len = name_len = strlen(lib_name);
5530    if (is_absolute_path) {
5531      // Need to strip path, prefix and suffix
5532      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5533        lib_name = ++start;
5534      } else {
5535        // Need to check for drive prefix
5536        if ((start = strchr(lib_name, ':')) != NULL) {
5537          lib_name = ++start;
5538        }
5539      }
5540      if (len <= (prefix_len + suffix_len)) {
5541        return NULL;
5542      }
5543      lib_name += prefix_len;
5544      name_len = strlen(lib_name) - suffix_len;
5545    }
5546  }
5547  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5548  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5549  if (agent_entry_name == NULL) {
5550    return NULL;
5551  }
5552  if (lib_name != NULL) {
5553    const char *p = strrchr(sym_name, '@');
5554    if (p != NULL && p != sym_name) {
5555      // sym_name == _Agent_OnLoad@XX
5556      strncpy(agent_entry_name, sym_name, (p - sym_name));
5557      agent_entry_name[(p-sym_name)] = '\0';
5558      // agent_entry_name == _Agent_OnLoad
5559      strcat(agent_entry_name, "_");
5560      strncat(agent_entry_name, lib_name, name_len);
5561      strcat(agent_entry_name, p);
5562      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5563    } else {
5564      strcpy(agent_entry_name, sym_name);
5565      strcat(agent_entry_name, "_");
5566      strncat(agent_entry_name, lib_name, name_len);
5567    }
5568  } else {
5569    strcpy(agent_entry_name, sym_name);
5570  }
5571  return agent_entry_name;
5572}
5573
5574#else
5575// Kernel32 API
5576typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5577typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5578typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5579typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5580typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5581
5582SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5583CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5584Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5585Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5586GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5587
5588void os::Kernel32Dll::initialize() {
5589  if (!initialized) {
5590    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5591    assert(handle != NULL, "Just check");
5592
5593    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5594    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5595      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5596    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5597    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5598    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5599    initializeCommon();  // resolve the functions that always need resolving
5600
5601    initialized = TRUE;
5602  }
5603}
5604
5605BOOL os::Kernel32Dll::SwitchToThread() {
5606  assert(initialized && _SwitchToThread != NULL,
5607         "SwitchToThreadAvailable() not yet called");
5608  return _SwitchToThread();
5609}
5610
5611
5612BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5613  if (!initialized) {
5614    initialize();
5615  }
5616  return _SwitchToThread != NULL;
5617}
5618
5619// Help tools
5620BOOL os::Kernel32Dll::HelpToolsAvailable() {
5621  if (!initialized) {
5622    initialize();
5623  }
5624  return _CreateToolhelp32Snapshot != NULL &&
5625         _Module32First != NULL &&
5626         _Module32Next != NULL;
5627}
5628
5629HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5630                                                 DWORD th32ProcessId) {
5631  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5632         "HelpToolsAvailable() not yet called");
5633
5634  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5635}
5636
5637BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5638  assert(initialized && _Module32First != NULL,
5639         "HelpToolsAvailable() not yet called");
5640
5641  return _Module32First(hSnapshot, lpme);
5642}
5643
5644inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5645                                          LPMODULEENTRY32 lpme) {
5646  assert(initialized && _Module32Next != NULL,
5647         "HelpToolsAvailable() not yet called");
5648
5649  return _Module32Next(hSnapshot, lpme);
5650}
5651
5652
5653BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5654  if (!initialized) {
5655    initialize();
5656  }
5657  return _GetNativeSystemInfo != NULL;
5658}
5659
5660void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5661  assert(initialized && _GetNativeSystemInfo != NULL,
5662         "GetNativeSystemInfoAvailable() not yet called");
5663
5664  _GetNativeSystemInfo(lpSystemInfo);
5665}
5666
5667// PSAPI API
5668
5669
5670typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5671typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5672typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5673
5674EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5675GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5676GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5677BOOL                    os::PSApiDll::initialized = FALSE;
5678
5679void os::PSApiDll::initialize() {
5680  if (!initialized) {
5681    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5682    if (handle != NULL) {
5683      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5684                                                                    "EnumProcessModules");
5685      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5686                                                                      "GetModuleFileNameExA");
5687      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5688                                                                        "GetModuleInformation");
5689    }
5690    initialized = TRUE;
5691  }
5692}
5693
5694
5695
5696BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5697                                      DWORD cb, LPDWORD lpcbNeeded) {
5698  assert(initialized && _EnumProcessModules != NULL,
5699         "PSApiAvailable() not yet called");
5700  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5701}
5702
5703DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5704                                        LPTSTR lpFilename, DWORD nSize) {
5705  assert(initialized && _GetModuleFileNameEx != NULL,
5706         "PSApiAvailable() not yet called");
5707  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5708}
5709
5710BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5711                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5712  assert(initialized && _GetModuleInformation != NULL,
5713         "PSApiAvailable() not yet called");
5714  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5715}
5716
5717BOOL os::PSApiDll::PSApiAvailable() {
5718  if (!initialized) {
5719    initialize();
5720  }
5721  return _EnumProcessModules != NULL &&
5722    _GetModuleFileNameEx != NULL &&
5723    _GetModuleInformation != NULL;
5724}
5725
5726
5727// WinSock2 API
5728typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5729typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5730
5731WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5732gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5733BOOL             os::WinSock2Dll::initialized = FALSE;
5734
5735void os::WinSock2Dll::initialize() {
5736  if (!initialized) {
5737    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5738    if (handle != NULL) {
5739      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5740      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5741    }
5742    initialized = TRUE;
5743  }
5744}
5745
5746
5747BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5748  assert(initialized && _WSAStartup != NULL,
5749         "WinSock2Available() not yet called");
5750  return _WSAStartup(wVersionRequested, lpWSAData);
5751}
5752
5753struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5754  assert(initialized && _gethostbyname != NULL,
5755         "WinSock2Available() not yet called");
5756  return _gethostbyname(name);
5757}
5758
5759BOOL os::WinSock2Dll::WinSock2Available() {
5760  if (!initialized) {
5761    initialize();
5762  }
5763  return _WSAStartup != NULL &&
5764    _gethostbyname != NULL;
5765}
5766
5767typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5768typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5769typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5770
5771AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5772OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5773LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5774BOOL                     os::Advapi32Dll::initialized = FALSE;
5775
5776void os::Advapi32Dll::initialize() {
5777  if (!initialized) {
5778    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5779    if (handle != NULL) {
5780      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5781                                                                          "AdjustTokenPrivileges");
5782      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5783                                                                "OpenProcessToken");
5784      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5785                                                                        "LookupPrivilegeValueA");
5786    }
5787    initialized = TRUE;
5788  }
5789}
5790
5791BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5792                                            BOOL DisableAllPrivileges,
5793                                            PTOKEN_PRIVILEGES NewState,
5794                                            DWORD BufferLength,
5795                                            PTOKEN_PRIVILEGES PreviousState,
5796                                            PDWORD ReturnLength) {
5797  assert(initialized && _AdjustTokenPrivileges != NULL,
5798         "AdvapiAvailable() not yet called");
5799  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5800                                BufferLength, PreviousState, ReturnLength);
5801}
5802
5803BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5804                                       DWORD DesiredAccess,
5805                                       PHANDLE TokenHandle) {
5806  assert(initialized && _OpenProcessToken != NULL,
5807         "AdvapiAvailable() not yet called");
5808  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5809}
5810
5811BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5812                                           LPCTSTR lpName, PLUID lpLuid) {
5813  assert(initialized && _LookupPrivilegeValue != NULL,
5814         "AdvapiAvailable() not yet called");
5815  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5816}
5817
5818BOOL os::Advapi32Dll::AdvapiAvailable() {
5819  if (!initialized) {
5820    initialize();
5821  }
5822  return _AdjustTokenPrivileges != NULL &&
5823    _OpenProcessToken != NULL &&
5824    _LookupPrivilegeValue != NULL;
5825}
5826
5827#endif
5828
5829#ifndef PRODUCT
5830
5831// test the code path in reserve_memory_special() that tries to allocate memory in a single
5832// contiguous memory block at a particular address.
5833// The test first tries to find a good approximate address to allocate at by using the same
5834// method to allocate some memory at any address. The test then tries to allocate memory in
5835// the vicinity (not directly after it to avoid possible by-chance use of that location)
5836// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5837// the previously allocated memory is available for allocation. The only actual failure
5838// that is reported is when the test tries to allocate at a particular location but gets a
5839// different valid one. A NULL return value at this point is not considered an error but may
5840// be legitimate.
5841// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5842void TestReserveMemorySpecial_test() {
5843  if (!UseLargePages) {
5844    if (VerboseInternalVMTests) {
5845      gclog_or_tty->print("Skipping test because large pages are disabled");
5846    }
5847    return;
5848  }
5849  // save current value of globals
5850  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5851  bool old_use_numa_interleaving = UseNUMAInterleaving;
5852
5853  // set globals to make sure we hit the correct code path
5854  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5855
5856  // do an allocation at an address selected by the OS to get a good one.
5857  const size_t large_allocation_size = os::large_page_size() * 4;
5858  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5859  if (result == NULL) {
5860    if (VerboseInternalVMTests) {
5861      gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5862                          large_allocation_size);
5863    }
5864  } else {
5865    os::release_memory_special(result, large_allocation_size);
5866
5867    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5868    // we managed to get it once.
5869    const size_t expected_allocation_size = os::large_page_size();
5870    char* expected_location = result + os::large_page_size();
5871    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5872    if (actual_location == NULL) {
5873      if (VerboseInternalVMTests) {
5874        gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5875                            expected_location, large_allocation_size);
5876      }
5877    } else {
5878      // release memory
5879      os::release_memory_special(actual_location, expected_allocation_size);
5880      // only now check, after releasing any memory to avoid any leaks.
5881      assert(actual_location == expected_location,
5882             err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5883             expected_location, expected_allocation_size, actual_location));
5884    }
5885  }
5886
5887  // restore globals
5888  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5889  UseNUMAInterleaving = old_use_numa_interleaving;
5890}
5891#endif // PRODUCT
5892
5893