os_windows.cpp revision 7052:0990a645d215
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "services/attachListener.hpp"
67#include "services/memTracker.hpp"
68#include "services/runtimeService.hpp"
69#include "utilities/decoder.hpp"
70#include "utilities/defaultStream.hpp"
71#include "utilities/events.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/vmError.hpp"
74
75#ifdef _DEBUG
76#include <crtdbg.h>
77#endif
78
79
80#include <windows.h>
81#include <sys/types.h>
82#include <sys/stat.h>
83#include <sys/timeb.h>
84#include <objidl.h>
85#include <shlobj.h>
86
87#include <malloc.h>
88#include <signal.h>
89#include <direct.h>
90#include <errno.h>
91#include <fcntl.h>
92#include <io.h>
93#include <process.h>              // For _beginthreadex(), _endthreadex()
94#include <imagehlp.h>             // For os::dll_address_to_function_name
95// for enumerating dll libraries
96#include <vdmdbg.h>
97
98// for timer info max values which include all bits
99#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
100
101// For DLL loading/load error detection
102// Values of PE COFF
103#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
104#define IMAGE_FILE_SIGNATURE_LENGTH 4
105
106static HANDLE main_process;
107static HANDLE main_thread;
108static int    main_thread_id;
109
110static FILETIME process_creation_time;
111static FILETIME process_exit_time;
112static FILETIME process_user_time;
113static FILETIME process_kernel_time;
114
115#ifdef _M_IA64
116  #define __CPU__ ia64
117#elif _M_AMD64
118  #define __CPU__ amd64
119#else
120  #define __CPU__ i486
121#endif
122
123// save DLL module handle, used by GetModuleFileName
124
125HINSTANCE vm_lib_handle;
126
127BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
128  switch (reason) {
129  case DLL_PROCESS_ATTACH:
130    vm_lib_handle = hinst;
131    if (ForceTimeHighResolution) {
132      timeBeginPeriod(1L);
133    }
134    break;
135  case DLL_PROCESS_DETACH:
136    if (ForceTimeHighResolution) {
137      timeEndPeriod(1L);
138    }
139    break;
140  default:
141    break;
142  }
143  return true;
144}
145
146static inline double fileTimeAsDouble(FILETIME* time) {
147  const double high  = (double) ((unsigned int) ~0);
148  const double split = 10000000.0;
149  double result = (time->dwLowDateTime / split) +
150                   time->dwHighDateTime * (high/split);
151  return result;
152}
153
154// Implementation of os
155
156bool os::getenv(const char* name, char* buffer, int len) {
157  int result = GetEnvironmentVariable(name, buffer, len);
158  return result > 0 && result < len;
159}
160
161bool os::unsetenv(const char* name) {
162  assert(name != NULL, "Null pointer");
163  return (SetEnvironmentVariable(name, NULL) == TRUE);
164}
165
166// No setuid programs under Windows.
167bool os::have_special_privileges() {
168  return false;
169}
170
171
172// This method is  a periodic task to check for misbehaving JNI applications
173// under CheckJNI, we can add any periodic checks here.
174// For Windows at the moment does nothing
175void os::run_periodic_checks() {
176  return;
177}
178
179// previous UnhandledExceptionFilter, if there is one
180static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
181
182LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
183
184void os::init_system_properties_values() {
185  // sysclasspath, java_home, dll_dir
186  {
187    char *home_path;
188    char *dll_path;
189    char *pslash;
190    char *bin = "\\bin";
191    char home_dir[MAX_PATH];
192
193    if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
194      os::jvm_path(home_dir, sizeof(home_dir));
195      // Found the full path to jvm.dll.
196      // Now cut the path to <java_home>/jre if we can.
197      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
198      pslash = strrchr(home_dir, '\\');
199      if (pslash != NULL) {
200        *pslash = '\0';                   // get rid of \{client|server}
201        pslash = strrchr(home_dir, '\\');
202        if (pslash != NULL) {
203          *pslash = '\0';                 // get rid of \bin
204        }
205      }
206    }
207
208    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
209    if (home_path == NULL) {
210      return;
211    }
212    strcpy(home_path, home_dir);
213    Arguments::set_java_home(home_path);
214
215    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
216                                mtInternal);
217    if (dll_path == NULL) {
218      return;
219    }
220    strcpy(dll_path, home_dir);
221    strcat(dll_path, bin);
222    Arguments::set_dll_dir(dll_path);
223
224    if (!set_boot_path('\\', ';')) {
225      return;
226    }
227  }
228
229// library_path
230#define EXT_DIR "\\lib\\ext"
231#define BIN_DIR "\\bin"
232#define PACKAGE_DIR "\\Sun\\Java"
233  {
234    // Win32 library search order (See the documentation for LoadLibrary):
235    //
236    // 1. The directory from which application is loaded.
237    // 2. The system wide Java Extensions directory (Java only)
238    // 3. System directory (GetSystemDirectory)
239    // 4. Windows directory (GetWindowsDirectory)
240    // 5. The PATH environment variable
241    // 6. The current directory
242
243    char *library_path;
244    char tmp[MAX_PATH];
245    char *path_str = ::getenv("PATH");
246
247    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
248                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
249
250    library_path[0] = '\0';
251
252    GetModuleFileName(NULL, tmp, sizeof(tmp));
253    *(strrchr(tmp, '\\')) = '\0';
254    strcat(library_path, tmp);
255
256    GetWindowsDirectory(tmp, sizeof(tmp));
257    strcat(library_path, ";");
258    strcat(library_path, tmp);
259    strcat(library_path, PACKAGE_DIR BIN_DIR);
260
261    GetSystemDirectory(tmp, sizeof(tmp));
262    strcat(library_path, ";");
263    strcat(library_path, tmp);
264
265    GetWindowsDirectory(tmp, sizeof(tmp));
266    strcat(library_path, ";");
267    strcat(library_path, tmp);
268
269    if (path_str) {
270      strcat(library_path, ";");
271      strcat(library_path, path_str);
272    }
273
274    strcat(library_path, ";.");
275
276    Arguments::set_library_path(library_path);
277    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
278  }
279
280  // Default extensions directory
281  {
282    char path[MAX_PATH];
283    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
284    GetWindowsDirectory(path, MAX_PATH);
285    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
286            path, PACKAGE_DIR, EXT_DIR);
287    Arguments::set_ext_dirs(buf);
288  }
289  #undef EXT_DIR
290  #undef BIN_DIR
291  #undef PACKAGE_DIR
292
293  // Default endorsed standards directory.
294  {
295#define ENDORSED_DIR "\\lib\\endorsed"
296    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
297    char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
298    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
299    Arguments::set_endorsed_dirs(buf);
300#undef ENDORSED_DIR
301  }
302
303#ifndef _WIN64
304  // set our UnhandledExceptionFilter and save any previous one
305  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
306#endif
307
308  // Done
309  return;
310}
311
312void os::breakpoint() {
313  DebugBreak();
314}
315
316// Invoked from the BREAKPOINT Macro
317extern "C" void breakpoint() {
318  os::breakpoint();
319}
320
321// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
322// So far, this method is only used by Native Memory Tracking, which is
323// only supported on Windows XP or later.
324//
325int os::get_native_stack(address* stack, int frames, int toSkip) {
326#ifdef _NMT_NOINLINE_
327  toSkip++;
328#endif
329  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
330                                                       (PVOID*)stack, NULL);
331  for (int index = captured; index < frames; index ++) {
332    stack[index] = NULL;
333  }
334  return captured;
335}
336
337
338// os::current_stack_base()
339//
340//   Returns the base of the stack, which is the stack's
341//   starting address.  This function must be called
342//   while running on the stack of the thread being queried.
343
344address os::current_stack_base() {
345  MEMORY_BASIC_INFORMATION minfo;
346  address stack_bottom;
347  size_t stack_size;
348
349  VirtualQuery(&minfo, &minfo, sizeof(minfo));
350  stack_bottom =  (address)minfo.AllocationBase;
351  stack_size = minfo.RegionSize;
352
353  // Add up the sizes of all the regions with the same
354  // AllocationBase.
355  while (1) {
356    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
357    if (stack_bottom == (address)minfo.AllocationBase) {
358      stack_size += minfo.RegionSize;
359    } else {
360      break;
361    }
362  }
363
364#ifdef _M_IA64
365  // IA64 has memory and register stacks
366  //
367  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
368  // at thread creation (1MB backing store growing upwards, 1MB memory stack
369  // growing downwards, 2MB summed up)
370  //
371  // ...
372  // ------- top of stack (high address) -----
373  // |
374  // |      1MB
375  // |      Backing Store (Register Stack)
376  // |
377  // |         / \
378  // |          |
379  // |          |
380  // |          |
381  // ------------------------ stack base -----
382  // |      1MB
383  // |      Memory Stack
384  // |
385  // |          |
386  // |          |
387  // |          |
388  // |         \ /
389  // |
390  // ----- bottom of stack (low address) -----
391  // ...
392
393  stack_size = stack_size / 2;
394#endif
395  return stack_bottom + stack_size;
396}
397
398size_t os::current_stack_size() {
399  size_t sz;
400  MEMORY_BASIC_INFORMATION minfo;
401  VirtualQuery(&minfo, &minfo, sizeof(minfo));
402  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
403  return sz;
404}
405
406struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
407  const struct tm* time_struct_ptr = localtime(clock);
408  if (time_struct_ptr != NULL) {
409    *res = *time_struct_ptr;
410    return res;
411  }
412  return NULL;
413}
414
415LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
416
417// Thread start routine for all new Java threads
418static unsigned __stdcall java_start(Thread* thread) {
419  // Try to randomize the cache line index of hot stack frames.
420  // This helps when threads of the same stack traces evict each other's
421  // cache lines. The threads can be either from the same JVM instance, or
422  // from different JVM instances. The benefit is especially true for
423  // processors with hyperthreading technology.
424  static int counter = 0;
425  int pid = os::current_process_id();
426  _alloca(((pid ^ counter++) & 7) * 128);
427
428  OSThread* osthr = thread->osthread();
429  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
430
431  if (UseNUMA) {
432    int lgrp_id = os::numa_get_group_id();
433    if (lgrp_id != -1) {
434      thread->set_lgrp_id(lgrp_id);
435    }
436  }
437
438  // Diagnostic code to investigate JDK-6573254
439  int res = 90115;  // non-java thread
440  if (thread->is_Java_thread()) {
441    res = 60115;    // java thread
442  }
443
444  // Install a win32 structured exception handler around every thread created
445  // by VM, so VM can generate error dump when an exception occurred in non-
446  // Java thread (e.g. VM thread).
447  __try {
448    thread->run();
449  } __except(topLevelExceptionFilter(
450                                     (_EXCEPTION_POINTERS*)_exception_info())) {
451    // Nothing to do.
452  }
453
454  // One less thread is executing
455  // When the VMThread gets here, the main thread may have already exited
456  // which frees the CodeHeap containing the Atomic::add code
457  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
458    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
459  }
460
461  // Thread must not return from exit_process_or_thread(), but if it does,
462  // let it proceed to exit normally
463  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
464}
465
466static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
467                                  int thread_id) {
468  // Allocate the OSThread object
469  OSThread* osthread = new OSThread(NULL, NULL);
470  if (osthread == NULL) return NULL;
471
472  // Initialize support for Java interrupts
473  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
474  if (interrupt_event == NULL) {
475    delete osthread;
476    return NULL;
477  }
478  osthread->set_interrupt_event(interrupt_event);
479
480  // Store info on the Win32 thread into the OSThread
481  osthread->set_thread_handle(thread_handle);
482  osthread->set_thread_id(thread_id);
483
484  if (UseNUMA) {
485    int lgrp_id = os::numa_get_group_id();
486    if (lgrp_id != -1) {
487      thread->set_lgrp_id(lgrp_id);
488    }
489  }
490
491  // Initial thread state is INITIALIZED, not SUSPENDED
492  osthread->set_state(INITIALIZED);
493
494  return osthread;
495}
496
497
498bool os::create_attached_thread(JavaThread* thread) {
499#ifdef ASSERT
500  thread->verify_not_published();
501#endif
502  HANDLE thread_h;
503  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
504                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
505    fatal("DuplicateHandle failed\n");
506  }
507  OSThread* osthread = create_os_thread(thread, thread_h,
508                                        (int)current_thread_id());
509  if (osthread == NULL) {
510    return false;
511  }
512
513  // Initial thread state is RUNNABLE
514  osthread->set_state(RUNNABLE);
515
516  thread->set_osthread(osthread);
517  return true;
518}
519
520bool os::create_main_thread(JavaThread* thread) {
521#ifdef ASSERT
522  thread->verify_not_published();
523#endif
524  if (_starting_thread == NULL) {
525    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
526    if (_starting_thread == NULL) {
527      return false;
528    }
529  }
530
531  // The primordial thread is runnable from the start)
532  _starting_thread->set_state(RUNNABLE);
533
534  thread->set_osthread(_starting_thread);
535  return true;
536}
537
538// Allocate and initialize a new OSThread
539bool os::create_thread(Thread* thread, ThreadType thr_type,
540                       size_t stack_size) {
541  unsigned thread_id;
542
543  // Allocate the OSThread object
544  OSThread* osthread = new OSThread(NULL, NULL);
545  if (osthread == NULL) {
546    return false;
547  }
548
549  // Initialize support for Java interrupts
550  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
551  if (interrupt_event == NULL) {
552    delete osthread;
553    return NULL;
554  }
555  osthread->set_interrupt_event(interrupt_event);
556  osthread->set_interrupted(false);
557
558  thread->set_osthread(osthread);
559
560  if (stack_size == 0) {
561    switch (thr_type) {
562    case os::java_thread:
563      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
564      if (JavaThread::stack_size_at_create() > 0) {
565        stack_size = JavaThread::stack_size_at_create();
566      }
567      break;
568    case os::compiler_thread:
569      if (CompilerThreadStackSize > 0) {
570        stack_size = (size_t)(CompilerThreadStackSize * K);
571        break;
572      } // else fall through:
573        // use VMThreadStackSize if CompilerThreadStackSize is not defined
574    case os::vm_thread:
575    case os::pgc_thread:
576    case os::cgc_thread:
577    case os::watcher_thread:
578      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
579      break;
580    }
581  }
582
583  // Create the Win32 thread
584  //
585  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
586  // does not specify stack size. Instead, it specifies the size of
587  // initially committed space. The stack size is determined by
588  // PE header in the executable. If the committed "stack_size" is larger
589  // than default value in the PE header, the stack is rounded up to the
590  // nearest multiple of 1MB. For example if the launcher has default
591  // stack size of 320k, specifying any size less than 320k does not
592  // affect the actual stack size at all, it only affects the initial
593  // commitment. On the other hand, specifying 'stack_size' larger than
594  // default value may cause significant increase in memory usage, because
595  // not only the stack space will be rounded up to MB, but also the
596  // entire space is committed upfront.
597  //
598  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
599  // for CreateThread() that can treat 'stack_size' as stack size. However we
600  // are not supposed to call CreateThread() directly according to MSDN
601  // document because JVM uses C runtime library. The good news is that the
602  // flag appears to work with _beginthredex() as well.
603
604#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
605  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
606#endif
607
608  HANDLE thread_handle =
609    (HANDLE)_beginthreadex(NULL,
610                           (unsigned)stack_size,
611                           (unsigned (__stdcall *)(void*)) java_start,
612                           thread,
613                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
614                           &thread_id);
615  if (thread_handle == NULL) {
616    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
617    // without the flag.
618    thread_handle =
619      (HANDLE)_beginthreadex(NULL,
620                             (unsigned)stack_size,
621                             (unsigned (__stdcall *)(void*)) java_start,
622                             thread,
623                             CREATE_SUSPENDED,
624                             &thread_id);
625  }
626  if (thread_handle == NULL) {
627    // Need to clean up stuff we've allocated so far
628    CloseHandle(osthread->interrupt_event());
629    thread->set_osthread(NULL);
630    delete osthread;
631    return NULL;
632  }
633
634  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
635
636  // Store info on the Win32 thread into the OSThread
637  osthread->set_thread_handle(thread_handle);
638  osthread->set_thread_id(thread_id);
639
640  // Initial thread state is INITIALIZED, not SUSPENDED
641  osthread->set_state(INITIALIZED);
642
643  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
644  return true;
645}
646
647
648// Free Win32 resources related to the OSThread
649void os::free_thread(OSThread* osthread) {
650  assert(osthread != NULL, "osthread not set");
651  CloseHandle(osthread->thread_handle());
652  CloseHandle(osthread->interrupt_event());
653  delete osthread;
654}
655
656static jlong first_filetime;
657static jlong initial_performance_count;
658static jlong performance_frequency;
659
660
661jlong as_long(LARGE_INTEGER x) {
662  jlong result = 0; // initialization to avoid warning
663  set_high(&result, x.HighPart);
664  set_low(&result, x.LowPart);
665  return result;
666}
667
668
669jlong os::elapsed_counter() {
670  LARGE_INTEGER count;
671  if (win32::_has_performance_count) {
672    QueryPerformanceCounter(&count);
673    return as_long(count) - initial_performance_count;
674  } else {
675    FILETIME wt;
676    GetSystemTimeAsFileTime(&wt);
677    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
678  }
679}
680
681
682jlong os::elapsed_frequency() {
683  if (win32::_has_performance_count) {
684    return performance_frequency;
685  } else {
686    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
687    return 10000000;
688  }
689}
690
691
692julong os::available_memory() {
693  return win32::available_memory();
694}
695
696julong os::win32::available_memory() {
697  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
698  // value if total memory is larger than 4GB
699  MEMORYSTATUSEX ms;
700  ms.dwLength = sizeof(ms);
701  GlobalMemoryStatusEx(&ms);
702
703  return (julong)ms.ullAvailPhys;
704}
705
706julong os::physical_memory() {
707  return win32::physical_memory();
708}
709
710bool os::has_allocatable_memory_limit(julong* limit) {
711  MEMORYSTATUSEX ms;
712  ms.dwLength = sizeof(ms);
713  GlobalMemoryStatusEx(&ms);
714#ifdef _LP64
715  *limit = (julong)ms.ullAvailVirtual;
716  return true;
717#else
718  // Limit to 1400m because of the 2gb address space wall
719  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
720  return true;
721#endif
722}
723
724// VC6 lacks DWORD_PTR
725#if _MSC_VER < 1300
726typedef UINT_PTR DWORD_PTR;
727#endif
728
729int os::active_processor_count() {
730  DWORD_PTR lpProcessAffinityMask = 0;
731  DWORD_PTR lpSystemAffinityMask = 0;
732  int proc_count = processor_count();
733  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
734      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
735    // Nof active processors is number of bits in process affinity mask
736    int bitcount = 0;
737    while (lpProcessAffinityMask != 0) {
738      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
739      bitcount++;
740    }
741    return bitcount;
742  } else {
743    return proc_count;
744  }
745}
746
747void os::set_native_thread_name(const char *name) {
748  // Not yet implemented.
749  return;
750}
751
752bool os::distribute_processes(uint length, uint* distribution) {
753  // Not yet implemented.
754  return false;
755}
756
757bool os::bind_to_processor(uint processor_id) {
758  // Not yet implemented.
759  return false;
760}
761
762void os::win32::initialize_performance_counter() {
763  LARGE_INTEGER count;
764  if (QueryPerformanceFrequency(&count)) {
765    win32::_has_performance_count = 1;
766    performance_frequency = as_long(count);
767    QueryPerformanceCounter(&count);
768    initial_performance_count = as_long(count);
769  } else {
770    win32::_has_performance_count = 0;
771    FILETIME wt;
772    GetSystemTimeAsFileTime(&wt);
773    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
774  }
775}
776
777
778double os::elapsedTime() {
779  return (double) elapsed_counter() / (double) elapsed_frequency();
780}
781
782
783// Windows format:
784//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
785// Java format:
786//   Java standards require the number of milliseconds since 1/1/1970
787
788// Constant offset - calculated using offset()
789static jlong  _offset   = 116444736000000000;
790// Fake time counter for reproducible results when debugging
791static jlong  fake_time = 0;
792
793#ifdef ASSERT
794// Just to be safe, recalculate the offset in debug mode
795static jlong _calculated_offset = 0;
796static int   _has_calculated_offset = 0;
797
798jlong offset() {
799  if (_has_calculated_offset) return _calculated_offset;
800  SYSTEMTIME java_origin;
801  java_origin.wYear          = 1970;
802  java_origin.wMonth         = 1;
803  java_origin.wDayOfWeek     = 0; // ignored
804  java_origin.wDay           = 1;
805  java_origin.wHour          = 0;
806  java_origin.wMinute        = 0;
807  java_origin.wSecond        = 0;
808  java_origin.wMilliseconds  = 0;
809  FILETIME jot;
810  if (!SystemTimeToFileTime(&java_origin, &jot)) {
811    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
812  }
813  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
814  _has_calculated_offset = 1;
815  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
816  return _calculated_offset;
817}
818#else
819jlong offset() {
820  return _offset;
821}
822#endif
823
824jlong windows_to_java_time(FILETIME wt) {
825  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
826  return (a - offset()) / 10000;
827}
828
829FILETIME java_to_windows_time(jlong l) {
830  jlong a = (l * 10000) + offset();
831  FILETIME result;
832  result.dwHighDateTime = high(a);
833  result.dwLowDateTime  = low(a);
834  return result;
835}
836
837bool os::supports_vtime() { return true; }
838bool os::enable_vtime() { return false; }
839bool os::vtime_enabled() { return false; }
840
841double os::elapsedVTime() {
842  FILETIME created;
843  FILETIME exited;
844  FILETIME kernel;
845  FILETIME user;
846  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
847    // the resolution of windows_to_java_time() should be sufficient (ms)
848    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
849  } else {
850    return elapsedTime();
851  }
852}
853
854jlong os::javaTimeMillis() {
855  if (UseFakeTimers) {
856    return fake_time++;
857  } else {
858    FILETIME wt;
859    GetSystemTimeAsFileTime(&wt);
860    return windows_to_java_time(wt);
861  }
862}
863
864jlong os::javaTimeNanos() {
865  if (!win32::_has_performance_count) {
866    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
867  } else {
868    LARGE_INTEGER current_count;
869    QueryPerformanceCounter(&current_count);
870    double current = as_long(current_count);
871    double freq = performance_frequency;
872    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
873    return time;
874  }
875}
876
877void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
878  if (!win32::_has_performance_count) {
879    // javaTimeMillis() doesn't have much percision,
880    // but it is not going to wrap -- so all 64 bits
881    info_ptr->max_value = ALL_64_BITS;
882
883    // this is a wall clock timer, so may skip
884    info_ptr->may_skip_backward = true;
885    info_ptr->may_skip_forward = true;
886  } else {
887    jlong freq = performance_frequency;
888    if (freq < NANOSECS_PER_SEC) {
889      // the performance counter is 64 bits and we will
890      // be multiplying it -- so no wrap in 64 bits
891      info_ptr->max_value = ALL_64_BITS;
892    } else if (freq > NANOSECS_PER_SEC) {
893      // use the max value the counter can reach to
894      // determine the max value which could be returned
895      julong max_counter = (julong)ALL_64_BITS;
896      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
897    } else {
898      // the performance counter is 64 bits and we will
899      // be using it directly -- so no wrap in 64 bits
900      info_ptr->max_value = ALL_64_BITS;
901    }
902
903    // using a counter, so no skipping
904    info_ptr->may_skip_backward = false;
905    info_ptr->may_skip_forward = false;
906  }
907  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
908}
909
910char* os::local_time_string(char *buf, size_t buflen) {
911  SYSTEMTIME st;
912  GetLocalTime(&st);
913  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
914               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
915  return buf;
916}
917
918bool os::getTimesSecs(double* process_real_time,
919                      double* process_user_time,
920                      double* process_system_time) {
921  HANDLE h_process = GetCurrentProcess();
922  FILETIME create_time, exit_time, kernel_time, user_time;
923  BOOL result = GetProcessTimes(h_process,
924                                &create_time,
925                                &exit_time,
926                                &kernel_time,
927                                &user_time);
928  if (result != 0) {
929    FILETIME wt;
930    GetSystemTimeAsFileTime(&wt);
931    jlong rtc_millis = windows_to_java_time(wt);
932    jlong user_millis = windows_to_java_time(user_time);
933    jlong system_millis = windows_to_java_time(kernel_time);
934    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
935    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
936    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
937    return true;
938  } else {
939    return false;
940  }
941}
942
943void os::shutdown() {
944  // allow PerfMemory to attempt cleanup of any persistent resources
945  perfMemory_exit();
946
947  // flush buffered output, finish log files
948  ostream_abort();
949
950  // Check for abort hook
951  abort_hook_t abort_hook = Arguments::abort_hook();
952  if (abort_hook != NULL) {
953    abort_hook();
954  }
955}
956
957
958static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
959                                         PMINIDUMP_EXCEPTION_INFORMATION,
960                                         PMINIDUMP_USER_STREAM_INFORMATION,
961                                         PMINIDUMP_CALLBACK_INFORMATION);
962
963void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
964  HINSTANCE dbghelp;
965  EXCEPTION_POINTERS ep;
966  MINIDUMP_EXCEPTION_INFORMATION mei;
967  MINIDUMP_EXCEPTION_INFORMATION* pmei;
968
969  HANDLE hProcess = GetCurrentProcess();
970  DWORD processId = GetCurrentProcessId();
971  HANDLE dumpFile;
972  MINIDUMP_TYPE dumpType;
973  static const char* cwd;
974
975// Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
976#ifndef ASSERT
977  // If running on a client version of Windows and user has not explicitly enabled dumping
978  if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
979    VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
980    return;
981    // If running on a server version of Windows and user has explictly disabled dumping
982  } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
983    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
984    return;
985  }
986#else
987  if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
988    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
989    return;
990  }
991#endif
992
993  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
994
995  if (dbghelp == NULL) {
996    VMError::report_coredump_status("Failed to load dbghelp.dll", false);
997    return;
998  }
999
1000  _MiniDumpWriteDump =
1001      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1002                                    PMINIDUMP_EXCEPTION_INFORMATION,
1003                                    PMINIDUMP_USER_STREAM_INFORMATION,
1004                                    PMINIDUMP_CALLBACK_INFORMATION),
1005                                    GetProcAddress(dbghelp,
1006                                    "MiniDumpWriteDump"));
1007
1008  if (_MiniDumpWriteDump == NULL) {
1009    VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
1010    return;
1011  }
1012
1013  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1014
1015// Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1016// API_VERSION_NUMBER 11 or higher contains the ones we want though
1017#if API_VERSION_NUMBER >= 11
1018  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1019                             MiniDumpWithUnloadedModules);
1020#endif
1021
1022  cwd = get_current_directory(NULL, 0);
1023  jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1024  dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1025
1026  if (dumpFile == INVALID_HANDLE_VALUE) {
1027    VMError::report_coredump_status("Failed to create file for dumping", false);
1028    return;
1029  }
1030  if (exceptionRecord != NULL && contextRecord != NULL) {
1031    ep.ContextRecord = (PCONTEXT) contextRecord;
1032    ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1033
1034    mei.ThreadId = GetCurrentThreadId();
1035    mei.ExceptionPointers = &ep;
1036    pmei = &mei;
1037  } else {
1038    pmei = NULL;
1039  }
1040
1041
1042  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1043  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1044  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1045      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1046    DWORD error = GetLastError();
1047    LPTSTR msgbuf = NULL;
1048
1049    if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1050                      FORMAT_MESSAGE_FROM_SYSTEM |
1051                      FORMAT_MESSAGE_IGNORE_INSERTS,
1052                      NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1053
1054      jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1055      LocalFree(msgbuf);
1056    } else {
1057      // Call to FormatMessage failed, just include the result from GetLastError
1058      jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1059    }
1060    VMError::report_coredump_status(buffer, false);
1061  } else {
1062    VMError::report_coredump_status(buffer, true);
1063  }
1064
1065  CloseHandle(dumpFile);
1066}
1067
1068
1069void os::abort(bool dump_core) {
1070  os::shutdown();
1071  // no core dump on Windows
1072  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1073}
1074
1075// Die immediately, no exit hook, no abort hook, no cleanup.
1076void os::die() {
1077  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1078}
1079
1080// Directory routines copied from src/win32/native/java/io/dirent_md.c
1081//  * dirent_md.c       1.15 00/02/02
1082//
1083// The declarations for DIR and struct dirent are in jvm_win32.h.
1084
1085// Caller must have already run dirname through JVM_NativePath, which removes
1086// duplicate slashes and converts all instances of '/' into '\\'.
1087
1088DIR * os::opendir(const char *dirname) {
1089  assert(dirname != NULL, "just checking");   // hotspot change
1090  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1091  DWORD fattr;                                // hotspot change
1092  char alt_dirname[4] = { 0, 0, 0, 0 };
1093
1094  if (dirp == 0) {
1095    errno = ENOMEM;
1096    return 0;
1097  }
1098
1099  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1100  // as a directory in FindFirstFile().  We detect this case here and
1101  // prepend the current drive name.
1102  //
1103  if (dirname[1] == '\0' && dirname[0] == '\\') {
1104    alt_dirname[0] = _getdrive() + 'A' - 1;
1105    alt_dirname[1] = ':';
1106    alt_dirname[2] = '\\';
1107    alt_dirname[3] = '\0';
1108    dirname = alt_dirname;
1109  }
1110
1111  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1112  if (dirp->path == 0) {
1113    free(dirp, mtInternal);
1114    errno = ENOMEM;
1115    return 0;
1116  }
1117  strcpy(dirp->path, dirname);
1118
1119  fattr = GetFileAttributes(dirp->path);
1120  if (fattr == 0xffffffff) {
1121    free(dirp->path, mtInternal);
1122    free(dirp, mtInternal);
1123    errno = ENOENT;
1124    return 0;
1125  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1126    free(dirp->path, mtInternal);
1127    free(dirp, mtInternal);
1128    errno = ENOTDIR;
1129    return 0;
1130  }
1131
1132  // Append "*.*", or possibly "\\*.*", to path
1133  if (dirp->path[1] == ':' &&
1134      (dirp->path[2] == '\0' ||
1135      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1136    // No '\\' needed for cases like "Z:" or "Z:\"
1137    strcat(dirp->path, "*.*");
1138  } else {
1139    strcat(dirp->path, "\\*.*");
1140  }
1141
1142  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1143  if (dirp->handle == INVALID_HANDLE_VALUE) {
1144    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1145      free(dirp->path, mtInternal);
1146      free(dirp, mtInternal);
1147      errno = EACCES;
1148      return 0;
1149    }
1150  }
1151  return dirp;
1152}
1153
1154// parameter dbuf unused on Windows
1155struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1156  assert(dirp != NULL, "just checking");      // hotspot change
1157  if (dirp->handle == INVALID_HANDLE_VALUE) {
1158    return 0;
1159  }
1160
1161  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1162
1163  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1164    if (GetLastError() == ERROR_INVALID_HANDLE) {
1165      errno = EBADF;
1166      return 0;
1167    }
1168    FindClose(dirp->handle);
1169    dirp->handle = INVALID_HANDLE_VALUE;
1170  }
1171
1172  return &dirp->dirent;
1173}
1174
1175int os::closedir(DIR *dirp) {
1176  assert(dirp != NULL, "just checking");      // hotspot change
1177  if (dirp->handle != INVALID_HANDLE_VALUE) {
1178    if (!FindClose(dirp->handle)) {
1179      errno = EBADF;
1180      return -1;
1181    }
1182    dirp->handle = INVALID_HANDLE_VALUE;
1183  }
1184  free(dirp->path, mtInternal);
1185  free(dirp, mtInternal);
1186  return 0;
1187}
1188
1189// This must be hard coded because it's the system's temporary
1190// directory not the java application's temp directory, ala java.io.tmpdir.
1191const char* os::get_temp_directory() {
1192  static char path_buf[MAX_PATH];
1193  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1194    return path_buf;
1195  } else {
1196    path_buf[0] = '\0';
1197    return path_buf;
1198  }
1199}
1200
1201static bool file_exists(const char* filename) {
1202  if (filename == NULL || strlen(filename) == 0) {
1203    return false;
1204  }
1205  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1206}
1207
1208bool os::dll_build_name(char *buffer, size_t buflen,
1209                        const char* pname, const char* fname) {
1210  bool retval = false;
1211  const size_t pnamelen = pname ? strlen(pname) : 0;
1212  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1213
1214  // Return error on buffer overflow.
1215  if (pnamelen + strlen(fname) + 10 > buflen) {
1216    return retval;
1217  }
1218
1219  if (pnamelen == 0) {
1220    jio_snprintf(buffer, buflen, "%s.dll", fname);
1221    retval = true;
1222  } else if (c == ':' || c == '\\') {
1223    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1224    retval = true;
1225  } else if (strchr(pname, *os::path_separator()) != NULL) {
1226    int n;
1227    char** pelements = split_path(pname, &n);
1228    if (pelements == NULL) {
1229      return false;
1230    }
1231    for (int i = 0; i < n; i++) {
1232      char* path = pelements[i];
1233      // Really shouldn't be NULL, but check can't hurt
1234      size_t plen = (path == NULL) ? 0 : strlen(path);
1235      if (plen == 0) {
1236        continue; // skip the empty path values
1237      }
1238      const char lastchar = path[plen - 1];
1239      if (lastchar == ':' || lastchar == '\\') {
1240        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1241      } else {
1242        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1243      }
1244      if (file_exists(buffer)) {
1245        retval = true;
1246        break;
1247      }
1248    }
1249    // release the storage
1250    for (int i = 0; i < n; i++) {
1251      if (pelements[i] != NULL) {
1252        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1253      }
1254    }
1255    if (pelements != NULL) {
1256      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1257    }
1258  } else {
1259    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1260    retval = true;
1261  }
1262  return retval;
1263}
1264
1265// Needs to be in os specific directory because windows requires another
1266// header file <direct.h>
1267const char* os::get_current_directory(char *buf, size_t buflen) {
1268  int n = static_cast<int>(buflen);
1269  if (buflen > INT_MAX)  n = INT_MAX;
1270  return _getcwd(buf, n);
1271}
1272
1273//-----------------------------------------------------------
1274// Helper functions for fatal error handler
1275#ifdef _WIN64
1276// Helper routine which returns true if address in
1277// within the NTDLL address space.
1278//
1279static bool _addr_in_ntdll(address addr) {
1280  HMODULE hmod;
1281  MODULEINFO minfo;
1282
1283  hmod = GetModuleHandle("NTDLL.DLL");
1284  if (hmod == NULL) return false;
1285  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1286                                          &minfo, sizeof(MODULEINFO))) {
1287    return false;
1288  }
1289
1290  if ((addr >= minfo.lpBaseOfDll) &&
1291      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1292    return true;
1293  } else {
1294    return false;
1295  }
1296}
1297#endif
1298
1299struct _modinfo {
1300  address addr;
1301  char*   full_path;   // point to a char buffer
1302  int     buflen;      // size of the buffer
1303  address base_addr;
1304};
1305
1306static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1307                                  address top_address, void * param) {
1308  struct _modinfo *pmod = (struct _modinfo *)param;
1309  if (!pmod) return -1;
1310
1311  if (base_addr   <= pmod->addr &&
1312      top_address > pmod->addr) {
1313    // if a buffer is provided, copy path name to the buffer
1314    if (pmod->full_path) {
1315      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1316    }
1317    pmod->base_addr = base_addr;
1318    return 1;
1319  }
1320  return 0;
1321}
1322
1323bool os::dll_address_to_library_name(address addr, char* buf,
1324                                     int buflen, int* offset) {
1325  // buf is not optional, but offset is optional
1326  assert(buf != NULL, "sanity check");
1327
1328// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1329//       return the full path to the DLL file, sometimes it returns path
1330//       to the corresponding PDB file (debug info); sometimes it only
1331//       returns partial path, which makes life painful.
1332
1333  struct _modinfo mi;
1334  mi.addr      = addr;
1335  mi.full_path = buf;
1336  mi.buflen    = buflen;
1337  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1338    // buf already contains path name
1339    if (offset) *offset = addr - mi.base_addr;
1340    return true;
1341  }
1342
1343  buf[0] = '\0';
1344  if (offset) *offset = -1;
1345  return false;
1346}
1347
1348bool os::dll_address_to_function_name(address addr, char *buf,
1349                                      int buflen, int *offset) {
1350  // buf is not optional, but offset is optional
1351  assert(buf != NULL, "sanity check");
1352
1353  if (Decoder::decode(addr, buf, buflen, offset)) {
1354    return true;
1355  }
1356  if (offset != NULL)  *offset  = -1;
1357  buf[0] = '\0';
1358  return false;
1359}
1360
1361// save the start and end address of jvm.dll into param[0] and param[1]
1362static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1363                           address top_address, void * param) {
1364  if (!param) return -1;
1365
1366  if (base_addr   <= (address)_locate_jvm_dll &&
1367      top_address > (address)_locate_jvm_dll) {
1368    ((address*)param)[0] = base_addr;
1369    ((address*)param)[1] = top_address;
1370    return 1;
1371  }
1372  return 0;
1373}
1374
1375address vm_lib_location[2];    // start and end address of jvm.dll
1376
1377// check if addr is inside jvm.dll
1378bool os::address_is_in_vm(address addr) {
1379  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1380    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1381      assert(false, "Can't find jvm module.");
1382      return false;
1383    }
1384  }
1385
1386  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1387}
1388
1389// print module info; param is outputStream*
1390static int _print_module(const char* fname, address base_address,
1391                         address top_address, void* param) {
1392  if (!param) return -1;
1393
1394  outputStream* st = (outputStream*)param;
1395
1396  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1397  return 0;
1398}
1399
1400// Loads .dll/.so and
1401// in case of error it checks if .dll/.so was built for the
1402// same architecture as Hotspot is running on
1403void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1404  void * result = LoadLibrary(name);
1405  if (result != NULL) {
1406    return result;
1407  }
1408
1409  DWORD errcode = GetLastError();
1410  if (errcode == ERROR_MOD_NOT_FOUND) {
1411    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1412    ebuf[ebuflen - 1] = '\0';
1413    return NULL;
1414  }
1415
1416  // Parsing dll below
1417  // If we can read dll-info and find that dll was built
1418  // for an architecture other than Hotspot is running in
1419  // - then print to buffer "DLL was built for a different architecture"
1420  // else call os::lasterror to obtain system error message
1421
1422  // Read system error message into ebuf
1423  // It may or may not be overwritten below (in the for loop and just above)
1424  lasterror(ebuf, (size_t) ebuflen);
1425  ebuf[ebuflen - 1] = '\0';
1426  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1427  if (fd < 0) {
1428    return NULL;
1429  }
1430
1431  uint32_t signature_offset;
1432  uint16_t lib_arch = 0;
1433  bool failed_to_get_lib_arch =
1434    ( // Go to position 3c in the dll
1435     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1436     ||
1437     // Read location of signature
1438     (sizeof(signature_offset) !=
1439     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1440     ||
1441     // Go to COFF File Header in dll
1442     // that is located after "signature" (4 bytes long)
1443     (os::seek_to_file_offset(fd,
1444     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1445     ||
1446     // Read field that contains code of architecture
1447     // that dll was built for
1448     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1449    );
1450
1451  ::close(fd);
1452  if (failed_to_get_lib_arch) {
1453    // file i/o error - report os::lasterror(...) msg
1454    return NULL;
1455  }
1456
1457  typedef struct {
1458    uint16_t arch_code;
1459    char* arch_name;
1460  } arch_t;
1461
1462  static const arch_t arch_array[] = {
1463    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1464    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1465    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1466  };
1467#if   (defined _M_IA64)
1468  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1469#elif (defined _M_AMD64)
1470  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1471#elif (defined _M_IX86)
1472  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1473#else
1474  #error Method os::dll_load requires that one of following \
1475         is defined :_M_IA64,_M_AMD64 or _M_IX86
1476#endif
1477
1478
1479  // Obtain a string for printf operation
1480  // lib_arch_str shall contain string what platform this .dll was built for
1481  // running_arch_str shall string contain what platform Hotspot was built for
1482  char *running_arch_str = NULL, *lib_arch_str = NULL;
1483  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1484    if (lib_arch == arch_array[i].arch_code) {
1485      lib_arch_str = arch_array[i].arch_name;
1486    }
1487    if (running_arch == arch_array[i].arch_code) {
1488      running_arch_str = arch_array[i].arch_name;
1489    }
1490  }
1491
1492  assert(running_arch_str,
1493         "Didn't find running architecture code in arch_array");
1494
1495  // If the architecture is right
1496  // but some other error took place - report os::lasterror(...) msg
1497  if (lib_arch == running_arch) {
1498    return NULL;
1499  }
1500
1501  if (lib_arch_str != NULL) {
1502    ::_snprintf(ebuf, ebuflen - 1,
1503                "Can't load %s-bit .dll on a %s-bit platform",
1504                lib_arch_str, running_arch_str);
1505  } else {
1506    // don't know what architecture this dll was build for
1507    ::_snprintf(ebuf, ebuflen - 1,
1508                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1509                lib_arch, running_arch_str);
1510  }
1511
1512  return NULL;
1513}
1514
1515void os::print_dll_info(outputStream *st) {
1516  st->print_cr("Dynamic libraries:");
1517  get_loaded_modules_info(_print_module, (void *)st);
1518}
1519
1520int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1521  HANDLE   hProcess;
1522
1523# define MAX_NUM_MODULES 128
1524  HMODULE     modules[MAX_NUM_MODULES];
1525  static char filename[MAX_PATH];
1526  int         result = 0;
1527
1528  if (!os::PSApiDll::PSApiAvailable()) {
1529    return 0;
1530  }
1531
1532  int pid = os::current_process_id();
1533  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1534                         FALSE, pid);
1535  if (hProcess == NULL) return 0;
1536
1537  DWORD size_needed;
1538  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1539                                        sizeof(modules), &size_needed)) {
1540    CloseHandle(hProcess);
1541    return 0;
1542  }
1543
1544  // number of modules that are currently loaded
1545  int num_modules = size_needed / sizeof(HMODULE);
1546
1547  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1548    // Get Full pathname:
1549    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1550                                           filename, sizeof(filename))) {
1551      filename[0] = '\0';
1552    }
1553
1554    MODULEINFO modinfo;
1555    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1556                                            &modinfo, sizeof(modinfo))) {
1557      modinfo.lpBaseOfDll = NULL;
1558      modinfo.SizeOfImage = 0;
1559    }
1560
1561    // Invoke callback function
1562    result = callback(filename, (address)modinfo.lpBaseOfDll,
1563                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1564    if (result) break;
1565  }
1566
1567  CloseHandle(hProcess);
1568  return result;
1569}
1570
1571void os::print_os_info_brief(outputStream* st) {
1572  os::print_os_info(st);
1573}
1574
1575void os::print_os_info(outputStream* st) {
1576#ifdef ASSERT
1577  char buffer[1024];
1578  DWORD size = sizeof(buffer);
1579  st->print(" HostName: ");
1580  if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1581    st->print("%s", buffer);
1582  } else {
1583    st->print("N/A");
1584  }
1585#endif
1586  st->print(" OS:");
1587  os::win32::print_windows_version(st);
1588}
1589
1590void os::win32::print_windows_version(outputStream* st) {
1591  OSVERSIONINFOEX osvi;
1592  SYSTEM_INFO si;
1593
1594  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1595  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1596
1597  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1598    st->print_cr("N/A");
1599    return;
1600  }
1601
1602  int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1603
1604  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1605  if (os_vers >= 5002) {
1606    // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1607    // find out whether we are running on 64 bit processor or not.
1608    if (os::Kernel32Dll::GetNativeSystemInfoAvailable()) {
1609      os::Kernel32Dll::GetNativeSystemInfo(&si);
1610    } else {
1611      GetSystemInfo(&si);
1612    }
1613  }
1614
1615  if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1616    switch (os_vers) {
1617    case 3051: st->print(" Windows NT 3.51"); break;
1618    case 4000: st->print(" Windows NT 4.0"); break;
1619    case 5000: st->print(" Windows 2000"); break;
1620    case 5001: st->print(" Windows XP"); break;
1621    case 5002:
1622      if (osvi.wProductType == VER_NT_WORKSTATION &&
1623          si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1624        st->print(" Windows XP x64 Edition");
1625      } else {
1626        st->print(" Windows Server 2003 family");
1627      }
1628      break;
1629
1630    case 6000:
1631      if (osvi.wProductType == VER_NT_WORKSTATION) {
1632        st->print(" Windows Vista");
1633      } else {
1634        st->print(" Windows Server 2008");
1635      }
1636      break;
1637
1638    case 6001:
1639      if (osvi.wProductType == VER_NT_WORKSTATION) {
1640        st->print(" Windows 7");
1641      } else {
1642        st->print(" Windows Server 2008 R2");
1643      }
1644      break;
1645
1646    case 6002:
1647      if (osvi.wProductType == VER_NT_WORKSTATION) {
1648        st->print(" Windows 8");
1649      } else {
1650        st->print(" Windows Server 2012");
1651      }
1652      break;
1653
1654    case 6003:
1655      if (osvi.wProductType == VER_NT_WORKSTATION) {
1656        st->print(" Windows 8.1");
1657      } else {
1658        st->print(" Windows Server 2012 R2");
1659      }
1660      break;
1661
1662    default: // future os
1663      // Unrecognized windows, print out its major and minor versions
1664      st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1665    }
1666  } else {
1667    switch (os_vers) {
1668    case 4000: st->print(" Windows 95"); break;
1669    case 4010: st->print(" Windows 98"); break;
1670    case 4090: st->print(" Windows Me"); break;
1671    default: // future windows, print out its major and minor versions
1672      st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1673    }
1674  }
1675
1676  if (os_vers >= 6000 && si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1677    st->print(" , 64 bit");
1678  }
1679
1680  st->print(" Build %d", osvi.dwBuildNumber);
1681  st->print(" %s", osvi.szCSDVersion);           // service pack
1682  st->cr();
1683}
1684
1685void os::pd_print_cpu_info(outputStream* st) {
1686  // Nothing to do for now.
1687}
1688
1689void os::print_memory_info(outputStream* st) {
1690  st->print("Memory:");
1691  st->print(" %dk page", os::vm_page_size()>>10);
1692
1693  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1694  // value if total memory is larger than 4GB
1695  MEMORYSTATUSEX ms;
1696  ms.dwLength = sizeof(ms);
1697  GlobalMemoryStatusEx(&ms);
1698
1699  st->print(", physical %uk", os::physical_memory() >> 10);
1700  st->print("(%uk free)", os::available_memory() >> 10);
1701
1702  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1703  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1704  st->cr();
1705}
1706
1707void os::print_siginfo(outputStream *st, void *siginfo) {
1708  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1709  st->print("siginfo:");
1710  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1711
1712  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1713      er->NumberParameters >= 2) {
1714    switch (er->ExceptionInformation[0]) {
1715    case 0: st->print(", reading address"); break;
1716    case 1: st->print(", writing address"); break;
1717    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1718                       er->ExceptionInformation[0]);
1719    }
1720    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1721  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1722             er->NumberParameters >= 2 && UseSharedSpaces) {
1723    FileMapInfo* mapinfo = FileMapInfo::current_info();
1724    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1725      st->print("\n\nError accessing class data sharing archive."       \
1726                " Mapped file inaccessible during execution, "          \
1727                " possible disk/network problem.");
1728    }
1729  } else {
1730    int num = er->NumberParameters;
1731    if (num > 0) {
1732      st->print(", ExceptionInformation=");
1733      for (int i = 0; i < num; i++) {
1734        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1735      }
1736    }
1737  }
1738  st->cr();
1739}
1740
1741void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1742  // do nothing
1743}
1744
1745static char saved_jvm_path[MAX_PATH] = {0};
1746
1747// Find the full path to the current module, jvm.dll
1748void os::jvm_path(char *buf, jint buflen) {
1749  // Error checking.
1750  if (buflen < MAX_PATH) {
1751    assert(false, "must use a large-enough buffer");
1752    buf[0] = '\0';
1753    return;
1754  }
1755  // Lazy resolve the path to current module.
1756  if (saved_jvm_path[0] != 0) {
1757    strcpy(buf, saved_jvm_path);
1758    return;
1759  }
1760
1761  buf[0] = '\0';
1762  if (Arguments::sun_java_launcher_is_altjvm()) {
1763    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1764    // for a JAVA_HOME environment variable and fix up the path so it
1765    // looks like jvm.dll is installed there (append a fake suffix
1766    // hotspot/jvm.dll).
1767    char* java_home_var = ::getenv("JAVA_HOME");
1768    if (java_home_var != NULL && java_home_var[0] != 0 &&
1769        strlen(java_home_var) < (size_t)buflen) {
1770      strncpy(buf, java_home_var, buflen);
1771
1772      // determine if this is a legacy image or modules image
1773      // modules image doesn't have "jre" subdirectory
1774      size_t len = strlen(buf);
1775      char* jrebin_p = buf + len;
1776      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1777      if (0 != _access(buf, 0)) {
1778        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1779      }
1780      len = strlen(buf);
1781      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1782    }
1783  }
1784
1785  if (buf[0] == '\0') {
1786    GetModuleFileName(vm_lib_handle, buf, buflen);
1787  }
1788  strncpy(saved_jvm_path, buf, MAX_PATH);
1789}
1790
1791
1792void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1793#ifndef _WIN64
1794  st->print("_");
1795#endif
1796}
1797
1798
1799void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1800#ifndef _WIN64
1801  st->print("@%d", args_size  * sizeof(int));
1802#endif
1803}
1804
1805// This method is a copy of JDK's sysGetLastErrorString
1806// from src/windows/hpi/src/system_md.c
1807
1808size_t os::lasterror(char* buf, size_t len) {
1809  DWORD errval;
1810
1811  if ((errval = GetLastError()) != 0) {
1812    // DOS error
1813    size_t n = (size_t)FormatMessage(
1814                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1815                                     NULL,
1816                                     errval,
1817                                     0,
1818                                     buf,
1819                                     (DWORD)len,
1820                                     NULL);
1821    if (n > 3) {
1822      // Drop final '.', CR, LF
1823      if (buf[n - 1] == '\n') n--;
1824      if (buf[n - 1] == '\r') n--;
1825      if (buf[n - 1] == '.') n--;
1826      buf[n] = '\0';
1827    }
1828    return n;
1829  }
1830
1831  if (errno != 0) {
1832    // C runtime error that has no corresponding DOS error code
1833    const char* s = strerror(errno);
1834    size_t n = strlen(s);
1835    if (n >= len) n = len - 1;
1836    strncpy(buf, s, n);
1837    buf[n] = '\0';
1838    return n;
1839  }
1840
1841  return 0;
1842}
1843
1844int os::get_last_error() {
1845  DWORD error = GetLastError();
1846  if (error == 0) {
1847    error = errno;
1848  }
1849  return (int)error;
1850}
1851
1852// sun.misc.Signal
1853// NOTE that this is a workaround for an apparent kernel bug where if
1854// a signal handler for SIGBREAK is installed then that signal handler
1855// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1856// See bug 4416763.
1857static void (*sigbreakHandler)(int) = NULL;
1858
1859static void UserHandler(int sig, void *siginfo, void *context) {
1860  os::signal_notify(sig);
1861  // We need to reinstate the signal handler each time...
1862  os::signal(sig, (void*)UserHandler);
1863}
1864
1865void* os::user_handler() {
1866  return (void*) UserHandler;
1867}
1868
1869void* os::signal(int signal_number, void* handler) {
1870  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1871    void (*oldHandler)(int) = sigbreakHandler;
1872    sigbreakHandler = (void (*)(int)) handler;
1873    return (void*) oldHandler;
1874  } else {
1875    return (void*)::signal(signal_number, (void (*)(int))handler);
1876  }
1877}
1878
1879void os::signal_raise(int signal_number) {
1880  raise(signal_number);
1881}
1882
1883// The Win32 C runtime library maps all console control events other than ^C
1884// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1885// logoff, and shutdown events.  We therefore install our own console handler
1886// that raises SIGTERM for the latter cases.
1887//
1888static BOOL WINAPI consoleHandler(DWORD event) {
1889  switch (event) {
1890  case CTRL_C_EVENT:
1891    if (is_error_reported()) {
1892      // Ctrl-C is pressed during error reporting, likely because the error
1893      // handler fails to abort. Let VM die immediately.
1894      os::die();
1895    }
1896
1897    os::signal_raise(SIGINT);
1898    return TRUE;
1899    break;
1900  case CTRL_BREAK_EVENT:
1901    if (sigbreakHandler != NULL) {
1902      (*sigbreakHandler)(SIGBREAK);
1903    }
1904    return TRUE;
1905    break;
1906  case CTRL_LOGOFF_EVENT: {
1907    // Don't terminate JVM if it is running in a non-interactive session,
1908    // such as a service process.
1909    USEROBJECTFLAGS flags;
1910    HANDLE handle = GetProcessWindowStation();
1911    if (handle != NULL &&
1912        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1913        sizeof(USEROBJECTFLAGS), NULL)) {
1914      // If it is a non-interactive session, let next handler to deal
1915      // with it.
1916      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1917        return FALSE;
1918      }
1919    }
1920  }
1921  case CTRL_CLOSE_EVENT:
1922  case CTRL_SHUTDOWN_EVENT:
1923    os::signal_raise(SIGTERM);
1924    return TRUE;
1925    break;
1926  default:
1927    break;
1928  }
1929  return FALSE;
1930}
1931
1932// The following code is moved from os.cpp for making this
1933// code platform specific, which it is by its very nature.
1934
1935// Return maximum OS signal used + 1 for internal use only
1936// Used as exit signal for signal_thread
1937int os::sigexitnum_pd() {
1938  return NSIG;
1939}
1940
1941// a counter for each possible signal value, including signal_thread exit signal
1942static volatile jint pending_signals[NSIG+1] = { 0 };
1943static HANDLE sig_sem = NULL;
1944
1945void os::signal_init_pd() {
1946  // Initialize signal structures
1947  memset((void*)pending_signals, 0, sizeof(pending_signals));
1948
1949  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1950
1951  // Programs embedding the VM do not want it to attempt to receive
1952  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1953  // shutdown hooks mechanism introduced in 1.3.  For example, when
1954  // the VM is run as part of a Windows NT service (i.e., a servlet
1955  // engine in a web server), the correct behavior is for any console
1956  // control handler to return FALSE, not TRUE, because the OS's
1957  // "final" handler for such events allows the process to continue if
1958  // it is a service (while terminating it if it is not a service).
1959  // To make this behavior uniform and the mechanism simpler, we
1960  // completely disable the VM's usage of these console events if -Xrs
1961  // (=ReduceSignalUsage) is specified.  This means, for example, that
1962  // the CTRL-BREAK thread dump mechanism is also disabled in this
1963  // case.  See bugs 4323062, 4345157, and related bugs.
1964
1965  if (!ReduceSignalUsage) {
1966    // Add a CTRL-C handler
1967    SetConsoleCtrlHandler(consoleHandler, TRUE);
1968  }
1969}
1970
1971void os::signal_notify(int signal_number) {
1972  BOOL ret;
1973  if (sig_sem != NULL) {
1974    Atomic::inc(&pending_signals[signal_number]);
1975    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1976    assert(ret != 0, "ReleaseSemaphore() failed");
1977  }
1978}
1979
1980static int check_pending_signals(bool wait_for_signal) {
1981  DWORD ret;
1982  while (true) {
1983    for (int i = 0; i < NSIG + 1; i++) {
1984      jint n = pending_signals[i];
1985      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1986        return i;
1987      }
1988    }
1989    if (!wait_for_signal) {
1990      return -1;
1991    }
1992
1993    JavaThread *thread = JavaThread::current();
1994
1995    ThreadBlockInVM tbivm(thread);
1996
1997    bool threadIsSuspended;
1998    do {
1999      thread->set_suspend_equivalent();
2000      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2001      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2002      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2003
2004      // were we externally suspended while we were waiting?
2005      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2006      if (threadIsSuspended) {
2007        // The semaphore has been incremented, but while we were waiting
2008        // another thread suspended us. We don't want to continue running
2009        // while suspended because that would surprise the thread that
2010        // suspended us.
2011        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2012        assert(ret != 0, "ReleaseSemaphore() failed");
2013
2014        thread->java_suspend_self();
2015      }
2016    } while (threadIsSuspended);
2017  }
2018}
2019
2020int os::signal_lookup() {
2021  return check_pending_signals(false);
2022}
2023
2024int os::signal_wait() {
2025  return check_pending_signals(true);
2026}
2027
2028// Implicit OS exception handling
2029
2030LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2031                      address handler) {
2032  JavaThread* thread = JavaThread::current();
2033  // Save pc in thread
2034#ifdef _M_IA64
2035  // Do not blow up if no thread info available.
2036  if (thread) {
2037    // Saving PRECISE pc (with slot information) in thread.
2038    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2039    // Convert precise PC into "Unix" format
2040    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2041    thread->set_saved_exception_pc((address)precise_pc);
2042  }
2043  // Set pc to handler
2044  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2045  // Clear out psr.ri (= Restart Instruction) in order to continue
2046  // at the beginning of the target bundle.
2047  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2048  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2049#elif _M_AMD64
2050  // Do not blow up if no thread info available.
2051  if (thread) {
2052    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2053  }
2054  // Set pc to handler
2055  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2056#else
2057  // Do not blow up if no thread info available.
2058  if (thread) {
2059    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2060  }
2061  // Set pc to handler
2062  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2063#endif
2064
2065  // Continue the execution
2066  return EXCEPTION_CONTINUE_EXECUTION;
2067}
2068
2069
2070// Used for PostMortemDump
2071extern "C" void safepoints();
2072extern "C" void find(int x);
2073extern "C" void events();
2074
2075// According to Windows API documentation, an illegal instruction sequence should generate
2076// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2077// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2078// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2079
2080#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2081
2082// From "Execution Protection in the Windows Operating System" draft 0.35
2083// Once a system header becomes available, the "real" define should be
2084// included or copied here.
2085#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2086
2087// Handle NAT Bit consumption on IA64.
2088#ifdef _M_IA64
2089  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2090#endif
2091
2092// Windows Vista/2008 heap corruption check
2093#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2094
2095#define def_excpt(val) #val, val
2096
2097struct siglabel {
2098  char *name;
2099  int   number;
2100};
2101
2102// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2103// C++ compiler contain this error code. Because this is a compiler-generated
2104// error, the code is not listed in the Win32 API header files.
2105// The code is actually a cryptic mnemonic device, with the initial "E"
2106// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2107// ASCII values of "msc".
2108
2109#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2110
2111
2112struct siglabel exceptlabels[] = {
2113    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2114    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2115    def_excpt(EXCEPTION_BREAKPOINT),
2116    def_excpt(EXCEPTION_SINGLE_STEP),
2117    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2118    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2119    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2120    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2121    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2122    def_excpt(EXCEPTION_FLT_OVERFLOW),
2123    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2124    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2125    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2126    def_excpt(EXCEPTION_INT_OVERFLOW),
2127    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2128    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2129    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2130    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2131    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2132    def_excpt(EXCEPTION_STACK_OVERFLOW),
2133    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2134    def_excpt(EXCEPTION_GUARD_PAGE),
2135    def_excpt(EXCEPTION_INVALID_HANDLE),
2136    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2137    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2138#ifdef _M_IA64
2139    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2140#endif
2141    NULL, 0
2142};
2143
2144const char* os::exception_name(int exception_code, char *buf, size_t size) {
2145  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2146    if (exceptlabels[i].number == exception_code) {
2147      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2148      return buf;
2149    }
2150  }
2151
2152  return NULL;
2153}
2154
2155//-----------------------------------------------------------------------------
2156LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2157  // handle exception caused by idiv; should only happen for -MinInt/-1
2158  // (division by zero is handled explicitly)
2159#ifdef _M_IA64
2160  assert(0, "Fix Handle_IDiv_Exception");
2161#elif _M_AMD64
2162  PCONTEXT ctx = exceptionInfo->ContextRecord;
2163  address pc = (address)ctx->Rip;
2164  assert(pc[0] == 0xF7, "not an idiv opcode");
2165  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2166  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2167  // set correct result values and continue after idiv instruction
2168  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2169  ctx->Rax = (DWORD)min_jint;      // result
2170  ctx->Rdx = (DWORD)0;             // remainder
2171  // Continue the execution
2172#else
2173  PCONTEXT ctx = exceptionInfo->ContextRecord;
2174  address pc = (address)ctx->Eip;
2175  assert(pc[0] == 0xF7, "not an idiv opcode");
2176  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2177  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2178  // set correct result values and continue after idiv instruction
2179  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2180  ctx->Eax = (DWORD)min_jint;      // result
2181  ctx->Edx = (DWORD)0;             // remainder
2182  // Continue the execution
2183#endif
2184  return EXCEPTION_CONTINUE_EXECUTION;
2185}
2186
2187//-----------------------------------------------------------------------------
2188LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2189  PCONTEXT ctx = exceptionInfo->ContextRecord;
2190#ifndef  _WIN64
2191  // handle exception caused by native method modifying control word
2192  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2193
2194  switch (exception_code) {
2195  case EXCEPTION_FLT_DENORMAL_OPERAND:
2196  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2197  case EXCEPTION_FLT_INEXACT_RESULT:
2198  case EXCEPTION_FLT_INVALID_OPERATION:
2199  case EXCEPTION_FLT_OVERFLOW:
2200  case EXCEPTION_FLT_STACK_CHECK:
2201  case EXCEPTION_FLT_UNDERFLOW:
2202    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2203    if (fp_control_word != ctx->FloatSave.ControlWord) {
2204      // Restore FPCW and mask out FLT exceptions
2205      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2206      // Mask out pending FLT exceptions
2207      ctx->FloatSave.StatusWord &=  0xffffff00;
2208      return EXCEPTION_CONTINUE_EXECUTION;
2209    }
2210  }
2211
2212  if (prev_uef_handler != NULL) {
2213    // We didn't handle this exception so pass it to the previous
2214    // UnhandledExceptionFilter.
2215    return (prev_uef_handler)(exceptionInfo);
2216  }
2217#else // !_WIN64
2218  // On Windows, the mxcsr control bits are non-volatile across calls
2219  // See also CR 6192333
2220  //
2221  jint MxCsr = INITIAL_MXCSR;
2222  // we can't use StubRoutines::addr_mxcsr_std()
2223  // because in Win64 mxcsr is not saved there
2224  if (MxCsr != ctx->MxCsr) {
2225    ctx->MxCsr = MxCsr;
2226    return EXCEPTION_CONTINUE_EXECUTION;
2227  }
2228#endif // !_WIN64
2229
2230  return EXCEPTION_CONTINUE_SEARCH;
2231}
2232
2233static inline void report_error(Thread* t, DWORD exception_code,
2234                                address addr, void* siginfo, void* context) {
2235  VMError err(t, exception_code, addr, siginfo, context);
2236  err.report_and_die();
2237
2238  // If UseOsErrorReporting, this will return here and save the error file
2239  // somewhere where we can find it in the minidump.
2240}
2241
2242//-----------------------------------------------------------------------------
2243LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2244  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2245  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2246#ifdef _M_IA64
2247  // On Itanium, we need the "precise pc", which has the slot number coded
2248  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2249  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2250  // Convert the pc to "Unix format", which has the slot number coded
2251  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2252  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2253  // information is saved in the Unix format.
2254  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2255#elif _M_AMD64
2256  address pc = (address) exceptionInfo->ContextRecord->Rip;
2257#else
2258  address pc = (address) exceptionInfo->ContextRecord->Eip;
2259#endif
2260  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2261
2262  // Handle SafeFetch32 and SafeFetchN exceptions.
2263  if (StubRoutines::is_safefetch_fault(pc)) {
2264    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2265  }
2266
2267#ifndef _WIN64
2268  // Execution protection violation - win32 running on AMD64 only
2269  // Handled first to avoid misdiagnosis as a "normal" access violation;
2270  // This is safe to do because we have a new/unique ExceptionInformation
2271  // code for this condition.
2272  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2273    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2274    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2275    address addr = (address) exceptionRecord->ExceptionInformation[1];
2276
2277    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2278      int page_size = os::vm_page_size();
2279
2280      // Make sure the pc and the faulting address are sane.
2281      //
2282      // If an instruction spans a page boundary, and the page containing
2283      // the beginning of the instruction is executable but the following
2284      // page is not, the pc and the faulting address might be slightly
2285      // different - we still want to unguard the 2nd page in this case.
2286      //
2287      // 15 bytes seems to be a (very) safe value for max instruction size.
2288      bool pc_is_near_addr =
2289        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2290      bool instr_spans_page_boundary =
2291        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2292                         (intptr_t) page_size) > 0);
2293
2294      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2295        static volatile address last_addr =
2296          (address) os::non_memory_address_word();
2297
2298        // In conservative mode, don't unguard unless the address is in the VM
2299        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2300            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2301
2302          // Set memory to RWX and retry
2303          address page_start =
2304            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2305          bool res = os::protect_memory((char*) page_start, page_size,
2306                                        os::MEM_PROT_RWX);
2307
2308          if (PrintMiscellaneous && Verbose) {
2309            char buf[256];
2310            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2311                         "at " INTPTR_FORMAT
2312                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2313                         page_start, (res ? "success" : strerror(errno)));
2314            tty->print_raw_cr(buf);
2315          }
2316
2317          // Set last_addr so if we fault again at the same address, we don't
2318          // end up in an endless loop.
2319          //
2320          // There are two potential complications here.  Two threads trapping
2321          // at the same address at the same time could cause one of the
2322          // threads to think it already unguarded, and abort the VM.  Likely
2323          // very rare.
2324          //
2325          // The other race involves two threads alternately trapping at
2326          // different addresses and failing to unguard the page, resulting in
2327          // an endless loop.  This condition is probably even more unlikely
2328          // than the first.
2329          //
2330          // Although both cases could be avoided by using locks or thread
2331          // local last_addr, these solutions are unnecessary complication:
2332          // this handler is a best-effort safety net, not a complete solution.
2333          // It is disabled by default and should only be used as a workaround
2334          // in case we missed any no-execute-unsafe VM code.
2335
2336          last_addr = addr;
2337
2338          return EXCEPTION_CONTINUE_EXECUTION;
2339        }
2340      }
2341
2342      // Last unguard failed or not unguarding
2343      tty->print_raw_cr("Execution protection violation");
2344      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2345                   exceptionInfo->ContextRecord);
2346      return EXCEPTION_CONTINUE_SEARCH;
2347    }
2348  }
2349#endif // _WIN64
2350
2351  // Check to see if we caught the safepoint code in the
2352  // process of write protecting the memory serialization page.
2353  // It write enables the page immediately after protecting it
2354  // so just return.
2355  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2356    JavaThread* thread = (JavaThread*) t;
2357    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2358    address addr = (address) exceptionRecord->ExceptionInformation[1];
2359    if (os::is_memory_serialize_page(thread, addr)) {
2360      // Block current thread until the memory serialize page permission restored.
2361      os::block_on_serialize_page_trap();
2362      return EXCEPTION_CONTINUE_EXECUTION;
2363    }
2364  }
2365
2366  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2367      VM_Version::is_cpuinfo_segv_addr(pc)) {
2368    // Verify that OS save/restore AVX registers.
2369    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2370  }
2371
2372  if (t != NULL && t->is_Java_thread()) {
2373    JavaThread* thread = (JavaThread*) t;
2374    bool in_java = thread->thread_state() == _thread_in_Java;
2375
2376    // Handle potential stack overflows up front.
2377    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2378      if (os::uses_stack_guard_pages()) {
2379#ifdef _M_IA64
2380        // Use guard page for register stack.
2381        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2382        address addr = (address) exceptionRecord->ExceptionInformation[1];
2383        // Check for a register stack overflow on Itanium
2384        if (thread->addr_inside_register_stack_red_zone(addr)) {
2385          // Fatal red zone violation happens if the Java program
2386          // catches a StackOverflow error and does so much processing
2387          // that it runs beyond the unprotected yellow guard zone. As
2388          // a result, we are out of here.
2389          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2390        } else if(thread->addr_inside_register_stack(addr)) {
2391          // Disable the yellow zone which sets the state that
2392          // we've got a stack overflow problem.
2393          if (thread->stack_yellow_zone_enabled()) {
2394            thread->disable_stack_yellow_zone();
2395          }
2396          // Give us some room to process the exception.
2397          thread->disable_register_stack_guard();
2398          // Tracing with +Verbose.
2399          if (Verbose) {
2400            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2401            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2402            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2403            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2404                          thread->register_stack_base(),
2405                          thread->register_stack_base() + thread->stack_size());
2406          }
2407
2408          // Reguard the permanent register stack red zone just to be sure.
2409          // We saw Windows silently disabling this without telling us.
2410          thread->enable_register_stack_red_zone();
2411
2412          return Handle_Exception(exceptionInfo,
2413                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2414        }
2415#endif
2416        if (thread->stack_yellow_zone_enabled()) {
2417          // Yellow zone violation.  The o/s has unprotected the first yellow
2418          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2419          // update the enabled status, even if the zone contains only one page.
2420          thread->disable_stack_yellow_zone();
2421          // If not in java code, return and hope for the best.
2422          return in_java
2423              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2424              :  EXCEPTION_CONTINUE_EXECUTION;
2425        } else {
2426          // Fatal red zone violation.
2427          thread->disable_stack_red_zone();
2428          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2429          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2430                       exceptionInfo->ContextRecord);
2431          return EXCEPTION_CONTINUE_SEARCH;
2432        }
2433      } else if (in_java) {
2434        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2435        // a one-time-only guard page, which it has released to us.  The next
2436        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2437        return Handle_Exception(exceptionInfo,
2438                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2439      } else {
2440        // Can only return and hope for the best.  Further stack growth will
2441        // result in an ACCESS_VIOLATION.
2442        return EXCEPTION_CONTINUE_EXECUTION;
2443      }
2444    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2445      // Either stack overflow or null pointer exception.
2446      if (in_java) {
2447        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2448        address addr = (address) exceptionRecord->ExceptionInformation[1];
2449        address stack_end = thread->stack_base() - thread->stack_size();
2450        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2451          // Stack overflow.
2452          assert(!os::uses_stack_guard_pages(),
2453                 "should be caught by red zone code above.");
2454          return Handle_Exception(exceptionInfo,
2455                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2456        }
2457        // Check for safepoint polling and implicit null
2458        // We only expect null pointers in the stubs (vtable)
2459        // the rest are checked explicitly now.
2460        CodeBlob* cb = CodeCache::find_blob(pc);
2461        if (cb != NULL) {
2462          if (os::is_poll_address(addr)) {
2463            address stub = SharedRuntime::get_poll_stub(pc);
2464            return Handle_Exception(exceptionInfo, stub);
2465          }
2466        }
2467        {
2468#ifdef _WIN64
2469          // If it's a legal stack address map the entire region in
2470          //
2471          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2472          address addr = (address) exceptionRecord->ExceptionInformation[1];
2473          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2474            addr = (address)((uintptr_t)addr &
2475                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2476            os::commit_memory((char *)addr, thread->stack_base() - addr,
2477                              !ExecMem);
2478            return EXCEPTION_CONTINUE_EXECUTION;
2479          } else
2480#endif
2481          {
2482            // Null pointer exception.
2483#ifdef _M_IA64
2484            // Process implicit null checks in compiled code. Note: Implicit null checks
2485            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2486            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2487              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2488              // Handle implicit null check in UEP method entry
2489              if (cb && (cb->is_frame_complete_at(pc) ||
2490                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2491                if (Verbose) {
2492                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2493                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2494                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2495                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2496                                *(bundle_start + 1), *bundle_start);
2497                }
2498                return Handle_Exception(exceptionInfo,
2499                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2500              }
2501            }
2502
2503            // Implicit null checks were processed above.  Hence, we should not reach
2504            // here in the usual case => die!
2505            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2506            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2507                         exceptionInfo->ContextRecord);
2508            return EXCEPTION_CONTINUE_SEARCH;
2509
2510#else // !IA64
2511
2512            // Windows 98 reports faulting addresses incorrectly
2513            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2514                !os::win32::is_nt()) {
2515              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2516              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2517            }
2518            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2519                         exceptionInfo->ContextRecord);
2520            return EXCEPTION_CONTINUE_SEARCH;
2521#endif
2522          }
2523        }
2524      }
2525
2526#ifdef _WIN64
2527      // Special care for fast JNI field accessors.
2528      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2529      // in and the heap gets shrunk before the field access.
2530      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2531        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2532        if (addr != (address)-1) {
2533          return Handle_Exception(exceptionInfo, addr);
2534        }
2535      }
2536#endif
2537
2538      // Stack overflow or null pointer exception in native code.
2539      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2540                   exceptionInfo->ContextRecord);
2541      return EXCEPTION_CONTINUE_SEARCH;
2542    } // /EXCEPTION_ACCESS_VIOLATION
2543    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2544#if defined _M_IA64
2545    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2546              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2547      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2548
2549      // Compiled method patched to be non entrant? Following conditions must apply:
2550      // 1. must be first instruction in bundle
2551      // 2. must be a break instruction with appropriate code
2552      if ((((uint64_t) pc & 0x0F) == 0) &&
2553          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2554        return Handle_Exception(exceptionInfo,
2555                                (address)SharedRuntime::get_handle_wrong_method_stub());
2556      }
2557    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2558#endif
2559
2560
2561    if (in_java) {
2562      switch (exception_code) {
2563      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2564        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2565
2566      case EXCEPTION_INT_OVERFLOW:
2567        return Handle_IDiv_Exception(exceptionInfo);
2568
2569      } // switch
2570    }
2571    if (((thread->thread_state() == _thread_in_Java) ||
2572         (thread->thread_state() == _thread_in_native)) &&
2573         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2574      LONG result=Handle_FLT_Exception(exceptionInfo);
2575      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2576    }
2577  }
2578
2579  if (exception_code != EXCEPTION_BREAKPOINT) {
2580    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2581                 exceptionInfo->ContextRecord);
2582  }
2583  return EXCEPTION_CONTINUE_SEARCH;
2584}
2585
2586#ifndef _WIN64
2587// Special care for fast JNI accessors.
2588// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2589// the heap gets shrunk before the field access.
2590// Need to install our own structured exception handler since native code may
2591// install its own.
2592LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2593  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2594  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2595    address pc = (address) exceptionInfo->ContextRecord->Eip;
2596    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2597    if (addr != (address)-1) {
2598      return Handle_Exception(exceptionInfo, addr);
2599    }
2600  }
2601  return EXCEPTION_CONTINUE_SEARCH;
2602}
2603
2604#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2605  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2606                                                     jobject obj,           \
2607                                                     jfieldID fieldID) {    \
2608    __try {                                                                 \
2609      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2610                                                                 obj,       \
2611                                                                 fieldID);  \
2612    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2613                                              _exception_info())) {         \
2614    }                                                                       \
2615    return 0;                                                               \
2616  }
2617
2618DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2619DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2620DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2621DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2622DEFINE_FAST_GETFIELD(jint,     int,    Int)
2623DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2624DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2625DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2626
2627address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2628  switch (type) {
2629  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2630  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2631  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2632  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2633  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2634  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2635  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2636  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2637  default:        ShouldNotReachHere();
2638  }
2639  return (address)-1;
2640}
2641#endif
2642
2643void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2644  // Install a win32 structured exception handler around the test
2645  // function call so the VM can generate an error dump if needed.
2646  __try {
2647    (*funcPtr)();
2648  } __except(topLevelExceptionFilter(
2649                                     (_EXCEPTION_POINTERS*)_exception_info())) {
2650    // Nothing to do.
2651  }
2652}
2653
2654// Virtual Memory
2655
2656int os::vm_page_size() { return os::win32::vm_page_size(); }
2657int os::vm_allocation_granularity() {
2658  return os::win32::vm_allocation_granularity();
2659}
2660
2661// Windows large page support is available on Windows 2003. In order to use
2662// large page memory, the administrator must first assign additional privilege
2663// to the user:
2664//   + select Control Panel -> Administrative Tools -> Local Security Policy
2665//   + select Local Policies -> User Rights Assignment
2666//   + double click "Lock pages in memory", add users and/or groups
2667//   + reboot
2668// Note the above steps are needed for administrator as well, as administrators
2669// by default do not have the privilege to lock pages in memory.
2670//
2671// Note about Windows 2003: although the API supports committing large page
2672// memory on a page-by-page basis and VirtualAlloc() returns success under this
2673// scenario, I found through experiment it only uses large page if the entire
2674// memory region is reserved and committed in a single VirtualAlloc() call.
2675// This makes Windows large page support more or less like Solaris ISM, in
2676// that the entire heap must be committed upfront. This probably will change
2677// in the future, if so the code below needs to be revisited.
2678
2679#ifndef MEM_LARGE_PAGES
2680  #define MEM_LARGE_PAGES 0x20000000
2681#endif
2682
2683static HANDLE    _hProcess;
2684static HANDLE    _hToken;
2685
2686// Container for NUMA node list info
2687class NUMANodeListHolder {
2688 private:
2689  int *_numa_used_node_list;  // allocated below
2690  int _numa_used_node_count;
2691
2692  void free_node_list() {
2693    if (_numa_used_node_list != NULL) {
2694      FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2695    }
2696  }
2697
2698 public:
2699  NUMANodeListHolder() {
2700    _numa_used_node_count = 0;
2701    _numa_used_node_list = NULL;
2702    // do rest of initialization in build routine (after function pointers are set up)
2703  }
2704
2705  ~NUMANodeListHolder() {
2706    free_node_list();
2707  }
2708
2709  bool build() {
2710    DWORD_PTR proc_aff_mask;
2711    DWORD_PTR sys_aff_mask;
2712    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2713    ULONG highest_node_number;
2714    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2715    free_node_list();
2716    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2717    for (unsigned int i = 0; i <= highest_node_number; i++) {
2718      ULONGLONG proc_mask_numa_node;
2719      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2720      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2721        _numa_used_node_list[_numa_used_node_count++] = i;
2722      }
2723    }
2724    return (_numa_used_node_count > 1);
2725  }
2726
2727  int get_count() { return _numa_used_node_count; }
2728  int get_node_list_entry(int n) {
2729    // for indexes out of range, returns -1
2730    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2731  }
2732
2733} numa_node_list_holder;
2734
2735
2736
2737static size_t _large_page_size = 0;
2738
2739static bool resolve_functions_for_large_page_init() {
2740  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2741    os::Advapi32Dll::AdvapiAvailable();
2742}
2743
2744static bool request_lock_memory_privilege() {
2745  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2746                          os::current_process_id());
2747
2748  LUID luid;
2749  if (_hProcess != NULL &&
2750      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2751      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2752
2753    TOKEN_PRIVILEGES tp;
2754    tp.PrivilegeCount = 1;
2755    tp.Privileges[0].Luid = luid;
2756    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2757
2758    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2759    // privilege. Check GetLastError() too. See MSDN document.
2760    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2761        (GetLastError() == ERROR_SUCCESS)) {
2762      return true;
2763    }
2764  }
2765
2766  return false;
2767}
2768
2769static void cleanup_after_large_page_init() {
2770  if (_hProcess) CloseHandle(_hProcess);
2771  _hProcess = NULL;
2772  if (_hToken) CloseHandle(_hToken);
2773  _hToken = NULL;
2774}
2775
2776static bool numa_interleaving_init() {
2777  bool success = false;
2778  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2779
2780  // print a warning if UseNUMAInterleaving flag is specified on command line
2781  bool warn_on_failure = use_numa_interleaving_specified;
2782#define WARN(msg) if (warn_on_failure) { warning(msg); }
2783
2784  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2785  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2786  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2787
2788  if (os::Kernel32Dll::NumaCallsAvailable()) {
2789    if (numa_node_list_holder.build()) {
2790      if (PrintMiscellaneous && Verbose) {
2791        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2792        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2793          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2794        }
2795        tty->print("\n");
2796      }
2797      success = true;
2798    } else {
2799      WARN("Process does not cover multiple NUMA nodes.");
2800    }
2801  } else {
2802    WARN("NUMA Interleaving is not supported by the operating system.");
2803  }
2804  if (!success) {
2805    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2806  }
2807  return success;
2808#undef WARN
2809}
2810
2811// this routine is used whenever we need to reserve a contiguous VA range
2812// but we need to make separate VirtualAlloc calls for each piece of the range
2813// Reasons for doing this:
2814//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2815//  * UseNUMAInterleaving requires a separate node for each piece
2816static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2817                                         DWORD prot,
2818                                         bool should_inject_error = false) {
2819  char * p_buf;
2820  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2821  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2822  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2823
2824  // first reserve enough address space in advance since we want to be
2825  // able to break a single contiguous virtual address range into multiple
2826  // large page commits but WS2003 does not allow reserving large page space
2827  // so we just use 4K pages for reserve, this gives us a legal contiguous
2828  // address space. then we will deallocate that reservation, and re alloc
2829  // using large pages
2830  const size_t size_of_reserve = bytes + chunk_size;
2831  if (bytes > size_of_reserve) {
2832    // Overflowed.
2833    return NULL;
2834  }
2835  p_buf = (char *) VirtualAlloc(addr,
2836                                size_of_reserve,  // size of Reserve
2837                                MEM_RESERVE,
2838                                PAGE_READWRITE);
2839  // If reservation failed, return NULL
2840  if (p_buf == NULL) return NULL;
2841  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2842  os::release_memory(p_buf, bytes + chunk_size);
2843
2844  // we still need to round up to a page boundary (in case we are using large pages)
2845  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2846  // instead we handle this in the bytes_to_rq computation below
2847  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2848
2849  // now go through and allocate one chunk at a time until all bytes are
2850  // allocated
2851  size_t  bytes_remaining = bytes;
2852  // An overflow of align_size_up() would have been caught above
2853  // in the calculation of size_of_reserve.
2854  char * next_alloc_addr = p_buf;
2855  HANDLE hProc = GetCurrentProcess();
2856
2857#ifdef ASSERT
2858  // Variable for the failure injection
2859  long ran_num = os::random();
2860  size_t fail_after = ran_num % bytes;
2861#endif
2862
2863  int count=0;
2864  while (bytes_remaining) {
2865    // select bytes_to_rq to get to the next chunk_size boundary
2866
2867    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2868    // Note allocate and commit
2869    char * p_new;
2870
2871#ifdef ASSERT
2872    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2873#else
2874    const bool inject_error_now = false;
2875#endif
2876
2877    if (inject_error_now) {
2878      p_new = NULL;
2879    } else {
2880      if (!UseNUMAInterleaving) {
2881        p_new = (char *) VirtualAlloc(next_alloc_addr,
2882                                      bytes_to_rq,
2883                                      flags,
2884                                      prot);
2885      } else {
2886        // get the next node to use from the used_node_list
2887        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2888        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2889        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2890                                                            next_alloc_addr,
2891                                                            bytes_to_rq,
2892                                                            flags,
2893                                                            prot,
2894                                                            node);
2895      }
2896    }
2897
2898    if (p_new == NULL) {
2899      // Free any allocated pages
2900      if (next_alloc_addr > p_buf) {
2901        // Some memory was committed so release it.
2902        size_t bytes_to_release = bytes - bytes_remaining;
2903        // NMT has yet to record any individual blocks, so it
2904        // need to create a dummy 'reserve' record to match
2905        // the release.
2906        MemTracker::record_virtual_memory_reserve((address)p_buf,
2907                                                  bytes_to_release, CALLER_PC);
2908        os::release_memory(p_buf, bytes_to_release);
2909      }
2910#ifdef ASSERT
2911      if (should_inject_error) {
2912        if (TracePageSizes && Verbose) {
2913          tty->print_cr("Reserving pages individually failed.");
2914        }
2915      }
2916#endif
2917      return NULL;
2918    }
2919
2920    bytes_remaining -= bytes_to_rq;
2921    next_alloc_addr += bytes_to_rq;
2922    count++;
2923  }
2924  // Although the memory is allocated individually, it is returned as one.
2925  // NMT records it as one block.
2926  if ((flags & MEM_COMMIT) != 0) {
2927    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2928  } else {
2929    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2930  }
2931
2932  // made it this far, success
2933  return p_buf;
2934}
2935
2936
2937
2938void os::large_page_init() {
2939  if (!UseLargePages) return;
2940
2941  // print a warning if any large page related flag is specified on command line
2942  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2943                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2944  bool success = false;
2945
2946#define WARN(msg) if (warn_on_failure) { warning(msg); }
2947  if (resolve_functions_for_large_page_init()) {
2948    if (request_lock_memory_privilege()) {
2949      size_t s = os::Kernel32Dll::GetLargePageMinimum();
2950      if (s) {
2951#if defined(IA32) || defined(AMD64)
2952        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2953          WARN("JVM cannot use large pages bigger than 4mb.");
2954        } else {
2955#endif
2956          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2957            _large_page_size = LargePageSizeInBytes;
2958          } else {
2959            _large_page_size = s;
2960          }
2961          success = true;
2962#if defined(IA32) || defined(AMD64)
2963        }
2964#endif
2965      } else {
2966        WARN("Large page is not supported by the processor.");
2967      }
2968    } else {
2969      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2970    }
2971  } else {
2972    WARN("Large page is not supported by the operating system.");
2973  }
2974#undef WARN
2975
2976  const size_t default_page_size = (size_t) vm_page_size();
2977  if (success && _large_page_size > default_page_size) {
2978    _page_sizes[0] = _large_page_size;
2979    _page_sizes[1] = default_page_size;
2980    _page_sizes[2] = 0;
2981  }
2982
2983  cleanup_after_large_page_init();
2984  UseLargePages = success;
2985}
2986
2987// On win32, one cannot release just a part of reserved memory, it's an
2988// all or nothing deal.  When we split a reservation, we must break the
2989// reservation into two reservations.
2990void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2991                                  bool realloc) {
2992  if (size > 0) {
2993    release_memory(base, size);
2994    if (realloc) {
2995      reserve_memory(split, base);
2996    }
2997    if (size != split) {
2998      reserve_memory(size - split, base + split);
2999    }
3000  }
3001}
3002
3003// Multiple threads can race in this code but it's not possible to unmap small sections of
3004// virtual space to get requested alignment, like posix-like os's.
3005// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3006char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3007  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3008         "Alignment must be a multiple of allocation granularity (page size)");
3009  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3010
3011  size_t extra_size = size + alignment;
3012  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3013
3014  char* aligned_base = NULL;
3015
3016  do {
3017    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3018    if (extra_base == NULL) {
3019      return NULL;
3020    }
3021    // Do manual alignment
3022    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3023
3024    os::release_memory(extra_base, extra_size);
3025
3026    aligned_base = os::reserve_memory(size, aligned_base);
3027
3028  } while (aligned_base == NULL);
3029
3030  return aligned_base;
3031}
3032
3033char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3034  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3035         "reserve alignment");
3036  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3037  char* res;
3038  // note that if UseLargePages is on, all the areas that require interleaving
3039  // will go thru reserve_memory_special rather than thru here.
3040  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3041  if (!use_individual) {
3042    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3043  } else {
3044    elapsedTimer reserveTimer;
3045    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3046    // in numa interleaving, we have to allocate pages individually
3047    // (well really chunks of NUMAInterleaveGranularity size)
3048    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3049    if (res == NULL) {
3050      warning("NUMA page allocation failed");
3051    }
3052    if (Verbose && PrintMiscellaneous) {
3053      reserveTimer.stop();
3054      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3055                    reserveTimer.milliseconds(), reserveTimer.ticks());
3056    }
3057  }
3058  assert(res == NULL || addr == NULL || addr == res,
3059         "Unexpected address from reserve.");
3060
3061  return res;
3062}
3063
3064// Reserve memory at an arbitrary address, only if that area is
3065// available (and not reserved for something else).
3066char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3067  // Windows os::reserve_memory() fails of the requested address range is
3068  // not avilable.
3069  return reserve_memory(bytes, requested_addr);
3070}
3071
3072size_t os::large_page_size() {
3073  return _large_page_size;
3074}
3075
3076bool os::can_commit_large_page_memory() {
3077  // Windows only uses large page memory when the entire region is reserved
3078  // and committed in a single VirtualAlloc() call. This may change in the
3079  // future, but with Windows 2003 it's not possible to commit on demand.
3080  return false;
3081}
3082
3083bool os::can_execute_large_page_memory() {
3084  return true;
3085}
3086
3087char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3088                                 bool exec) {
3089  assert(UseLargePages, "only for large pages");
3090
3091  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3092    return NULL; // Fallback to small pages.
3093  }
3094
3095  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3096  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3097
3098  // with large pages, there are two cases where we need to use Individual Allocation
3099  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3100  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3101  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3102    if (TracePageSizes && Verbose) {
3103      tty->print_cr("Reserving large pages individually.");
3104    }
3105    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3106    if (p_buf == NULL) {
3107      // give an appropriate warning message
3108      if (UseNUMAInterleaving) {
3109        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3110      }
3111      if (UseLargePagesIndividualAllocation) {
3112        warning("Individually allocated large pages failed, "
3113                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3114      }
3115      return NULL;
3116    }
3117
3118    return p_buf;
3119
3120  } else {
3121    if (TracePageSizes && Verbose) {
3122      tty->print_cr("Reserving large pages in a single large chunk.");
3123    }
3124    // normal policy just allocate it all at once
3125    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3126    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3127    if (res != NULL) {
3128      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3129    }
3130
3131    return res;
3132  }
3133}
3134
3135bool os::release_memory_special(char* base, size_t bytes) {
3136  assert(base != NULL, "Sanity check");
3137  return release_memory(base, bytes);
3138}
3139
3140void os::print_statistics() {
3141}
3142
3143static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3144  int err = os::get_last_error();
3145  char buf[256];
3146  size_t buf_len = os::lasterror(buf, sizeof(buf));
3147  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3148          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3149          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3150}
3151
3152bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3153  if (bytes == 0) {
3154    // Don't bother the OS with noops.
3155    return true;
3156  }
3157  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3158  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3159  // Don't attempt to print anything if the OS call fails. We're
3160  // probably low on resources, so the print itself may cause crashes.
3161
3162  // unless we have NUMAInterleaving enabled, the range of a commit
3163  // is always within a reserve covered by a single VirtualAlloc
3164  // in that case we can just do a single commit for the requested size
3165  if (!UseNUMAInterleaving) {
3166    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3167      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3168      return false;
3169    }
3170    if (exec) {
3171      DWORD oldprot;
3172      // Windows doc says to use VirtualProtect to get execute permissions
3173      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3174        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3175        return false;
3176      }
3177    }
3178    return true;
3179  } else {
3180
3181    // when NUMAInterleaving is enabled, the commit might cover a range that
3182    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3183    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3184    // returns represents the number of bytes that can be committed in one step.
3185    size_t bytes_remaining = bytes;
3186    char * next_alloc_addr = addr;
3187    while (bytes_remaining > 0) {
3188      MEMORY_BASIC_INFORMATION alloc_info;
3189      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3190      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3191      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3192                       PAGE_READWRITE) == NULL) {
3193        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3194                                            exec);)
3195        return false;
3196      }
3197      if (exec) {
3198        DWORD oldprot;
3199        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3200                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3201          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3202                                              exec);)
3203          return false;
3204        }
3205      }
3206      bytes_remaining -= bytes_to_rq;
3207      next_alloc_addr += bytes_to_rq;
3208    }
3209  }
3210  // if we made it this far, return true
3211  return true;
3212}
3213
3214bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3215                          bool exec) {
3216  // alignment_hint is ignored on this OS
3217  return pd_commit_memory(addr, size, exec);
3218}
3219
3220void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3221                                  const char* mesg) {
3222  assert(mesg != NULL, "mesg must be specified");
3223  if (!pd_commit_memory(addr, size, exec)) {
3224    warn_fail_commit_memory(addr, size, exec);
3225    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3226  }
3227}
3228
3229void os::pd_commit_memory_or_exit(char* addr, size_t size,
3230                                  size_t alignment_hint, bool exec,
3231                                  const char* mesg) {
3232  // alignment_hint is ignored on this OS
3233  pd_commit_memory_or_exit(addr, size, exec, mesg);
3234}
3235
3236bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3237  if (bytes == 0) {
3238    // Don't bother the OS with noops.
3239    return true;
3240  }
3241  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3242  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3243  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3244}
3245
3246bool os::pd_release_memory(char* addr, size_t bytes) {
3247  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3248}
3249
3250bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3251  return os::commit_memory(addr, size, !ExecMem);
3252}
3253
3254bool os::remove_stack_guard_pages(char* addr, size_t size) {
3255  return os::uncommit_memory(addr, size);
3256}
3257
3258// Set protections specified
3259bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3260                        bool is_committed) {
3261  unsigned int p = 0;
3262  switch (prot) {
3263  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3264  case MEM_PROT_READ: p = PAGE_READONLY; break;
3265  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3266  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3267  default:
3268    ShouldNotReachHere();
3269  }
3270
3271  DWORD old_status;
3272
3273  // Strange enough, but on Win32 one can change protection only for committed
3274  // memory, not a big deal anyway, as bytes less or equal than 64K
3275  if (!is_committed) {
3276    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3277                          "cannot commit protection page");
3278  }
3279  // One cannot use os::guard_memory() here, as on Win32 guard page
3280  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3281  //
3282  // Pages in the region become guard pages. Any attempt to access a guard page
3283  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3284  // the guard page status. Guard pages thus act as a one-time access alarm.
3285  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3286}
3287
3288bool os::guard_memory(char* addr, size_t bytes) {
3289  DWORD old_status;
3290  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3291}
3292
3293bool os::unguard_memory(char* addr, size_t bytes) {
3294  DWORD old_status;
3295  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3296}
3297
3298void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3299void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3300void os::numa_make_global(char *addr, size_t bytes)    { }
3301void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3302bool os::numa_topology_changed()                       { return false; }
3303size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3304int os::numa_get_group_id()                            { return 0; }
3305size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3306  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3307    // Provide an answer for UMA systems
3308    ids[0] = 0;
3309    return 1;
3310  } else {
3311    // check for size bigger than actual groups_num
3312    size = MIN2(size, numa_get_groups_num());
3313    for (int i = 0; i < (int)size; i++) {
3314      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3315    }
3316    return size;
3317  }
3318}
3319
3320bool os::get_page_info(char *start, page_info* info) {
3321  return false;
3322}
3323
3324char *os::scan_pages(char *start, char* end, page_info* page_expected,
3325                     page_info* page_found) {
3326  return end;
3327}
3328
3329char* os::non_memory_address_word() {
3330  // Must never look like an address returned by reserve_memory,
3331  // even in its subfields (as defined by the CPU immediate fields,
3332  // if the CPU splits constants across multiple instructions).
3333  return (char*)-1;
3334}
3335
3336#define MAX_ERROR_COUNT 100
3337#define SYS_THREAD_ERROR 0xffffffffUL
3338
3339void os::pd_start_thread(Thread* thread) {
3340  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3341  // Returns previous suspend state:
3342  // 0:  Thread was not suspended
3343  // 1:  Thread is running now
3344  // >1: Thread is still suspended.
3345  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3346}
3347
3348class HighResolutionInterval : public CHeapObj<mtThread> {
3349  // The default timer resolution seems to be 10 milliseconds.
3350  // (Where is this written down?)
3351  // If someone wants to sleep for only a fraction of the default,
3352  // then we set the timer resolution down to 1 millisecond for
3353  // the duration of their interval.
3354  // We carefully set the resolution back, since otherwise we
3355  // seem to incur an overhead (3%?) that we don't need.
3356  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3357  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3358  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3359  // timeBeginPeriod() if the relative error exceeded some threshold.
3360  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3361  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3362  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3363  // resolution timers running.
3364 private:
3365  jlong resolution;
3366 public:
3367  HighResolutionInterval(jlong ms) {
3368    resolution = ms % 10L;
3369    if (resolution != 0) {
3370      MMRESULT result = timeBeginPeriod(1L);
3371    }
3372  }
3373  ~HighResolutionInterval() {
3374    if (resolution != 0) {
3375      MMRESULT result = timeEndPeriod(1L);
3376    }
3377    resolution = 0L;
3378  }
3379};
3380
3381int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3382  jlong limit = (jlong) MAXDWORD;
3383
3384  while (ms > limit) {
3385    int res;
3386    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3387      return res;
3388    }
3389    ms -= limit;
3390  }
3391
3392  assert(thread == Thread::current(), "thread consistency check");
3393  OSThread* osthread = thread->osthread();
3394  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3395  int result;
3396  if (interruptable) {
3397    assert(thread->is_Java_thread(), "must be java thread");
3398    JavaThread *jt = (JavaThread *) thread;
3399    ThreadBlockInVM tbivm(jt);
3400
3401    jt->set_suspend_equivalent();
3402    // cleared by handle_special_suspend_equivalent_condition() or
3403    // java_suspend_self() via check_and_wait_while_suspended()
3404
3405    HANDLE events[1];
3406    events[0] = osthread->interrupt_event();
3407    HighResolutionInterval *phri=NULL;
3408    if (!ForceTimeHighResolution) {
3409      phri = new HighResolutionInterval(ms);
3410    }
3411    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3412      result = OS_TIMEOUT;
3413    } else {
3414      ResetEvent(osthread->interrupt_event());
3415      osthread->set_interrupted(false);
3416      result = OS_INTRPT;
3417    }
3418    delete phri; //if it is NULL, harmless
3419
3420    // were we externally suspended while we were waiting?
3421    jt->check_and_wait_while_suspended();
3422  } else {
3423    assert(!thread->is_Java_thread(), "must not be java thread");
3424    Sleep((long) ms);
3425    result = OS_TIMEOUT;
3426  }
3427  return result;
3428}
3429
3430// Short sleep, direct OS call.
3431//
3432// ms = 0, means allow others (if any) to run.
3433//
3434void os::naked_short_sleep(jlong ms) {
3435  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3436  Sleep(ms);
3437}
3438
3439// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3440void os::infinite_sleep() {
3441  while (true) {    // sleep forever ...
3442    Sleep(100000);  // ... 100 seconds at a time
3443  }
3444}
3445
3446typedef BOOL (WINAPI * STTSignature)(void);
3447
3448void os::naked_yield() {
3449  // Use either SwitchToThread() or Sleep(0)
3450  // Consider passing back the return value from SwitchToThread().
3451  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3452    SwitchToThread();
3453  } else {
3454    Sleep(0);
3455  }
3456}
3457
3458// Win32 only gives you access to seven real priorities at a time,
3459// so we compress Java's ten down to seven.  It would be better
3460// if we dynamically adjusted relative priorities.
3461
3462int os::java_to_os_priority[CriticalPriority + 1] = {
3463  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3464  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3465  THREAD_PRIORITY_LOWEST,                       // 2
3466  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3467  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3468  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3469  THREAD_PRIORITY_NORMAL,                       // 6
3470  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3471  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3472  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3473  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3474  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3475};
3476
3477int prio_policy1[CriticalPriority + 1] = {
3478  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3479  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3480  THREAD_PRIORITY_LOWEST,                       // 2
3481  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3482  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3483  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3484  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3485  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3486  THREAD_PRIORITY_HIGHEST,                      // 8
3487  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3488  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3489  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3490};
3491
3492static int prio_init() {
3493  // If ThreadPriorityPolicy is 1, switch tables
3494  if (ThreadPriorityPolicy == 1) {
3495    int i;
3496    for (i = 0; i < CriticalPriority + 1; i++) {
3497      os::java_to_os_priority[i] = prio_policy1[i];
3498    }
3499  }
3500  if (UseCriticalJavaThreadPriority) {
3501    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3502  }
3503  return 0;
3504}
3505
3506OSReturn os::set_native_priority(Thread* thread, int priority) {
3507  if (!UseThreadPriorities) return OS_OK;
3508  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3509  return ret ? OS_OK : OS_ERR;
3510}
3511
3512OSReturn os::get_native_priority(const Thread* const thread,
3513                                 int* priority_ptr) {
3514  if (!UseThreadPriorities) {
3515    *priority_ptr = java_to_os_priority[NormPriority];
3516    return OS_OK;
3517  }
3518  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3519  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3520    assert(false, "GetThreadPriority failed");
3521    return OS_ERR;
3522  }
3523  *priority_ptr = os_prio;
3524  return OS_OK;
3525}
3526
3527
3528// Hint to the underlying OS that a task switch would not be good.
3529// Void return because it's a hint and can fail.
3530void os::hint_no_preempt() {}
3531
3532void os::interrupt(Thread* thread) {
3533  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3534         Threads_lock->owned_by_self(),
3535         "possibility of dangling Thread pointer");
3536
3537  OSThread* osthread = thread->osthread();
3538  osthread->set_interrupted(true);
3539  // More than one thread can get here with the same value of osthread,
3540  // resulting in multiple notifications.  We do, however, want the store
3541  // to interrupted() to be visible to other threads before we post
3542  // the interrupt event.
3543  OrderAccess::release();
3544  SetEvent(osthread->interrupt_event());
3545  // For JSR166:  unpark after setting status
3546  if (thread->is_Java_thread()) {
3547    ((JavaThread*)thread)->parker()->unpark();
3548  }
3549
3550  ParkEvent * ev = thread->_ParkEvent;
3551  if (ev != NULL) ev->unpark();
3552}
3553
3554
3555bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3556  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3557         "possibility of dangling Thread pointer");
3558
3559  OSThread* osthread = thread->osthread();
3560  // There is no synchronization between the setting of the interrupt
3561  // and it being cleared here. It is critical - see 6535709 - that
3562  // we only clear the interrupt state, and reset the interrupt event,
3563  // if we are going to report that we were indeed interrupted - else
3564  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3565  // depending on the timing. By checking thread interrupt event to see
3566  // if the thread gets real interrupt thus prevent spurious wakeup.
3567  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3568  if (interrupted && clear_interrupted) {
3569    osthread->set_interrupted(false);
3570    ResetEvent(osthread->interrupt_event());
3571  } // Otherwise leave the interrupted state alone
3572
3573  return interrupted;
3574}
3575
3576// Get's a pc (hint) for a running thread. Currently used only for profiling.
3577ExtendedPC os::get_thread_pc(Thread* thread) {
3578  CONTEXT context;
3579  context.ContextFlags = CONTEXT_CONTROL;
3580  HANDLE handle = thread->osthread()->thread_handle();
3581#ifdef _M_IA64
3582  assert(0, "Fix get_thread_pc");
3583  return ExtendedPC(NULL);
3584#else
3585  if (GetThreadContext(handle, &context)) {
3586#ifdef _M_AMD64
3587    return ExtendedPC((address) context.Rip);
3588#else
3589    return ExtendedPC((address) context.Eip);
3590#endif
3591  } else {
3592    return ExtendedPC(NULL);
3593  }
3594#endif
3595}
3596
3597// GetCurrentThreadId() returns DWORD
3598intx os::current_thread_id()  { return GetCurrentThreadId(); }
3599
3600static int _initial_pid = 0;
3601
3602int os::current_process_id() {
3603  return (_initial_pid ? _initial_pid : _getpid());
3604}
3605
3606int    os::win32::_vm_page_size              = 0;
3607int    os::win32::_vm_allocation_granularity = 0;
3608int    os::win32::_processor_type            = 0;
3609// Processor level is not available on non-NT systems, use vm_version instead
3610int    os::win32::_processor_level           = 0;
3611julong os::win32::_physical_memory           = 0;
3612size_t os::win32::_default_stack_size        = 0;
3613
3614intx          os::win32::_os_thread_limit    = 0;
3615volatile intx os::win32::_os_thread_count    = 0;
3616
3617bool   os::win32::_is_nt                     = false;
3618bool   os::win32::_is_windows_2003           = false;
3619bool   os::win32::_is_windows_server         = false;
3620
3621// 6573254
3622// Currently, the bug is observed across all the supported Windows releases,
3623// including the latest one (as of this writing - Windows Server 2012 R2)
3624bool   os::win32::_has_exit_bug              = true;
3625bool   os::win32::_has_performance_count     = 0;
3626
3627void os::win32::initialize_system_info() {
3628  SYSTEM_INFO si;
3629  GetSystemInfo(&si);
3630  _vm_page_size    = si.dwPageSize;
3631  _vm_allocation_granularity = si.dwAllocationGranularity;
3632  _processor_type  = si.dwProcessorType;
3633  _processor_level = si.wProcessorLevel;
3634  set_processor_count(si.dwNumberOfProcessors);
3635
3636  MEMORYSTATUSEX ms;
3637  ms.dwLength = sizeof(ms);
3638
3639  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3640  // dwMemoryLoad (% of memory in use)
3641  GlobalMemoryStatusEx(&ms);
3642  _physical_memory = ms.ullTotalPhys;
3643
3644  OSVERSIONINFOEX oi;
3645  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3646  GetVersionEx((OSVERSIONINFO*)&oi);
3647  switch (oi.dwPlatformId) {
3648  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3649  case VER_PLATFORM_WIN32_NT:
3650    _is_nt = true;
3651    {
3652      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3653      if (os_vers == 5002) {
3654        _is_windows_2003 = true;
3655      }
3656      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3657          oi.wProductType == VER_NT_SERVER) {
3658        _is_windows_server = true;
3659      }
3660    }
3661    break;
3662  default: fatal("Unknown platform");
3663  }
3664
3665  _default_stack_size = os::current_stack_size();
3666  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3667  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3668         "stack size not a multiple of page size");
3669
3670  initialize_performance_counter();
3671
3672  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3673  // known to deadlock the system, if the VM issues to thread operations with
3674  // a too high frequency, e.g., such as changing the priorities.
3675  // The 6000 seems to work well - no deadlocks has been notices on the test
3676  // programs that we have seen experience this problem.
3677  if (!os::win32::is_nt()) {
3678    StarvationMonitorInterval = 6000;
3679  }
3680}
3681
3682
3683HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3684                                      int ebuflen) {
3685  char path[MAX_PATH];
3686  DWORD size;
3687  DWORD pathLen = (DWORD)sizeof(path);
3688  HINSTANCE result = NULL;
3689
3690  // only allow library name without path component
3691  assert(strchr(name, '\\') == NULL, "path not allowed");
3692  assert(strchr(name, ':') == NULL, "path not allowed");
3693  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3694    jio_snprintf(ebuf, ebuflen,
3695                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3696    return NULL;
3697  }
3698
3699  // search system directory
3700  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3701    strcat(path, "\\");
3702    strcat(path, name);
3703    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3704      return result;
3705    }
3706  }
3707
3708  // try Windows directory
3709  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3710    strcat(path, "\\");
3711    strcat(path, name);
3712    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3713      return result;
3714    }
3715  }
3716
3717  jio_snprintf(ebuf, ebuflen,
3718               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3719  return NULL;
3720}
3721
3722#define MIN_EXIT_MUTEXES 1
3723#define MAX_EXIT_MUTEXES 16
3724
3725struct ExitMutexes {
3726  DWORD count;
3727  HANDLE handles[MAX_EXIT_MUTEXES];
3728};
3729
3730static BOOL CALLBACK init_muts_call(PINIT_ONCE, PVOID ppmuts, PVOID*) {
3731  static ExitMutexes muts;
3732
3733  muts.count = os::processor_count();
3734  if (muts.count < MIN_EXIT_MUTEXES) {
3735    muts.count = MIN_EXIT_MUTEXES;
3736  } else if (muts.count > MAX_EXIT_MUTEXES) {
3737    muts.count = MAX_EXIT_MUTEXES;
3738  }
3739
3740  for (DWORD i = 0; i < muts.count; ++i) {
3741    muts.handles[i] = CreateMutex(NULL, FALSE, NULL);
3742    if (muts.handles[i] == NULL) {
3743      return FALSE;
3744    }
3745  }
3746  *((ExitMutexes**)ppmuts) = &muts;
3747  return TRUE;
3748}
3749
3750int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3751  if (os::win32::has_exit_bug()) {
3752    static INIT_ONCE init_once_muts = INIT_ONCE_STATIC_INIT;
3753    static ExitMutexes* pmuts;
3754
3755    if (!InitOnceExecuteOnce(&init_once_muts, init_muts_call, &pmuts, NULL)) {
3756      warning("ExitMutex initialization failed in %s: %d\n", __FILE__, __LINE__);
3757    } else if (WaitForMultipleObjects(pmuts->count, pmuts->handles,
3758                                      (what != EPT_THREAD), // exiting process waits for all mutexes
3759                                      INFINITE) == WAIT_FAILED) {
3760      warning("ExitMutex acquisition failed in %s: %d\n", __FILE__, __LINE__);
3761    }
3762  }
3763
3764  switch (what) {
3765  case EPT_THREAD:
3766    _endthreadex((unsigned)exit_code);
3767    break;
3768
3769  case EPT_PROCESS:
3770    ::exit(exit_code);
3771    break;
3772
3773  case EPT_PROCESS_DIE:
3774    _exit(exit_code);
3775    break;
3776  }
3777
3778  // should not reach here
3779  return exit_code;
3780}
3781
3782#undef MIN_EXIT_MUTEXES
3783#undef MAX_EXIT_MUTEXES
3784
3785void os::win32::setmode_streams() {
3786  _setmode(_fileno(stdin), _O_BINARY);
3787  _setmode(_fileno(stdout), _O_BINARY);
3788  _setmode(_fileno(stderr), _O_BINARY);
3789}
3790
3791
3792bool os::is_debugger_attached() {
3793  return IsDebuggerPresent() ? true : false;
3794}
3795
3796
3797void os::wait_for_keypress_at_exit(void) {
3798  if (PauseAtExit) {
3799    fprintf(stderr, "Press any key to continue...\n");
3800    fgetc(stdin);
3801  }
3802}
3803
3804
3805int os::message_box(const char* title, const char* message) {
3806  int result = MessageBox(NULL, message, title,
3807                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3808  return result == IDYES;
3809}
3810
3811int os::allocate_thread_local_storage() {
3812  return TlsAlloc();
3813}
3814
3815
3816void os::free_thread_local_storage(int index) {
3817  TlsFree(index);
3818}
3819
3820
3821void os::thread_local_storage_at_put(int index, void* value) {
3822  TlsSetValue(index, value);
3823  assert(thread_local_storage_at(index) == value, "Just checking");
3824}
3825
3826
3827void* os::thread_local_storage_at(int index) {
3828  return TlsGetValue(index);
3829}
3830
3831
3832#ifndef PRODUCT
3833#ifndef _WIN64
3834// Helpers to check whether NX protection is enabled
3835int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3836  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3837      pex->ExceptionRecord->NumberParameters > 0 &&
3838      pex->ExceptionRecord->ExceptionInformation[0] ==
3839      EXCEPTION_INFO_EXEC_VIOLATION) {
3840    return EXCEPTION_EXECUTE_HANDLER;
3841  }
3842  return EXCEPTION_CONTINUE_SEARCH;
3843}
3844
3845void nx_check_protection() {
3846  // If NX is enabled we'll get an exception calling into code on the stack
3847  char code[] = { (char)0xC3 }; // ret
3848  void *code_ptr = (void *)code;
3849  __try {
3850    __asm call code_ptr
3851  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3852    tty->print_raw_cr("NX protection detected.");
3853  }
3854}
3855#endif // _WIN64
3856#endif // PRODUCT
3857
3858// this is called _before_ the global arguments have been parsed
3859void os::init(void) {
3860  _initial_pid = _getpid();
3861
3862  init_random(1234567);
3863
3864  win32::initialize_system_info();
3865  win32::setmode_streams();
3866  init_page_sizes((size_t) win32::vm_page_size());
3867
3868  // This may be overridden later when argument processing is done.
3869  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3870                os::win32::is_windows_2003());
3871
3872  // Initialize main_process and main_thread
3873  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3874  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3875                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3876    fatal("DuplicateHandle failed\n");
3877  }
3878  main_thread_id = (int) GetCurrentThreadId();
3879}
3880
3881// To install functions for atexit processing
3882extern "C" {
3883  static void perfMemory_exit_helper() {
3884    perfMemory_exit();
3885  }
3886}
3887
3888static jint initSock();
3889
3890// this is called _after_ the global arguments have been parsed
3891jint os::init_2(void) {
3892  // Allocate a single page and mark it as readable for safepoint polling
3893  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3894  guarantee(polling_page != NULL, "Reserve Failed for polling page");
3895
3896  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3897  guarantee(return_page != NULL, "Commit Failed for polling page");
3898
3899  os::set_polling_page(polling_page);
3900
3901#ifndef PRODUCT
3902  if (Verbose && PrintMiscellaneous) {
3903    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3904               (intptr_t)polling_page);
3905  }
3906#endif
3907
3908  if (!UseMembar) {
3909    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3910    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3911
3912    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3913    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
3914
3915    os::set_memory_serialize_page(mem_serialize_page);
3916
3917#ifndef PRODUCT
3918    if (Verbose && PrintMiscellaneous) {
3919      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3920                 (intptr_t)mem_serialize_page);
3921    }
3922#endif
3923  }
3924
3925  // Setup Windows Exceptions
3926
3927  // for debugging float code generation bugs
3928  if (ForceFloatExceptions) {
3929#ifndef  _WIN64
3930    static long fp_control_word = 0;
3931    __asm { fstcw fp_control_word }
3932    // see Intel PPro Manual, Vol. 2, p 7-16
3933    const long precision = 0x20;
3934    const long underflow = 0x10;
3935    const long overflow  = 0x08;
3936    const long zero_div  = 0x04;
3937    const long denorm    = 0x02;
3938    const long invalid   = 0x01;
3939    fp_control_word |= invalid;
3940    __asm { fldcw fp_control_word }
3941#endif
3942  }
3943
3944  // If stack_commit_size is 0, windows will reserve the default size,
3945  // but only commit a small portion of it.
3946  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3947  size_t default_reserve_size = os::win32::default_stack_size();
3948  size_t actual_reserve_size = stack_commit_size;
3949  if (stack_commit_size < default_reserve_size) {
3950    // If stack_commit_size == 0, we want this too
3951    actual_reserve_size = default_reserve_size;
3952  }
3953
3954  // Check minimum allowable stack size for thread creation and to initialize
3955  // the java system classes, including StackOverflowError - depends on page
3956  // size.  Add a page for compiler2 recursion in main thread.
3957  // Add in 2*BytesPerWord times page size to account for VM stack during
3958  // class initialization depending on 32 or 64 bit VM.
3959  size_t min_stack_allowed =
3960            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3961                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3962  if (actual_reserve_size < min_stack_allowed) {
3963    tty->print_cr("\nThe stack size specified is too small, "
3964                  "Specify at least %dk",
3965                  min_stack_allowed / K);
3966    return JNI_ERR;
3967  }
3968
3969  JavaThread::set_stack_size_at_create(stack_commit_size);
3970
3971  // Calculate theoretical max. size of Threads to guard gainst artifical
3972  // out-of-memory situations, where all available address-space has been
3973  // reserved by thread stacks.
3974  assert(actual_reserve_size != 0, "Must have a stack");
3975
3976  // Calculate the thread limit when we should start doing Virtual Memory
3977  // banging. Currently when the threads will have used all but 200Mb of space.
3978  //
3979  // TODO: consider performing a similar calculation for commit size instead
3980  // as reserve size, since on a 64-bit platform we'll run into that more
3981  // often than running out of virtual memory space.  We can use the
3982  // lower value of the two calculations as the os_thread_limit.
3983  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3984  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3985
3986  // at exit methods are called in the reverse order of their registration.
3987  // there is no limit to the number of functions registered. atexit does
3988  // not set errno.
3989
3990  if (PerfAllowAtExitRegistration) {
3991    // only register atexit functions if PerfAllowAtExitRegistration is set.
3992    // atexit functions can be delayed until process exit time, which
3993    // can be problematic for embedded VM situations. Embedded VMs should
3994    // call DestroyJavaVM() to assure that VM resources are released.
3995
3996    // note: perfMemory_exit_helper atexit function may be removed in
3997    // the future if the appropriate cleanup code can be added to the
3998    // VM_Exit VMOperation's doit method.
3999    if (atexit(perfMemory_exit_helper) != 0) {
4000      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4001    }
4002  }
4003
4004#ifndef _WIN64
4005  // Print something if NX is enabled (win32 on AMD64)
4006  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4007#endif
4008
4009  // initialize thread priority policy
4010  prio_init();
4011
4012  if (UseNUMA && !ForceNUMA) {
4013    UseNUMA = false; // We don't fully support this yet
4014  }
4015
4016  if (UseNUMAInterleaving) {
4017    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4018    bool success = numa_interleaving_init();
4019    if (!success) UseNUMAInterleaving = false;
4020  }
4021
4022  if (initSock() != JNI_OK) {
4023    return JNI_ERR;
4024  }
4025
4026  return JNI_OK;
4027}
4028
4029void os::init_3(void) {
4030  return;
4031}
4032
4033// Mark the polling page as unreadable
4034void os::make_polling_page_unreadable(void) {
4035  DWORD old_status;
4036  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4037                      PAGE_NOACCESS, &old_status)) {
4038    fatal("Could not disable polling page");
4039  }
4040}
4041
4042// Mark the polling page as readable
4043void os::make_polling_page_readable(void) {
4044  DWORD old_status;
4045  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4046                      PAGE_READONLY, &old_status)) {
4047    fatal("Could not enable polling page");
4048  }
4049}
4050
4051
4052int os::stat(const char *path, struct stat *sbuf) {
4053  char pathbuf[MAX_PATH];
4054  if (strlen(path) > MAX_PATH - 1) {
4055    errno = ENAMETOOLONG;
4056    return -1;
4057  }
4058  os::native_path(strcpy(pathbuf, path));
4059  int ret = ::stat(pathbuf, sbuf);
4060  if (sbuf != NULL && UseUTCFileTimestamp) {
4061    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4062    // the system timezone and so can return different values for the
4063    // same file if/when daylight savings time changes.  This adjustment
4064    // makes sure the same timestamp is returned regardless of the TZ.
4065    //
4066    // See:
4067    // http://msdn.microsoft.com/library/
4068    //   default.asp?url=/library/en-us/sysinfo/base/
4069    //   time_zone_information_str.asp
4070    // and
4071    // http://msdn.microsoft.com/library/default.asp?url=
4072    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4073    //
4074    // NOTE: there is a insidious bug here:  If the timezone is changed
4075    // after the call to stat() but before 'GetTimeZoneInformation()', then
4076    // the adjustment we do here will be wrong and we'll return the wrong
4077    // value (which will likely end up creating an invalid class data
4078    // archive).  Absent a better API for this, or some time zone locking
4079    // mechanism, we'll have to live with this risk.
4080    TIME_ZONE_INFORMATION tz;
4081    DWORD tzid = GetTimeZoneInformation(&tz);
4082    int daylightBias =
4083      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4084    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4085  }
4086  return ret;
4087}
4088
4089
4090#define FT2INT64(ft) \
4091  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4092
4093
4094// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4095// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4096// of a thread.
4097//
4098// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4099// the fast estimate available on the platform.
4100
4101// current_thread_cpu_time() is not optimized for Windows yet
4102jlong os::current_thread_cpu_time() {
4103  // return user + sys since the cost is the same
4104  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4105}
4106
4107jlong os::thread_cpu_time(Thread* thread) {
4108  // consistent with what current_thread_cpu_time() returns.
4109  return os::thread_cpu_time(thread, true /* user+sys */);
4110}
4111
4112jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4113  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4114}
4115
4116jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4117  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4118  // If this function changes, os::is_thread_cpu_time_supported() should too
4119  if (os::win32::is_nt()) {
4120    FILETIME CreationTime;
4121    FILETIME ExitTime;
4122    FILETIME KernelTime;
4123    FILETIME UserTime;
4124
4125    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4126                       &ExitTime, &KernelTime, &UserTime) == 0) {
4127      return -1;
4128    } else if (user_sys_cpu_time) {
4129      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4130    } else {
4131      return FT2INT64(UserTime) * 100;
4132    }
4133  } else {
4134    return (jlong) timeGetTime() * 1000000;
4135  }
4136}
4137
4138void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4139  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4140  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4141  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4142  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4143}
4144
4145void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4146  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4147  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4148  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4149  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4150}
4151
4152bool os::is_thread_cpu_time_supported() {
4153  // see os::thread_cpu_time
4154  if (os::win32::is_nt()) {
4155    FILETIME CreationTime;
4156    FILETIME ExitTime;
4157    FILETIME KernelTime;
4158    FILETIME UserTime;
4159
4160    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4161                       &KernelTime, &UserTime) == 0) {
4162      return false;
4163    } else {
4164      return true;
4165    }
4166  } else {
4167    return false;
4168  }
4169}
4170
4171// Windows does't provide a loadavg primitive so this is stubbed out for now.
4172// It does have primitives (PDH API) to get CPU usage and run queue length.
4173// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4174// If we wanted to implement loadavg on Windows, we have a few options:
4175//
4176// a) Query CPU usage and run queue length and "fake" an answer by
4177//    returning the CPU usage if it's under 100%, and the run queue
4178//    length otherwise.  It turns out that querying is pretty slow
4179//    on Windows, on the order of 200 microseconds on a fast machine.
4180//    Note that on the Windows the CPU usage value is the % usage
4181//    since the last time the API was called (and the first call
4182//    returns 100%), so we'd have to deal with that as well.
4183//
4184// b) Sample the "fake" answer using a sampling thread and store
4185//    the answer in a global variable.  The call to loadavg would
4186//    just return the value of the global, avoiding the slow query.
4187//
4188// c) Sample a better answer using exponential decay to smooth the
4189//    value.  This is basically the algorithm used by UNIX kernels.
4190//
4191// Note that sampling thread starvation could affect both (b) and (c).
4192int os::loadavg(double loadavg[], int nelem) {
4193  return -1;
4194}
4195
4196
4197// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4198bool os::dont_yield() {
4199  return DontYieldALot;
4200}
4201
4202// This method is a slightly reworked copy of JDK's sysOpen
4203// from src/windows/hpi/src/sys_api_md.c
4204
4205int os::open(const char *path, int oflag, int mode) {
4206  char pathbuf[MAX_PATH];
4207
4208  if (strlen(path) > MAX_PATH - 1) {
4209    errno = ENAMETOOLONG;
4210    return -1;
4211  }
4212  os::native_path(strcpy(pathbuf, path));
4213  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4214}
4215
4216FILE* os::open(int fd, const char* mode) {
4217  return ::_fdopen(fd, mode);
4218}
4219
4220// Is a (classpath) directory empty?
4221bool os::dir_is_empty(const char* path) {
4222  WIN32_FIND_DATA fd;
4223  HANDLE f = FindFirstFile(path, &fd);
4224  if (f == INVALID_HANDLE_VALUE) {
4225    return true;
4226  }
4227  FindClose(f);
4228  return false;
4229}
4230
4231// create binary file, rewriting existing file if required
4232int os::create_binary_file(const char* path, bool rewrite_existing) {
4233  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4234  if (!rewrite_existing) {
4235    oflags |= _O_EXCL;
4236  }
4237  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4238}
4239
4240// return current position of file pointer
4241jlong os::current_file_offset(int fd) {
4242  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4243}
4244
4245// move file pointer to the specified offset
4246jlong os::seek_to_file_offset(int fd, jlong offset) {
4247  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4248}
4249
4250
4251jlong os::lseek(int fd, jlong offset, int whence) {
4252  return (jlong) ::_lseeki64(fd, offset, whence);
4253}
4254
4255// This method is a slightly reworked copy of JDK's sysNativePath
4256// from src/windows/hpi/src/path_md.c
4257
4258// Convert a pathname to native format.  On win32, this involves forcing all
4259// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4260// sometimes rejects '/') and removing redundant separators.  The input path is
4261// assumed to have been converted into the character encoding used by the local
4262// system.  Because this might be a double-byte encoding, care is taken to
4263// treat double-byte lead characters correctly.
4264//
4265// This procedure modifies the given path in place, as the result is never
4266// longer than the original.  There is no error return; this operation always
4267// succeeds.
4268char * os::native_path(char *path) {
4269  char *src = path, *dst = path, *end = path;
4270  char *colon = NULL;  // If a drive specifier is found, this will
4271                       // point to the colon following the drive letter
4272
4273  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4274  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4275          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4276
4277  // Check for leading separators
4278#define isfilesep(c) ((c) == '/' || (c) == '\\')
4279  while (isfilesep(*src)) {
4280    src++;
4281  }
4282
4283  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4284    // Remove leading separators if followed by drive specifier.  This
4285    // hack is necessary to support file URLs containing drive
4286    // specifiers (e.g., "file://c:/path").  As a side effect,
4287    // "/c:/path" can be used as an alternative to "c:/path".
4288    *dst++ = *src++;
4289    colon = dst;
4290    *dst++ = ':';
4291    src++;
4292  } else {
4293    src = path;
4294    if (isfilesep(src[0]) && isfilesep(src[1])) {
4295      // UNC pathname: Retain first separator; leave src pointed at
4296      // second separator so that further separators will be collapsed
4297      // into the second separator.  The result will be a pathname
4298      // beginning with "\\\\" followed (most likely) by a host name.
4299      src = dst = path + 1;
4300      path[0] = '\\';     // Force first separator to '\\'
4301    }
4302  }
4303
4304  end = dst;
4305
4306  // Remove redundant separators from remainder of path, forcing all
4307  // separators to be '\\' rather than '/'. Also, single byte space
4308  // characters are removed from the end of the path because those
4309  // are not legal ending characters on this operating system.
4310  //
4311  while (*src != '\0') {
4312    if (isfilesep(*src)) {
4313      *dst++ = '\\'; src++;
4314      while (isfilesep(*src)) src++;
4315      if (*src == '\0') {
4316        // Check for trailing separator
4317        end = dst;
4318        if (colon == dst - 2) break;  // "z:\\"
4319        if (dst == path + 1) break;   // "\\"
4320        if (dst == path + 2 && isfilesep(path[0])) {
4321          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4322          // beginning of a UNC pathname.  Even though it is not, by
4323          // itself, a valid UNC pathname, we leave it as is in order
4324          // to be consistent with the path canonicalizer as well
4325          // as the win32 APIs, which treat this case as an invalid
4326          // UNC pathname rather than as an alias for the root
4327          // directory of the current drive.
4328          break;
4329        }
4330        end = --dst;  // Path does not denote a root directory, so
4331                      // remove trailing separator
4332        break;
4333      }
4334      end = dst;
4335    } else {
4336      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4337        *dst++ = *src++;
4338        if (*src) *dst++ = *src++;
4339        end = dst;
4340      } else {  // Copy a single-byte character
4341        char c = *src++;
4342        *dst++ = c;
4343        // Space is not a legal ending character
4344        if (c != ' ') end = dst;
4345      }
4346    }
4347  }
4348
4349  *end = '\0';
4350
4351  // For "z:", add "." to work around a bug in the C runtime library
4352  if (colon == dst - 1) {
4353    path[2] = '.';
4354    path[3] = '\0';
4355  }
4356
4357  return path;
4358}
4359
4360// This code is a copy of JDK's sysSetLength
4361// from src/windows/hpi/src/sys_api_md.c
4362
4363int os::ftruncate(int fd, jlong length) {
4364  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4365  long high = (long)(length >> 32);
4366  DWORD ret;
4367
4368  if (h == (HANDLE)(-1)) {
4369    return -1;
4370  }
4371
4372  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4373  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4374    return -1;
4375  }
4376
4377  if (::SetEndOfFile(h) == FALSE) {
4378    return -1;
4379  }
4380
4381  return 0;
4382}
4383
4384
4385// This code is a copy of JDK's sysSync
4386// from src/windows/hpi/src/sys_api_md.c
4387// except for the legacy workaround for a bug in Win 98
4388
4389int os::fsync(int fd) {
4390  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4391
4392  if ((!::FlushFileBuffers(handle)) &&
4393      (GetLastError() != ERROR_ACCESS_DENIED)) {
4394    // from winerror.h
4395    return -1;
4396  }
4397  return 0;
4398}
4399
4400static int nonSeekAvailable(int, long *);
4401static int stdinAvailable(int, long *);
4402
4403#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4404#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4405
4406// This code is a copy of JDK's sysAvailable
4407// from src/windows/hpi/src/sys_api_md.c
4408
4409int os::available(int fd, jlong *bytes) {
4410  jlong cur, end;
4411  struct _stati64 stbuf64;
4412
4413  if (::_fstati64(fd, &stbuf64) >= 0) {
4414    int mode = stbuf64.st_mode;
4415    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4416      int ret;
4417      long lpbytes;
4418      if (fd == 0) {
4419        ret = stdinAvailable(fd, &lpbytes);
4420      } else {
4421        ret = nonSeekAvailable(fd, &lpbytes);
4422      }
4423      (*bytes) = (jlong)(lpbytes);
4424      return ret;
4425    }
4426    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4427      return FALSE;
4428    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4429      return FALSE;
4430    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4431      return FALSE;
4432    }
4433    *bytes = end - cur;
4434    return TRUE;
4435  } else {
4436    return FALSE;
4437  }
4438}
4439
4440// This code is a copy of JDK's nonSeekAvailable
4441// from src/windows/hpi/src/sys_api_md.c
4442
4443static int nonSeekAvailable(int fd, long *pbytes) {
4444  // This is used for available on non-seekable devices
4445  // (like both named and anonymous pipes, such as pipes
4446  //  connected to an exec'd process).
4447  // Standard Input is a special case.
4448  HANDLE han;
4449
4450  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4451    return FALSE;
4452  }
4453
4454  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4455    // PeekNamedPipe fails when at EOF.  In that case we
4456    // simply make *pbytes = 0 which is consistent with the
4457    // behavior we get on Solaris when an fd is at EOF.
4458    // The only alternative is to raise an Exception,
4459    // which isn't really warranted.
4460    //
4461    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4462      return FALSE;
4463    }
4464    *pbytes = 0;
4465  }
4466  return TRUE;
4467}
4468
4469#define MAX_INPUT_EVENTS 2000
4470
4471// This code is a copy of JDK's stdinAvailable
4472// from src/windows/hpi/src/sys_api_md.c
4473
4474static int stdinAvailable(int fd, long *pbytes) {
4475  HANDLE han;
4476  DWORD numEventsRead = 0;  // Number of events read from buffer
4477  DWORD numEvents = 0;      // Number of events in buffer
4478  DWORD i = 0;              // Loop index
4479  DWORD curLength = 0;      // Position marker
4480  DWORD actualLength = 0;   // Number of bytes readable
4481  BOOL error = FALSE;       // Error holder
4482  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4483
4484  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4485    return FALSE;
4486  }
4487
4488  // Construct an array of input records in the console buffer
4489  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4490  if (error == 0) {
4491    return nonSeekAvailable(fd, pbytes);
4492  }
4493
4494  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4495  if (numEvents > MAX_INPUT_EVENTS) {
4496    numEvents = MAX_INPUT_EVENTS;
4497  }
4498
4499  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4500  if (lpBuffer == NULL) {
4501    return FALSE;
4502  }
4503
4504  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4505  if (error == 0) {
4506    os::free(lpBuffer, mtInternal);
4507    return FALSE;
4508  }
4509
4510  // Examine input records for the number of bytes available
4511  for (i=0; i<numEvents; i++) {
4512    if (lpBuffer[i].EventType == KEY_EVENT) {
4513
4514      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4515                                      &(lpBuffer[i].Event);
4516      if (keyRecord->bKeyDown == TRUE) {
4517        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4518        curLength++;
4519        if (*keyPressed == '\r') {
4520          actualLength = curLength;
4521        }
4522      }
4523    }
4524  }
4525
4526  if (lpBuffer != NULL) {
4527    os::free(lpBuffer, mtInternal);
4528  }
4529
4530  *pbytes = (long) actualLength;
4531  return TRUE;
4532}
4533
4534// Map a block of memory.
4535char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4536                        char *addr, size_t bytes, bool read_only,
4537                        bool allow_exec) {
4538  HANDLE hFile;
4539  char* base;
4540
4541  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4542                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4543  if (hFile == NULL) {
4544    if (PrintMiscellaneous && Verbose) {
4545      DWORD err = GetLastError();
4546      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4547    }
4548    return NULL;
4549  }
4550
4551  if (allow_exec) {
4552    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4553    // unless it comes from a PE image (which the shared archive is not.)
4554    // Even VirtualProtect refuses to give execute access to mapped memory
4555    // that was not previously executable.
4556    //
4557    // Instead, stick the executable region in anonymous memory.  Yuck.
4558    // Penalty is that ~4 pages will not be shareable - in the future
4559    // we might consider DLLizing the shared archive with a proper PE
4560    // header so that mapping executable + sharing is possible.
4561
4562    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4563                                PAGE_READWRITE);
4564    if (base == NULL) {
4565      if (PrintMiscellaneous && Verbose) {
4566        DWORD err = GetLastError();
4567        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4568      }
4569      CloseHandle(hFile);
4570      return NULL;
4571    }
4572
4573    DWORD bytes_read;
4574    OVERLAPPED overlapped;
4575    overlapped.Offset = (DWORD)file_offset;
4576    overlapped.OffsetHigh = 0;
4577    overlapped.hEvent = NULL;
4578    // ReadFile guarantees that if the return value is true, the requested
4579    // number of bytes were read before returning.
4580    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4581    if (!res) {
4582      if (PrintMiscellaneous && Verbose) {
4583        DWORD err = GetLastError();
4584        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4585      }
4586      release_memory(base, bytes);
4587      CloseHandle(hFile);
4588      return NULL;
4589    }
4590  } else {
4591    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4592                                    NULL /* file_name */);
4593    if (hMap == NULL) {
4594      if (PrintMiscellaneous && Verbose) {
4595        DWORD err = GetLastError();
4596        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4597      }
4598      CloseHandle(hFile);
4599      return NULL;
4600    }
4601
4602    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4603    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4604                                  (DWORD)bytes, addr);
4605    if (base == NULL) {
4606      if (PrintMiscellaneous && Verbose) {
4607        DWORD err = GetLastError();
4608        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4609      }
4610      CloseHandle(hMap);
4611      CloseHandle(hFile);
4612      return NULL;
4613    }
4614
4615    if (CloseHandle(hMap) == 0) {
4616      if (PrintMiscellaneous && Verbose) {
4617        DWORD err = GetLastError();
4618        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4619      }
4620      CloseHandle(hFile);
4621      return base;
4622    }
4623  }
4624
4625  if (allow_exec) {
4626    DWORD old_protect;
4627    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4628    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4629
4630    if (!res) {
4631      if (PrintMiscellaneous && Verbose) {
4632        DWORD err = GetLastError();
4633        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4634      }
4635      // Don't consider this a hard error, on IA32 even if the
4636      // VirtualProtect fails, we should still be able to execute
4637      CloseHandle(hFile);
4638      return base;
4639    }
4640  }
4641
4642  if (CloseHandle(hFile) == 0) {
4643    if (PrintMiscellaneous && Verbose) {
4644      DWORD err = GetLastError();
4645      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4646    }
4647    return base;
4648  }
4649
4650  return base;
4651}
4652
4653
4654// Remap a block of memory.
4655char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4656                          char *addr, size_t bytes, bool read_only,
4657                          bool allow_exec) {
4658  // This OS does not allow existing memory maps to be remapped so we
4659  // have to unmap the memory before we remap it.
4660  if (!os::unmap_memory(addr, bytes)) {
4661    return NULL;
4662  }
4663
4664  // There is a very small theoretical window between the unmap_memory()
4665  // call above and the map_memory() call below where a thread in native
4666  // code may be able to access an address that is no longer mapped.
4667
4668  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4669                        read_only, allow_exec);
4670}
4671
4672
4673// Unmap a block of memory.
4674// Returns true=success, otherwise false.
4675
4676bool os::pd_unmap_memory(char* addr, size_t bytes) {
4677  BOOL result = UnmapViewOfFile(addr);
4678  if (result == 0) {
4679    if (PrintMiscellaneous && Verbose) {
4680      DWORD err = GetLastError();
4681      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4682    }
4683    return false;
4684  }
4685  return true;
4686}
4687
4688void os::pause() {
4689  char filename[MAX_PATH];
4690  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4691    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4692  } else {
4693    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4694  }
4695
4696  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4697  if (fd != -1) {
4698    struct stat buf;
4699    ::close(fd);
4700    while (::stat(filename, &buf) == 0) {
4701      Sleep(100);
4702    }
4703  } else {
4704    jio_fprintf(stderr,
4705                "Could not open pause file '%s', continuing immediately.\n", filename);
4706  }
4707}
4708
4709os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4710  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4711}
4712
4713// See the caveats for this class in os_windows.hpp
4714// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4715// into this method and returns false. If no OS EXCEPTION was raised, returns
4716// true.
4717// The callback is supposed to provide the method that should be protected.
4718//
4719bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4720  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4721  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4722         "crash_protection already set?");
4723
4724  bool success = true;
4725  __try {
4726    WatcherThread::watcher_thread()->set_crash_protection(this);
4727    cb.call();
4728  } __except(EXCEPTION_EXECUTE_HANDLER) {
4729    // only for protection, nothing to do
4730    success = false;
4731  }
4732  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4733  return success;
4734}
4735
4736// An Event wraps a win32 "CreateEvent" kernel handle.
4737//
4738// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4739//
4740// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4741//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4742//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4743//     In addition, an unpark() operation might fetch the handle field, but the
4744//     event could recycle between the fetch and the SetEvent() operation.
4745//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4746//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4747//     on an stale but recycled handle would be harmless, but in practice this might
4748//     confuse other non-Sun code, so it's not a viable approach.
4749//
4750// 2:  Once a win32 event handle is associated with an Event, it remains associated
4751//     with the Event.  The event handle is never closed.  This could be construed
4752//     as handle leakage, but only up to the maximum # of threads that have been extant
4753//     at any one time.  This shouldn't be an issue, as windows platforms typically
4754//     permit a process to have hundreds of thousands of open handles.
4755//
4756// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4757//     and release unused handles.
4758//
4759// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4760//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4761//
4762// 5.  Use an RCU-like mechanism (Read-Copy Update).
4763//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4764//
4765// We use (2).
4766//
4767// TODO-FIXME:
4768// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4769// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4770//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4771// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4772//     into a single win32 CreateEvent() handle.
4773//
4774// _Event transitions in park()
4775//   -1 => -1 : illegal
4776//    1 =>  0 : pass - return immediately
4777//    0 => -1 : block
4778//
4779// _Event serves as a restricted-range semaphore :
4780//    -1 : thread is blocked
4781//     0 : neutral  - thread is running or ready
4782//     1 : signaled - thread is running or ready
4783//
4784// Another possible encoding of _Event would be
4785// with explicit "PARKED" and "SIGNALED" bits.
4786
4787int os::PlatformEvent::park(jlong Millis) {
4788  guarantee(_ParkHandle != NULL , "Invariant");
4789  guarantee(Millis > 0          , "Invariant");
4790  int v;
4791
4792  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4793  // the initial park() operation.
4794
4795  for (;;) {
4796    v = _Event;
4797    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4798  }
4799  guarantee((v == 0) || (v == 1), "invariant");
4800  if (v != 0) return OS_OK;
4801
4802  // Do this the hard way by blocking ...
4803  // TODO: consider a brief spin here, gated on the success of recent
4804  // spin attempts by this thread.
4805  //
4806  // We decompose long timeouts into series of shorter timed waits.
4807  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4808  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4809  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4810  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4811  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4812  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4813  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4814  // for the already waited time.  This policy does not admit any new outcomes.
4815  // In the future, however, we might want to track the accumulated wait time and
4816  // adjust Millis accordingly if we encounter a spurious wakeup.
4817
4818  const int MAXTIMEOUT = 0x10000000;
4819  DWORD rv = WAIT_TIMEOUT;
4820  while (_Event < 0 && Millis > 0) {
4821    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4822    if (Millis > MAXTIMEOUT) {
4823      prd = MAXTIMEOUT;
4824    }
4825    rv = ::WaitForSingleObject(_ParkHandle, prd);
4826    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4827    if (rv == WAIT_TIMEOUT) {
4828      Millis -= prd;
4829    }
4830  }
4831  v = _Event;
4832  _Event = 0;
4833  // see comment at end of os::PlatformEvent::park() below:
4834  OrderAccess::fence();
4835  // If we encounter a nearly simultanous timeout expiry and unpark()
4836  // we return OS_OK indicating we awoke via unpark().
4837  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4838  return (v >= 0) ? OS_OK : OS_TIMEOUT;
4839}
4840
4841void os::PlatformEvent::park() {
4842  guarantee(_ParkHandle != NULL, "Invariant");
4843  // Invariant: Only the thread associated with the Event/PlatformEvent
4844  // may call park().
4845  int v;
4846  for (;;) {
4847    v = _Event;
4848    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4849  }
4850  guarantee((v == 0) || (v == 1), "invariant");
4851  if (v != 0) return;
4852
4853  // Do this the hard way by blocking ...
4854  // TODO: consider a brief spin here, gated on the success of recent
4855  // spin attempts by this thread.
4856  while (_Event < 0) {
4857    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
4858    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
4859  }
4860
4861  // Usually we'll find _Event == 0 at this point, but as
4862  // an optional optimization we clear it, just in case can
4863  // multiple unpark() operations drove _Event up to 1.
4864  _Event = 0;
4865  OrderAccess::fence();
4866  guarantee(_Event >= 0, "invariant");
4867}
4868
4869void os::PlatformEvent::unpark() {
4870  guarantee(_ParkHandle != NULL, "Invariant");
4871
4872  // Transitions for _Event:
4873  //    0 :=> 1
4874  //    1 :=> 1
4875  //   -1 :=> either 0 or 1; must signal target thread
4876  //          That is, we can safely transition _Event from -1 to either
4877  //          0 or 1.
4878  // See also: "Semaphores in Plan 9" by Mullender & Cox
4879  //
4880  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4881  // that it will take two back-to-back park() calls for the owning
4882  // thread to block. This has the benefit of forcing a spurious return
4883  // from the first park() call after an unpark() call which will help
4884  // shake out uses of park() and unpark() without condition variables.
4885
4886  if (Atomic::xchg(1, &_Event) >= 0) return;
4887
4888  ::SetEvent(_ParkHandle);
4889}
4890
4891
4892// JSR166
4893// -------------------------------------------------------
4894
4895// The Windows implementation of Park is very straightforward: Basic
4896// operations on Win32 Events turn out to have the right semantics to
4897// use them directly. We opportunistically resuse the event inherited
4898// from Monitor.
4899
4900void Parker::park(bool isAbsolute, jlong time) {
4901  guarantee(_ParkEvent != NULL, "invariant");
4902  // First, demultiplex/decode time arguments
4903  if (time < 0) { // don't wait
4904    return;
4905  } else if (time == 0 && !isAbsolute) {
4906    time = INFINITE;
4907  } else if (isAbsolute) {
4908    time -= os::javaTimeMillis(); // convert to relative time
4909    if (time <= 0) {  // already elapsed
4910      return;
4911    }
4912  } else { // relative
4913    time /= 1000000;  // Must coarsen from nanos to millis
4914    if (time == 0) {  // Wait for the minimal time unit if zero
4915      time = 1;
4916    }
4917  }
4918
4919  JavaThread* thread = (JavaThread*)(Thread::current());
4920  assert(thread->is_Java_thread(), "Must be JavaThread");
4921  JavaThread *jt = (JavaThread *)thread;
4922
4923  // Don't wait if interrupted or already triggered
4924  if (Thread::is_interrupted(thread, false) ||
4925      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4926    ResetEvent(_ParkEvent);
4927    return;
4928  } else {
4929    ThreadBlockInVM tbivm(jt);
4930    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4931    jt->set_suspend_equivalent();
4932
4933    WaitForSingleObject(_ParkEvent, time);
4934    ResetEvent(_ParkEvent);
4935
4936    // If externally suspended while waiting, re-suspend
4937    if (jt->handle_special_suspend_equivalent_condition()) {
4938      jt->java_suspend_self();
4939    }
4940  }
4941}
4942
4943void Parker::unpark() {
4944  guarantee(_ParkEvent != NULL, "invariant");
4945  SetEvent(_ParkEvent);
4946}
4947
4948// Run the specified command in a separate process. Return its exit value,
4949// or -1 on failure (e.g. can't create a new process).
4950int os::fork_and_exec(char* cmd) {
4951  STARTUPINFO si;
4952  PROCESS_INFORMATION pi;
4953
4954  memset(&si, 0, sizeof(si));
4955  si.cb = sizeof(si);
4956  memset(&pi, 0, sizeof(pi));
4957  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4958                            cmd,    // command line
4959                            NULL,   // process security attribute
4960                            NULL,   // thread security attribute
4961                            TRUE,   // inherits system handles
4962                            0,      // no creation flags
4963                            NULL,   // use parent's environment block
4964                            NULL,   // use parent's starting directory
4965                            &si,    // (in) startup information
4966                            &pi);   // (out) process information
4967
4968  if (rslt) {
4969    // Wait until child process exits.
4970    WaitForSingleObject(pi.hProcess, INFINITE);
4971
4972    DWORD exit_code;
4973    GetExitCodeProcess(pi.hProcess, &exit_code);
4974
4975    // Close process and thread handles.
4976    CloseHandle(pi.hProcess);
4977    CloseHandle(pi.hThread);
4978
4979    return (int)exit_code;
4980  } else {
4981    return -1;
4982  }
4983}
4984
4985//--------------------------------------------------------------------------------------------------
4986// Non-product code
4987
4988static int mallocDebugIntervalCounter = 0;
4989static int mallocDebugCounter = 0;
4990bool os::check_heap(bool force) {
4991  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4992  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4993    // Note: HeapValidate executes two hardware breakpoints when it finds something
4994    // wrong; at these points, eax contains the address of the offending block (I think).
4995    // To get to the exlicit error message(s) below, just continue twice.
4996    HANDLE heap = GetProcessHeap();
4997
4998    // If we fail to lock the heap, then gflags.exe has been used
4999    // or some other special heap flag has been set that prevents
5000    // locking. We don't try to walk a heap we can't lock.
5001    if (HeapLock(heap) != 0) {
5002      PROCESS_HEAP_ENTRY phe;
5003      phe.lpData = NULL;
5004      while (HeapWalk(heap, &phe) != 0) {
5005        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5006            !HeapValidate(heap, 0, phe.lpData)) {
5007          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5008          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5009          fatal("corrupted C heap");
5010        }
5011      }
5012      DWORD err = GetLastError();
5013      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5014        fatal(err_msg("heap walk aborted with error %d", err));
5015      }
5016      HeapUnlock(heap);
5017    }
5018    mallocDebugIntervalCounter = 0;
5019  }
5020  return true;
5021}
5022
5023
5024bool os::find(address addr, outputStream* st) {
5025  // Nothing yet
5026  return false;
5027}
5028
5029LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5030  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5031
5032  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5033    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5034    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5035    address addr = (address) exceptionRecord->ExceptionInformation[1];
5036
5037    if (os::is_memory_serialize_page(thread, addr)) {
5038      return EXCEPTION_CONTINUE_EXECUTION;
5039    }
5040  }
5041
5042  return EXCEPTION_CONTINUE_SEARCH;
5043}
5044
5045// We don't build a headless jre for Windows
5046bool os::is_headless_jre() { return false; }
5047
5048static jint initSock() {
5049  WSADATA wsadata;
5050
5051  if (!os::WinSock2Dll::WinSock2Available()) {
5052    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5053                ::GetLastError());
5054    return JNI_ERR;
5055  }
5056
5057  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5058    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5059                ::GetLastError());
5060    return JNI_ERR;
5061  }
5062  return JNI_OK;
5063}
5064
5065struct hostent* os::get_host_by_name(char* name) {
5066  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5067}
5068
5069int os::socket_close(int fd) {
5070  return ::closesocket(fd);
5071}
5072
5073int os::socket_available(int fd, jint *pbytes) {
5074  int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5075  return (ret < 0) ? 0 : 1;
5076}
5077
5078int os::socket(int domain, int type, int protocol) {
5079  return ::socket(domain, type, protocol);
5080}
5081
5082int os::listen(int fd, int count) {
5083  return ::listen(fd, count);
5084}
5085
5086int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5087  return ::connect(fd, him, len);
5088}
5089
5090int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5091  return ::accept(fd, him, len);
5092}
5093
5094int os::sendto(int fd, char* buf, size_t len, uint flags,
5095               struct sockaddr* to, socklen_t tolen) {
5096
5097  return ::sendto(fd, buf, (int)len, flags, to, tolen);
5098}
5099
5100int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5101                 sockaddr* from, socklen_t* fromlen) {
5102
5103  return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5104}
5105
5106int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5107  return ::recv(fd, buf, (int)nBytes, flags);
5108}
5109
5110int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5111  return ::send(fd, buf, (int)nBytes, flags);
5112}
5113
5114int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5115  return ::send(fd, buf, (int)nBytes, flags);
5116}
5117
5118int os::timeout(int fd, long timeout) {
5119  fd_set tbl;
5120  struct timeval t;
5121
5122  t.tv_sec  = timeout / 1000;
5123  t.tv_usec = (timeout % 1000) * 1000;
5124
5125  tbl.fd_count    = 1;
5126  tbl.fd_array[0] = fd;
5127
5128  return ::select(1, &tbl, 0, 0, &t);
5129}
5130
5131int os::get_host_name(char* name, int namelen) {
5132  return ::gethostname(name, namelen);
5133}
5134
5135int os::socket_shutdown(int fd, int howto) {
5136  return ::shutdown(fd, howto);
5137}
5138
5139int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5140  return ::bind(fd, him, len);
5141}
5142
5143int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5144  return ::getsockname(fd, him, len);
5145}
5146
5147int os::get_sock_opt(int fd, int level, int optname,
5148                     char* optval, socklen_t* optlen) {
5149  return ::getsockopt(fd, level, optname, optval, optlen);
5150}
5151
5152int os::set_sock_opt(int fd, int level, int optname,
5153                     const char* optval, socklen_t optlen) {
5154  return ::setsockopt(fd, level, optname, optval, optlen);
5155}
5156
5157// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5158#if defined(IA32)
5159  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5160#elif defined (AMD64)
5161  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5162#endif
5163
5164// returns true if thread could be suspended,
5165// false otherwise
5166static bool do_suspend(HANDLE* h) {
5167  if (h != NULL) {
5168    if (SuspendThread(*h) != ~0) {
5169      return true;
5170    }
5171  }
5172  return false;
5173}
5174
5175// resume the thread
5176// calling resume on an active thread is a no-op
5177static void do_resume(HANDLE* h) {
5178  if (h != NULL) {
5179    ResumeThread(*h);
5180  }
5181}
5182
5183// retrieve a suspend/resume context capable handle
5184// from the tid. Caller validates handle return value.
5185void get_thread_handle_for_extended_context(HANDLE* h,
5186                                            OSThread::thread_id_t tid) {
5187  if (h != NULL) {
5188    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5189  }
5190}
5191
5192// Thread sampling implementation
5193//
5194void os::SuspendedThreadTask::internal_do_task() {
5195  CONTEXT    ctxt;
5196  HANDLE     h = NULL;
5197
5198  // get context capable handle for thread
5199  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5200
5201  // sanity
5202  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5203    return;
5204  }
5205
5206  // suspend the thread
5207  if (do_suspend(&h)) {
5208    ctxt.ContextFlags = sampling_context_flags;
5209    // get thread context
5210    GetThreadContext(h, &ctxt);
5211    SuspendedThreadTaskContext context(_thread, &ctxt);
5212    // pass context to Thread Sampling impl
5213    do_task(context);
5214    // resume thread
5215    do_resume(&h);
5216  }
5217
5218  // close handle
5219  CloseHandle(h);
5220}
5221
5222
5223// Kernel32 API
5224typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5225typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5226typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5227typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5228typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5229
5230GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5231VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5232GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5233GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5234RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5235
5236
5237BOOL                        os::Kernel32Dll::initialized = FALSE;
5238SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5239  assert(initialized && _GetLargePageMinimum != NULL,
5240         "GetLargePageMinimumAvailable() not yet called");
5241  return _GetLargePageMinimum();
5242}
5243
5244BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5245  if (!initialized) {
5246    initialize();
5247  }
5248  return _GetLargePageMinimum != NULL;
5249}
5250
5251BOOL os::Kernel32Dll::NumaCallsAvailable() {
5252  if (!initialized) {
5253    initialize();
5254  }
5255  return _VirtualAllocExNuma != NULL;
5256}
5257
5258LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5259                                           SIZE_T bytes, DWORD flags,
5260                                           DWORD prot, DWORD node) {
5261  assert(initialized && _VirtualAllocExNuma != NULL,
5262         "NUMACallsAvailable() not yet called");
5263
5264  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5265}
5266
5267BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5268  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5269         "NUMACallsAvailable() not yet called");
5270
5271  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5272}
5273
5274BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5275                                               PULONGLONG proc_mask) {
5276  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5277         "NUMACallsAvailable() not yet called");
5278
5279  return _GetNumaNodeProcessorMask(node, proc_mask);
5280}
5281
5282USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5283                                                 ULONG FrameToCapture,
5284                                                 PVOID* BackTrace,
5285                                                 PULONG BackTraceHash) {
5286  if (!initialized) {
5287    initialize();
5288  }
5289
5290  if (_RtlCaptureStackBackTrace != NULL) {
5291    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5292                                     BackTrace, BackTraceHash);
5293  } else {
5294    return 0;
5295  }
5296}
5297
5298void os::Kernel32Dll::initializeCommon() {
5299  if (!initialized) {
5300    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5301    assert(handle != NULL, "Just check");
5302    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5303    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5304    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5305    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5306    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5307    initialized = TRUE;
5308  }
5309}
5310
5311
5312
5313#ifndef JDK6_OR_EARLIER
5314
5315void os::Kernel32Dll::initialize() {
5316  initializeCommon();
5317}
5318
5319
5320// Kernel32 API
5321inline BOOL os::Kernel32Dll::SwitchToThread() {
5322  return ::SwitchToThread();
5323}
5324
5325inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5326  return true;
5327}
5328
5329// Help tools
5330inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5331  return true;
5332}
5333
5334inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5335                                                        DWORD th32ProcessId) {
5336  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5337}
5338
5339inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5340                                           LPMODULEENTRY32 lpme) {
5341  return ::Module32First(hSnapshot, lpme);
5342}
5343
5344inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5345                                          LPMODULEENTRY32 lpme) {
5346  return ::Module32Next(hSnapshot, lpme);
5347}
5348
5349
5350inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5351  return true;
5352}
5353
5354inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5355  ::GetNativeSystemInfo(lpSystemInfo);
5356}
5357
5358// PSAPI API
5359inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5360                                             HMODULE *lpModule, DWORD cb,
5361                                             LPDWORD lpcbNeeded) {
5362  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5363}
5364
5365inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5366                                               HMODULE hModule,
5367                                               LPTSTR lpFilename,
5368                                               DWORD nSize) {
5369  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5370}
5371
5372inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5373                                               HMODULE hModule,
5374                                               LPMODULEINFO lpmodinfo,
5375                                               DWORD cb) {
5376  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5377}
5378
5379inline BOOL os::PSApiDll::PSApiAvailable() {
5380  return true;
5381}
5382
5383
5384// WinSock2 API
5385inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5386                                        LPWSADATA lpWSAData) {
5387  return ::WSAStartup(wVersionRequested, lpWSAData);
5388}
5389
5390inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5391  return ::gethostbyname(name);
5392}
5393
5394inline BOOL os::WinSock2Dll::WinSock2Available() {
5395  return true;
5396}
5397
5398// Advapi API
5399inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5400                                                   BOOL DisableAllPrivileges,
5401                                                   PTOKEN_PRIVILEGES NewState,
5402                                                   DWORD BufferLength,
5403                                                   PTOKEN_PRIVILEGES PreviousState,
5404                                                   PDWORD ReturnLength) {
5405  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5406                                 BufferLength, PreviousState, ReturnLength);
5407}
5408
5409inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5410                                              DWORD DesiredAccess,
5411                                              PHANDLE TokenHandle) {
5412  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5413}
5414
5415inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5416                                                  LPCTSTR lpName,
5417                                                  PLUID lpLuid) {
5418  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5419}
5420
5421inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5422  return true;
5423}
5424
5425void* os::get_default_process_handle() {
5426  return (void*)GetModuleHandle(NULL);
5427}
5428
5429// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5430// which is used to find statically linked in agents.
5431// Additionally for windows, takes into account __stdcall names.
5432// Parameters:
5433//            sym_name: Symbol in library we are looking for
5434//            lib_name: Name of library to look in, NULL for shared libs.
5435//            is_absolute_path == true if lib_name is absolute path to agent
5436//                                     such as "C:/a/b/L.dll"
5437//            == false if only the base name of the library is passed in
5438//               such as "L"
5439char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5440                                    bool is_absolute_path) {
5441  char *agent_entry_name;
5442  size_t len;
5443  size_t name_len;
5444  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5445  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5446  const char *start;
5447
5448  if (lib_name != NULL) {
5449    len = name_len = strlen(lib_name);
5450    if (is_absolute_path) {
5451      // Need to strip path, prefix and suffix
5452      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5453        lib_name = ++start;
5454      } else {
5455        // Need to check for drive prefix
5456        if ((start = strchr(lib_name, ':')) != NULL) {
5457          lib_name = ++start;
5458        }
5459      }
5460      if (len <= (prefix_len + suffix_len)) {
5461        return NULL;
5462      }
5463      lib_name += prefix_len;
5464      name_len = strlen(lib_name) - suffix_len;
5465    }
5466  }
5467  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5468  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5469  if (agent_entry_name == NULL) {
5470    return NULL;
5471  }
5472  if (lib_name != NULL) {
5473    const char *p = strrchr(sym_name, '@');
5474    if (p != NULL && p != sym_name) {
5475      // sym_name == _Agent_OnLoad@XX
5476      strncpy(agent_entry_name, sym_name, (p - sym_name));
5477      agent_entry_name[(p-sym_name)] = '\0';
5478      // agent_entry_name == _Agent_OnLoad
5479      strcat(agent_entry_name, "_");
5480      strncat(agent_entry_name, lib_name, name_len);
5481      strcat(agent_entry_name, p);
5482      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5483    } else {
5484      strcpy(agent_entry_name, sym_name);
5485      strcat(agent_entry_name, "_");
5486      strncat(agent_entry_name, lib_name, name_len);
5487    }
5488  } else {
5489    strcpy(agent_entry_name, sym_name);
5490  }
5491  return agent_entry_name;
5492}
5493
5494#else
5495// Kernel32 API
5496typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5497typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5498typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5499typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5500typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5501
5502SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5503CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5504Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5505Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5506GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5507
5508void os::Kernel32Dll::initialize() {
5509  if (!initialized) {
5510    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5511    assert(handle != NULL, "Just check");
5512
5513    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5514    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5515      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5516    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5517    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5518    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5519    initializeCommon();  // resolve the functions that always need resolving
5520
5521    initialized = TRUE;
5522  }
5523}
5524
5525BOOL os::Kernel32Dll::SwitchToThread() {
5526  assert(initialized && _SwitchToThread != NULL,
5527         "SwitchToThreadAvailable() not yet called");
5528  return _SwitchToThread();
5529}
5530
5531
5532BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5533  if (!initialized) {
5534    initialize();
5535  }
5536  return _SwitchToThread != NULL;
5537}
5538
5539// Help tools
5540BOOL os::Kernel32Dll::HelpToolsAvailable() {
5541  if (!initialized) {
5542    initialize();
5543  }
5544  return _CreateToolhelp32Snapshot != NULL &&
5545         _Module32First != NULL &&
5546         _Module32Next != NULL;
5547}
5548
5549HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5550                                                 DWORD th32ProcessId) {
5551  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5552         "HelpToolsAvailable() not yet called");
5553
5554  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5555}
5556
5557BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5558  assert(initialized && _Module32First != NULL,
5559         "HelpToolsAvailable() not yet called");
5560
5561  return _Module32First(hSnapshot, lpme);
5562}
5563
5564inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5565                                          LPMODULEENTRY32 lpme) {
5566  assert(initialized && _Module32Next != NULL,
5567         "HelpToolsAvailable() not yet called");
5568
5569  return _Module32Next(hSnapshot, lpme);
5570}
5571
5572
5573BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5574  if (!initialized) {
5575    initialize();
5576  }
5577  return _GetNativeSystemInfo != NULL;
5578}
5579
5580void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5581  assert(initialized && _GetNativeSystemInfo != NULL,
5582         "GetNativeSystemInfoAvailable() not yet called");
5583
5584  _GetNativeSystemInfo(lpSystemInfo);
5585}
5586
5587// PSAPI API
5588
5589
5590typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5591typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5592typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5593
5594EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5595GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5596GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5597BOOL                    os::PSApiDll::initialized = FALSE;
5598
5599void os::PSApiDll::initialize() {
5600  if (!initialized) {
5601    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5602    if (handle != NULL) {
5603      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5604                                                                    "EnumProcessModules");
5605      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5606                                                                      "GetModuleFileNameExA");
5607      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5608                                                                        "GetModuleInformation");
5609    }
5610    initialized = TRUE;
5611  }
5612}
5613
5614
5615
5616BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5617                                      DWORD cb, LPDWORD lpcbNeeded) {
5618  assert(initialized && _EnumProcessModules != NULL,
5619         "PSApiAvailable() not yet called");
5620  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5621}
5622
5623DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5624                                        LPTSTR lpFilename, DWORD nSize) {
5625  assert(initialized && _GetModuleFileNameEx != NULL,
5626         "PSApiAvailable() not yet called");
5627  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5628}
5629
5630BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5631                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5632  assert(initialized && _GetModuleInformation != NULL,
5633         "PSApiAvailable() not yet called");
5634  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5635}
5636
5637BOOL os::PSApiDll::PSApiAvailable() {
5638  if (!initialized) {
5639    initialize();
5640  }
5641  return _EnumProcessModules != NULL &&
5642    _GetModuleFileNameEx != NULL &&
5643    _GetModuleInformation != NULL;
5644}
5645
5646
5647// WinSock2 API
5648typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5649typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5650
5651WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5652gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5653BOOL             os::WinSock2Dll::initialized = FALSE;
5654
5655void os::WinSock2Dll::initialize() {
5656  if (!initialized) {
5657    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5658    if (handle != NULL) {
5659      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5660      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5661    }
5662    initialized = TRUE;
5663  }
5664}
5665
5666
5667BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5668  assert(initialized && _WSAStartup != NULL,
5669         "WinSock2Available() not yet called");
5670  return _WSAStartup(wVersionRequested, lpWSAData);
5671}
5672
5673struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5674  assert(initialized && _gethostbyname != NULL,
5675         "WinSock2Available() not yet called");
5676  return _gethostbyname(name);
5677}
5678
5679BOOL os::WinSock2Dll::WinSock2Available() {
5680  if (!initialized) {
5681    initialize();
5682  }
5683  return _WSAStartup != NULL &&
5684    _gethostbyname != NULL;
5685}
5686
5687typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5688typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5689typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5690
5691AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5692OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5693LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5694BOOL                     os::Advapi32Dll::initialized = FALSE;
5695
5696void os::Advapi32Dll::initialize() {
5697  if (!initialized) {
5698    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5699    if (handle != NULL) {
5700      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5701                                                                          "AdjustTokenPrivileges");
5702      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5703                                                                "OpenProcessToken");
5704      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5705                                                                        "LookupPrivilegeValueA");
5706    }
5707    initialized = TRUE;
5708  }
5709}
5710
5711BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5712                                            BOOL DisableAllPrivileges,
5713                                            PTOKEN_PRIVILEGES NewState,
5714                                            DWORD BufferLength,
5715                                            PTOKEN_PRIVILEGES PreviousState,
5716                                            PDWORD ReturnLength) {
5717  assert(initialized && _AdjustTokenPrivileges != NULL,
5718         "AdvapiAvailable() not yet called");
5719  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5720                                BufferLength, PreviousState, ReturnLength);
5721}
5722
5723BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5724                                       DWORD DesiredAccess,
5725                                       PHANDLE TokenHandle) {
5726  assert(initialized && _OpenProcessToken != NULL,
5727         "AdvapiAvailable() not yet called");
5728  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5729}
5730
5731BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5732                                           LPCTSTR lpName, PLUID lpLuid) {
5733  assert(initialized && _LookupPrivilegeValue != NULL,
5734         "AdvapiAvailable() not yet called");
5735  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5736}
5737
5738BOOL os::Advapi32Dll::AdvapiAvailable() {
5739  if (!initialized) {
5740    initialize();
5741  }
5742  return _AdjustTokenPrivileges != NULL &&
5743    _OpenProcessToken != NULL &&
5744    _LookupPrivilegeValue != NULL;
5745}
5746
5747#endif
5748
5749#ifndef PRODUCT
5750
5751// test the code path in reserve_memory_special() that tries to allocate memory in a single
5752// contiguous memory block at a particular address.
5753// The test first tries to find a good approximate address to allocate at by using the same
5754// method to allocate some memory at any address. The test then tries to allocate memory in
5755// the vicinity (not directly after it to avoid possible by-chance use of that location)
5756// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5757// the previously allocated memory is available for allocation. The only actual failure
5758// that is reported is when the test tries to allocate at a particular location but gets a
5759// different valid one. A NULL return value at this point is not considered an error but may
5760// be legitimate.
5761// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5762void TestReserveMemorySpecial_test() {
5763  if (!UseLargePages) {
5764    if (VerboseInternalVMTests) {
5765      gclog_or_tty->print("Skipping test because large pages are disabled");
5766    }
5767    return;
5768  }
5769  // save current value of globals
5770  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5771  bool old_use_numa_interleaving = UseNUMAInterleaving;
5772
5773  // set globals to make sure we hit the correct code path
5774  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5775
5776  // do an allocation at an address selected by the OS to get a good one.
5777  const size_t large_allocation_size = os::large_page_size() * 4;
5778  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5779  if (result == NULL) {
5780    if (VerboseInternalVMTests) {
5781      gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5782                          large_allocation_size);
5783    }
5784  } else {
5785    os::release_memory_special(result, large_allocation_size);
5786
5787    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5788    // we managed to get it once.
5789    const size_t expected_allocation_size = os::large_page_size();
5790    char* expected_location = result + os::large_page_size();
5791    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5792    if (actual_location == NULL) {
5793      if (VerboseInternalVMTests) {
5794        gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5795                            expected_location, large_allocation_size);
5796      }
5797    } else {
5798      // release memory
5799      os::release_memory_special(actual_location, expected_allocation_size);
5800      // only now check, after releasing any memory to avoid any leaks.
5801      assert(actual_location == expected_location,
5802             err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5803             expected_location, expected_allocation_size, actual_location));
5804    }
5805  }
5806
5807  // restore globals
5808  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5809  UseNUMAInterleaving = old_use_numa_interleaving;
5810}
5811#endif // PRODUCT
5812
5813