os_windows.cpp revision 4769:e72f7eecc96d
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows 2000 or XP to use IsDebuggerPresent
26#define _WIN32_WINNT 0x500
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "prims/jniFastGetField.hpp"
44#include "prims/jvm.h"
45#include "prims/jvm_misc.hpp"
46#include "runtime/arguments.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/growableArray.hpp"
69#include "utilities/vmError.hpp"
70
71#ifdef _DEBUG
72#include <crtdbg.h>
73#endif
74
75
76#include <windows.h>
77#include <sys/types.h>
78#include <sys/stat.h>
79#include <sys/timeb.h>
80#include <objidl.h>
81#include <shlobj.h>
82
83#include <malloc.h>
84#include <signal.h>
85#include <direct.h>
86#include <errno.h>
87#include <fcntl.h>
88#include <io.h>
89#include <process.h>              // For _beginthreadex(), _endthreadex()
90#include <imagehlp.h>             // For os::dll_address_to_function_name
91/* for enumerating dll libraries */
92#include <vdmdbg.h>
93
94// for timer info max values which include all bits
95#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
96
97// For DLL loading/load error detection
98// Values of PE COFF
99#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
100#define IMAGE_FILE_SIGNATURE_LENGTH 4
101
102static HANDLE main_process;
103static HANDLE main_thread;
104static int    main_thread_id;
105
106static FILETIME process_creation_time;
107static FILETIME process_exit_time;
108static FILETIME process_user_time;
109static FILETIME process_kernel_time;
110
111#ifdef _M_IA64
112#define __CPU__ ia64
113#elif _M_AMD64
114#define __CPU__ amd64
115#else
116#define __CPU__ i486
117#endif
118
119// save DLL module handle, used by GetModuleFileName
120
121HINSTANCE vm_lib_handle;
122
123BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
124  switch (reason) {
125    case DLL_PROCESS_ATTACH:
126      vm_lib_handle = hinst;
127      if(ForceTimeHighResolution)
128        timeBeginPeriod(1L);
129      break;
130    case DLL_PROCESS_DETACH:
131      if(ForceTimeHighResolution)
132        timeEndPeriod(1L);
133      break;
134    default:
135      break;
136  }
137  return true;
138}
139
140static inline double fileTimeAsDouble(FILETIME* time) {
141  const double high  = (double) ((unsigned int) ~0);
142  const double split = 10000000.0;
143  double result = (time->dwLowDateTime / split) +
144                   time->dwHighDateTime * (high/split);
145  return result;
146}
147
148// Implementation of os
149
150bool os::getenv(const char* name, char* buffer, int len) {
151 int result = GetEnvironmentVariable(name, buffer, len);
152 return result > 0 && result < len;
153}
154
155
156// No setuid programs under Windows.
157bool os::have_special_privileges() {
158  return false;
159}
160
161
162// This method is  a periodic task to check for misbehaving JNI applications
163// under CheckJNI, we can add any periodic checks here.
164// For Windows at the moment does nothing
165void os::run_periodic_checks() {
166  return;
167}
168
169#ifndef _WIN64
170// previous UnhandledExceptionFilter, if there is one
171static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
172
173LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
174#endif
175void os::init_system_properties_values() {
176  /* sysclasspath, java_home, dll_dir */
177  {
178      char *home_path;
179      char *dll_path;
180      char *pslash;
181      char *bin = "\\bin";
182      char home_dir[MAX_PATH];
183
184      if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
185          os::jvm_path(home_dir, sizeof(home_dir));
186          // Found the full path to jvm.dll.
187          // Now cut the path to <java_home>/jre if we can.
188          *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
189          pslash = strrchr(home_dir, '\\');
190          if (pslash != NULL) {
191              *pslash = '\0';                 /* get rid of \{client|server} */
192              pslash = strrchr(home_dir, '\\');
193              if (pslash != NULL)
194                  *pslash = '\0';             /* get rid of \bin */
195          }
196      }
197
198      home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
199      if (home_path == NULL)
200          return;
201      strcpy(home_path, home_dir);
202      Arguments::set_java_home(home_path);
203
204      dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
205      if (dll_path == NULL)
206          return;
207      strcpy(dll_path, home_dir);
208      strcat(dll_path, bin);
209      Arguments::set_dll_dir(dll_path);
210
211      if (!set_boot_path('\\', ';'))
212          return;
213  }
214
215  /* library_path */
216  #define EXT_DIR "\\lib\\ext"
217  #define BIN_DIR "\\bin"
218  #define PACKAGE_DIR "\\Sun\\Java"
219  {
220    /* Win32 library search order (See the documentation for LoadLibrary):
221     *
222     * 1. The directory from which application is loaded.
223     * 2. The system wide Java Extensions directory (Java only)
224     * 3. System directory (GetSystemDirectory)
225     * 4. Windows directory (GetWindowsDirectory)
226     * 5. The PATH environment variable
227     * 6. The current directory
228     */
229
230    char *library_path;
231    char tmp[MAX_PATH];
232    char *path_str = ::getenv("PATH");
233
234    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
235        sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
236
237    library_path[0] = '\0';
238
239    GetModuleFileName(NULL, tmp, sizeof(tmp));
240    *(strrchr(tmp, '\\')) = '\0';
241    strcat(library_path, tmp);
242
243    GetWindowsDirectory(tmp, sizeof(tmp));
244    strcat(library_path, ";");
245    strcat(library_path, tmp);
246    strcat(library_path, PACKAGE_DIR BIN_DIR);
247
248    GetSystemDirectory(tmp, sizeof(tmp));
249    strcat(library_path, ";");
250    strcat(library_path, tmp);
251
252    GetWindowsDirectory(tmp, sizeof(tmp));
253    strcat(library_path, ";");
254    strcat(library_path, tmp);
255
256    if (path_str) {
257        strcat(library_path, ";");
258        strcat(library_path, path_str);
259    }
260
261    strcat(library_path, ";.");
262
263    Arguments::set_library_path(library_path);
264    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
265  }
266
267  /* Default extensions directory */
268  {
269    char path[MAX_PATH];
270    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
271    GetWindowsDirectory(path, MAX_PATH);
272    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
273        path, PACKAGE_DIR, EXT_DIR);
274    Arguments::set_ext_dirs(buf);
275  }
276  #undef EXT_DIR
277  #undef BIN_DIR
278  #undef PACKAGE_DIR
279
280  /* Default endorsed standards directory. */
281  {
282    #define ENDORSED_DIR "\\lib\\endorsed"
283    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
284    char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
285    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
286    Arguments::set_endorsed_dirs(buf);
287    #undef ENDORSED_DIR
288  }
289
290#ifndef _WIN64
291  // set our UnhandledExceptionFilter and save any previous one
292  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
293#endif
294
295  // Done
296  return;
297}
298
299void os::breakpoint() {
300  DebugBreak();
301}
302
303// Invoked from the BREAKPOINT Macro
304extern "C" void breakpoint() {
305  os::breakpoint();
306}
307
308/*
309 * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
310 * So far, this method is only used by Native Memory Tracking, which is
311 * only supported on Windows XP or later.
312 */
313address os::get_caller_pc(int n) {
314#ifdef _NMT_NOINLINE_
315  n ++;
316#endif
317  address pc;
318  if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
319    return pc;
320  }
321  return NULL;
322}
323
324
325// os::current_stack_base()
326//
327//   Returns the base of the stack, which is the stack's
328//   starting address.  This function must be called
329//   while running on the stack of the thread being queried.
330
331address os::current_stack_base() {
332  MEMORY_BASIC_INFORMATION minfo;
333  address stack_bottom;
334  size_t stack_size;
335
336  VirtualQuery(&minfo, &minfo, sizeof(minfo));
337  stack_bottom =  (address)minfo.AllocationBase;
338  stack_size = minfo.RegionSize;
339
340  // Add up the sizes of all the regions with the same
341  // AllocationBase.
342  while( 1 )
343  {
344    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
345    if ( stack_bottom == (address)minfo.AllocationBase )
346      stack_size += minfo.RegionSize;
347    else
348      break;
349  }
350
351#ifdef _M_IA64
352  // IA64 has memory and register stacks
353  //
354  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
355  // at thread creation (1MB backing store growing upwards, 1MB memory stack
356  // growing downwards, 2MB summed up)
357  //
358  // ...
359  // ------- top of stack (high address) -----
360  // |
361  // |      1MB
362  // |      Backing Store (Register Stack)
363  // |
364  // |         / \
365  // |          |
366  // |          |
367  // |          |
368  // ------------------------ stack base -----
369  // |      1MB
370  // |      Memory Stack
371  // |
372  // |          |
373  // |          |
374  // |          |
375  // |         \ /
376  // |
377  // ----- bottom of stack (low address) -----
378  // ...
379
380  stack_size = stack_size / 2;
381#endif
382  return stack_bottom + stack_size;
383}
384
385size_t os::current_stack_size() {
386  size_t sz;
387  MEMORY_BASIC_INFORMATION minfo;
388  VirtualQuery(&minfo, &minfo, sizeof(minfo));
389  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
390  return sz;
391}
392
393struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
394  const struct tm* time_struct_ptr = localtime(clock);
395  if (time_struct_ptr != NULL) {
396    *res = *time_struct_ptr;
397    return res;
398  }
399  return NULL;
400}
401
402LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
403
404// Thread start routine for all new Java threads
405static unsigned __stdcall java_start(Thread* thread) {
406  // Try to randomize the cache line index of hot stack frames.
407  // This helps when threads of the same stack traces evict each other's
408  // cache lines. The threads can be either from the same JVM instance, or
409  // from different JVM instances. The benefit is especially true for
410  // processors with hyperthreading technology.
411  static int counter = 0;
412  int pid = os::current_process_id();
413  _alloca(((pid ^ counter++) & 7) * 128);
414
415  OSThread* osthr = thread->osthread();
416  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
417
418  if (UseNUMA) {
419    int lgrp_id = os::numa_get_group_id();
420    if (lgrp_id != -1) {
421      thread->set_lgrp_id(lgrp_id);
422    }
423  }
424
425
426  // Install a win32 structured exception handler around every thread created
427  // by VM, so VM can genrate error dump when an exception occurred in non-
428  // Java thread (e.g. VM thread).
429  __try {
430     thread->run();
431  } __except(topLevelExceptionFilter(
432             (_EXCEPTION_POINTERS*)_exception_info())) {
433      // Nothing to do.
434  }
435
436  // One less thread is executing
437  // When the VMThread gets here, the main thread may have already exited
438  // which frees the CodeHeap containing the Atomic::add code
439  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
440    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
441  }
442
443  return 0;
444}
445
446static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
447  // Allocate the OSThread object
448  OSThread* osthread = new OSThread(NULL, NULL);
449  if (osthread == NULL) return NULL;
450
451  // Initialize support for Java interrupts
452  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
453  if (interrupt_event == NULL) {
454    delete osthread;
455    return NULL;
456  }
457  osthread->set_interrupt_event(interrupt_event);
458
459  // Store info on the Win32 thread into the OSThread
460  osthread->set_thread_handle(thread_handle);
461  osthread->set_thread_id(thread_id);
462
463  if (UseNUMA) {
464    int lgrp_id = os::numa_get_group_id();
465    if (lgrp_id != -1) {
466      thread->set_lgrp_id(lgrp_id);
467    }
468  }
469
470  // Initial thread state is INITIALIZED, not SUSPENDED
471  osthread->set_state(INITIALIZED);
472
473  return osthread;
474}
475
476
477bool os::create_attached_thread(JavaThread* thread) {
478#ifdef ASSERT
479  thread->verify_not_published();
480#endif
481  HANDLE thread_h;
482  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
483                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
484    fatal("DuplicateHandle failed\n");
485  }
486  OSThread* osthread = create_os_thread(thread, thread_h,
487                                        (int)current_thread_id());
488  if (osthread == NULL) {
489     return false;
490  }
491
492  // Initial thread state is RUNNABLE
493  osthread->set_state(RUNNABLE);
494
495  thread->set_osthread(osthread);
496  return true;
497}
498
499bool os::create_main_thread(JavaThread* thread) {
500#ifdef ASSERT
501  thread->verify_not_published();
502#endif
503  if (_starting_thread == NULL) {
504    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
505     if (_starting_thread == NULL) {
506        return false;
507     }
508  }
509
510  // The primordial thread is runnable from the start)
511  _starting_thread->set_state(RUNNABLE);
512
513  thread->set_osthread(_starting_thread);
514  return true;
515}
516
517// Allocate and initialize a new OSThread
518bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
519  unsigned thread_id;
520
521  // Allocate the OSThread object
522  OSThread* osthread = new OSThread(NULL, NULL);
523  if (osthread == NULL) {
524    return false;
525  }
526
527  // Initialize support for Java interrupts
528  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
529  if (interrupt_event == NULL) {
530    delete osthread;
531    return NULL;
532  }
533  osthread->set_interrupt_event(interrupt_event);
534  osthread->set_interrupted(false);
535
536  thread->set_osthread(osthread);
537
538  if (stack_size == 0) {
539    switch (thr_type) {
540    case os::java_thread:
541      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
542      if (JavaThread::stack_size_at_create() > 0)
543        stack_size = JavaThread::stack_size_at_create();
544      break;
545    case os::compiler_thread:
546      if (CompilerThreadStackSize > 0) {
547        stack_size = (size_t)(CompilerThreadStackSize * K);
548        break;
549      } // else fall through:
550        // use VMThreadStackSize if CompilerThreadStackSize is not defined
551    case os::vm_thread:
552    case os::pgc_thread:
553    case os::cgc_thread:
554    case os::watcher_thread:
555      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
556      break;
557    }
558  }
559
560  // Create the Win32 thread
561  //
562  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
563  // does not specify stack size. Instead, it specifies the size of
564  // initially committed space. The stack size is determined by
565  // PE header in the executable. If the committed "stack_size" is larger
566  // than default value in the PE header, the stack is rounded up to the
567  // nearest multiple of 1MB. For example if the launcher has default
568  // stack size of 320k, specifying any size less than 320k does not
569  // affect the actual stack size at all, it only affects the initial
570  // commitment. On the other hand, specifying 'stack_size' larger than
571  // default value may cause significant increase in memory usage, because
572  // not only the stack space will be rounded up to MB, but also the
573  // entire space is committed upfront.
574  //
575  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
576  // for CreateThread() that can treat 'stack_size' as stack size. However we
577  // are not supposed to call CreateThread() directly according to MSDN
578  // document because JVM uses C runtime library. The good news is that the
579  // flag appears to work with _beginthredex() as well.
580
581#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
582#define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
583#endif
584
585  HANDLE thread_handle =
586    (HANDLE)_beginthreadex(NULL,
587                           (unsigned)stack_size,
588                           (unsigned (__stdcall *)(void*)) java_start,
589                           thread,
590                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
591                           &thread_id);
592  if (thread_handle == NULL) {
593    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
594    // without the flag.
595    thread_handle =
596    (HANDLE)_beginthreadex(NULL,
597                           (unsigned)stack_size,
598                           (unsigned (__stdcall *)(void*)) java_start,
599                           thread,
600                           CREATE_SUSPENDED,
601                           &thread_id);
602  }
603  if (thread_handle == NULL) {
604    // Need to clean up stuff we've allocated so far
605    CloseHandle(osthread->interrupt_event());
606    thread->set_osthread(NULL);
607    delete osthread;
608    return NULL;
609  }
610
611  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
612
613  // Store info on the Win32 thread into the OSThread
614  osthread->set_thread_handle(thread_handle);
615  osthread->set_thread_id(thread_id);
616
617  // Initial thread state is INITIALIZED, not SUSPENDED
618  osthread->set_state(INITIALIZED);
619
620  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
621  return true;
622}
623
624
625// Free Win32 resources related to the OSThread
626void os::free_thread(OSThread* osthread) {
627  assert(osthread != NULL, "osthread not set");
628  CloseHandle(osthread->thread_handle());
629  CloseHandle(osthread->interrupt_event());
630  delete osthread;
631}
632
633
634static int    has_performance_count = 0;
635static jlong first_filetime;
636static jlong initial_performance_count;
637static jlong performance_frequency;
638
639
640jlong as_long(LARGE_INTEGER x) {
641  jlong result = 0; // initialization to avoid warning
642  set_high(&result, x.HighPart);
643  set_low(&result,  x.LowPart);
644  return result;
645}
646
647
648jlong os::elapsed_counter() {
649  LARGE_INTEGER count;
650  if (has_performance_count) {
651    QueryPerformanceCounter(&count);
652    return as_long(count) - initial_performance_count;
653  } else {
654    FILETIME wt;
655    GetSystemTimeAsFileTime(&wt);
656    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
657  }
658}
659
660
661jlong os::elapsed_frequency() {
662  if (has_performance_count) {
663    return performance_frequency;
664  } else {
665   // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
666   return 10000000;
667  }
668}
669
670
671julong os::available_memory() {
672  return win32::available_memory();
673}
674
675julong os::win32::available_memory() {
676  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
677  // value if total memory is larger than 4GB
678  MEMORYSTATUSEX ms;
679  ms.dwLength = sizeof(ms);
680  GlobalMemoryStatusEx(&ms);
681
682  return (julong)ms.ullAvailPhys;
683}
684
685julong os::physical_memory() {
686  return win32::physical_memory();
687}
688
689bool os::has_allocatable_memory_limit(julong* limit) {
690  MEMORYSTATUSEX ms;
691  ms.dwLength = sizeof(ms);
692  GlobalMemoryStatusEx(&ms);
693#ifdef _LP64
694  *limit = (julong)ms.ullAvailVirtual;
695  return true;
696#else
697  // Limit to 1400m because of the 2gb address space wall
698  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
699  return true;
700#endif
701}
702
703// VC6 lacks DWORD_PTR
704#if _MSC_VER < 1300
705typedef UINT_PTR DWORD_PTR;
706#endif
707
708int os::active_processor_count() {
709  DWORD_PTR lpProcessAffinityMask = 0;
710  DWORD_PTR lpSystemAffinityMask = 0;
711  int proc_count = processor_count();
712  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
713      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
714    // Nof active processors is number of bits in process affinity mask
715    int bitcount = 0;
716    while (lpProcessAffinityMask != 0) {
717      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
718      bitcount++;
719    }
720    return bitcount;
721  } else {
722    return proc_count;
723  }
724}
725
726void os::set_native_thread_name(const char *name) {
727  // Not yet implemented.
728  return;
729}
730
731bool os::distribute_processes(uint length, uint* distribution) {
732  // Not yet implemented.
733  return false;
734}
735
736bool os::bind_to_processor(uint processor_id) {
737  // Not yet implemented.
738  return false;
739}
740
741static void initialize_performance_counter() {
742  LARGE_INTEGER count;
743  if (QueryPerformanceFrequency(&count)) {
744    has_performance_count = 1;
745    performance_frequency = as_long(count);
746    QueryPerformanceCounter(&count);
747    initial_performance_count = as_long(count);
748  } else {
749    has_performance_count = 0;
750    FILETIME wt;
751    GetSystemTimeAsFileTime(&wt);
752    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
753  }
754}
755
756
757double os::elapsedTime() {
758  return (double) elapsed_counter() / (double) elapsed_frequency();
759}
760
761
762// Windows format:
763//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
764// Java format:
765//   Java standards require the number of milliseconds since 1/1/1970
766
767// Constant offset - calculated using offset()
768static jlong  _offset   = 116444736000000000;
769// Fake time counter for reproducible results when debugging
770static jlong  fake_time = 0;
771
772#ifdef ASSERT
773// Just to be safe, recalculate the offset in debug mode
774static jlong _calculated_offset = 0;
775static int   _has_calculated_offset = 0;
776
777jlong offset() {
778  if (_has_calculated_offset) return _calculated_offset;
779  SYSTEMTIME java_origin;
780  java_origin.wYear          = 1970;
781  java_origin.wMonth         = 1;
782  java_origin.wDayOfWeek     = 0; // ignored
783  java_origin.wDay           = 1;
784  java_origin.wHour          = 0;
785  java_origin.wMinute        = 0;
786  java_origin.wSecond        = 0;
787  java_origin.wMilliseconds  = 0;
788  FILETIME jot;
789  if (!SystemTimeToFileTime(&java_origin, &jot)) {
790    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
791  }
792  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
793  _has_calculated_offset = 1;
794  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
795  return _calculated_offset;
796}
797#else
798jlong offset() {
799  return _offset;
800}
801#endif
802
803jlong windows_to_java_time(FILETIME wt) {
804  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
805  return (a - offset()) / 10000;
806}
807
808FILETIME java_to_windows_time(jlong l) {
809  jlong a = (l * 10000) + offset();
810  FILETIME result;
811  result.dwHighDateTime = high(a);
812  result.dwLowDateTime  = low(a);
813  return result;
814}
815
816bool os::supports_vtime() { return true; }
817bool os::enable_vtime() { return false; }
818bool os::vtime_enabled() { return false; }
819
820double os::elapsedVTime() {
821  FILETIME created;
822  FILETIME exited;
823  FILETIME kernel;
824  FILETIME user;
825  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
826    // the resolution of windows_to_java_time() should be sufficient (ms)
827    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
828  } else {
829    return elapsedTime();
830  }
831}
832
833jlong os::javaTimeMillis() {
834  if (UseFakeTimers) {
835    return fake_time++;
836  } else {
837    FILETIME wt;
838    GetSystemTimeAsFileTime(&wt);
839    return windows_to_java_time(wt);
840  }
841}
842
843jlong os::javaTimeNanos() {
844  if (!has_performance_count) {
845    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
846  } else {
847    LARGE_INTEGER current_count;
848    QueryPerformanceCounter(&current_count);
849    double current = as_long(current_count);
850    double freq = performance_frequency;
851    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
852    return time;
853  }
854}
855
856void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
857  if (!has_performance_count) {
858    // javaTimeMillis() doesn't have much percision,
859    // but it is not going to wrap -- so all 64 bits
860    info_ptr->max_value = ALL_64_BITS;
861
862    // this is a wall clock timer, so may skip
863    info_ptr->may_skip_backward = true;
864    info_ptr->may_skip_forward = true;
865  } else {
866    jlong freq = performance_frequency;
867    if (freq < NANOSECS_PER_SEC) {
868      // the performance counter is 64 bits and we will
869      // be multiplying it -- so no wrap in 64 bits
870      info_ptr->max_value = ALL_64_BITS;
871    } else if (freq > NANOSECS_PER_SEC) {
872      // use the max value the counter can reach to
873      // determine the max value which could be returned
874      julong max_counter = (julong)ALL_64_BITS;
875      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
876    } else {
877      // the performance counter is 64 bits and we will
878      // be using it directly -- so no wrap in 64 bits
879      info_ptr->max_value = ALL_64_BITS;
880    }
881
882    // using a counter, so no skipping
883    info_ptr->may_skip_backward = false;
884    info_ptr->may_skip_forward = false;
885  }
886  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
887}
888
889char* os::local_time_string(char *buf, size_t buflen) {
890  SYSTEMTIME st;
891  GetLocalTime(&st);
892  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
893               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
894  return buf;
895}
896
897bool os::getTimesSecs(double* process_real_time,
898                     double* process_user_time,
899                     double* process_system_time) {
900  HANDLE h_process = GetCurrentProcess();
901  FILETIME create_time, exit_time, kernel_time, user_time;
902  BOOL result = GetProcessTimes(h_process,
903                               &create_time,
904                               &exit_time,
905                               &kernel_time,
906                               &user_time);
907  if (result != 0) {
908    FILETIME wt;
909    GetSystemTimeAsFileTime(&wt);
910    jlong rtc_millis = windows_to_java_time(wt);
911    jlong user_millis = windows_to_java_time(user_time);
912    jlong system_millis = windows_to_java_time(kernel_time);
913    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
914    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
915    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
916    return true;
917  } else {
918    return false;
919  }
920}
921
922void os::shutdown() {
923
924  // allow PerfMemory to attempt cleanup of any persistent resources
925  perfMemory_exit();
926
927  // flush buffered output, finish log files
928  ostream_abort();
929
930  // Check for abort hook
931  abort_hook_t abort_hook = Arguments::abort_hook();
932  if (abort_hook != NULL) {
933    abort_hook();
934  }
935}
936
937
938static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
939                                            PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
940
941void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
942  HINSTANCE dbghelp;
943  EXCEPTION_POINTERS ep;
944  MINIDUMP_EXCEPTION_INFORMATION mei;
945  MINIDUMP_EXCEPTION_INFORMATION* pmei;
946
947  HANDLE hProcess = GetCurrentProcess();
948  DWORD processId = GetCurrentProcessId();
949  HANDLE dumpFile;
950  MINIDUMP_TYPE dumpType;
951  static const char* cwd;
952
953// Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
954#ifndef ASSERT
955  // If running on a client version of Windows and user has not explicitly enabled dumping
956  if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
957    VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
958    return;
959    // If running on a server version of Windows and user has explictly disabled dumping
960  } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
961    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
962    return;
963  }
964#else
965  if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
966    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
967    return;
968  }
969#endif
970
971  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
972
973  if (dbghelp == NULL) {
974    VMError::report_coredump_status("Failed to load dbghelp.dll", false);
975    return;
976  }
977
978  _MiniDumpWriteDump = CAST_TO_FN_PTR(
979    BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
980    PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
981    GetProcAddress(dbghelp, "MiniDumpWriteDump"));
982
983  if (_MiniDumpWriteDump == NULL) {
984    VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
985    return;
986  }
987
988  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
989
990// Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
991// API_VERSION_NUMBER 11 or higher contains the ones we want though
992#if API_VERSION_NUMBER >= 11
993  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
994    MiniDumpWithUnloadedModules);
995#endif
996
997  cwd = get_current_directory(NULL, 0);
998  jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
999  dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1000
1001  if (dumpFile == INVALID_HANDLE_VALUE) {
1002    VMError::report_coredump_status("Failed to create file for dumping", false);
1003    return;
1004  }
1005  if (exceptionRecord != NULL && contextRecord != NULL) {
1006    ep.ContextRecord = (PCONTEXT) contextRecord;
1007    ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1008
1009    mei.ThreadId = GetCurrentThreadId();
1010    mei.ExceptionPointers = &ep;
1011    pmei = &mei;
1012  } else {
1013    pmei = NULL;
1014  }
1015
1016
1017  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1018  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1019  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1020      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1021        DWORD error = GetLastError();
1022        LPTSTR msgbuf = NULL;
1023
1024        if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1025                      FORMAT_MESSAGE_FROM_SYSTEM |
1026                      FORMAT_MESSAGE_IGNORE_INSERTS,
1027                      NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1028
1029          jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1030          LocalFree(msgbuf);
1031        } else {
1032          // Call to FormatMessage failed, just include the result from GetLastError
1033          jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1034        }
1035        VMError::report_coredump_status(buffer, false);
1036  } else {
1037    VMError::report_coredump_status(buffer, true);
1038  }
1039
1040  CloseHandle(dumpFile);
1041}
1042
1043
1044
1045void os::abort(bool dump_core)
1046{
1047  os::shutdown();
1048  // no core dump on Windows
1049  ::exit(1);
1050}
1051
1052// Die immediately, no exit hook, no abort hook, no cleanup.
1053void os::die() {
1054  _exit(-1);
1055}
1056
1057// Directory routines copied from src/win32/native/java/io/dirent_md.c
1058//  * dirent_md.c       1.15 00/02/02
1059//
1060// The declarations for DIR and struct dirent are in jvm_win32.h.
1061
1062/* Caller must have already run dirname through JVM_NativePath, which removes
1063   duplicate slashes and converts all instances of '/' into '\\'. */
1064
1065DIR *
1066os::opendir(const char *dirname)
1067{
1068    assert(dirname != NULL, "just checking");   // hotspot change
1069    DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1070    DWORD fattr;                                // hotspot change
1071    char alt_dirname[4] = { 0, 0, 0, 0 };
1072
1073    if (dirp == 0) {
1074        errno = ENOMEM;
1075        return 0;
1076    }
1077
1078    /*
1079     * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1080     * as a directory in FindFirstFile().  We detect this case here and
1081     * prepend the current drive name.
1082     */
1083    if (dirname[1] == '\0' && dirname[0] == '\\') {
1084        alt_dirname[0] = _getdrive() + 'A' - 1;
1085        alt_dirname[1] = ':';
1086        alt_dirname[2] = '\\';
1087        alt_dirname[3] = '\0';
1088        dirname = alt_dirname;
1089    }
1090
1091    dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1092    if (dirp->path == 0) {
1093        free(dirp, mtInternal);
1094        errno = ENOMEM;
1095        return 0;
1096    }
1097    strcpy(dirp->path, dirname);
1098
1099    fattr = GetFileAttributes(dirp->path);
1100    if (fattr == 0xffffffff) {
1101        free(dirp->path, mtInternal);
1102        free(dirp, mtInternal);
1103        errno = ENOENT;
1104        return 0;
1105    } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1106        free(dirp->path, mtInternal);
1107        free(dirp, mtInternal);
1108        errno = ENOTDIR;
1109        return 0;
1110    }
1111
1112    /* Append "*.*", or possibly "\\*.*", to path */
1113    if (dirp->path[1] == ':'
1114        && (dirp->path[2] == '\0'
1115            || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1116        /* No '\\' needed for cases like "Z:" or "Z:\" */
1117        strcat(dirp->path, "*.*");
1118    } else {
1119        strcat(dirp->path, "\\*.*");
1120    }
1121
1122    dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1123    if (dirp->handle == INVALID_HANDLE_VALUE) {
1124        if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1125            free(dirp->path, mtInternal);
1126            free(dirp, mtInternal);
1127            errno = EACCES;
1128            return 0;
1129        }
1130    }
1131    return dirp;
1132}
1133
1134/* parameter dbuf unused on Windows */
1135
1136struct dirent *
1137os::readdir(DIR *dirp, dirent *dbuf)
1138{
1139    assert(dirp != NULL, "just checking");      // hotspot change
1140    if (dirp->handle == INVALID_HANDLE_VALUE) {
1141        return 0;
1142    }
1143
1144    strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1145
1146    if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1147        if (GetLastError() == ERROR_INVALID_HANDLE) {
1148            errno = EBADF;
1149            return 0;
1150        }
1151        FindClose(dirp->handle);
1152        dirp->handle = INVALID_HANDLE_VALUE;
1153    }
1154
1155    return &dirp->dirent;
1156}
1157
1158int
1159os::closedir(DIR *dirp)
1160{
1161    assert(dirp != NULL, "just checking");      // hotspot change
1162    if (dirp->handle != INVALID_HANDLE_VALUE) {
1163        if (!FindClose(dirp->handle)) {
1164            errno = EBADF;
1165            return -1;
1166        }
1167        dirp->handle = INVALID_HANDLE_VALUE;
1168    }
1169    free(dirp->path, mtInternal);
1170    free(dirp, mtInternal);
1171    return 0;
1172}
1173
1174// This must be hard coded because it's the system's temporary
1175// directory not the java application's temp directory, ala java.io.tmpdir.
1176const char* os::get_temp_directory() {
1177  static char path_buf[MAX_PATH];
1178  if (GetTempPath(MAX_PATH, path_buf)>0)
1179    return path_buf;
1180  else{
1181    path_buf[0]='\0';
1182    return path_buf;
1183  }
1184}
1185
1186static bool file_exists(const char* filename) {
1187  if (filename == NULL || strlen(filename) == 0) {
1188    return false;
1189  }
1190  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1191}
1192
1193bool os::dll_build_name(char *buffer, size_t buflen,
1194                        const char* pname, const char* fname) {
1195  bool retval = false;
1196  const size_t pnamelen = pname ? strlen(pname) : 0;
1197  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1198
1199  // Return error on buffer overflow.
1200  if (pnamelen + strlen(fname) + 10 > buflen) {
1201    return retval;
1202  }
1203
1204  if (pnamelen == 0) {
1205    jio_snprintf(buffer, buflen, "%s.dll", fname);
1206    retval = true;
1207  } else if (c == ':' || c == '\\') {
1208    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1209    retval = true;
1210  } else if (strchr(pname, *os::path_separator()) != NULL) {
1211    int n;
1212    char** pelements = split_path(pname, &n);
1213    if (pelements == NULL) {
1214      return false;
1215    }
1216    for (int i = 0 ; i < n ; i++) {
1217      char* path = pelements[i];
1218      // Really shouldn't be NULL, but check can't hurt
1219      size_t plen = (path == NULL) ? 0 : strlen(path);
1220      if (plen == 0) {
1221        continue; // skip the empty path values
1222      }
1223      const char lastchar = path[plen - 1];
1224      if (lastchar == ':' || lastchar == '\\') {
1225        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1226      } else {
1227        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1228      }
1229      if (file_exists(buffer)) {
1230        retval = true;
1231        break;
1232      }
1233    }
1234    // release the storage
1235    for (int i = 0 ; i < n ; i++) {
1236      if (pelements[i] != NULL) {
1237        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1238      }
1239    }
1240    if (pelements != NULL) {
1241      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1242    }
1243  } else {
1244    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1245    retval = true;
1246  }
1247  return retval;
1248}
1249
1250// Needs to be in os specific directory because windows requires another
1251// header file <direct.h>
1252const char* os::get_current_directory(char *buf, size_t buflen) {
1253  int n = static_cast<int>(buflen);
1254  if (buflen > INT_MAX)  n = INT_MAX;
1255  return _getcwd(buf, n);
1256}
1257
1258//-----------------------------------------------------------
1259// Helper functions for fatal error handler
1260#ifdef _WIN64
1261// Helper routine which returns true if address in
1262// within the NTDLL address space.
1263//
1264static bool _addr_in_ntdll( address addr )
1265{
1266  HMODULE hmod;
1267  MODULEINFO minfo;
1268
1269  hmod = GetModuleHandle("NTDLL.DLL");
1270  if ( hmod == NULL ) return false;
1271  if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1272                               &minfo, sizeof(MODULEINFO)) )
1273    return false;
1274
1275  if ( (addr >= minfo.lpBaseOfDll) &&
1276       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1277    return true;
1278  else
1279    return false;
1280}
1281#endif
1282
1283
1284// Enumerate all modules for a given process ID
1285//
1286// Notice that Windows 95/98/Me and Windows NT/2000/XP have
1287// different API for doing this. We use PSAPI.DLL on NT based
1288// Windows and ToolHelp on 95/98/Me.
1289
1290// Callback function that is called by enumerate_modules() on
1291// every DLL module.
1292// Input parameters:
1293//    int       pid,
1294//    char*     module_file_name,
1295//    address   module_base_addr,
1296//    unsigned  module_size,
1297//    void*     param
1298typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1299
1300// enumerate_modules for Windows NT, using PSAPI
1301static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1302{
1303  HANDLE   hProcess ;
1304
1305# define MAX_NUM_MODULES 128
1306  HMODULE     modules[MAX_NUM_MODULES];
1307  static char filename[ MAX_PATH ];
1308  int         result = 0;
1309
1310  if (!os::PSApiDll::PSApiAvailable()) {
1311    return 0;
1312  }
1313
1314  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1315                         FALSE, pid ) ;
1316  if (hProcess == NULL) return 0;
1317
1318  DWORD size_needed;
1319  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1320                           sizeof(modules), &size_needed)) {
1321      CloseHandle( hProcess );
1322      return 0;
1323  }
1324
1325  // number of modules that are currently loaded
1326  int num_modules = size_needed / sizeof(HMODULE);
1327
1328  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1329    // Get Full pathname:
1330    if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1331                             filename, sizeof(filename))) {
1332        filename[0] = '\0';
1333    }
1334
1335    MODULEINFO modinfo;
1336    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1337                               &modinfo, sizeof(modinfo))) {
1338        modinfo.lpBaseOfDll = NULL;
1339        modinfo.SizeOfImage = 0;
1340    }
1341
1342    // Invoke callback function
1343    result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1344                  modinfo.SizeOfImage, param);
1345    if (result) break;
1346  }
1347
1348  CloseHandle( hProcess ) ;
1349  return result;
1350}
1351
1352
1353// enumerate_modules for Windows 95/98/ME, using TOOLHELP
1354static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1355{
1356  HANDLE                hSnapShot ;
1357  static MODULEENTRY32  modentry ;
1358  int                   result = 0;
1359
1360  if (!os::Kernel32Dll::HelpToolsAvailable()) {
1361    return 0;
1362  }
1363
1364  // Get a handle to a Toolhelp snapshot of the system
1365  hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1366  if( hSnapShot == INVALID_HANDLE_VALUE ) {
1367      return FALSE ;
1368  }
1369
1370  // iterate through all modules
1371  modentry.dwSize = sizeof(MODULEENTRY32) ;
1372  bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1373
1374  while( not_done ) {
1375    // invoke the callback
1376    result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1377                modentry.modBaseSize, param);
1378    if (result) break;
1379
1380    modentry.dwSize = sizeof(MODULEENTRY32) ;
1381    not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1382  }
1383
1384  CloseHandle(hSnapShot);
1385  return result;
1386}
1387
1388int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1389{
1390  // Get current process ID if caller doesn't provide it.
1391  if (!pid) pid = os::current_process_id();
1392
1393  if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1394  else                    return _enumerate_modules_windows(pid, func, param);
1395}
1396
1397struct _modinfo {
1398   address addr;
1399   char*   full_path;   // point to a char buffer
1400   int     buflen;      // size of the buffer
1401   address base_addr;
1402};
1403
1404static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1405                                  unsigned size, void * param) {
1406   struct _modinfo *pmod = (struct _modinfo *)param;
1407   if (!pmod) return -1;
1408
1409   if (base_addr     <= pmod->addr &&
1410       base_addr+size > pmod->addr) {
1411     // if a buffer is provided, copy path name to the buffer
1412     if (pmod->full_path) {
1413       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1414     }
1415     pmod->base_addr = base_addr;
1416     return 1;
1417   }
1418   return 0;
1419}
1420
1421bool os::dll_address_to_library_name(address addr, char* buf,
1422                                     int buflen, int* offset) {
1423// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1424//       return the full path to the DLL file, sometimes it returns path
1425//       to the corresponding PDB file (debug info); sometimes it only
1426//       returns partial path, which makes life painful.
1427
1428   struct _modinfo mi;
1429   mi.addr      = addr;
1430   mi.full_path = buf;
1431   mi.buflen    = buflen;
1432   int pid = os::current_process_id();
1433   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1434      // buf already contains path name
1435      if (offset) *offset = addr - mi.base_addr;
1436      return true;
1437   } else {
1438      if (buf) buf[0] = '\0';
1439      if (offset) *offset = -1;
1440      return false;
1441   }
1442}
1443
1444bool os::dll_address_to_function_name(address addr, char *buf,
1445                                      int buflen, int *offset) {
1446  if (Decoder::decode(addr, buf, buflen, offset)) {
1447    return true;
1448  }
1449  if (offset != NULL)  *offset  = -1;
1450  if (buf != NULL) buf[0] = '\0';
1451  return false;
1452}
1453
1454// save the start and end address of jvm.dll into param[0] and param[1]
1455static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1456                    unsigned size, void * param) {
1457   if (!param) return -1;
1458
1459   if (base_addr     <= (address)_locate_jvm_dll &&
1460       base_addr+size > (address)_locate_jvm_dll) {
1461         ((address*)param)[0] = base_addr;
1462         ((address*)param)[1] = base_addr + size;
1463         return 1;
1464   }
1465   return 0;
1466}
1467
1468address vm_lib_location[2];    // start and end address of jvm.dll
1469
1470// check if addr is inside jvm.dll
1471bool os::address_is_in_vm(address addr) {
1472  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1473    int pid = os::current_process_id();
1474    if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1475      assert(false, "Can't find jvm module.");
1476      return false;
1477    }
1478  }
1479
1480  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1481}
1482
1483// print module info; param is outputStream*
1484static int _print_module(int pid, char* fname, address base,
1485                         unsigned size, void* param) {
1486   if (!param) return -1;
1487
1488   outputStream* st = (outputStream*)param;
1489
1490   address end_addr = base + size;
1491   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1492   return 0;
1493}
1494
1495// Loads .dll/.so and
1496// in case of error it checks if .dll/.so was built for the
1497// same architecture as Hotspot is running on
1498void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1499{
1500  void * result = LoadLibrary(name);
1501  if (result != NULL)
1502  {
1503    return result;
1504  }
1505
1506  DWORD errcode = GetLastError();
1507  if (errcode == ERROR_MOD_NOT_FOUND) {
1508    strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1509    ebuf[ebuflen-1]='\0';
1510    return NULL;
1511  }
1512
1513  // Parsing dll below
1514  // If we can read dll-info and find that dll was built
1515  // for an architecture other than Hotspot is running in
1516  // - then print to buffer "DLL was built for a different architecture"
1517  // else call os::lasterror to obtain system error message
1518
1519  // Read system error message into ebuf
1520  // It may or may not be overwritten below (in the for loop and just above)
1521  lasterror(ebuf, (size_t) ebuflen);
1522  ebuf[ebuflen-1]='\0';
1523  int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1524  if (file_descriptor<0)
1525  {
1526    return NULL;
1527  }
1528
1529  uint32_t signature_offset;
1530  uint16_t lib_arch=0;
1531  bool failed_to_get_lib_arch=
1532  (
1533    //Go to position 3c in the dll
1534    (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1535    ||
1536    // Read loacation of signature
1537    (sizeof(signature_offset)!=
1538      (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1539    ||
1540    //Go to COFF File Header in dll
1541    //that is located after"signature" (4 bytes long)
1542    (os::seek_to_file_offset(file_descriptor,
1543      signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1544    ||
1545    //Read field that contains code of architecture
1546    // that dll was build for
1547    (sizeof(lib_arch)!=
1548      (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1549  );
1550
1551  ::close(file_descriptor);
1552  if (failed_to_get_lib_arch)
1553  {
1554    // file i/o error - report os::lasterror(...) msg
1555    return NULL;
1556  }
1557
1558  typedef struct
1559  {
1560    uint16_t arch_code;
1561    char* arch_name;
1562  } arch_t;
1563
1564  static const arch_t arch_array[]={
1565    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1566    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1567    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1568  };
1569  #if   (defined _M_IA64)
1570    static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1571  #elif (defined _M_AMD64)
1572    static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1573  #elif (defined _M_IX86)
1574    static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1575  #else
1576    #error Method os::dll_load requires that one of following \
1577           is defined :_M_IA64,_M_AMD64 or _M_IX86
1578  #endif
1579
1580
1581  // Obtain a string for printf operation
1582  // lib_arch_str shall contain string what platform this .dll was built for
1583  // running_arch_str shall string contain what platform Hotspot was built for
1584  char *running_arch_str=NULL,*lib_arch_str=NULL;
1585  for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1586  {
1587    if (lib_arch==arch_array[i].arch_code)
1588      lib_arch_str=arch_array[i].arch_name;
1589    if (running_arch==arch_array[i].arch_code)
1590      running_arch_str=arch_array[i].arch_name;
1591  }
1592
1593  assert(running_arch_str,
1594    "Didn't find runing architecture code in arch_array");
1595
1596  // If the architure is right
1597  // but some other error took place - report os::lasterror(...) msg
1598  if (lib_arch == running_arch)
1599  {
1600    return NULL;
1601  }
1602
1603  if (lib_arch_str!=NULL)
1604  {
1605    ::_snprintf(ebuf, ebuflen-1,
1606      "Can't load %s-bit .dll on a %s-bit platform",
1607      lib_arch_str,running_arch_str);
1608  }
1609  else
1610  {
1611    // don't know what architecture this dll was build for
1612    ::_snprintf(ebuf, ebuflen-1,
1613      "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1614      lib_arch,running_arch_str);
1615  }
1616
1617  return NULL;
1618}
1619
1620
1621void os::print_dll_info(outputStream *st) {
1622   int pid = os::current_process_id();
1623   st->print_cr("Dynamic libraries:");
1624   enumerate_modules(pid, _print_module, (void *)st);
1625}
1626
1627void os::print_os_info_brief(outputStream* st) {
1628  os::print_os_info(st);
1629}
1630
1631void os::print_os_info(outputStream* st) {
1632  st->print("OS:");
1633
1634  os::win32::print_windows_version(st);
1635}
1636
1637void os::win32::print_windows_version(outputStream* st) {
1638  OSVERSIONINFOEX osvi;
1639  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1640  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1641
1642  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1643    st->print_cr("N/A");
1644    return;
1645  }
1646
1647  int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1648  if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1649    switch (os_vers) {
1650    case 3051: st->print(" Windows NT 3.51"); break;
1651    case 4000: st->print(" Windows NT 4.0"); break;
1652    case 5000: st->print(" Windows 2000"); break;
1653    case 5001: st->print(" Windows XP"); break;
1654    case 5002:
1655    case 6000:
1656    case 6001:
1657    case 6002: {
1658      // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1659      // find out whether we are running on 64 bit processor or not.
1660      SYSTEM_INFO si;
1661      ZeroMemory(&si, sizeof(SYSTEM_INFO));
1662        if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
1663          GetSystemInfo(&si);
1664      } else {
1665        os::Kernel32Dll::GetNativeSystemInfo(&si);
1666      }
1667      if (os_vers == 5002) {
1668        if (osvi.wProductType == VER_NT_WORKSTATION &&
1669            si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1670          st->print(" Windows XP x64 Edition");
1671        else
1672            st->print(" Windows Server 2003 family");
1673      } else if (os_vers == 6000) {
1674        if (osvi.wProductType == VER_NT_WORKSTATION)
1675            st->print(" Windows Vista");
1676        else
1677            st->print(" Windows Server 2008");
1678        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1679            st->print(" , 64 bit");
1680      } else if (os_vers == 6001) {
1681        if (osvi.wProductType == VER_NT_WORKSTATION) {
1682            st->print(" Windows 7");
1683        } else {
1684            // Unrecognized windows, print out its major and minor versions
1685            st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1686        }
1687        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1688            st->print(" , 64 bit");
1689      } else if (os_vers == 6002) {
1690        if (osvi.wProductType == VER_NT_WORKSTATION) {
1691            st->print(" Windows 8");
1692        } else {
1693            st->print(" Windows Server 2012");
1694        }
1695        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1696            st->print(" , 64 bit");
1697      } else { // future os
1698        // Unrecognized windows, print out its major and minor versions
1699        st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1700        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1701            st->print(" , 64 bit");
1702      }
1703      break;
1704    }
1705    default: // future windows, print out its major and minor versions
1706      st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1707    }
1708  } else {
1709    switch (os_vers) {
1710    case 4000: st->print(" Windows 95"); break;
1711    case 4010: st->print(" Windows 98"); break;
1712    case 4090: st->print(" Windows Me"); break;
1713    default: // future windows, print out its major and minor versions
1714      st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1715    }
1716  }
1717  st->print(" Build %d", osvi.dwBuildNumber);
1718  st->print(" %s", osvi.szCSDVersion);           // service pack
1719  st->cr();
1720}
1721
1722void os::pd_print_cpu_info(outputStream* st) {
1723  // Nothing to do for now.
1724}
1725
1726void os::print_memory_info(outputStream* st) {
1727  st->print("Memory:");
1728  st->print(" %dk page", os::vm_page_size()>>10);
1729
1730  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1731  // value if total memory is larger than 4GB
1732  MEMORYSTATUSEX ms;
1733  ms.dwLength = sizeof(ms);
1734  GlobalMemoryStatusEx(&ms);
1735
1736  st->print(", physical %uk", os::physical_memory() >> 10);
1737  st->print("(%uk free)", os::available_memory() >> 10);
1738
1739  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1740  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1741  st->cr();
1742}
1743
1744void os::print_siginfo(outputStream *st, void *siginfo) {
1745  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1746  st->print("siginfo:");
1747  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1748
1749  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1750      er->NumberParameters >= 2) {
1751      switch (er->ExceptionInformation[0]) {
1752      case 0: st->print(", reading address"); break;
1753      case 1: st->print(", writing address"); break;
1754      default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1755                            er->ExceptionInformation[0]);
1756      }
1757      st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1758  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1759             er->NumberParameters >= 2 && UseSharedSpaces) {
1760    FileMapInfo* mapinfo = FileMapInfo::current_info();
1761    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1762      st->print("\n\nError accessing class data sharing archive."       \
1763                " Mapped file inaccessible during execution, "          \
1764                " possible disk/network problem.");
1765    }
1766  } else {
1767    int num = er->NumberParameters;
1768    if (num > 0) {
1769      st->print(", ExceptionInformation=");
1770      for (int i = 0; i < num; i++) {
1771        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1772      }
1773    }
1774  }
1775  st->cr();
1776}
1777
1778void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1779  // do nothing
1780}
1781
1782static char saved_jvm_path[MAX_PATH] = {0};
1783
1784// Find the full path to the current module, jvm.dll
1785void os::jvm_path(char *buf, jint buflen) {
1786  // Error checking.
1787  if (buflen < MAX_PATH) {
1788    assert(false, "must use a large-enough buffer");
1789    buf[0] = '\0';
1790    return;
1791  }
1792  // Lazy resolve the path to current module.
1793  if (saved_jvm_path[0] != 0) {
1794    strcpy(buf, saved_jvm_path);
1795    return;
1796  }
1797
1798  buf[0] = '\0';
1799  if (Arguments::created_by_gamma_launcher()) {
1800     // Support for the gamma launcher. Check for an
1801     // JAVA_HOME environment variable
1802     // and fix up the path so it looks like
1803     // libjvm.so is installed there (append a fake suffix
1804     // hotspot/libjvm.so).
1805     char* java_home_var = ::getenv("JAVA_HOME");
1806     if (java_home_var != NULL && java_home_var[0] != 0) {
1807
1808        strncpy(buf, java_home_var, buflen);
1809
1810        // determine if this is a legacy image or modules image
1811        // modules image doesn't have "jre" subdirectory
1812        size_t len = strlen(buf);
1813        char* jrebin_p = buf + len;
1814        jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1815        if (0 != _access(buf, 0)) {
1816          jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1817        }
1818        len = strlen(buf);
1819        jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1820     }
1821  }
1822
1823  if(buf[0] == '\0') {
1824  GetModuleFileName(vm_lib_handle, buf, buflen);
1825  }
1826  strcpy(saved_jvm_path, buf);
1827}
1828
1829
1830void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1831#ifndef _WIN64
1832  st->print("_");
1833#endif
1834}
1835
1836
1837void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1838#ifndef _WIN64
1839  st->print("@%d", args_size  * sizeof(int));
1840#endif
1841}
1842
1843// This method is a copy of JDK's sysGetLastErrorString
1844// from src/windows/hpi/src/system_md.c
1845
1846size_t os::lasterror(char* buf, size_t len) {
1847  DWORD errval;
1848
1849  if ((errval = GetLastError()) != 0) {
1850    // DOS error
1851    size_t n = (size_t)FormatMessage(
1852          FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1853          NULL,
1854          errval,
1855          0,
1856          buf,
1857          (DWORD)len,
1858          NULL);
1859    if (n > 3) {
1860      // Drop final '.', CR, LF
1861      if (buf[n - 1] == '\n') n--;
1862      if (buf[n - 1] == '\r') n--;
1863      if (buf[n - 1] == '.') n--;
1864      buf[n] = '\0';
1865    }
1866    return n;
1867  }
1868
1869  if (errno != 0) {
1870    // C runtime error that has no corresponding DOS error code
1871    const char* s = strerror(errno);
1872    size_t n = strlen(s);
1873    if (n >= len) n = len - 1;
1874    strncpy(buf, s, n);
1875    buf[n] = '\0';
1876    return n;
1877  }
1878
1879  return 0;
1880}
1881
1882int os::get_last_error() {
1883  DWORD error = GetLastError();
1884  if (error == 0)
1885    error = errno;
1886  return (int)error;
1887}
1888
1889// sun.misc.Signal
1890// NOTE that this is a workaround for an apparent kernel bug where if
1891// a signal handler for SIGBREAK is installed then that signal handler
1892// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1893// See bug 4416763.
1894static void (*sigbreakHandler)(int) = NULL;
1895
1896static void UserHandler(int sig, void *siginfo, void *context) {
1897  os::signal_notify(sig);
1898  // We need to reinstate the signal handler each time...
1899  os::signal(sig, (void*)UserHandler);
1900}
1901
1902void* os::user_handler() {
1903  return (void*) UserHandler;
1904}
1905
1906void* os::signal(int signal_number, void* handler) {
1907  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1908    void (*oldHandler)(int) = sigbreakHandler;
1909    sigbreakHandler = (void (*)(int)) handler;
1910    return (void*) oldHandler;
1911  } else {
1912    return (void*)::signal(signal_number, (void (*)(int))handler);
1913  }
1914}
1915
1916void os::signal_raise(int signal_number) {
1917  raise(signal_number);
1918}
1919
1920// The Win32 C runtime library maps all console control events other than ^C
1921// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1922// logoff, and shutdown events.  We therefore install our own console handler
1923// that raises SIGTERM for the latter cases.
1924//
1925static BOOL WINAPI consoleHandler(DWORD event) {
1926  switch(event) {
1927    case CTRL_C_EVENT:
1928      if (is_error_reported()) {
1929        // Ctrl-C is pressed during error reporting, likely because the error
1930        // handler fails to abort. Let VM die immediately.
1931        os::die();
1932      }
1933
1934      os::signal_raise(SIGINT);
1935      return TRUE;
1936      break;
1937    case CTRL_BREAK_EVENT:
1938      if (sigbreakHandler != NULL) {
1939        (*sigbreakHandler)(SIGBREAK);
1940      }
1941      return TRUE;
1942      break;
1943    case CTRL_LOGOFF_EVENT: {
1944      // Don't terminate JVM if it is running in a non-interactive session,
1945      // such as a service process.
1946      USEROBJECTFLAGS flags;
1947      HANDLE handle = GetProcessWindowStation();
1948      if (handle != NULL &&
1949          GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1950            sizeof( USEROBJECTFLAGS), NULL)) {
1951        // If it is a non-interactive session, let next handler to deal
1952        // with it.
1953        if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1954          return FALSE;
1955        }
1956      }
1957    }
1958    case CTRL_CLOSE_EVENT:
1959    case CTRL_SHUTDOWN_EVENT:
1960      os::signal_raise(SIGTERM);
1961      return TRUE;
1962      break;
1963    default:
1964      break;
1965  }
1966  return FALSE;
1967}
1968
1969/*
1970 * The following code is moved from os.cpp for making this
1971 * code platform specific, which it is by its very nature.
1972 */
1973
1974// Return maximum OS signal used + 1 for internal use only
1975// Used as exit signal for signal_thread
1976int os::sigexitnum_pd(){
1977  return NSIG;
1978}
1979
1980// a counter for each possible signal value, including signal_thread exit signal
1981static volatile jint pending_signals[NSIG+1] = { 0 };
1982static HANDLE sig_sem = NULL;
1983
1984void os::signal_init_pd() {
1985  // Initialize signal structures
1986  memset((void*)pending_signals, 0, sizeof(pending_signals));
1987
1988  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1989
1990  // Programs embedding the VM do not want it to attempt to receive
1991  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1992  // shutdown hooks mechanism introduced in 1.3.  For example, when
1993  // the VM is run as part of a Windows NT service (i.e., a servlet
1994  // engine in a web server), the correct behavior is for any console
1995  // control handler to return FALSE, not TRUE, because the OS's
1996  // "final" handler for such events allows the process to continue if
1997  // it is a service (while terminating it if it is not a service).
1998  // To make this behavior uniform and the mechanism simpler, we
1999  // completely disable the VM's usage of these console events if -Xrs
2000  // (=ReduceSignalUsage) is specified.  This means, for example, that
2001  // the CTRL-BREAK thread dump mechanism is also disabled in this
2002  // case.  See bugs 4323062, 4345157, and related bugs.
2003
2004  if (!ReduceSignalUsage) {
2005    // Add a CTRL-C handler
2006    SetConsoleCtrlHandler(consoleHandler, TRUE);
2007  }
2008}
2009
2010void os::signal_notify(int signal_number) {
2011  BOOL ret;
2012  if (sig_sem != NULL) {
2013    Atomic::inc(&pending_signals[signal_number]);
2014    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2015    assert(ret != 0, "ReleaseSemaphore() failed");
2016  }
2017}
2018
2019static int check_pending_signals(bool wait_for_signal) {
2020  DWORD ret;
2021  while (true) {
2022    for (int i = 0; i < NSIG + 1; i++) {
2023      jint n = pending_signals[i];
2024      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2025        return i;
2026      }
2027    }
2028    if (!wait_for_signal) {
2029      return -1;
2030    }
2031
2032    JavaThread *thread = JavaThread::current();
2033
2034    ThreadBlockInVM tbivm(thread);
2035
2036    bool threadIsSuspended;
2037    do {
2038      thread->set_suspend_equivalent();
2039      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2040      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2041      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2042
2043      // were we externally suspended while we were waiting?
2044      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2045      if (threadIsSuspended) {
2046        //
2047        // The semaphore has been incremented, but while we were waiting
2048        // another thread suspended us. We don't want to continue running
2049        // while suspended because that would surprise the thread that
2050        // suspended us.
2051        //
2052        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2053        assert(ret != 0, "ReleaseSemaphore() failed");
2054
2055        thread->java_suspend_self();
2056      }
2057    } while (threadIsSuspended);
2058  }
2059}
2060
2061int os::signal_lookup() {
2062  return check_pending_signals(false);
2063}
2064
2065int os::signal_wait() {
2066  return check_pending_signals(true);
2067}
2068
2069// Implicit OS exception handling
2070
2071LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2072  JavaThread* thread = JavaThread::current();
2073  // Save pc in thread
2074#ifdef _M_IA64
2075  // Do not blow up if no thread info available.
2076  if (thread) {
2077    // Saving PRECISE pc (with slot information) in thread.
2078    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2079    // Convert precise PC into "Unix" format
2080    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2081    thread->set_saved_exception_pc((address)precise_pc);
2082  }
2083  // Set pc to handler
2084  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2085  // Clear out psr.ri (= Restart Instruction) in order to continue
2086  // at the beginning of the target bundle.
2087  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2088  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2089#elif _M_AMD64
2090  // Do not blow up if no thread info available.
2091  if (thread) {
2092    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2093  }
2094  // Set pc to handler
2095  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2096#else
2097  // Do not blow up if no thread info available.
2098  if (thread) {
2099    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2100  }
2101  // Set pc to handler
2102  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2103#endif
2104
2105  // Continue the execution
2106  return EXCEPTION_CONTINUE_EXECUTION;
2107}
2108
2109
2110// Used for PostMortemDump
2111extern "C" void safepoints();
2112extern "C" void find(int x);
2113extern "C" void events();
2114
2115// According to Windows API documentation, an illegal instruction sequence should generate
2116// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2117// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2118// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2119
2120#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2121
2122// From "Execution Protection in the Windows Operating System" draft 0.35
2123// Once a system header becomes available, the "real" define should be
2124// included or copied here.
2125#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2126
2127// Handle NAT Bit consumption on IA64.
2128#ifdef _M_IA64
2129#define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2130#endif
2131
2132// Windows Vista/2008 heap corruption check
2133#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2134
2135#define def_excpt(val) #val, val
2136
2137struct siglabel {
2138  char *name;
2139  int   number;
2140};
2141
2142// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2143// C++ compiler contain this error code. Because this is a compiler-generated
2144// error, the code is not listed in the Win32 API header files.
2145// The code is actually a cryptic mnemonic device, with the initial "E"
2146// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2147// ASCII values of "msc".
2148
2149#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2150
2151
2152struct siglabel exceptlabels[] = {
2153    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2154    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2155    def_excpt(EXCEPTION_BREAKPOINT),
2156    def_excpt(EXCEPTION_SINGLE_STEP),
2157    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2158    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2159    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2160    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2161    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2162    def_excpt(EXCEPTION_FLT_OVERFLOW),
2163    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2164    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2165    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2166    def_excpt(EXCEPTION_INT_OVERFLOW),
2167    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2168    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2169    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2170    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2171    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2172    def_excpt(EXCEPTION_STACK_OVERFLOW),
2173    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2174    def_excpt(EXCEPTION_GUARD_PAGE),
2175    def_excpt(EXCEPTION_INVALID_HANDLE),
2176    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2177    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2178#ifdef _M_IA64
2179    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2180#endif
2181    NULL, 0
2182};
2183
2184const char* os::exception_name(int exception_code, char *buf, size_t size) {
2185  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2186    if (exceptlabels[i].number == exception_code) {
2187       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2188       return buf;
2189    }
2190  }
2191
2192  return NULL;
2193}
2194
2195//-----------------------------------------------------------------------------
2196LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2197  // handle exception caused by idiv; should only happen for -MinInt/-1
2198  // (division by zero is handled explicitly)
2199#ifdef _M_IA64
2200  assert(0, "Fix Handle_IDiv_Exception");
2201#elif _M_AMD64
2202  PCONTEXT ctx = exceptionInfo->ContextRecord;
2203  address pc = (address)ctx->Rip;
2204  assert(pc[0] == 0xF7, "not an idiv opcode");
2205  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2206  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2207  // set correct result values and continue after idiv instruction
2208  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2209  ctx->Rax = (DWORD)min_jint;      // result
2210  ctx->Rdx = (DWORD)0;             // remainder
2211  // Continue the execution
2212#else
2213  PCONTEXT ctx = exceptionInfo->ContextRecord;
2214  address pc = (address)ctx->Eip;
2215  assert(pc[0] == 0xF7, "not an idiv opcode");
2216  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2217  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2218  // set correct result values and continue after idiv instruction
2219  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2220  ctx->Eax = (DWORD)min_jint;      // result
2221  ctx->Edx = (DWORD)0;             // remainder
2222  // Continue the execution
2223#endif
2224  return EXCEPTION_CONTINUE_EXECUTION;
2225}
2226
2227#ifndef  _WIN64
2228//-----------------------------------------------------------------------------
2229LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2230  // handle exception caused by native method modifying control word
2231  PCONTEXT ctx = exceptionInfo->ContextRecord;
2232  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2233
2234  switch (exception_code) {
2235    case EXCEPTION_FLT_DENORMAL_OPERAND:
2236    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2237    case EXCEPTION_FLT_INEXACT_RESULT:
2238    case EXCEPTION_FLT_INVALID_OPERATION:
2239    case EXCEPTION_FLT_OVERFLOW:
2240    case EXCEPTION_FLT_STACK_CHECK:
2241    case EXCEPTION_FLT_UNDERFLOW:
2242      jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2243      if (fp_control_word != ctx->FloatSave.ControlWord) {
2244        // Restore FPCW and mask out FLT exceptions
2245        ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2246        // Mask out pending FLT exceptions
2247        ctx->FloatSave.StatusWord &=  0xffffff00;
2248        return EXCEPTION_CONTINUE_EXECUTION;
2249      }
2250  }
2251
2252  if (prev_uef_handler != NULL) {
2253    // We didn't handle this exception so pass it to the previous
2254    // UnhandledExceptionFilter.
2255    return (prev_uef_handler)(exceptionInfo);
2256  }
2257
2258  return EXCEPTION_CONTINUE_SEARCH;
2259}
2260#else //_WIN64
2261/*
2262  On Windows, the mxcsr control bits are non-volatile across calls
2263  See also CR 6192333
2264  If EXCEPTION_FLT_* happened after some native method modified
2265  mxcsr - it is not a jvm fault.
2266  However should we decide to restore of mxcsr after a faulty
2267  native method we can uncomment following code
2268      jint MxCsr = INITIAL_MXCSR;
2269        // we can't use StubRoutines::addr_mxcsr_std()
2270        // because in Win64 mxcsr is not saved there
2271      if (MxCsr != ctx->MxCsr) {
2272        ctx->MxCsr = MxCsr;
2273        return EXCEPTION_CONTINUE_EXECUTION;
2274      }
2275
2276*/
2277#endif //_WIN64
2278
2279
2280// Fatal error reporting is single threaded so we can make this a
2281// static and preallocated.  If it's more than MAX_PATH silently ignore
2282// it.
2283static char saved_error_file[MAX_PATH] = {0};
2284
2285void os::set_error_file(const char *logfile) {
2286  if (strlen(logfile) <= MAX_PATH) {
2287    strncpy(saved_error_file, logfile, MAX_PATH);
2288  }
2289}
2290
2291static inline void report_error(Thread* t, DWORD exception_code,
2292                                address addr, void* siginfo, void* context) {
2293  VMError err(t, exception_code, addr, siginfo, context);
2294  err.report_and_die();
2295
2296  // If UseOsErrorReporting, this will return here and save the error file
2297  // somewhere where we can find it in the minidump.
2298}
2299
2300//-----------------------------------------------------------------------------
2301LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2302  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2303  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2304#ifdef _M_IA64
2305  // On Itanium, we need the "precise pc", which has the slot number coded
2306  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2307  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2308  // Convert the pc to "Unix format", which has the slot number coded
2309  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2310  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2311  // information is saved in the Unix format.
2312  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2313#elif _M_AMD64
2314  address pc = (address) exceptionInfo->ContextRecord->Rip;
2315#else
2316  address pc = (address) exceptionInfo->ContextRecord->Eip;
2317#endif
2318  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2319
2320#ifndef _WIN64
2321  // Execution protection violation - win32 running on AMD64 only
2322  // Handled first to avoid misdiagnosis as a "normal" access violation;
2323  // This is safe to do because we have a new/unique ExceptionInformation
2324  // code for this condition.
2325  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2326    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2327    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2328    address addr = (address) exceptionRecord->ExceptionInformation[1];
2329
2330    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2331      int page_size = os::vm_page_size();
2332
2333      // Make sure the pc and the faulting address are sane.
2334      //
2335      // If an instruction spans a page boundary, and the page containing
2336      // the beginning of the instruction is executable but the following
2337      // page is not, the pc and the faulting address might be slightly
2338      // different - we still want to unguard the 2nd page in this case.
2339      //
2340      // 15 bytes seems to be a (very) safe value for max instruction size.
2341      bool pc_is_near_addr =
2342        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2343      bool instr_spans_page_boundary =
2344        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2345                         (intptr_t) page_size) > 0);
2346
2347      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2348        static volatile address last_addr =
2349          (address) os::non_memory_address_word();
2350
2351        // In conservative mode, don't unguard unless the address is in the VM
2352        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2353            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2354
2355          // Set memory to RWX and retry
2356          address page_start =
2357            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2358          bool res = os::protect_memory((char*) page_start, page_size,
2359                                        os::MEM_PROT_RWX);
2360
2361          if (PrintMiscellaneous && Verbose) {
2362            char buf[256];
2363            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2364                         "at " INTPTR_FORMAT
2365                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2366                         page_start, (res ? "success" : strerror(errno)));
2367            tty->print_raw_cr(buf);
2368          }
2369
2370          // Set last_addr so if we fault again at the same address, we don't
2371          // end up in an endless loop.
2372          //
2373          // There are two potential complications here.  Two threads trapping
2374          // at the same address at the same time could cause one of the
2375          // threads to think it already unguarded, and abort the VM.  Likely
2376          // very rare.
2377          //
2378          // The other race involves two threads alternately trapping at
2379          // different addresses and failing to unguard the page, resulting in
2380          // an endless loop.  This condition is probably even more unlikely
2381          // than the first.
2382          //
2383          // Although both cases could be avoided by using locks or thread
2384          // local last_addr, these solutions are unnecessary complication:
2385          // this handler is a best-effort safety net, not a complete solution.
2386          // It is disabled by default and should only be used as a workaround
2387          // in case we missed any no-execute-unsafe VM code.
2388
2389          last_addr = addr;
2390
2391          return EXCEPTION_CONTINUE_EXECUTION;
2392        }
2393      }
2394
2395      // Last unguard failed or not unguarding
2396      tty->print_raw_cr("Execution protection violation");
2397      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2398                   exceptionInfo->ContextRecord);
2399      return EXCEPTION_CONTINUE_SEARCH;
2400    }
2401  }
2402#endif // _WIN64
2403
2404  // Check to see if we caught the safepoint code in the
2405  // process of write protecting the memory serialization page.
2406  // It write enables the page immediately after protecting it
2407  // so just return.
2408  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2409    JavaThread* thread = (JavaThread*) t;
2410    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2411    address addr = (address) exceptionRecord->ExceptionInformation[1];
2412    if ( os::is_memory_serialize_page(thread, addr) ) {
2413      // Block current thread until the memory serialize page permission restored.
2414      os::block_on_serialize_page_trap();
2415      return EXCEPTION_CONTINUE_EXECUTION;
2416    }
2417  }
2418
2419  if (t != NULL && t->is_Java_thread()) {
2420    JavaThread* thread = (JavaThread*) t;
2421    bool in_java = thread->thread_state() == _thread_in_Java;
2422
2423    // Handle potential stack overflows up front.
2424    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2425      if (os::uses_stack_guard_pages()) {
2426#ifdef _M_IA64
2427        // Use guard page for register stack.
2428        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2429        address addr = (address) exceptionRecord->ExceptionInformation[1];
2430        // Check for a register stack overflow on Itanium
2431        if (thread->addr_inside_register_stack_red_zone(addr)) {
2432          // Fatal red zone violation happens if the Java program
2433          // catches a StackOverflow error and does so much processing
2434          // that it runs beyond the unprotected yellow guard zone. As
2435          // a result, we are out of here.
2436          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2437        } else if(thread->addr_inside_register_stack(addr)) {
2438          // Disable the yellow zone which sets the state that
2439          // we've got a stack overflow problem.
2440          if (thread->stack_yellow_zone_enabled()) {
2441            thread->disable_stack_yellow_zone();
2442          }
2443          // Give us some room to process the exception.
2444          thread->disable_register_stack_guard();
2445          // Tracing with +Verbose.
2446          if (Verbose) {
2447            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2448            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2449            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2450            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2451                          thread->register_stack_base(),
2452                          thread->register_stack_base() + thread->stack_size());
2453          }
2454
2455          // Reguard the permanent register stack red zone just to be sure.
2456          // We saw Windows silently disabling this without telling us.
2457          thread->enable_register_stack_red_zone();
2458
2459          return Handle_Exception(exceptionInfo,
2460            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2461        }
2462#endif
2463        if (thread->stack_yellow_zone_enabled()) {
2464          // Yellow zone violation.  The o/s has unprotected the first yellow
2465          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2466          // update the enabled status, even if the zone contains only one page.
2467          thread->disable_stack_yellow_zone();
2468          // If not in java code, return and hope for the best.
2469          return in_java ? Handle_Exception(exceptionInfo,
2470            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2471            :  EXCEPTION_CONTINUE_EXECUTION;
2472        } else {
2473          // Fatal red zone violation.
2474          thread->disable_stack_red_zone();
2475          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2476          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2477                       exceptionInfo->ContextRecord);
2478          return EXCEPTION_CONTINUE_SEARCH;
2479        }
2480      } else if (in_java) {
2481        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2482        // a one-time-only guard page, which it has released to us.  The next
2483        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2484        return Handle_Exception(exceptionInfo,
2485          SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2486      } else {
2487        // Can only return and hope for the best.  Further stack growth will
2488        // result in an ACCESS_VIOLATION.
2489        return EXCEPTION_CONTINUE_EXECUTION;
2490      }
2491    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2492      // Either stack overflow or null pointer exception.
2493      if (in_java) {
2494        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2495        address addr = (address) exceptionRecord->ExceptionInformation[1];
2496        address stack_end = thread->stack_base() - thread->stack_size();
2497        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2498          // Stack overflow.
2499          assert(!os::uses_stack_guard_pages(),
2500            "should be caught by red zone code above.");
2501          return Handle_Exception(exceptionInfo,
2502            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2503        }
2504        //
2505        // Check for safepoint polling and implicit null
2506        // We only expect null pointers in the stubs (vtable)
2507        // the rest are checked explicitly now.
2508        //
2509        CodeBlob* cb = CodeCache::find_blob(pc);
2510        if (cb != NULL) {
2511          if (os::is_poll_address(addr)) {
2512            address stub = SharedRuntime::get_poll_stub(pc);
2513            return Handle_Exception(exceptionInfo, stub);
2514          }
2515        }
2516        {
2517#ifdef _WIN64
2518          //
2519          // If it's a legal stack address map the entire region in
2520          //
2521          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2522          address addr = (address) exceptionRecord->ExceptionInformation[1];
2523          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2524                  addr = (address)((uintptr_t)addr &
2525                         (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2526                  os::commit_memory((char *)addr, thread->stack_base() - addr,
2527                                    false );
2528                  return EXCEPTION_CONTINUE_EXECUTION;
2529          }
2530          else
2531#endif
2532          {
2533            // Null pointer exception.
2534#ifdef _M_IA64
2535            // Process implicit null checks in compiled code. Note: Implicit null checks
2536            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2537            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2538              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2539              // Handle implicit null check in UEP method entry
2540              if (cb && (cb->is_frame_complete_at(pc) ||
2541                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2542                if (Verbose) {
2543                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2544                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2545                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2546                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2547                                *(bundle_start + 1), *bundle_start);
2548                }
2549                return Handle_Exception(exceptionInfo,
2550                  SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2551              }
2552            }
2553
2554            // Implicit null checks were processed above.  Hence, we should not reach
2555            // here in the usual case => die!
2556            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2557            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2558                         exceptionInfo->ContextRecord);
2559            return EXCEPTION_CONTINUE_SEARCH;
2560
2561#else // !IA64
2562
2563            // Windows 98 reports faulting addresses incorrectly
2564            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2565                !os::win32::is_nt()) {
2566              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2567              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2568            }
2569            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2570                         exceptionInfo->ContextRecord);
2571            return EXCEPTION_CONTINUE_SEARCH;
2572#endif
2573          }
2574        }
2575      }
2576
2577#ifdef _WIN64
2578      // Special care for fast JNI field accessors.
2579      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2580      // in and the heap gets shrunk before the field access.
2581      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2582        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2583        if (addr != (address)-1) {
2584          return Handle_Exception(exceptionInfo, addr);
2585        }
2586      }
2587#endif
2588
2589      // Stack overflow or null pointer exception in native code.
2590      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2591                   exceptionInfo->ContextRecord);
2592      return EXCEPTION_CONTINUE_SEARCH;
2593    } // /EXCEPTION_ACCESS_VIOLATION
2594    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2595#if defined _M_IA64
2596    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2597              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2598      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2599
2600      // Compiled method patched to be non entrant? Following conditions must apply:
2601      // 1. must be first instruction in bundle
2602      // 2. must be a break instruction with appropriate code
2603      if((((uint64_t) pc & 0x0F) == 0) &&
2604         (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2605        return Handle_Exception(exceptionInfo,
2606                                (address)SharedRuntime::get_handle_wrong_method_stub());
2607      }
2608    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2609#endif
2610
2611
2612    if (in_java) {
2613      switch (exception_code) {
2614      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2615        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2616
2617      case EXCEPTION_INT_OVERFLOW:
2618        return Handle_IDiv_Exception(exceptionInfo);
2619
2620      } // switch
2621    }
2622#ifndef _WIN64
2623    if (((thread->thread_state() == _thread_in_Java) ||
2624        (thread->thread_state() == _thread_in_native)) &&
2625        exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2626    {
2627      LONG result=Handle_FLT_Exception(exceptionInfo);
2628      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2629    }
2630#endif //_WIN64
2631  }
2632
2633  if (exception_code != EXCEPTION_BREAKPOINT) {
2634    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2635                 exceptionInfo->ContextRecord);
2636  }
2637  return EXCEPTION_CONTINUE_SEARCH;
2638}
2639
2640#ifndef _WIN64
2641// Special care for fast JNI accessors.
2642// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2643// the heap gets shrunk before the field access.
2644// Need to install our own structured exception handler since native code may
2645// install its own.
2646LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2647  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2648  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2649    address pc = (address) exceptionInfo->ContextRecord->Eip;
2650    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2651    if (addr != (address)-1) {
2652      return Handle_Exception(exceptionInfo, addr);
2653    }
2654  }
2655  return EXCEPTION_CONTINUE_SEARCH;
2656}
2657
2658#define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2659Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2660  __try { \
2661    return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2662  } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2663  } \
2664  return 0; \
2665}
2666
2667DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2668DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2669DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2670DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2671DEFINE_FAST_GETFIELD(jint,     int,    Int)
2672DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2673DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2674DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2675
2676address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2677  switch (type) {
2678    case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2679    case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2680    case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2681    case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2682    case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2683    case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2684    case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2685    case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2686    default:        ShouldNotReachHere();
2687  }
2688  return (address)-1;
2689}
2690#endif
2691
2692// Virtual Memory
2693
2694int os::vm_page_size() { return os::win32::vm_page_size(); }
2695int os::vm_allocation_granularity() {
2696  return os::win32::vm_allocation_granularity();
2697}
2698
2699// Windows large page support is available on Windows 2003. In order to use
2700// large page memory, the administrator must first assign additional privilege
2701// to the user:
2702//   + select Control Panel -> Administrative Tools -> Local Security Policy
2703//   + select Local Policies -> User Rights Assignment
2704//   + double click "Lock pages in memory", add users and/or groups
2705//   + reboot
2706// Note the above steps are needed for administrator as well, as administrators
2707// by default do not have the privilege to lock pages in memory.
2708//
2709// Note about Windows 2003: although the API supports committing large page
2710// memory on a page-by-page basis and VirtualAlloc() returns success under this
2711// scenario, I found through experiment it only uses large page if the entire
2712// memory region is reserved and committed in a single VirtualAlloc() call.
2713// This makes Windows large page support more or less like Solaris ISM, in
2714// that the entire heap must be committed upfront. This probably will change
2715// in the future, if so the code below needs to be revisited.
2716
2717#ifndef MEM_LARGE_PAGES
2718#define MEM_LARGE_PAGES 0x20000000
2719#endif
2720
2721static HANDLE    _hProcess;
2722static HANDLE    _hToken;
2723
2724// Container for NUMA node list info
2725class NUMANodeListHolder {
2726private:
2727  int *_numa_used_node_list;  // allocated below
2728  int _numa_used_node_count;
2729
2730  void free_node_list() {
2731    if (_numa_used_node_list != NULL) {
2732      FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2733    }
2734  }
2735
2736public:
2737  NUMANodeListHolder() {
2738    _numa_used_node_count = 0;
2739    _numa_used_node_list = NULL;
2740    // do rest of initialization in build routine (after function pointers are set up)
2741  }
2742
2743  ~NUMANodeListHolder() {
2744    free_node_list();
2745  }
2746
2747  bool build() {
2748    DWORD_PTR proc_aff_mask;
2749    DWORD_PTR sys_aff_mask;
2750    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2751    ULONG highest_node_number;
2752    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2753    free_node_list();
2754    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2755    for (unsigned int i = 0; i <= highest_node_number; i++) {
2756      ULONGLONG proc_mask_numa_node;
2757      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2758      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2759        _numa_used_node_list[_numa_used_node_count++] = i;
2760      }
2761    }
2762    return (_numa_used_node_count > 1);
2763  }
2764
2765  int get_count() {return _numa_used_node_count;}
2766  int get_node_list_entry(int n) {
2767    // for indexes out of range, returns -1
2768    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2769  }
2770
2771} numa_node_list_holder;
2772
2773
2774
2775static size_t _large_page_size = 0;
2776
2777static bool resolve_functions_for_large_page_init() {
2778  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2779    os::Advapi32Dll::AdvapiAvailable();
2780}
2781
2782static bool request_lock_memory_privilege() {
2783  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2784                                os::current_process_id());
2785
2786  LUID luid;
2787  if (_hProcess != NULL &&
2788      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2789      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2790
2791    TOKEN_PRIVILEGES tp;
2792    tp.PrivilegeCount = 1;
2793    tp.Privileges[0].Luid = luid;
2794    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2795
2796    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2797    // privilege. Check GetLastError() too. See MSDN document.
2798    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2799        (GetLastError() == ERROR_SUCCESS)) {
2800      return true;
2801    }
2802  }
2803
2804  return false;
2805}
2806
2807static void cleanup_after_large_page_init() {
2808  if (_hProcess) CloseHandle(_hProcess);
2809  _hProcess = NULL;
2810  if (_hToken) CloseHandle(_hToken);
2811  _hToken = NULL;
2812}
2813
2814static bool numa_interleaving_init() {
2815  bool success = false;
2816  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2817
2818  // print a warning if UseNUMAInterleaving flag is specified on command line
2819  bool warn_on_failure = use_numa_interleaving_specified;
2820# define WARN(msg) if (warn_on_failure) { warning(msg); }
2821
2822  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2823  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2824  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2825
2826  if (os::Kernel32Dll::NumaCallsAvailable()) {
2827    if (numa_node_list_holder.build()) {
2828      if (PrintMiscellaneous && Verbose) {
2829        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2830        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2831          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2832        }
2833        tty->print("\n");
2834      }
2835      success = true;
2836    } else {
2837      WARN("Process does not cover multiple NUMA nodes.");
2838    }
2839  } else {
2840    WARN("NUMA Interleaving is not supported by the operating system.");
2841  }
2842  if (!success) {
2843    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2844  }
2845  return success;
2846#undef WARN
2847}
2848
2849// this routine is used whenever we need to reserve a contiguous VA range
2850// but we need to make separate VirtualAlloc calls for each piece of the range
2851// Reasons for doing this:
2852//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2853//  * UseNUMAInterleaving requires a separate node for each piece
2854static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2855                                         bool should_inject_error=false) {
2856  char * p_buf;
2857  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2858  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2859  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2860
2861  // first reserve enough address space in advance since we want to be
2862  // able to break a single contiguous virtual address range into multiple
2863  // large page commits but WS2003 does not allow reserving large page space
2864  // so we just use 4K pages for reserve, this gives us a legal contiguous
2865  // address space. then we will deallocate that reservation, and re alloc
2866  // using large pages
2867  const size_t size_of_reserve = bytes + chunk_size;
2868  if (bytes > size_of_reserve) {
2869    // Overflowed.
2870    return NULL;
2871  }
2872  p_buf = (char *) VirtualAlloc(addr,
2873                                size_of_reserve,  // size of Reserve
2874                                MEM_RESERVE,
2875                                PAGE_READWRITE);
2876  // If reservation failed, return NULL
2877  if (p_buf == NULL) return NULL;
2878  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2879  os::release_memory(p_buf, bytes + chunk_size);
2880
2881  // we still need to round up to a page boundary (in case we are using large pages)
2882  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2883  // instead we handle this in the bytes_to_rq computation below
2884  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2885
2886  // now go through and allocate one chunk at a time until all bytes are
2887  // allocated
2888  size_t  bytes_remaining = bytes;
2889  // An overflow of align_size_up() would have been caught above
2890  // in the calculation of size_of_reserve.
2891  char * next_alloc_addr = p_buf;
2892  HANDLE hProc = GetCurrentProcess();
2893
2894#ifdef ASSERT
2895  // Variable for the failure injection
2896  long ran_num = os::random();
2897  size_t fail_after = ran_num % bytes;
2898#endif
2899
2900  int count=0;
2901  while (bytes_remaining) {
2902    // select bytes_to_rq to get to the next chunk_size boundary
2903
2904    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2905    // Note allocate and commit
2906    char * p_new;
2907
2908#ifdef ASSERT
2909    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2910#else
2911    const bool inject_error_now = false;
2912#endif
2913
2914    if (inject_error_now) {
2915      p_new = NULL;
2916    } else {
2917      if (!UseNUMAInterleaving) {
2918        p_new = (char *) VirtualAlloc(next_alloc_addr,
2919                                      bytes_to_rq,
2920                                      flags,
2921                                      prot);
2922      } else {
2923        // get the next node to use from the used_node_list
2924        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2925        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2926        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2927                                                            next_alloc_addr,
2928                                                            bytes_to_rq,
2929                                                            flags,
2930                                                            prot,
2931                                                            node);
2932      }
2933    }
2934
2935    if (p_new == NULL) {
2936      // Free any allocated pages
2937      if (next_alloc_addr > p_buf) {
2938        // Some memory was committed so release it.
2939        size_t bytes_to_release = bytes - bytes_remaining;
2940        // NMT has yet to record any individual blocks, so it
2941        // need to create a dummy 'reserve' record to match
2942        // the release.
2943        MemTracker::record_virtual_memory_reserve((address)p_buf,
2944          bytes_to_release, CALLER_PC);
2945        os::release_memory(p_buf, bytes_to_release);
2946      }
2947#ifdef ASSERT
2948      if (should_inject_error) {
2949        if (TracePageSizes && Verbose) {
2950          tty->print_cr("Reserving pages individually failed.");
2951        }
2952      }
2953#endif
2954      return NULL;
2955    }
2956
2957    bytes_remaining -= bytes_to_rq;
2958    next_alloc_addr += bytes_to_rq;
2959    count++;
2960  }
2961  // Although the memory is allocated individually, it is returned as one.
2962  // NMT records it as one block.
2963  address pc = CALLER_PC;
2964  MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, pc);
2965  if ((flags & MEM_COMMIT) != 0) {
2966    MemTracker::record_virtual_memory_commit((address)p_buf, bytes, pc);
2967  }
2968
2969  // made it this far, success
2970  return p_buf;
2971}
2972
2973
2974
2975void os::large_page_init() {
2976  if (!UseLargePages) return;
2977
2978  // print a warning if any large page related flag is specified on command line
2979  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2980                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2981  bool success = false;
2982
2983# define WARN(msg) if (warn_on_failure) { warning(msg); }
2984  if (resolve_functions_for_large_page_init()) {
2985    if (request_lock_memory_privilege()) {
2986      size_t s = os::Kernel32Dll::GetLargePageMinimum();
2987      if (s) {
2988#if defined(IA32) || defined(AMD64)
2989        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2990          WARN("JVM cannot use large pages bigger than 4mb.");
2991        } else {
2992#endif
2993          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2994            _large_page_size = LargePageSizeInBytes;
2995          } else {
2996            _large_page_size = s;
2997          }
2998          success = true;
2999#if defined(IA32) || defined(AMD64)
3000        }
3001#endif
3002      } else {
3003        WARN("Large page is not supported by the processor.");
3004      }
3005    } else {
3006      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3007    }
3008  } else {
3009    WARN("Large page is not supported by the operating system.");
3010  }
3011#undef WARN
3012
3013  const size_t default_page_size = (size_t) vm_page_size();
3014  if (success && _large_page_size > default_page_size) {
3015    _page_sizes[0] = _large_page_size;
3016    _page_sizes[1] = default_page_size;
3017    _page_sizes[2] = 0;
3018  }
3019
3020  cleanup_after_large_page_init();
3021  UseLargePages = success;
3022}
3023
3024// On win32, one cannot release just a part of reserved memory, it's an
3025// all or nothing deal.  When we split a reservation, we must break the
3026// reservation into two reservations.
3027void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3028                              bool realloc) {
3029  if (size > 0) {
3030    release_memory(base, size);
3031    if (realloc) {
3032      reserve_memory(split, base);
3033    }
3034    if (size != split) {
3035      reserve_memory(size - split, base + split);
3036    }
3037  }
3038}
3039
3040// Multiple threads can race in this code but it's not possible to unmap small sections of
3041// virtual space to get requested alignment, like posix-like os's.
3042// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3043char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3044  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3045      "Alignment must be a multiple of allocation granularity (page size)");
3046  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3047
3048  size_t extra_size = size + alignment;
3049  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3050
3051  char* aligned_base = NULL;
3052
3053  do {
3054    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3055    if (extra_base == NULL) {
3056      return NULL;
3057    }
3058    // Do manual alignment
3059    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3060
3061    os::release_memory(extra_base, extra_size);
3062
3063    aligned_base = os::reserve_memory(size, aligned_base);
3064
3065  } while (aligned_base == NULL);
3066
3067  return aligned_base;
3068}
3069
3070char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3071  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3072         "reserve alignment");
3073  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3074  char* res;
3075  // note that if UseLargePages is on, all the areas that require interleaving
3076  // will go thru reserve_memory_special rather than thru here.
3077  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3078  if (!use_individual) {
3079    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3080  } else {
3081    elapsedTimer reserveTimer;
3082    if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3083    // in numa interleaving, we have to allocate pages individually
3084    // (well really chunks of NUMAInterleaveGranularity size)
3085    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3086    if (res == NULL) {
3087      warning("NUMA page allocation failed");
3088    }
3089    if( Verbose && PrintMiscellaneous ) {
3090      reserveTimer.stop();
3091      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3092                    reserveTimer.milliseconds(), reserveTimer.ticks());
3093    }
3094  }
3095  assert(res == NULL || addr == NULL || addr == res,
3096         "Unexpected address from reserve.");
3097
3098  return res;
3099}
3100
3101// Reserve memory at an arbitrary address, only if that area is
3102// available (and not reserved for something else).
3103char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3104  // Windows os::reserve_memory() fails of the requested address range is
3105  // not avilable.
3106  return reserve_memory(bytes, requested_addr);
3107}
3108
3109size_t os::large_page_size() {
3110  return _large_page_size;
3111}
3112
3113bool os::can_commit_large_page_memory() {
3114  // Windows only uses large page memory when the entire region is reserved
3115  // and committed in a single VirtualAlloc() call. This may change in the
3116  // future, but with Windows 2003 it's not possible to commit on demand.
3117  return false;
3118}
3119
3120bool os::can_execute_large_page_memory() {
3121  return true;
3122}
3123
3124char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
3125
3126  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3127  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3128
3129  // with large pages, there are two cases where we need to use Individual Allocation
3130  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3131  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3132  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3133    if (TracePageSizes && Verbose) {
3134       tty->print_cr("Reserving large pages individually.");
3135    }
3136    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3137    if (p_buf == NULL) {
3138      // give an appropriate warning message
3139      if (UseNUMAInterleaving) {
3140        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3141      }
3142      if (UseLargePagesIndividualAllocation) {
3143        warning("Individually allocated large pages failed, "
3144                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3145      }
3146      return NULL;
3147    }
3148
3149    return p_buf;
3150
3151  } else {
3152    // normal policy just allocate it all at once
3153    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3154    char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
3155    if (res != NULL) {
3156      address pc = CALLER_PC;
3157      MemTracker::record_virtual_memory_reserve((address)res, bytes, pc);
3158      MemTracker::record_virtual_memory_commit((address)res, bytes, pc);
3159    }
3160
3161    return res;
3162  }
3163}
3164
3165bool os::release_memory_special(char* base, size_t bytes) {
3166  assert(base != NULL, "Sanity check");
3167  // Memory allocated via reserve_memory_special() is committed
3168  MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3169  return release_memory(base, bytes);
3170}
3171
3172void os::print_statistics() {
3173}
3174
3175bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3176  if (bytes == 0) {
3177    // Don't bother the OS with noops.
3178    return true;
3179  }
3180  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3181  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3182  // Don't attempt to print anything if the OS call fails. We're
3183  // probably low on resources, so the print itself may cause crashes.
3184
3185  // unless we have NUMAInterleaving enabled, the range of a commit
3186  // is always within a reserve covered by a single VirtualAlloc
3187  // in that case we can just do a single commit for the requested size
3188  if (!UseNUMAInterleaving) {
3189    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
3190    if (exec) {
3191      DWORD oldprot;
3192      // Windows doc says to use VirtualProtect to get execute permissions
3193      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
3194    }
3195    return true;
3196  } else {
3197
3198    // when NUMAInterleaving is enabled, the commit might cover a range that
3199    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3200    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3201    // returns represents the number of bytes that can be committed in one step.
3202    size_t bytes_remaining = bytes;
3203    char * next_alloc_addr = addr;
3204    while (bytes_remaining > 0) {
3205      MEMORY_BASIC_INFORMATION alloc_info;
3206      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3207      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3208      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
3209        return false;
3210      if (exec) {
3211        DWORD oldprot;
3212        if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
3213          return false;
3214      }
3215      bytes_remaining -= bytes_to_rq;
3216      next_alloc_addr += bytes_to_rq;
3217    }
3218  }
3219  // if we made it this far, return true
3220  return true;
3221}
3222
3223bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3224                       bool exec) {
3225  return commit_memory(addr, size, exec);
3226}
3227
3228bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3229  if (bytes == 0) {
3230    // Don't bother the OS with noops.
3231    return true;
3232  }
3233  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3234  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3235  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3236}
3237
3238bool os::pd_release_memory(char* addr, size_t bytes) {
3239  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3240}
3241
3242bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3243  return os::commit_memory(addr, size);
3244}
3245
3246bool os::remove_stack_guard_pages(char* addr, size_t size) {
3247  return os::uncommit_memory(addr, size);
3248}
3249
3250// Set protections specified
3251bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3252                        bool is_committed) {
3253  unsigned int p = 0;
3254  switch (prot) {
3255  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3256  case MEM_PROT_READ: p = PAGE_READONLY; break;
3257  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3258  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3259  default:
3260    ShouldNotReachHere();
3261  }
3262
3263  DWORD old_status;
3264
3265  // Strange enough, but on Win32 one can change protection only for committed
3266  // memory, not a big deal anyway, as bytes less or equal than 64K
3267  if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3268    fatal("cannot commit protection page");
3269  }
3270  // One cannot use os::guard_memory() here, as on Win32 guard page
3271  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3272  //
3273  // Pages in the region become guard pages. Any attempt to access a guard page
3274  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3275  // the guard page status. Guard pages thus act as a one-time access alarm.
3276  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3277}
3278
3279bool os::guard_memory(char* addr, size_t bytes) {
3280  DWORD old_status;
3281  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3282}
3283
3284bool os::unguard_memory(char* addr, size_t bytes) {
3285  DWORD old_status;
3286  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3287}
3288
3289void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3290void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3291void os::numa_make_global(char *addr, size_t bytes)    { }
3292void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3293bool os::numa_topology_changed()                       { return false; }
3294size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3295int os::numa_get_group_id()                            { return 0; }
3296size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3297  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3298    // Provide an answer for UMA systems
3299    ids[0] = 0;
3300    return 1;
3301  } else {
3302    // check for size bigger than actual groups_num
3303    size = MIN2(size, numa_get_groups_num());
3304    for (int i = 0; i < (int)size; i++) {
3305      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3306    }
3307    return size;
3308  }
3309}
3310
3311bool os::get_page_info(char *start, page_info* info) {
3312  return false;
3313}
3314
3315char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3316  return end;
3317}
3318
3319char* os::non_memory_address_word() {
3320  // Must never look like an address returned by reserve_memory,
3321  // even in its subfields (as defined by the CPU immediate fields,
3322  // if the CPU splits constants across multiple instructions).
3323  return (char*)-1;
3324}
3325
3326#define MAX_ERROR_COUNT 100
3327#define SYS_THREAD_ERROR 0xffffffffUL
3328
3329void os::pd_start_thread(Thread* thread) {
3330  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3331  // Returns previous suspend state:
3332  // 0:  Thread was not suspended
3333  // 1:  Thread is running now
3334  // >1: Thread is still suspended.
3335  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3336}
3337
3338class HighResolutionInterval : public CHeapObj<mtThread> {
3339  // The default timer resolution seems to be 10 milliseconds.
3340  // (Where is this written down?)
3341  // If someone wants to sleep for only a fraction of the default,
3342  // then we set the timer resolution down to 1 millisecond for
3343  // the duration of their interval.
3344  // We carefully set the resolution back, since otherwise we
3345  // seem to incur an overhead (3%?) that we don't need.
3346  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3347  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3348  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3349  // timeBeginPeriod() if the relative error exceeded some threshold.
3350  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3351  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3352  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3353  // resolution timers running.
3354private:
3355    jlong resolution;
3356public:
3357  HighResolutionInterval(jlong ms) {
3358    resolution = ms % 10L;
3359    if (resolution != 0) {
3360      MMRESULT result = timeBeginPeriod(1L);
3361    }
3362  }
3363  ~HighResolutionInterval() {
3364    if (resolution != 0) {
3365      MMRESULT result = timeEndPeriod(1L);
3366    }
3367    resolution = 0L;
3368  }
3369};
3370
3371int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3372  jlong limit = (jlong) MAXDWORD;
3373
3374  while(ms > limit) {
3375    int res;
3376    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3377      return res;
3378    ms -= limit;
3379  }
3380
3381  assert(thread == Thread::current(),  "thread consistency check");
3382  OSThread* osthread = thread->osthread();
3383  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3384  int result;
3385  if (interruptable) {
3386    assert(thread->is_Java_thread(), "must be java thread");
3387    JavaThread *jt = (JavaThread *) thread;
3388    ThreadBlockInVM tbivm(jt);
3389
3390    jt->set_suspend_equivalent();
3391    // cleared by handle_special_suspend_equivalent_condition() or
3392    // java_suspend_self() via check_and_wait_while_suspended()
3393
3394    HANDLE events[1];
3395    events[0] = osthread->interrupt_event();
3396    HighResolutionInterval *phri=NULL;
3397    if(!ForceTimeHighResolution)
3398      phri = new HighResolutionInterval( ms );
3399    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3400      result = OS_TIMEOUT;
3401    } else {
3402      ResetEvent(osthread->interrupt_event());
3403      osthread->set_interrupted(false);
3404      result = OS_INTRPT;
3405    }
3406    delete phri; //if it is NULL, harmless
3407
3408    // were we externally suspended while we were waiting?
3409    jt->check_and_wait_while_suspended();
3410  } else {
3411    assert(!thread->is_Java_thread(), "must not be java thread");
3412    Sleep((long) ms);
3413    result = OS_TIMEOUT;
3414  }
3415  return result;
3416}
3417
3418// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3419void os::infinite_sleep() {
3420  while (true) {    // sleep forever ...
3421    Sleep(100000);  // ... 100 seconds at a time
3422  }
3423}
3424
3425typedef BOOL (WINAPI * STTSignature)(void) ;
3426
3427os::YieldResult os::NakedYield() {
3428  // Use either SwitchToThread() or Sleep(0)
3429  // Consider passing back the return value from SwitchToThread().
3430  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3431    return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3432  } else {
3433    Sleep(0);
3434  }
3435  return os::YIELD_UNKNOWN ;
3436}
3437
3438void os::yield() {  os::NakedYield(); }
3439
3440void os::yield_all(int attempts) {
3441  // Yields to all threads, including threads with lower priorities
3442  Sleep(1);
3443}
3444
3445// Win32 only gives you access to seven real priorities at a time,
3446// so we compress Java's ten down to seven.  It would be better
3447// if we dynamically adjusted relative priorities.
3448
3449int os::java_to_os_priority[CriticalPriority + 1] = {
3450  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3451  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3452  THREAD_PRIORITY_LOWEST,                       // 2
3453  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3454  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3455  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3456  THREAD_PRIORITY_NORMAL,                       // 6
3457  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3458  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3459  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3460  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3461  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3462};
3463
3464int prio_policy1[CriticalPriority + 1] = {
3465  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3466  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3467  THREAD_PRIORITY_LOWEST,                       // 2
3468  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3469  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3470  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3471  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3472  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3473  THREAD_PRIORITY_HIGHEST,                      // 8
3474  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3475  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3476  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3477};
3478
3479static int prio_init() {
3480  // If ThreadPriorityPolicy is 1, switch tables
3481  if (ThreadPriorityPolicy == 1) {
3482    int i;
3483    for (i = 0; i < CriticalPriority + 1; i++) {
3484      os::java_to_os_priority[i] = prio_policy1[i];
3485    }
3486  }
3487  if (UseCriticalJavaThreadPriority) {
3488    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3489  }
3490  return 0;
3491}
3492
3493OSReturn os::set_native_priority(Thread* thread, int priority) {
3494  if (!UseThreadPriorities) return OS_OK;
3495  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3496  return ret ? OS_OK : OS_ERR;
3497}
3498
3499OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3500  if ( !UseThreadPriorities ) {
3501    *priority_ptr = java_to_os_priority[NormPriority];
3502    return OS_OK;
3503  }
3504  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3505  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3506    assert(false, "GetThreadPriority failed");
3507    return OS_ERR;
3508  }
3509  *priority_ptr = os_prio;
3510  return OS_OK;
3511}
3512
3513
3514// Hint to the underlying OS that a task switch would not be good.
3515// Void return because it's a hint and can fail.
3516void os::hint_no_preempt() {}
3517
3518void os::interrupt(Thread* thread) {
3519  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3520         "possibility of dangling Thread pointer");
3521
3522  OSThread* osthread = thread->osthread();
3523  osthread->set_interrupted(true);
3524  // More than one thread can get here with the same value of osthread,
3525  // resulting in multiple notifications.  We do, however, want the store
3526  // to interrupted() to be visible to other threads before we post
3527  // the interrupt event.
3528  OrderAccess::release();
3529  SetEvent(osthread->interrupt_event());
3530  // For JSR166:  unpark after setting status
3531  if (thread->is_Java_thread())
3532    ((JavaThread*)thread)->parker()->unpark();
3533
3534  ParkEvent * ev = thread->_ParkEvent ;
3535  if (ev != NULL) ev->unpark() ;
3536
3537}
3538
3539
3540bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3541  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3542         "possibility of dangling Thread pointer");
3543
3544  OSThread* osthread = thread->osthread();
3545  bool interrupted = osthread->interrupted();
3546  // There is no synchronization between the setting of the interrupt
3547  // and it being cleared here. It is critical - see 6535709 - that
3548  // we only clear the interrupt state, and reset the interrupt event,
3549  // if we are going to report that we were indeed interrupted - else
3550  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3551  // depending on the timing
3552  if (interrupted && clear_interrupted) {
3553    osthread->set_interrupted(false);
3554    ResetEvent(osthread->interrupt_event());
3555  } // Otherwise leave the interrupted state alone
3556
3557  return interrupted;
3558}
3559
3560// Get's a pc (hint) for a running thread. Currently used only for profiling.
3561ExtendedPC os::get_thread_pc(Thread* thread) {
3562  CONTEXT context;
3563  context.ContextFlags = CONTEXT_CONTROL;
3564  HANDLE handle = thread->osthread()->thread_handle();
3565#ifdef _M_IA64
3566  assert(0, "Fix get_thread_pc");
3567  return ExtendedPC(NULL);
3568#else
3569  if (GetThreadContext(handle, &context)) {
3570#ifdef _M_AMD64
3571    return ExtendedPC((address) context.Rip);
3572#else
3573    return ExtendedPC((address) context.Eip);
3574#endif
3575  } else {
3576    return ExtendedPC(NULL);
3577  }
3578#endif
3579}
3580
3581// GetCurrentThreadId() returns DWORD
3582intx os::current_thread_id()          { return GetCurrentThreadId(); }
3583
3584static int _initial_pid = 0;
3585
3586int os::current_process_id()
3587{
3588  return (_initial_pid ? _initial_pid : _getpid());
3589}
3590
3591int    os::win32::_vm_page_size       = 0;
3592int    os::win32::_vm_allocation_granularity = 0;
3593int    os::win32::_processor_type     = 0;
3594// Processor level is not available on non-NT systems, use vm_version instead
3595int    os::win32::_processor_level    = 0;
3596julong os::win32::_physical_memory    = 0;
3597size_t os::win32::_default_stack_size = 0;
3598
3599         intx os::win32::_os_thread_limit    = 0;
3600volatile intx os::win32::_os_thread_count    = 0;
3601
3602bool   os::win32::_is_nt              = false;
3603bool   os::win32::_is_windows_2003    = false;
3604bool   os::win32::_is_windows_server  = false;
3605
3606void os::win32::initialize_system_info() {
3607  SYSTEM_INFO si;
3608  GetSystemInfo(&si);
3609  _vm_page_size    = si.dwPageSize;
3610  _vm_allocation_granularity = si.dwAllocationGranularity;
3611  _processor_type  = si.dwProcessorType;
3612  _processor_level = si.wProcessorLevel;
3613  set_processor_count(si.dwNumberOfProcessors);
3614
3615  MEMORYSTATUSEX ms;
3616  ms.dwLength = sizeof(ms);
3617
3618  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3619  // dwMemoryLoad (% of memory in use)
3620  GlobalMemoryStatusEx(&ms);
3621  _physical_memory = ms.ullTotalPhys;
3622
3623  OSVERSIONINFOEX oi;
3624  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3625  GetVersionEx((OSVERSIONINFO*)&oi);
3626  switch(oi.dwPlatformId) {
3627    case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3628    case VER_PLATFORM_WIN32_NT:
3629      _is_nt = true;
3630      {
3631        int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3632        if (os_vers == 5002) {
3633          _is_windows_2003 = true;
3634        }
3635        if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3636          oi.wProductType == VER_NT_SERVER) {
3637            _is_windows_server = true;
3638        }
3639      }
3640      break;
3641    default: fatal("Unknown platform");
3642  }
3643
3644  _default_stack_size = os::current_stack_size();
3645  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3646  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3647    "stack size not a multiple of page size");
3648
3649  initialize_performance_counter();
3650
3651  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3652  // known to deadlock the system, if the VM issues to thread operations with
3653  // a too high frequency, e.g., such as changing the priorities.
3654  // The 6000 seems to work well - no deadlocks has been notices on the test
3655  // programs that we have seen experience this problem.
3656  if (!os::win32::is_nt()) {
3657    StarvationMonitorInterval = 6000;
3658  }
3659}
3660
3661
3662HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3663  char path[MAX_PATH];
3664  DWORD size;
3665  DWORD pathLen = (DWORD)sizeof(path);
3666  HINSTANCE result = NULL;
3667
3668  // only allow library name without path component
3669  assert(strchr(name, '\\') == NULL, "path not allowed");
3670  assert(strchr(name, ':') == NULL, "path not allowed");
3671  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3672    jio_snprintf(ebuf, ebuflen,
3673      "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3674    return NULL;
3675  }
3676
3677  // search system directory
3678  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3679    strcat(path, "\\");
3680    strcat(path, name);
3681    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3682      return result;
3683    }
3684  }
3685
3686  // try Windows directory
3687  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3688    strcat(path, "\\");
3689    strcat(path, name);
3690    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3691      return result;
3692    }
3693  }
3694
3695  jio_snprintf(ebuf, ebuflen,
3696    "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3697  return NULL;
3698}
3699
3700void os::win32::setmode_streams() {
3701  _setmode(_fileno(stdin), _O_BINARY);
3702  _setmode(_fileno(stdout), _O_BINARY);
3703  _setmode(_fileno(stderr), _O_BINARY);
3704}
3705
3706
3707bool os::is_debugger_attached() {
3708  return IsDebuggerPresent() ? true : false;
3709}
3710
3711
3712void os::wait_for_keypress_at_exit(void) {
3713  if (PauseAtExit) {
3714    fprintf(stderr, "Press any key to continue...\n");
3715    fgetc(stdin);
3716  }
3717}
3718
3719
3720int os::message_box(const char* title, const char* message) {
3721  int result = MessageBox(NULL, message, title,
3722                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3723  return result == IDYES;
3724}
3725
3726int os::allocate_thread_local_storage() {
3727  return TlsAlloc();
3728}
3729
3730
3731void os::free_thread_local_storage(int index) {
3732  TlsFree(index);
3733}
3734
3735
3736void os::thread_local_storage_at_put(int index, void* value) {
3737  TlsSetValue(index, value);
3738  assert(thread_local_storage_at(index) == value, "Just checking");
3739}
3740
3741
3742void* os::thread_local_storage_at(int index) {
3743  return TlsGetValue(index);
3744}
3745
3746
3747#ifndef PRODUCT
3748#ifndef _WIN64
3749// Helpers to check whether NX protection is enabled
3750int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3751  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3752      pex->ExceptionRecord->NumberParameters > 0 &&
3753      pex->ExceptionRecord->ExceptionInformation[0] ==
3754      EXCEPTION_INFO_EXEC_VIOLATION) {
3755    return EXCEPTION_EXECUTE_HANDLER;
3756  }
3757  return EXCEPTION_CONTINUE_SEARCH;
3758}
3759
3760void nx_check_protection() {
3761  // If NX is enabled we'll get an exception calling into code on the stack
3762  char code[] = { (char)0xC3 }; // ret
3763  void *code_ptr = (void *)code;
3764  __try {
3765    __asm call code_ptr
3766  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3767    tty->print_raw_cr("NX protection detected.");
3768  }
3769}
3770#endif // _WIN64
3771#endif // PRODUCT
3772
3773// this is called _before_ the global arguments have been parsed
3774void os::init(void) {
3775  _initial_pid = _getpid();
3776
3777  init_random(1234567);
3778
3779  win32::initialize_system_info();
3780  win32::setmode_streams();
3781  init_page_sizes((size_t) win32::vm_page_size());
3782
3783  // For better scalability on MP systems (must be called after initialize_system_info)
3784#ifndef PRODUCT
3785  if (is_MP()) {
3786    NoYieldsInMicrolock = true;
3787  }
3788#endif
3789  // This may be overridden later when argument processing is done.
3790  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3791    os::win32::is_windows_2003());
3792
3793  // Initialize main_process and main_thread
3794  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3795 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3796                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3797    fatal("DuplicateHandle failed\n");
3798  }
3799  main_thread_id = (int) GetCurrentThreadId();
3800}
3801
3802// To install functions for atexit processing
3803extern "C" {
3804  static void perfMemory_exit_helper() {
3805    perfMemory_exit();
3806  }
3807}
3808
3809static jint initSock();
3810
3811// this is called _after_ the global arguments have been parsed
3812jint os::init_2(void) {
3813  // Allocate a single page and mark it as readable for safepoint polling
3814  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3815  guarantee( polling_page != NULL, "Reserve Failed for polling page");
3816
3817  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3818  guarantee( return_page != NULL, "Commit Failed for polling page");
3819
3820  os::set_polling_page( polling_page );
3821
3822#ifndef PRODUCT
3823  if( Verbose && PrintMiscellaneous )
3824    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3825#endif
3826
3827  if (!UseMembar) {
3828    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3829    guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3830
3831    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3832    guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3833
3834    os::set_memory_serialize_page( mem_serialize_page );
3835
3836#ifndef PRODUCT
3837    if(Verbose && PrintMiscellaneous)
3838      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3839#endif
3840  }
3841
3842  os::large_page_init();
3843
3844  // Setup Windows Exceptions
3845
3846  // for debugging float code generation bugs
3847  if (ForceFloatExceptions) {
3848#ifndef  _WIN64
3849    static long fp_control_word = 0;
3850    __asm { fstcw fp_control_word }
3851    // see Intel PPro Manual, Vol. 2, p 7-16
3852    const long precision = 0x20;
3853    const long underflow = 0x10;
3854    const long overflow  = 0x08;
3855    const long zero_div  = 0x04;
3856    const long denorm    = 0x02;
3857    const long invalid   = 0x01;
3858    fp_control_word |= invalid;
3859    __asm { fldcw fp_control_word }
3860#endif
3861  }
3862
3863  // If stack_commit_size is 0, windows will reserve the default size,
3864  // but only commit a small portion of it.
3865  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3866  size_t default_reserve_size = os::win32::default_stack_size();
3867  size_t actual_reserve_size = stack_commit_size;
3868  if (stack_commit_size < default_reserve_size) {
3869    // If stack_commit_size == 0, we want this too
3870    actual_reserve_size = default_reserve_size;
3871  }
3872
3873  // Check minimum allowable stack size for thread creation and to initialize
3874  // the java system classes, including StackOverflowError - depends on page
3875  // size.  Add a page for compiler2 recursion in main thread.
3876  // Add in 2*BytesPerWord times page size to account for VM stack during
3877  // class initialization depending on 32 or 64 bit VM.
3878  size_t min_stack_allowed =
3879            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3880            2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3881  if (actual_reserve_size < min_stack_allowed) {
3882    tty->print_cr("\nThe stack size specified is too small, "
3883                  "Specify at least %dk",
3884                  min_stack_allowed / K);
3885    return JNI_ERR;
3886  }
3887
3888  JavaThread::set_stack_size_at_create(stack_commit_size);
3889
3890  // Calculate theoretical max. size of Threads to guard gainst artifical
3891  // out-of-memory situations, where all available address-space has been
3892  // reserved by thread stacks.
3893  assert(actual_reserve_size != 0, "Must have a stack");
3894
3895  // Calculate the thread limit when we should start doing Virtual Memory
3896  // banging. Currently when the threads will have used all but 200Mb of space.
3897  //
3898  // TODO: consider performing a similar calculation for commit size instead
3899  // as reserve size, since on a 64-bit platform we'll run into that more
3900  // often than running out of virtual memory space.  We can use the
3901  // lower value of the two calculations as the os_thread_limit.
3902  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3903  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3904
3905  // at exit methods are called in the reverse order of their registration.
3906  // there is no limit to the number of functions registered. atexit does
3907  // not set errno.
3908
3909  if (PerfAllowAtExitRegistration) {
3910    // only register atexit functions if PerfAllowAtExitRegistration is set.
3911    // atexit functions can be delayed until process exit time, which
3912    // can be problematic for embedded VM situations. Embedded VMs should
3913    // call DestroyJavaVM() to assure that VM resources are released.
3914
3915    // note: perfMemory_exit_helper atexit function may be removed in
3916    // the future if the appropriate cleanup code can be added to the
3917    // VM_Exit VMOperation's doit method.
3918    if (atexit(perfMemory_exit_helper) != 0) {
3919      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3920    }
3921  }
3922
3923#ifndef _WIN64
3924  // Print something if NX is enabled (win32 on AMD64)
3925  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3926#endif
3927
3928  // initialize thread priority policy
3929  prio_init();
3930
3931  if (UseNUMA && !ForceNUMA) {
3932    UseNUMA = false; // We don't fully support this yet
3933  }
3934
3935  if (UseNUMAInterleaving) {
3936    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
3937    bool success = numa_interleaving_init();
3938    if (!success) UseNUMAInterleaving = false;
3939  }
3940
3941  if (initSock() != JNI_OK) {
3942    return JNI_ERR;
3943  }
3944
3945  return JNI_OK;
3946}
3947
3948void os::init_3(void) {
3949  return;
3950}
3951
3952// Mark the polling page as unreadable
3953void os::make_polling_page_unreadable(void) {
3954  DWORD old_status;
3955  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3956    fatal("Could not disable polling page");
3957};
3958
3959// Mark the polling page as readable
3960void os::make_polling_page_readable(void) {
3961  DWORD old_status;
3962  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3963    fatal("Could not enable polling page");
3964};
3965
3966
3967int os::stat(const char *path, struct stat *sbuf) {
3968  char pathbuf[MAX_PATH];
3969  if (strlen(path) > MAX_PATH - 1) {
3970    errno = ENAMETOOLONG;
3971    return -1;
3972  }
3973  os::native_path(strcpy(pathbuf, path));
3974  int ret = ::stat(pathbuf, sbuf);
3975  if (sbuf != NULL && UseUTCFileTimestamp) {
3976    // Fix for 6539723.  st_mtime returned from stat() is dependent on
3977    // the system timezone and so can return different values for the
3978    // same file if/when daylight savings time changes.  This adjustment
3979    // makes sure the same timestamp is returned regardless of the TZ.
3980    //
3981    // See:
3982    // http://msdn.microsoft.com/library/
3983    //   default.asp?url=/library/en-us/sysinfo/base/
3984    //   time_zone_information_str.asp
3985    // and
3986    // http://msdn.microsoft.com/library/default.asp?url=
3987    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3988    //
3989    // NOTE: there is a insidious bug here:  If the timezone is changed
3990    // after the call to stat() but before 'GetTimeZoneInformation()', then
3991    // the adjustment we do here will be wrong and we'll return the wrong
3992    // value (which will likely end up creating an invalid class data
3993    // archive).  Absent a better API for this, or some time zone locking
3994    // mechanism, we'll have to live with this risk.
3995    TIME_ZONE_INFORMATION tz;
3996    DWORD tzid = GetTimeZoneInformation(&tz);
3997    int daylightBias =
3998      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3999    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4000  }
4001  return ret;
4002}
4003
4004
4005#define FT2INT64(ft) \
4006  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4007
4008
4009// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4010// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4011// of a thread.
4012//
4013// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4014// the fast estimate available on the platform.
4015
4016// current_thread_cpu_time() is not optimized for Windows yet
4017jlong os::current_thread_cpu_time() {
4018  // return user + sys since the cost is the same
4019  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4020}
4021
4022jlong os::thread_cpu_time(Thread* thread) {
4023  // consistent with what current_thread_cpu_time() returns.
4024  return os::thread_cpu_time(thread, true /* user+sys */);
4025}
4026
4027jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4028  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4029}
4030
4031jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4032  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4033  // If this function changes, os::is_thread_cpu_time_supported() should too
4034  if (os::win32::is_nt()) {
4035    FILETIME CreationTime;
4036    FILETIME ExitTime;
4037    FILETIME KernelTime;
4038    FILETIME UserTime;
4039
4040    if ( GetThreadTimes(thread->osthread()->thread_handle(),
4041                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4042      return -1;
4043    else
4044      if (user_sys_cpu_time) {
4045        return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4046      } else {
4047        return FT2INT64(UserTime) * 100;
4048      }
4049  } else {
4050    return (jlong) timeGetTime() * 1000000;
4051  }
4052}
4053
4054void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4055  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4056  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4057  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4058  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4059}
4060
4061void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4062  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4063  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4064  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4065  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4066}
4067
4068bool os::is_thread_cpu_time_supported() {
4069  // see os::thread_cpu_time
4070  if (os::win32::is_nt()) {
4071    FILETIME CreationTime;
4072    FILETIME ExitTime;
4073    FILETIME KernelTime;
4074    FILETIME UserTime;
4075
4076    if ( GetThreadTimes(GetCurrentThread(),
4077                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4078      return false;
4079    else
4080      return true;
4081  } else {
4082    return false;
4083  }
4084}
4085
4086// Windows does't provide a loadavg primitive so this is stubbed out for now.
4087// It does have primitives (PDH API) to get CPU usage and run queue length.
4088// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4089// If we wanted to implement loadavg on Windows, we have a few options:
4090//
4091// a) Query CPU usage and run queue length and "fake" an answer by
4092//    returning the CPU usage if it's under 100%, and the run queue
4093//    length otherwise.  It turns out that querying is pretty slow
4094//    on Windows, on the order of 200 microseconds on a fast machine.
4095//    Note that on the Windows the CPU usage value is the % usage
4096//    since the last time the API was called (and the first call
4097//    returns 100%), so we'd have to deal with that as well.
4098//
4099// b) Sample the "fake" answer using a sampling thread and store
4100//    the answer in a global variable.  The call to loadavg would
4101//    just return the value of the global, avoiding the slow query.
4102//
4103// c) Sample a better answer using exponential decay to smooth the
4104//    value.  This is basically the algorithm used by UNIX kernels.
4105//
4106// Note that sampling thread starvation could affect both (b) and (c).
4107int os::loadavg(double loadavg[], int nelem) {
4108  return -1;
4109}
4110
4111
4112// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4113bool os::dont_yield() {
4114  return DontYieldALot;
4115}
4116
4117// This method is a slightly reworked copy of JDK's sysOpen
4118// from src/windows/hpi/src/sys_api_md.c
4119
4120int os::open(const char *path, int oflag, int mode) {
4121  char pathbuf[MAX_PATH];
4122
4123  if (strlen(path) > MAX_PATH - 1) {
4124    errno = ENAMETOOLONG;
4125          return -1;
4126  }
4127  os::native_path(strcpy(pathbuf, path));
4128  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4129}
4130
4131FILE* os::open(int fd, const char* mode) {
4132  return ::_fdopen(fd, mode);
4133}
4134
4135// Is a (classpath) directory empty?
4136bool os::dir_is_empty(const char* path) {
4137  WIN32_FIND_DATA fd;
4138  HANDLE f = FindFirstFile(path, &fd);
4139  if (f == INVALID_HANDLE_VALUE) {
4140    return true;
4141  }
4142  FindClose(f);
4143  return false;
4144}
4145
4146// create binary file, rewriting existing file if required
4147int os::create_binary_file(const char* path, bool rewrite_existing) {
4148  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4149  if (!rewrite_existing) {
4150    oflags |= _O_EXCL;
4151  }
4152  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4153}
4154
4155// return current position of file pointer
4156jlong os::current_file_offset(int fd) {
4157  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4158}
4159
4160// move file pointer to the specified offset
4161jlong os::seek_to_file_offset(int fd, jlong offset) {
4162  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4163}
4164
4165
4166jlong os::lseek(int fd, jlong offset, int whence) {
4167  return (jlong) ::_lseeki64(fd, offset, whence);
4168}
4169
4170// This method is a slightly reworked copy of JDK's sysNativePath
4171// from src/windows/hpi/src/path_md.c
4172
4173/* Convert a pathname to native format.  On win32, this involves forcing all
4174   separators to be '\\' rather than '/' (both are legal inputs, but Win95
4175   sometimes rejects '/') and removing redundant separators.  The input path is
4176   assumed to have been converted into the character encoding used by the local
4177   system.  Because this might be a double-byte encoding, care is taken to
4178   treat double-byte lead characters correctly.
4179
4180   This procedure modifies the given path in place, as the result is never
4181   longer than the original.  There is no error return; this operation always
4182   succeeds. */
4183char * os::native_path(char *path) {
4184  char *src = path, *dst = path, *end = path;
4185  char *colon = NULL;           /* If a drive specifier is found, this will
4186                                        point to the colon following the drive
4187                                        letter */
4188
4189  /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4190  assert(((!::IsDBCSLeadByte('/'))
4191    && (!::IsDBCSLeadByte('\\'))
4192    && (!::IsDBCSLeadByte(':'))),
4193    "Illegal lead byte");
4194
4195  /* Check for leading separators */
4196#define isfilesep(c) ((c) == '/' || (c) == '\\')
4197  while (isfilesep(*src)) {
4198    src++;
4199  }
4200
4201  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4202    /* Remove leading separators if followed by drive specifier.  This
4203      hack is necessary to support file URLs containing drive
4204      specifiers (e.g., "file://c:/path").  As a side effect,
4205      "/c:/path" can be used as an alternative to "c:/path". */
4206    *dst++ = *src++;
4207    colon = dst;
4208    *dst++ = ':';
4209    src++;
4210  } else {
4211    src = path;
4212    if (isfilesep(src[0]) && isfilesep(src[1])) {
4213      /* UNC pathname: Retain first separator; leave src pointed at
4214         second separator so that further separators will be collapsed
4215         into the second separator.  The result will be a pathname
4216         beginning with "\\\\" followed (most likely) by a host name. */
4217      src = dst = path + 1;
4218      path[0] = '\\';     /* Force first separator to '\\' */
4219    }
4220  }
4221
4222  end = dst;
4223
4224  /* Remove redundant separators from remainder of path, forcing all
4225      separators to be '\\' rather than '/'. Also, single byte space
4226      characters are removed from the end of the path because those
4227      are not legal ending characters on this operating system.
4228  */
4229  while (*src != '\0') {
4230    if (isfilesep(*src)) {
4231      *dst++ = '\\'; src++;
4232      while (isfilesep(*src)) src++;
4233      if (*src == '\0') {
4234        /* Check for trailing separator */
4235        end = dst;
4236        if (colon == dst - 2) break;                      /* "z:\\" */
4237        if (dst == path + 1) break;                       /* "\\" */
4238        if (dst == path + 2 && isfilesep(path[0])) {
4239          /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4240            beginning of a UNC pathname.  Even though it is not, by
4241            itself, a valid UNC pathname, we leave it as is in order
4242            to be consistent with the path canonicalizer as well
4243            as the win32 APIs, which treat this case as an invalid
4244            UNC pathname rather than as an alias for the root
4245            directory of the current drive. */
4246          break;
4247        }
4248        end = --dst;  /* Path does not denote a root directory, so
4249                                    remove trailing separator */
4250        break;
4251      }
4252      end = dst;
4253    } else {
4254      if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4255        *dst++ = *src++;
4256        if (*src) *dst++ = *src++;
4257        end = dst;
4258      } else {         /* Copy a single-byte character */
4259        char c = *src++;
4260        *dst++ = c;
4261        /* Space is not a legal ending character */
4262        if (c != ' ') end = dst;
4263      }
4264    }
4265  }
4266
4267  *end = '\0';
4268
4269  /* For "z:", add "." to work around a bug in the C runtime library */
4270  if (colon == dst - 1) {
4271          path[2] = '.';
4272          path[3] = '\0';
4273  }
4274
4275  return path;
4276}
4277
4278// This code is a copy of JDK's sysSetLength
4279// from src/windows/hpi/src/sys_api_md.c
4280
4281int os::ftruncate(int fd, jlong length) {
4282  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4283  long high = (long)(length >> 32);
4284  DWORD ret;
4285
4286  if (h == (HANDLE)(-1)) {
4287    return -1;
4288  }
4289
4290  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4291  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4292      return -1;
4293  }
4294
4295  if (::SetEndOfFile(h) == FALSE) {
4296    return -1;
4297  }
4298
4299  return 0;
4300}
4301
4302
4303// This code is a copy of JDK's sysSync
4304// from src/windows/hpi/src/sys_api_md.c
4305// except for the legacy workaround for a bug in Win 98
4306
4307int os::fsync(int fd) {
4308  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4309
4310  if ( (!::FlushFileBuffers(handle)) &&
4311         (GetLastError() != ERROR_ACCESS_DENIED) ) {
4312    /* from winerror.h */
4313    return -1;
4314  }
4315  return 0;
4316}
4317
4318static int nonSeekAvailable(int, long *);
4319static int stdinAvailable(int, long *);
4320
4321#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4322#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4323
4324// This code is a copy of JDK's sysAvailable
4325// from src/windows/hpi/src/sys_api_md.c
4326
4327int os::available(int fd, jlong *bytes) {
4328  jlong cur, end;
4329  struct _stati64 stbuf64;
4330
4331  if (::_fstati64(fd, &stbuf64) >= 0) {
4332    int mode = stbuf64.st_mode;
4333    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4334      int ret;
4335      long lpbytes;
4336      if (fd == 0) {
4337        ret = stdinAvailable(fd, &lpbytes);
4338      } else {
4339        ret = nonSeekAvailable(fd, &lpbytes);
4340      }
4341      (*bytes) = (jlong)(lpbytes);
4342      return ret;
4343    }
4344    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4345      return FALSE;
4346    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4347      return FALSE;
4348    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4349      return FALSE;
4350    }
4351    *bytes = end - cur;
4352    return TRUE;
4353  } else {
4354    return FALSE;
4355  }
4356}
4357
4358// This code is a copy of JDK's nonSeekAvailable
4359// from src/windows/hpi/src/sys_api_md.c
4360
4361static int nonSeekAvailable(int fd, long *pbytes) {
4362  /* This is used for available on non-seekable devices
4363    * (like both named and anonymous pipes, such as pipes
4364    *  connected to an exec'd process).
4365    * Standard Input is a special case.
4366    *
4367    */
4368  HANDLE han;
4369
4370  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4371    return FALSE;
4372  }
4373
4374  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4375        /* PeekNamedPipe fails when at EOF.  In that case we
4376         * simply make *pbytes = 0 which is consistent with the
4377         * behavior we get on Solaris when an fd is at EOF.
4378         * The only alternative is to raise an Exception,
4379         * which isn't really warranted.
4380         */
4381    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4382      return FALSE;
4383    }
4384    *pbytes = 0;
4385  }
4386  return TRUE;
4387}
4388
4389#define MAX_INPUT_EVENTS 2000
4390
4391// This code is a copy of JDK's stdinAvailable
4392// from src/windows/hpi/src/sys_api_md.c
4393
4394static int stdinAvailable(int fd, long *pbytes) {
4395  HANDLE han;
4396  DWORD numEventsRead = 0;      /* Number of events read from buffer */
4397  DWORD numEvents = 0;  /* Number of events in buffer */
4398  DWORD i = 0;          /* Loop index */
4399  DWORD curLength = 0;  /* Position marker */
4400  DWORD actualLength = 0;       /* Number of bytes readable */
4401  BOOL error = FALSE;         /* Error holder */
4402  INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4403
4404  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4405        return FALSE;
4406  }
4407
4408  /* Construct an array of input records in the console buffer */
4409  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4410  if (error == 0) {
4411    return nonSeekAvailable(fd, pbytes);
4412  }
4413
4414  /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4415  if (numEvents > MAX_INPUT_EVENTS) {
4416    numEvents = MAX_INPUT_EVENTS;
4417  }
4418
4419  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4420  if (lpBuffer == NULL) {
4421    return FALSE;
4422  }
4423
4424  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4425  if (error == 0) {
4426    os::free(lpBuffer, mtInternal);
4427    return FALSE;
4428  }
4429
4430  /* Examine input records for the number of bytes available */
4431  for(i=0; i<numEvents; i++) {
4432    if (lpBuffer[i].EventType == KEY_EVENT) {
4433
4434      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4435                                      &(lpBuffer[i].Event);
4436      if (keyRecord->bKeyDown == TRUE) {
4437        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4438        curLength++;
4439        if (*keyPressed == '\r') {
4440          actualLength = curLength;
4441        }
4442      }
4443    }
4444  }
4445
4446  if(lpBuffer != NULL) {
4447    os::free(lpBuffer, mtInternal);
4448  }
4449
4450  *pbytes = (long) actualLength;
4451  return TRUE;
4452}
4453
4454// Map a block of memory.
4455char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4456                     char *addr, size_t bytes, bool read_only,
4457                     bool allow_exec) {
4458  HANDLE hFile;
4459  char* base;
4460
4461  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4462                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4463  if (hFile == NULL) {
4464    if (PrintMiscellaneous && Verbose) {
4465      DWORD err = GetLastError();
4466      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4467    }
4468    return NULL;
4469  }
4470
4471  if (allow_exec) {
4472    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4473    // unless it comes from a PE image (which the shared archive is not.)
4474    // Even VirtualProtect refuses to give execute access to mapped memory
4475    // that was not previously executable.
4476    //
4477    // Instead, stick the executable region in anonymous memory.  Yuck.
4478    // Penalty is that ~4 pages will not be shareable - in the future
4479    // we might consider DLLizing the shared archive with a proper PE
4480    // header so that mapping executable + sharing is possible.
4481
4482    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4483                                PAGE_READWRITE);
4484    if (base == NULL) {
4485      if (PrintMiscellaneous && Verbose) {
4486        DWORD err = GetLastError();
4487        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4488      }
4489      CloseHandle(hFile);
4490      return NULL;
4491    }
4492
4493    DWORD bytes_read;
4494    OVERLAPPED overlapped;
4495    overlapped.Offset = (DWORD)file_offset;
4496    overlapped.OffsetHigh = 0;
4497    overlapped.hEvent = NULL;
4498    // ReadFile guarantees that if the return value is true, the requested
4499    // number of bytes were read before returning.
4500    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4501    if (!res) {
4502      if (PrintMiscellaneous && Verbose) {
4503        DWORD err = GetLastError();
4504        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4505      }
4506      release_memory(base, bytes);
4507      CloseHandle(hFile);
4508      return NULL;
4509    }
4510  } else {
4511    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4512                                    NULL /*file_name*/);
4513    if (hMap == NULL) {
4514      if (PrintMiscellaneous && Verbose) {
4515        DWORD err = GetLastError();
4516        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4517      }
4518      CloseHandle(hFile);
4519      return NULL;
4520    }
4521
4522    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4523    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4524                                  (DWORD)bytes, addr);
4525    if (base == NULL) {
4526      if (PrintMiscellaneous && Verbose) {
4527        DWORD err = GetLastError();
4528        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4529      }
4530      CloseHandle(hMap);
4531      CloseHandle(hFile);
4532      return NULL;
4533    }
4534
4535    if (CloseHandle(hMap) == 0) {
4536      if (PrintMiscellaneous && Verbose) {
4537        DWORD err = GetLastError();
4538        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4539      }
4540      CloseHandle(hFile);
4541      return base;
4542    }
4543  }
4544
4545  if (allow_exec) {
4546    DWORD old_protect;
4547    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4548    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4549
4550    if (!res) {
4551      if (PrintMiscellaneous && Verbose) {
4552        DWORD err = GetLastError();
4553        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4554      }
4555      // Don't consider this a hard error, on IA32 even if the
4556      // VirtualProtect fails, we should still be able to execute
4557      CloseHandle(hFile);
4558      return base;
4559    }
4560  }
4561
4562  if (CloseHandle(hFile) == 0) {
4563    if (PrintMiscellaneous && Verbose) {
4564      DWORD err = GetLastError();
4565      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4566    }
4567    return base;
4568  }
4569
4570  return base;
4571}
4572
4573
4574// Remap a block of memory.
4575char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4576                       char *addr, size_t bytes, bool read_only,
4577                       bool allow_exec) {
4578  // This OS does not allow existing memory maps to be remapped so we
4579  // have to unmap the memory before we remap it.
4580  if (!os::unmap_memory(addr, bytes)) {
4581    return NULL;
4582  }
4583
4584  // There is a very small theoretical window between the unmap_memory()
4585  // call above and the map_memory() call below where a thread in native
4586  // code may be able to access an address that is no longer mapped.
4587
4588  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4589           read_only, allow_exec);
4590}
4591
4592
4593// Unmap a block of memory.
4594// Returns true=success, otherwise false.
4595
4596bool os::pd_unmap_memory(char* addr, size_t bytes) {
4597  BOOL result = UnmapViewOfFile(addr);
4598  if (result == 0) {
4599    if (PrintMiscellaneous && Verbose) {
4600      DWORD err = GetLastError();
4601      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4602    }
4603    return false;
4604  }
4605  return true;
4606}
4607
4608void os::pause() {
4609  char filename[MAX_PATH];
4610  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4611    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4612  } else {
4613    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4614  }
4615
4616  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4617  if (fd != -1) {
4618    struct stat buf;
4619    ::close(fd);
4620    while (::stat(filename, &buf) == 0) {
4621      Sleep(100);
4622    }
4623  } else {
4624    jio_fprintf(stderr,
4625      "Could not open pause file '%s', continuing immediately.\n", filename);
4626  }
4627}
4628
4629// An Event wraps a win32 "CreateEvent" kernel handle.
4630//
4631// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4632//
4633// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4634//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4635//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4636//     In addition, an unpark() operation might fetch the handle field, but the
4637//     event could recycle between the fetch and the SetEvent() operation.
4638//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4639//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4640//     on an stale but recycled handle would be harmless, but in practice this might
4641//     confuse other non-Sun code, so it's not a viable approach.
4642//
4643// 2:  Once a win32 event handle is associated with an Event, it remains associated
4644//     with the Event.  The event handle is never closed.  This could be construed
4645//     as handle leakage, but only up to the maximum # of threads that have been extant
4646//     at any one time.  This shouldn't be an issue, as windows platforms typically
4647//     permit a process to have hundreds of thousands of open handles.
4648//
4649// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4650//     and release unused handles.
4651//
4652// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4653//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4654//
4655// 5.  Use an RCU-like mechanism (Read-Copy Update).
4656//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4657//
4658// We use (2).
4659//
4660// TODO-FIXME:
4661// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4662// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4663//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4664// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4665//     into a single win32 CreateEvent() handle.
4666//
4667// _Event transitions in park()
4668//   -1 => -1 : illegal
4669//    1 =>  0 : pass - return immediately
4670//    0 => -1 : block
4671//
4672// _Event serves as a restricted-range semaphore :
4673//    -1 : thread is blocked
4674//     0 : neutral  - thread is running or ready
4675//     1 : signaled - thread is running or ready
4676//
4677// Another possible encoding of _Event would be
4678// with explicit "PARKED" and "SIGNALED" bits.
4679
4680int os::PlatformEvent::park (jlong Millis) {
4681    guarantee (_ParkHandle != NULL , "Invariant") ;
4682    guarantee (Millis > 0          , "Invariant") ;
4683    int v ;
4684
4685    // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4686    // the initial park() operation.
4687
4688    for (;;) {
4689        v = _Event ;
4690        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4691    }
4692    guarantee ((v == 0) || (v == 1), "invariant") ;
4693    if (v != 0) return OS_OK ;
4694
4695    // Do this the hard way by blocking ...
4696    // TODO: consider a brief spin here, gated on the success of recent
4697    // spin attempts by this thread.
4698    //
4699    // We decompose long timeouts into series of shorter timed waits.
4700    // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4701    // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4702    // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4703    // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4704    // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4705    // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4706    // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4707    // for the already waited time.  This policy does not admit any new outcomes.
4708    // In the future, however, we might want to track the accumulated wait time and
4709    // adjust Millis accordingly if we encounter a spurious wakeup.
4710
4711    const int MAXTIMEOUT = 0x10000000 ;
4712    DWORD rv = WAIT_TIMEOUT ;
4713    while (_Event < 0 && Millis > 0) {
4714       DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4715       if (Millis > MAXTIMEOUT) {
4716          prd = MAXTIMEOUT ;
4717       }
4718       rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4719       assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4720       if (rv == WAIT_TIMEOUT) {
4721           Millis -= prd ;
4722       }
4723    }
4724    v = _Event ;
4725    _Event = 0 ;
4726    // see comment at end of os::PlatformEvent::park() below:
4727    OrderAccess::fence() ;
4728    // If we encounter a nearly simultanous timeout expiry and unpark()
4729    // we return OS_OK indicating we awoke via unpark().
4730    // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4731    return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4732}
4733
4734void os::PlatformEvent::park () {
4735    guarantee (_ParkHandle != NULL, "Invariant") ;
4736    // Invariant: Only the thread associated with the Event/PlatformEvent
4737    // may call park().
4738    int v ;
4739    for (;;) {
4740        v = _Event ;
4741        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4742    }
4743    guarantee ((v == 0) || (v == 1), "invariant") ;
4744    if (v != 0) return ;
4745
4746    // Do this the hard way by blocking ...
4747    // TODO: consider a brief spin here, gated on the success of recent
4748    // spin attempts by this thread.
4749    while (_Event < 0) {
4750       DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4751       assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4752    }
4753
4754    // Usually we'll find _Event == 0 at this point, but as
4755    // an optional optimization we clear it, just in case can
4756    // multiple unpark() operations drove _Event up to 1.
4757    _Event = 0 ;
4758    OrderAccess::fence() ;
4759    guarantee (_Event >= 0, "invariant") ;
4760}
4761
4762void os::PlatformEvent::unpark() {
4763  guarantee (_ParkHandle != NULL, "Invariant") ;
4764
4765  // Transitions for _Event:
4766  //    0 :=> 1
4767  //    1 :=> 1
4768  //   -1 :=> either 0 or 1; must signal target thread
4769  //          That is, we can safely transition _Event from -1 to either
4770  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4771  //          unpark() calls.
4772  // See also: "Semaphores in Plan 9" by Mullender & Cox
4773  //
4774  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4775  // that it will take two back-to-back park() calls for the owning
4776  // thread to block. This has the benefit of forcing a spurious return
4777  // from the first park() call after an unpark() call which will help
4778  // shake out uses of park() and unpark() without condition variables.
4779
4780  if (Atomic::xchg(1, &_Event) >= 0) return;
4781
4782  ::SetEvent(_ParkHandle);
4783}
4784
4785
4786// JSR166
4787// -------------------------------------------------------
4788
4789/*
4790 * The Windows implementation of Park is very straightforward: Basic
4791 * operations on Win32 Events turn out to have the right semantics to
4792 * use them directly. We opportunistically resuse the event inherited
4793 * from Monitor.
4794 */
4795
4796
4797void Parker::park(bool isAbsolute, jlong time) {
4798  guarantee (_ParkEvent != NULL, "invariant") ;
4799  // First, demultiplex/decode time arguments
4800  if (time < 0) { // don't wait
4801    return;
4802  }
4803  else if (time == 0 && !isAbsolute) {
4804    time = INFINITE;
4805  }
4806  else if  (isAbsolute) {
4807    time -= os::javaTimeMillis(); // convert to relative time
4808    if (time <= 0) // already elapsed
4809      return;
4810  }
4811  else { // relative
4812    time /= 1000000; // Must coarsen from nanos to millis
4813    if (time == 0)   // Wait for the minimal time unit if zero
4814      time = 1;
4815  }
4816
4817  JavaThread* thread = (JavaThread*)(Thread::current());
4818  assert(thread->is_Java_thread(), "Must be JavaThread");
4819  JavaThread *jt = (JavaThread *)thread;
4820
4821  // Don't wait if interrupted or already triggered
4822  if (Thread::is_interrupted(thread, false) ||
4823    WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4824    ResetEvent(_ParkEvent);
4825    return;
4826  }
4827  else {
4828    ThreadBlockInVM tbivm(jt);
4829    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4830    jt->set_suspend_equivalent();
4831
4832    WaitForSingleObject(_ParkEvent,  time);
4833    ResetEvent(_ParkEvent);
4834
4835    // If externally suspended while waiting, re-suspend
4836    if (jt->handle_special_suspend_equivalent_condition()) {
4837      jt->java_suspend_self();
4838    }
4839  }
4840}
4841
4842void Parker::unpark() {
4843  guarantee (_ParkEvent != NULL, "invariant") ;
4844  SetEvent(_ParkEvent);
4845}
4846
4847// Run the specified command in a separate process. Return its exit value,
4848// or -1 on failure (e.g. can't create a new process).
4849int os::fork_and_exec(char* cmd) {
4850  STARTUPINFO si;
4851  PROCESS_INFORMATION pi;
4852
4853  memset(&si, 0, sizeof(si));
4854  si.cb = sizeof(si);
4855  memset(&pi, 0, sizeof(pi));
4856  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4857                            cmd,    // command line
4858                            NULL,   // process security attribute
4859                            NULL,   // thread security attribute
4860                            TRUE,   // inherits system handles
4861                            0,      // no creation flags
4862                            NULL,   // use parent's environment block
4863                            NULL,   // use parent's starting directory
4864                            &si,    // (in) startup information
4865                            &pi);   // (out) process information
4866
4867  if (rslt) {
4868    // Wait until child process exits.
4869    WaitForSingleObject(pi.hProcess, INFINITE);
4870
4871    DWORD exit_code;
4872    GetExitCodeProcess(pi.hProcess, &exit_code);
4873
4874    // Close process and thread handles.
4875    CloseHandle(pi.hProcess);
4876    CloseHandle(pi.hThread);
4877
4878    return (int)exit_code;
4879  } else {
4880    return -1;
4881  }
4882}
4883
4884//--------------------------------------------------------------------------------------------------
4885// Non-product code
4886
4887static int mallocDebugIntervalCounter = 0;
4888static int mallocDebugCounter = 0;
4889bool os::check_heap(bool force) {
4890  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4891  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4892    // Note: HeapValidate executes two hardware breakpoints when it finds something
4893    // wrong; at these points, eax contains the address of the offending block (I think).
4894    // To get to the exlicit error message(s) below, just continue twice.
4895    HANDLE heap = GetProcessHeap();
4896    { HeapLock(heap);
4897      PROCESS_HEAP_ENTRY phe;
4898      phe.lpData = NULL;
4899      while (HeapWalk(heap, &phe) != 0) {
4900        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4901            !HeapValidate(heap, 0, phe.lpData)) {
4902          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4903          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4904          fatal("corrupted C heap");
4905        }
4906      }
4907      DWORD err = GetLastError();
4908      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4909        fatal(err_msg("heap walk aborted with error %d", err));
4910      }
4911      HeapUnlock(heap);
4912    }
4913    mallocDebugIntervalCounter = 0;
4914  }
4915  return true;
4916}
4917
4918
4919bool os::find(address addr, outputStream* st) {
4920  // Nothing yet
4921  return false;
4922}
4923
4924LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4925  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4926
4927  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4928    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4929    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4930    address addr = (address) exceptionRecord->ExceptionInformation[1];
4931
4932    if (os::is_memory_serialize_page(thread, addr))
4933      return EXCEPTION_CONTINUE_EXECUTION;
4934  }
4935
4936  return EXCEPTION_CONTINUE_SEARCH;
4937}
4938
4939// We don't build a headless jre for Windows
4940bool os::is_headless_jre() { return false; }
4941
4942static jint initSock() {
4943  WSADATA wsadata;
4944
4945  if (!os::WinSock2Dll::WinSock2Available()) {
4946    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
4947      ::GetLastError());
4948    return JNI_ERR;
4949  }
4950
4951  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
4952    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
4953      ::GetLastError());
4954    return JNI_ERR;
4955  }
4956  return JNI_OK;
4957}
4958
4959struct hostent* os::get_host_by_name(char* name) {
4960  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
4961}
4962
4963int os::socket_close(int fd) {
4964  return ::closesocket(fd);
4965}
4966
4967int os::socket_available(int fd, jint *pbytes) {
4968  int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
4969  return (ret < 0) ? 0 : 1;
4970}
4971
4972int os::socket(int domain, int type, int protocol) {
4973  return ::socket(domain, type, protocol);
4974}
4975
4976int os::listen(int fd, int count) {
4977  return ::listen(fd, count);
4978}
4979
4980int os::connect(int fd, struct sockaddr* him, socklen_t len) {
4981  return ::connect(fd, him, len);
4982}
4983
4984int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
4985  return ::accept(fd, him, len);
4986}
4987
4988int os::sendto(int fd, char* buf, size_t len, uint flags,
4989               struct sockaddr* to, socklen_t tolen) {
4990
4991  return ::sendto(fd, buf, (int)len, flags, to, tolen);
4992}
4993
4994int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
4995                 sockaddr* from, socklen_t* fromlen) {
4996
4997  return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
4998}
4999
5000int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5001  return ::recv(fd, buf, (int)nBytes, flags);
5002}
5003
5004int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5005  return ::send(fd, buf, (int)nBytes, flags);
5006}
5007
5008int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5009  return ::send(fd, buf, (int)nBytes, flags);
5010}
5011
5012int os::timeout(int fd, long timeout) {
5013  fd_set tbl;
5014  struct timeval t;
5015
5016  t.tv_sec  = timeout / 1000;
5017  t.tv_usec = (timeout % 1000) * 1000;
5018
5019  tbl.fd_count    = 1;
5020  tbl.fd_array[0] = fd;
5021
5022  return ::select(1, &tbl, 0, 0, &t);
5023}
5024
5025int os::get_host_name(char* name, int namelen) {
5026  return ::gethostname(name, namelen);
5027}
5028
5029int os::socket_shutdown(int fd, int howto) {
5030  return ::shutdown(fd, howto);
5031}
5032
5033int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5034  return ::bind(fd, him, len);
5035}
5036
5037int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5038  return ::getsockname(fd, him, len);
5039}
5040
5041int os::get_sock_opt(int fd, int level, int optname,
5042                     char* optval, socklen_t* optlen) {
5043  return ::getsockopt(fd, level, optname, optval, optlen);
5044}
5045
5046int os::set_sock_opt(int fd, int level, int optname,
5047                     const char* optval, socklen_t optlen) {
5048  return ::setsockopt(fd, level, optname, optval, optlen);
5049}
5050
5051
5052// Kernel32 API
5053typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5054typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5055typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5056typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5057typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5058
5059GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5060VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5061GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5062GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5063RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5064
5065
5066BOOL                        os::Kernel32Dll::initialized = FALSE;
5067SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5068  assert(initialized && _GetLargePageMinimum != NULL,
5069    "GetLargePageMinimumAvailable() not yet called");
5070  return _GetLargePageMinimum();
5071}
5072
5073BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5074  if (!initialized) {
5075    initialize();
5076  }
5077  return _GetLargePageMinimum != NULL;
5078}
5079
5080BOOL os::Kernel32Dll::NumaCallsAvailable() {
5081  if (!initialized) {
5082    initialize();
5083  }
5084  return _VirtualAllocExNuma != NULL;
5085}
5086
5087LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5088  assert(initialized && _VirtualAllocExNuma != NULL,
5089    "NUMACallsAvailable() not yet called");
5090
5091  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5092}
5093
5094BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5095  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5096    "NUMACallsAvailable() not yet called");
5097
5098  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5099}
5100
5101BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5102  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5103    "NUMACallsAvailable() not yet called");
5104
5105  return _GetNumaNodeProcessorMask(node, proc_mask);
5106}
5107
5108USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5109  ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5110    if (!initialized) {
5111      initialize();
5112    }
5113
5114    if (_RtlCaptureStackBackTrace != NULL) {
5115      return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5116        BackTrace, BackTraceHash);
5117    } else {
5118      return 0;
5119    }
5120}
5121
5122void os::Kernel32Dll::initializeCommon() {
5123  if (!initialized) {
5124    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5125    assert(handle != NULL, "Just check");
5126    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5127    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5128    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5129    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5130    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5131    initialized = TRUE;
5132  }
5133}
5134
5135
5136
5137#ifndef JDK6_OR_EARLIER
5138
5139void os::Kernel32Dll::initialize() {
5140  initializeCommon();
5141}
5142
5143
5144// Kernel32 API
5145inline BOOL os::Kernel32Dll::SwitchToThread() {
5146  return ::SwitchToThread();
5147}
5148
5149inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5150  return true;
5151}
5152
5153  // Help tools
5154inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5155  return true;
5156}
5157
5158inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5159  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5160}
5161
5162inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5163  return ::Module32First(hSnapshot, lpme);
5164}
5165
5166inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5167  return ::Module32Next(hSnapshot, lpme);
5168}
5169
5170
5171inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5172  return true;
5173}
5174
5175inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5176  ::GetNativeSystemInfo(lpSystemInfo);
5177}
5178
5179// PSAPI API
5180inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5181  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5182}
5183
5184inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5185  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5186}
5187
5188inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5189  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5190}
5191
5192inline BOOL os::PSApiDll::PSApiAvailable() {
5193  return true;
5194}
5195
5196
5197// WinSock2 API
5198inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5199  return ::WSAStartup(wVersionRequested, lpWSAData);
5200}
5201
5202inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5203  return ::gethostbyname(name);
5204}
5205
5206inline BOOL os::WinSock2Dll::WinSock2Available() {
5207  return true;
5208}
5209
5210// Advapi API
5211inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5212   BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5213   PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5214     return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5215       BufferLength, PreviousState, ReturnLength);
5216}
5217
5218inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5219  PHANDLE TokenHandle) {
5220    return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5221}
5222
5223inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5224  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5225}
5226
5227inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5228  return true;
5229}
5230
5231#else
5232// Kernel32 API
5233typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5234typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5235typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5236typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5237typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5238
5239SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5240CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5241Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5242Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5243GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5244
5245void os::Kernel32Dll::initialize() {
5246  if (!initialized) {
5247    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5248    assert(handle != NULL, "Just check");
5249
5250    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5251    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5252      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5253    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5254    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5255    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5256    initializeCommon();  // resolve the functions that always need resolving
5257
5258    initialized = TRUE;
5259  }
5260}
5261
5262BOOL os::Kernel32Dll::SwitchToThread() {
5263  assert(initialized && _SwitchToThread != NULL,
5264    "SwitchToThreadAvailable() not yet called");
5265  return _SwitchToThread();
5266}
5267
5268
5269BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5270  if (!initialized) {
5271    initialize();
5272  }
5273  return _SwitchToThread != NULL;
5274}
5275
5276// Help tools
5277BOOL os::Kernel32Dll::HelpToolsAvailable() {
5278  if (!initialized) {
5279    initialize();
5280  }
5281  return _CreateToolhelp32Snapshot != NULL &&
5282         _Module32First != NULL &&
5283         _Module32Next != NULL;
5284}
5285
5286HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5287  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5288    "HelpToolsAvailable() not yet called");
5289
5290  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5291}
5292
5293BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5294  assert(initialized && _Module32First != NULL,
5295    "HelpToolsAvailable() not yet called");
5296
5297  return _Module32First(hSnapshot, lpme);
5298}
5299
5300inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5301  assert(initialized && _Module32Next != NULL,
5302    "HelpToolsAvailable() not yet called");
5303
5304  return _Module32Next(hSnapshot, lpme);
5305}
5306
5307
5308BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5309  if (!initialized) {
5310    initialize();
5311  }
5312  return _GetNativeSystemInfo != NULL;
5313}
5314
5315void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5316  assert(initialized && _GetNativeSystemInfo != NULL,
5317    "GetNativeSystemInfoAvailable() not yet called");
5318
5319  _GetNativeSystemInfo(lpSystemInfo);
5320}
5321
5322// PSAPI API
5323
5324
5325typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5326typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5327typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5328
5329EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5330GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5331GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5332BOOL                    os::PSApiDll::initialized = FALSE;
5333
5334void os::PSApiDll::initialize() {
5335  if (!initialized) {
5336    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5337    if (handle != NULL) {
5338      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5339        "EnumProcessModules");
5340      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5341        "GetModuleFileNameExA");
5342      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5343        "GetModuleInformation");
5344    }
5345    initialized = TRUE;
5346  }
5347}
5348
5349
5350
5351BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5352  assert(initialized && _EnumProcessModules != NULL,
5353    "PSApiAvailable() not yet called");
5354  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5355}
5356
5357DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5358  assert(initialized && _GetModuleFileNameEx != NULL,
5359    "PSApiAvailable() not yet called");
5360  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5361}
5362
5363BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5364  assert(initialized && _GetModuleInformation != NULL,
5365    "PSApiAvailable() not yet called");
5366  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5367}
5368
5369BOOL os::PSApiDll::PSApiAvailable() {
5370  if (!initialized) {
5371    initialize();
5372  }
5373  return _EnumProcessModules != NULL &&
5374    _GetModuleFileNameEx != NULL &&
5375    _GetModuleInformation != NULL;
5376}
5377
5378
5379// WinSock2 API
5380typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5381typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5382
5383WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5384gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5385BOOL             os::WinSock2Dll::initialized = FALSE;
5386
5387void os::WinSock2Dll::initialize() {
5388  if (!initialized) {
5389    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5390    if (handle != NULL) {
5391      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5392      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5393    }
5394    initialized = TRUE;
5395  }
5396}
5397
5398
5399BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5400  assert(initialized && _WSAStartup != NULL,
5401    "WinSock2Available() not yet called");
5402  return _WSAStartup(wVersionRequested, lpWSAData);
5403}
5404
5405struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5406  assert(initialized && _gethostbyname != NULL,
5407    "WinSock2Available() not yet called");
5408  return _gethostbyname(name);
5409}
5410
5411BOOL os::WinSock2Dll::WinSock2Available() {
5412  if (!initialized) {
5413    initialize();
5414  }
5415  return _WSAStartup != NULL &&
5416    _gethostbyname != NULL;
5417}
5418
5419typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5420typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5421typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5422
5423AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5424OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5425LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5426BOOL                     os::Advapi32Dll::initialized = FALSE;
5427
5428void os::Advapi32Dll::initialize() {
5429  if (!initialized) {
5430    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5431    if (handle != NULL) {
5432      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5433        "AdjustTokenPrivileges");
5434      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5435        "OpenProcessToken");
5436      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5437        "LookupPrivilegeValueA");
5438    }
5439    initialized = TRUE;
5440  }
5441}
5442
5443BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5444   BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5445   PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5446   assert(initialized && _AdjustTokenPrivileges != NULL,
5447     "AdvapiAvailable() not yet called");
5448   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5449       BufferLength, PreviousState, ReturnLength);
5450}
5451
5452BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5453  PHANDLE TokenHandle) {
5454   assert(initialized && _OpenProcessToken != NULL,
5455     "AdvapiAvailable() not yet called");
5456    return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5457}
5458
5459BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5460   assert(initialized && _LookupPrivilegeValue != NULL,
5461     "AdvapiAvailable() not yet called");
5462  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5463}
5464
5465BOOL os::Advapi32Dll::AdvapiAvailable() {
5466  if (!initialized) {
5467    initialize();
5468  }
5469  return _AdjustTokenPrivileges != NULL &&
5470    _OpenProcessToken != NULL &&
5471    _LookupPrivilegeValue != NULL;
5472}
5473
5474#endif
5475