os_windows.cpp revision 3934:730cc4ddd550
192108Sphk/*
292108Sphk * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
392108Sphk * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
492108Sphk *
592108Sphk * This code is free software; you can redistribute it and/or modify it
692108Sphk * under the terms of the GNU General Public License version 2 only, as
792108Sphk * published by the Free Software Foundation.
892108Sphk *
992108Sphk * This code is distributed in the hope that it will be useful, but WITHOUT
1092108Sphk * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1192108Sphk * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1292108Sphk * version 2 for more details (a copy is included in the LICENSE file that
1392108Sphk * accompanied this code).
1492108Sphk *
1592108Sphk * You should have received a copy of the GNU General Public License version
1692108Sphk * 2 along with this work; if not, write to the Free Software Foundation,
1792108Sphk * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1892108Sphk *
1992108Sphk * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2092108Sphk * or visit www.oracle.com if you need additional information or have any
2192108Sphk * questions.
2292108Sphk *
2392108Sphk */
2492108Sphk
2592108Sphk// Must be at least Windows 2000 or XP to use IsDebuggerPresent
2692108Sphk#define _WIN32_WINNT 0x500
2792108Sphk
2892108Sphk// no precompiled headers
2992108Sphk#include "classfile/classLoader.hpp"
3092108Sphk#include "classfile/systemDictionary.hpp"
3192108Sphk#include "classfile/vmSymbols.hpp"
3292108Sphk#include "code/icBuffer.hpp"
3392108Sphk#include "code/vtableStubs.hpp"
3492108Sphk#include "compiler/compileBroker.hpp"
3592108Sphk#include "compiler/disassembler.hpp"
3692108Sphk#include "interpreter/interpreter.hpp"
3792108Sphk#include "jvm_windows.h"
3895276Sphk#include "memory/allocation.inline.hpp"
3995276Sphk#include "memory/filemap.hpp"
4095276Sphk#include "mutex_windows.inline.hpp"
4192108Sphk#include "oops/oop.inline.hpp"
4292108Sphk#include "os_share_windows.hpp"
4392108Sphk#include "prims/jniFastGetField.hpp"
4492108Sphk#include "prims/jvm.h"
4595323Sphk#include "prims/jvm_misc.hpp"
4695323Sphk#include "runtime/arguments.hpp"
47115473Sphk#include "runtime/extendedPC.hpp"
4892108Sphk#include "runtime/globals.hpp"
4993248Sphk#include "runtime/interfaceSupport.hpp"
5092108Sphk#include "runtime/java.hpp"
5192108Sphk#include "runtime/javaCalls.hpp"
5292108Sphk#include "runtime/mutexLocker.hpp"
53110541Sphk#include "runtime/objectMonitor.hpp"
5492108Sphk#include "runtime/osThread.hpp"
5592108Sphk#include "runtime/perfMemory.hpp"
5692108Sphk#include "runtime/sharedRuntime.hpp"
57112709Sphk#include "runtime/statSampler.hpp"
58106518Sphk#include "runtime/stubRoutines.hpp"
5992108Sphk#include "runtime/thread.inline.hpp"
60106518Sphk#include "runtime/threadCritical.hpp"
61112709Sphk#include "runtime/timer.hpp"
62112709Sphk#include "services/attachListener.hpp"
63113876Sphk#include "services/runtimeService.hpp"
64115473Sphk#include "utilities/decoder.hpp"
65115473Sphk#include "utilities/defaultStream.hpp"
6693248Sphk#include "utilities/events.hpp"
6793250Sphk#include "utilities/growableArray.hpp"
6892108Sphk#include "utilities/vmError.hpp"
6992108Sphk
7092108Sphk#ifdef _DEBUG
7192108Sphk#include <crtdbg.h>
7292108Sphk#endif
7393250Sphk
7492108Sphk
7592108Sphk#include <windows.h>
7692108Sphk#include <sys/types.h>
77107953Sphk#include <sys/stat.h>
7892108Sphk#include <sys/timeb.h>
7992108Sphk#include <objidl.h>
8092108Sphk#include <shlobj.h>
8193248Sphk
8293248Sphk#include <malloc.h>
8393248Sphk#include <signal.h>
8493248Sphk#include <direct.h>
85106518Sphk#include <errno.h>
8692108Sphk#include <fcntl.h>
8793248Sphk#include <io.h>
88107953Sphk#include <process.h>              // For _beginthreadex(), _endthreadex()
8992108Sphk#include <imagehlp.h>             // For os::dll_address_to_function_name
90106518Sphk/* for enumerating dll libraries */
91115473Sphk#include <vdmdbg.h>
92115473Sphk
93112709Sphk// for timer info max values which include all bits
94112709Sphk#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
95113876Sphk
9693776Sphk// For DLL loading/load error detection
97115468Sphk// Values of PE COFF
98115468Sphk#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
9993248Sphk#define IMAGE_FILE_SIGNATURE_LENGTH 4
10092108Sphk
10195310Sphkstatic HANDLE main_process;
10292108Sphkstatic HANDLE main_thread;
10392108Sphkstatic int    main_thread_id;
10492108Sphk
10593248Sphkstatic FILETIME process_creation_time;
10692108Sphkstatic FILETIME process_exit_time;
10792108Sphkstatic FILETIME process_user_time;
10895310Sphkstatic FILETIME process_kernel_time;
10992108Sphk
11093248Sphk#ifdef _M_IA64
11192108Sphk#define __CPU__ ia64
11292108Sphk#elif _M_AMD64
11392108Sphk#define __CPU__ amd64
11492108Sphk#else
11592108Sphk#define __CPU__ i486
11692108Sphk#endif
11792108Sphk
11892108Sphk// save DLL module handle, used by GetModuleFileName
11993776Sphk
12093776SphkHINSTANCE vm_lib_handle;
12192108Sphk
12292108SphkBOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
12392108Sphk  switch (reason) {
12492108Sphk    case DLL_PROCESS_ATTACH:
12592108Sphk      vm_lib_handle = hinst;
12692108Sphk      if(ForceTimeHighResolution)
12792108Sphk        timeBeginPeriod(1L);
12892108Sphk      break;
12992108Sphk    case DLL_PROCESS_DETACH:
13092108Sphk      if(ForceTimeHighResolution)
13192108Sphk        timeEndPeriod(1L);
13292108Sphk      break;
13392108Sphk    default:
13492108Sphk      break;
13592108Sphk  }
13692108Sphk  return true;
13792108Sphk}
13892108Sphk
13992108Sphkstatic inline double fileTimeAsDouble(FILETIME* time) {
14092108Sphk  const double high  = (double) ((unsigned int) ~0);
14192108Sphk  const double split = 10000000.0;
14292108Sphk  double result = (time->dwLowDateTime / split) +
14392108Sphk                   time->dwHighDateTime * (high/split);
14495310Sphk  return result;
14592108Sphk}
14692108Sphk
14792108Sphk// Implementation of os
14892108Sphk
14992108Sphkbool os::getenv(const char* name, char* buffer, int len) {
15092108Sphk int result = GetEnvironmentVariable(name, buffer, len);
151112370Sphk return result > 0 && result < len;
152112026Sphk}
15392108Sphk
15492108Sphk
15592108Sphk// No setuid programs under Windows.
15692108Sphkbool os::have_special_privileges() {
15792108Sphk  return false;
15892108Sphk}
15995310Sphk
16092108Sphk
16192108Sphk// This method is  a periodic task to check for misbehaving JNI applications
16292108Sphk// under CheckJNI, we can add any periodic checks here.
16392108Sphk// For Windows at the moment does nothing
16492108Sphkvoid os::run_periodic_checks() {
16592108Sphk  return;
16692108Sphk}
167107953Sphk
16893778Sphk#ifndef _WIN64
169105542Sphk// previous UnhandledExceptionFilter, if there is one
170110710Sphkstatic LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
171110710Sphk
172112370SphkLONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
173112026Sphk#endif
174110690Sphkvoid os::init_system_properties_values() {
175110690Sphk  /* sysclasspath, java_home, dll_dir */
17692108Sphk  {
17792108Sphk      char *home_path;
178105947Sphk      char *dll_path;
179105947Sphk      char *pslash;
180105947Sphk      char *bin = "\\bin";
18192108Sphk      char home_dir[MAX_PATH];
18292108Sphk
183107953Sphk      if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
18492108Sphk          os::jvm_path(home_dir, sizeof(home_dir));
18592108Sphk          // Found the full path to jvm[_g].dll.
18692108Sphk          // Now cut the path to <java_home>/jre if we can.
18792108Sphk          *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
18893090Sphk          pslash = strrchr(home_dir, '\\');
18992108Sphk          if (pslash != NULL) {
190113937Sphk              *pslash = '\0';                 /* get rid of \{client|server} */
191112989Sphk              pslash = strrchr(home_dir, '\\');
192113937Sphk              if (pslash != NULL)
193113940Sphk                  *pslash = '\0';             /* get rid of \bin */
194112989Sphk          }
19592108Sphk      }
19698066Sphk
19792108Sphk      home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
19892108Sphk      if (home_path == NULL)
199107453Sphk          return;
200107453Sphk      strcpy(home_path, home_dir);
20192108Sphk      Arguments::set_java_home(home_path);
20292108Sphk
20392108Sphk      dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
20492108Sphk      if (dll_path == NULL)
20598066Sphk          return;
20692108Sphk      strcpy(dll_path, home_dir);
20794284Sphk      strcat(dll_path, bin);
20894284Sphk      Arguments::set_dll_dir(dll_path);
209107953Sphk
210107953Sphk      if (!set_boot_path('\\', ';'))
211107953Sphk          return;
21292108Sphk  }
213107953Sphk
214107953Sphk  /* library_path */
21595310Sphk  #define EXT_DIR "\\lib\\ext"
21692108Sphk  #define BIN_DIR "\\bin"
21792108Sphk  #define PACKAGE_DIR "\\Sun\\Java"
21892108Sphk  {
21992108Sphk    /* Win32 library search order (See the documentation for LoadLibrary):
220114495Sphk     *
22192108Sphk     * 1. The directory from which application is loaded.
222115473Sphk     * 2. The system wide Java Extensions directory (Java only)
223115473Sphk     * 3. System directory (GetSystemDirectory)
22492108Sphk     * 4. Windows directory (GetWindowsDirectory)
22592108Sphk     * 5. The PATH environment variable
22692108Sphk     * 6. The current directory
227104195Sphk     */
22894283Sphk
22992108Sphk    char *library_path;
23092108Sphk    char tmp[MAX_PATH];
23192108Sphk    char *path_str = ::getenv("PATH");
232104194Sphk
23392108Sphk    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
23492108Sphk        sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
23592108Sphk
236104602Sphk    library_path[0] = '\0';
237104602Sphk
238104602Sphk    GetModuleFileName(NULL, tmp, sizeof(tmp));
239104602Sphk    *(strrchr(tmp, '\\')) = '\0';
240104602Sphk    strcat(library_path, tmp);
24192403Sphk
24292403Sphk    GetWindowsDirectory(tmp, sizeof(tmp));
24392403Sphk    strcat(library_path, ";");
24492403Sphk    strcat(library_path, tmp);
24592403Sphk    strcat(library_path, PACKAGE_DIR BIN_DIR);
246104602Sphk
247109972Sphk    GetSystemDirectory(tmp, sizeof(tmp));
24892403Sphk    strcat(library_path, ";");
24992108Sphk    strcat(library_path, tmp);
25092108Sphk
25192108Sphk    GetWindowsDirectory(tmp, sizeof(tmp));
25295038Sphk    strcat(library_path, ";");
25395038Sphk    strcat(library_path, tmp);
25495038Sphk
25595038Sphk    if (path_str) {
25695038Sphk        strcat(library_path, ";");
25792108Sphk        strcat(library_path, path_str);
25892108Sphk    }
25992108Sphk
26092108Sphk    strcat(library_path, ";.");
26192108Sphk
26292108Sphk    Arguments::set_library_path(library_path);
26392108Sphk    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
26492108Sphk  }
26595310Sphk
26695310Sphk  /* Default extensions directory */
26792108Sphk  {
26892108Sphk    char path[MAX_PATH];
26992108Sphk    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
27092108Sphk    GetWindowsDirectory(path, MAX_PATH);
27192108Sphk    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
27292108Sphk        path, PACKAGE_DIR, EXT_DIR);
27395310Sphk    Arguments::set_ext_dirs(buf);
27495310Sphk  }
27592108Sphk  #undef EXT_DIR
27692108Sphk  #undef BIN_DIR
27792108Sphk  #undef PACKAGE_DIR
27892108Sphk
27992108Sphk  /* Default endorsed standards directory. */
28096987Sphk  {
28196987Sphk    #define ENDORSED_DIR "\\lib\\endorsed"
28296987Sphk    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
28396987Sphk    char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
28496987Sphk    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
28596987Sphk    Arguments::set_endorsed_dirs(buf);
28696987Sphk    #undef ENDORSED_DIR
28796987Sphk  }
28896987Sphk
28996987Sphk#ifndef _WIN64
29096987Sphk  // set our UnhandledExceptionFilter and save any previous one
29196987Sphk  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
29296987Sphk#endif
29396987Sphk
29496987Sphk  // Done
29596987Sphk  return;
29696987Sphk}
29796987Sphk
298115473Sphkvoid os::breakpoint() {
299115473Sphk  DebugBreak();
300115473Sphk}
301115473Sphk
302115473Sphk// Invoked from the BREAKPOINT Macro
303105061Sphkextern "C" void breakpoint() {
30495310Sphk  os::breakpoint();
30592108Sphk}
306112709Sphk
307114670Sphk/*
308112709Sphk * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
309113892Sphk * So far, this method is only used by Native Memory Tracking, which is
310113892Sphk * only supported on Windows XP or later.
311112709Sphk */
31295276Sphkaddress os::get_caller_pc(int n) {
313#ifdef _NMT_NOINLINE_
314  n ++;
315#endif
316  address pc;
317  if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
318    return pc;
319  }
320  return NULL;
321}
322
323
324// os::current_stack_base()
325//
326//   Returns the base of the stack, which is the stack's
327//   starting address.  This function must be called
328//   while running on the stack of the thread being queried.
329
330address os::current_stack_base() {
331  MEMORY_BASIC_INFORMATION minfo;
332  address stack_bottom;
333  size_t stack_size;
334
335  VirtualQuery(&minfo, &minfo, sizeof(minfo));
336  stack_bottom =  (address)minfo.AllocationBase;
337  stack_size = minfo.RegionSize;
338
339  // Add up the sizes of all the regions with the same
340  // AllocationBase.
341  while( 1 )
342  {
343    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
344    if ( stack_bottom == (address)minfo.AllocationBase )
345      stack_size += minfo.RegionSize;
346    else
347      break;
348  }
349
350#ifdef _M_IA64
351  // IA64 has memory and register stacks
352  stack_size = stack_size / 2;
353#endif
354  return stack_bottom + stack_size;
355}
356
357size_t os::current_stack_size() {
358  size_t sz;
359  MEMORY_BASIC_INFORMATION minfo;
360  VirtualQuery(&minfo, &minfo, sizeof(minfo));
361  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
362  return sz;
363}
364
365struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
366  const struct tm* time_struct_ptr = localtime(clock);
367  if (time_struct_ptr != NULL) {
368    *res = *time_struct_ptr;
369    return res;
370  }
371  return NULL;
372}
373
374LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
375
376// Thread start routine for all new Java threads
377static unsigned __stdcall java_start(Thread* thread) {
378  // Try to randomize the cache line index of hot stack frames.
379  // This helps when threads of the same stack traces evict each other's
380  // cache lines. The threads can be either from the same JVM instance, or
381  // from different JVM instances. The benefit is especially true for
382  // processors with hyperthreading technology.
383  static int counter = 0;
384  int pid = os::current_process_id();
385  _alloca(((pid ^ counter++) & 7) * 128);
386
387  OSThread* osthr = thread->osthread();
388  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
389
390  if (UseNUMA) {
391    int lgrp_id = os::numa_get_group_id();
392    if (lgrp_id != -1) {
393      thread->set_lgrp_id(lgrp_id);
394    }
395  }
396
397
398  // Install a win32 structured exception handler around every thread created
399  // by VM, so VM can genrate error dump when an exception occurred in non-
400  // Java thread (e.g. VM thread).
401  __try {
402     thread->run();
403  } __except(topLevelExceptionFilter(
404             (_EXCEPTION_POINTERS*)_exception_info())) {
405      // Nothing to do.
406  }
407
408  // One less thread is executing
409  // When the VMThread gets here, the main thread may have already exited
410  // which frees the CodeHeap containing the Atomic::add code
411  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
412    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
413  }
414
415  return 0;
416}
417
418static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
419  // Allocate the OSThread object
420  OSThread* osthread = new OSThread(NULL, NULL);
421  if (osthread == NULL) return NULL;
422
423  // Initialize support for Java interrupts
424  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
425  if (interrupt_event == NULL) {
426    delete osthread;
427    return NULL;
428  }
429  osthread->set_interrupt_event(interrupt_event);
430
431  // Store info on the Win32 thread into the OSThread
432  osthread->set_thread_handle(thread_handle);
433  osthread->set_thread_id(thread_id);
434
435  if (UseNUMA) {
436    int lgrp_id = os::numa_get_group_id();
437    if (lgrp_id != -1) {
438      thread->set_lgrp_id(lgrp_id);
439    }
440  }
441
442  // Initial thread state is INITIALIZED, not SUSPENDED
443  osthread->set_state(INITIALIZED);
444
445  return osthread;
446}
447
448
449bool os::create_attached_thread(JavaThread* thread) {
450#ifdef ASSERT
451  thread->verify_not_published();
452#endif
453  HANDLE thread_h;
454  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
455                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
456    fatal("DuplicateHandle failed\n");
457  }
458  OSThread* osthread = create_os_thread(thread, thread_h,
459                                        (int)current_thread_id());
460  if (osthread == NULL) {
461     return false;
462  }
463
464  // Initial thread state is RUNNABLE
465  osthread->set_state(RUNNABLE);
466
467  thread->set_osthread(osthread);
468  return true;
469}
470
471bool os::create_main_thread(JavaThread* thread) {
472#ifdef ASSERT
473  thread->verify_not_published();
474#endif
475  if (_starting_thread == NULL) {
476    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
477     if (_starting_thread == NULL) {
478        return false;
479     }
480  }
481
482  // The primordial thread is runnable from the start)
483  _starting_thread->set_state(RUNNABLE);
484
485  thread->set_osthread(_starting_thread);
486  return true;
487}
488
489// Allocate and initialize a new OSThread
490bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
491  unsigned thread_id;
492
493  // Allocate the OSThread object
494  OSThread* osthread = new OSThread(NULL, NULL);
495  if (osthread == NULL) {
496    return false;
497  }
498
499  // Initialize support for Java interrupts
500  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
501  if (interrupt_event == NULL) {
502    delete osthread;
503    return NULL;
504  }
505  osthread->set_interrupt_event(interrupt_event);
506  osthread->set_interrupted(false);
507
508  thread->set_osthread(osthread);
509
510  if (stack_size == 0) {
511    switch (thr_type) {
512    case os::java_thread:
513      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
514      if (JavaThread::stack_size_at_create() > 0)
515        stack_size = JavaThread::stack_size_at_create();
516      break;
517    case os::compiler_thread:
518      if (CompilerThreadStackSize > 0) {
519        stack_size = (size_t)(CompilerThreadStackSize * K);
520        break;
521      } // else fall through:
522        // use VMThreadStackSize if CompilerThreadStackSize is not defined
523    case os::vm_thread:
524    case os::pgc_thread:
525    case os::cgc_thread:
526    case os::watcher_thread:
527      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
528      break;
529    }
530  }
531
532  // Create the Win32 thread
533  //
534  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
535  // does not specify stack size. Instead, it specifies the size of
536  // initially committed space. The stack size is determined by
537  // PE header in the executable. If the committed "stack_size" is larger
538  // than default value in the PE header, the stack is rounded up to the
539  // nearest multiple of 1MB. For example if the launcher has default
540  // stack size of 320k, specifying any size less than 320k does not
541  // affect the actual stack size at all, it only affects the initial
542  // commitment. On the other hand, specifying 'stack_size' larger than
543  // default value may cause significant increase in memory usage, because
544  // not only the stack space will be rounded up to MB, but also the
545  // entire space is committed upfront.
546  //
547  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
548  // for CreateThread() that can treat 'stack_size' as stack size. However we
549  // are not supposed to call CreateThread() directly according to MSDN
550  // document because JVM uses C runtime library. The good news is that the
551  // flag appears to work with _beginthredex() as well.
552
553#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
554#define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
555#endif
556
557  HANDLE thread_handle =
558    (HANDLE)_beginthreadex(NULL,
559                           (unsigned)stack_size,
560                           (unsigned (__stdcall *)(void*)) java_start,
561                           thread,
562                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
563                           &thread_id);
564  if (thread_handle == NULL) {
565    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
566    // without the flag.
567    thread_handle =
568    (HANDLE)_beginthreadex(NULL,
569                           (unsigned)stack_size,
570                           (unsigned (__stdcall *)(void*)) java_start,
571                           thread,
572                           CREATE_SUSPENDED,
573                           &thread_id);
574  }
575  if (thread_handle == NULL) {
576    // Need to clean up stuff we've allocated so far
577    CloseHandle(osthread->interrupt_event());
578    thread->set_osthread(NULL);
579    delete osthread;
580    return NULL;
581  }
582
583  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
584
585  // Store info on the Win32 thread into the OSThread
586  osthread->set_thread_handle(thread_handle);
587  osthread->set_thread_id(thread_id);
588
589  // Initial thread state is INITIALIZED, not SUSPENDED
590  osthread->set_state(INITIALIZED);
591
592  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
593  return true;
594}
595
596
597// Free Win32 resources related to the OSThread
598void os::free_thread(OSThread* osthread) {
599  assert(osthread != NULL, "osthread not set");
600  CloseHandle(osthread->thread_handle());
601  CloseHandle(osthread->interrupt_event());
602  delete osthread;
603}
604
605
606static int    has_performance_count = 0;
607static jlong first_filetime;
608static jlong initial_performance_count;
609static jlong performance_frequency;
610
611
612jlong as_long(LARGE_INTEGER x) {
613  jlong result = 0; // initialization to avoid warning
614  set_high(&result, x.HighPart);
615  set_low(&result,  x.LowPart);
616  return result;
617}
618
619
620jlong os::elapsed_counter() {
621  LARGE_INTEGER count;
622  if (has_performance_count) {
623    QueryPerformanceCounter(&count);
624    return as_long(count) - initial_performance_count;
625  } else {
626    FILETIME wt;
627    GetSystemTimeAsFileTime(&wt);
628    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
629  }
630}
631
632
633jlong os::elapsed_frequency() {
634  if (has_performance_count) {
635    return performance_frequency;
636  } else {
637   // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
638   return 10000000;
639  }
640}
641
642
643julong os::available_memory() {
644  return win32::available_memory();
645}
646
647julong os::win32::available_memory() {
648  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
649  // value if total memory is larger than 4GB
650  MEMORYSTATUSEX ms;
651  ms.dwLength = sizeof(ms);
652  GlobalMemoryStatusEx(&ms);
653
654  return (julong)ms.ullAvailPhys;
655}
656
657julong os::physical_memory() {
658  return win32::physical_memory();
659}
660
661julong os::allocatable_physical_memory(julong size) {
662#ifdef _LP64
663  return size;
664#else
665  // Limit to 1400m because of the 2gb address space wall
666  return MIN2(size, (julong)1400*M);
667#endif
668}
669
670// VC6 lacks DWORD_PTR
671#if _MSC_VER < 1300
672typedef UINT_PTR DWORD_PTR;
673#endif
674
675int os::active_processor_count() {
676  DWORD_PTR lpProcessAffinityMask = 0;
677  DWORD_PTR lpSystemAffinityMask = 0;
678  int proc_count = processor_count();
679  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
680      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
681    // Nof active processors is number of bits in process affinity mask
682    int bitcount = 0;
683    while (lpProcessAffinityMask != 0) {
684      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
685      bitcount++;
686    }
687    return bitcount;
688  } else {
689    return proc_count;
690  }
691}
692
693void os::set_native_thread_name(const char *name) {
694  // Not yet implemented.
695  return;
696}
697
698bool os::distribute_processes(uint length, uint* distribution) {
699  // Not yet implemented.
700  return false;
701}
702
703bool os::bind_to_processor(uint processor_id) {
704  // Not yet implemented.
705  return false;
706}
707
708static void initialize_performance_counter() {
709  LARGE_INTEGER count;
710  if (QueryPerformanceFrequency(&count)) {
711    has_performance_count = 1;
712    performance_frequency = as_long(count);
713    QueryPerformanceCounter(&count);
714    initial_performance_count = as_long(count);
715  } else {
716    has_performance_count = 0;
717    FILETIME wt;
718    GetSystemTimeAsFileTime(&wt);
719    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
720  }
721}
722
723
724double os::elapsedTime() {
725  return (double) elapsed_counter() / (double) elapsed_frequency();
726}
727
728
729// Windows format:
730//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
731// Java format:
732//   Java standards require the number of milliseconds since 1/1/1970
733
734// Constant offset - calculated using offset()
735static jlong  _offset   = 116444736000000000;
736// Fake time counter for reproducible results when debugging
737static jlong  fake_time = 0;
738
739#ifdef ASSERT
740// Just to be safe, recalculate the offset in debug mode
741static jlong _calculated_offset = 0;
742static int   _has_calculated_offset = 0;
743
744jlong offset() {
745  if (_has_calculated_offset) return _calculated_offset;
746  SYSTEMTIME java_origin;
747  java_origin.wYear          = 1970;
748  java_origin.wMonth         = 1;
749  java_origin.wDayOfWeek     = 0; // ignored
750  java_origin.wDay           = 1;
751  java_origin.wHour          = 0;
752  java_origin.wMinute        = 0;
753  java_origin.wSecond        = 0;
754  java_origin.wMilliseconds  = 0;
755  FILETIME jot;
756  if (!SystemTimeToFileTime(&java_origin, &jot)) {
757    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
758  }
759  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
760  _has_calculated_offset = 1;
761  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
762  return _calculated_offset;
763}
764#else
765jlong offset() {
766  return _offset;
767}
768#endif
769
770jlong windows_to_java_time(FILETIME wt) {
771  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
772  return (a - offset()) / 10000;
773}
774
775FILETIME java_to_windows_time(jlong l) {
776  jlong a = (l * 10000) + offset();
777  FILETIME result;
778  result.dwHighDateTime = high(a);
779  result.dwLowDateTime  = low(a);
780  return result;
781}
782
783// For now, we say that Windows does not support vtime.  I have no idea
784// whether it can actually be made to (DLD, 9/13/05).
785
786bool os::supports_vtime() { return false; }
787bool os::enable_vtime() { return false; }
788bool os::vtime_enabled() { return false; }
789double os::elapsedVTime() {
790  // better than nothing, but not much
791  return elapsedTime();
792}
793
794jlong os::javaTimeMillis() {
795  if (UseFakeTimers) {
796    return fake_time++;
797  } else {
798    FILETIME wt;
799    GetSystemTimeAsFileTime(&wt);
800    return windows_to_java_time(wt);
801  }
802}
803
804jlong os::javaTimeNanos() {
805  if (!has_performance_count) {
806    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
807  } else {
808    LARGE_INTEGER current_count;
809    QueryPerformanceCounter(&current_count);
810    double current = as_long(current_count);
811    double freq = performance_frequency;
812    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
813    return time;
814  }
815}
816
817void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
818  if (!has_performance_count) {
819    // javaTimeMillis() doesn't have much percision,
820    // but it is not going to wrap -- so all 64 bits
821    info_ptr->max_value = ALL_64_BITS;
822
823    // this is a wall clock timer, so may skip
824    info_ptr->may_skip_backward = true;
825    info_ptr->may_skip_forward = true;
826  } else {
827    jlong freq = performance_frequency;
828    if (freq < NANOSECS_PER_SEC) {
829      // the performance counter is 64 bits and we will
830      // be multiplying it -- so no wrap in 64 bits
831      info_ptr->max_value = ALL_64_BITS;
832    } else if (freq > NANOSECS_PER_SEC) {
833      // use the max value the counter can reach to
834      // determine the max value which could be returned
835      julong max_counter = (julong)ALL_64_BITS;
836      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
837    } else {
838      // the performance counter is 64 bits and we will
839      // be using it directly -- so no wrap in 64 bits
840      info_ptr->max_value = ALL_64_BITS;
841    }
842
843    // using a counter, so no skipping
844    info_ptr->may_skip_backward = false;
845    info_ptr->may_skip_forward = false;
846  }
847  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
848}
849
850char* os::local_time_string(char *buf, size_t buflen) {
851  SYSTEMTIME st;
852  GetLocalTime(&st);
853  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
854               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
855  return buf;
856}
857
858bool os::getTimesSecs(double* process_real_time,
859                     double* process_user_time,
860                     double* process_system_time) {
861  HANDLE h_process = GetCurrentProcess();
862  FILETIME create_time, exit_time, kernel_time, user_time;
863  BOOL result = GetProcessTimes(h_process,
864                               &create_time,
865                               &exit_time,
866                               &kernel_time,
867                               &user_time);
868  if (result != 0) {
869    FILETIME wt;
870    GetSystemTimeAsFileTime(&wt);
871    jlong rtc_millis = windows_to_java_time(wt);
872    jlong user_millis = windows_to_java_time(user_time);
873    jlong system_millis = windows_to_java_time(kernel_time);
874    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
875    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
876    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
877    return true;
878  } else {
879    return false;
880  }
881}
882
883void os::shutdown() {
884
885  // allow PerfMemory to attempt cleanup of any persistent resources
886  perfMemory_exit();
887
888  // flush buffered output, finish log files
889  ostream_abort();
890
891  // Check for abort hook
892  abort_hook_t abort_hook = Arguments::abort_hook();
893  if (abort_hook != NULL) {
894    abort_hook();
895  }
896}
897
898
899static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
900                                            PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
901
902void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
903  HINSTANCE dbghelp;
904  EXCEPTION_POINTERS ep;
905  MINIDUMP_EXCEPTION_INFORMATION mei;
906  MINIDUMP_EXCEPTION_INFORMATION* pmei;
907
908  HANDLE hProcess = GetCurrentProcess();
909  DWORD processId = GetCurrentProcessId();
910  HANDLE dumpFile;
911  MINIDUMP_TYPE dumpType;
912  static const char* cwd;
913
914  // If running on a client version of Windows and user has not explicitly enabled dumping
915  if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
916    VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
917    return;
918    // If running on a server version of Windows and user has explictly disabled dumping
919  } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
920    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
921    return;
922  }
923
924  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
925
926  if (dbghelp == NULL) {
927    VMError::report_coredump_status("Failed to load dbghelp.dll", false);
928    return;
929  }
930
931  _MiniDumpWriteDump = CAST_TO_FN_PTR(
932    BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
933    PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
934    GetProcAddress(dbghelp, "MiniDumpWriteDump"));
935
936  if (_MiniDumpWriteDump == NULL) {
937    VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
938    return;
939  }
940
941  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
942
943// Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
944// API_VERSION_NUMBER 11 or higher contains the ones we want though
945#if API_VERSION_NUMBER >= 11
946  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
947    MiniDumpWithUnloadedModules);
948#endif
949
950  cwd = get_current_directory(NULL, 0);
951  jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
952  dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
953
954  if (dumpFile == INVALID_HANDLE_VALUE) {
955    VMError::report_coredump_status("Failed to create file for dumping", false);
956    return;
957  }
958  if (exceptionRecord != NULL && contextRecord != NULL) {
959    ep.ContextRecord = (PCONTEXT) contextRecord;
960    ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
961
962    mei.ThreadId = GetCurrentThreadId();
963    mei.ExceptionPointers = &ep;
964    pmei = &mei;
965  } else {
966    pmei = NULL;
967  }
968
969
970  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
971  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
972  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
973      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
974    VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
975  } else {
976    VMError::report_coredump_status(buffer, true);
977  }
978
979  CloseHandle(dumpFile);
980}
981
982
983
984void os::abort(bool dump_core)
985{
986  os::shutdown();
987  // no core dump on Windows
988  ::exit(1);
989}
990
991// Die immediately, no exit hook, no abort hook, no cleanup.
992void os::die() {
993  _exit(-1);
994}
995
996// Directory routines copied from src/win32/native/java/io/dirent_md.c
997//  * dirent_md.c       1.15 00/02/02
998//
999// The declarations for DIR and struct dirent are in jvm_win32.h.
1000
1001/* Caller must have already run dirname through JVM_NativePath, which removes
1002   duplicate slashes and converts all instances of '/' into '\\'. */
1003
1004DIR *
1005os::opendir(const char *dirname)
1006{
1007    assert(dirname != NULL, "just checking");   // hotspot change
1008    DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1009    DWORD fattr;                                // hotspot change
1010    char alt_dirname[4] = { 0, 0, 0, 0 };
1011
1012    if (dirp == 0) {
1013        errno = ENOMEM;
1014        return 0;
1015    }
1016
1017    /*
1018     * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1019     * as a directory in FindFirstFile().  We detect this case here and
1020     * prepend the current drive name.
1021     */
1022    if (dirname[1] == '\0' && dirname[0] == '\\') {
1023        alt_dirname[0] = _getdrive() + 'A' - 1;
1024        alt_dirname[1] = ':';
1025        alt_dirname[2] = '\\';
1026        alt_dirname[3] = '\0';
1027        dirname = alt_dirname;
1028    }
1029
1030    dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1031    if (dirp->path == 0) {
1032        free(dirp, mtInternal);
1033        errno = ENOMEM;
1034        return 0;
1035    }
1036    strcpy(dirp->path, dirname);
1037
1038    fattr = GetFileAttributes(dirp->path);
1039    if (fattr == 0xffffffff) {
1040        free(dirp->path, mtInternal);
1041        free(dirp, mtInternal);
1042        errno = ENOENT;
1043        return 0;
1044    } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1045        free(dirp->path, mtInternal);
1046        free(dirp, mtInternal);
1047        errno = ENOTDIR;
1048        return 0;
1049    }
1050
1051    /* Append "*.*", or possibly "\\*.*", to path */
1052    if (dirp->path[1] == ':'
1053        && (dirp->path[2] == '\0'
1054            || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1055        /* No '\\' needed for cases like "Z:" or "Z:\" */
1056        strcat(dirp->path, "*.*");
1057    } else {
1058        strcat(dirp->path, "\\*.*");
1059    }
1060
1061    dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1062    if (dirp->handle == INVALID_HANDLE_VALUE) {
1063        if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1064            free(dirp->path, mtInternal);
1065            free(dirp, mtInternal);
1066            errno = EACCES;
1067            return 0;
1068        }
1069    }
1070    return dirp;
1071}
1072
1073/* parameter dbuf unused on Windows */
1074
1075struct dirent *
1076os::readdir(DIR *dirp, dirent *dbuf)
1077{
1078    assert(dirp != NULL, "just checking");      // hotspot change
1079    if (dirp->handle == INVALID_HANDLE_VALUE) {
1080        return 0;
1081    }
1082
1083    strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1084
1085    if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1086        if (GetLastError() == ERROR_INVALID_HANDLE) {
1087            errno = EBADF;
1088            return 0;
1089        }
1090        FindClose(dirp->handle);
1091        dirp->handle = INVALID_HANDLE_VALUE;
1092    }
1093
1094    return &dirp->dirent;
1095}
1096
1097int
1098os::closedir(DIR *dirp)
1099{
1100    assert(dirp != NULL, "just checking");      // hotspot change
1101    if (dirp->handle != INVALID_HANDLE_VALUE) {
1102        if (!FindClose(dirp->handle)) {
1103            errno = EBADF;
1104            return -1;
1105        }
1106        dirp->handle = INVALID_HANDLE_VALUE;
1107    }
1108    free(dirp->path, mtInternal);
1109    free(dirp, mtInternal);
1110    return 0;
1111}
1112
1113// This must be hard coded because it's the system's temporary
1114// directory not the java application's temp directory, ala java.io.tmpdir.
1115const char* os::get_temp_directory() {
1116  static char path_buf[MAX_PATH];
1117  if (GetTempPath(MAX_PATH, path_buf)>0)
1118    return path_buf;
1119  else{
1120    path_buf[0]='\0';
1121    return path_buf;
1122  }
1123}
1124
1125static bool file_exists(const char* filename) {
1126  if (filename == NULL || strlen(filename) == 0) {
1127    return false;
1128  }
1129  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1130}
1131
1132bool os::dll_build_name(char *buffer, size_t buflen,
1133                        const char* pname, const char* fname) {
1134  bool retval = false;
1135  const size_t pnamelen = pname ? strlen(pname) : 0;
1136  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1137
1138  // Return error on buffer overflow.
1139  if (pnamelen + strlen(fname) + 10 > buflen) {
1140    return retval;
1141  }
1142
1143  if (pnamelen == 0) {
1144    jio_snprintf(buffer, buflen, "%s.dll", fname);
1145    retval = true;
1146  } else if (c == ':' || c == '\\') {
1147    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1148    retval = true;
1149  } else if (strchr(pname, *os::path_separator()) != NULL) {
1150    int n;
1151    char** pelements = split_path(pname, &n);
1152    for (int i = 0 ; i < n ; i++) {
1153      char* path = pelements[i];
1154      // Really shouldn't be NULL, but check can't hurt
1155      size_t plen = (path == NULL) ? 0 : strlen(path);
1156      if (plen == 0) {
1157        continue; // skip the empty path values
1158      }
1159      const char lastchar = path[plen - 1];
1160      if (lastchar == ':' || lastchar == '\\') {
1161        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1162      } else {
1163        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1164      }
1165      if (file_exists(buffer)) {
1166        retval = true;
1167        break;
1168      }
1169    }
1170    // release the storage
1171    for (int i = 0 ; i < n ; i++) {
1172      if (pelements[i] != NULL) {
1173        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1174      }
1175    }
1176    if (pelements != NULL) {
1177      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1178    }
1179  } else {
1180    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1181    retval = true;
1182  }
1183  return retval;
1184}
1185
1186// Needs to be in os specific directory because windows requires another
1187// header file <direct.h>
1188const char* os::get_current_directory(char *buf, int buflen) {
1189  return _getcwd(buf, buflen);
1190}
1191
1192//-----------------------------------------------------------
1193// Helper functions for fatal error handler
1194#ifdef _WIN64
1195// Helper routine which returns true if address in
1196// within the NTDLL address space.
1197//
1198static bool _addr_in_ntdll( address addr )
1199{
1200  HMODULE hmod;
1201  MODULEINFO minfo;
1202
1203  hmod = GetModuleHandle("NTDLL.DLL");
1204  if ( hmod == NULL ) return false;
1205  if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1206                               &minfo, sizeof(MODULEINFO)) )
1207    return false;
1208
1209  if ( (addr >= minfo.lpBaseOfDll) &&
1210       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1211    return true;
1212  else
1213    return false;
1214}
1215#endif
1216
1217
1218// Enumerate all modules for a given process ID
1219//
1220// Notice that Windows 95/98/Me and Windows NT/2000/XP have
1221// different API for doing this. We use PSAPI.DLL on NT based
1222// Windows and ToolHelp on 95/98/Me.
1223
1224// Callback function that is called by enumerate_modules() on
1225// every DLL module.
1226// Input parameters:
1227//    int       pid,
1228//    char*     module_file_name,
1229//    address   module_base_addr,
1230//    unsigned  module_size,
1231//    void*     param
1232typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1233
1234// enumerate_modules for Windows NT, using PSAPI
1235static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1236{
1237  HANDLE   hProcess ;
1238
1239# define MAX_NUM_MODULES 128
1240  HMODULE     modules[MAX_NUM_MODULES];
1241  static char filename[ MAX_PATH ];
1242  int         result = 0;
1243
1244  if (!os::PSApiDll::PSApiAvailable()) {
1245    return 0;
1246  }
1247
1248  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1249                         FALSE, pid ) ;
1250  if (hProcess == NULL) return 0;
1251
1252  DWORD size_needed;
1253  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1254                           sizeof(modules), &size_needed)) {
1255      CloseHandle( hProcess );
1256      return 0;
1257  }
1258
1259  // number of modules that are currently loaded
1260  int num_modules = size_needed / sizeof(HMODULE);
1261
1262  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1263    // Get Full pathname:
1264    if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1265                             filename, sizeof(filename))) {
1266        filename[0] = '\0';
1267    }
1268
1269    MODULEINFO modinfo;
1270    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1271                               &modinfo, sizeof(modinfo))) {
1272        modinfo.lpBaseOfDll = NULL;
1273        modinfo.SizeOfImage = 0;
1274    }
1275
1276    // Invoke callback function
1277    result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1278                  modinfo.SizeOfImage, param);
1279    if (result) break;
1280  }
1281
1282  CloseHandle( hProcess ) ;
1283  return result;
1284}
1285
1286
1287// enumerate_modules for Windows 95/98/ME, using TOOLHELP
1288static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1289{
1290  HANDLE                hSnapShot ;
1291  static MODULEENTRY32  modentry ;
1292  int                   result = 0;
1293
1294  if (!os::Kernel32Dll::HelpToolsAvailable()) {
1295    return 0;
1296  }
1297
1298  // Get a handle to a Toolhelp snapshot of the system
1299  hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1300  if( hSnapShot == INVALID_HANDLE_VALUE ) {
1301      return FALSE ;
1302  }
1303
1304  // iterate through all modules
1305  modentry.dwSize = sizeof(MODULEENTRY32) ;
1306  bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1307
1308  while( not_done ) {
1309    // invoke the callback
1310    result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1311                modentry.modBaseSize, param);
1312    if (result) break;
1313
1314    modentry.dwSize = sizeof(MODULEENTRY32) ;
1315    not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1316  }
1317
1318  CloseHandle(hSnapShot);
1319  return result;
1320}
1321
1322int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1323{
1324  // Get current process ID if caller doesn't provide it.
1325  if (!pid) pid = os::current_process_id();
1326
1327  if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1328  else                    return _enumerate_modules_windows(pid, func, param);
1329}
1330
1331struct _modinfo {
1332   address addr;
1333   char*   full_path;   // point to a char buffer
1334   int     buflen;      // size of the buffer
1335   address base_addr;
1336};
1337
1338static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1339                                  unsigned size, void * param) {
1340   struct _modinfo *pmod = (struct _modinfo *)param;
1341   if (!pmod) return -1;
1342
1343   if (base_addr     <= pmod->addr &&
1344       base_addr+size > pmod->addr) {
1345     // if a buffer is provided, copy path name to the buffer
1346     if (pmod->full_path) {
1347       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1348     }
1349     pmod->base_addr = base_addr;
1350     return 1;
1351   }
1352   return 0;
1353}
1354
1355bool os::dll_address_to_library_name(address addr, char* buf,
1356                                     int buflen, int* offset) {
1357// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1358//       return the full path to the DLL file, sometimes it returns path
1359//       to the corresponding PDB file (debug info); sometimes it only
1360//       returns partial path, which makes life painful.
1361
1362   struct _modinfo mi;
1363   mi.addr      = addr;
1364   mi.full_path = buf;
1365   mi.buflen    = buflen;
1366   int pid = os::current_process_id();
1367   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1368      // buf already contains path name
1369      if (offset) *offset = addr - mi.base_addr;
1370      return true;
1371   } else {
1372      if (buf) buf[0] = '\0';
1373      if (offset) *offset = -1;
1374      return false;
1375   }
1376}
1377
1378bool os::dll_address_to_function_name(address addr, char *buf,
1379                                      int buflen, int *offset) {
1380  if (Decoder::decode(addr, buf, buflen, offset)) {
1381    return true;
1382  }
1383  if (offset != NULL)  *offset  = -1;
1384  if (buf != NULL) buf[0] = '\0';
1385  return false;
1386}
1387
1388// save the start and end address of jvm.dll into param[0] and param[1]
1389static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1390                    unsigned size, void * param) {
1391   if (!param) return -1;
1392
1393   if (base_addr     <= (address)_locate_jvm_dll &&
1394       base_addr+size > (address)_locate_jvm_dll) {
1395         ((address*)param)[0] = base_addr;
1396         ((address*)param)[1] = base_addr + size;
1397         return 1;
1398   }
1399   return 0;
1400}
1401
1402address vm_lib_location[2];    // start and end address of jvm.dll
1403
1404// check if addr is inside jvm.dll
1405bool os::address_is_in_vm(address addr) {
1406  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1407    int pid = os::current_process_id();
1408    if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1409      assert(false, "Can't find jvm module.");
1410      return false;
1411    }
1412  }
1413
1414  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1415}
1416
1417// print module info; param is outputStream*
1418static int _print_module(int pid, char* fname, address base,
1419                         unsigned size, void* param) {
1420   if (!param) return -1;
1421
1422   outputStream* st = (outputStream*)param;
1423
1424   address end_addr = base + size;
1425   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1426   return 0;
1427}
1428
1429// Loads .dll/.so and
1430// in case of error it checks if .dll/.so was built for the
1431// same architecture as Hotspot is running on
1432void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1433{
1434  void * result = LoadLibrary(name);
1435  if (result != NULL)
1436  {
1437    return result;
1438  }
1439
1440  DWORD errcode = GetLastError();
1441  if (errcode == ERROR_MOD_NOT_FOUND) {
1442    strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1443    ebuf[ebuflen-1]='\0';
1444    return NULL;
1445  }
1446
1447  // Parsing dll below
1448  // If we can read dll-info and find that dll was built
1449  // for an architecture other than Hotspot is running in
1450  // - then print to buffer "DLL was built for a different architecture"
1451  // else call os::lasterror to obtain system error message
1452
1453  // Read system error message into ebuf
1454  // It may or may not be overwritten below (in the for loop and just above)
1455  lasterror(ebuf, (size_t) ebuflen);
1456  ebuf[ebuflen-1]='\0';
1457  int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1458  if (file_descriptor<0)
1459  {
1460    return NULL;
1461  }
1462
1463  uint32_t signature_offset;
1464  uint16_t lib_arch=0;
1465  bool failed_to_get_lib_arch=
1466  (
1467    //Go to position 3c in the dll
1468    (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1469    ||
1470    // Read loacation of signature
1471    (sizeof(signature_offset)!=
1472      (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1473    ||
1474    //Go to COFF File Header in dll
1475    //that is located after"signature" (4 bytes long)
1476    (os::seek_to_file_offset(file_descriptor,
1477      signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1478    ||
1479    //Read field that contains code of architecture
1480    // that dll was build for
1481    (sizeof(lib_arch)!=
1482      (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1483  );
1484
1485  ::close(file_descriptor);
1486  if (failed_to_get_lib_arch)
1487  {
1488    // file i/o error - report os::lasterror(...) msg
1489    return NULL;
1490  }
1491
1492  typedef struct
1493  {
1494    uint16_t arch_code;
1495    char* arch_name;
1496  } arch_t;
1497
1498  static const arch_t arch_array[]={
1499    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1500    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1501    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1502  };
1503  #if   (defined _M_IA64)
1504    static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1505  #elif (defined _M_AMD64)
1506    static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1507  #elif (defined _M_IX86)
1508    static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1509  #else
1510    #error Method os::dll_load requires that one of following \
1511           is defined :_M_IA64,_M_AMD64 or _M_IX86
1512  #endif
1513
1514
1515  // Obtain a string for printf operation
1516  // lib_arch_str shall contain string what platform this .dll was built for
1517  // running_arch_str shall string contain what platform Hotspot was built for
1518  char *running_arch_str=NULL,*lib_arch_str=NULL;
1519  for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1520  {
1521    if (lib_arch==arch_array[i].arch_code)
1522      lib_arch_str=arch_array[i].arch_name;
1523    if (running_arch==arch_array[i].arch_code)
1524      running_arch_str=arch_array[i].arch_name;
1525  }
1526
1527  assert(running_arch_str,
1528    "Didn't find runing architecture code in arch_array");
1529
1530  // If the architure is right
1531  // but some other error took place - report os::lasterror(...) msg
1532  if (lib_arch == running_arch)
1533  {
1534    return NULL;
1535  }
1536
1537  if (lib_arch_str!=NULL)
1538  {
1539    ::_snprintf(ebuf, ebuflen-1,
1540      "Can't load %s-bit .dll on a %s-bit platform",
1541      lib_arch_str,running_arch_str);
1542  }
1543  else
1544  {
1545    // don't know what architecture this dll was build for
1546    ::_snprintf(ebuf, ebuflen-1,
1547      "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1548      lib_arch,running_arch_str);
1549  }
1550
1551  return NULL;
1552}
1553
1554
1555void os::print_dll_info(outputStream *st) {
1556   int pid = os::current_process_id();
1557   st->print_cr("Dynamic libraries:");
1558   enumerate_modules(pid, _print_module, (void *)st);
1559}
1560
1561void os::print_os_info_brief(outputStream* st) {
1562  os::print_os_info(st);
1563}
1564
1565void os::print_os_info(outputStream* st) {
1566  st->print("OS:");
1567
1568  os::win32::print_windows_version(st);
1569}
1570
1571void os::win32::print_windows_version(outputStream* st) {
1572  OSVERSIONINFOEX osvi;
1573  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1574  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1575
1576  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1577    st->print_cr("N/A");
1578    return;
1579  }
1580
1581  int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1582  if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1583    switch (os_vers) {
1584    case 3051: st->print(" Windows NT 3.51"); break;
1585    case 4000: st->print(" Windows NT 4.0"); break;
1586    case 5000: st->print(" Windows 2000"); break;
1587    case 5001: st->print(" Windows XP"); break;
1588    case 5002:
1589    case 6000:
1590    case 6001:
1591    case 6002: {
1592      // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1593      // find out whether we are running on 64 bit processor or not.
1594      SYSTEM_INFO si;
1595      ZeroMemory(&si, sizeof(SYSTEM_INFO));
1596        if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
1597          GetSystemInfo(&si);
1598      } else {
1599        os::Kernel32Dll::GetNativeSystemInfo(&si);
1600      }
1601      if (os_vers == 5002) {
1602        if (osvi.wProductType == VER_NT_WORKSTATION &&
1603            si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1604          st->print(" Windows XP x64 Edition");
1605        else
1606            st->print(" Windows Server 2003 family");
1607      } else if (os_vers == 6000) {
1608        if (osvi.wProductType == VER_NT_WORKSTATION)
1609            st->print(" Windows Vista");
1610        else
1611            st->print(" Windows Server 2008");
1612        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1613            st->print(" , 64 bit");
1614      } else if (os_vers == 6001) {
1615        if (osvi.wProductType == VER_NT_WORKSTATION) {
1616            st->print(" Windows 7");
1617        } else {
1618            // Unrecognized windows, print out its major and minor versions
1619            st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1620        }
1621        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1622            st->print(" , 64 bit");
1623      } else if (os_vers == 6002) {
1624        if (osvi.wProductType == VER_NT_WORKSTATION) {
1625            st->print(" Windows 8");
1626        } else {
1627            st->print(" Windows Server 2012");
1628        }
1629        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1630            st->print(" , 64 bit");
1631      } else { // future os
1632        // Unrecognized windows, print out its major and minor versions
1633        st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1634        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1635            st->print(" , 64 bit");
1636      }
1637      break;
1638    }
1639    default: // future windows, print out its major and minor versions
1640      st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1641    }
1642  } else {
1643    switch (os_vers) {
1644    case 4000: st->print(" Windows 95"); break;
1645    case 4010: st->print(" Windows 98"); break;
1646    case 4090: st->print(" Windows Me"); break;
1647    default: // future windows, print out its major and minor versions
1648      st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1649    }
1650  }
1651  st->print(" Build %d", osvi.dwBuildNumber);
1652  st->print(" %s", osvi.szCSDVersion);           // service pack
1653  st->cr();
1654}
1655
1656void os::pd_print_cpu_info(outputStream* st) {
1657  // Nothing to do for now.
1658}
1659
1660void os::print_memory_info(outputStream* st) {
1661  st->print("Memory:");
1662  st->print(" %dk page", os::vm_page_size()>>10);
1663
1664  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1665  // value if total memory is larger than 4GB
1666  MEMORYSTATUSEX ms;
1667  ms.dwLength = sizeof(ms);
1668  GlobalMemoryStatusEx(&ms);
1669
1670  st->print(", physical %uk", os::physical_memory() >> 10);
1671  st->print("(%uk free)", os::available_memory() >> 10);
1672
1673  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1674  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1675  st->cr();
1676}
1677
1678void os::print_siginfo(outputStream *st, void *siginfo) {
1679  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1680  st->print("siginfo:");
1681  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1682
1683  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1684      er->NumberParameters >= 2) {
1685      switch (er->ExceptionInformation[0]) {
1686      case 0: st->print(", reading address"); break;
1687      case 1: st->print(", writing address"); break;
1688      default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1689                            er->ExceptionInformation[0]);
1690      }
1691      st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1692  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1693             er->NumberParameters >= 2 && UseSharedSpaces) {
1694    FileMapInfo* mapinfo = FileMapInfo::current_info();
1695    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1696      st->print("\n\nError accessing class data sharing archive."       \
1697                " Mapped file inaccessible during execution, "          \
1698                " possible disk/network problem.");
1699    }
1700  } else {
1701    int num = er->NumberParameters;
1702    if (num > 0) {
1703      st->print(", ExceptionInformation=");
1704      for (int i = 0; i < num; i++) {
1705        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1706      }
1707    }
1708  }
1709  st->cr();
1710}
1711
1712void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1713  // do nothing
1714}
1715
1716static char saved_jvm_path[MAX_PATH] = {0};
1717
1718// Find the full path to the current module, jvm.dll or jvm_g.dll
1719void os::jvm_path(char *buf, jint buflen) {
1720  // Error checking.
1721  if (buflen < MAX_PATH) {
1722    assert(false, "must use a large-enough buffer");
1723    buf[0] = '\0';
1724    return;
1725  }
1726  // Lazy resolve the path to current module.
1727  if (saved_jvm_path[0] != 0) {
1728    strcpy(buf, saved_jvm_path);
1729    return;
1730  }
1731
1732  buf[0] = '\0';
1733  if (Arguments::created_by_gamma_launcher()) {
1734     // Support for the gamma launcher. Check for an
1735     // JAVA_HOME environment variable
1736     // and fix up the path so it looks like
1737     // libjvm.so is installed there (append a fake suffix
1738     // hotspot/libjvm.so).
1739     char* java_home_var = ::getenv("JAVA_HOME");
1740     if (java_home_var != NULL && java_home_var[0] != 0) {
1741
1742        strncpy(buf, java_home_var, buflen);
1743
1744        // determine if this is a legacy image or modules image
1745        // modules image doesn't have "jre" subdirectory
1746        size_t len = strlen(buf);
1747        char* jrebin_p = buf + len;
1748        jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1749        if (0 != _access(buf, 0)) {
1750          jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1751        }
1752        len = strlen(buf);
1753        jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1754     }
1755  }
1756
1757  if(buf[0] == '\0') {
1758  GetModuleFileName(vm_lib_handle, buf, buflen);
1759  }
1760  strcpy(saved_jvm_path, buf);
1761}
1762
1763
1764void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1765#ifndef _WIN64
1766  st->print("_");
1767#endif
1768}
1769
1770
1771void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1772#ifndef _WIN64
1773  st->print("@%d", args_size  * sizeof(int));
1774#endif
1775}
1776
1777// This method is a copy of JDK's sysGetLastErrorString
1778// from src/windows/hpi/src/system_md.c
1779
1780size_t os::lasterror(char* buf, size_t len) {
1781  DWORD errval;
1782
1783  if ((errval = GetLastError()) != 0) {
1784    // DOS error
1785    size_t n = (size_t)FormatMessage(
1786          FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1787          NULL,
1788          errval,
1789          0,
1790          buf,
1791          (DWORD)len,
1792          NULL);
1793    if (n > 3) {
1794      // Drop final '.', CR, LF
1795      if (buf[n - 1] == '\n') n--;
1796      if (buf[n - 1] == '\r') n--;
1797      if (buf[n - 1] == '.') n--;
1798      buf[n] = '\0';
1799    }
1800    return n;
1801  }
1802
1803  if (errno != 0) {
1804    // C runtime error that has no corresponding DOS error code
1805    const char* s = strerror(errno);
1806    size_t n = strlen(s);
1807    if (n >= len) n = len - 1;
1808    strncpy(buf, s, n);
1809    buf[n] = '\0';
1810    return n;
1811  }
1812
1813  return 0;
1814}
1815
1816int os::get_last_error() {
1817  DWORD error = GetLastError();
1818  if (error == 0)
1819    error = errno;
1820  return (int)error;
1821}
1822
1823// sun.misc.Signal
1824// NOTE that this is a workaround for an apparent kernel bug where if
1825// a signal handler for SIGBREAK is installed then that signal handler
1826// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1827// See bug 4416763.
1828static void (*sigbreakHandler)(int) = NULL;
1829
1830static void UserHandler(int sig, void *siginfo, void *context) {
1831  os::signal_notify(sig);
1832  // We need to reinstate the signal handler each time...
1833  os::signal(sig, (void*)UserHandler);
1834}
1835
1836void* os::user_handler() {
1837  return (void*) UserHandler;
1838}
1839
1840void* os::signal(int signal_number, void* handler) {
1841  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1842    void (*oldHandler)(int) = sigbreakHandler;
1843    sigbreakHandler = (void (*)(int)) handler;
1844    return (void*) oldHandler;
1845  } else {
1846    return (void*)::signal(signal_number, (void (*)(int))handler);
1847  }
1848}
1849
1850void os::signal_raise(int signal_number) {
1851  raise(signal_number);
1852}
1853
1854// The Win32 C runtime library maps all console control events other than ^C
1855// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1856// logoff, and shutdown events.  We therefore install our own console handler
1857// that raises SIGTERM for the latter cases.
1858//
1859static BOOL WINAPI consoleHandler(DWORD event) {
1860  switch(event) {
1861    case CTRL_C_EVENT:
1862      if (is_error_reported()) {
1863        // Ctrl-C is pressed during error reporting, likely because the error
1864        // handler fails to abort. Let VM die immediately.
1865        os::die();
1866      }
1867
1868      os::signal_raise(SIGINT);
1869      return TRUE;
1870      break;
1871    case CTRL_BREAK_EVENT:
1872      if (sigbreakHandler != NULL) {
1873        (*sigbreakHandler)(SIGBREAK);
1874      }
1875      return TRUE;
1876      break;
1877    case CTRL_CLOSE_EVENT:
1878    case CTRL_LOGOFF_EVENT:
1879    case CTRL_SHUTDOWN_EVENT:
1880      os::signal_raise(SIGTERM);
1881      return TRUE;
1882      break;
1883    default:
1884      break;
1885  }
1886  return FALSE;
1887}
1888
1889/*
1890 * The following code is moved from os.cpp for making this
1891 * code platform specific, which it is by its very nature.
1892 */
1893
1894// Return maximum OS signal used + 1 for internal use only
1895// Used as exit signal for signal_thread
1896int os::sigexitnum_pd(){
1897  return NSIG;
1898}
1899
1900// a counter for each possible signal value, including signal_thread exit signal
1901static volatile jint pending_signals[NSIG+1] = { 0 };
1902static HANDLE sig_sem;
1903
1904void os::signal_init_pd() {
1905  // Initialize signal structures
1906  memset((void*)pending_signals, 0, sizeof(pending_signals));
1907
1908  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1909
1910  // Programs embedding the VM do not want it to attempt to receive
1911  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1912  // shutdown hooks mechanism introduced in 1.3.  For example, when
1913  // the VM is run as part of a Windows NT service (i.e., a servlet
1914  // engine in a web server), the correct behavior is for any console
1915  // control handler to return FALSE, not TRUE, because the OS's
1916  // "final" handler for such events allows the process to continue if
1917  // it is a service (while terminating it if it is not a service).
1918  // To make this behavior uniform and the mechanism simpler, we
1919  // completely disable the VM's usage of these console events if -Xrs
1920  // (=ReduceSignalUsage) is specified.  This means, for example, that
1921  // the CTRL-BREAK thread dump mechanism is also disabled in this
1922  // case.  See bugs 4323062, 4345157, and related bugs.
1923
1924  if (!ReduceSignalUsage) {
1925    // Add a CTRL-C handler
1926    SetConsoleCtrlHandler(consoleHandler, TRUE);
1927  }
1928}
1929
1930void os::signal_notify(int signal_number) {
1931  BOOL ret;
1932
1933  Atomic::inc(&pending_signals[signal_number]);
1934  ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1935  assert(ret != 0, "ReleaseSemaphore() failed");
1936}
1937
1938static int check_pending_signals(bool wait_for_signal) {
1939  DWORD ret;
1940  while (true) {
1941    for (int i = 0; i < NSIG + 1; i++) {
1942      jint n = pending_signals[i];
1943      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1944        return i;
1945      }
1946    }
1947    if (!wait_for_signal) {
1948      return -1;
1949    }
1950
1951    JavaThread *thread = JavaThread::current();
1952
1953    ThreadBlockInVM tbivm(thread);
1954
1955    bool threadIsSuspended;
1956    do {
1957      thread->set_suspend_equivalent();
1958      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1959      ret = ::WaitForSingleObject(sig_sem, INFINITE);
1960      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1961
1962      // were we externally suspended while we were waiting?
1963      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1964      if (threadIsSuspended) {
1965        //
1966        // The semaphore has been incremented, but while we were waiting
1967        // another thread suspended us. We don't want to continue running
1968        // while suspended because that would surprise the thread that
1969        // suspended us.
1970        //
1971        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1972        assert(ret != 0, "ReleaseSemaphore() failed");
1973
1974        thread->java_suspend_self();
1975      }
1976    } while (threadIsSuspended);
1977  }
1978}
1979
1980int os::signal_lookup() {
1981  return check_pending_signals(false);
1982}
1983
1984int os::signal_wait() {
1985  return check_pending_signals(true);
1986}
1987
1988// Implicit OS exception handling
1989
1990LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1991  JavaThread* thread = JavaThread::current();
1992  // Save pc in thread
1993#ifdef _M_IA64
1994  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1995  // Set pc to handler
1996  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1997#elif _M_AMD64
1998  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1999  // Set pc to handler
2000  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2001#else
2002  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
2003  // Set pc to handler
2004  exceptionInfo->ContextRecord->Eip = (LONG)handler;
2005#endif
2006
2007  // Continue the execution
2008  return EXCEPTION_CONTINUE_EXECUTION;
2009}
2010
2011
2012// Used for PostMortemDump
2013extern "C" void safepoints();
2014extern "C" void find(int x);
2015extern "C" void events();
2016
2017// According to Windows API documentation, an illegal instruction sequence should generate
2018// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2019// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2020// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2021
2022#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2023
2024// From "Execution Protection in the Windows Operating System" draft 0.35
2025// Once a system header becomes available, the "real" define should be
2026// included or copied here.
2027#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2028
2029#define def_excpt(val) #val, val
2030
2031struct siglabel {
2032  char *name;
2033  int   number;
2034};
2035
2036// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2037// C++ compiler contain this error code. Because this is a compiler-generated
2038// error, the code is not listed in the Win32 API header files.
2039// The code is actually a cryptic mnemonic device, with the initial "E"
2040// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2041// ASCII values of "msc".
2042
2043#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2044
2045
2046struct siglabel exceptlabels[] = {
2047    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2048    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2049    def_excpt(EXCEPTION_BREAKPOINT),
2050    def_excpt(EXCEPTION_SINGLE_STEP),
2051    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2052    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2053    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2054    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2055    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2056    def_excpt(EXCEPTION_FLT_OVERFLOW),
2057    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2058    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2059    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2060    def_excpt(EXCEPTION_INT_OVERFLOW),
2061    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2062    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2063    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2064    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2065    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2066    def_excpt(EXCEPTION_STACK_OVERFLOW),
2067    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2068    def_excpt(EXCEPTION_GUARD_PAGE),
2069    def_excpt(EXCEPTION_INVALID_HANDLE),
2070    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2071    NULL, 0
2072};
2073
2074const char* os::exception_name(int exception_code, char *buf, size_t size) {
2075  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2076    if (exceptlabels[i].number == exception_code) {
2077       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2078       return buf;
2079    }
2080  }
2081
2082  return NULL;
2083}
2084
2085//-----------------------------------------------------------------------------
2086LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2087  // handle exception caused by idiv; should only happen for -MinInt/-1
2088  // (division by zero is handled explicitly)
2089#ifdef _M_IA64
2090  assert(0, "Fix Handle_IDiv_Exception");
2091#elif _M_AMD64
2092  PCONTEXT ctx = exceptionInfo->ContextRecord;
2093  address pc = (address)ctx->Rip;
2094  assert(pc[0] == 0xF7, "not an idiv opcode");
2095  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2096  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2097  // set correct result values and continue after idiv instruction
2098  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2099  ctx->Rax = (DWORD)min_jint;      // result
2100  ctx->Rdx = (DWORD)0;             // remainder
2101  // Continue the execution
2102#else
2103  PCONTEXT ctx = exceptionInfo->ContextRecord;
2104  address pc = (address)ctx->Eip;
2105  assert(pc[0] == 0xF7, "not an idiv opcode");
2106  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2107  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2108  // set correct result values and continue after idiv instruction
2109  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2110  ctx->Eax = (DWORD)min_jint;      // result
2111  ctx->Edx = (DWORD)0;             // remainder
2112  // Continue the execution
2113#endif
2114  return EXCEPTION_CONTINUE_EXECUTION;
2115}
2116
2117#ifndef  _WIN64
2118//-----------------------------------------------------------------------------
2119LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2120  // handle exception caused by native method modifying control word
2121  PCONTEXT ctx = exceptionInfo->ContextRecord;
2122  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2123
2124  switch (exception_code) {
2125    case EXCEPTION_FLT_DENORMAL_OPERAND:
2126    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2127    case EXCEPTION_FLT_INEXACT_RESULT:
2128    case EXCEPTION_FLT_INVALID_OPERATION:
2129    case EXCEPTION_FLT_OVERFLOW:
2130    case EXCEPTION_FLT_STACK_CHECK:
2131    case EXCEPTION_FLT_UNDERFLOW:
2132      jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2133      if (fp_control_word != ctx->FloatSave.ControlWord) {
2134        // Restore FPCW and mask out FLT exceptions
2135        ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2136        // Mask out pending FLT exceptions
2137        ctx->FloatSave.StatusWord &=  0xffffff00;
2138        return EXCEPTION_CONTINUE_EXECUTION;
2139      }
2140  }
2141
2142  if (prev_uef_handler != NULL) {
2143    // We didn't handle this exception so pass it to the previous
2144    // UnhandledExceptionFilter.
2145    return (prev_uef_handler)(exceptionInfo);
2146  }
2147
2148  return EXCEPTION_CONTINUE_SEARCH;
2149}
2150#else //_WIN64
2151/*
2152  On Windows, the mxcsr control bits are non-volatile across calls
2153  See also CR 6192333
2154  If EXCEPTION_FLT_* happened after some native method modified
2155  mxcsr - it is not a jvm fault.
2156  However should we decide to restore of mxcsr after a faulty
2157  native method we can uncomment following code
2158      jint MxCsr = INITIAL_MXCSR;
2159        // we can't use StubRoutines::addr_mxcsr_std()
2160        // because in Win64 mxcsr is not saved there
2161      if (MxCsr != ctx->MxCsr) {
2162        ctx->MxCsr = MxCsr;
2163        return EXCEPTION_CONTINUE_EXECUTION;
2164      }
2165
2166*/
2167#endif //_WIN64
2168
2169
2170// Fatal error reporting is single threaded so we can make this a
2171// static and preallocated.  If it's more than MAX_PATH silently ignore
2172// it.
2173static char saved_error_file[MAX_PATH] = {0};
2174
2175void os::set_error_file(const char *logfile) {
2176  if (strlen(logfile) <= MAX_PATH) {
2177    strncpy(saved_error_file, logfile, MAX_PATH);
2178  }
2179}
2180
2181static inline void report_error(Thread* t, DWORD exception_code,
2182                                address addr, void* siginfo, void* context) {
2183  VMError err(t, exception_code, addr, siginfo, context);
2184  err.report_and_die();
2185
2186  // If UseOsErrorReporting, this will return here and save the error file
2187  // somewhere where we can find it in the minidump.
2188}
2189
2190//-----------------------------------------------------------------------------
2191LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2192  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2193  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2194#ifdef _M_IA64
2195  address pc = (address) exceptionInfo->ContextRecord->StIIP;
2196#elif _M_AMD64
2197  address pc = (address) exceptionInfo->ContextRecord->Rip;
2198#else
2199  address pc = (address) exceptionInfo->ContextRecord->Eip;
2200#endif
2201  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2202
2203#ifndef _WIN64
2204  // Execution protection violation - win32 running on AMD64 only
2205  // Handled first to avoid misdiagnosis as a "normal" access violation;
2206  // This is safe to do because we have a new/unique ExceptionInformation
2207  // code for this condition.
2208  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2209    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2210    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2211    address addr = (address) exceptionRecord->ExceptionInformation[1];
2212
2213    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2214      int page_size = os::vm_page_size();
2215
2216      // Make sure the pc and the faulting address are sane.
2217      //
2218      // If an instruction spans a page boundary, and the page containing
2219      // the beginning of the instruction is executable but the following
2220      // page is not, the pc and the faulting address might be slightly
2221      // different - we still want to unguard the 2nd page in this case.
2222      //
2223      // 15 bytes seems to be a (very) safe value for max instruction size.
2224      bool pc_is_near_addr =
2225        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2226      bool instr_spans_page_boundary =
2227        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2228                         (intptr_t) page_size) > 0);
2229
2230      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2231        static volatile address last_addr =
2232          (address) os::non_memory_address_word();
2233
2234        // In conservative mode, don't unguard unless the address is in the VM
2235        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2236            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2237
2238          // Set memory to RWX and retry
2239          address page_start =
2240            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2241          bool res = os::protect_memory((char*) page_start, page_size,
2242                                        os::MEM_PROT_RWX);
2243
2244          if (PrintMiscellaneous && Verbose) {
2245            char buf[256];
2246            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2247                         "at " INTPTR_FORMAT
2248                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2249                         page_start, (res ? "success" : strerror(errno)));
2250            tty->print_raw_cr(buf);
2251          }
2252
2253          // Set last_addr so if we fault again at the same address, we don't
2254          // end up in an endless loop.
2255          //
2256          // There are two potential complications here.  Two threads trapping
2257          // at the same address at the same time could cause one of the
2258          // threads to think it already unguarded, and abort the VM.  Likely
2259          // very rare.
2260          //
2261          // The other race involves two threads alternately trapping at
2262          // different addresses and failing to unguard the page, resulting in
2263          // an endless loop.  This condition is probably even more unlikely
2264          // than the first.
2265          //
2266          // Although both cases could be avoided by using locks or thread
2267          // local last_addr, these solutions are unnecessary complication:
2268          // this handler is a best-effort safety net, not a complete solution.
2269          // It is disabled by default and should only be used as a workaround
2270          // in case we missed any no-execute-unsafe VM code.
2271
2272          last_addr = addr;
2273
2274          return EXCEPTION_CONTINUE_EXECUTION;
2275        }
2276      }
2277
2278      // Last unguard failed or not unguarding
2279      tty->print_raw_cr("Execution protection violation");
2280      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2281                   exceptionInfo->ContextRecord);
2282      return EXCEPTION_CONTINUE_SEARCH;
2283    }
2284  }
2285#endif // _WIN64
2286
2287  // Check to see if we caught the safepoint code in the
2288  // process of write protecting the memory serialization page.
2289  // It write enables the page immediately after protecting it
2290  // so just return.
2291  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2292    JavaThread* thread = (JavaThread*) t;
2293    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2294    address addr = (address) exceptionRecord->ExceptionInformation[1];
2295    if ( os::is_memory_serialize_page(thread, addr) ) {
2296      // Block current thread until the memory serialize page permission restored.
2297      os::block_on_serialize_page_trap();
2298      return EXCEPTION_CONTINUE_EXECUTION;
2299    }
2300  }
2301
2302  if (t != NULL && t->is_Java_thread()) {
2303    JavaThread* thread = (JavaThread*) t;
2304    bool in_java = thread->thread_state() == _thread_in_Java;
2305
2306    // Handle potential stack overflows up front.
2307    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2308      if (os::uses_stack_guard_pages()) {
2309#ifdef _M_IA64
2310        //
2311        // If it's a legal stack address continue, Windows will map it in.
2312        //
2313        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2314        address addr = (address) exceptionRecord->ExceptionInformation[1];
2315        if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2316          return EXCEPTION_CONTINUE_EXECUTION;
2317
2318        // The register save area is the same size as the memory stack
2319        // and starts at the page just above the start of the memory stack.
2320        // If we get a fault in this area, we've run out of register
2321        // stack.  If we are in java, try throwing a stack overflow exception.
2322        if (addr > thread->stack_base() &&
2323                      addr <= (thread->stack_base()+thread->stack_size()) ) {
2324          char buf[256];
2325          jio_snprintf(buf, sizeof(buf),
2326                       "Register stack overflow, addr:%p, stack_base:%p\n",
2327                       addr, thread->stack_base() );
2328          tty->print_raw_cr(buf);
2329          // If not in java code, return and hope for the best.
2330          return in_java ? Handle_Exception(exceptionInfo,
2331            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2332            :  EXCEPTION_CONTINUE_EXECUTION;
2333        }
2334#endif
2335        if (thread->stack_yellow_zone_enabled()) {
2336          // Yellow zone violation.  The o/s has unprotected the first yellow
2337          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2338          // update the enabled status, even if the zone contains only one page.
2339          thread->disable_stack_yellow_zone();
2340          // If not in java code, return and hope for the best.
2341          return in_java ? Handle_Exception(exceptionInfo,
2342            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2343            :  EXCEPTION_CONTINUE_EXECUTION;
2344        } else {
2345          // Fatal red zone violation.
2346          thread->disable_stack_red_zone();
2347          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2348          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2349                       exceptionInfo->ContextRecord);
2350          return EXCEPTION_CONTINUE_SEARCH;
2351        }
2352      } else if (in_java) {
2353        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2354        // a one-time-only guard page, which it has released to us.  The next
2355        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2356        return Handle_Exception(exceptionInfo,
2357          SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2358      } else {
2359        // Can only return and hope for the best.  Further stack growth will
2360        // result in an ACCESS_VIOLATION.
2361        return EXCEPTION_CONTINUE_EXECUTION;
2362      }
2363    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2364      // Either stack overflow or null pointer exception.
2365      if (in_java) {
2366        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2367        address addr = (address) exceptionRecord->ExceptionInformation[1];
2368        address stack_end = thread->stack_base() - thread->stack_size();
2369        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2370          // Stack overflow.
2371          assert(!os::uses_stack_guard_pages(),
2372            "should be caught by red zone code above.");
2373          return Handle_Exception(exceptionInfo,
2374            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2375        }
2376        //
2377        // Check for safepoint polling and implicit null
2378        // We only expect null pointers in the stubs (vtable)
2379        // the rest are checked explicitly now.
2380        //
2381        CodeBlob* cb = CodeCache::find_blob(pc);
2382        if (cb != NULL) {
2383          if (os::is_poll_address(addr)) {
2384            address stub = SharedRuntime::get_poll_stub(pc);
2385            return Handle_Exception(exceptionInfo, stub);
2386          }
2387        }
2388        {
2389#ifdef _WIN64
2390          //
2391          // If it's a legal stack address map the entire region in
2392          //
2393          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2394          address addr = (address) exceptionRecord->ExceptionInformation[1];
2395          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2396                  addr = (address)((uintptr_t)addr &
2397                         (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2398                  os::commit_memory((char *)addr, thread->stack_base() - addr,
2399                                    false );
2400                  return EXCEPTION_CONTINUE_EXECUTION;
2401          }
2402          else
2403#endif
2404          {
2405            // Null pointer exception.
2406#ifdef _M_IA64
2407            // We catch register stack overflows in compiled code by doing
2408            // an explicit compare and executing a st8(G0, G0) if the
2409            // BSP enters into our guard area.  We test for the overflow
2410            // condition and fall into the normal null pointer exception
2411            // code if BSP hasn't overflowed.
2412            if ( in_java ) {
2413              if(thread->register_stack_overflow()) {
2414                assert((address)exceptionInfo->ContextRecord->IntS3 ==
2415                                thread->register_stack_limit(),
2416                               "GR7 doesn't contain register_stack_limit");
2417                // Disable the yellow zone which sets the state that
2418                // we've got a stack overflow problem.
2419                if (thread->stack_yellow_zone_enabled()) {
2420                  thread->disable_stack_yellow_zone();
2421                }
2422                // Give us some room to process the exception
2423                thread->disable_register_stack_guard();
2424                // Update GR7 with the new limit so we can continue running
2425                // compiled code.
2426                exceptionInfo->ContextRecord->IntS3 =
2427                               (ULONGLONG)thread->register_stack_limit();
2428                return Handle_Exception(exceptionInfo,
2429                       SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2430              } else {
2431                //
2432                // Check for implicit null
2433                // We only expect null pointers in the stubs (vtable)
2434                // the rest are checked explicitly now.
2435                //
2436                if (((uintptr_t)addr) < os::vm_page_size() ) {
2437                  // an access to the first page of VM--assume it is a null pointer
2438                  address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2439                  if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2440                }
2441              }
2442            } // in_java
2443
2444            // IA64 doesn't use implicit null checking yet. So we shouldn't
2445            // get here.
2446            tty->print_raw_cr("Access violation, possible null pointer exception");
2447            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2448                         exceptionInfo->ContextRecord);
2449            return EXCEPTION_CONTINUE_SEARCH;
2450#else /* !IA64 */
2451
2452            // Windows 98 reports faulting addresses incorrectly
2453            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2454                !os::win32::is_nt()) {
2455              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2456              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2457            }
2458            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2459                         exceptionInfo->ContextRecord);
2460            return EXCEPTION_CONTINUE_SEARCH;
2461#endif
2462          }
2463        }
2464      }
2465
2466#ifdef _WIN64
2467      // Special care for fast JNI field accessors.
2468      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2469      // in and the heap gets shrunk before the field access.
2470      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2471        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2472        if (addr != (address)-1) {
2473          return Handle_Exception(exceptionInfo, addr);
2474        }
2475      }
2476#endif
2477
2478      // Stack overflow or null pointer exception in native code.
2479      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2480                   exceptionInfo->ContextRecord);
2481      return EXCEPTION_CONTINUE_SEARCH;
2482    }
2483
2484    if (in_java) {
2485      switch (exception_code) {
2486      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2487        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2488
2489      case EXCEPTION_INT_OVERFLOW:
2490        return Handle_IDiv_Exception(exceptionInfo);
2491
2492      } // switch
2493    }
2494#ifndef _WIN64
2495    if (((thread->thread_state() == _thread_in_Java) ||
2496        (thread->thread_state() == _thread_in_native)) &&
2497        exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2498    {
2499      LONG result=Handle_FLT_Exception(exceptionInfo);
2500      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2501    }
2502#endif //_WIN64
2503  }
2504
2505  if (exception_code != EXCEPTION_BREAKPOINT) {
2506    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2507                 exceptionInfo->ContextRecord);
2508  }
2509  return EXCEPTION_CONTINUE_SEARCH;
2510}
2511
2512#ifndef _WIN64
2513// Special care for fast JNI accessors.
2514// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2515// the heap gets shrunk before the field access.
2516// Need to install our own structured exception handler since native code may
2517// install its own.
2518LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2519  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2520  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2521    address pc = (address) exceptionInfo->ContextRecord->Eip;
2522    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2523    if (addr != (address)-1) {
2524      return Handle_Exception(exceptionInfo, addr);
2525    }
2526  }
2527  return EXCEPTION_CONTINUE_SEARCH;
2528}
2529
2530#define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2531Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2532  __try { \
2533    return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2534  } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2535  } \
2536  return 0; \
2537}
2538
2539DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2540DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2541DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2542DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2543DEFINE_FAST_GETFIELD(jint,     int,    Int)
2544DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2545DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2546DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2547
2548address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2549  switch (type) {
2550    case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2551    case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2552    case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2553    case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2554    case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2555    case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2556    case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2557    case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2558    default:        ShouldNotReachHere();
2559  }
2560  return (address)-1;
2561}
2562#endif
2563
2564// Virtual Memory
2565
2566int os::vm_page_size() { return os::win32::vm_page_size(); }
2567int os::vm_allocation_granularity() {
2568  return os::win32::vm_allocation_granularity();
2569}
2570
2571// Windows large page support is available on Windows 2003. In order to use
2572// large page memory, the administrator must first assign additional privilege
2573// to the user:
2574//   + select Control Panel -> Administrative Tools -> Local Security Policy
2575//   + select Local Policies -> User Rights Assignment
2576//   + double click "Lock pages in memory", add users and/or groups
2577//   + reboot
2578// Note the above steps are needed for administrator as well, as administrators
2579// by default do not have the privilege to lock pages in memory.
2580//
2581// Note about Windows 2003: although the API supports committing large page
2582// memory on a page-by-page basis and VirtualAlloc() returns success under this
2583// scenario, I found through experiment it only uses large page if the entire
2584// memory region is reserved and committed in a single VirtualAlloc() call.
2585// This makes Windows large page support more or less like Solaris ISM, in
2586// that the entire heap must be committed upfront. This probably will change
2587// in the future, if so the code below needs to be revisited.
2588
2589#ifndef MEM_LARGE_PAGES
2590#define MEM_LARGE_PAGES 0x20000000
2591#endif
2592
2593static HANDLE    _hProcess;
2594static HANDLE    _hToken;
2595
2596// Container for NUMA node list info
2597class NUMANodeListHolder {
2598private:
2599  int *_numa_used_node_list;  // allocated below
2600  int _numa_used_node_count;
2601
2602  void free_node_list() {
2603    if (_numa_used_node_list != NULL) {
2604      FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2605    }
2606  }
2607
2608public:
2609  NUMANodeListHolder() {
2610    _numa_used_node_count = 0;
2611    _numa_used_node_list = NULL;
2612    // do rest of initialization in build routine (after function pointers are set up)
2613  }
2614
2615  ~NUMANodeListHolder() {
2616    free_node_list();
2617  }
2618
2619  bool build() {
2620    DWORD_PTR proc_aff_mask;
2621    DWORD_PTR sys_aff_mask;
2622    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2623    ULONG highest_node_number;
2624    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2625    free_node_list();
2626    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2627    for (unsigned int i = 0; i <= highest_node_number; i++) {
2628      ULONGLONG proc_mask_numa_node;
2629      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2630      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2631        _numa_used_node_list[_numa_used_node_count++] = i;
2632      }
2633    }
2634    return (_numa_used_node_count > 1);
2635  }
2636
2637  int get_count() {return _numa_used_node_count;}
2638  int get_node_list_entry(int n) {
2639    // for indexes out of range, returns -1
2640    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2641  }
2642
2643} numa_node_list_holder;
2644
2645
2646
2647static size_t _large_page_size = 0;
2648
2649static bool resolve_functions_for_large_page_init() {
2650  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2651    os::Advapi32Dll::AdvapiAvailable();
2652}
2653
2654static bool request_lock_memory_privilege() {
2655  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2656                                os::current_process_id());
2657
2658  LUID luid;
2659  if (_hProcess != NULL &&
2660      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2661      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2662
2663    TOKEN_PRIVILEGES tp;
2664    tp.PrivilegeCount = 1;
2665    tp.Privileges[0].Luid = luid;
2666    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2667
2668    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2669    // privilege. Check GetLastError() too. See MSDN document.
2670    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2671        (GetLastError() == ERROR_SUCCESS)) {
2672      return true;
2673    }
2674  }
2675
2676  return false;
2677}
2678
2679static void cleanup_after_large_page_init() {
2680  if (_hProcess) CloseHandle(_hProcess);
2681  _hProcess = NULL;
2682  if (_hToken) CloseHandle(_hToken);
2683  _hToken = NULL;
2684}
2685
2686static bool numa_interleaving_init() {
2687  bool success = false;
2688  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2689
2690  // print a warning if UseNUMAInterleaving flag is specified on command line
2691  bool warn_on_failure = use_numa_interleaving_specified;
2692# define WARN(msg) if (warn_on_failure) { warning(msg); }
2693
2694  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2695  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2696  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2697
2698  if (os::Kernel32Dll::NumaCallsAvailable()) {
2699    if (numa_node_list_holder.build()) {
2700      if (PrintMiscellaneous && Verbose) {
2701        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2702        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2703          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2704        }
2705        tty->print("\n");
2706      }
2707      success = true;
2708    } else {
2709      WARN("Process does not cover multiple NUMA nodes.");
2710    }
2711  } else {
2712    WARN("NUMA Interleaving is not supported by the operating system.");
2713  }
2714  if (!success) {
2715    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2716  }
2717  return success;
2718#undef WARN
2719}
2720
2721// this routine is used whenever we need to reserve a contiguous VA range
2722// but we need to make separate VirtualAlloc calls for each piece of the range
2723// Reasons for doing this:
2724//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2725//  * UseNUMAInterleaving requires a separate node for each piece
2726static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2727                                         bool should_inject_error=false) {
2728  char * p_buf;
2729  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2730  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2731  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2732
2733  // first reserve enough address space in advance since we want to be
2734  // able to break a single contiguous virtual address range into multiple
2735  // large page commits but WS2003 does not allow reserving large page space
2736  // so we just use 4K pages for reserve, this gives us a legal contiguous
2737  // address space. then we will deallocate that reservation, and re alloc
2738  // using large pages
2739  const size_t size_of_reserve = bytes + chunk_size;
2740  if (bytes > size_of_reserve) {
2741    // Overflowed.
2742    return NULL;
2743  }
2744  p_buf = (char *) VirtualAlloc(addr,
2745                                size_of_reserve,  // size of Reserve
2746                                MEM_RESERVE,
2747                                PAGE_READWRITE);
2748  // If reservation failed, return NULL
2749  if (p_buf == NULL) return NULL;
2750
2751  os::release_memory(p_buf, bytes + chunk_size);
2752
2753  // we still need to round up to a page boundary (in case we are using large pages)
2754  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2755  // instead we handle this in the bytes_to_rq computation below
2756  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2757
2758  // now go through and allocate one chunk at a time until all bytes are
2759  // allocated
2760  size_t  bytes_remaining = bytes;
2761  // An overflow of align_size_up() would have been caught above
2762  // in the calculation of size_of_reserve.
2763  char * next_alloc_addr = p_buf;
2764  HANDLE hProc = GetCurrentProcess();
2765
2766#ifdef ASSERT
2767  // Variable for the failure injection
2768  long ran_num = os::random();
2769  size_t fail_after = ran_num % bytes;
2770#endif
2771
2772  int count=0;
2773  while (bytes_remaining) {
2774    // select bytes_to_rq to get to the next chunk_size boundary
2775
2776    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2777    // Note allocate and commit
2778    char * p_new;
2779
2780#ifdef ASSERT
2781    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2782#else
2783    const bool inject_error_now = false;
2784#endif
2785
2786    if (inject_error_now) {
2787      p_new = NULL;
2788    } else {
2789      if (!UseNUMAInterleaving) {
2790        p_new = (char *) VirtualAlloc(next_alloc_addr,
2791                                      bytes_to_rq,
2792                                      flags,
2793                                      prot);
2794      } else {
2795        // get the next node to use from the used_node_list
2796        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2797        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2798        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2799                                                            next_alloc_addr,
2800                                                            bytes_to_rq,
2801                                                            flags,
2802                                                            prot,
2803                                                            node);
2804      }
2805    }
2806
2807    if (p_new == NULL) {
2808      // Free any allocated pages
2809      if (next_alloc_addr > p_buf) {
2810        // Some memory was committed so release it.
2811        size_t bytes_to_release = bytes - bytes_remaining;
2812        os::release_memory(p_buf, bytes_to_release);
2813      }
2814#ifdef ASSERT
2815      if (should_inject_error) {
2816        if (TracePageSizes && Verbose) {
2817          tty->print_cr("Reserving pages individually failed.");
2818        }
2819      }
2820#endif
2821      return NULL;
2822    }
2823    bytes_remaining -= bytes_to_rq;
2824    next_alloc_addr += bytes_to_rq;
2825    count++;
2826  }
2827  // made it this far, success
2828  return p_buf;
2829}
2830
2831
2832
2833void os::large_page_init() {
2834  if (!UseLargePages) return;
2835
2836  // print a warning if any large page related flag is specified on command line
2837  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2838                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2839  bool success = false;
2840
2841# define WARN(msg) if (warn_on_failure) { warning(msg); }
2842  if (resolve_functions_for_large_page_init()) {
2843    if (request_lock_memory_privilege()) {
2844      size_t s = os::Kernel32Dll::GetLargePageMinimum();
2845      if (s) {
2846#if defined(IA32) || defined(AMD64)
2847        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2848          WARN("JVM cannot use large pages bigger than 4mb.");
2849        } else {
2850#endif
2851          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2852            _large_page_size = LargePageSizeInBytes;
2853          } else {
2854            _large_page_size = s;
2855          }
2856          success = true;
2857#if defined(IA32) || defined(AMD64)
2858        }
2859#endif
2860      } else {
2861        WARN("Large page is not supported by the processor.");
2862      }
2863    } else {
2864      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2865    }
2866  } else {
2867    WARN("Large page is not supported by the operating system.");
2868  }
2869#undef WARN
2870
2871  const size_t default_page_size = (size_t) vm_page_size();
2872  if (success && _large_page_size > default_page_size) {
2873    _page_sizes[0] = _large_page_size;
2874    _page_sizes[1] = default_page_size;
2875    _page_sizes[2] = 0;
2876  }
2877
2878  cleanup_after_large_page_init();
2879  UseLargePages = success;
2880}
2881
2882// On win32, one cannot release just a part of reserved memory, it's an
2883// all or nothing deal.  When we split a reservation, we must break the
2884// reservation into two reservations.
2885void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2886                              bool realloc) {
2887  if (size > 0) {
2888    release_memory(base, size);
2889    if (realloc) {
2890      reserve_memory(split, base);
2891    }
2892    if (size != split) {
2893      reserve_memory(size - split, base + split);
2894    }
2895  }
2896}
2897
2898// Multiple threads can race in this code but it's not possible to unmap small sections of
2899// virtual space to get requested alignment, like posix-like os's.
2900// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
2901char* os::reserve_memory_aligned(size_t size, size_t alignment) {
2902  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
2903      "Alignment must be a multiple of allocation granularity (page size)");
2904  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
2905
2906  size_t extra_size = size + alignment;
2907  assert(extra_size >= size, "overflow, size is too large to allow alignment");
2908
2909  char* aligned_base = NULL;
2910
2911  do {
2912    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
2913    if (extra_base == NULL) {
2914      return NULL;
2915    }
2916    // Do manual alignment
2917    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
2918
2919    os::release_memory(extra_base, extra_size);
2920
2921    aligned_base = os::reserve_memory(size, aligned_base);
2922
2923  } while (aligned_base == NULL);
2924
2925  return aligned_base;
2926}
2927
2928char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2929  assert((size_t)addr % os::vm_allocation_granularity() == 0,
2930         "reserve alignment");
2931  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2932  char* res;
2933  // note that if UseLargePages is on, all the areas that require interleaving
2934  // will go thru reserve_memory_special rather than thru here.
2935  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
2936  if (!use_individual) {
2937    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2938  } else {
2939    elapsedTimer reserveTimer;
2940    if( Verbose && PrintMiscellaneous ) reserveTimer.start();
2941    // in numa interleaving, we have to allocate pages individually
2942    // (well really chunks of NUMAInterleaveGranularity size)
2943    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
2944    if (res == NULL) {
2945      warning("NUMA page allocation failed");
2946    }
2947    if( Verbose && PrintMiscellaneous ) {
2948      reserveTimer.stop();
2949      tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
2950                    reserveTimer.milliseconds(), reserveTimer.ticks());
2951    }
2952  }
2953  assert(res == NULL || addr == NULL || addr == res,
2954         "Unexpected address from reserve.");
2955
2956  return res;
2957}
2958
2959// Reserve memory at an arbitrary address, only if that area is
2960// available (and not reserved for something else).
2961char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2962  // Windows os::reserve_memory() fails of the requested address range is
2963  // not avilable.
2964  return reserve_memory(bytes, requested_addr);
2965}
2966
2967size_t os::large_page_size() {
2968  return _large_page_size;
2969}
2970
2971bool os::can_commit_large_page_memory() {
2972  // Windows only uses large page memory when the entire region is reserved
2973  // and committed in a single VirtualAlloc() call. This may change in the
2974  // future, but with Windows 2003 it's not possible to commit on demand.
2975  return false;
2976}
2977
2978bool os::can_execute_large_page_memory() {
2979  return true;
2980}
2981
2982char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2983
2984  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2985  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2986
2987  // with large pages, there are two cases where we need to use Individual Allocation
2988  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
2989  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
2990  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
2991    if (TracePageSizes && Verbose) {
2992       tty->print_cr("Reserving large pages individually.");
2993    }
2994    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
2995    if (p_buf == NULL) {
2996      // give an appropriate warning message
2997      if (UseNUMAInterleaving) {
2998        warning("NUMA large page allocation failed, UseLargePages flag ignored");
2999      }
3000      if (UseLargePagesIndividualAllocation) {
3001        warning("Individually allocated large pages failed, "
3002                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3003      }
3004      return NULL;
3005    }
3006
3007    return p_buf;
3008
3009  } else {
3010    // normal policy just allocate it all at once
3011    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3012    char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
3013    return res;
3014  }
3015}
3016
3017bool os::release_memory_special(char* base, size_t bytes) {
3018  return release_memory(base, bytes);
3019}
3020
3021void os::print_statistics() {
3022}
3023
3024bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3025  if (bytes == 0) {
3026    // Don't bother the OS with noops.
3027    return true;
3028  }
3029  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3030  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3031  // Don't attempt to print anything if the OS call fails. We're
3032  // probably low on resources, so the print itself may cause crashes.
3033
3034  // unless we have NUMAInterleaving enabled, the range of a commit
3035  // is always within a reserve covered by a single VirtualAlloc
3036  // in that case we can just do a single commit for the requested size
3037  if (!UseNUMAInterleaving) {
3038    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
3039    if (exec) {
3040      DWORD oldprot;
3041      // Windows doc says to use VirtualProtect to get execute permissions
3042      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
3043    }
3044    return true;
3045  } else {
3046
3047    // when NUMAInterleaving is enabled, the commit might cover a range that
3048    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3049    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3050    // returns represents the number of bytes that can be committed in one step.
3051    size_t bytes_remaining = bytes;
3052    char * next_alloc_addr = addr;
3053    while (bytes_remaining > 0) {
3054      MEMORY_BASIC_INFORMATION alloc_info;
3055      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3056      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3057      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
3058        return false;
3059      if (exec) {
3060        DWORD oldprot;
3061        if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
3062          return false;
3063      }
3064      bytes_remaining -= bytes_to_rq;
3065      next_alloc_addr += bytes_to_rq;
3066    }
3067  }
3068  // if we made it this far, return true
3069  return true;
3070}
3071
3072bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3073                       bool exec) {
3074  return commit_memory(addr, size, exec);
3075}
3076
3077bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3078  if (bytes == 0) {
3079    // Don't bother the OS with noops.
3080    return true;
3081  }
3082  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3083  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3084  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3085}
3086
3087bool os::pd_release_memory(char* addr, size_t bytes) {
3088  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3089}
3090
3091bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3092  return os::commit_memory(addr, size);
3093}
3094
3095bool os::remove_stack_guard_pages(char* addr, size_t size) {
3096  return os::uncommit_memory(addr, size);
3097}
3098
3099// Set protections specified
3100bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3101                        bool is_committed) {
3102  unsigned int p = 0;
3103  switch (prot) {
3104  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3105  case MEM_PROT_READ: p = PAGE_READONLY; break;
3106  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3107  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3108  default:
3109    ShouldNotReachHere();
3110  }
3111
3112  DWORD old_status;
3113
3114  // Strange enough, but on Win32 one can change protection only for committed
3115  // memory, not a big deal anyway, as bytes less or equal than 64K
3116  if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3117    fatal("cannot commit protection page");
3118  }
3119  // One cannot use os::guard_memory() here, as on Win32 guard page
3120  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3121  //
3122  // Pages in the region become guard pages. Any attempt to access a guard page
3123  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3124  // the guard page status. Guard pages thus act as a one-time access alarm.
3125  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3126}
3127
3128bool os::guard_memory(char* addr, size_t bytes) {
3129  DWORD old_status;
3130  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3131}
3132
3133bool os::unguard_memory(char* addr, size_t bytes) {
3134  DWORD old_status;
3135  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3136}
3137
3138void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3139void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3140void os::numa_make_global(char *addr, size_t bytes)    { }
3141void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3142bool os::numa_topology_changed()                       { return false; }
3143size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3144int os::numa_get_group_id()                            { return 0; }
3145size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3146  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3147    // Provide an answer for UMA systems
3148    ids[0] = 0;
3149    return 1;
3150  } else {
3151    // check for size bigger than actual groups_num
3152    size = MIN2(size, numa_get_groups_num());
3153    for (int i = 0; i < (int)size; i++) {
3154      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3155    }
3156    return size;
3157  }
3158}
3159
3160bool os::get_page_info(char *start, page_info* info) {
3161  return false;
3162}
3163
3164char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3165  return end;
3166}
3167
3168char* os::non_memory_address_word() {
3169  // Must never look like an address returned by reserve_memory,
3170  // even in its subfields (as defined by the CPU immediate fields,
3171  // if the CPU splits constants across multiple instructions).
3172  return (char*)-1;
3173}
3174
3175#define MAX_ERROR_COUNT 100
3176#define SYS_THREAD_ERROR 0xffffffffUL
3177
3178void os::pd_start_thread(Thread* thread) {
3179  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3180  // Returns previous suspend state:
3181  // 0:  Thread was not suspended
3182  // 1:  Thread is running now
3183  // >1: Thread is still suspended.
3184  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3185}
3186
3187class HighResolutionInterval {
3188  // The default timer resolution seems to be 10 milliseconds.
3189  // (Where is this written down?)
3190  // If someone wants to sleep for only a fraction of the default,
3191  // then we set the timer resolution down to 1 millisecond for
3192  // the duration of their interval.
3193  // We carefully set the resolution back, since otherwise we
3194  // seem to incur an overhead (3%?) that we don't need.
3195  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3196  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3197  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3198  // timeBeginPeriod() if the relative error exceeded some threshold.
3199  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3200  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3201  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3202  // resolution timers running.
3203private:
3204    jlong resolution;
3205public:
3206  HighResolutionInterval(jlong ms) {
3207    resolution = ms % 10L;
3208    if (resolution != 0) {
3209      MMRESULT result = timeBeginPeriod(1L);
3210    }
3211  }
3212  ~HighResolutionInterval() {
3213    if (resolution != 0) {
3214      MMRESULT result = timeEndPeriod(1L);
3215    }
3216    resolution = 0L;
3217  }
3218};
3219
3220int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3221  jlong limit = (jlong) MAXDWORD;
3222
3223  while(ms > limit) {
3224    int res;
3225    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3226      return res;
3227    ms -= limit;
3228  }
3229
3230  assert(thread == Thread::current(),  "thread consistency check");
3231  OSThread* osthread = thread->osthread();
3232  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3233  int result;
3234  if (interruptable) {
3235    assert(thread->is_Java_thread(), "must be java thread");
3236    JavaThread *jt = (JavaThread *) thread;
3237    ThreadBlockInVM tbivm(jt);
3238
3239    jt->set_suspend_equivalent();
3240    // cleared by handle_special_suspend_equivalent_condition() or
3241    // java_suspend_self() via check_and_wait_while_suspended()
3242
3243    HANDLE events[1];
3244    events[0] = osthread->interrupt_event();
3245    HighResolutionInterval *phri=NULL;
3246    if(!ForceTimeHighResolution)
3247      phri = new HighResolutionInterval( ms );
3248    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3249      result = OS_TIMEOUT;
3250    } else {
3251      ResetEvent(osthread->interrupt_event());
3252      osthread->set_interrupted(false);
3253      result = OS_INTRPT;
3254    }
3255    delete phri; //if it is NULL, harmless
3256
3257    // were we externally suspended while we were waiting?
3258    jt->check_and_wait_while_suspended();
3259  } else {
3260    assert(!thread->is_Java_thread(), "must not be java thread");
3261    Sleep((long) ms);
3262    result = OS_TIMEOUT;
3263  }
3264  return result;
3265}
3266
3267// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3268void os::infinite_sleep() {
3269  while (true) {    // sleep forever ...
3270    Sleep(100000);  // ... 100 seconds at a time
3271  }
3272}
3273
3274typedef BOOL (WINAPI * STTSignature)(void) ;
3275
3276os::YieldResult os::NakedYield() {
3277  // Use either SwitchToThread() or Sleep(0)
3278  // Consider passing back the return value from SwitchToThread().
3279  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3280    return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3281  } else {
3282    Sleep(0);
3283  }
3284  return os::YIELD_UNKNOWN ;
3285}
3286
3287void os::yield() {  os::NakedYield(); }
3288
3289void os::yield_all(int attempts) {
3290  // Yields to all threads, including threads with lower priorities
3291  Sleep(1);
3292}
3293
3294// Win32 only gives you access to seven real priorities at a time,
3295// so we compress Java's ten down to seven.  It would be better
3296// if we dynamically adjusted relative priorities.
3297
3298int os::java_to_os_priority[CriticalPriority + 1] = {
3299  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3300  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3301  THREAD_PRIORITY_LOWEST,                       // 2
3302  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3303  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3304  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3305  THREAD_PRIORITY_NORMAL,                       // 6
3306  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3307  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3308  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3309  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3310  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3311};
3312
3313int prio_policy1[CriticalPriority + 1] = {
3314  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3315  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3316  THREAD_PRIORITY_LOWEST,                       // 2
3317  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3318  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3319  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3320  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3321  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3322  THREAD_PRIORITY_HIGHEST,                      // 8
3323  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3324  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3325  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3326};
3327
3328static int prio_init() {
3329  // If ThreadPriorityPolicy is 1, switch tables
3330  if (ThreadPriorityPolicy == 1) {
3331    int i;
3332    for (i = 0; i < CriticalPriority + 1; i++) {
3333      os::java_to_os_priority[i] = prio_policy1[i];
3334    }
3335  }
3336  if (UseCriticalJavaThreadPriority) {
3337    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3338  }
3339  return 0;
3340}
3341
3342OSReturn os::set_native_priority(Thread* thread, int priority) {
3343  if (!UseThreadPriorities) return OS_OK;
3344  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3345  return ret ? OS_OK : OS_ERR;
3346}
3347
3348OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3349  if ( !UseThreadPriorities ) {
3350    *priority_ptr = java_to_os_priority[NormPriority];
3351    return OS_OK;
3352  }
3353  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3354  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3355    assert(false, "GetThreadPriority failed");
3356    return OS_ERR;
3357  }
3358  *priority_ptr = os_prio;
3359  return OS_OK;
3360}
3361
3362
3363// Hint to the underlying OS that a task switch would not be good.
3364// Void return because it's a hint and can fail.
3365void os::hint_no_preempt() {}
3366
3367void os::interrupt(Thread* thread) {
3368  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3369         "possibility of dangling Thread pointer");
3370
3371  OSThread* osthread = thread->osthread();
3372  osthread->set_interrupted(true);
3373  // More than one thread can get here with the same value of osthread,
3374  // resulting in multiple notifications.  We do, however, want the store
3375  // to interrupted() to be visible to other threads before we post
3376  // the interrupt event.
3377  OrderAccess::release();
3378  SetEvent(osthread->interrupt_event());
3379  // For JSR166:  unpark after setting status
3380  if (thread->is_Java_thread())
3381    ((JavaThread*)thread)->parker()->unpark();
3382
3383  ParkEvent * ev = thread->_ParkEvent ;
3384  if (ev != NULL) ev->unpark() ;
3385
3386}
3387
3388
3389bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3390  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3391         "possibility of dangling Thread pointer");
3392
3393  OSThread* osthread = thread->osthread();
3394  bool interrupted = osthread->interrupted();
3395  // There is no synchronization between the setting of the interrupt
3396  // and it being cleared here. It is critical - see 6535709 - that
3397  // we only clear the interrupt state, and reset the interrupt event,
3398  // if we are going to report that we were indeed interrupted - else
3399  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3400  // depending on the timing
3401  if (interrupted && clear_interrupted) {
3402    osthread->set_interrupted(false);
3403    ResetEvent(osthread->interrupt_event());
3404  } // Otherwise leave the interrupted state alone
3405
3406  return interrupted;
3407}
3408
3409// Get's a pc (hint) for a running thread. Currently used only for profiling.
3410ExtendedPC os::get_thread_pc(Thread* thread) {
3411  CONTEXT context;
3412  context.ContextFlags = CONTEXT_CONTROL;
3413  HANDLE handle = thread->osthread()->thread_handle();
3414#ifdef _M_IA64
3415  assert(0, "Fix get_thread_pc");
3416  return ExtendedPC(NULL);
3417#else
3418  if (GetThreadContext(handle, &context)) {
3419#ifdef _M_AMD64
3420    return ExtendedPC((address) context.Rip);
3421#else
3422    return ExtendedPC((address) context.Eip);
3423#endif
3424  } else {
3425    return ExtendedPC(NULL);
3426  }
3427#endif
3428}
3429
3430// GetCurrentThreadId() returns DWORD
3431intx os::current_thread_id()          { return GetCurrentThreadId(); }
3432
3433static int _initial_pid = 0;
3434
3435int os::current_process_id()
3436{
3437  return (_initial_pid ? _initial_pid : _getpid());
3438}
3439
3440int    os::win32::_vm_page_size       = 0;
3441int    os::win32::_vm_allocation_granularity = 0;
3442int    os::win32::_processor_type     = 0;
3443// Processor level is not available on non-NT systems, use vm_version instead
3444int    os::win32::_processor_level    = 0;
3445julong os::win32::_physical_memory    = 0;
3446size_t os::win32::_default_stack_size = 0;
3447
3448         intx os::win32::_os_thread_limit    = 0;
3449volatile intx os::win32::_os_thread_count    = 0;
3450
3451bool   os::win32::_is_nt              = false;
3452bool   os::win32::_is_windows_2003    = false;
3453bool   os::win32::_is_windows_server  = false;
3454
3455void os::win32::initialize_system_info() {
3456  SYSTEM_INFO si;
3457  GetSystemInfo(&si);
3458  _vm_page_size    = si.dwPageSize;
3459  _vm_allocation_granularity = si.dwAllocationGranularity;
3460  _processor_type  = si.dwProcessorType;
3461  _processor_level = si.wProcessorLevel;
3462  set_processor_count(si.dwNumberOfProcessors);
3463
3464  MEMORYSTATUSEX ms;
3465  ms.dwLength = sizeof(ms);
3466
3467  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3468  // dwMemoryLoad (% of memory in use)
3469  GlobalMemoryStatusEx(&ms);
3470  _physical_memory = ms.ullTotalPhys;
3471
3472  OSVERSIONINFOEX oi;
3473  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3474  GetVersionEx((OSVERSIONINFO*)&oi);
3475  switch(oi.dwPlatformId) {
3476    case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3477    case VER_PLATFORM_WIN32_NT:
3478      _is_nt = true;
3479      {
3480        int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3481        if (os_vers == 5002) {
3482          _is_windows_2003 = true;
3483        }
3484        if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3485          oi.wProductType == VER_NT_SERVER) {
3486            _is_windows_server = true;
3487        }
3488      }
3489      break;
3490    default: fatal("Unknown platform");
3491  }
3492
3493  _default_stack_size = os::current_stack_size();
3494  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3495  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3496    "stack size not a multiple of page size");
3497
3498  initialize_performance_counter();
3499
3500  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3501  // known to deadlock the system, if the VM issues to thread operations with
3502  // a too high frequency, e.g., such as changing the priorities.
3503  // The 6000 seems to work well - no deadlocks has been notices on the test
3504  // programs that we have seen experience this problem.
3505  if (!os::win32::is_nt()) {
3506    StarvationMonitorInterval = 6000;
3507  }
3508}
3509
3510
3511HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3512  char path[MAX_PATH];
3513  DWORD size;
3514  DWORD pathLen = (DWORD)sizeof(path);
3515  HINSTANCE result = NULL;
3516
3517  // only allow library name without path component
3518  assert(strchr(name, '\\') == NULL, "path not allowed");
3519  assert(strchr(name, ':') == NULL, "path not allowed");
3520  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3521    jio_snprintf(ebuf, ebuflen,
3522      "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3523    return NULL;
3524  }
3525
3526  // search system directory
3527  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3528    strcat(path, "\\");
3529    strcat(path, name);
3530    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3531      return result;
3532    }
3533  }
3534
3535  // try Windows directory
3536  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3537    strcat(path, "\\");
3538    strcat(path, name);
3539    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3540      return result;
3541    }
3542  }
3543
3544  jio_snprintf(ebuf, ebuflen,
3545    "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3546  return NULL;
3547}
3548
3549void os::win32::setmode_streams() {
3550  _setmode(_fileno(stdin), _O_BINARY);
3551  _setmode(_fileno(stdout), _O_BINARY);
3552  _setmode(_fileno(stderr), _O_BINARY);
3553}
3554
3555
3556bool os::is_debugger_attached() {
3557  return IsDebuggerPresent() ? true : false;
3558}
3559
3560
3561void os::wait_for_keypress_at_exit(void) {
3562  if (PauseAtExit) {
3563    fprintf(stderr, "Press any key to continue...\n");
3564    fgetc(stdin);
3565  }
3566}
3567
3568
3569int os::message_box(const char* title, const char* message) {
3570  int result = MessageBox(NULL, message, title,
3571                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3572  return result == IDYES;
3573}
3574
3575int os::allocate_thread_local_storage() {
3576  return TlsAlloc();
3577}
3578
3579
3580void os::free_thread_local_storage(int index) {
3581  TlsFree(index);
3582}
3583
3584
3585void os::thread_local_storage_at_put(int index, void* value) {
3586  TlsSetValue(index, value);
3587  assert(thread_local_storage_at(index) == value, "Just checking");
3588}
3589
3590
3591void* os::thread_local_storage_at(int index) {
3592  return TlsGetValue(index);
3593}
3594
3595
3596#ifndef PRODUCT
3597#ifndef _WIN64
3598// Helpers to check whether NX protection is enabled
3599int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3600  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3601      pex->ExceptionRecord->NumberParameters > 0 &&
3602      pex->ExceptionRecord->ExceptionInformation[0] ==
3603      EXCEPTION_INFO_EXEC_VIOLATION) {
3604    return EXCEPTION_EXECUTE_HANDLER;
3605  }
3606  return EXCEPTION_CONTINUE_SEARCH;
3607}
3608
3609void nx_check_protection() {
3610  // If NX is enabled we'll get an exception calling into code on the stack
3611  char code[] = { (char)0xC3 }; // ret
3612  void *code_ptr = (void *)code;
3613  __try {
3614    __asm call code_ptr
3615  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3616    tty->print_raw_cr("NX protection detected.");
3617  }
3618}
3619#endif // _WIN64
3620#endif // PRODUCT
3621
3622// this is called _before_ the global arguments have been parsed
3623void os::init(void) {
3624  _initial_pid = _getpid();
3625
3626  init_random(1234567);
3627
3628  win32::initialize_system_info();
3629  win32::setmode_streams();
3630  init_page_sizes((size_t) win32::vm_page_size());
3631
3632  // For better scalability on MP systems (must be called after initialize_system_info)
3633#ifndef PRODUCT
3634  if (is_MP()) {
3635    NoYieldsInMicrolock = true;
3636  }
3637#endif
3638  // This may be overridden later when argument processing is done.
3639  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3640    os::win32::is_windows_2003());
3641
3642  // Initialize main_process and main_thread
3643  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3644 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3645                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3646    fatal("DuplicateHandle failed\n");
3647  }
3648  main_thread_id = (int) GetCurrentThreadId();
3649}
3650
3651// To install functions for atexit processing
3652extern "C" {
3653  static void perfMemory_exit_helper() {
3654    perfMemory_exit();
3655  }
3656}
3657
3658// this is called _after_ the global arguments have been parsed
3659jint os::init_2(void) {
3660  // Allocate a single page and mark it as readable for safepoint polling
3661  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3662  guarantee( polling_page != NULL, "Reserve Failed for polling page");
3663
3664  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3665  guarantee( return_page != NULL, "Commit Failed for polling page");
3666
3667  os::set_polling_page( polling_page );
3668
3669#ifndef PRODUCT
3670  if( Verbose && PrintMiscellaneous )
3671    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3672#endif
3673
3674  if (!UseMembar) {
3675    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3676    guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3677
3678    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3679    guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3680
3681    os::set_memory_serialize_page( mem_serialize_page );
3682
3683#ifndef PRODUCT
3684    if(Verbose && PrintMiscellaneous)
3685      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3686#endif
3687  }
3688
3689  os::large_page_init();
3690
3691  // Setup Windows Exceptions
3692
3693  // for debugging float code generation bugs
3694  if (ForceFloatExceptions) {
3695#ifndef  _WIN64
3696    static long fp_control_word = 0;
3697    __asm { fstcw fp_control_word }
3698    // see Intel PPro Manual, Vol. 2, p 7-16
3699    const long precision = 0x20;
3700    const long underflow = 0x10;
3701    const long overflow  = 0x08;
3702    const long zero_div  = 0x04;
3703    const long denorm    = 0x02;
3704    const long invalid   = 0x01;
3705    fp_control_word |= invalid;
3706    __asm { fldcw fp_control_word }
3707#endif
3708  }
3709
3710  // If stack_commit_size is 0, windows will reserve the default size,
3711  // but only commit a small portion of it.
3712  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3713  size_t default_reserve_size = os::win32::default_stack_size();
3714  size_t actual_reserve_size = stack_commit_size;
3715  if (stack_commit_size < default_reserve_size) {
3716    // If stack_commit_size == 0, we want this too
3717    actual_reserve_size = default_reserve_size;
3718  }
3719
3720  // Check minimum allowable stack size for thread creation and to initialize
3721  // the java system classes, including StackOverflowError - depends on page
3722  // size.  Add a page for compiler2 recursion in main thread.
3723  // Add in 2*BytesPerWord times page size to account for VM stack during
3724  // class initialization depending on 32 or 64 bit VM.
3725  size_t min_stack_allowed =
3726            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3727            2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3728  if (actual_reserve_size < min_stack_allowed) {
3729    tty->print_cr("\nThe stack size specified is too small, "
3730                  "Specify at least %dk",
3731                  min_stack_allowed / K);
3732    return JNI_ERR;
3733  }
3734
3735  JavaThread::set_stack_size_at_create(stack_commit_size);
3736
3737  // Calculate theoretical max. size of Threads to guard gainst artifical
3738  // out-of-memory situations, where all available address-space has been
3739  // reserved by thread stacks.
3740  assert(actual_reserve_size != 0, "Must have a stack");
3741
3742  // Calculate the thread limit when we should start doing Virtual Memory
3743  // banging. Currently when the threads will have used all but 200Mb of space.
3744  //
3745  // TODO: consider performing a similar calculation for commit size instead
3746  // as reserve size, since on a 64-bit platform we'll run into that more
3747  // often than running out of virtual memory space.  We can use the
3748  // lower value of the two calculations as the os_thread_limit.
3749  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3750  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3751
3752  // at exit methods are called in the reverse order of their registration.
3753  // there is no limit to the number of functions registered. atexit does
3754  // not set errno.
3755
3756  if (PerfAllowAtExitRegistration) {
3757    // only register atexit functions if PerfAllowAtExitRegistration is set.
3758    // atexit functions can be delayed until process exit time, which
3759    // can be problematic for embedded VM situations. Embedded VMs should
3760    // call DestroyJavaVM() to assure that VM resources are released.
3761
3762    // note: perfMemory_exit_helper atexit function may be removed in
3763    // the future if the appropriate cleanup code can be added to the
3764    // VM_Exit VMOperation's doit method.
3765    if (atexit(perfMemory_exit_helper) != 0) {
3766      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3767    }
3768  }
3769
3770#ifndef _WIN64
3771  // Print something if NX is enabled (win32 on AMD64)
3772  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3773#endif
3774
3775  // initialize thread priority policy
3776  prio_init();
3777
3778  if (UseNUMA && !ForceNUMA) {
3779    UseNUMA = false; // We don't fully support this yet
3780  }
3781
3782  if (UseNUMAInterleaving) {
3783    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
3784    bool success = numa_interleaving_init();
3785    if (!success) UseNUMAInterleaving = false;
3786  }
3787
3788  return JNI_OK;
3789}
3790
3791void os::init_3(void) {
3792  return;
3793}
3794
3795// Mark the polling page as unreadable
3796void os::make_polling_page_unreadable(void) {
3797  DWORD old_status;
3798  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3799    fatal("Could not disable polling page");
3800};
3801
3802// Mark the polling page as readable
3803void os::make_polling_page_readable(void) {
3804  DWORD old_status;
3805  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3806    fatal("Could not enable polling page");
3807};
3808
3809
3810int os::stat(const char *path, struct stat *sbuf) {
3811  char pathbuf[MAX_PATH];
3812  if (strlen(path) > MAX_PATH - 1) {
3813    errno = ENAMETOOLONG;
3814    return -1;
3815  }
3816  os::native_path(strcpy(pathbuf, path));
3817  int ret = ::stat(pathbuf, sbuf);
3818  if (sbuf != NULL && UseUTCFileTimestamp) {
3819    // Fix for 6539723.  st_mtime returned from stat() is dependent on
3820    // the system timezone and so can return different values for the
3821    // same file if/when daylight savings time changes.  This adjustment
3822    // makes sure the same timestamp is returned regardless of the TZ.
3823    //
3824    // See:
3825    // http://msdn.microsoft.com/library/
3826    //   default.asp?url=/library/en-us/sysinfo/base/
3827    //   time_zone_information_str.asp
3828    // and
3829    // http://msdn.microsoft.com/library/default.asp?url=
3830    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3831    //
3832    // NOTE: there is a insidious bug here:  If the timezone is changed
3833    // after the call to stat() but before 'GetTimeZoneInformation()', then
3834    // the adjustment we do here will be wrong and we'll return the wrong
3835    // value (which will likely end up creating an invalid class data
3836    // archive).  Absent a better API for this, or some time zone locking
3837    // mechanism, we'll have to live with this risk.
3838    TIME_ZONE_INFORMATION tz;
3839    DWORD tzid = GetTimeZoneInformation(&tz);
3840    int daylightBias =
3841      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3842    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3843  }
3844  return ret;
3845}
3846
3847
3848#define FT2INT64(ft) \
3849  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3850
3851
3852// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3853// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3854// of a thread.
3855//
3856// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3857// the fast estimate available on the platform.
3858
3859// current_thread_cpu_time() is not optimized for Windows yet
3860jlong os::current_thread_cpu_time() {
3861  // return user + sys since the cost is the same
3862  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3863}
3864
3865jlong os::thread_cpu_time(Thread* thread) {
3866  // consistent with what current_thread_cpu_time() returns.
3867  return os::thread_cpu_time(thread, true /* user+sys */);
3868}
3869
3870jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3871  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3872}
3873
3874jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3875  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3876  // If this function changes, os::is_thread_cpu_time_supported() should too
3877  if (os::win32::is_nt()) {
3878    FILETIME CreationTime;
3879    FILETIME ExitTime;
3880    FILETIME KernelTime;
3881    FILETIME UserTime;
3882
3883    if ( GetThreadTimes(thread->osthread()->thread_handle(),
3884                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3885      return -1;
3886    else
3887      if (user_sys_cpu_time) {
3888        return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3889      } else {
3890        return FT2INT64(UserTime) * 100;
3891      }
3892  } else {
3893    return (jlong) timeGetTime() * 1000000;
3894  }
3895}
3896
3897void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3898  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3899  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3900  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3901  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3902}
3903
3904void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3905  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3906  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3907  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3908  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3909}
3910
3911bool os::is_thread_cpu_time_supported() {
3912  // see os::thread_cpu_time
3913  if (os::win32::is_nt()) {
3914    FILETIME CreationTime;
3915    FILETIME ExitTime;
3916    FILETIME KernelTime;
3917    FILETIME UserTime;
3918
3919    if ( GetThreadTimes(GetCurrentThread(),
3920                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3921      return false;
3922    else
3923      return true;
3924  } else {
3925    return false;
3926  }
3927}
3928
3929// Windows does't provide a loadavg primitive so this is stubbed out for now.
3930// It does have primitives (PDH API) to get CPU usage and run queue length.
3931// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3932// If we wanted to implement loadavg on Windows, we have a few options:
3933//
3934// a) Query CPU usage and run queue length and "fake" an answer by
3935//    returning the CPU usage if it's under 100%, and the run queue
3936//    length otherwise.  It turns out that querying is pretty slow
3937//    on Windows, on the order of 200 microseconds on a fast machine.
3938//    Note that on the Windows the CPU usage value is the % usage
3939//    since the last time the API was called (and the first call
3940//    returns 100%), so we'd have to deal with that as well.
3941//
3942// b) Sample the "fake" answer using a sampling thread and store
3943//    the answer in a global variable.  The call to loadavg would
3944//    just return the value of the global, avoiding the slow query.
3945//
3946// c) Sample a better answer using exponential decay to smooth the
3947//    value.  This is basically the algorithm used by UNIX kernels.
3948//
3949// Note that sampling thread starvation could affect both (b) and (c).
3950int os::loadavg(double loadavg[], int nelem) {
3951  return -1;
3952}
3953
3954
3955// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3956bool os::dont_yield() {
3957  return DontYieldALot;
3958}
3959
3960// This method is a slightly reworked copy of JDK's sysOpen
3961// from src/windows/hpi/src/sys_api_md.c
3962
3963int os::open(const char *path, int oflag, int mode) {
3964  char pathbuf[MAX_PATH];
3965
3966  if (strlen(path) > MAX_PATH - 1) {
3967    errno = ENAMETOOLONG;
3968          return -1;
3969  }
3970  os::native_path(strcpy(pathbuf, path));
3971  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
3972}
3973
3974// Is a (classpath) directory empty?
3975bool os::dir_is_empty(const char* path) {
3976  WIN32_FIND_DATA fd;
3977  HANDLE f = FindFirstFile(path, &fd);
3978  if (f == INVALID_HANDLE_VALUE) {
3979    return true;
3980  }
3981  FindClose(f);
3982  return false;
3983}
3984
3985// create binary file, rewriting existing file if required
3986int os::create_binary_file(const char* path, bool rewrite_existing) {
3987  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3988  if (!rewrite_existing) {
3989    oflags |= _O_EXCL;
3990  }
3991  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3992}
3993
3994// return current position of file pointer
3995jlong os::current_file_offset(int fd) {
3996  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3997}
3998
3999// move file pointer to the specified offset
4000jlong os::seek_to_file_offset(int fd, jlong offset) {
4001  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4002}
4003
4004
4005jlong os::lseek(int fd, jlong offset, int whence) {
4006  return (jlong) ::_lseeki64(fd, offset, whence);
4007}
4008
4009// This method is a slightly reworked copy of JDK's sysNativePath
4010// from src/windows/hpi/src/path_md.c
4011
4012/* Convert a pathname to native format.  On win32, this involves forcing all
4013   separators to be '\\' rather than '/' (both are legal inputs, but Win95
4014   sometimes rejects '/') and removing redundant separators.  The input path is
4015   assumed to have been converted into the character encoding used by the local
4016   system.  Because this might be a double-byte encoding, care is taken to
4017   treat double-byte lead characters correctly.
4018
4019   This procedure modifies the given path in place, as the result is never
4020   longer than the original.  There is no error return; this operation always
4021   succeeds. */
4022char * os::native_path(char *path) {
4023  char *src = path, *dst = path, *end = path;
4024  char *colon = NULL;           /* If a drive specifier is found, this will
4025                                        point to the colon following the drive
4026                                        letter */
4027
4028  /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4029  assert(((!::IsDBCSLeadByte('/'))
4030    && (!::IsDBCSLeadByte('\\'))
4031    && (!::IsDBCSLeadByte(':'))),
4032    "Illegal lead byte");
4033
4034  /* Check for leading separators */
4035#define isfilesep(c) ((c) == '/' || (c) == '\\')
4036  while (isfilesep(*src)) {
4037    src++;
4038  }
4039
4040  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4041    /* Remove leading separators if followed by drive specifier.  This
4042      hack is necessary to support file URLs containing drive
4043      specifiers (e.g., "file://c:/path").  As a side effect,
4044      "/c:/path" can be used as an alternative to "c:/path". */
4045    *dst++ = *src++;
4046    colon = dst;
4047    *dst++ = ':';
4048    src++;
4049  } else {
4050    src = path;
4051    if (isfilesep(src[0]) && isfilesep(src[1])) {
4052      /* UNC pathname: Retain first separator; leave src pointed at
4053         second separator so that further separators will be collapsed
4054         into the second separator.  The result will be a pathname
4055         beginning with "\\\\" followed (most likely) by a host name. */
4056      src = dst = path + 1;
4057      path[0] = '\\';     /* Force first separator to '\\' */
4058    }
4059  }
4060
4061  end = dst;
4062
4063  /* Remove redundant separators from remainder of path, forcing all
4064      separators to be '\\' rather than '/'. Also, single byte space
4065      characters are removed from the end of the path because those
4066      are not legal ending characters on this operating system.
4067  */
4068  while (*src != '\0') {
4069    if (isfilesep(*src)) {
4070      *dst++ = '\\'; src++;
4071      while (isfilesep(*src)) src++;
4072      if (*src == '\0') {
4073        /* Check for trailing separator */
4074        end = dst;
4075        if (colon == dst - 2) break;                      /* "z:\\" */
4076        if (dst == path + 1) break;                       /* "\\" */
4077        if (dst == path + 2 && isfilesep(path[0])) {
4078          /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4079            beginning of a UNC pathname.  Even though it is not, by
4080            itself, a valid UNC pathname, we leave it as is in order
4081            to be consistent with the path canonicalizer as well
4082            as the win32 APIs, which treat this case as an invalid
4083            UNC pathname rather than as an alias for the root
4084            directory of the current drive. */
4085          break;
4086        }
4087        end = --dst;  /* Path does not denote a root directory, so
4088                                    remove trailing separator */
4089        break;
4090      }
4091      end = dst;
4092    } else {
4093      if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4094        *dst++ = *src++;
4095        if (*src) *dst++ = *src++;
4096        end = dst;
4097      } else {         /* Copy a single-byte character */
4098        char c = *src++;
4099        *dst++ = c;
4100        /* Space is not a legal ending character */
4101        if (c != ' ') end = dst;
4102      }
4103    }
4104  }
4105
4106  *end = '\0';
4107
4108  /* For "z:", add "." to work around a bug in the C runtime library */
4109  if (colon == dst - 1) {
4110          path[2] = '.';
4111          path[3] = '\0';
4112  }
4113
4114  #ifdef DEBUG
4115    jio_fprintf(stderr, "sysNativePath: %s\n", path);
4116  #endif DEBUG
4117  return path;
4118}
4119
4120// This code is a copy of JDK's sysSetLength
4121// from src/windows/hpi/src/sys_api_md.c
4122
4123int os::ftruncate(int fd, jlong length) {
4124  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4125  long high = (long)(length >> 32);
4126  DWORD ret;
4127
4128  if (h == (HANDLE)(-1)) {
4129    return -1;
4130  }
4131
4132  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4133  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4134      return -1;
4135  }
4136
4137  if (::SetEndOfFile(h) == FALSE) {
4138    return -1;
4139  }
4140
4141  return 0;
4142}
4143
4144
4145// This code is a copy of JDK's sysSync
4146// from src/windows/hpi/src/sys_api_md.c
4147// except for the legacy workaround for a bug in Win 98
4148
4149int os::fsync(int fd) {
4150  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4151
4152  if ( (!::FlushFileBuffers(handle)) &&
4153         (GetLastError() != ERROR_ACCESS_DENIED) ) {
4154    /* from winerror.h */
4155    return -1;
4156  }
4157  return 0;
4158}
4159
4160static int nonSeekAvailable(int, long *);
4161static int stdinAvailable(int, long *);
4162
4163#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4164#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4165
4166// This code is a copy of JDK's sysAvailable
4167// from src/windows/hpi/src/sys_api_md.c
4168
4169int os::available(int fd, jlong *bytes) {
4170  jlong cur, end;
4171  struct _stati64 stbuf64;
4172
4173  if (::_fstati64(fd, &stbuf64) >= 0) {
4174    int mode = stbuf64.st_mode;
4175    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4176      int ret;
4177      long lpbytes;
4178      if (fd == 0) {
4179        ret = stdinAvailable(fd, &lpbytes);
4180      } else {
4181        ret = nonSeekAvailable(fd, &lpbytes);
4182      }
4183      (*bytes) = (jlong)(lpbytes);
4184      return ret;
4185    }
4186    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4187      return FALSE;
4188    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4189      return FALSE;
4190    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4191      return FALSE;
4192    }
4193    *bytes = end - cur;
4194    return TRUE;
4195  } else {
4196    return FALSE;
4197  }
4198}
4199
4200// This code is a copy of JDK's nonSeekAvailable
4201// from src/windows/hpi/src/sys_api_md.c
4202
4203static int nonSeekAvailable(int fd, long *pbytes) {
4204  /* This is used for available on non-seekable devices
4205    * (like both named and anonymous pipes, such as pipes
4206    *  connected to an exec'd process).
4207    * Standard Input is a special case.
4208    *
4209    */
4210  HANDLE han;
4211
4212  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4213    return FALSE;
4214  }
4215
4216  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4217        /* PeekNamedPipe fails when at EOF.  In that case we
4218         * simply make *pbytes = 0 which is consistent with the
4219         * behavior we get on Solaris when an fd is at EOF.
4220         * The only alternative is to raise an Exception,
4221         * which isn't really warranted.
4222         */
4223    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4224      return FALSE;
4225    }
4226    *pbytes = 0;
4227  }
4228  return TRUE;
4229}
4230
4231#define MAX_INPUT_EVENTS 2000
4232
4233// This code is a copy of JDK's stdinAvailable
4234// from src/windows/hpi/src/sys_api_md.c
4235
4236static int stdinAvailable(int fd, long *pbytes) {
4237  HANDLE han;
4238  DWORD numEventsRead = 0;      /* Number of events read from buffer */
4239  DWORD numEvents = 0;  /* Number of events in buffer */
4240  DWORD i = 0;          /* Loop index */
4241  DWORD curLength = 0;  /* Position marker */
4242  DWORD actualLength = 0;       /* Number of bytes readable */
4243  BOOL error = FALSE;         /* Error holder */
4244  INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4245
4246  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4247        return FALSE;
4248  }
4249
4250  /* Construct an array of input records in the console buffer */
4251  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4252  if (error == 0) {
4253    return nonSeekAvailable(fd, pbytes);
4254  }
4255
4256  /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4257  if (numEvents > MAX_INPUT_EVENTS) {
4258    numEvents = MAX_INPUT_EVENTS;
4259  }
4260
4261  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4262  if (lpBuffer == NULL) {
4263    return FALSE;
4264  }
4265
4266  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4267  if (error == 0) {
4268    os::free(lpBuffer, mtInternal);
4269    return FALSE;
4270  }
4271
4272  /* Examine input records for the number of bytes available */
4273  for(i=0; i<numEvents; i++) {
4274    if (lpBuffer[i].EventType == KEY_EVENT) {
4275
4276      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4277                                      &(lpBuffer[i].Event);
4278      if (keyRecord->bKeyDown == TRUE) {
4279        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4280        curLength++;
4281        if (*keyPressed == '\r') {
4282          actualLength = curLength;
4283        }
4284      }
4285    }
4286  }
4287
4288  if(lpBuffer != NULL) {
4289    os::free(lpBuffer, mtInternal);
4290  }
4291
4292  *pbytes = (long) actualLength;
4293  return TRUE;
4294}
4295
4296// Map a block of memory.
4297char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4298                     char *addr, size_t bytes, bool read_only,
4299                     bool allow_exec) {
4300  HANDLE hFile;
4301  char* base;
4302
4303  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4304                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4305  if (hFile == NULL) {
4306    if (PrintMiscellaneous && Verbose) {
4307      DWORD err = GetLastError();
4308      tty->print_cr("CreateFile() failed: GetLastError->%ld.");
4309    }
4310    return NULL;
4311  }
4312
4313  if (allow_exec) {
4314    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4315    // unless it comes from a PE image (which the shared archive is not.)
4316    // Even VirtualProtect refuses to give execute access to mapped memory
4317    // that was not previously executable.
4318    //
4319    // Instead, stick the executable region in anonymous memory.  Yuck.
4320    // Penalty is that ~4 pages will not be shareable - in the future
4321    // we might consider DLLizing the shared archive with a proper PE
4322    // header so that mapping executable + sharing is possible.
4323
4324    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4325                                PAGE_READWRITE);
4326    if (base == NULL) {
4327      if (PrintMiscellaneous && Verbose) {
4328        DWORD err = GetLastError();
4329        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4330      }
4331      CloseHandle(hFile);
4332      return NULL;
4333    }
4334
4335    DWORD bytes_read;
4336    OVERLAPPED overlapped;
4337    overlapped.Offset = (DWORD)file_offset;
4338    overlapped.OffsetHigh = 0;
4339    overlapped.hEvent = NULL;
4340    // ReadFile guarantees that if the return value is true, the requested
4341    // number of bytes were read before returning.
4342    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4343    if (!res) {
4344      if (PrintMiscellaneous && Verbose) {
4345        DWORD err = GetLastError();
4346        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4347      }
4348      release_memory(base, bytes);
4349      CloseHandle(hFile);
4350      return NULL;
4351    }
4352  } else {
4353    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4354                                    NULL /*file_name*/);
4355    if (hMap == NULL) {
4356      if (PrintMiscellaneous && Verbose) {
4357        DWORD err = GetLastError();
4358        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
4359      }
4360      CloseHandle(hFile);
4361      return NULL;
4362    }
4363
4364    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4365    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4366                                  (DWORD)bytes, addr);
4367    if (base == NULL) {
4368      if (PrintMiscellaneous && Verbose) {
4369        DWORD err = GetLastError();
4370        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4371      }
4372      CloseHandle(hMap);
4373      CloseHandle(hFile);
4374      return NULL;
4375    }
4376
4377    if (CloseHandle(hMap) == 0) {
4378      if (PrintMiscellaneous && Verbose) {
4379        DWORD err = GetLastError();
4380        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4381      }
4382      CloseHandle(hFile);
4383      return base;
4384    }
4385  }
4386
4387  if (allow_exec) {
4388    DWORD old_protect;
4389    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4390    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4391
4392    if (!res) {
4393      if (PrintMiscellaneous && Verbose) {
4394        DWORD err = GetLastError();
4395        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4396      }
4397      // Don't consider this a hard error, on IA32 even if the
4398      // VirtualProtect fails, we should still be able to execute
4399      CloseHandle(hFile);
4400      return base;
4401    }
4402  }
4403
4404  if (CloseHandle(hFile) == 0) {
4405    if (PrintMiscellaneous && Verbose) {
4406      DWORD err = GetLastError();
4407      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4408    }
4409    return base;
4410  }
4411
4412  return base;
4413}
4414
4415
4416// Remap a block of memory.
4417char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4418                       char *addr, size_t bytes, bool read_only,
4419                       bool allow_exec) {
4420  // This OS does not allow existing memory maps to be remapped so we
4421  // have to unmap the memory before we remap it.
4422  if (!os::unmap_memory(addr, bytes)) {
4423    return NULL;
4424  }
4425
4426  // There is a very small theoretical window between the unmap_memory()
4427  // call above and the map_memory() call below where a thread in native
4428  // code may be able to access an address that is no longer mapped.
4429
4430  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4431           read_only, allow_exec);
4432}
4433
4434
4435// Unmap a block of memory.
4436// Returns true=success, otherwise false.
4437
4438bool os::pd_unmap_memory(char* addr, size_t bytes) {
4439  BOOL result = UnmapViewOfFile(addr);
4440  if (result == 0) {
4441    if (PrintMiscellaneous && Verbose) {
4442      DWORD err = GetLastError();
4443      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4444    }
4445    return false;
4446  }
4447  return true;
4448}
4449
4450void os::pause() {
4451  char filename[MAX_PATH];
4452  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4453    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4454  } else {
4455    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4456  }
4457
4458  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4459  if (fd != -1) {
4460    struct stat buf;
4461    ::close(fd);
4462    while (::stat(filename, &buf) == 0) {
4463      Sleep(100);
4464    }
4465  } else {
4466    jio_fprintf(stderr,
4467      "Could not open pause file '%s', continuing immediately.\n", filename);
4468  }
4469}
4470
4471// An Event wraps a win32 "CreateEvent" kernel handle.
4472//
4473// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4474//
4475// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4476//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4477//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4478//     In addition, an unpark() operation might fetch the handle field, but the
4479//     event could recycle between the fetch and the SetEvent() operation.
4480//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4481//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4482//     on an stale but recycled handle would be harmless, but in practice this might
4483//     confuse other non-Sun code, so it's not a viable approach.
4484//
4485// 2:  Once a win32 event handle is associated with an Event, it remains associated
4486//     with the Event.  The event handle is never closed.  This could be construed
4487//     as handle leakage, but only up to the maximum # of threads that have been extant
4488//     at any one time.  This shouldn't be an issue, as windows platforms typically
4489//     permit a process to have hundreds of thousands of open handles.
4490//
4491// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4492//     and release unused handles.
4493//
4494// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4495//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4496//
4497// 5.  Use an RCU-like mechanism (Read-Copy Update).
4498//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4499//
4500// We use (2).
4501//
4502// TODO-FIXME:
4503// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4504// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4505//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4506// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4507//     into a single win32 CreateEvent() handle.
4508//
4509// _Event transitions in park()
4510//   -1 => -1 : illegal
4511//    1 =>  0 : pass - return immediately
4512//    0 => -1 : block
4513//
4514// _Event serves as a restricted-range semaphore :
4515//    -1 : thread is blocked
4516//     0 : neutral  - thread is running or ready
4517//     1 : signaled - thread is running or ready
4518//
4519// Another possible encoding of _Event would be
4520// with explicit "PARKED" and "SIGNALED" bits.
4521
4522int os::PlatformEvent::park (jlong Millis) {
4523    guarantee (_ParkHandle != NULL , "Invariant") ;
4524    guarantee (Millis > 0          , "Invariant") ;
4525    int v ;
4526
4527    // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4528    // the initial park() operation.
4529
4530    for (;;) {
4531        v = _Event ;
4532        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4533    }
4534    guarantee ((v == 0) || (v == 1), "invariant") ;
4535    if (v != 0) return OS_OK ;
4536
4537    // Do this the hard way by blocking ...
4538    // TODO: consider a brief spin here, gated on the success of recent
4539    // spin attempts by this thread.
4540    //
4541    // We decompose long timeouts into series of shorter timed waits.
4542    // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4543    // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4544    // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4545    // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4546    // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4547    // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4548    // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4549    // for the already waited time.  This policy does not admit any new outcomes.
4550    // In the future, however, we might want to track the accumulated wait time and
4551    // adjust Millis accordingly if we encounter a spurious wakeup.
4552
4553    const int MAXTIMEOUT = 0x10000000 ;
4554    DWORD rv = WAIT_TIMEOUT ;
4555    while (_Event < 0 && Millis > 0) {
4556       DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4557       if (Millis > MAXTIMEOUT) {
4558          prd = MAXTIMEOUT ;
4559       }
4560       rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4561       assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4562       if (rv == WAIT_TIMEOUT) {
4563           Millis -= prd ;
4564       }
4565    }
4566    v = _Event ;
4567    _Event = 0 ;
4568    OrderAccess::fence() ;
4569    // If we encounter a nearly simultanous timeout expiry and unpark()
4570    // we return OS_OK indicating we awoke via unpark().
4571    // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4572    return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4573}
4574
4575void os::PlatformEvent::park () {
4576    guarantee (_ParkHandle != NULL, "Invariant") ;
4577    // Invariant: Only the thread associated with the Event/PlatformEvent
4578    // may call park().
4579    int v ;
4580    for (;;) {
4581        v = _Event ;
4582        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4583    }
4584    guarantee ((v == 0) || (v == 1), "invariant") ;
4585    if (v != 0) return ;
4586
4587    // Do this the hard way by blocking ...
4588    // TODO: consider a brief spin here, gated on the success of recent
4589    // spin attempts by this thread.
4590    while (_Event < 0) {
4591       DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4592       assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4593    }
4594
4595    // Usually we'll find _Event == 0 at this point, but as
4596    // an optional optimization we clear it, just in case can
4597    // multiple unpark() operations drove _Event up to 1.
4598    _Event = 0 ;
4599    OrderAccess::fence() ;
4600    guarantee (_Event >= 0, "invariant") ;
4601}
4602
4603void os::PlatformEvent::unpark() {
4604  guarantee (_ParkHandle != NULL, "Invariant") ;
4605  int v ;
4606  for (;;) {
4607      v = _Event ;      // Increment _Event if it's < 1.
4608      if (v > 0) {
4609         // If it's already signaled just return.
4610         // The LD of _Event could have reordered or be satisfied
4611         // by a read-aside from this processor's write buffer.
4612         // To avoid problems execute a barrier and then
4613         // ratify the value.  A degenerate CAS() would also work.
4614         // Viz., CAS (v+0, &_Event, v) == v).
4615         OrderAccess::fence() ;
4616         if (_Event == v) return ;
4617         continue ;
4618      }
4619      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4620  }
4621  if (v < 0) {
4622     ::SetEvent (_ParkHandle) ;
4623  }
4624}
4625
4626
4627// JSR166
4628// -------------------------------------------------------
4629
4630/*
4631 * The Windows implementation of Park is very straightforward: Basic
4632 * operations on Win32 Events turn out to have the right semantics to
4633 * use them directly. We opportunistically resuse the event inherited
4634 * from Monitor.
4635 */
4636
4637
4638void Parker::park(bool isAbsolute, jlong time) {
4639  guarantee (_ParkEvent != NULL, "invariant") ;
4640  // First, demultiplex/decode time arguments
4641  if (time < 0) { // don't wait
4642    return;
4643  }
4644  else if (time == 0 && !isAbsolute) {
4645    time = INFINITE;
4646  }
4647  else if  (isAbsolute) {
4648    time -= os::javaTimeMillis(); // convert to relative time
4649    if (time <= 0) // already elapsed
4650      return;
4651  }
4652  else { // relative
4653    time /= 1000000; // Must coarsen from nanos to millis
4654    if (time == 0)   // Wait for the minimal time unit if zero
4655      time = 1;
4656  }
4657
4658  JavaThread* thread = (JavaThread*)(Thread::current());
4659  assert(thread->is_Java_thread(), "Must be JavaThread");
4660  JavaThread *jt = (JavaThread *)thread;
4661
4662  // Don't wait if interrupted or already triggered
4663  if (Thread::is_interrupted(thread, false) ||
4664    WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4665    ResetEvent(_ParkEvent);
4666    return;
4667  }
4668  else {
4669    ThreadBlockInVM tbivm(jt);
4670    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4671    jt->set_suspend_equivalent();
4672
4673    WaitForSingleObject(_ParkEvent,  time);
4674    ResetEvent(_ParkEvent);
4675
4676    // If externally suspended while waiting, re-suspend
4677    if (jt->handle_special_suspend_equivalent_condition()) {
4678      jt->java_suspend_self();
4679    }
4680  }
4681}
4682
4683void Parker::unpark() {
4684  guarantee (_ParkEvent != NULL, "invariant") ;
4685  SetEvent(_ParkEvent);
4686}
4687
4688// Run the specified command in a separate process. Return its exit value,
4689// or -1 on failure (e.g. can't create a new process).
4690int os::fork_and_exec(char* cmd) {
4691  STARTUPINFO si;
4692  PROCESS_INFORMATION pi;
4693
4694  memset(&si, 0, sizeof(si));
4695  si.cb = sizeof(si);
4696  memset(&pi, 0, sizeof(pi));
4697  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4698                            cmd,    // command line
4699                            NULL,   // process security attribute
4700                            NULL,   // thread security attribute
4701                            TRUE,   // inherits system handles
4702                            0,      // no creation flags
4703                            NULL,   // use parent's environment block
4704                            NULL,   // use parent's starting directory
4705                            &si,    // (in) startup information
4706                            &pi);   // (out) process information
4707
4708  if (rslt) {
4709    // Wait until child process exits.
4710    WaitForSingleObject(pi.hProcess, INFINITE);
4711
4712    DWORD exit_code;
4713    GetExitCodeProcess(pi.hProcess, &exit_code);
4714
4715    // Close process and thread handles.
4716    CloseHandle(pi.hProcess);
4717    CloseHandle(pi.hThread);
4718
4719    return (int)exit_code;
4720  } else {
4721    return -1;
4722  }
4723}
4724
4725//--------------------------------------------------------------------------------------------------
4726// Non-product code
4727
4728static int mallocDebugIntervalCounter = 0;
4729static int mallocDebugCounter = 0;
4730bool os::check_heap(bool force) {
4731  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4732  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4733    // Note: HeapValidate executes two hardware breakpoints when it finds something
4734    // wrong; at these points, eax contains the address of the offending block (I think).
4735    // To get to the exlicit error message(s) below, just continue twice.
4736    HANDLE heap = GetProcessHeap();
4737    { HeapLock(heap);
4738      PROCESS_HEAP_ENTRY phe;
4739      phe.lpData = NULL;
4740      while (HeapWalk(heap, &phe) != 0) {
4741        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4742            !HeapValidate(heap, 0, phe.lpData)) {
4743          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4744          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4745          fatal("corrupted C heap");
4746        }
4747      }
4748      DWORD err = GetLastError();
4749      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4750        fatal(err_msg("heap walk aborted with error %d", err));
4751      }
4752      HeapUnlock(heap);
4753    }
4754    mallocDebugIntervalCounter = 0;
4755  }
4756  return true;
4757}
4758
4759
4760bool os::find(address addr, outputStream* st) {
4761  // Nothing yet
4762  return false;
4763}
4764
4765LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4766  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4767
4768  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4769    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4770    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4771    address addr = (address) exceptionRecord->ExceptionInformation[1];
4772
4773    if (os::is_memory_serialize_page(thread, addr))
4774      return EXCEPTION_CONTINUE_EXECUTION;
4775  }
4776
4777  return EXCEPTION_CONTINUE_SEARCH;
4778}
4779
4780// We don't build a headless jre for Windows
4781bool os::is_headless_jre() { return false; }
4782
4783
4784typedef CRITICAL_SECTION mutex_t;
4785#define mutexInit(m)    InitializeCriticalSection(m)
4786#define mutexDestroy(m) DeleteCriticalSection(m)
4787#define mutexLock(m)    EnterCriticalSection(m)
4788#define mutexUnlock(m)  LeaveCriticalSection(m)
4789
4790static bool sock_initialized = FALSE;
4791static mutex_t sockFnTableMutex;
4792
4793static void initSock() {
4794  WSADATA wsadata;
4795
4796  if (!os::WinSock2Dll::WinSock2Available()) {
4797    jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
4798      ::GetLastError());
4799    return;
4800  }
4801  if (sock_initialized == TRUE) return;
4802
4803  ::mutexInit(&sockFnTableMutex);
4804  ::mutexLock(&sockFnTableMutex);
4805  if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
4806      jio_fprintf(stderr, "Could not initialize Winsock\n");
4807  }
4808  sock_initialized = TRUE;
4809  ::mutexUnlock(&sockFnTableMutex);
4810}
4811
4812struct hostent* os::get_host_by_name(char* name) {
4813  if (!sock_initialized) {
4814    initSock();
4815  }
4816  if (!os::WinSock2Dll::WinSock2Available()) {
4817    return NULL;
4818  }
4819  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
4820}
4821
4822int os::socket_close(int fd) {
4823  return ::closesocket(fd);
4824}
4825
4826int os::socket_available(int fd, jint *pbytes) {
4827  int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
4828  return (ret < 0) ? 0 : 1;
4829}
4830
4831int os::socket(int domain, int type, int protocol) {
4832  return ::socket(domain, type, protocol);
4833}
4834
4835int os::listen(int fd, int count) {
4836  return ::listen(fd, count);
4837}
4838
4839int os::connect(int fd, struct sockaddr* him, socklen_t len) {
4840  return ::connect(fd, him, len);
4841}
4842
4843int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
4844  return ::accept(fd, him, len);
4845}
4846
4847int os::sendto(int fd, char* buf, size_t len, uint flags,
4848               struct sockaddr* to, socklen_t tolen) {
4849
4850  return ::sendto(fd, buf, (int)len, flags, to, tolen);
4851}
4852
4853int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
4854                 sockaddr* from, socklen_t* fromlen) {
4855
4856  return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
4857}
4858
4859int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
4860  return ::recv(fd, buf, (int)nBytes, flags);
4861}
4862
4863int os::send(int fd, char* buf, size_t nBytes, uint flags) {
4864  return ::send(fd, buf, (int)nBytes, flags);
4865}
4866
4867int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
4868  return ::send(fd, buf, (int)nBytes, flags);
4869}
4870
4871int os::timeout(int fd, long timeout) {
4872  fd_set tbl;
4873  struct timeval t;
4874
4875  t.tv_sec  = timeout / 1000;
4876  t.tv_usec = (timeout % 1000) * 1000;
4877
4878  tbl.fd_count    = 1;
4879  tbl.fd_array[0] = fd;
4880
4881  return ::select(1, &tbl, 0, 0, &t);
4882}
4883
4884int os::get_host_name(char* name, int namelen) {
4885  return ::gethostname(name, namelen);
4886}
4887
4888int os::socket_shutdown(int fd, int howto) {
4889  return ::shutdown(fd, howto);
4890}
4891
4892int os::bind(int fd, struct sockaddr* him, socklen_t len) {
4893  return ::bind(fd, him, len);
4894}
4895
4896int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
4897  return ::getsockname(fd, him, len);
4898}
4899
4900int os::get_sock_opt(int fd, int level, int optname,
4901                     char* optval, socklen_t* optlen) {
4902  return ::getsockopt(fd, level, optname, optval, optlen);
4903}
4904
4905int os::set_sock_opt(int fd, int level, int optname,
4906                     const char* optval, socklen_t optlen) {
4907  return ::setsockopt(fd, level, optname, optval, optlen);
4908}
4909
4910
4911// Kernel32 API
4912typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
4913typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
4914typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
4915typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
4916typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
4917
4918GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
4919VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
4920GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
4921GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
4922RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
4923
4924
4925BOOL                        os::Kernel32Dll::initialized = FALSE;
4926SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
4927  assert(initialized && _GetLargePageMinimum != NULL,
4928    "GetLargePageMinimumAvailable() not yet called");
4929  return _GetLargePageMinimum();
4930}
4931
4932BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
4933  if (!initialized) {
4934    initialize();
4935  }
4936  return _GetLargePageMinimum != NULL;
4937}
4938
4939BOOL os::Kernel32Dll::NumaCallsAvailable() {
4940  if (!initialized) {
4941    initialize();
4942  }
4943  return _VirtualAllocExNuma != NULL;
4944}
4945
4946LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
4947  assert(initialized && _VirtualAllocExNuma != NULL,
4948    "NUMACallsAvailable() not yet called");
4949
4950  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
4951}
4952
4953BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
4954  assert(initialized && _GetNumaHighestNodeNumber != NULL,
4955    "NUMACallsAvailable() not yet called");
4956
4957  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
4958}
4959
4960BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
4961  assert(initialized && _GetNumaNodeProcessorMask != NULL,
4962    "NUMACallsAvailable() not yet called");
4963
4964  return _GetNumaNodeProcessorMask(node, proc_mask);
4965}
4966
4967USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
4968  ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
4969    if (!initialized) {
4970      initialize();
4971    }
4972
4973    if (_RtlCaptureStackBackTrace != NULL) {
4974      return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
4975        BackTrace, BackTraceHash);
4976    } else {
4977      return 0;
4978    }
4979}
4980
4981void os::Kernel32Dll::initializeCommon() {
4982  if (!initialized) {
4983    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
4984    assert(handle != NULL, "Just check");
4985    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
4986    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
4987    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
4988    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
4989    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
4990    initialized = TRUE;
4991  }
4992}
4993
4994
4995
4996#ifndef JDK6_OR_EARLIER
4997
4998void os::Kernel32Dll::initialize() {
4999  initializeCommon();
5000}
5001
5002
5003// Kernel32 API
5004inline BOOL os::Kernel32Dll::SwitchToThread() {
5005  return ::SwitchToThread();
5006}
5007
5008inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5009  return true;
5010}
5011
5012  // Help tools
5013inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5014  return true;
5015}
5016
5017inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5018  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5019}
5020
5021inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5022  return ::Module32First(hSnapshot, lpme);
5023}
5024
5025inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5026  return ::Module32Next(hSnapshot, lpme);
5027}
5028
5029
5030inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5031  return true;
5032}
5033
5034inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5035  ::GetNativeSystemInfo(lpSystemInfo);
5036}
5037
5038// PSAPI API
5039inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5040  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5041}
5042
5043inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5044  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5045}
5046
5047inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5048  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5049}
5050
5051inline BOOL os::PSApiDll::PSApiAvailable() {
5052  return true;
5053}
5054
5055
5056// WinSock2 API
5057inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5058  return ::WSAStartup(wVersionRequested, lpWSAData);
5059}
5060
5061inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5062  return ::gethostbyname(name);
5063}
5064
5065inline BOOL os::WinSock2Dll::WinSock2Available() {
5066  return true;
5067}
5068
5069// Advapi API
5070inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5071   BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5072   PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5073     return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5074       BufferLength, PreviousState, ReturnLength);
5075}
5076
5077inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5078  PHANDLE TokenHandle) {
5079    return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5080}
5081
5082inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5083  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5084}
5085
5086inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5087  return true;
5088}
5089
5090#else
5091// Kernel32 API
5092typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5093typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5094typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5095typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5096typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5097
5098SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5099CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5100Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5101Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5102GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5103
5104void os::Kernel32Dll::initialize() {
5105  if (!initialized) {
5106    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5107    assert(handle != NULL, "Just check");
5108
5109    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5110    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5111      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5112    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5113    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5114    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5115    initializeCommon();  // resolve the functions that always need resolving
5116
5117    initialized = TRUE;
5118  }
5119}
5120
5121BOOL os::Kernel32Dll::SwitchToThread() {
5122  assert(initialized && _SwitchToThread != NULL,
5123    "SwitchToThreadAvailable() not yet called");
5124  return _SwitchToThread();
5125}
5126
5127
5128BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5129  if (!initialized) {
5130    initialize();
5131  }
5132  return _SwitchToThread != NULL;
5133}
5134
5135// Help tools
5136BOOL os::Kernel32Dll::HelpToolsAvailable() {
5137  if (!initialized) {
5138    initialize();
5139  }
5140  return _CreateToolhelp32Snapshot != NULL &&
5141         _Module32First != NULL &&
5142         _Module32Next != NULL;
5143}
5144
5145HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5146  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5147    "HelpToolsAvailable() not yet called");
5148
5149  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5150}
5151
5152BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5153  assert(initialized && _Module32First != NULL,
5154    "HelpToolsAvailable() not yet called");
5155
5156  return _Module32First(hSnapshot, lpme);
5157}
5158
5159inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5160  assert(initialized && _Module32Next != NULL,
5161    "HelpToolsAvailable() not yet called");
5162
5163  return _Module32Next(hSnapshot, lpme);
5164}
5165
5166
5167BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5168  if (!initialized) {
5169    initialize();
5170  }
5171  return _GetNativeSystemInfo != NULL;
5172}
5173
5174void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5175  assert(initialized && _GetNativeSystemInfo != NULL,
5176    "GetNativeSystemInfoAvailable() not yet called");
5177
5178  _GetNativeSystemInfo(lpSystemInfo);
5179}
5180
5181// PSAPI API
5182
5183
5184typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5185typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5186typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5187
5188EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5189GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5190GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5191BOOL                    os::PSApiDll::initialized = FALSE;
5192
5193void os::PSApiDll::initialize() {
5194  if (!initialized) {
5195    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5196    if (handle != NULL) {
5197      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5198        "EnumProcessModules");
5199      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5200        "GetModuleFileNameExA");
5201      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5202        "GetModuleInformation");
5203    }
5204    initialized = TRUE;
5205  }
5206}
5207
5208
5209
5210BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5211  assert(initialized && _EnumProcessModules != NULL,
5212    "PSApiAvailable() not yet called");
5213  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5214}
5215
5216DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5217  assert(initialized && _GetModuleFileNameEx != NULL,
5218    "PSApiAvailable() not yet called");
5219  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5220}
5221
5222BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5223  assert(initialized && _GetModuleInformation != NULL,
5224    "PSApiAvailable() not yet called");
5225  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5226}
5227
5228BOOL os::PSApiDll::PSApiAvailable() {
5229  if (!initialized) {
5230    initialize();
5231  }
5232  return _EnumProcessModules != NULL &&
5233    _GetModuleFileNameEx != NULL &&
5234    _GetModuleInformation != NULL;
5235}
5236
5237
5238// WinSock2 API
5239typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5240typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5241
5242WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5243gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5244BOOL             os::WinSock2Dll::initialized = FALSE;
5245
5246void os::WinSock2Dll::initialize() {
5247  if (!initialized) {
5248    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5249    if (handle != NULL) {
5250      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5251      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5252    }
5253    initialized = TRUE;
5254  }
5255}
5256
5257
5258BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5259  assert(initialized && _WSAStartup != NULL,
5260    "WinSock2Available() not yet called");
5261  return _WSAStartup(wVersionRequested, lpWSAData);
5262}
5263
5264struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5265  assert(initialized && _gethostbyname != NULL,
5266    "WinSock2Available() not yet called");
5267  return _gethostbyname(name);
5268}
5269
5270BOOL os::WinSock2Dll::WinSock2Available() {
5271  if (!initialized) {
5272    initialize();
5273  }
5274  return _WSAStartup != NULL &&
5275    _gethostbyname != NULL;
5276}
5277
5278typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5279typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5280typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5281
5282AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5283OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5284LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5285BOOL                     os::Advapi32Dll::initialized = FALSE;
5286
5287void os::Advapi32Dll::initialize() {
5288  if (!initialized) {
5289    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5290    if (handle != NULL) {
5291      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5292        "AdjustTokenPrivileges");
5293      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5294        "OpenProcessToken");
5295      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5296        "LookupPrivilegeValueA");
5297    }
5298    initialized = TRUE;
5299  }
5300}
5301
5302BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5303   BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5304   PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5305   assert(initialized && _AdjustTokenPrivileges != NULL,
5306     "AdvapiAvailable() not yet called");
5307   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5308       BufferLength, PreviousState, ReturnLength);
5309}
5310
5311BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5312  PHANDLE TokenHandle) {
5313   assert(initialized && _OpenProcessToken != NULL,
5314     "AdvapiAvailable() not yet called");
5315    return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5316}
5317
5318BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5319   assert(initialized && _LookupPrivilegeValue != NULL,
5320     "AdvapiAvailable() not yet called");
5321  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5322}
5323
5324BOOL os::Advapi32Dll::AdvapiAvailable() {
5325  if (!initialized) {
5326    initialize();
5327  }
5328  return _AdjustTokenPrivileges != NULL &&
5329    _OpenProcessToken != NULL &&
5330    _LookupPrivilegeValue != NULL;
5331}
5332
5333#endif
5334