os_windows.cpp revision 3883:cd3d6a6b95d9
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows 2000 or XP to use IsDebuggerPresent
26#define _WIN32_WINNT 0x500
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "prims/jniFastGetField.hpp"
44#include "prims/jvm.h"
45#include "prims/jvm_misc.hpp"
46#include "runtime/arguments.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/threadCritical.hpp"
60#include "runtime/timer.hpp"
61#include "services/attachListener.hpp"
62#include "services/runtimeService.hpp"
63#include "thread_windows.inline.hpp"
64#include "utilities/decoder.hpp"
65#include "utilities/defaultStream.hpp"
66#include "utilities/events.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70#ifdef _DEBUG
71#include <crtdbg.h>
72#endif
73
74
75#include <windows.h>
76#include <sys/types.h>
77#include <sys/stat.h>
78#include <sys/timeb.h>
79#include <objidl.h>
80#include <shlobj.h>
81
82#include <malloc.h>
83#include <signal.h>
84#include <direct.h>
85#include <errno.h>
86#include <fcntl.h>
87#include <io.h>
88#include <process.h>              // For _beginthreadex(), _endthreadex()
89#include <imagehlp.h>             // For os::dll_address_to_function_name
90/* for enumerating dll libraries */
91#include <vdmdbg.h>
92
93// for timer info max values which include all bits
94#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
95
96// For DLL loading/load error detection
97// Values of PE COFF
98#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
99#define IMAGE_FILE_SIGNATURE_LENGTH 4
100
101static HANDLE main_process;
102static HANDLE main_thread;
103static int    main_thread_id;
104
105static FILETIME process_creation_time;
106static FILETIME process_exit_time;
107static FILETIME process_user_time;
108static FILETIME process_kernel_time;
109
110#ifdef _M_IA64
111#define __CPU__ ia64
112#elif _M_AMD64
113#define __CPU__ amd64
114#else
115#define __CPU__ i486
116#endif
117
118// save DLL module handle, used by GetModuleFileName
119
120HINSTANCE vm_lib_handle;
121
122BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
123  switch (reason) {
124    case DLL_PROCESS_ATTACH:
125      vm_lib_handle = hinst;
126      if(ForceTimeHighResolution)
127        timeBeginPeriod(1L);
128      break;
129    case DLL_PROCESS_DETACH:
130      if(ForceTimeHighResolution)
131        timeEndPeriod(1L);
132      break;
133    default:
134      break;
135  }
136  return true;
137}
138
139static inline double fileTimeAsDouble(FILETIME* time) {
140  const double high  = (double) ((unsigned int) ~0);
141  const double split = 10000000.0;
142  double result = (time->dwLowDateTime / split) +
143                   time->dwHighDateTime * (high/split);
144  return result;
145}
146
147// Implementation of os
148
149bool os::getenv(const char* name, char* buffer, int len) {
150 int result = GetEnvironmentVariable(name, buffer, len);
151 return result > 0 && result < len;
152}
153
154
155// No setuid programs under Windows.
156bool os::have_special_privileges() {
157  return false;
158}
159
160
161// This method is  a periodic task to check for misbehaving JNI applications
162// under CheckJNI, we can add any periodic checks here.
163// For Windows at the moment does nothing
164void os::run_periodic_checks() {
165  return;
166}
167
168#ifndef _WIN64
169// previous UnhandledExceptionFilter, if there is one
170static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
171
172LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
173#endif
174void os::init_system_properties_values() {
175  /* sysclasspath, java_home, dll_dir */
176  {
177      char *home_path;
178      char *dll_path;
179      char *pslash;
180      char *bin = "\\bin";
181      char home_dir[MAX_PATH];
182
183      if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
184          os::jvm_path(home_dir, sizeof(home_dir));
185          // Found the full path to jvm[_g].dll.
186          // Now cut the path to <java_home>/jre if we can.
187          *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
188          pslash = strrchr(home_dir, '\\');
189          if (pslash != NULL) {
190              *pslash = '\0';                 /* get rid of \{client|server} */
191              pslash = strrchr(home_dir, '\\');
192              if (pslash != NULL)
193                  *pslash = '\0';             /* get rid of \bin */
194          }
195      }
196
197      home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
198      if (home_path == NULL)
199          return;
200      strcpy(home_path, home_dir);
201      Arguments::set_java_home(home_path);
202
203      dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
204      if (dll_path == NULL)
205          return;
206      strcpy(dll_path, home_dir);
207      strcat(dll_path, bin);
208      Arguments::set_dll_dir(dll_path);
209
210      if (!set_boot_path('\\', ';'))
211          return;
212  }
213
214  /* library_path */
215  #define EXT_DIR "\\lib\\ext"
216  #define BIN_DIR "\\bin"
217  #define PACKAGE_DIR "\\Sun\\Java"
218  {
219    /* Win32 library search order (See the documentation for LoadLibrary):
220     *
221     * 1. The directory from which application is loaded.
222     * 2. The system wide Java Extensions directory (Java only)
223     * 3. System directory (GetSystemDirectory)
224     * 4. Windows directory (GetWindowsDirectory)
225     * 5. The PATH environment variable
226     * 6. The current directory
227     */
228
229    char *library_path;
230    char tmp[MAX_PATH];
231    char *path_str = ::getenv("PATH");
232
233    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
234        sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
235
236    library_path[0] = '\0';
237
238    GetModuleFileName(NULL, tmp, sizeof(tmp));
239    *(strrchr(tmp, '\\')) = '\0';
240    strcat(library_path, tmp);
241
242    GetWindowsDirectory(tmp, sizeof(tmp));
243    strcat(library_path, ";");
244    strcat(library_path, tmp);
245    strcat(library_path, PACKAGE_DIR BIN_DIR);
246
247    GetSystemDirectory(tmp, sizeof(tmp));
248    strcat(library_path, ";");
249    strcat(library_path, tmp);
250
251    GetWindowsDirectory(tmp, sizeof(tmp));
252    strcat(library_path, ";");
253    strcat(library_path, tmp);
254
255    if (path_str) {
256        strcat(library_path, ";");
257        strcat(library_path, path_str);
258    }
259
260    strcat(library_path, ";.");
261
262    Arguments::set_library_path(library_path);
263    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
264  }
265
266  /* Default extensions directory */
267  {
268    char path[MAX_PATH];
269    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
270    GetWindowsDirectory(path, MAX_PATH);
271    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
272        path, PACKAGE_DIR, EXT_DIR);
273    Arguments::set_ext_dirs(buf);
274  }
275  #undef EXT_DIR
276  #undef BIN_DIR
277  #undef PACKAGE_DIR
278
279  /* Default endorsed standards directory. */
280  {
281    #define ENDORSED_DIR "\\lib\\endorsed"
282    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
283    char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
284    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
285    Arguments::set_endorsed_dirs(buf);
286    #undef ENDORSED_DIR
287  }
288
289#ifndef _WIN64
290  // set our UnhandledExceptionFilter and save any previous one
291  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
292#endif
293
294  // Done
295  return;
296}
297
298void os::breakpoint() {
299  DebugBreak();
300}
301
302// Invoked from the BREAKPOINT Macro
303extern "C" void breakpoint() {
304  os::breakpoint();
305}
306
307/*
308 * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
309 * So far, this method is only used by Native Memory Tracking, which is
310 * only supported on Windows XP or later.
311 */
312address os::get_caller_pc(int n) {
313#ifdef _NMT_NOINLINE_
314  n ++;
315#endif
316  address pc;
317  if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
318    return pc;
319  }
320  return NULL;
321}
322
323
324// os::current_stack_base()
325//
326//   Returns the base of the stack, which is the stack's
327//   starting address.  This function must be called
328//   while running on the stack of the thread being queried.
329
330address os::current_stack_base() {
331  MEMORY_BASIC_INFORMATION minfo;
332  address stack_bottom;
333  size_t stack_size;
334
335  VirtualQuery(&minfo, &minfo, sizeof(minfo));
336  stack_bottom =  (address)minfo.AllocationBase;
337  stack_size = minfo.RegionSize;
338
339  // Add up the sizes of all the regions with the same
340  // AllocationBase.
341  while( 1 )
342  {
343    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
344    if ( stack_bottom == (address)minfo.AllocationBase )
345      stack_size += minfo.RegionSize;
346    else
347      break;
348  }
349
350#ifdef _M_IA64
351  // IA64 has memory and register stacks
352  stack_size = stack_size / 2;
353#endif
354  return stack_bottom + stack_size;
355}
356
357size_t os::current_stack_size() {
358  size_t sz;
359  MEMORY_BASIC_INFORMATION minfo;
360  VirtualQuery(&minfo, &minfo, sizeof(minfo));
361  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
362  return sz;
363}
364
365struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
366  const struct tm* time_struct_ptr = localtime(clock);
367  if (time_struct_ptr != NULL) {
368    *res = *time_struct_ptr;
369    return res;
370  }
371  return NULL;
372}
373
374LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
375
376// Thread start routine for all new Java threads
377static unsigned __stdcall java_start(Thread* thread) {
378  // Try to randomize the cache line index of hot stack frames.
379  // This helps when threads of the same stack traces evict each other's
380  // cache lines. The threads can be either from the same JVM instance, or
381  // from different JVM instances. The benefit is especially true for
382  // processors with hyperthreading technology.
383  static int counter = 0;
384  int pid = os::current_process_id();
385  _alloca(((pid ^ counter++) & 7) * 128);
386
387  OSThread* osthr = thread->osthread();
388  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
389
390  if (UseNUMA) {
391    int lgrp_id = os::numa_get_group_id();
392    if (lgrp_id != -1) {
393      thread->set_lgrp_id(lgrp_id);
394    }
395  }
396
397
398  // Install a win32 structured exception handler around every thread created
399  // by VM, so VM can genrate error dump when an exception occurred in non-
400  // Java thread (e.g. VM thread).
401  __try {
402     thread->run();
403  } __except(topLevelExceptionFilter(
404             (_EXCEPTION_POINTERS*)_exception_info())) {
405      // Nothing to do.
406  }
407
408  // One less thread is executing
409  // When the VMThread gets here, the main thread may have already exited
410  // which frees the CodeHeap containing the Atomic::add code
411  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
412    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
413  }
414
415  return 0;
416}
417
418static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
419  // Allocate the OSThread object
420  OSThread* osthread = new OSThread(NULL, NULL);
421  if (osthread == NULL) return NULL;
422
423  // Initialize support for Java interrupts
424  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
425  if (interrupt_event == NULL) {
426    delete osthread;
427    return NULL;
428  }
429  osthread->set_interrupt_event(interrupt_event);
430
431  // Store info on the Win32 thread into the OSThread
432  osthread->set_thread_handle(thread_handle);
433  osthread->set_thread_id(thread_id);
434
435  if (UseNUMA) {
436    int lgrp_id = os::numa_get_group_id();
437    if (lgrp_id != -1) {
438      thread->set_lgrp_id(lgrp_id);
439    }
440  }
441
442  // Initial thread state is INITIALIZED, not SUSPENDED
443  osthread->set_state(INITIALIZED);
444
445  return osthread;
446}
447
448
449bool os::create_attached_thread(JavaThread* thread) {
450#ifdef ASSERT
451  thread->verify_not_published();
452#endif
453  HANDLE thread_h;
454  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
455                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
456    fatal("DuplicateHandle failed\n");
457  }
458  OSThread* osthread = create_os_thread(thread, thread_h,
459                                        (int)current_thread_id());
460  if (osthread == NULL) {
461     return false;
462  }
463
464  // Initial thread state is RUNNABLE
465  osthread->set_state(RUNNABLE);
466
467  thread->set_osthread(osthread);
468  return true;
469}
470
471bool os::create_main_thread(JavaThread* thread) {
472#ifdef ASSERT
473  thread->verify_not_published();
474#endif
475  if (_starting_thread == NULL) {
476    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
477     if (_starting_thread == NULL) {
478        return false;
479     }
480  }
481
482  // The primordial thread is runnable from the start)
483  _starting_thread->set_state(RUNNABLE);
484
485  thread->set_osthread(_starting_thread);
486  return true;
487}
488
489// Allocate and initialize a new OSThread
490bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
491  unsigned thread_id;
492
493  // Allocate the OSThread object
494  OSThread* osthread = new OSThread(NULL, NULL);
495  if (osthread == NULL) {
496    return false;
497  }
498
499  // Initialize support for Java interrupts
500  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
501  if (interrupt_event == NULL) {
502    delete osthread;
503    return NULL;
504  }
505  osthread->set_interrupt_event(interrupt_event);
506  osthread->set_interrupted(false);
507
508  thread->set_osthread(osthread);
509
510  if (stack_size == 0) {
511    switch (thr_type) {
512    case os::java_thread:
513      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
514      if (JavaThread::stack_size_at_create() > 0)
515        stack_size = JavaThread::stack_size_at_create();
516      break;
517    case os::compiler_thread:
518      if (CompilerThreadStackSize > 0) {
519        stack_size = (size_t)(CompilerThreadStackSize * K);
520        break;
521      } // else fall through:
522        // use VMThreadStackSize if CompilerThreadStackSize is not defined
523    case os::vm_thread:
524    case os::pgc_thread:
525    case os::cgc_thread:
526    case os::watcher_thread:
527      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
528      break;
529    }
530  }
531
532  // Create the Win32 thread
533  //
534  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
535  // does not specify stack size. Instead, it specifies the size of
536  // initially committed space. The stack size is determined by
537  // PE header in the executable. If the committed "stack_size" is larger
538  // than default value in the PE header, the stack is rounded up to the
539  // nearest multiple of 1MB. For example if the launcher has default
540  // stack size of 320k, specifying any size less than 320k does not
541  // affect the actual stack size at all, it only affects the initial
542  // commitment. On the other hand, specifying 'stack_size' larger than
543  // default value may cause significant increase in memory usage, because
544  // not only the stack space will be rounded up to MB, but also the
545  // entire space is committed upfront.
546  //
547  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
548  // for CreateThread() that can treat 'stack_size' as stack size. However we
549  // are not supposed to call CreateThread() directly according to MSDN
550  // document because JVM uses C runtime library. The good news is that the
551  // flag appears to work with _beginthredex() as well.
552
553#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
554#define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
555#endif
556
557  HANDLE thread_handle =
558    (HANDLE)_beginthreadex(NULL,
559                           (unsigned)stack_size,
560                           (unsigned (__stdcall *)(void*)) java_start,
561                           thread,
562                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
563                           &thread_id);
564  if (thread_handle == NULL) {
565    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
566    // without the flag.
567    thread_handle =
568    (HANDLE)_beginthreadex(NULL,
569                           (unsigned)stack_size,
570                           (unsigned (__stdcall *)(void*)) java_start,
571                           thread,
572                           CREATE_SUSPENDED,
573                           &thread_id);
574  }
575  if (thread_handle == NULL) {
576    // Need to clean up stuff we've allocated so far
577    CloseHandle(osthread->interrupt_event());
578    thread->set_osthread(NULL);
579    delete osthread;
580    return NULL;
581  }
582
583  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
584
585  // Store info on the Win32 thread into the OSThread
586  osthread->set_thread_handle(thread_handle);
587  osthread->set_thread_id(thread_id);
588
589  // Initial thread state is INITIALIZED, not SUSPENDED
590  osthread->set_state(INITIALIZED);
591
592  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
593  return true;
594}
595
596
597// Free Win32 resources related to the OSThread
598void os::free_thread(OSThread* osthread) {
599  assert(osthread != NULL, "osthread not set");
600  CloseHandle(osthread->thread_handle());
601  CloseHandle(osthread->interrupt_event());
602  delete osthread;
603}
604
605
606static int    has_performance_count = 0;
607static jlong first_filetime;
608static jlong initial_performance_count;
609static jlong performance_frequency;
610
611
612jlong as_long(LARGE_INTEGER x) {
613  jlong result = 0; // initialization to avoid warning
614  set_high(&result, x.HighPart);
615  set_low(&result,  x.LowPart);
616  return result;
617}
618
619
620jlong os::elapsed_counter() {
621  LARGE_INTEGER count;
622  if (has_performance_count) {
623    QueryPerformanceCounter(&count);
624    return as_long(count) - initial_performance_count;
625  } else {
626    FILETIME wt;
627    GetSystemTimeAsFileTime(&wt);
628    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
629  }
630}
631
632
633jlong os::elapsed_frequency() {
634  if (has_performance_count) {
635    return performance_frequency;
636  } else {
637   // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
638   return 10000000;
639  }
640}
641
642
643julong os::available_memory() {
644  return win32::available_memory();
645}
646
647julong os::win32::available_memory() {
648  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
649  // value if total memory is larger than 4GB
650  MEMORYSTATUSEX ms;
651  ms.dwLength = sizeof(ms);
652  GlobalMemoryStatusEx(&ms);
653
654  return (julong)ms.ullAvailPhys;
655}
656
657julong os::physical_memory() {
658  return win32::physical_memory();
659}
660
661julong os::allocatable_physical_memory(julong size) {
662#ifdef _LP64
663  return size;
664#else
665  // Limit to 1400m because of the 2gb address space wall
666  return MIN2(size, (julong)1400*M);
667#endif
668}
669
670// VC6 lacks DWORD_PTR
671#if _MSC_VER < 1300
672typedef UINT_PTR DWORD_PTR;
673#endif
674
675int os::active_processor_count() {
676  DWORD_PTR lpProcessAffinityMask = 0;
677  DWORD_PTR lpSystemAffinityMask = 0;
678  int proc_count = processor_count();
679  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
680      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
681    // Nof active processors is number of bits in process affinity mask
682    int bitcount = 0;
683    while (lpProcessAffinityMask != 0) {
684      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
685      bitcount++;
686    }
687    return bitcount;
688  } else {
689    return proc_count;
690  }
691}
692
693void os::set_native_thread_name(const char *name) {
694  // Not yet implemented.
695  return;
696}
697
698bool os::distribute_processes(uint length, uint* distribution) {
699  // Not yet implemented.
700  return false;
701}
702
703bool os::bind_to_processor(uint processor_id) {
704  // Not yet implemented.
705  return false;
706}
707
708static void initialize_performance_counter() {
709  LARGE_INTEGER count;
710  if (QueryPerformanceFrequency(&count)) {
711    has_performance_count = 1;
712    performance_frequency = as_long(count);
713    QueryPerformanceCounter(&count);
714    initial_performance_count = as_long(count);
715  } else {
716    has_performance_count = 0;
717    FILETIME wt;
718    GetSystemTimeAsFileTime(&wt);
719    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
720  }
721}
722
723
724double os::elapsedTime() {
725  return (double) elapsed_counter() / (double) elapsed_frequency();
726}
727
728
729// Windows format:
730//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
731// Java format:
732//   Java standards require the number of milliseconds since 1/1/1970
733
734// Constant offset - calculated using offset()
735static jlong  _offset   = 116444736000000000;
736// Fake time counter for reproducible results when debugging
737static jlong  fake_time = 0;
738
739#ifdef ASSERT
740// Just to be safe, recalculate the offset in debug mode
741static jlong _calculated_offset = 0;
742static int   _has_calculated_offset = 0;
743
744jlong offset() {
745  if (_has_calculated_offset) return _calculated_offset;
746  SYSTEMTIME java_origin;
747  java_origin.wYear          = 1970;
748  java_origin.wMonth         = 1;
749  java_origin.wDayOfWeek     = 0; // ignored
750  java_origin.wDay           = 1;
751  java_origin.wHour          = 0;
752  java_origin.wMinute        = 0;
753  java_origin.wSecond        = 0;
754  java_origin.wMilliseconds  = 0;
755  FILETIME jot;
756  if (!SystemTimeToFileTime(&java_origin, &jot)) {
757    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
758  }
759  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
760  _has_calculated_offset = 1;
761  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
762  return _calculated_offset;
763}
764#else
765jlong offset() {
766  return _offset;
767}
768#endif
769
770jlong windows_to_java_time(FILETIME wt) {
771  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
772  return (a - offset()) / 10000;
773}
774
775FILETIME java_to_windows_time(jlong l) {
776  jlong a = (l * 10000) + offset();
777  FILETIME result;
778  result.dwHighDateTime = high(a);
779  result.dwLowDateTime  = low(a);
780  return result;
781}
782
783// For now, we say that Windows does not support vtime.  I have no idea
784// whether it can actually be made to (DLD, 9/13/05).
785
786bool os::supports_vtime() { return false; }
787bool os::enable_vtime() { return false; }
788bool os::vtime_enabled() { return false; }
789double os::elapsedVTime() {
790  // better than nothing, but not much
791  return elapsedTime();
792}
793
794jlong os::javaTimeMillis() {
795  if (UseFakeTimers) {
796    return fake_time++;
797  } else {
798    FILETIME wt;
799    GetSystemTimeAsFileTime(&wt);
800    return windows_to_java_time(wt);
801  }
802}
803
804jlong os::javaTimeNanos() {
805  if (!has_performance_count) {
806    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
807  } else {
808    LARGE_INTEGER current_count;
809    QueryPerformanceCounter(&current_count);
810    double current = as_long(current_count);
811    double freq = performance_frequency;
812    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
813    return time;
814  }
815}
816
817void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
818  if (!has_performance_count) {
819    // javaTimeMillis() doesn't have much percision,
820    // but it is not going to wrap -- so all 64 bits
821    info_ptr->max_value = ALL_64_BITS;
822
823    // this is a wall clock timer, so may skip
824    info_ptr->may_skip_backward = true;
825    info_ptr->may_skip_forward = true;
826  } else {
827    jlong freq = performance_frequency;
828    if (freq < NANOSECS_PER_SEC) {
829      // the performance counter is 64 bits and we will
830      // be multiplying it -- so no wrap in 64 bits
831      info_ptr->max_value = ALL_64_BITS;
832    } else if (freq > NANOSECS_PER_SEC) {
833      // use the max value the counter can reach to
834      // determine the max value which could be returned
835      julong max_counter = (julong)ALL_64_BITS;
836      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
837    } else {
838      // the performance counter is 64 bits and we will
839      // be using it directly -- so no wrap in 64 bits
840      info_ptr->max_value = ALL_64_BITS;
841    }
842
843    // using a counter, so no skipping
844    info_ptr->may_skip_backward = false;
845    info_ptr->may_skip_forward = false;
846  }
847  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
848}
849
850char* os::local_time_string(char *buf, size_t buflen) {
851  SYSTEMTIME st;
852  GetLocalTime(&st);
853  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
854               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
855  return buf;
856}
857
858bool os::getTimesSecs(double* process_real_time,
859                     double* process_user_time,
860                     double* process_system_time) {
861  HANDLE h_process = GetCurrentProcess();
862  FILETIME create_time, exit_time, kernel_time, user_time;
863  BOOL result = GetProcessTimes(h_process,
864                               &create_time,
865                               &exit_time,
866                               &kernel_time,
867                               &user_time);
868  if (result != 0) {
869    FILETIME wt;
870    GetSystemTimeAsFileTime(&wt);
871    jlong rtc_millis = windows_to_java_time(wt);
872    jlong user_millis = windows_to_java_time(user_time);
873    jlong system_millis = windows_to_java_time(kernel_time);
874    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
875    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
876    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
877    return true;
878  } else {
879    return false;
880  }
881}
882
883void os::shutdown() {
884
885  // allow PerfMemory to attempt cleanup of any persistent resources
886  perfMemory_exit();
887
888  // flush buffered output, finish log files
889  ostream_abort();
890
891  // Check for abort hook
892  abort_hook_t abort_hook = Arguments::abort_hook();
893  if (abort_hook != NULL) {
894    abort_hook();
895  }
896}
897
898
899static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
900                                            PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
901
902void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
903  HINSTANCE dbghelp;
904  EXCEPTION_POINTERS ep;
905  MINIDUMP_EXCEPTION_INFORMATION mei;
906  MINIDUMP_EXCEPTION_INFORMATION* pmei;
907
908  HANDLE hProcess = GetCurrentProcess();
909  DWORD processId = GetCurrentProcessId();
910  HANDLE dumpFile;
911  MINIDUMP_TYPE dumpType;
912  static const char* cwd;
913
914  // If running on a client version of Windows and user has not explicitly enabled dumping
915  if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
916    VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
917    return;
918    // If running on a server version of Windows and user has explictly disabled dumping
919  } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
920    VMError::report_coredump_status("Minidump has been disabled from the command line", false);
921    return;
922  }
923
924  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
925
926  if (dbghelp == NULL) {
927    VMError::report_coredump_status("Failed to load dbghelp.dll", false);
928    return;
929  }
930
931  _MiniDumpWriteDump = CAST_TO_FN_PTR(
932    BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
933    PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
934    GetProcAddress(dbghelp, "MiniDumpWriteDump"));
935
936  if (_MiniDumpWriteDump == NULL) {
937    VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
938    return;
939  }
940
941  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
942
943// Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
944// API_VERSION_NUMBER 11 or higher contains the ones we want though
945#if API_VERSION_NUMBER >= 11
946  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
947    MiniDumpWithUnloadedModules);
948#endif
949
950  cwd = get_current_directory(NULL, 0);
951  jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
952  dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
953
954  if (dumpFile == INVALID_HANDLE_VALUE) {
955    VMError::report_coredump_status("Failed to create file for dumping", false);
956    return;
957  }
958  if (exceptionRecord != NULL && contextRecord != NULL) {
959    ep.ContextRecord = (PCONTEXT) contextRecord;
960    ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
961
962    mei.ThreadId = GetCurrentThreadId();
963    mei.ExceptionPointers = &ep;
964    pmei = &mei;
965  } else {
966    pmei = NULL;
967  }
968
969
970  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
971  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
972  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
973      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
974    VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
975  } else {
976    VMError::report_coredump_status(buffer, true);
977  }
978
979  CloseHandle(dumpFile);
980}
981
982
983
984void os::abort(bool dump_core)
985{
986  os::shutdown();
987  // no core dump on Windows
988  ::exit(1);
989}
990
991// Die immediately, no exit hook, no abort hook, no cleanup.
992void os::die() {
993  _exit(-1);
994}
995
996// Directory routines copied from src/win32/native/java/io/dirent_md.c
997//  * dirent_md.c       1.15 00/02/02
998//
999// The declarations for DIR and struct dirent are in jvm_win32.h.
1000
1001/* Caller must have already run dirname through JVM_NativePath, which removes
1002   duplicate slashes and converts all instances of '/' into '\\'. */
1003
1004DIR *
1005os::opendir(const char *dirname)
1006{
1007    assert(dirname != NULL, "just checking");   // hotspot change
1008    DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1009    DWORD fattr;                                // hotspot change
1010    char alt_dirname[4] = { 0, 0, 0, 0 };
1011
1012    if (dirp == 0) {
1013        errno = ENOMEM;
1014        return 0;
1015    }
1016
1017    /*
1018     * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1019     * as a directory in FindFirstFile().  We detect this case here and
1020     * prepend the current drive name.
1021     */
1022    if (dirname[1] == '\0' && dirname[0] == '\\') {
1023        alt_dirname[0] = _getdrive() + 'A' - 1;
1024        alt_dirname[1] = ':';
1025        alt_dirname[2] = '\\';
1026        alt_dirname[3] = '\0';
1027        dirname = alt_dirname;
1028    }
1029
1030    dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1031    if (dirp->path == 0) {
1032        free(dirp, mtInternal);
1033        errno = ENOMEM;
1034        return 0;
1035    }
1036    strcpy(dirp->path, dirname);
1037
1038    fattr = GetFileAttributes(dirp->path);
1039    if (fattr == 0xffffffff) {
1040        free(dirp->path, mtInternal);
1041        free(dirp, mtInternal);
1042        errno = ENOENT;
1043        return 0;
1044    } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1045        free(dirp->path, mtInternal);
1046        free(dirp, mtInternal);
1047        errno = ENOTDIR;
1048        return 0;
1049    }
1050
1051    /* Append "*.*", or possibly "\\*.*", to path */
1052    if (dirp->path[1] == ':'
1053        && (dirp->path[2] == '\0'
1054            || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1055        /* No '\\' needed for cases like "Z:" or "Z:\" */
1056        strcat(dirp->path, "*.*");
1057    } else {
1058        strcat(dirp->path, "\\*.*");
1059    }
1060
1061    dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1062    if (dirp->handle == INVALID_HANDLE_VALUE) {
1063        if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1064            free(dirp->path, mtInternal);
1065            free(dirp, mtInternal);
1066            errno = EACCES;
1067            return 0;
1068        }
1069    }
1070    return dirp;
1071}
1072
1073/* parameter dbuf unused on Windows */
1074
1075struct dirent *
1076os::readdir(DIR *dirp, dirent *dbuf)
1077{
1078    assert(dirp != NULL, "just checking");      // hotspot change
1079    if (dirp->handle == INVALID_HANDLE_VALUE) {
1080        return 0;
1081    }
1082
1083    strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1084
1085    if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1086        if (GetLastError() == ERROR_INVALID_HANDLE) {
1087            errno = EBADF;
1088            return 0;
1089        }
1090        FindClose(dirp->handle);
1091        dirp->handle = INVALID_HANDLE_VALUE;
1092    }
1093
1094    return &dirp->dirent;
1095}
1096
1097int
1098os::closedir(DIR *dirp)
1099{
1100    assert(dirp != NULL, "just checking");      // hotspot change
1101    if (dirp->handle != INVALID_HANDLE_VALUE) {
1102        if (!FindClose(dirp->handle)) {
1103            errno = EBADF;
1104            return -1;
1105        }
1106        dirp->handle = INVALID_HANDLE_VALUE;
1107    }
1108    free(dirp->path, mtInternal);
1109    free(dirp, mtInternal);
1110    return 0;
1111}
1112
1113// This must be hard coded because it's the system's temporary
1114// directory not the java application's temp directory, ala java.io.tmpdir.
1115const char* os::get_temp_directory() {
1116  static char path_buf[MAX_PATH];
1117  if (GetTempPath(MAX_PATH, path_buf)>0)
1118    return path_buf;
1119  else{
1120    path_buf[0]='\0';
1121    return path_buf;
1122  }
1123}
1124
1125static bool file_exists(const char* filename) {
1126  if (filename == NULL || strlen(filename) == 0) {
1127    return false;
1128  }
1129  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1130}
1131
1132bool os::dll_build_name(char *buffer, size_t buflen,
1133                        const char* pname, const char* fname) {
1134  bool retval = false;
1135  const size_t pnamelen = pname ? strlen(pname) : 0;
1136  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1137
1138  // Return error on buffer overflow.
1139  if (pnamelen + strlen(fname) + 10 > buflen) {
1140    return retval;
1141  }
1142
1143  if (pnamelen == 0) {
1144    jio_snprintf(buffer, buflen, "%s.dll", fname);
1145    retval = true;
1146  } else if (c == ':' || c == '\\') {
1147    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1148    retval = true;
1149  } else if (strchr(pname, *os::path_separator()) != NULL) {
1150    int n;
1151    char** pelements = split_path(pname, &n);
1152    for (int i = 0 ; i < n ; i++) {
1153      char* path = pelements[i];
1154      // Really shouldn't be NULL, but check can't hurt
1155      size_t plen = (path == NULL) ? 0 : strlen(path);
1156      if (plen == 0) {
1157        continue; // skip the empty path values
1158      }
1159      const char lastchar = path[plen - 1];
1160      if (lastchar == ':' || lastchar == '\\') {
1161        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1162      } else {
1163        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1164      }
1165      if (file_exists(buffer)) {
1166        retval = true;
1167        break;
1168      }
1169    }
1170    // release the storage
1171    for (int i = 0 ; i < n ; i++) {
1172      if (pelements[i] != NULL) {
1173        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1174      }
1175    }
1176    if (pelements != NULL) {
1177      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1178    }
1179  } else {
1180    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1181    retval = true;
1182  }
1183  return retval;
1184}
1185
1186// Needs to be in os specific directory because windows requires another
1187// header file <direct.h>
1188const char* os::get_current_directory(char *buf, int buflen) {
1189  return _getcwd(buf, buflen);
1190}
1191
1192//-----------------------------------------------------------
1193// Helper functions for fatal error handler
1194#ifdef _WIN64
1195// Helper routine which returns true if address in
1196// within the NTDLL address space.
1197//
1198static bool _addr_in_ntdll( address addr )
1199{
1200  HMODULE hmod;
1201  MODULEINFO minfo;
1202
1203  hmod = GetModuleHandle("NTDLL.DLL");
1204  if ( hmod == NULL ) return false;
1205  if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1206                               &minfo, sizeof(MODULEINFO)) )
1207    return false;
1208
1209  if ( (addr >= minfo.lpBaseOfDll) &&
1210       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1211    return true;
1212  else
1213    return false;
1214}
1215#endif
1216
1217
1218// Enumerate all modules for a given process ID
1219//
1220// Notice that Windows 95/98/Me and Windows NT/2000/XP have
1221// different API for doing this. We use PSAPI.DLL on NT based
1222// Windows and ToolHelp on 95/98/Me.
1223
1224// Callback function that is called by enumerate_modules() on
1225// every DLL module.
1226// Input parameters:
1227//    int       pid,
1228//    char*     module_file_name,
1229//    address   module_base_addr,
1230//    unsigned  module_size,
1231//    void*     param
1232typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1233
1234// enumerate_modules for Windows NT, using PSAPI
1235static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1236{
1237  HANDLE   hProcess ;
1238
1239# define MAX_NUM_MODULES 128
1240  HMODULE     modules[MAX_NUM_MODULES];
1241  static char filename[ MAX_PATH ];
1242  int         result = 0;
1243
1244  if (!os::PSApiDll::PSApiAvailable()) {
1245    return 0;
1246  }
1247
1248  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1249                         FALSE, pid ) ;
1250  if (hProcess == NULL) return 0;
1251
1252  DWORD size_needed;
1253  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1254                           sizeof(modules), &size_needed)) {
1255      CloseHandle( hProcess );
1256      return 0;
1257  }
1258
1259  // number of modules that are currently loaded
1260  int num_modules = size_needed / sizeof(HMODULE);
1261
1262  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1263    // Get Full pathname:
1264    if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1265                             filename, sizeof(filename))) {
1266        filename[0] = '\0';
1267    }
1268
1269    MODULEINFO modinfo;
1270    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1271                               &modinfo, sizeof(modinfo))) {
1272        modinfo.lpBaseOfDll = NULL;
1273        modinfo.SizeOfImage = 0;
1274    }
1275
1276    // Invoke callback function
1277    result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1278                  modinfo.SizeOfImage, param);
1279    if (result) break;
1280  }
1281
1282  CloseHandle( hProcess ) ;
1283  return result;
1284}
1285
1286
1287// enumerate_modules for Windows 95/98/ME, using TOOLHELP
1288static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1289{
1290  HANDLE                hSnapShot ;
1291  static MODULEENTRY32  modentry ;
1292  int                   result = 0;
1293
1294  if (!os::Kernel32Dll::HelpToolsAvailable()) {
1295    return 0;
1296  }
1297
1298  // Get a handle to a Toolhelp snapshot of the system
1299  hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1300  if( hSnapShot == INVALID_HANDLE_VALUE ) {
1301      return FALSE ;
1302  }
1303
1304  // iterate through all modules
1305  modentry.dwSize = sizeof(MODULEENTRY32) ;
1306  bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1307
1308  while( not_done ) {
1309    // invoke the callback
1310    result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1311                modentry.modBaseSize, param);
1312    if (result) break;
1313
1314    modentry.dwSize = sizeof(MODULEENTRY32) ;
1315    not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1316  }
1317
1318  CloseHandle(hSnapShot);
1319  return result;
1320}
1321
1322int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1323{
1324  // Get current process ID if caller doesn't provide it.
1325  if (!pid) pid = os::current_process_id();
1326
1327  if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1328  else                    return _enumerate_modules_windows(pid, func, param);
1329}
1330
1331struct _modinfo {
1332   address addr;
1333   char*   full_path;   // point to a char buffer
1334   int     buflen;      // size of the buffer
1335   address base_addr;
1336};
1337
1338static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1339                                  unsigned size, void * param) {
1340   struct _modinfo *pmod = (struct _modinfo *)param;
1341   if (!pmod) return -1;
1342
1343   if (base_addr     <= pmod->addr &&
1344       base_addr+size > pmod->addr) {
1345     // if a buffer is provided, copy path name to the buffer
1346     if (pmod->full_path) {
1347       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1348     }
1349     pmod->base_addr = base_addr;
1350     return 1;
1351   }
1352   return 0;
1353}
1354
1355bool os::dll_address_to_library_name(address addr, char* buf,
1356                                     int buflen, int* offset) {
1357// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1358//       return the full path to the DLL file, sometimes it returns path
1359//       to the corresponding PDB file (debug info); sometimes it only
1360//       returns partial path, which makes life painful.
1361
1362   struct _modinfo mi;
1363   mi.addr      = addr;
1364   mi.full_path = buf;
1365   mi.buflen    = buflen;
1366   int pid = os::current_process_id();
1367   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1368      // buf already contains path name
1369      if (offset) *offset = addr - mi.base_addr;
1370      return true;
1371   } else {
1372      if (buf) buf[0] = '\0';
1373      if (offset) *offset = -1;
1374      return false;
1375   }
1376}
1377
1378bool os::dll_address_to_function_name(address addr, char *buf,
1379                                      int buflen, int *offset) {
1380  if (Decoder::decode(addr, buf, buflen, offset)) {
1381    return true;
1382  }
1383  if (offset != NULL)  *offset  = -1;
1384  if (buf != NULL) buf[0] = '\0';
1385  return false;
1386}
1387
1388// save the start and end address of jvm.dll into param[0] and param[1]
1389static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1390                    unsigned size, void * param) {
1391   if (!param) return -1;
1392
1393   if (base_addr     <= (address)_locate_jvm_dll &&
1394       base_addr+size > (address)_locate_jvm_dll) {
1395         ((address*)param)[0] = base_addr;
1396         ((address*)param)[1] = base_addr + size;
1397         return 1;
1398   }
1399   return 0;
1400}
1401
1402address vm_lib_location[2];    // start and end address of jvm.dll
1403
1404// check if addr is inside jvm.dll
1405bool os::address_is_in_vm(address addr) {
1406  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1407    int pid = os::current_process_id();
1408    if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1409      assert(false, "Can't find jvm module.");
1410      return false;
1411    }
1412  }
1413
1414  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1415}
1416
1417// print module info; param is outputStream*
1418static int _print_module(int pid, char* fname, address base,
1419                         unsigned size, void* param) {
1420   if (!param) return -1;
1421
1422   outputStream* st = (outputStream*)param;
1423
1424   address end_addr = base + size;
1425   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1426   return 0;
1427}
1428
1429// Loads .dll/.so and
1430// in case of error it checks if .dll/.so was built for the
1431// same architecture as Hotspot is running on
1432void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1433{
1434  void * result = LoadLibrary(name);
1435  if (result != NULL)
1436  {
1437    return result;
1438  }
1439
1440  DWORD errcode = GetLastError();
1441  if (errcode == ERROR_MOD_NOT_FOUND) {
1442    strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1443    ebuf[ebuflen-1]='\0';
1444    return NULL;
1445  }
1446
1447  // Parsing dll below
1448  // If we can read dll-info and find that dll was built
1449  // for an architecture other than Hotspot is running in
1450  // - then print to buffer "DLL was built for a different architecture"
1451  // else call os::lasterror to obtain system error message
1452
1453  // Read system error message into ebuf
1454  // It may or may not be overwritten below (in the for loop and just above)
1455  lasterror(ebuf, (size_t) ebuflen);
1456  ebuf[ebuflen-1]='\0';
1457  int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1458  if (file_descriptor<0)
1459  {
1460    return NULL;
1461  }
1462
1463  uint32_t signature_offset;
1464  uint16_t lib_arch=0;
1465  bool failed_to_get_lib_arch=
1466  (
1467    //Go to position 3c in the dll
1468    (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1469    ||
1470    // Read loacation of signature
1471    (sizeof(signature_offset)!=
1472      (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1473    ||
1474    //Go to COFF File Header in dll
1475    //that is located after"signature" (4 bytes long)
1476    (os::seek_to_file_offset(file_descriptor,
1477      signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1478    ||
1479    //Read field that contains code of architecture
1480    // that dll was build for
1481    (sizeof(lib_arch)!=
1482      (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1483  );
1484
1485  ::close(file_descriptor);
1486  if (failed_to_get_lib_arch)
1487  {
1488    // file i/o error - report os::lasterror(...) msg
1489    return NULL;
1490  }
1491
1492  typedef struct
1493  {
1494    uint16_t arch_code;
1495    char* arch_name;
1496  } arch_t;
1497
1498  static const arch_t arch_array[]={
1499    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1500    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1501    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1502  };
1503  #if   (defined _M_IA64)
1504    static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1505  #elif (defined _M_AMD64)
1506    static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1507  #elif (defined _M_IX86)
1508    static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1509  #else
1510    #error Method os::dll_load requires that one of following \
1511           is defined :_M_IA64,_M_AMD64 or _M_IX86
1512  #endif
1513
1514
1515  // Obtain a string for printf operation
1516  // lib_arch_str shall contain string what platform this .dll was built for
1517  // running_arch_str shall string contain what platform Hotspot was built for
1518  char *running_arch_str=NULL,*lib_arch_str=NULL;
1519  for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1520  {
1521    if (lib_arch==arch_array[i].arch_code)
1522      lib_arch_str=arch_array[i].arch_name;
1523    if (running_arch==arch_array[i].arch_code)
1524      running_arch_str=arch_array[i].arch_name;
1525  }
1526
1527  assert(running_arch_str,
1528    "Didn't find runing architecture code in arch_array");
1529
1530  // If the architure is right
1531  // but some other error took place - report os::lasterror(...) msg
1532  if (lib_arch == running_arch)
1533  {
1534    return NULL;
1535  }
1536
1537  if (lib_arch_str!=NULL)
1538  {
1539    ::_snprintf(ebuf, ebuflen-1,
1540      "Can't load %s-bit .dll on a %s-bit platform",
1541      lib_arch_str,running_arch_str);
1542  }
1543  else
1544  {
1545    // don't know what architecture this dll was build for
1546    ::_snprintf(ebuf, ebuflen-1,
1547      "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1548      lib_arch,running_arch_str);
1549  }
1550
1551  return NULL;
1552}
1553
1554
1555void os::print_dll_info(outputStream *st) {
1556   int pid = os::current_process_id();
1557   st->print_cr("Dynamic libraries:");
1558   enumerate_modules(pid, _print_module, (void *)st);
1559}
1560
1561void os::print_os_info_brief(outputStream* st) {
1562  os::print_os_info(st);
1563}
1564
1565void os::print_os_info(outputStream* st) {
1566  st->print("OS:");
1567
1568  os::win32::print_windows_version(st);
1569}
1570
1571void os::win32::print_windows_version(outputStream* st) {
1572  OSVERSIONINFOEX osvi;
1573  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1574  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1575
1576  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1577    st->print_cr("N/A");
1578    return;
1579  }
1580
1581  int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1582  if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1583    switch (os_vers) {
1584    case 3051: st->print(" Windows NT 3.51"); break;
1585    case 4000: st->print(" Windows NT 4.0"); break;
1586    case 5000: st->print(" Windows 2000"); break;
1587    case 5001: st->print(" Windows XP"); break;
1588    case 5002:
1589    case 6000:
1590    case 6001:
1591    case 6002: {
1592      // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1593      // find out whether we are running on 64 bit processor or not.
1594      SYSTEM_INFO si;
1595      ZeroMemory(&si, sizeof(SYSTEM_INFO));
1596        if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
1597          GetSystemInfo(&si);
1598      } else {
1599        os::Kernel32Dll::GetNativeSystemInfo(&si);
1600      }
1601      if (os_vers == 5002) {
1602        if (osvi.wProductType == VER_NT_WORKSTATION &&
1603            si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1604          st->print(" Windows XP x64 Edition");
1605        else
1606            st->print(" Windows Server 2003 family");
1607      } else if (os_vers == 6000) {
1608        if (osvi.wProductType == VER_NT_WORKSTATION)
1609            st->print(" Windows Vista");
1610        else
1611            st->print(" Windows Server 2008");
1612        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1613            st->print(" , 64 bit");
1614      } else if (os_vers == 6001) {
1615        if (osvi.wProductType == VER_NT_WORKSTATION) {
1616            st->print(" Windows 7");
1617        } else {
1618            // Unrecognized windows, print out its major and minor versions
1619            st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1620        }
1621        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1622            st->print(" , 64 bit");
1623      } else if (os_vers == 6002) {
1624        if (osvi.wProductType == VER_NT_WORKSTATION) {
1625            st->print(" Windows 8");
1626        } else {
1627            st->print(" Windows Server 2012");
1628        }
1629        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1630            st->print(" , 64 bit");
1631      } else { // future os
1632        // Unrecognized windows, print out its major and minor versions
1633        st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1634        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1635            st->print(" , 64 bit");
1636      }
1637      break;
1638    }
1639    default: // future windows, print out its major and minor versions
1640      st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1641    }
1642  } else {
1643    switch (os_vers) {
1644    case 4000: st->print(" Windows 95"); break;
1645    case 4010: st->print(" Windows 98"); break;
1646    case 4090: st->print(" Windows Me"); break;
1647    default: // future windows, print out its major and minor versions
1648      st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1649    }
1650  }
1651  st->print(" Build %d", osvi.dwBuildNumber);
1652  st->print(" %s", osvi.szCSDVersion);           // service pack
1653  st->cr();
1654}
1655
1656void os::pd_print_cpu_info(outputStream* st) {
1657  // Nothing to do for now.
1658}
1659
1660void os::print_memory_info(outputStream* st) {
1661  st->print("Memory:");
1662  st->print(" %dk page", os::vm_page_size()>>10);
1663
1664  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1665  // value if total memory is larger than 4GB
1666  MEMORYSTATUSEX ms;
1667  ms.dwLength = sizeof(ms);
1668  GlobalMemoryStatusEx(&ms);
1669
1670  st->print(", physical %uk", os::physical_memory() >> 10);
1671  st->print("(%uk free)", os::available_memory() >> 10);
1672
1673  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1674  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1675  st->cr();
1676}
1677
1678void os::print_siginfo(outputStream *st, void *siginfo) {
1679  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1680  st->print("siginfo:");
1681  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1682
1683  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1684      er->NumberParameters >= 2) {
1685      switch (er->ExceptionInformation[0]) {
1686      case 0: st->print(", reading address"); break;
1687      case 1: st->print(", writing address"); break;
1688      default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1689                            er->ExceptionInformation[0]);
1690      }
1691      st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1692  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1693             er->NumberParameters >= 2 && UseSharedSpaces) {
1694    FileMapInfo* mapinfo = FileMapInfo::current_info();
1695    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1696      st->print("\n\nError accessing class data sharing archive."       \
1697                " Mapped file inaccessible during execution, "          \
1698                " possible disk/network problem.");
1699    }
1700  } else {
1701    int num = er->NumberParameters;
1702    if (num > 0) {
1703      st->print(", ExceptionInformation=");
1704      for (int i = 0; i < num; i++) {
1705        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1706      }
1707    }
1708  }
1709  st->cr();
1710}
1711
1712void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1713  // do nothing
1714}
1715
1716static char saved_jvm_path[MAX_PATH] = {0};
1717
1718// Find the full path to the current module, jvm.dll or jvm_g.dll
1719void os::jvm_path(char *buf, jint buflen) {
1720  // Error checking.
1721  if (buflen < MAX_PATH) {
1722    assert(false, "must use a large-enough buffer");
1723    buf[0] = '\0';
1724    return;
1725  }
1726  // Lazy resolve the path to current module.
1727  if (saved_jvm_path[0] != 0) {
1728    strcpy(buf, saved_jvm_path);
1729    return;
1730  }
1731
1732  buf[0] = '\0';
1733  if (Arguments::created_by_gamma_launcher()) {
1734     // Support for the gamma launcher. Check for an
1735     // JAVA_HOME environment variable
1736     // and fix up the path so it looks like
1737     // libjvm.so is installed there (append a fake suffix
1738     // hotspot/libjvm.so).
1739     char* java_home_var = ::getenv("JAVA_HOME");
1740     if (java_home_var != NULL && java_home_var[0] != 0) {
1741
1742        strncpy(buf, java_home_var, buflen);
1743
1744        // determine if this is a legacy image or modules image
1745        // modules image doesn't have "jre" subdirectory
1746        size_t len = strlen(buf);
1747        char* jrebin_p = buf + len;
1748        jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1749        if (0 != _access(buf, 0)) {
1750          jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1751        }
1752        len = strlen(buf);
1753        jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1754     }
1755  }
1756
1757  if(buf[0] == '\0') {
1758  GetModuleFileName(vm_lib_handle, buf, buflen);
1759  }
1760  strcpy(saved_jvm_path, buf);
1761}
1762
1763
1764void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1765#ifndef _WIN64
1766  st->print("_");
1767#endif
1768}
1769
1770
1771void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1772#ifndef _WIN64
1773  st->print("@%d", args_size  * sizeof(int));
1774#endif
1775}
1776
1777// This method is a copy of JDK's sysGetLastErrorString
1778// from src/windows/hpi/src/system_md.c
1779
1780size_t os::lasterror(char* buf, size_t len) {
1781  DWORD errval;
1782
1783  if ((errval = GetLastError()) != 0) {
1784    // DOS error
1785    size_t n = (size_t)FormatMessage(
1786          FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1787          NULL,
1788          errval,
1789          0,
1790          buf,
1791          (DWORD)len,
1792          NULL);
1793    if (n > 3) {
1794      // Drop final '.', CR, LF
1795      if (buf[n - 1] == '\n') n--;
1796      if (buf[n - 1] == '\r') n--;
1797      if (buf[n - 1] == '.') n--;
1798      buf[n] = '\0';
1799    }
1800    return n;
1801  }
1802
1803  if (errno != 0) {
1804    // C runtime error that has no corresponding DOS error code
1805    const char* s = strerror(errno);
1806    size_t n = strlen(s);
1807    if (n >= len) n = len - 1;
1808    strncpy(buf, s, n);
1809    buf[n] = '\0';
1810    return n;
1811  }
1812
1813  return 0;
1814}
1815
1816int os::get_last_error() {
1817  DWORD error = GetLastError();
1818  if (error == 0)
1819    error = errno;
1820  return (int)error;
1821}
1822
1823// sun.misc.Signal
1824// NOTE that this is a workaround for an apparent kernel bug where if
1825// a signal handler for SIGBREAK is installed then that signal handler
1826// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1827// See bug 4416763.
1828static void (*sigbreakHandler)(int) = NULL;
1829
1830static void UserHandler(int sig, void *siginfo, void *context) {
1831  os::signal_notify(sig);
1832  // We need to reinstate the signal handler each time...
1833  os::signal(sig, (void*)UserHandler);
1834}
1835
1836void* os::user_handler() {
1837  return (void*) UserHandler;
1838}
1839
1840void* os::signal(int signal_number, void* handler) {
1841  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1842    void (*oldHandler)(int) = sigbreakHandler;
1843    sigbreakHandler = (void (*)(int)) handler;
1844    return (void*) oldHandler;
1845  } else {
1846    return (void*)::signal(signal_number, (void (*)(int))handler);
1847  }
1848}
1849
1850void os::signal_raise(int signal_number) {
1851  raise(signal_number);
1852}
1853
1854// The Win32 C runtime library maps all console control events other than ^C
1855// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1856// logoff, and shutdown events.  We therefore install our own console handler
1857// that raises SIGTERM for the latter cases.
1858//
1859static BOOL WINAPI consoleHandler(DWORD event) {
1860  switch(event) {
1861    case CTRL_C_EVENT:
1862      if (is_error_reported()) {
1863        // Ctrl-C is pressed during error reporting, likely because the error
1864        // handler fails to abort. Let VM die immediately.
1865        os::die();
1866      }
1867
1868      os::signal_raise(SIGINT);
1869      return TRUE;
1870      break;
1871    case CTRL_BREAK_EVENT:
1872      if (sigbreakHandler != NULL) {
1873        (*sigbreakHandler)(SIGBREAK);
1874      }
1875      return TRUE;
1876      break;
1877    case CTRL_CLOSE_EVENT:
1878    case CTRL_LOGOFF_EVENT:
1879    case CTRL_SHUTDOWN_EVENT:
1880      os::signal_raise(SIGTERM);
1881      return TRUE;
1882      break;
1883    default:
1884      break;
1885  }
1886  return FALSE;
1887}
1888
1889/*
1890 * The following code is moved from os.cpp for making this
1891 * code platform specific, which it is by its very nature.
1892 */
1893
1894// Return maximum OS signal used + 1 for internal use only
1895// Used as exit signal for signal_thread
1896int os::sigexitnum_pd(){
1897  return NSIG;
1898}
1899
1900// a counter for each possible signal value, including signal_thread exit signal
1901static volatile jint pending_signals[NSIG+1] = { 0 };
1902static HANDLE sig_sem;
1903
1904void os::signal_init_pd() {
1905  // Initialize signal structures
1906  memset((void*)pending_signals, 0, sizeof(pending_signals));
1907
1908  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1909
1910  // Programs embedding the VM do not want it to attempt to receive
1911  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1912  // shutdown hooks mechanism introduced in 1.3.  For example, when
1913  // the VM is run as part of a Windows NT service (i.e., a servlet
1914  // engine in a web server), the correct behavior is for any console
1915  // control handler to return FALSE, not TRUE, because the OS's
1916  // "final" handler for such events allows the process to continue if
1917  // it is a service (while terminating it if it is not a service).
1918  // To make this behavior uniform and the mechanism simpler, we
1919  // completely disable the VM's usage of these console events if -Xrs
1920  // (=ReduceSignalUsage) is specified.  This means, for example, that
1921  // the CTRL-BREAK thread dump mechanism is also disabled in this
1922  // case.  See bugs 4323062, 4345157, and related bugs.
1923
1924  if (!ReduceSignalUsage) {
1925    // Add a CTRL-C handler
1926    SetConsoleCtrlHandler(consoleHandler, TRUE);
1927  }
1928}
1929
1930void os::signal_notify(int signal_number) {
1931  BOOL ret;
1932
1933  Atomic::inc(&pending_signals[signal_number]);
1934  ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1935  assert(ret != 0, "ReleaseSemaphore() failed");
1936}
1937
1938static int check_pending_signals(bool wait_for_signal) {
1939  DWORD ret;
1940  while (true) {
1941    for (int i = 0; i < NSIG + 1; i++) {
1942      jint n = pending_signals[i];
1943      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1944        return i;
1945      }
1946    }
1947    if (!wait_for_signal) {
1948      return -1;
1949    }
1950
1951    JavaThread *thread = JavaThread::current();
1952
1953    ThreadBlockInVM tbivm(thread);
1954
1955    bool threadIsSuspended;
1956    do {
1957      thread->set_suspend_equivalent();
1958      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1959      ret = ::WaitForSingleObject(sig_sem, INFINITE);
1960      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1961
1962      // were we externally suspended while we were waiting?
1963      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1964      if (threadIsSuspended) {
1965        //
1966        // The semaphore has been incremented, but while we were waiting
1967        // another thread suspended us. We don't want to continue running
1968        // while suspended because that would surprise the thread that
1969        // suspended us.
1970        //
1971        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1972        assert(ret != 0, "ReleaseSemaphore() failed");
1973
1974        thread->java_suspend_self();
1975      }
1976    } while (threadIsSuspended);
1977  }
1978}
1979
1980int os::signal_lookup() {
1981  return check_pending_signals(false);
1982}
1983
1984int os::signal_wait() {
1985  return check_pending_signals(true);
1986}
1987
1988// Implicit OS exception handling
1989
1990LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1991  JavaThread* thread = JavaThread::current();
1992  // Save pc in thread
1993#ifdef _M_IA64
1994  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1995  // Set pc to handler
1996  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1997#elif _M_AMD64
1998  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1999  // Set pc to handler
2000  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2001#else
2002  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
2003  // Set pc to handler
2004  exceptionInfo->ContextRecord->Eip = (LONG)handler;
2005#endif
2006
2007  // Continue the execution
2008  return EXCEPTION_CONTINUE_EXECUTION;
2009}
2010
2011
2012// Used for PostMortemDump
2013extern "C" void safepoints();
2014extern "C" void find(int x);
2015extern "C" void events();
2016
2017// According to Windows API documentation, an illegal instruction sequence should generate
2018// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2019// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2020// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2021
2022#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2023
2024// From "Execution Protection in the Windows Operating System" draft 0.35
2025// Once a system header becomes available, the "real" define should be
2026// included or copied here.
2027#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2028
2029#define def_excpt(val) #val, val
2030
2031struct siglabel {
2032  char *name;
2033  int   number;
2034};
2035
2036// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2037// C++ compiler contain this error code. Because this is a compiler-generated
2038// error, the code is not listed in the Win32 API header files.
2039// The code is actually a cryptic mnemonic device, with the initial "E"
2040// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2041// ASCII values of "msc".
2042
2043#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2044
2045
2046struct siglabel exceptlabels[] = {
2047    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2048    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2049    def_excpt(EXCEPTION_BREAKPOINT),
2050    def_excpt(EXCEPTION_SINGLE_STEP),
2051    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2052    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2053    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2054    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2055    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2056    def_excpt(EXCEPTION_FLT_OVERFLOW),
2057    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2058    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2059    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2060    def_excpt(EXCEPTION_INT_OVERFLOW),
2061    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2062    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2063    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2064    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2065    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2066    def_excpt(EXCEPTION_STACK_OVERFLOW),
2067    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2068    def_excpt(EXCEPTION_GUARD_PAGE),
2069    def_excpt(EXCEPTION_INVALID_HANDLE),
2070    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2071    NULL, 0
2072};
2073
2074const char* os::exception_name(int exception_code, char *buf, size_t size) {
2075  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2076    if (exceptlabels[i].number == exception_code) {
2077       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2078       return buf;
2079    }
2080  }
2081
2082  return NULL;
2083}
2084
2085//-----------------------------------------------------------------------------
2086LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2087  // handle exception caused by idiv; should only happen for -MinInt/-1
2088  // (division by zero is handled explicitly)
2089#ifdef _M_IA64
2090  assert(0, "Fix Handle_IDiv_Exception");
2091#elif _M_AMD64
2092  PCONTEXT ctx = exceptionInfo->ContextRecord;
2093  address pc = (address)ctx->Rip;
2094  assert(pc[0] == 0xF7, "not an idiv opcode");
2095  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2096  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2097  // set correct result values and continue after idiv instruction
2098  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2099  ctx->Rax = (DWORD)min_jint;      // result
2100  ctx->Rdx = (DWORD)0;             // remainder
2101  // Continue the execution
2102#else
2103  PCONTEXT ctx = exceptionInfo->ContextRecord;
2104  address pc = (address)ctx->Eip;
2105  assert(pc[0] == 0xF7, "not an idiv opcode");
2106  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2107  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2108  // set correct result values and continue after idiv instruction
2109  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2110  ctx->Eax = (DWORD)min_jint;      // result
2111  ctx->Edx = (DWORD)0;             // remainder
2112  // Continue the execution
2113#endif
2114  return EXCEPTION_CONTINUE_EXECUTION;
2115}
2116
2117#ifndef  _WIN64
2118//-----------------------------------------------------------------------------
2119LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2120  // handle exception caused by native method modifying control word
2121  PCONTEXT ctx = exceptionInfo->ContextRecord;
2122  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2123
2124  switch (exception_code) {
2125    case EXCEPTION_FLT_DENORMAL_OPERAND:
2126    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2127    case EXCEPTION_FLT_INEXACT_RESULT:
2128    case EXCEPTION_FLT_INVALID_OPERATION:
2129    case EXCEPTION_FLT_OVERFLOW:
2130    case EXCEPTION_FLT_STACK_CHECK:
2131    case EXCEPTION_FLT_UNDERFLOW:
2132      jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2133      if (fp_control_word != ctx->FloatSave.ControlWord) {
2134        // Restore FPCW and mask out FLT exceptions
2135        ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2136        // Mask out pending FLT exceptions
2137        ctx->FloatSave.StatusWord &=  0xffffff00;
2138        return EXCEPTION_CONTINUE_EXECUTION;
2139      }
2140  }
2141
2142  if (prev_uef_handler != NULL) {
2143    // We didn't handle this exception so pass it to the previous
2144    // UnhandledExceptionFilter.
2145    return (prev_uef_handler)(exceptionInfo);
2146  }
2147
2148  return EXCEPTION_CONTINUE_SEARCH;
2149}
2150#else //_WIN64
2151/*
2152  On Windows, the mxcsr control bits are non-volatile across calls
2153  See also CR 6192333
2154  If EXCEPTION_FLT_* happened after some native method modified
2155  mxcsr - it is not a jvm fault.
2156  However should we decide to restore of mxcsr after a faulty
2157  native method we can uncomment following code
2158      jint MxCsr = INITIAL_MXCSR;
2159        // we can't use StubRoutines::addr_mxcsr_std()
2160        // because in Win64 mxcsr is not saved there
2161      if (MxCsr != ctx->MxCsr) {
2162        ctx->MxCsr = MxCsr;
2163        return EXCEPTION_CONTINUE_EXECUTION;
2164      }
2165
2166*/
2167#endif //_WIN64
2168
2169
2170// Fatal error reporting is single threaded so we can make this a
2171// static and preallocated.  If it's more than MAX_PATH silently ignore
2172// it.
2173static char saved_error_file[MAX_PATH] = {0};
2174
2175void os::set_error_file(const char *logfile) {
2176  if (strlen(logfile) <= MAX_PATH) {
2177    strncpy(saved_error_file, logfile, MAX_PATH);
2178  }
2179}
2180
2181static inline void report_error(Thread* t, DWORD exception_code,
2182                                address addr, void* siginfo, void* context) {
2183  VMError err(t, exception_code, addr, siginfo, context);
2184  err.report_and_die();
2185
2186  // If UseOsErrorReporting, this will return here and save the error file
2187  // somewhere where we can find it in the minidump.
2188}
2189
2190//-----------------------------------------------------------------------------
2191LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2192  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2193  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2194#ifdef _M_IA64
2195  address pc = (address) exceptionInfo->ContextRecord->StIIP;
2196#elif _M_AMD64
2197  address pc = (address) exceptionInfo->ContextRecord->Rip;
2198#else
2199  address pc = (address) exceptionInfo->ContextRecord->Eip;
2200#endif
2201  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2202
2203#ifndef _WIN64
2204  // Execution protection violation - win32 running on AMD64 only
2205  // Handled first to avoid misdiagnosis as a "normal" access violation;
2206  // This is safe to do because we have a new/unique ExceptionInformation
2207  // code for this condition.
2208  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2209    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2210    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2211    address addr = (address) exceptionRecord->ExceptionInformation[1];
2212
2213    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2214      int page_size = os::vm_page_size();
2215
2216      // Make sure the pc and the faulting address are sane.
2217      //
2218      // If an instruction spans a page boundary, and the page containing
2219      // the beginning of the instruction is executable but the following
2220      // page is not, the pc and the faulting address might be slightly
2221      // different - we still want to unguard the 2nd page in this case.
2222      //
2223      // 15 bytes seems to be a (very) safe value for max instruction size.
2224      bool pc_is_near_addr =
2225        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2226      bool instr_spans_page_boundary =
2227        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2228                         (intptr_t) page_size) > 0);
2229
2230      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2231        static volatile address last_addr =
2232          (address) os::non_memory_address_word();
2233
2234        // In conservative mode, don't unguard unless the address is in the VM
2235        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2236            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2237
2238          // Set memory to RWX and retry
2239          address page_start =
2240            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2241          bool res = os::protect_memory((char*) page_start, page_size,
2242                                        os::MEM_PROT_RWX);
2243
2244          if (PrintMiscellaneous && Verbose) {
2245            char buf[256];
2246            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2247                         "at " INTPTR_FORMAT
2248                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2249                         page_start, (res ? "success" : strerror(errno)));
2250            tty->print_raw_cr(buf);
2251          }
2252
2253          // Set last_addr so if we fault again at the same address, we don't
2254          // end up in an endless loop.
2255          //
2256          // There are two potential complications here.  Two threads trapping
2257          // at the same address at the same time could cause one of the
2258          // threads to think it already unguarded, and abort the VM.  Likely
2259          // very rare.
2260          //
2261          // The other race involves two threads alternately trapping at
2262          // different addresses and failing to unguard the page, resulting in
2263          // an endless loop.  This condition is probably even more unlikely
2264          // than the first.
2265          //
2266          // Although both cases could be avoided by using locks or thread
2267          // local last_addr, these solutions are unnecessary complication:
2268          // this handler is a best-effort safety net, not a complete solution.
2269          // It is disabled by default and should only be used as a workaround
2270          // in case we missed any no-execute-unsafe VM code.
2271
2272          last_addr = addr;
2273
2274          return EXCEPTION_CONTINUE_EXECUTION;
2275        }
2276      }
2277
2278      // Last unguard failed or not unguarding
2279      tty->print_raw_cr("Execution protection violation");
2280      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2281                   exceptionInfo->ContextRecord);
2282      return EXCEPTION_CONTINUE_SEARCH;
2283    }
2284  }
2285#endif // _WIN64
2286
2287  // Check to see if we caught the safepoint code in the
2288  // process of write protecting the memory serialization page.
2289  // It write enables the page immediately after protecting it
2290  // so just return.
2291  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2292    JavaThread* thread = (JavaThread*) t;
2293    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2294    address addr = (address) exceptionRecord->ExceptionInformation[1];
2295    if ( os::is_memory_serialize_page(thread, addr) ) {
2296      // Block current thread until the memory serialize page permission restored.
2297      os::block_on_serialize_page_trap();
2298      return EXCEPTION_CONTINUE_EXECUTION;
2299    }
2300  }
2301
2302  if (t != NULL && t->is_Java_thread()) {
2303    JavaThread* thread = (JavaThread*) t;
2304    bool in_java = thread->thread_state() == _thread_in_Java;
2305
2306    // Handle potential stack overflows up front.
2307    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2308      if (os::uses_stack_guard_pages()) {
2309#ifdef _M_IA64
2310        //
2311        // If it's a legal stack address continue, Windows will map it in.
2312        //
2313        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2314        address addr = (address) exceptionRecord->ExceptionInformation[1];
2315        if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2316          return EXCEPTION_CONTINUE_EXECUTION;
2317
2318        // The register save area is the same size as the memory stack
2319        // and starts at the page just above the start of the memory stack.
2320        // If we get a fault in this area, we've run out of register
2321        // stack.  If we are in java, try throwing a stack overflow exception.
2322        if (addr > thread->stack_base() &&
2323                      addr <= (thread->stack_base()+thread->stack_size()) ) {
2324          char buf[256];
2325          jio_snprintf(buf, sizeof(buf),
2326                       "Register stack overflow, addr:%p, stack_base:%p\n",
2327                       addr, thread->stack_base() );
2328          tty->print_raw_cr(buf);
2329          // If not in java code, return and hope for the best.
2330          return in_java ? Handle_Exception(exceptionInfo,
2331            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2332            :  EXCEPTION_CONTINUE_EXECUTION;
2333        }
2334#endif
2335        if (thread->stack_yellow_zone_enabled()) {
2336          // Yellow zone violation.  The o/s has unprotected the first yellow
2337          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2338          // update the enabled status, even if the zone contains only one page.
2339          thread->disable_stack_yellow_zone();
2340          // If not in java code, return and hope for the best.
2341          return in_java ? Handle_Exception(exceptionInfo,
2342            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2343            :  EXCEPTION_CONTINUE_EXECUTION;
2344        } else {
2345          // Fatal red zone violation.
2346          thread->disable_stack_red_zone();
2347          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2348          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2349                       exceptionInfo->ContextRecord);
2350          return EXCEPTION_CONTINUE_SEARCH;
2351        }
2352      } else if (in_java) {
2353        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2354        // a one-time-only guard page, which it has released to us.  The next
2355        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2356        return Handle_Exception(exceptionInfo,
2357          SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2358      } else {
2359        // Can only return and hope for the best.  Further stack growth will
2360        // result in an ACCESS_VIOLATION.
2361        return EXCEPTION_CONTINUE_EXECUTION;
2362      }
2363    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2364      // Either stack overflow or null pointer exception.
2365      if (in_java) {
2366        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2367        address addr = (address) exceptionRecord->ExceptionInformation[1];
2368        address stack_end = thread->stack_base() - thread->stack_size();
2369        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2370          // Stack overflow.
2371          assert(!os::uses_stack_guard_pages(),
2372            "should be caught by red zone code above.");
2373          return Handle_Exception(exceptionInfo,
2374            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2375        }
2376        //
2377        // Check for safepoint polling and implicit null
2378        // We only expect null pointers in the stubs (vtable)
2379        // the rest are checked explicitly now.
2380        //
2381        CodeBlob* cb = CodeCache::find_blob(pc);
2382        if (cb != NULL) {
2383          if (os::is_poll_address(addr)) {
2384            address stub = SharedRuntime::get_poll_stub(pc);
2385            return Handle_Exception(exceptionInfo, stub);
2386          }
2387        }
2388        {
2389#ifdef _WIN64
2390          //
2391          // If it's a legal stack address map the entire region in
2392          //
2393          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2394          address addr = (address) exceptionRecord->ExceptionInformation[1];
2395          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2396                  addr = (address)((uintptr_t)addr &
2397                         (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2398                  os::commit_memory((char *)addr, thread->stack_base() - addr,
2399                                    false );
2400                  return EXCEPTION_CONTINUE_EXECUTION;
2401          }
2402          else
2403#endif
2404          {
2405            // Null pointer exception.
2406#ifdef _M_IA64
2407            // We catch register stack overflows in compiled code by doing
2408            // an explicit compare and executing a st8(G0, G0) if the
2409            // BSP enters into our guard area.  We test for the overflow
2410            // condition and fall into the normal null pointer exception
2411            // code if BSP hasn't overflowed.
2412            if ( in_java ) {
2413              if(thread->register_stack_overflow()) {
2414                assert((address)exceptionInfo->ContextRecord->IntS3 ==
2415                                thread->register_stack_limit(),
2416                               "GR7 doesn't contain register_stack_limit");
2417                // Disable the yellow zone which sets the state that
2418                // we've got a stack overflow problem.
2419                if (thread->stack_yellow_zone_enabled()) {
2420                  thread->disable_stack_yellow_zone();
2421                }
2422                // Give us some room to process the exception
2423                thread->disable_register_stack_guard();
2424                // Update GR7 with the new limit so we can continue running
2425                // compiled code.
2426                exceptionInfo->ContextRecord->IntS3 =
2427                               (ULONGLONG)thread->register_stack_limit();
2428                return Handle_Exception(exceptionInfo,
2429                       SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2430              } else {
2431                //
2432                // Check for implicit null
2433                // We only expect null pointers in the stubs (vtable)
2434                // the rest are checked explicitly now.
2435                //
2436                if (((uintptr_t)addr) < os::vm_page_size() ) {
2437                  // an access to the first page of VM--assume it is a null pointer
2438                  address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2439                  if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2440                }
2441              }
2442            } // in_java
2443
2444            // IA64 doesn't use implicit null checking yet. So we shouldn't
2445            // get here.
2446            tty->print_raw_cr("Access violation, possible null pointer exception");
2447            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2448                         exceptionInfo->ContextRecord);
2449            return EXCEPTION_CONTINUE_SEARCH;
2450#else /* !IA64 */
2451
2452            // Windows 98 reports faulting addresses incorrectly
2453            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2454                !os::win32::is_nt()) {
2455              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2456              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2457            }
2458            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2459                         exceptionInfo->ContextRecord);
2460            return EXCEPTION_CONTINUE_SEARCH;
2461#endif
2462          }
2463        }
2464      }
2465
2466#ifdef _WIN64
2467      // Special care for fast JNI field accessors.
2468      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2469      // in and the heap gets shrunk before the field access.
2470      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2471        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2472        if (addr != (address)-1) {
2473          return Handle_Exception(exceptionInfo, addr);
2474        }
2475      }
2476#endif
2477
2478      // Stack overflow or null pointer exception in native code.
2479      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2480                   exceptionInfo->ContextRecord);
2481      return EXCEPTION_CONTINUE_SEARCH;
2482    }
2483
2484    if (in_java) {
2485      switch (exception_code) {
2486      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2487        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2488
2489      case EXCEPTION_INT_OVERFLOW:
2490        return Handle_IDiv_Exception(exceptionInfo);
2491
2492      } // switch
2493    }
2494#ifndef _WIN64
2495    if (((thread->thread_state() == _thread_in_Java) ||
2496        (thread->thread_state() == _thread_in_native)) &&
2497        exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2498    {
2499      LONG result=Handle_FLT_Exception(exceptionInfo);
2500      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2501    }
2502#endif //_WIN64
2503  }
2504
2505  if (exception_code != EXCEPTION_BREAKPOINT) {
2506    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2507                 exceptionInfo->ContextRecord);
2508  }
2509  return EXCEPTION_CONTINUE_SEARCH;
2510}
2511
2512#ifndef _WIN64
2513// Special care for fast JNI accessors.
2514// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2515// the heap gets shrunk before the field access.
2516// Need to install our own structured exception handler since native code may
2517// install its own.
2518LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2519  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2520  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2521    address pc = (address) exceptionInfo->ContextRecord->Eip;
2522    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2523    if (addr != (address)-1) {
2524      return Handle_Exception(exceptionInfo, addr);
2525    }
2526  }
2527  return EXCEPTION_CONTINUE_SEARCH;
2528}
2529
2530#define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2531Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2532  __try { \
2533    return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2534  } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2535  } \
2536  return 0; \
2537}
2538
2539DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2540DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2541DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2542DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2543DEFINE_FAST_GETFIELD(jint,     int,    Int)
2544DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2545DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2546DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2547
2548address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2549  switch (type) {
2550    case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2551    case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2552    case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2553    case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2554    case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2555    case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2556    case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2557    case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2558    default:        ShouldNotReachHere();
2559  }
2560  return (address)-1;
2561}
2562#endif
2563
2564// Virtual Memory
2565
2566int os::vm_page_size() { return os::win32::vm_page_size(); }
2567int os::vm_allocation_granularity() {
2568  return os::win32::vm_allocation_granularity();
2569}
2570
2571// Windows large page support is available on Windows 2003. In order to use
2572// large page memory, the administrator must first assign additional privilege
2573// to the user:
2574//   + select Control Panel -> Administrative Tools -> Local Security Policy
2575//   + select Local Policies -> User Rights Assignment
2576//   + double click "Lock pages in memory", add users and/or groups
2577//   + reboot
2578// Note the above steps are needed for administrator as well, as administrators
2579// by default do not have the privilege to lock pages in memory.
2580//
2581// Note about Windows 2003: although the API supports committing large page
2582// memory on a page-by-page basis and VirtualAlloc() returns success under this
2583// scenario, I found through experiment it only uses large page if the entire
2584// memory region is reserved and committed in a single VirtualAlloc() call.
2585// This makes Windows large page support more or less like Solaris ISM, in
2586// that the entire heap must be committed upfront. This probably will change
2587// in the future, if so the code below needs to be revisited.
2588
2589#ifndef MEM_LARGE_PAGES
2590#define MEM_LARGE_PAGES 0x20000000
2591#endif
2592
2593static HANDLE    _hProcess;
2594static HANDLE    _hToken;
2595
2596// Container for NUMA node list info
2597class NUMANodeListHolder {
2598private:
2599  int *_numa_used_node_list;  // allocated below
2600  int _numa_used_node_count;
2601
2602  void free_node_list() {
2603    if (_numa_used_node_list != NULL) {
2604      FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2605    }
2606  }
2607
2608public:
2609  NUMANodeListHolder() {
2610    _numa_used_node_count = 0;
2611    _numa_used_node_list = NULL;
2612    // do rest of initialization in build routine (after function pointers are set up)
2613  }
2614
2615  ~NUMANodeListHolder() {
2616    free_node_list();
2617  }
2618
2619  bool build() {
2620    DWORD_PTR proc_aff_mask;
2621    DWORD_PTR sys_aff_mask;
2622    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2623    ULONG highest_node_number;
2624    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2625    free_node_list();
2626    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2627    for (unsigned int i = 0; i <= highest_node_number; i++) {
2628      ULONGLONG proc_mask_numa_node;
2629      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2630      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2631        _numa_used_node_list[_numa_used_node_count++] = i;
2632      }
2633    }
2634    return (_numa_used_node_count > 1);
2635  }
2636
2637  int get_count() {return _numa_used_node_count;}
2638  int get_node_list_entry(int n) {
2639    // for indexes out of range, returns -1
2640    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2641  }
2642
2643} numa_node_list_holder;
2644
2645
2646
2647static size_t _large_page_size = 0;
2648
2649static bool resolve_functions_for_large_page_init() {
2650  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2651    os::Advapi32Dll::AdvapiAvailable();
2652}
2653
2654static bool request_lock_memory_privilege() {
2655  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2656                                os::current_process_id());
2657
2658  LUID luid;
2659  if (_hProcess != NULL &&
2660      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2661      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2662
2663    TOKEN_PRIVILEGES tp;
2664    tp.PrivilegeCount = 1;
2665    tp.Privileges[0].Luid = luid;
2666    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2667
2668    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2669    // privilege. Check GetLastError() too. See MSDN document.
2670    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2671        (GetLastError() == ERROR_SUCCESS)) {
2672      return true;
2673    }
2674  }
2675
2676  return false;
2677}
2678
2679static void cleanup_after_large_page_init() {
2680  if (_hProcess) CloseHandle(_hProcess);
2681  _hProcess = NULL;
2682  if (_hToken) CloseHandle(_hToken);
2683  _hToken = NULL;
2684}
2685
2686static bool numa_interleaving_init() {
2687  bool success = false;
2688  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2689
2690  // print a warning if UseNUMAInterleaving flag is specified on command line
2691  bool warn_on_failure = use_numa_interleaving_specified;
2692# define WARN(msg) if (warn_on_failure) { warning(msg); }
2693
2694  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2695  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2696  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2697
2698  if (os::Kernel32Dll::NumaCallsAvailable()) {
2699    if (numa_node_list_holder.build()) {
2700      if (PrintMiscellaneous && Verbose) {
2701        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2702        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2703          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2704        }
2705        tty->print("\n");
2706      }
2707      success = true;
2708    } else {
2709      WARN("Process does not cover multiple NUMA nodes.");
2710    }
2711  } else {
2712    WARN("NUMA Interleaving is not supported by the operating system.");
2713  }
2714  if (!success) {
2715    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2716  }
2717  return success;
2718#undef WARN
2719}
2720
2721// this routine is used whenever we need to reserve a contiguous VA range
2722// but we need to make separate VirtualAlloc calls for each piece of the range
2723// Reasons for doing this:
2724//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2725//  * UseNUMAInterleaving requires a separate node for each piece
2726static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2727                                         bool should_inject_error=false) {
2728  char * p_buf;
2729  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2730  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2731  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2732
2733  // first reserve enough address space in advance since we want to be
2734  // able to break a single contiguous virtual address range into multiple
2735  // large page commits but WS2003 does not allow reserving large page space
2736  // so we just use 4K pages for reserve, this gives us a legal contiguous
2737  // address space. then we will deallocate that reservation, and re alloc
2738  // using large pages
2739  const size_t size_of_reserve = bytes + chunk_size;
2740  if (bytes > size_of_reserve) {
2741    // Overflowed.
2742    return NULL;
2743  }
2744  p_buf = (char *) VirtualAlloc(addr,
2745                                size_of_reserve,  // size of Reserve
2746                                MEM_RESERVE,
2747                                PAGE_READWRITE);
2748  // If reservation failed, return NULL
2749  if (p_buf == NULL) return NULL;
2750
2751  os::release_memory(p_buf, bytes + chunk_size);
2752
2753  // we still need to round up to a page boundary (in case we are using large pages)
2754  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2755  // instead we handle this in the bytes_to_rq computation below
2756  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2757
2758  // now go through and allocate one chunk at a time until all bytes are
2759  // allocated
2760  size_t  bytes_remaining = bytes;
2761  // An overflow of align_size_up() would have been caught above
2762  // in the calculation of size_of_reserve.
2763  char * next_alloc_addr = p_buf;
2764  HANDLE hProc = GetCurrentProcess();
2765
2766#ifdef ASSERT
2767  // Variable for the failure injection
2768  long ran_num = os::random();
2769  size_t fail_after = ran_num % bytes;
2770#endif
2771
2772  int count=0;
2773  while (bytes_remaining) {
2774    // select bytes_to_rq to get to the next chunk_size boundary
2775
2776    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2777    // Note allocate and commit
2778    char * p_new;
2779
2780#ifdef ASSERT
2781    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2782#else
2783    const bool inject_error_now = false;
2784#endif
2785
2786    if (inject_error_now) {
2787      p_new = NULL;
2788    } else {
2789      if (!UseNUMAInterleaving) {
2790        p_new = (char *) VirtualAlloc(next_alloc_addr,
2791                                      bytes_to_rq,
2792                                      flags,
2793                                      prot);
2794      } else {
2795        // get the next node to use from the used_node_list
2796        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2797        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2798        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2799                                                            next_alloc_addr,
2800                                                            bytes_to_rq,
2801                                                            flags,
2802                                                            prot,
2803                                                            node);
2804      }
2805    }
2806
2807    if (p_new == NULL) {
2808      // Free any allocated pages
2809      if (next_alloc_addr > p_buf) {
2810        // Some memory was committed so release it.
2811        size_t bytes_to_release = bytes - bytes_remaining;
2812        os::release_memory(p_buf, bytes_to_release);
2813      }
2814#ifdef ASSERT
2815      if (should_inject_error) {
2816        if (TracePageSizes && Verbose) {
2817          tty->print_cr("Reserving pages individually failed.");
2818        }
2819      }
2820#endif
2821      return NULL;
2822    }
2823    bytes_remaining -= bytes_to_rq;
2824    next_alloc_addr += bytes_to_rq;
2825    count++;
2826  }
2827  // made it this far, success
2828  return p_buf;
2829}
2830
2831
2832
2833void os::large_page_init() {
2834  if (!UseLargePages) return;
2835
2836  // print a warning if any large page related flag is specified on command line
2837  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2838                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2839  bool success = false;
2840
2841# define WARN(msg) if (warn_on_failure) { warning(msg); }
2842  if (resolve_functions_for_large_page_init()) {
2843    if (request_lock_memory_privilege()) {
2844      size_t s = os::Kernel32Dll::GetLargePageMinimum();
2845      if (s) {
2846#if defined(IA32) || defined(AMD64)
2847        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2848          WARN("JVM cannot use large pages bigger than 4mb.");
2849        } else {
2850#endif
2851          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2852            _large_page_size = LargePageSizeInBytes;
2853          } else {
2854            _large_page_size = s;
2855          }
2856          success = true;
2857#if defined(IA32) || defined(AMD64)
2858        }
2859#endif
2860      } else {
2861        WARN("Large page is not supported by the processor.");
2862      }
2863    } else {
2864      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2865    }
2866  } else {
2867    WARN("Large page is not supported by the operating system.");
2868  }
2869#undef WARN
2870
2871  const size_t default_page_size = (size_t) vm_page_size();
2872  if (success && _large_page_size > default_page_size) {
2873    _page_sizes[0] = _large_page_size;
2874    _page_sizes[1] = default_page_size;
2875    _page_sizes[2] = 0;
2876  }
2877
2878  cleanup_after_large_page_init();
2879  UseLargePages = success;
2880}
2881
2882// On win32, one cannot release just a part of reserved memory, it's an
2883// all or nothing deal.  When we split a reservation, we must break the
2884// reservation into two reservations.
2885void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2886                              bool realloc) {
2887  if (size > 0) {
2888    release_memory(base, size);
2889    if (realloc) {
2890      reserve_memory(split, base);
2891    }
2892    if (size != split) {
2893      reserve_memory(size - split, base + split);
2894    }
2895  }
2896}
2897
2898char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2899  assert((size_t)addr % os::vm_allocation_granularity() == 0,
2900         "reserve alignment");
2901  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2902  char* res;
2903  // note that if UseLargePages is on, all the areas that require interleaving
2904  // will go thru reserve_memory_special rather than thru here.
2905  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
2906  if (!use_individual) {
2907    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2908  } else {
2909    elapsedTimer reserveTimer;
2910    if( Verbose && PrintMiscellaneous ) reserveTimer.start();
2911    // in numa interleaving, we have to allocate pages individually
2912    // (well really chunks of NUMAInterleaveGranularity size)
2913    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
2914    if (res == NULL) {
2915      warning("NUMA page allocation failed");
2916    }
2917    if( Verbose && PrintMiscellaneous ) {
2918      reserveTimer.stop();
2919      tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
2920                    reserveTimer.milliseconds(), reserveTimer.ticks());
2921    }
2922  }
2923  assert(res == NULL || addr == NULL || addr == res,
2924         "Unexpected address from reserve.");
2925
2926  return res;
2927}
2928
2929// Reserve memory at an arbitrary address, only if that area is
2930// available (and not reserved for something else).
2931char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2932  // Windows os::reserve_memory() fails of the requested address range is
2933  // not avilable.
2934  return reserve_memory(bytes, requested_addr);
2935}
2936
2937size_t os::large_page_size() {
2938  return _large_page_size;
2939}
2940
2941bool os::can_commit_large_page_memory() {
2942  // Windows only uses large page memory when the entire region is reserved
2943  // and committed in a single VirtualAlloc() call. This may change in the
2944  // future, but with Windows 2003 it's not possible to commit on demand.
2945  return false;
2946}
2947
2948bool os::can_execute_large_page_memory() {
2949  return true;
2950}
2951
2952char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2953
2954  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2955  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2956
2957  // with large pages, there are two cases where we need to use Individual Allocation
2958  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
2959  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
2960  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
2961    if (TracePageSizes && Verbose) {
2962       tty->print_cr("Reserving large pages individually.");
2963    }
2964    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
2965    if (p_buf == NULL) {
2966      // give an appropriate warning message
2967      if (UseNUMAInterleaving) {
2968        warning("NUMA large page allocation failed, UseLargePages flag ignored");
2969      }
2970      if (UseLargePagesIndividualAllocation) {
2971        warning("Individually allocated large pages failed, "
2972                "use -XX:-UseLargePagesIndividualAllocation to turn off");
2973      }
2974      return NULL;
2975    }
2976
2977    return p_buf;
2978
2979  } else {
2980    // normal policy just allocate it all at once
2981    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2982    char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2983    return res;
2984  }
2985}
2986
2987bool os::release_memory_special(char* base, size_t bytes) {
2988  return release_memory(base, bytes);
2989}
2990
2991void os::print_statistics() {
2992}
2993
2994bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2995  if (bytes == 0) {
2996    // Don't bother the OS with noops.
2997    return true;
2998  }
2999  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3000  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3001  // Don't attempt to print anything if the OS call fails. We're
3002  // probably low on resources, so the print itself may cause crashes.
3003
3004  // unless we have NUMAInterleaving enabled, the range of a commit
3005  // is always within a reserve covered by a single VirtualAlloc
3006  // in that case we can just do a single commit for the requested size
3007  if (!UseNUMAInterleaving) {
3008    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
3009    if (exec) {
3010      DWORD oldprot;
3011      // Windows doc says to use VirtualProtect to get execute permissions
3012      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
3013    }
3014    return true;
3015  } else {
3016
3017    // when NUMAInterleaving is enabled, the commit might cover a range that
3018    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3019    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3020    // returns represents the number of bytes that can be committed in one step.
3021    size_t bytes_remaining = bytes;
3022    char * next_alloc_addr = addr;
3023    while (bytes_remaining > 0) {
3024      MEMORY_BASIC_INFORMATION alloc_info;
3025      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3026      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3027      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
3028        return false;
3029      if (exec) {
3030        DWORD oldprot;
3031        if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
3032          return false;
3033      }
3034      bytes_remaining -= bytes_to_rq;
3035      next_alloc_addr += bytes_to_rq;
3036    }
3037  }
3038  // if we made it this far, return true
3039  return true;
3040}
3041
3042bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3043                       bool exec) {
3044  return commit_memory(addr, size, exec);
3045}
3046
3047bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3048  if (bytes == 0) {
3049    // Don't bother the OS with noops.
3050    return true;
3051  }
3052  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3053  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3054  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3055}
3056
3057bool os::pd_release_memory(char* addr, size_t bytes) {
3058  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3059}
3060
3061bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3062  return os::commit_memory(addr, size);
3063}
3064
3065bool os::remove_stack_guard_pages(char* addr, size_t size) {
3066  return os::uncommit_memory(addr, size);
3067}
3068
3069// Set protections specified
3070bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3071                        bool is_committed) {
3072  unsigned int p = 0;
3073  switch (prot) {
3074  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3075  case MEM_PROT_READ: p = PAGE_READONLY; break;
3076  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3077  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3078  default:
3079    ShouldNotReachHere();
3080  }
3081
3082  DWORD old_status;
3083
3084  // Strange enough, but on Win32 one can change protection only for committed
3085  // memory, not a big deal anyway, as bytes less or equal than 64K
3086  if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3087    fatal("cannot commit protection page");
3088  }
3089  // One cannot use os::guard_memory() here, as on Win32 guard page
3090  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3091  //
3092  // Pages in the region become guard pages. Any attempt to access a guard page
3093  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3094  // the guard page status. Guard pages thus act as a one-time access alarm.
3095  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3096}
3097
3098bool os::guard_memory(char* addr, size_t bytes) {
3099  DWORD old_status;
3100  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3101}
3102
3103bool os::unguard_memory(char* addr, size_t bytes) {
3104  DWORD old_status;
3105  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3106}
3107
3108void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3109void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3110void os::numa_make_global(char *addr, size_t bytes)    { }
3111void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3112bool os::numa_topology_changed()                       { return false; }
3113size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3114int os::numa_get_group_id()                            { return 0; }
3115size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3116  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3117    // Provide an answer for UMA systems
3118    ids[0] = 0;
3119    return 1;
3120  } else {
3121    // check for size bigger than actual groups_num
3122    size = MIN2(size, numa_get_groups_num());
3123    for (int i = 0; i < (int)size; i++) {
3124      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3125    }
3126    return size;
3127  }
3128}
3129
3130bool os::get_page_info(char *start, page_info* info) {
3131  return false;
3132}
3133
3134char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3135  return end;
3136}
3137
3138char* os::non_memory_address_word() {
3139  // Must never look like an address returned by reserve_memory,
3140  // even in its subfields (as defined by the CPU immediate fields,
3141  // if the CPU splits constants across multiple instructions).
3142  return (char*)-1;
3143}
3144
3145#define MAX_ERROR_COUNT 100
3146#define SYS_THREAD_ERROR 0xffffffffUL
3147
3148void os::pd_start_thread(Thread* thread) {
3149  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3150  // Returns previous suspend state:
3151  // 0:  Thread was not suspended
3152  // 1:  Thread is running now
3153  // >1: Thread is still suspended.
3154  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3155}
3156
3157class HighResolutionInterval {
3158  // The default timer resolution seems to be 10 milliseconds.
3159  // (Where is this written down?)
3160  // If someone wants to sleep for only a fraction of the default,
3161  // then we set the timer resolution down to 1 millisecond for
3162  // the duration of their interval.
3163  // We carefully set the resolution back, since otherwise we
3164  // seem to incur an overhead (3%?) that we don't need.
3165  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3166  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3167  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3168  // timeBeginPeriod() if the relative error exceeded some threshold.
3169  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3170  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3171  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3172  // resolution timers running.
3173private:
3174    jlong resolution;
3175public:
3176  HighResolutionInterval(jlong ms) {
3177    resolution = ms % 10L;
3178    if (resolution != 0) {
3179      MMRESULT result = timeBeginPeriod(1L);
3180    }
3181  }
3182  ~HighResolutionInterval() {
3183    if (resolution != 0) {
3184      MMRESULT result = timeEndPeriod(1L);
3185    }
3186    resolution = 0L;
3187  }
3188};
3189
3190int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3191  jlong limit = (jlong) MAXDWORD;
3192
3193  while(ms > limit) {
3194    int res;
3195    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3196      return res;
3197    ms -= limit;
3198  }
3199
3200  assert(thread == Thread::current(),  "thread consistency check");
3201  OSThread* osthread = thread->osthread();
3202  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3203  int result;
3204  if (interruptable) {
3205    assert(thread->is_Java_thread(), "must be java thread");
3206    JavaThread *jt = (JavaThread *) thread;
3207    ThreadBlockInVM tbivm(jt);
3208
3209    jt->set_suspend_equivalent();
3210    // cleared by handle_special_suspend_equivalent_condition() or
3211    // java_suspend_self() via check_and_wait_while_suspended()
3212
3213    HANDLE events[1];
3214    events[0] = osthread->interrupt_event();
3215    HighResolutionInterval *phri=NULL;
3216    if(!ForceTimeHighResolution)
3217      phri = new HighResolutionInterval( ms );
3218    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3219      result = OS_TIMEOUT;
3220    } else {
3221      ResetEvent(osthread->interrupt_event());
3222      osthread->set_interrupted(false);
3223      result = OS_INTRPT;
3224    }
3225    delete phri; //if it is NULL, harmless
3226
3227    // were we externally suspended while we were waiting?
3228    jt->check_and_wait_while_suspended();
3229  } else {
3230    assert(!thread->is_Java_thread(), "must not be java thread");
3231    Sleep((long) ms);
3232    result = OS_TIMEOUT;
3233  }
3234  return result;
3235}
3236
3237// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3238void os::infinite_sleep() {
3239  while (true) {    // sleep forever ...
3240    Sleep(100000);  // ... 100 seconds at a time
3241  }
3242}
3243
3244typedef BOOL (WINAPI * STTSignature)(void) ;
3245
3246os::YieldResult os::NakedYield() {
3247  // Use either SwitchToThread() or Sleep(0)
3248  // Consider passing back the return value from SwitchToThread().
3249  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3250    return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3251  } else {
3252    Sleep(0);
3253  }
3254  return os::YIELD_UNKNOWN ;
3255}
3256
3257void os::yield() {  os::NakedYield(); }
3258
3259void os::yield_all(int attempts) {
3260  // Yields to all threads, including threads with lower priorities
3261  Sleep(1);
3262}
3263
3264// Win32 only gives you access to seven real priorities at a time,
3265// so we compress Java's ten down to seven.  It would be better
3266// if we dynamically adjusted relative priorities.
3267
3268int os::java_to_os_priority[CriticalPriority + 1] = {
3269  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3270  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3271  THREAD_PRIORITY_LOWEST,                       // 2
3272  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3273  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3274  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3275  THREAD_PRIORITY_NORMAL,                       // 6
3276  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3277  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3278  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3279  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3280  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3281};
3282
3283int prio_policy1[CriticalPriority + 1] = {
3284  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3285  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3286  THREAD_PRIORITY_LOWEST,                       // 2
3287  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3288  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3289  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3290  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3291  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3292  THREAD_PRIORITY_HIGHEST,                      // 8
3293  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3294  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3295  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3296};
3297
3298static int prio_init() {
3299  // If ThreadPriorityPolicy is 1, switch tables
3300  if (ThreadPriorityPolicy == 1) {
3301    int i;
3302    for (i = 0; i < CriticalPriority + 1; i++) {
3303      os::java_to_os_priority[i] = prio_policy1[i];
3304    }
3305  }
3306  if (UseCriticalJavaThreadPriority) {
3307    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3308  }
3309  return 0;
3310}
3311
3312OSReturn os::set_native_priority(Thread* thread, int priority) {
3313  if (!UseThreadPriorities) return OS_OK;
3314  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3315  return ret ? OS_OK : OS_ERR;
3316}
3317
3318OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3319  if ( !UseThreadPriorities ) {
3320    *priority_ptr = java_to_os_priority[NormPriority];
3321    return OS_OK;
3322  }
3323  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3324  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3325    assert(false, "GetThreadPriority failed");
3326    return OS_ERR;
3327  }
3328  *priority_ptr = os_prio;
3329  return OS_OK;
3330}
3331
3332
3333// Hint to the underlying OS that a task switch would not be good.
3334// Void return because it's a hint and can fail.
3335void os::hint_no_preempt() {}
3336
3337void os::interrupt(Thread* thread) {
3338  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3339         "possibility of dangling Thread pointer");
3340
3341  OSThread* osthread = thread->osthread();
3342  osthread->set_interrupted(true);
3343  // More than one thread can get here with the same value of osthread,
3344  // resulting in multiple notifications.  We do, however, want the store
3345  // to interrupted() to be visible to other threads before we post
3346  // the interrupt event.
3347  OrderAccess::release();
3348  SetEvent(osthread->interrupt_event());
3349  // For JSR166:  unpark after setting status
3350  if (thread->is_Java_thread())
3351    ((JavaThread*)thread)->parker()->unpark();
3352
3353  ParkEvent * ev = thread->_ParkEvent ;
3354  if (ev != NULL) ev->unpark() ;
3355
3356}
3357
3358
3359bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3360  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3361         "possibility of dangling Thread pointer");
3362
3363  OSThread* osthread = thread->osthread();
3364  bool interrupted = osthread->interrupted();
3365  // There is no synchronization between the setting of the interrupt
3366  // and it being cleared here. It is critical - see 6535709 - that
3367  // we only clear the interrupt state, and reset the interrupt event,
3368  // if we are going to report that we were indeed interrupted - else
3369  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3370  // depending on the timing
3371  if (interrupted && clear_interrupted) {
3372    osthread->set_interrupted(false);
3373    ResetEvent(osthread->interrupt_event());
3374  } // Otherwise leave the interrupted state alone
3375
3376  return interrupted;
3377}
3378
3379// Get's a pc (hint) for a running thread. Currently used only for profiling.
3380ExtendedPC os::get_thread_pc(Thread* thread) {
3381  CONTEXT context;
3382  context.ContextFlags = CONTEXT_CONTROL;
3383  HANDLE handle = thread->osthread()->thread_handle();
3384#ifdef _M_IA64
3385  assert(0, "Fix get_thread_pc");
3386  return ExtendedPC(NULL);
3387#else
3388  if (GetThreadContext(handle, &context)) {
3389#ifdef _M_AMD64
3390    return ExtendedPC((address) context.Rip);
3391#else
3392    return ExtendedPC((address) context.Eip);
3393#endif
3394  } else {
3395    return ExtendedPC(NULL);
3396  }
3397#endif
3398}
3399
3400// GetCurrentThreadId() returns DWORD
3401intx os::current_thread_id()          { return GetCurrentThreadId(); }
3402
3403static int _initial_pid = 0;
3404
3405int os::current_process_id()
3406{
3407  return (_initial_pid ? _initial_pid : _getpid());
3408}
3409
3410int    os::win32::_vm_page_size       = 0;
3411int    os::win32::_vm_allocation_granularity = 0;
3412int    os::win32::_processor_type     = 0;
3413// Processor level is not available on non-NT systems, use vm_version instead
3414int    os::win32::_processor_level    = 0;
3415julong os::win32::_physical_memory    = 0;
3416size_t os::win32::_default_stack_size = 0;
3417
3418         intx os::win32::_os_thread_limit    = 0;
3419volatile intx os::win32::_os_thread_count    = 0;
3420
3421bool   os::win32::_is_nt              = false;
3422bool   os::win32::_is_windows_2003    = false;
3423bool   os::win32::_is_windows_server  = false;
3424
3425void os::win32::initialize_system_info() {
3426  SYSTEM_INFO si;
3427  GetSystemInfo(&si);
3428  _vm_page_size    = si.dwPageSize;
3429  _vm_allocation_granularity = si.dwAllocationGranularity;
3430  _processor_type  = si.dwProcessorType;
3431  _processor_level = si.wProcessorLevel;
3432  set_processor_count(si.dwNumberOfProcessors);
3433
3434  MEMORYSTATUSEX ms;
3435  ms.dwLength = sizeof(ms);
3436
3437  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3438  // dwMemoryLoad (% of memory in use)
3439  GlobalMemoryStatusEx(&ms);
3440  _physical_memory = ms.ullTotalPhys;
3441
3442  OSVERSIONINFOEX oi;
3443  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3444  GetVersionEx((OSVERSIONINFO*)&oi);
3445  switch(oi.dwPlatformId) {
3446    case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3447    case VER_PLATFORM_WIN32_NT:
3448      _is_nt = true;
3449      {
3450        int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3451        if (os_vers == 5002) {
3452          _is_windows_2003 = true;
3453        }
3454        if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3455          oi.wProductType == VER_NT_SERVER) {
3456            _is_windows_server = true;
3457        }
3458      }
3459      break;
3460    default: fatal("Unknown platform");
3461  }
3462
3463  _default_stack_size = os::current_stack_size();
3464  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3465  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3466    "stack size not a multiple of page size");
3467
3468  initialize_performance_counter();
3469
3470  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3471  // known to deadlock the system, if the VM issues to thread operations with
3472  // a too high frequency, e.g., such as changing the priorities.
3473  // The 6000 seems to work well - no deadlocks has been notices on the test
3474  // programs that we have seen experience this problem.
3475  if (!os::win32::is_nt()) {
3476    StarvationMonitorInterval = 6000;
3477  }
3478}
3479
3480
3481HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3482  char path[MAX_PATH];
3483  DWORD size;
3484  DWORD pathLen = (DWORD)sizeof(path);
3485  HINSTANCE result = NULL;
3486
3487  // only allow library name without path component
3488  assert(strchr(name, '\\') == NULL, "path not allowed");
3489  assert(strchr(name, ':') == NULL, "path not allowed");
3490  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3491    jio_snprintf(ebuf, ebuflen,
3492      "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3493    return NULL;
3494  }
3495
3496  // search system directory
3497  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3498    strcat(path, "\\");
3499    strcat(path, name);
3500    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3501      return result;
3502    }
3503  }
3504
3505  // try Windows directory
3506  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3507    strcat(path, "\\");
3508    strcat(path, name);
3509    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3510      return result;
3511    }
3512  }
3513
3514  jio_snprintf(ebuf, ebuflen,
3515    "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3516  return NULL;
3517}
3518
3519void os::win32::setmode_streams() {
3520  _setmode(_fileno(stdin), _O_BINARY);
3521  _setmode(_fileno(stdout), _O_BINARY);
3522  _setmode(_fileno(stderr), _O_BINARY);
3523}
3524
3525
3526bool os::is_debugger_attached() {
3527  return IsDebuggerPresent() ? true : false;
3528}
3529
3530
3531void os::wait_for_keypress_at_exit(void) {
3532  if (PauseAtExit) {
3533    fprintf(stderr, "Press any key to continue...\n");
3534    fgetc(stdin);
3535  }
3536}
3537
3538
3539int os::message_box(const char* title, const char* message) {
3540  int result = MessageBox(NULL, message, title,
3541                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3542  return result == IDYES;
3543}
3544
3545int os::allocate_thread_local_storage() {
3546  return TlsAlloc();
3547}
3548
3549
3550void os::free_thread_local_storage(int index) {
3551  TlsFree(index);
3552}
3553
3554
3555void os::thread_local_storage_at_put(int index, void* value) {
3556  TlsSetValue(index, value);
3557  assert(thread_local_storage_at(index) == value, "Just checking");
3558}
3559
3560
3561void* os::thread_local_storage_at(int index) {
3562  return TlsGetValue(index);
3563}
3564
3565
3566#ifndef PRODUCT
3567#ifndef _WIN64
3568// Helpers to check whether NX protection is enabled
3569int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3570  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3571      pex->ExceptionRecord->NumberParameters > 0 &&
3572      pex->ExceptionRecord->ExceptionInformation[0] ==
3573      EXCEPTION_INFO_EXEC_VIOLATION) {
3574    return EXCEPTION_EXECUTE_HANDLER;
3575  }
3576  return EXCEPTION_CONTINUE_SEARCH;
3577}
3578
3579void nx_check_protection() {
3580  // If NX is enabled we'll get an exception calling into code on the stack
3581  char code[] = { (char)0xC3 }; // ret
3582  void *code_ptr = (void *)code;
3583  __try {
3584    __asm call code_ptr
3585  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3586    tty->print_raw_cr("NX protection detected.");
3587  }
3588}
3589#endif // _WIN64
3590#endif // PRODUCT
3591
3592// this is called _before_ the global arguments have been parsed
3593void os::init(void) {
3594  _initial_pid = _getpid();
3595
3596  init_random(1234567);
3597
3598  win32::initialize_system_info();
3599  win32::setmode_streams();
3600  init_page_sizes((size_t) win32::vm_page_size());
3601
3602  // For better scalability on MP systems (must be called after initialize_system_info)
3603#ifndef PRODUCT
3604  if (is_MP()) {
3605    NoYieldsInMicrolock = true;
3606  }
3607#endif
3608  // This may be overridden later when argument processing is done.
3609  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3610    os::win32::is_windows_2003());
3611
3612  // Initialize main_process and main_thread
3613  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3614 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3615                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3616    fatal("DuplicateHandle failed\n");
3617  }
3618  main_thread_id = (int) GetCurrentThreadId();
3619}
3620
3621// To install functions for atexit processing
3622extern "C" {
3623  static void perfMemory_exit_helper() {
3624    perfMemory_exit();
3625  }
3626}
3627
3628// this is called _after_ the global arguments have been parsed
3629jint os::init_2(void) {
3630  // Allocate a single page and mark it as readable for safepoint polling
3631  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3632  guarantee( polling_page != NULL, "Reserve Failed for polling page");
3633
3634  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3635  guarantee( return_page != NULL, "Commit Failed for polling page");
3636
3637  os::set_polling_page( polling_page );
3638
3639#ifndef PRODUCT
3640  if( Verbose && PrintMiscellaneous )
3641    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3642#endif
3643
3644  if (!UseMembar) {
3645    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3646    guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3647
3648    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3649    guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3650
3651    os::set_memory_serialize_page( mem_serialize_page );
3652
3653#ifndef PRODUCT
3654    if(Verbose && PrintMiscellaneous)
3655      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3656#endif
3657  }
3658
3659  os::large_page_init();
3660
3661  // Setup Windows Exceptions
3662
3663  // for debugging float code generation bugs
3664  if (ForceFloatExceptions) {
3665#ifndef  _WIN64
3666    static long fp_control_word = 0;
3667    __asm { fstcw fp_control_word }
3668    // see Intel PPro Manual, Vol. 2, p 7-16
3669    const long precision = 0x20;
3670    const long underflow = 0x10;
3671    const long overflow  = 0x08;
3672    const long zero_div  = 0x04;
3673    const long denorm    = 0x02;
3674    const long invalid   = 0x01;
3675    fp_control_word |= invalid;
3676    __asm { fldcw fp_control_word }
3677#endif
3678  }
3679
3680  // If stack_commit_size is 0, windows will reserve the default size,
3681  // but only commit a small portion of it.
3682  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3683  size_t default_reserve_size = os::win32::default_stack_size();
3684  size_t actual_reserve_size = stack_commit_size;
3685  if (stack_commit_size < default_reserve_size) {
3686    // If stack_commit_size == 0, we want this too
3687    actual_reserve_size = default_reserve_size;
3688  }
3689
3690  // Check minimum allowable stack size for thread creation and to initialize
3691  // the java system classes, including StackOverflowError - depends on page
3692  // size.  Add a page for compiler2 recursion in main thread.
3693  // Add in 2*BytesPerWord times page size to account for VM stack during
3694  // class initialization depending on 32 or 64 bit VM.
3695  size_t min_stack_allowed =
3696            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3697            2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3698  if (actual_reserve_size < min_stack_allowed) {
3699    tty->print_cr("\nThe stack size specified is too small, "
3700                  "Specify at least %dk",
3701                  min_stack_allowed / K);
3702    return JNI_ERR;
3703  }
3704
3705  JavaThread::set_stack_size_at_create(stack_commit_size);
3706
3707  // Calculate theoretical max. size of Threads to guard gainst artifical
3708  // out-of-memory situations, where all available address-space has been
3709  // reserved by thread stacks.
3710  assert(actual_reserve_size != 0, "Must have a stack");
3711
3712  // Calculate the thread limit when we should start doing Virtual Memory
3713  // banging. Currently when the threads will have used all but 200Mb of space.
3714  //
3715  // TODO: consider performing a similar calculation for commit size instead
3716  // as reserve size, since on a 64-bit platform we'll run into that more
3717  // often than running out of virtual memory space.  We can use the
3718  // lower value of the two calculations as the os_thread_limit.
3719  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3720  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3721
3722  // at exit methods are called in the reverse order of their registration.
3723  // there is no limit to the number of functions registered. atexit does
3724  // not set errno.
3725
3726  if (PerfAllowAtExitRegistration) {
3727    // only register atexit functions if PerfAllowAtExitRegistration is set.
3728    // atexit functions can be delayed until process exit time, which
3729    // can be problematic for embedded VM situations. Embedded VMs should
3730    // call DestroyJavaVM() to assure that VM resources are released.
3731
3732    // note: perfMemory_exit_helper atexit function may be removed in
3733    // the future if the appropriate cleanup code can be added to the
3734    // VM_Exit VMOperation's doit method.
3735    if (atexit(perfMemory_exit_helper) != 0) {
3736      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3737    }
3738  }
3739
3740#ifndef _WIN64
3741  // Print something if NX is enabled (win32 on AMD64)
3742  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3743#endif
3744
3745  // initialize thread priority policy
3746  prio_init();
3747
3748  if (UseNUMA && !ForceNUMA) {
3749    UseNUMA = false; // We don't fully support this yet
3750  }
3751
3752  if (UseNUMAInterleaving) {
3753    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
3754    bool success = numa_interleaving_init();
3755    if (!success) UseNUMAInterleaving = false;
3756  }
3757
3758  return JNI_OK;
3759}
3760
3761void os::init_3(void) {
3762  return;
3763}
3764
3765// Mark the polling page as unreadable
3766void os::make_polling_page_unreadable(void) {
3767  DWORD old_status;
3768  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3769    fatal("Could not disable polling page");
3770};
3771
3772// Mark the polling page as readable
3773void os::make_polling_page_readable(void) {
3774  DWORD old_status;
3775  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3776    fatal("Could not enable polling page");
3777};
3778
3779
3780int os::stat(const char *path, struct stat *sbuf) {
3781  char pathbuf[MAX_PATH];
3782  if (strlen(path) > MAX_PATH - 1) {
3783    errno = ENAMETOOLONG;
3784    return -1;
3785  }
3786  os::native_path(strcpy(pathbuf, path));
3787  int ret = ::stat(pathbuf, sbuf);
3788  if (sbuf != NULL && UseUTCFileTimestamp) {
3789    // Fix for 6539723.  st_mtime returned from stat() is dependent on
3790    // the system timezone and so can return different values for the
3791    // same file if/when daylight savings time changes.  This adjustment
3792    // makes sure the same timestamp is returned regardless of the TZ.
3793    //
3794    // See:
3795    // http://msdn.microsoft.com/library/
3796    //   default.asp?url=/library/en-us/sysinfo/base/
3797    //   time_zone_information_str.asp
3798    // and
3799    // http://msdn.microsoft.com/library/default.asp?url=
3800    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3801    //
3802    // NOTE: there is a insidious bug here:  If the timezone is changed
3803    // after the call to stat() but before 'GetTimeZoneInformation()', then
3804    // the adjustment we do here will be wrong and we'll return the wrong
3805    // value (which will likely end up creating an invalid class data
3806    // archive).  Absent a better API for this, or some time zone locking
3807    // mechanism, we'll have to live with this risk.
3808    TIME_ZONE_INFORMATION tz;
3809    DWORD tzid = GetTimeZoneInformation(&tz);
3810    int daylightBias =
3811      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3812    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3813  }
3814  return ret;
3815}
3816
3817
3818#define FT2INT64(ft) \
3819  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3820
3821
3822// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3823// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3824// of a thread.
3825//
3826// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3827// the fast estimate available on the platform.
3828
3829// current_thread_cpu_time() is not optimized for Windows yet
3830jlong os::current_thread_cpu_time() {
3831  // return user + sys since the cost is the same
3832  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3833}
3834
3835jlong os::thread_cpu_time(Thread* thread) {
3836  // consistent with what current_thread_cpu_time() returns.
3837  return os::thread_cpu_time(thread, true /* user+sys */);
3838}
3839
3840jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3841  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3842}
3843
3844jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3845  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3846  // If this function changes, os::is_thread_cpu_time_supported() should too
3847  if (os::win32::is_nt()) {
3848    FILETIME CreationTime;
3849    FILETIME ExitTime;
3850    FILETIME KernelTime;
3851    FILETIME UserTime;
3852
3853    if ( GetThreadTimes(thread->osthread()->thread_handle(),
3854                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3855      return -1;
3856    else
3857      if (user_sys_cpu_time) {
3858        return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3859      } else {
3860        return FT2INT64(UserTime) * 100;
3861      }
3862  } else {
3863    return (jlong) timeGetTime() * 1000000;
3864  }
3865}
3866
3867void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3868  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3869  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3870  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3871  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3872}
3873
3874void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3875  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3876  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3877  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3878  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3879}
3880
3881bool os::is_thread_cpu_time_supported() {
3882  // see os::thread_cpu_time
3883  if (os::win32::is_nt()) {
3884    FILETIME CreationTime;
3885    FILETIME ExitTime;
3886    FILETIME KernelTime;
3887    FILETIME UserTime;
3888
3889    if ( GetThreadTimes(GetCurrentThread(),
3890                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3891      return false;
3892    else
3893      return true;
3894  } else {
3895    return false;
3896  }
3897}
3898
3899// Windows does't provide a loadavg primitive so this is stubbed out for now.
3900// It does have primitives (PDH API) to get CPU usage and run queue length.
3901// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3902// If we wanted to implement loadavg on Windows, we have a few options:
3903//
3904// a) Query CPU usage and run queue length and "fake" an answer by
3905//    returning the CPU usage if it's under 100%, and the run queue
3906//    length otherwise.  It turns out that querying is pretty slow
3907//    on Windows, on the order of 200 microseconds on a fast machine.
3908//    Note that on the Windows the CPU usage value is the % usage
3909//    since the last time the API was called (and the first call
3910//    returns 100%), so we'd have to deal with that as well.
3911//
3912// b) Sample the "fake" answer using a sampling thread and store
3913//    the answer in a global variable.  The call to loadavg would
3914//    just return the value of the global, avoiding the slow query.
3915//
3916// c) Sample a better answer using exponential decay to smooth the
3917//    value.  This is basically the algorithm used by UNIX kernels.
3918//
3919// Note that sampling thread starvation could affect both (b) and (c).
3920int os::loadavg(double loadavg[], int nelem) {
3921  return -1;
3922}
3923
3924
3925// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3926bool os::dont_yield() {
3927  return DontYieldALot;
3928}
3929
3930// This method is a slightly reworked copy of JDK's sysOpen
3931// from src/windows/hpi/src/sys_api_md.c
3932
3933int os::open(const char *path, int oflag, int mode) {
3934  char pathbuf[MAX_PATH];
3935
3936  if (strlen(path) > MAX_PATH - 1) {
3937    errno = ENAMETOOLONG;
3938          return -1;
3939  }
3940  os::native_path(strcpy(pathbuf, path));
3941  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
3942}
3943
3944// Is a (classpath) directory empty?
3945bool os::dir_is_empty(const char* path) {
3946  WIN32_FIND_DATA fd;
3947  HANDLE f = FindFirstFile(path, &fd);
3948  if (f == INVALID_HANDLE_VALUE) {
3949    return true;
3950  }
3951  FindClose(f);
3952  return false;
3953}
3954
3955// create binary file, rewriting existing file if required
3956int os::create_binary_file(const char* path, bool rewrite_existing) {
3957  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3958  if (!rewrite_existing) {
3959    oflags |= _O_EXCL;
3960  }
3961  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3962}
3963
3964// return current position of file pointer
3965jlong os::current_file_offset(int fd) {
3966  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3967}
3968
3969// move file pointer to the specified offset
3970jlong os::seek_to_file_offset(int fd, jlong offset) {
3971  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3972}
3973
3974
3975jlong os::lseek(int fd, jlong offset, int whence) {
3976  return (jlong) ::_lseeki64(fd, offset, whence);
3977}
3978
3979// This method is a slightly reworked copy of JDK's sysNativePath
3980// from src/windows/hpi/src/path_md.c
3981
3982/* Convert a pathname to native format.  On win32, this involves forcing all
3983   separators to be '\\' rather than '/' (both are legal inputs, but Win95
3984   sometimes rejects '/') and removing redundant separators.  The input path is
3985   assumed to have been converted into the character encoding used by the local
3986   system.  Because this might be a double-byte encoding, care is taken to
3987   treat double-byte lead characters correctly.
3988
3989   This procedure modifies the given path in place, as the result is never
3990   longer than the original.  There is no error return; this operation always
3991   succeeds. */
3992char * os::native_path(char *path) {
3993  char *src = path, *dst = path, *end = path;
3994  char *colon = NULL;           /* If a drive specifier is found, this will
3995                                        point to the colon following the drive
3996                                        letter */
3997
3998  /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
3999  assert(((!::IsDBCSLeadByte('/'))
4000    && (!::IsDBCSLeadByte('\\'))
4001    && (!::IsDBCSLeadByte(':'))),
4002    "Illegal lead byte");
4003
4004  /* Check for leading separators */
4005#define isfilesep(c) ((c) == '/' || (c) == '\\')
4006  while (isfilesep(*src)) {
4007    src++;
4008  }
4009
4010  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4011    /* Remove leading separators if followed by drive specifier.  This
4012      hack is necessary to support file URLs containing drive
4013      specifiers (e.g., "file://c:/path").  As a side effect,
4014      "/c:/path" can be used as an alternative to "c:/path". */
4015    *dst++ = *src++;
4016    colon = dst;
4017    *dst++ = ':';
4018    src++;
4019  } else {
4020    src = path;
4021    if (isfilesep(src[0]) && isfilesep(src[1])) {
4022      /* UNC pathname: Retain first separator; leave src pointed at
4023         second separator so that further separators will be collapsed
4024         into the second separator.  The result will be a pathname
4025         beginning with "\\\\" followed (most likely) by a host name. */
4026      src = dst = path + 1;
4027      path[0] = '\\';     /* Force first separator to '\\' */
4028    }
4029  }
4030
4031  end = dst;
4032
4033  /* Remove redundant separators from remainder of path, forcing all
4034      separators to be '\\' rather than '/'. Also, single byte space
4035      characters are removed from the end of the path because those
4036      are not legal ending characters on this operating system.
4037  */
4038  while (*src != '\0') {
4039    if (isfilesep(*src)) {
4040      *dst++ = '\\'; src++;
4041      while (isfilesep(*src)) src++;
4042      if (*src == '\0') {
4043        /* Check for trailing separator */
4044        end = dst;
4045        if (colon == dst - 2) break;                      /* "z:\\" */
4046        if (dst == path + 1) break;                       /* "\\" */
4047        if (dst == path + 2 && isfilesep(path[0])) {
4048          /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4049            beginning of a UNC pathname.  Even though it is not, by
4050            itself, a valid UNC pathname, we leave it as is in order
4051            to be consistent with the path canonicalizer as well
4052            as the win32 APIs, which treat this case as an invalid
4053            UNC pathname rather than as an alias for the root
4054            directory of the current drive. */
4055          break;
4056        }
4057        end = --dst;  /* Path does not denote a root directory, so
4058                                    remove trailing separator */
4059        break;
4060      }
4061      end = dst;
4062    } else {
4063      if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4064        *dst++ = *src++;
4065        if (*src) *dst++ = *src++;
4066        end = dst;
4067      } else {         /* Copy a single-byte character */
4068        char c = *src++;
4069        *dst++ = c;
4070        /* Space is not a legal ending character */
4071        if (c != ' ') end = dst;
4072      }
4073    }
4074  }
4075
4076  *end = '\0';
4077
4078  /* For "z:", add "." to work around a bug in the C runtime library */
4079  if (colon == dst - 1) {
4080          path[2] = '.';
4081          path[3] = '\0';
4082  }
4083
4084  #ifdef DEBUG
4085    jio_fprintf(stderr, "sysNativePath: %s\n", path);
4086  #endif DEBUG
4087  return path;
4088}
4089
4090// This code is a copy of JDK's sysSetLength
4091// from src/windows/hpi/src/sys_api_md.c
4092
4093int os::ftruncate(int fd, jlong length) {
4094  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4095  long high = (long)(length >> 32);
4096  DWORD ret;
4097
4098  if (h == (HANDLE)(-1)) {
4099    return -1;
4100  }
4101
4102  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4103  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4104      return -1;
4105  }
4106
4107  if (::SetEndOfFile(h) == FALSE) {
4108    return -1;
4109  }
4110
4111  return 0;
4112}
4113
4114
4115// This code is a copy of JDK's sysSync
4116// from src/windows/hpi/src/sys_api_md.c
4117// except for the legacy workaround for a bug in Win 98
4118
4119int os::fsync(int fd) {
4120  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4121
4122  if ( (!::FlushFileBuffers(handle)) &&
4123         (GetLastError() != ERROR_ACCESS_DENIED) ) {
4124    /* from winerror.h */
4125    return -1;
4126  }
4127  return 0;
4128}
4129
4130static int nonSeekAvailable(int, long *);
4131static int stdinAvailable(int, long *);
4132
4133#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4134#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4135
4136// This code is a copy of JDK's sysAvailable
4137// from src/windows/hpi/src/sys_api_md.c
4138
4139int os::available(int fd, jlong *bytes) {
4140  jlong cur, end;
4141  struct _stati64 stbuf64;
4142
4143  if (::_fstati64(fd, &stbuf64) >= 0) {
4144    int mode = stbuf64.st_mode;
4145    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4146      int ret;
4147      long lpbytes;
4148      if (fd == 0) {
4149        ret = stdinAvailable(fd, &lpbytes);
4150      } else {
4151        ret = nonSeekAvailable(fd, &lpbytes);
4152      }
4153      (*bytes) = (jlong)(lpbytes);
4154      return ret;
4155    }
4156    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4157      return FALSE;
4158    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4159      return FALSE;
4160    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4161      return FALSE;
4162    }
4163    *bytes = end - cur;
4164    return TRUE;
4165  } else {
4166    return FALSE;
4167  }
4168}
4169
4170// This code is a copy of JDK's nonSeekAvailable
4171// from src/windows/hpi/src/sys_api_md.c
4172
4173static int nonSeekAvailable(int fd, long *pbytes) {
4174  /* This is used for available on non-seekable devices
4175    * (like both named and anonymous pipes, such as pipes
4176    *  connected to an exec'd process).
4177    * Standard Input is a special case.
4178    *
4179    */
4180  HANDLE han;
4181
4182  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4183    return FALSE;
4184  }
4185
4186  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4187        /* PeekNamedPipe fails when at EOF.  In that case we
4188         * simply make *pbytes = 0 which is consistent with the
4189         * behavior we get on Solaris when an fd is at EOF.
4190         * The only alternative is to raise an Exception,
4191         * which isn't really warranted.
4192         */
4193    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4194      return FALSE;
4195    }
4196    *pbytes = 0;
4197  }
4198  return TRUE;
4199}
4200
4201#define MAX_INPUT_EVENTS 2000
4202
4203// This code is a copy of JDK's stdinAvailable
4204// from src/windows/hpi/src/sys_api_md.c
4205
4206static int stdinAvailable(int fd, long *pbytes) {
4207  HANDLE han;
4208  DWORD numEventsRead = 0;      /* Number of events read from buffer */
4209  DWORD numEvents = 0;  /* Number of events in buffer */
4210  DWORD i = 0;          /* Loop index */
4211  DWORD curLength = 0;  /* Position marker */
4212  DWORD actualLength = 0;       /* Number of bytes readable */
4213  BOOL error = FALSE;         /* Error holder */
4214  INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4215
4216  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4217        return FALSE;
4218  }
4219
4220  /* Construct an array of input records in the console buffer */
4221  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4222  if (error == 0) {
4223    return nonSeekAvailable(fd, pbytes);
4224  }
4225
4226  /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4227  if (numEvents > MAX_INPUT_EVENTS) {
4228    numEvents = MAX_INPUT_EVENTS;
4229  }
4230
4231  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4232  if (lpBuffer == NULL) {
4233    return FALSE;
4234  }
4235
4236  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4237  if (error == 0) {
4238    os::free(lpBuffer, mtInternal);
4239    return FALSE;
4240  }
4241
4242  /* Examine input records for the number of bytes available */
4243  for(i=0; i<numEvents; i++) {
4244    if (lpBuffer[i].EventType == KEY_EVENT) {
4245
4246      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4247                                      &(lpBuffer[i].Event);
4248      if (keyRecord->bKeyDown == TRUE) {
4249        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4250        curLength++;
4251        if (*keyPressed == '\r') {
4252          actualLength = curLength;
4253        }
4254      }
4255    }
4256  }
4257
4258  if(lpBuffer != NULL) {
4259    os::free(lpBuffer, mtInternal);
4260  }
4261
4262  *pbytes = (long) actualLength;
4263  return TRUE;
4264}
4265
4266// Map a block of memory.
4267char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4268                     char *addr, size_t bytes, bool read_only,
4269                     bool allow_exec) {
4270  HANDLE hFile;
4271  char* base;
4272
4273  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4274                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4275  if (hFile == NULL) {
4276    if (PrintMiscellaneous && Verbose) {
4277      DWORD err = GetLastError();
4278      tty->print_cr("CreateFile() failed: GetLastError->%ld.");
4279    }
4280    return NULL;
4281  }
4282
4283  if (allow_exec) {
4284    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4285    // unless it comes from a PE image (which the shared archive is not.)
4286    // Even VirtualProtect refuses to give execute access to mapped memory
4287    // that was not previously executable.
4288    //
4289    // Instead, stick the executable region in anonymous memory.  Yuck.
4290    // Penalty is that ~4 pages will not be shareable - in the future
4291    // we might consider DLLizing the shared archive with a proper PE
4292    // header so that mapping executable + sharing is possible.
4293
4294    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4295                                PAGE_READWRITE);
4296    if (base == NULL) {
4297      if (PrintMiscellaneous && Verbose) {
4298        DWORD err = GetLastError();
4299        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4300      }
4301      CloseHandle(hFile);
4302      return NULL;
4303    }
4304
4305    DWORD bytes_read;
4306    OVERLAPPED overlapped;
4307    overlapped.Offset = (DWORD)file_offset;
4308    overlapped.OffsetHigh = 0;
4309    overlapped.hEvent = NULL;
4310    // ReadFile guarantees that if the return value is true, the requested
4311    // number of bytes were read before returning.
4312    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4313    if (!res) {
4314      if (PrintMiscellaneous && Verbose) {
4315        DWORD err = GetLastError();
4316        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4317      }
4318      release_memory(base, bytes);
4319      CloseHandle(hFile);
4320      return NULL;
4321    }
4322  } else {
4323    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4324                                    NULL /*file_name*/);
4325    if (hMap == NULL) {
4326      if (PrintMiscellaneous && Verbose) {
4327        DWORD err = GetLastError();
4328        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
4329      }
4330      CloseHandle(hFile);
4331      return NULL;
4332    }
4333
4334    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4335    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4336                                  (DWORD)bytes, addr);
4337    if (base == NULL) {
4338      if (PrintMiscellaneous && Verbose) {
4339        DWORD err = GetLastError();
4340        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4341      }
4342      CloseHandle(hMap);
4343      CloseHandle(hFile);
4344      return NULL;
4345    }
4346
4347    if (CloseHandle(hMap) == 0) {
4348      if (PrintMiscellaneous && Verbose) {
4349        DWORD err = GetLastError();
4350        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4351      }
4352      CloseHandle(hFile);
4353      return base;
4354    }
4355  }
4356
4357  if (allow_exec) {
4358    DWORD old_protect;
4359    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4360    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4361
4362    if (!res) {
4363      if (PrintMiscellaneous && Verbose) {
4364        DWORD err = GetLastError();
4365        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4366      }
4367      // Don't consider this a hard error, on IA32 even if the
4368      // VirtualProtect fails, we should still be able to execute
4369      CloseHandle(hFile);
4370      return base;
4371    }
4372  }
4373
4374  if (CloseHandle(hFile) == 0) {
4375    if (PrintMiscellaneous && Verbose) {
4376      DWORD err = GetLastError();
4377      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4378    }
4379    return base;
4380  }
4381
4382  return base;
4383}
4384
4385
4386// Remap a block of memory.
4387char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4388                       char *addr, size_t bytes, bool read_only,
4389                       bool allow_exec) {
4390  // This OS does not allow existing memory maps to be remapped so we
4391  // have to unmap the memory before we remap it.
4392  if (!os::unmap_memory(addr, bytes)) {
4393    return NULL;
4394  }
4395
4396  // There is a very small theoretical window between the unmap_memory()
4397  // call above and the map_memory() call below where a thread in native
4398  // code may be able to access an address that is no longer mapped.
4399
4400  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4401           read_only, allow_exec);
4402}
4403
4404
4405// Unmap a block of memory.
4406// Returns true=success, otherwise false.
4407
4408bool os::pd_unmap_memory(char* addr, size_t bytes) {
4409  BOOL result = UnmapViewOfFile(addr);
4410  if (result == 0) {
4411    if (PrintMiscellaneous && Verbose) {
4412      DWORD err = GetLastError();
4413      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4414    }
4415    return false;
4416  }
4417  return true;
4418}
4419
4420void os::pause() {
4421  char filename[MAX_PATH];
4422  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4423    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4424  } else {
4425    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4426  }
4427
4428  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4429  if (fd != -1) {
4430    struct stat buf;
4431    ::close(fd);
4432    while (::stat(filename, &buf) == 0) {
4433      Sleep(100);
4434    }
4435  } else {
4436    jio_fprintf(stderr,
4437      "Could not open pause file '%s', continuing immediately.\n", filename);
4438  }
4439}
4440
4441// An Event wraps a win32 "CreateEvent" kernel handle.
4442//
4443// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4444//
4445// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4446//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4447//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4448//     In addition, an unpark() operation might fetch the handle field, but the
4449//     event could recycle between the fetch and the SetEvent() operation.
4450//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4451//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4452//     on an stale but recycled handle would be harmless, but in practice this might
4453//     confuse other non-Sun code, so it's not a viable approach.
4454//
4455// 2:  Once a win32 event handle is associated with an Event, it remains associated
4456//     with the Event.  The event handle is never closed.  This could be construed
4457//     as handle leakage, but only up to the maximum # of threads that have been extant
4458//     at any one time.  This shouldn't be an issue, as windows platforms typically
4459//     permit a process to have hundreds of thousands of open handles.
4460//
4461// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4462//     and release unused handles.
4463//
4464// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4465//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4466//
4467// 5.  Use an RCU-like mechanism (Read-Copy Update).
4468//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4469//
4470// We use (2).
4471//
4472// TODO-FIXME:
4473// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4474// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4475//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4476// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4477//     into a single win32 CreateEvent() handle.
4478//
4479// _Event transitions in park()
4480//   -1 => -1 : illegal
4481//    1 =>  0 : pass - return immediately
4482//    0 => -1 : block
4483//
4484// _Event serves as a restricted-range semaphore :
4485//    -1 : thread is blocked
4486//     0 : neutral  - thread is running or ready
4487//     1 : signaled - thread is running or ready
4488//
4489// Another possible encoding of _Event would be
4490// with explicit "PARKED" and "SIGNALED" bits.
4491
4492int os::PlatformEvent::park (jlong Millis) {
4493    guarantee (_ParkHandle != NULL , "Invariant") ;
4494    guarantee (Millis > 0          , "Invariant") ;
4495    int v ;
4496
4497    // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4498    // the initial park() operation.
4499
4500    for (;;) {
4501        v = _Event ;
4502        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4503    }
4504    guarantee ((v == 0) || (v == 1), "invariant") ;
4505    if (v != 0) return OS_OK ;
4506
4507    // Do this the hard way by blocking ...
4508    // TODO: consider a brief spin here, gated on the success of recent
4509    // spin attempts by this thread.
4510    //
4511    // We decompose long timeouts into series of shorter timed waits.
4512    // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4513    // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4514    // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4515    // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4516    // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4517    // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4518    // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4519    // for the already waited time.  This policy does not admit any new outcomes.
4520    // In the future, however, we might want to track the accumulated wait time and
4521    // adjust Millis accordingly if we encounter a spurious wakeup.
4522
4523    const int MAXTIMEOUT = 0x10000000 ;
4524    DWORD rv = WAIT_TIMEOUT ;
4525    while (_Event < 0 && Millis > 0) {
4526       DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4527       if (Millis > MAXTIMEOUT) {
4528          prd = MAXTIMEOUT ;
4529       }
4530       rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4531       assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4532       if (rv == WAIT_TIMEOUT) {
4533           Millis -= prd ;
4534       }
4535    }
4536    v = _Event ;
4537    _Event = 0 ;
4538    OrderAccess::fence() ;
4539    // If we encounter a nearly simultanous timeout expiry and unpark()
4540    // we return OS_OK indicating we awoke via unpark().
4541    // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4542    return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4543}
4544
4545void os::PlatformEvent::park () {
4546    guarantee (_ParkHandle != NULL, "Invariant") ;
4547    // Invariant: Only the thread associated with the Event/PlatformEvent
4548    // may call park().
4549    int v ;
4550    for (;;) {
4551        v = _Event ;
4552        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4553    }
4554    guarantee ((v == 0) || (v == 1), "invariant") ;
4555    if (v != 0) return ;
4556
4557    // Do this the hard way by blocking ...
4558    // TODO: consider a brief spin here, gated on the success of recent
4559    // spin attempts by this thread.
4560    while (_Event < 0) {
4561       DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4562       assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4563    }
4564
4565    // Usually we'll find _Event == 0 at this point, but as
4566    // an optional optimization we clear it, just in case can
4567    // multiple unpark() operations drove _Event up to 1.
4568    _Event = 0 ;
4569    OrderAccess::fence() ;
4570    guarantee (_Event >= 0, "invariant") ;
4571}
4572
4573void os::PlatformEvent::unpark() {
4574  guarantee (_ParkHandle != NULL, "Invariant") ;
4575  int v ;
4576  for (;;) {
4577      v = _Event ;      // Increment _Event if it's < 1.
4578      if (v > 0) {
4579         // If it's already signaled just return.
4580         // The LD of _Event could have reordered or be satisfied
4581         // by a read-aside from this processor's write buffer.
4582         // To avoid problems execute a barrier and then
4583         // ratify the value.  A degenerate CAS() would also work.
4584         // Viz., CAS (v+0, &_Event, v) == v).
4585         OrderAccess::fence() ;
4586         if (_Event == v) return ;
4587         continue ;
4588      }
4589      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4590  }
4591  if (v < 0) {
4592     ::SetEvent (_ParkHandle) ;
4593  }
4594}
4595
4596
4597// JSR166
4598// -------------------------------------------------------
4599
4600/*
4601 * The Windows implementation of Park is very straightforward: Basic
4602 * operations on Win32 Events turn out to have the right semantics to
4603 * use them directly. We opportunistically resuse the event inherited
4604 * from Monitor.
4605 */
4606
4607
4608void Parker::park(bool isAbsolute, jlong time) {
4609  guarantee (_ParkEvent != NULL, "invariant") ;
4610  // First, demultiplex/decode time arguments
4611  if (time < 0) { // don't wait
4612    return;
4613  }
4614  else if (time == 0 && !isAbsolute) {
4615    time = INFINITE;
4616  }
4617  else if  (isAbsolute) {
4618    time -= os::javaTimeMillis(); // convert to relative time
4619    if (time <= 0) // already elapsed
4620      return;
4621  }
4622  else { // relative
4623    time /= 1000000; // Must coarsen from nanos to millis
4624    if (time == 0)   // Wait for the minimal time unit if zero
4625      time = 1;
4626  }
4627
4628  JavaThread* thread = (JavaThread*)(Thread::current());
4629  assert(thread->is_Java_thread(), "Must be JavaThread");
4630  JavaThread *jt = (JavaThread *)thread;
4631
4632  // Don't wait if interrupted or already triggered
4633  if (Thread::is_interrupted(thread, false) ||
4634    WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4635    ResetEvent(_ParkEvent);
4636    return;
4637  }
4638  else {
4639    ThreadBlockInVM tbivm(jt);
4640    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4641    jt->set_suspend_equivalent();
4642
4643    WaitForSingleObject(_ParkEvent,  time);
4644    ResetEvent(_ParkEvent);
4645
4646    // If externally suspended while waiting, re-suspend
4647    if (jt->handle_special_suspend_equivalent_condition()) {
4648      jt->java_suspend_self();
4649    }
4650  }
4651}
4652
4653void Parker::unpark() {
4654  guarantee (_ParkEvent != NULL, "invariant") ;
4655  SetEvent(_ParkEvent);
4656}
4657
4658// Run the specified command in a separate process. Return its exit value,
4659// or -1 on failure (e.g. can't create a new process).
4660int os::fork_and_exec(char* cmd) {
4661  STARTUPINFO si;
4662  PROCESS_INFORMATION pi;
4663
4664  memset(&si, 0, sizeof(si));
4665  si.cb = sizeof(si);
4666  memset(&pi, 0, sizeof(pi));
4667  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4668                            cmd,    // command line
4669                            NULL,   // process security attribute
4670                            NULL,   // thread security attribute
4671                            TRUE,   // inherits system handles
4672                            0,      // no creation flags
4673                            NULL,   // use parent's environment block
4674                            NULL,   // use parent's starting directory
4675                            &si,    // (in) startup information
4676                            &pi);   // (out) process information
4677
4678  if (rslt) {
4679    // Wait until child process exits.
4680    WaitForSingleObject(pi.hProcess, INFINITE);
4681
4682    DWORD exit_code;
4683    GetExitCodeProcess(pi.hProcess, &exit_code);
4684
4685    // Close process and thread handles.
4686    CloseHandle(pi.hProcess);
4687    CloseHandle(pi.hThread);
4688
4689    return (int)exit_code;
4690  } else {
4691    return -1;
4692  }
4693}
4694
4695//--------------------------------------------------------------------------------------------------
4696// Non-product code
4697
4698static int mallocDebugIntervalCounter = 0;
4699static int mallocDebugCounter = 0;
4700bool os::check_heap(bool force) {
4701  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4702  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4703    // Note: HeapValidate executes two hardware breakpoints when it finds something
4704    // wrong; at these points, eax contains the address of the offending block (I think).
4705    // To get to the exlicit error message(s) below, just continue twice.
4706    HANDLE heap = GetProcessHeap();
4707    { HeapLock(heap);
4708      PROCESS_HEAP_ENTRY phe;
4709      phe.lpData = NULL;
4710      while (HeapWalk(heap, &phe) != 0) {
4711        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4712            !HeapValidate(heap, 0, phe.lpData)) {
4713          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4714          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4715          fatal("corrupted C heap");
4716        }
4717      }
4718      DWORD err = GetLastError();
4719      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4720        fatal(err_msg("heap walk aborted with error %d", err));
4721      }
4722      HeapUnlock(heap);
4723    }
4724    mallocDebugIntervalCounter = 0;
4725  }
4726  return true;
4727}
4728
4729
4730bool os::find(address addr, outputStream* st) {
4731  // Nothing yet
4732  return false;
4733}
4734
4735LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4736  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4737
4738  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4739    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4740    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4741    address addr = (address) exceptionRecord->ExceptionInformation[1];
4742
4743    if (os::is_memory_serialize_page(thread, addr))
4744      return EXCEPTION_CONTINUE_EXECUTION;
4745  }
4746
4747  return EXCEPTION_CONTINUE_SEARCH;
4748}
4749
4750// We don't build a headless jre for Windows
4751bool os::is_headless_jre() { return false; }
4752
4753
4754typedef CRITICAL_SECTION mutex_t;
4755#define mutexInit(m)    InitializeCriticalSection(m)
4756#define mutexDestroy(m) DeleteCriticalSection(m)
4757#define mutexLock(m)    EnterCriticalSection(m)
4758#define mutexUnlock(m)  LeaveCriticalSection(m)
4759
4760static bool sock_initialized = FALSE;
4761static mutex_t sockFnTableMutex;
4762
4763static void initSock() {
4764  WSADATA wsadata;
4765
4766  if (!os::WinSock2Dll::WinSock2Available()) {
4767    jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
4768      ::GetLastError());
4769    return;
4770  }
4771  if (sock_initialized == TRUE) return;
4772
4773  ::mutexInit(&sockFnTableMutex);
4774  ::mutexLock(&sockFnTableMutex);
4775  if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
4776      jio_fprintf(stderr, "Could not initialize Winsock\n");
4777  }
4778  sock_initialized = TRUE;
4779  ::mutexUnlock(&sockFnTableMutex);
4780}
4781
4782struct hostent* os::get_host_by_name(char* name) {
4783  if (!sock_initialized) {
4784    initSock();
4785  }
4786  if (!os::WinSock2Dll::WinSock2Available()) {
4787    return NULL;
4788  }
4789  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
4790}
4791
4792int os::socket_close(int fd) {
4793  return ::closesocket(fd);
4794}
4795
4796int os::socket_available(int fd, jint *pbytes) {
4797  int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
4798  return (ret < 0) ? 0 : 1;
4799}
4800
4801int os::socket(int domain, int type, int protocol) {
4802  return ::socket(domain, type, protocol);
4803}
4804
4805int os::listen(int fd, int count) {
4806  return ::listen(fd, count);
4807}
4808
4809int os::connect(int fd, struct sockaddr* him, socklen_t len) {
4810  return ::connect(fd, him, len);
4811}
4812
4813int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
4814  return ::accept(fd, him, len);
4815}
4816
4817int os::sendto(int fd, char* buf, size_t len, uint flags,
4818               struct sockaddr* to, socklen_t tolen) {
4819
4820  return ::sendto(fd, buf, (int)len, flags, to, tolen);
4821}
4822
4823int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
4824                 sockaddr* from, socklen_t* fromlen) {
4825
4826  return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
4827}
4828
4829int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
4830  return ::recv(fd, buf, (int)nBytes, flags);
4831}
4832
4833int os::send(int fd, char* buf, size_t nBytes, uint flags) {
4834  return ::send(fd, buf, (int)nBytes, flags);
4835}
4836
4837int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
4838  return ::send(fd, buf, (int)nBytes, flags);
4839}
4840
4841int os::timeout(int fd, long timeout) {
4842  fd_set tbl;
4843  struct timeval t;
4844
4845  t.tv_sec  = timeout / 1000;
4846  t.tv_usec = (timeout % 1000) * 1000;
4847
4848  tbl.fd_count    = 1;
4849  tbl.fd_array[0] = fd;
4850
4851  return ::select(1, &tbl, 0, 0, &t);
4852}
4853
4854int os::get_host_name(char* name, int namelen) {
4855  return ::gethostname(name, namelen);
4856}
4857
4858int os::socket_shutdown(int fd, int howto) {
4859  return ::shutdown(fd, howto);
4860}
4861
4862int os::bind(int fd, struct sockaddr* him, socklen_t len) {
4863  return ::bind(fd, him, len);
4864}
4865
4866int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
4867  return ::getsockname(fd, him, len);
4868}
4869
4870int os::get_sock_opt(int fd, int level, int optname,
4871                     char* optval, socklen_t* optlen) {
4872  return ::getsockopt(fd, level, optname, optval, optlen);
4873}
4874
4875int os::set_sock_opt(int fd, int level, int optname,
4876                     const char* optval, socklen_t optlen) {
4877  return ::setsockopt(fd, level, optname, optval, optlen);
4878}
4879
4880
4881// Kernel32 API
4882typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
4883typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
4884typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
4885typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
4886typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
4887
4888GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
4889VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
4890GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
4891GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
4892RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
4893
4894
4895BOOL                        os::Kernel32Dll::initialized = FALSE;
4896SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
4897  assert(initialized && _GetLargePageMinimum != NULL,
4898    "GetLargePageMinimumAvailable() not yet called");
4899  return _GetLargePageMinimum();
4900}
4901
4902BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
4903  if (!initialized) {
4904    initialize();
4905  }
4906  return _GetLargePageMinimum != NULL;
4907}
4908
4909BOOL os::Kernel32Dll::NumaCallsAvailable() {
4910  if (!initialized) {
4911    initialize();
4912  }
4913  return _VirtualAllocExNuma != NULL;
4914}
4915
4916LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
4917  assert(initialized && _VirtualAllocExNuma != NULL,
4918    "NUMACallsAvailable() not yet called");
4919
4920  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
4921}
4922
4923BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
4924  assert(initialized && _GetNumaHighestNodeNumber != NULL,
4925    "NUMACallsAvailable() not yet called");
4926
4927  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
4928}
4929
4930BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
4931  assert(initialized && _GetNumaNodeProcessorMask != NULL,
4932    "NUMACallsAvailable() not yet called");
4933
4934  return _GetNumaNodeProcessorMask(node, proc_mask);
4935}
4936
4937USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
4938  ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
4939    if (!initialized) {
4940      initialize();
4941    }
4942
4943    if (_RtlCaptureStackBackTrace != NULL) {
4944      return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
4945        BackTrace, BackTraceHash);
4946    } else {
4947      return 0;
4948    }
4949}
4950
4951void os::Kernel32Dll::initializeCommon() {
4952  if (!initialized) {
4953    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
4954    assert(handle != NULL, "Just check");
4955    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
4956    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
4957    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
4958    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
4959    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
4960    initialized = TRUE;
4961  }
4962}
4963
4964
4965
4966#ifndef JDK6_OR_EARLIER
4967
4968void os::Kernel32Dll::initialize() {
4969  initializeCommon();
4970}
4971
4972
4973// Kernel32 API
4974inline BOOL os::Kernel32Dll::SwitchToThread() {
4975  return ::SwitchToThread();
4976}
4977
4978inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
4979  return true;
4980}
4981
4982  // Help tools
4983inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
4984  return true;
4985}
4986
4987inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
4988  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
4989}
4990
4991inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
4992  return ::Module32First(hSnapshot, lpme);
4993}
4994
4995inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
4996  return ::Module32Next(hSnapshot, lpme);
4997}
4998
4999
5000inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5001  return true;
5002}
5003
5004inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5005  ::GetNativeSystemInfo(lpSystemInfo);
5006}
5007
5008// PSAPI API
5009inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5010  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5011}
5012
5013inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5014  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5015}
5016
5017inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5018  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5019}
5020
5021inline BOOL os::PSApiDll::PSApiAvailable() {
5022  return true;
5023}
5024
5025
5026// WinSock2 API
5027inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5028  return ::WSAStartup(wVersionRequested, lpWSAData);
5029}
5030
5031inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5032  return ::gethostbyname(name);
5033}
5034
5035inline BOOL os::WinSock2Dll::WinSock2Available() {
5036  return true;
5037}
5038
5039// Advapi API
5040inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5041   BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5042   PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5043     return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5044       BufferLength, PreviousState, ReturnLength);
5045}
5046
5047inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5048  PHANDLE TokenHandle) {
5049    return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5050}
5051
5052inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5053  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5054}
5055
5056inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5057  return true;
5058}
5059
5060#else
5061// Kernel32 API
5062typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5063typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5064typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5065typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5066typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5067
5068SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5069CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5070Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5071Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5072GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5073
5074void os::Kernel32Dll::initialize() {
5075  if (!initialized) {
5076    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5077    assert(handle != NULL, "Just check");
5078
5079    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5080    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5081      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5082    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5083    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5084    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5085    initializeCommon();  // resolve the functions that always need resolving
5086
5087    initialized = TRUE;
5088  }
5089}
5090
5091BOOL os::Kernel32Dll::SwitchToThread() {
5092  assert(initialized && _SwitchToThread != NULL,
5093    "SwitchToThreadAvailable() not yet called");
5094  return _SwitchToThread();
5095}
5096
5097
5098BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5099  if (!initialized) {
5100    initialize();
5101  }
5102  return _SwitchToThread != NULL;
5103}
5104
5105// Help tools
5106BOOL os::Kernel32Dll::HelpToolsAvailable() {
5107  if (!initialized) {
5108    initialize();
5109  }
5110  return _CreateToolhelp32Snapshot != NULL &&
5111         _Module32First != NULL &&
5112         _Module32Next != NULL;
5113}
5114
5115HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5116  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5117    "HelpToolsAvailable() not yet called");
5118
5119  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5120}
5121
5122BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5123  assert(initialized && _Module32First != NULL,
5124    "HelpToolsAvailable() not yet called");
5125
5126  return _Module32First(hSnapshot, lpme);
5127}
5128
5129inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5130  assert(initialized && _Module32Next != NULL,
5131    "HelpToolsAvailable() not yet called");
5132
5133  return _Module32Next(hSnapshot, lpme);
5134}
5135
5136
5137BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5138  if (!initialized) {
5139    initialize();
5140  }
5141  return _GetNativeSystemInfo != NULL;
5142}
5143
5144void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5145  assert(initialized && _GetNativeSystemInfo != NULL,
5146    "GetNativeSystemInfoAvailable() not yet called");
5147
5148  _GetNativeSystemInfo(lpSystemInfo);
5149}
5150
5151// PSAPI API
5152
5153
5154typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5155typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5156typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5157
5158EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5159GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5160GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5161BOOL                    os::PSApiDll::initialized = FALSE;
5162
5163void os::PSApiDll::initialize() {
5164  if (!initialized) {
5165    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5166    if (handle != NULL) {
5167      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5168        "EnumProcessModules");
5169      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5170        "GetModuleFileNameExA");
5171      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5172        "GetModuleInformation");
5173    }
5174    initialized = TRUE;
5175  }
5176}
5177
5178
5179
5180BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5181  assert(initialized && _EnumProcessModules != NULL,
5182    "PSApiAvailable() not yet called");
5183  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5184}
5185
5186DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5187  assert(initialized && _GetModuleFileNameEx != NULL,
5188    "PSApiAvailable() not yet called");
5189  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5190}
5191
5192BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5193  assert(initialized && _GetModuleInformation != NULL,
5194    "PSApiAvailable() not yet called");
5195  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5196}
5197
5198BOOL os::PSApiDll::PSApiAvailable() {
5199  if (!initialized) {
5200    initialize();
5201  }
5202  return _EnumProcessModules != NULL &&
5203    _GetModuleFileNameEx != NULL &&
5204    _GetModuleInformation != NULL;
5205}
5206
5207
5208// WinSock2 API
5209typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5210typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5211
5212WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5213gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5214BOOL             os::WinSock2Dll::initialized = FALSE;
5215
5216void os::WinSock2Dll::initialize() {
5217  if (!initialized) {
5218    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5219    if (handle != NULL) {
5220      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5221      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5222    }
5223    initialized = TRUE;
5224  }
5225}
5226
5227
5228BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5229  assert(initialized && _WSAStartup != NULL,
5230    "WinSock2Available() not yet called");
5231  return _WSAStartup(wVersionRequested, lpWSAData);
5232}
5233
5234struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5235  assert(initialized && _gethostbyname != NULL,
5236    "WinSock2Available() not yet called");
5237  return _gethostbyname(name);
5238}
5239
5240BOOL os::WinSock2Dll::WinSock2Available() {
5241  if (!initialized) {
5242    initialize();
5243  }
5244  return _WSAStartup != NULL &&
5245    _gethostbyname != NULL;
5246}
5247
5248typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5249typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5250typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5251
5252AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5253OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5254LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5255BOOL                     os::Advapi32Dll::initialized = FALSE;
5256
5257void os::Advapi32Dll::initialize() {
5258  if (!initialized) {
5259    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5260    if (handle != NULL) {
5261      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5262        "AdjustTokenPrivileges");
5263      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5264        "OpenProcessToken");
5265      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5266        "LookupPrivilegeValueA");
5267    }
5268    initialized = TRUE;
5269  }
5270}
5271
5272BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5273   BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5274   PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5275   assert(initialized && _AdjustTokenPrivileges != NULL,
5276     "AdvapiAvailable() not yet called");
5277   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5278       BufferLength, PreviousState, ReturnLength);
5279}
5280
5281BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5282  PHANDLE TokenHandle) {
5283   assert(initialized && _OpenProcessToken != NULL,
5284     "AdvapiAvailable() not yet called");
5285    return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5286}
5287
5288BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5289   assert(initialized && _LookupPrivilegeValue != NULL,
5290     "AdvapiAvailable() not yet called");
5291  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5292}
5293
5294BOOL os::Advapi32Dll::AdvapiAvailable() {
5295  if (!initialized) {
5296    initialize();
5297  }
5298  return _AdjustTokenPrivileges != NULL &&
5299    _OpenProcessToken != NULL &&
5300    _LookupPrivilegeValue != NULL;
5301}
5302
5303#endif
5304