os_windows.cpp revision 1929:2d4762ec74af
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifdef _WIN64
26// Must be at least Windows 2000 or XP to use VectoredExceptions
27#define _WIN32_WINNT 0x500
28#endif
29
30// no precompiled headers
31#include "classfile/classLoader.hpp"
32#include "classfile/systemDictionary.hpp"
33#include "classfile/vmSymbols.hpp"
34#include "code/icBuffer.hpp"
35#include "code/vtableStubs.hpp"
36#include "compiler/compileBroker.hpp"
37#include "interpreter/interpreter.hpp"
38#include "jvm_windows.h"
39#include "memory/allocation.inline.hpp"
40#include "memory/filemap.hpp"
41#include "mutex_windows.inline.hpp"
42#include "oops/oop.inline.hpp"
43#include "os_share_windows.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/extendedPC.hpp"
49#include "runtime/globals.hpp"
50#include "runtime/hpi.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/osThread.hpp"
57#include "runtime/perfMemory.hpp"
58#include "runtime/sharedRuntime.hpp"
59#include "runtime/statSampler.hpp"
60#include "runtime/stubRoutines.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/runtimeService.hpp"
65#include "thread_windows.inline.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71#ifdef TARGET_ARCH_x86
72# include "assembler_x86.inline.hpp"
73# include "nativeInst_x86.hpp"
74#endif
75#ifdef COMPILER1
76#include "c1/c1_Runtime1.hpp"
77#endif
78#ifdef COMPILER2
79#include "opto/runtime.hpp"
80#endif
81
82#ifdef _DEBUG
83#include <crtdbg.h>
84#endif
85
86
87#include <windows.h>
88#include <sys/types.h>
89#include <sys/stat.h>
90#include <sys/timeb.h>
91#include <objidl.h>
92#include <shlobj.h>
93
94#include <malloc.h>
95#include <signal.h>
96#include <direct.h>
97#include <errno.h>
98#include <fcntl.h>
99#include <io.h>
100#include <process.h>              // For _beginthreadex(), _endthreadex()
101#include <imagehlp.h>             // For os::dll_address_to_function_name
102
103/* for enumerating dll libraries */
104#include <tlhelp32.h>
105#include <vdmdbg.h>
106
107// for timer info max values which include all bits
108#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
109
110// For DLL loading/load error detection
111// Values of PE COFF
112#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
113#define IMAGE_FILE_SIGNATURE_LENGTH 4
114
115static HANDLE main_process;
116static HANDLE main_thread;
117static int    main_thread_id;
118
119static FILETIME process_creation_time;
120static FILETIME process_exit_time;
121static FILETIME process_user_time;
122static FILETIME process_kernel_time;
123
124#ifdef _WIN64
125PVOID  topLevelVectoredExceptionHandler = NULL;
126#endif
127
128#ifdef _M_IA64
129#define __CPU__ ia64
130#elif _M_AMD64
131#define __CPU__ amd64
132#else
133#define __CPU__ i486
134#endif
135
136// save DLL module handle, used by GetModuleFileName
137
138HINSTANCE vm_lib_handle;
139static int getLastErrorString(char *buf, size_t len);
140
141BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
142  switch (reason) {
143    case DLL_PROCESS_ATTACH:
144      vm_lib_handle = hinst;
145      if(ForceTimeHighResolution)
146        timeBeginPeriod(1L);
147      break;
148    case DLL_PROCESS_DETACH:
149      if(ForceTimeHighResolution)
150        timeEndPeriod(1L);
151#ifdef _WIN64
152      if (topLevelVectoredExceptionHandler != NULL) {
153        RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
154        topLevelVectoredExceptionHandler = NULL;
155      }
156#endif
157      break;
158    default:
159      break;
160  }
161  return true;
162}
163
164static inline double fileTimeAsDouble(FILETIME* time) {
165  const double high  = (double) ((unsigned int) ~0);
166  const double split = 10000000.0;
167  double result = (time->dwLowDateTime / split) +
168                   time->dwHighDateTime * (high/split);
169  return result;
170}
171
172// Implementation of os
173
174bool os::getenv(const char* name, char* buffer, int len) {
175 int result = GetEnvironmentVariable(name, buffer, len);
176 return result > 0 && result < len;
177}
178
179
180// No setuid programs under Windows.
181bool os::have_special_privileges() {
182  return false;
183}
184
185
186// This method is  a periodic task to check for misbehaving JNI applications
187// under CheckJNI, we can add any periodic checks here.
188// For Windows at the moment does nothing
189void os::run_periodic_checks() {
190  return;
191}
192
193#ifndef _WIN64
194// previous UnhandledExceptionFilter, if there is one
195static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
196
197LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
198#endif
199void os::init_system_properties_values() {
200  /* sysclasspath, java_home, dll_dir */
201  {
202      char *home_path;
203      char *dll_path;
204      char *pslash;
205      char *bin = "\\bin";
206      char home_dir[MAX_PATH];
207
208      if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
209          os::jvm_path(home_dir, sizeof(home_dir));
210          // Found the full path to jvm[_g].dll.
211          // Now cut the path to <java_home>/jre if we can.
212          *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
213          pslash = strrchr(home_dir, '\\');
214          if (pslash != NULL) {
215              *pslash = '\0';                 /* get rid of \{client|server} */
216              pslash = strrchr(home_dir, '\\');
217              if (pslash != NULL)
218                  *pslash = '\0';             /* get rid of \bin */
219          }
220      }
221
222      home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
223      if (home_path == NULL)
224          return;
225      strcpy(home_path, home_dir);
226      Arguments::set_java_home(home_path);
227
228      dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
229      if (dll_path == NULL)
230          return;
231      strcpy(dll_path, home_dir);
232      strcat(dll_path, bin);
233      Arguments::set_dll_dir(dll_path);
234
235      if (!set_boot_path('\\', ';'))
236          return;
237  }
238
239  /* library_path */
240  #define EXT_DIR "\\lib\\ext"
241  #define BIN_DIR "\\bin"
242  #define PACKAGE_DIR "\\Sun\\Java"
243  {
244    /* Win32 library search order (See the documentation for LoadLibrary):
245     *
246     * 1. The directory from which application is loaded.
247     * 2. The current directory
248     * 3. The system wide Java Extensions directory (Java only)
249     * 4. System directory (GetSystemDirectory)
250     * 5. Windows directory (GetWindowsDirectory)
251     * 6. The PATH environment variable
252     */
253
254    char *library_path;
255    char tmp[MAX_PATH];
256    char *path_str = ::getenv("PATH");
257
258    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
259        sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
260
261    library_path[0] = '\0';
262
263    GetModuleFileName(NULL, tmp, sizeof(tmp));
264    *(strrchr(tmp, '\\')) = '\0';
265    strcat(library_path, tmp);
266
267    strcat(library_path, ";.");
268
269    GetWindowsDirectory(tmp, sizeof(tmp));
270    strcat(library_path, ";");
271    strcat(library_path, tmp);
272    strcat(library_path, PACKAGE_DIR BIN_DIR);
273
274    GetSystemDirectory(tmp, sizeof(tmp));
275    strcat(library_path, ";");
276    strcat(library_path, tmp);
277
278    GetWindowsDirectory(tmp, sizeof(tmp));
279    strcat(library_path, ";");
280    strcat(library_path, tmp);
281
282    if (path_str) {
283        strcat(library_path, ";");
284        strcat(library_path, path_str);
285    }
286
287    Arguments::set_library_path(library_path);
288    FREE_C_HEAP_ARRAY(char, library_path);
289  }
290
291  /* Default extensions directory */
292  {
293    char path[MAX_PATH];
294    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
295    GetWindowsDirectory(path, MAX_PATH);
296    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
297        path, PACKAGE_DIR, EXT_DIR);
298    Arguments::set_ext_dirs(buf);
299  }
300  #undef EXT_DIR
301  #undef BIN_DIR
302  #undef PACKAGE_DIR
303
304  /* Default endorsed standards directory. */
305  {
306    #define ENDORSED_DIR "\\lib\\endorsed"
307    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
308    char * buf = NEW_C_HEAP_ARRAY(char, len);
309    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
310    Arguments::set_endorsed_dirs(buf);
311    #undef ENDORSED_DIR
312  }
313
314#ifndef _WIN64
315  // set our UnhandledExceptionFilter and save any previous one
316  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
317#endif
318
319  // Done
320  return;
321}
322
323void os::breakpoint() {
324  DebugBreak();
325}
326
327// Invoked from the BREAKPOINT Macro
328extern "C" void breakpoint() {
329  os::breakpoint();
330}
331
332// Returns an estimate of the current stack pointer. Result must be guaranteed
333// to point into the calling threads stack, and be no lower than the current
334// stack pointer.
335
336address os::current_stack_pointer() {
337  int dummy;
338  address sp = (address)&dummy;
339  return sp;
340}
341
342// os::current_stack_base()
343//
344//   Returns the base of the stack, which is the stack's
345//   starting address.  This function must be called
346//   while running on the stack of the thread being queried.
347
348address os::current_stack_base() {
349  MEMORY_BASIC_INFORMATION minfo;
350  address stack_bottom;
351  size_t stack_size;
352
353  VirtualQuery(&minfo, &minfo, sizeof(minfo));
354  stack_bottom =  (address)minfo.AllocationBase;
355  stack_size = minfo.RegionSize;
356
357  // Add up the sizes of all the regions with the same
358  // AllocationBase.
359  while( 1 )
360  {
361    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
362    if ( stack_bottom == (address)minfo.AllocationBase )
363      stack_size += minfo.RegionSize;
364    else
365      break;
366  }
367
368#ifdef _M_IA64
369  // IA64 has memory and register stacks
370  stack_size = stack_size / 2;
371#endif
372  return stack_bottom + stack_size;
373}
374
375size_t os::current_stack_size() {
376  size_t sz;
377  MEMORY_BASIC_INFORMATION minfo;
378  VirtualQuery(&minfo, &minfo, sizeof(minfo));
379  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
380  return sz;
381}
382
383struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
384  const struct tm* time_struct_ptr = localtime(clock);
385  if (time_struct_ptr != NULL) {
386    *res = *time_struct_ptr;
387    return res;
388  }
389  return NULL;
390}
391
392LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
393
394// Thread start routine for all new Java threads
395static unsigned __stdcall java_start(Thread* thread) {
396  // Try to randomize the cache line index of hot stack frames.
397  // This helps when threads of the same stack traces evict each other's
398  // cache lines. The threads can be either from the same JVM instance, or
399  // from different JVM instances. The benefit is especially true for
400  // processors with hyperthreading technology.
401  static int counter = 0;
402  int pid = os::current_process_id();
403  _alloca(((pid ^ counter++) & 7) * 128);
404
405  OSThread* osthr = thread->osthread();
406  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
407
408  if (UseNUMA) {
409    int lgrp_id = os::numa_get_group_id();
410    if (lgrp_id != -1) {
411      thread->set_lgrp_id(lgrp_id);
412    }
413  }
414
415
416  if (UseVectoredExceptions) {
417    // If we are using vectored exception we don't need to set a SEH
418    thread->run();
419  }
420  else {
421    // Install a win32 structured exception handler around every thread created
422    // by VM, so VM can genrate error dump when an exception occurred in non-
423    // Java thread (e.g. VM thread).
424    __try {
425       thread->run();
426    } __except(topLevelExceptionFilter(
427               (_EXCEPTION_POINTERS*)_exception_info())) {
428        // Nothing to do.
429    }
430  }
431
432  // One less thread is executing
433  // When the VMThread gets here, the main thread may have already exited
434  // which frees the CodeHeap containing the Atomic::add code
435  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
436    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
437  }
438
439  return 0;
440}
441
442static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
443  // Allocate the OSThread object
444  OSThread* osthread = new OSThread(NULL, NULL);
445  if (osthread == NULL) return NULL;
446
447  // Initialize support for Java interrupts
448  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
449  if (interrupt_event == NULL) {
450    delete osthread;
451    return NULL;
452  }
453  osthread->set_interrupt_event(interrupt_event);
454
455  // Store info on the Win32 thread into the OSThread
456  osthread->set_thread_handle(thread_handle);
457  osthread->set_thread_id(thread_id);
458
459  if (UseNUMA) {
460    int lgrp_id = os::numa_get_group_id();
461    if (lgrp_id != -1) {
462      thread->set_lgrp_id(lgrp_id);
463    }
464  }
465
466  // Initial thread state is INITIALIZED, not SUSPENDED
467  osthread->set_state(INITIALIZED);
468
469  return osthread;
470}
471
472
473bool os::create_attached_thread(JavaThread* thread) {
474#ifdef ASSERT
475  thread->verify_not_published();
476#endif
477  HANDLE thread_h;
478  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
479                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
480    fatal("DuplicateHandle failed\n");
481  }
482  OSThread* osthread = create_os_thread(thread, thread_h,
483                                        (int)current_thread_id());
484  if (osthread == NULL) {
485     return false;
486  }
487
488  // Initial thread state is RUNNABLE
489  osthread->set_state(RUNNABLE);
490
491  thread->set_osthread(osthread);
492  return true;
493}
494
495bool os::create_main_thread(JavaThread* thread) {
496#ifdef ASSERT
497  thread->verify_not_published();
498#endif
499  if (_starting_thread == NULL) {
500    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
501     if (_starting_thread == NULL) {
502        return false;
503     }
504  }
505
506  // The primordial thread is runnable from the start)
507  _starting_thread->set_state(RUNNABLE);
508
509  thread->set_osthread(_starting_thread);
510  return true;
511}
512
513// Allocate and initialize a new OSThread
514bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
515  unsigned thread_id;
516
517  // Allocate the OSThread object
518  OSThread* osthread = new OSThread(NULL, NULL);
519  if (osthread == NULL) {
520    return false;
521  }
522
523  // Initialize support for Java interrupts
524  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
525  if (interrupt_event == NULL) {
526    delete osthread;
527    return NULL;
528  }
529  osthread->set_interrupt_event(interrupt_event);
530  osthread->set_interrupted(false);
531
532  thread->set_osthread(osthread);
533
534  if (stack_size == 0) {
535    switch (thr_type) {
536    case os::java_thread:
537      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
538      if (JavaThread::stack_size_at_create() > 0)
539        stack_size = JavaThread::stack_size_at_create();
540      break;
541    case os::compiler_thread:
542      if (CompilerThreadStackSize > 0) {
543        stack_size = (size_t)(CompilerThreadStackSize * K);
544        break;
545      } // else fall through:
546        // use VMThreadStackSize if CompilerThreadStackSize is not defined
547    case os::vm_thread:
548    case os::pgc_thread:
549    case os::cgc_thread:
550    case os::watcher_thread:
551      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
552      break;
553    }
554  }
555
556  // Create the Win32 thread
557  //
558  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
559  // does not specify stack size. Instead, it specifies the size of
560  // initially committed space. The stack size is determined by
561  // PE header in the executable. If the committed "stack_size" is larger
562  // than default value in the PE header, the stack is rounded up to the
563  // nearest multiple of 1MB. For example if the launcher has default
564  // stack size of 320k, specifying any size less than 320k does not
565  // affect the actual stack size at all, it only affects the initial
566  // commitment. On the other hand, specifying 'stack_size' larger than
567  // default value may cause significant increase in memory usage, because
568  // not only the stack space will be rounded up to MB, but also the
569  // entire space is committed upfront.
570  //
571  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
572  // for CreateThread() that can treat 'stack_size' as stack size. However we
573  // are not supposed to call CreateThread() directly according to MSDN
574  // document because JVM uses C runtime library. The good news is that the
575  // flag appears to work with _beginthredex() as well.
576
577#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
578#define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
579#endif
580
581  HANDLE thread_handle =
582    (HANDLE)_beginthreadex(NULL,
583                           (unsigned)stack_size,
584                           (unsigned (__stdcall *)(void*)) java_start,
585                           thread,
586                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
587                           &thread_id);
588  if (thread_handle == NULL) {
589    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
590    // without the flag.
591    thread_handle =
592    (HANDLE)_beginthreadex(NULL,
593                           (unsigned)stack_size,
594                           (unsigned (__stdcall *)(void*)) java_start,
595                           thread,
596                           CREATE_SUSPENDED,
597                           &thread_id);
598  }
599  if (thread_handle == NULL) {
600    // Need to clean up stuff we've allocated so far
601    CloseHandle(osthread->interrupt_event());
602    thread->set_osthread(NULL);
603    delete osthread;
604    return NULL;
605  }
606
607  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
608
609  // Store info on the Win32 thread into the OSThread
610  osthread->set_thread_handle(thread_handle);
611  osthread->set_thread_id(thread_id);
612
613  // Initial thread state is INITIALIZED, not SUSPENDED
614  osthread->set_state(INITIALIZED);
615
616  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
617  return true;
618}
619
620
621// Free Win32 resources related to the OSThread
622void os::free_thread(OSThread* osthread) {
623  assert(osthread != NULL, "osthread not set");
624  CloseHandle(osthread->thread_handle());
625  CloseHandle(osthread->interrupt_event());
626  delete osthread;
627}
628
629
630static int    has_performance_count = 0;
631static jlong first_filetime;
632static jlong initial_performance_count;
633static jlong performance_frequency;
634
635
636jlong as_long(LARGE_INTEGER x) {
637  jlong result = 0; // initialization to avoid warning
638  set_high(&result, x.HighPart);
639  set_low(&result,  x.LowPart);
640  return result;
641}
642
643
644jlong os::elapsed_counter() {
645  LARGE_INTEGER count;
646  if (has_performance_count) {
647    QueryPerformanceCounter(&count);
648    return as_long(count) - initial_performance_count;
649  } else {
650    FILETIME wt;
651    GetSystemTimeAsFileTime(&wt);
652    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
653  }
654}
655
656
657jlong os::elapsed_frequency() {
658  if (has_performance_count) {
659    return performance_frequency;
660  } else {
661   // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
662   return 10000000;
663  }
664}
665
666
667julong os::available_memory() {
668  return win32::available_memory();
669}
670
671julong os::win32::available_memory() {
672  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
673  // value if total memory is larger than 4GB
674  MEMORYSTATUSEX ms;
675  ms.dwLength = sizeof(ms);
676  GlobalMemoryStatusEx(&ms);
677
678  return (julong)ms.ullAvailPhys;
679}
680
681julong os::physical_memory() {
682  return win32::physical_memory();
683}
684
685julong os::allocatable_physical_memory(julong size) {
686#ifdef _LP64
687  return size;
688#else
689  // Limit to 1400m because of the 2gb address space wall
690  return MIN2(size, (julong)1400*M);
691#endif
692}
693
694// VC6 lacks DWORD_PTR
695#if _MSC_VER < 1300
696typedef UINT_PTR DWORD_PTR;
697#endif
698
699int os::active_processor_count() {
700  DWORD_PTR lpProcessAffinityMask = 0;
701  DWORD_PTR lpSystemAffinityMask = 0;
702  int proc_count = processor_count();
703  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
704      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
705    // Nof active processors is number of bits in process affinity mask
706    int bitcount = 0;
707    while (lpProcessAffinityMask != 0) {
708      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
709      bitcount++;
710    }
711    return bitcount;
712  } else {
713    return proc_count;
714  }
715}
716
717bool os::distribute_processes(uint length, uint* distribution) {
718  // Not yet implemented.
719  return false;
720}
721
722bool os::bind_to_processor(uint processor_id) {
723  // Not yet implemented.
724  return false;
725}
726
727static void initialize_performance_counter() {
728  LARGE_INTEGER count;
729  if (QueryPerformanceFrequency(&count)) {
730    has_performance_count = 1;
731    performance_frequency = as_long(count);
732    QueryPerformanceCounter(&count);
733    initial_performance_count = as_long(count);
734  } else {
735    has_performance_count = 0;
736    FILETIME wt;
737    GetSystemTimeAsFileTime(&wt);
738    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
739  }
740}
741
742
743double os::elapsedTime() {
744  return (double) elapsed_counter() / (double) elapsed_frequency();
745}
746
747
748// Windows format:
749//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
750// Java format:
751//   Java standards require the number of milliseconds since 1/1/1970
752
753// Constant offset - calculated using offset()
754static jlong  _offset   = 116444736000000000;
755// Fake time counter for reproducible results when debugging
756static jlong  fake_time = 0;
757
758#ifdef ASSERT
759// Just to be safe, recalculate the offset in debug mode
760static jlong _calculated_offset = 0;
761static int   _has_calculated_offset = 0;
762
763jlong offset() {
764  if (_has_calculated_offset) return _calculated_offset;
765  SYSTEMTIME java_origin;
766  java_origin.wYear          = 1970;
767  java_origin.wMonth         = 1;
768  java_origin.wDayOfWeek     = 0; // ignored
769  java_origin.wDay           = 1;
770  java_origin.wHour          = 0;
771  java_origin.wMinute        = 0;
772  java_origin.wSecond        = 0;
773  java_origin.wMilliseconds  = 0;
774  FILETIME jot;
775  if (!SystemTimeToFileTime(&java_origin, &jot)) {
776    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
777  }
778  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
779  _has_calculated_offset = 1;
780  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
781  return _calculated_offset;
782}
783#else
784jlong offset() {
785  return _offset;
786}
787#endif
788
789jlong windows_to_java_time(FILETIME wt) {
790  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
791  return (a - offset()) / 10000;
792}
793
794FILETIME java_to_windows_time(jlong l) {
795  jlong a = (l * 10000) + offset();
796  FILETIME result;
797  result.dwHighDateTime = high(a);
798  result.dwLowDateTime  = low(a);
799  return result;
800}
801
802// For now, we say that Windows does not support vtime.  I have no idea
803// whether it can actually be made to (DLD, 9/13/05).
804
805bool os::supports_vtime() { return false; }
806bool os::enable_vtime() { return false; }
807bool os::vtime_enabled() { return false; }
808double os::elapsedVTime() {
809  // better than nothing, but not much
810  return elapsedTime();
811}
812
813jlong os::javaTimeMillis() {
814  if (UseFakeTimers) {
815    return fake_time++;
816  } else {
817    FILETIME wt;
818    GetSystemTimeAsFileTime(&wt);
819    return windows_to_java_time(wt);
820  }
821}
822
823#define NANOS_PER_SEC         CONST64(1000000000)
824#define NANOS_PER_MILLISEC    1000000
825jlong os::javaTimeNanos() {
826  if (!has_performance_count) {
827    return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
828  } else {
829    LARGE_INTEGER current_count;
830    QueryPerformanceCounter(&current_count);
831    double current = as_long(current_count);
832    double freq = performance_frequency;
833    jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
834    return time;
835  }
836}
837
838void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
839  if (!has_performance_count) {
840    // javaTimeMillis() doesn't have much percision,
841    // but it is not going to wrap -- so all 64 bits
842    info_ptr->max_value = ALL_64_BITS;
843
844    // this is a wall clock timer, so may skip
845    info_ptr->may_skip_backward = true;
846    info_ptr->may_skip_forward = true;
847  } else {
848    jlong freq = performance_frequency;
849    if (freq < NANOS_PER_SEC) {
850      // the performance counter is 64 bits and we will
851      // be multiplying it -- so no wrap in 64 bits
852      info_ptr->max_value = ALL_64_BITS;
853    } else if (freq > NANOS_PER_SEC) {
854      // use the max value the counter can reach to
855      // determine the max value which could be returned
856      julong max_counter = (julong)ALL_64_BITS;
857      info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
858    } else {
859      // the performance counter is 64 bits and we will
860      // be using it directly -- so no wrap in 64 bits
861      info_ptr->max_value = ALL_64_BITS;
862    }
863
864    // using a counter, so no skipping
865    info_ptr->may_skip_backward = false;
866    info_ptr->may_skip_forward = false;
867  }
868  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
869}
870
871char* os::local_time_string(char *buf, size_t buflen) {
872  SYSTEMTIME st;
873  GetLocalTime(&st);
874  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
875               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
876  return buf;
877}
878
879bool os::getTimesSecs(double* process_real_time,
880                     double* process_user_time,
881                     double* process_system_time) {
882  HANDLE h_process = GetCurrentProcess();
883  FILETIME create_time, exit_time, kernel_time, user_time;
884  BOOL result = GetProcessTimes(h_process,
885                               &create_time,
886                               &exit_time,
887                               &kernel_time,
888                               &user_time);
889  if (result != 0) {
890    FILETIME wt;
891    GetSystemTimeAsFileTime(&wt);
892    jlong rtc_millis = windows_to_java_time(wt);
893    jlong user_millis = windows_to_java_time(user_time);
894    jlong system_millis = windows_to_java_time(kernel_time);
895    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
896    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
897    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
898    return true;
899  } else {
900    return false;
901  }
902}
903
904void os::shutdown() {
905
906  // allow PerfMemory to attempt cleanup of any persistent resources
907  perfMemory_exit();
908
909  // flush buffered output, finish log files
910  ostream_abort();
911
912  // Check for abort hook
913  abort_hook_t abort_hook = Arguments::abort_hook();
914  if (abort_hook != NULL) {
915    abort_hook();
916  }
917}
918
919void os::abort(bool dump_core)
920{
921  os::shutdown();
922  // no core dump on Windows
923  ::exit(1);
924}
925
926// Die immediately, no exit hook, no abort hook, no cleanup.
927void os::die() {
928  _exit(-1);
929}
930
931// Directory routines copied from src/win32/native/java/io/dirent_md.c
932//  * dirent_md.c       1.15 00/02/02
933//
934// The declarations for DIR and struct dirent are in jvm_win32.h.
935
936/* Caller must have already run dirname through JVM_NativePath, which removes
937   duplicate slashes and converts all instances of '/' into '\\'. */
938
939DIR *
940os::opendir(const char *dirname)
941{
942    assert(dirname != NULL, "just checking");   // hotspot change
943    DIR *dirp = (DIR *)malloc(sizeof(DIR));
944    DWORD fattr;                                // hotspot change
945    char alt_dirname[4] = { 0, 0, 0, 0 };
946
947    if (dirp == 0) {
948        errno = ENOMEM;
949        return 0;
950    }
951
952    /*
953     * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
954     * as a directory in FindFirstFile().  We detect this case here and
955     * prepend the current drive name.
956     */
957    if (dirname[1] == '\0' && dirname[0] == '\\') {
958        alt_dirname[0] = _getdrive() + 'A' - 1;
959        alt_dirname[1] = ':';
960        alt_dirname[2] = '\\';
961        alt_dirname[3] = '\0';
962        dirname = alt_dirname;
963    }
964
965    dirp->path = (char *)malloc(strlen(dirname) + 5);
966    if (dirp->path == 0) {
967        free(dirp);
968        errno = ENOMEM;
969        return 0;
970    }
971    strcpy(dirp->path, dirname);
972
973    fattr = GetFileAttributes(dirp->path);
974    if (fattr == 0xffffffff) {
975        free(dirp->path);
976        free(dirp);
977        errno = ENOENT;
978        return 0;
979    } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
980        free(dirp->path);
981        free(dirp);
982        errno = ENOTDIR;
983        return 0;
984    }
985
986    /* Append "*.*", or possibly "\\*.*", to path */
987    if (dirp->path[1] == ':'
988        && (dirp->path[2] == '\0'
989            || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
990        /* No '\\' needed for cases like "Z:" or "Z:\" */
991        strcat(dirp->path, "*.*");
992    } else {
993        strcat(dirp->path, "\\*.*");
994    }
995
996    dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
997    if (dirp->handle == INVALID_HANDLE_VALUE) {
998        if (GetLastError() != ERROR_FILE_NOT_FOUND) {
999            free(dirp->path);
1000            free(dirp);
1001            errno = EACCES;
1002            return 0;
1003        }
1004    }
1005    return dirp;
1006}
1007
1008/* parameter dbuf unused on Windows */
1009
1010struct dirent *
1011os::readdir(DIR *dirp, dirent *dbuf)
1012{
1013    assert(dirp != NULL, "just checking");      // hotspot change
1014    if (dirp->handle == INVALID_HANDLE_VALUE) {
1015        return 0;
1016    }
1017
1018    strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1019
1020    if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1021        if (GetLastError() == ERROR_INVALID_HANDLE) {
1022            errno = EBADF;
1023            return 0;
1024        }
1025        FindClose(dirp->handle);
1026        dirp->handle = INVALID_HANDLE_VALUE;
1027    }
1028
1029    return &dirp->dirent;
1030}
1031
1032int
1033os::closedir(DIR *dirp)
1034{
1035    assert(dirp != NULL, "just checking");      // hotspot change
1036    if (dirp->handle != INVALID_HANDLE_VALUE) {
1037        if (!FindClose(dirp->handle)) {
1038            errno = EBADF;
1039            return -1;
1040        }
1041        dirp->handle = INVALID_HANDLE_VALUE;
1042    }
1043    free(dirp->path);
1044    free(dirp);
1045    return 0;
1046}
1047
1048const char* os::dll_file_extension() { return ".dll"; }
1049
1050const char* os::get_temp_directory() {
1051  const char *prop = Arguments::get_property("java.io.tmpdir");
1052  if (prop != 0) return prop;
1053  static char path_buf[MAX_PATH];
1054  if (GetTempPath(MAX_PATH, path_buf)>0)
1055    return path_buf;
1056  else{
1057    path_buf[0]='\0';
1058    return path_buf;
1059  }
1060}
1061
1062static bool file_exists(const char* filename) {
1063  if (filename == NULL || strlen(filename) == 0) {
1064    return false;
1065  }
1066  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1067}
1068
1069void os::dll_build_name(char *buffer, size_t buflen,
1070                        const char* pname, const char* fname) {
1071  // Copied from libhpi
1072  const size_t pnamelen = pname ? strlen(pname) : 0;
1073  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1074
1075  // Quietly truncates on buffer overflow. Should be an error.
1076  if (pnamelen + strlen(fname) + 10 > buflen) {
1077    *buffer = '\0';
1078    return;
1079  }
1080
1081  if (pnamelen == 0) {
1082    jio_snprintf(buffer, buflen, "%s.dll", fname);
1083  } else if (c == ':' || c == '\\') {
1084    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1085  } else if (strchr(pname, *os::path_separator()) != NULL) {
1086    int n;
1087    char** pelements = split_path(pname, &n);
1088    for (int i = 0 ; i < n ; i++) {
1089      char* path = pelements[i];
1090      // Really shouldn't be NULL, but check can't hurt
1091      size_t plen = (path == NULL) ? 0 : strlen(path);
1092      if (plen == 0) {
1093        continue; // skip the empty path values
1094      }
1095      const char lastchar = path[plen - 1];
1096      if (lastchar == ':' || lastchar == '\\') {
1097        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1098      } else {
1099        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1100      }
1101      if (file_exists(buffer)) {
1102        break;
1103      }
1104    }
1105    // release the storage
1106    for (int i = 0 ; i < n ; i++) {
1107      if (pelements[i] != NULL) {
1108        FREE_C_HEAP_ARRAY(char, pelements[i]);
1109      }
1110    }
1111    if (pelements != NULL) {
1112      FREE_C_HEAP_ARRAY(char*, pelements);
1113    }
1114  } else {
1115    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1116  }
1117}
1118
1119// Needs to be in os specific directory because windows requires another
1120// header file <direct.h>
1121const char* os::get_current_directory(char *buf, int buflen) {
1122  return _getcwd(buf, buflen);
1123}
1124
1125//-----------------------------------------------------------
1126// Helper functions for fatal error handler
1127
1128// The following library functions are resolved dynamically at runtime:
1129
1130// PSAPI functions, for Windows NT, 2000, XP
1131
1132// psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1133// SDK from Microsoft.  Here are the definitions copied from psapi.h
1134typedef struct _MODULEINFO {
1135    LPVOID lpBaseOfDll;
1136    DWORD SizeOfImage;
1137    LPVOID EntryPoint;
1138} MODULEINFO, *LPMODULEINFO;
1139
1140static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1141static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1142static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1143
1144// ToolHelp Functions, for Windows 95, 98 and ME
1145
1146static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1147static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1148static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1149
1150bool _has_psapi;
1151bool _psapi_init = false;
1152bool _has_toolhelp;
1153
1154static bool _init_psapi() {
1155  HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1156  if( psapi == NULL ) return false ;
1157
1158  _EnumProcessModules = CAST_TO_FN_PTR(
1159      BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1160      GetProcAddress(psapi, "EnumProcessModules")) ;
1161  _GetModuleFileNameEx = CAST_TO_FN_PTR(
1162      DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1163      GetProcAddress(psapi, "GetModuleFileNameExA"));
1164  _GetModuleInformation = CAST_TO_FN_PTR(
1165      BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1166      GetProcAddress(psapi, "GetModuleInformation"));
1167
1168  _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1169  _psapi_init = true;
1170  return _has_psapi;
1171}
1172
1173static bool _init_toolhelp() {
1174  HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1175  if (kernel32 == NULL) return false ;
1176
1177  _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1178      HANDLE(WINAPI *)(DWORD,DWORD),
1179      GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1180  _Module32First = CAST_TO_FN_PTR(
1181      BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1182      GetProcAddress(kernel32, "Module32First" ));
1183  _Module32Next = CAST_TO_FN_PTR(
1184      BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1185      GetProcAddress(kernel32, "Module32Next" ));
1186
1187  _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1188  return _has_toolhelp;
1189}
1190
1191#ifdef _WIN64
1192// Helper routine which returns true if address in
1193// within the NTDLL address space.
1194//
1195static bool _addr_in_ntdll( address addr )
1196{
1197  HMODULE hmod;
1198  MODULEINFO minfo;
1199
1200  hmod = GetModuleHandle("NTDLL.DLL");
1201  if ( hmod == NULL ) return false;
1202  if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1203                               &minfo, sizeof(MODULEINFO)) )
1204    return false;
1205
1206  if ( (addr >= minfo.lpBaseOfDll) &&
1207       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1208    return true;
1209  else
1210    return false;
1211}
1212#endif
1213
1214
1215// Enumerate all modules for a given process ID
1216//
1217// Notice that Windows 95/98/Me and Windows NT/2000/XP have
1218// different API for doing this. We use PSAPI.DLL on NT based
1219// Windows and ToolHelp on 95/98/Me.
1220
1221// Callback function that is called by enumerate_modules() on
1222// every DLL module.
1223// Input parameters:
1224//    int       pid,
1225//    char*     module_file_name,
1226//    address   module_base_addr,
1227//    unsigned  module_size,
1228//    void*     param
1229typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1230
1231// enumerate_modules for Windows NT, using PSAPI
1232static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1233{
1234  HANDLE   hProcess ;
1235
1236# define MAX_NUM_MODULES 128
1237  HMODULE     modules[MAX_NUM_MODULES];
1238  static char filename[ MAX_PATH ];
1239  int         result = 0;
1240
1241  if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1242
1243  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1244                         FALSE, pid ) ;
1245  if (hProcess == NULL) return 0;
1246
1247  DWORD size_needed;
1248  if (!_EnumProcessModules(hProcess, modules,
1249                           sizeof(modules), &size_needed)) {
1250      CloseHandle( hProcess );
1251      return 0;
1252  }
1253
1254  // number of modules that are currently loaded
1255  int num_modules = size_needed / sizeof(HMODULE);
1256
1257  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1258    // Get Full pathname:
1259    if(!_GetModuleFileNameEx(hProcess, modules[i],
1260                             filename, sizeof(filename))) {
1261        filename[0] = '\0';
1262    }
1263
1264    MODULEINFO modinfo;
1265    if (!_GetModuleInformation(hProcess, modules[i],
1266                               &modinfo, sizeof(modinfo))) {
1267        modinfo.lpBaseOfDll = NULL;
1268        modinfo.SizeOfImage = 0;
1269    }
1270
1271    // Invoke callback function
1272    result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1273                  modinfo.SizeOfImage, param);
1274    if (result) break;
1275  }
1276
1277  CloseHandle( hProcess ) ;
1278  return result;
1279}
1280
1281
1282// enumerate_modules for Windows 95/98/ME, using TOOLHELP
1283static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1284{
1285  HANDLE                hSnapShot ;
1286  static MODULEENTRY32  modentry ;
1287  int                   result = 0;
1288
1289  if (!_has_toolhelp) return 0;
1290
1291  // Get a handle to a Toolhelp snapshot of the system
1292  hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1293  if( hSnapShot == INVALID_HANDLE_VALUE ) {
1294      return FALSE ;
1295  }
1296
1297  // iterate through all modules
1298  modentry.dwSize = sizeof(MODULEENTRY32) ;
1299  bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1300
1301  while( not_done ) {
1302    // invoke the callback
1303    result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1304                modentry.modBaseSize, param);
1305    if (result) break;
1306
1307    modentry.dwSize = sizeof(MODULEENTRY32) ;
1308    not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1309  }
1310
1311  CloseHandle(hSnapShot);
1312  return result;
1313}
1314
1315int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1316{
1317  // Get current process ID if caller doesn't provide it.
1318  if (!pid) pid = os::current_process_id();
1319
1320  if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1321  else                    return _enumerate_modules_windows(pid, func, param);
1322}
1323
1324struct _modinfo {
1325   address addr;
1326   char*   full_path;   // point to a char buffer
1327   int     buflen;      // size of the buffer
1328   address base_addr;
1329};
1330
1331static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1332                                  unsigned size, void * param) {
1333   struct _modinfo *pmod = (struct _modinfo *)param;
1334   if (!pmod) return -1;
1335
1336   if (base_addr     <= pmod->addr &&
1337       base_addr+size > pmod->addr) {
1338     // if a buffer is provided, copy path name to the buffer
1339     if (pmod->full_path) {
1340       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1341     }
1342     pmod->base_addr = base_addr;
1343     return 1;
1344   }
1345   return 0;
1346}
1347
1348bool os::dll_address_to_library_name(address addr, char* buf,
1349                                     int buflen, int* offset) {
1350// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1351//       return the full path to the DLL file, sometimes it returns path
1352//       to the corresponding PDB file (debug info); sometimes it only
1353//       returns partial path, which makes life painful.
1354
1355   struct _modinfo mi;
1356   mi.addr      = addr;
1357   mi.full_path = buf;
1358   mi.buflen    = buflen;
1359   int pid = os::current_process_id();
1360   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1361      // buf already contains path name
1362      if (offset) *offset = addr - mi.base_addr;
1363      return true;
1364   } else {
1365      if (buf) buf[0] = '\0';
1366      if (offset) *offset = -1;
1367      return false;
1368   }
1369}
1370
1371bool os::dll_address_to_function_name(address addr, char *buf,
1372                                      int buflen, int *offset) {
1373  if (Decoder::decode(addr, buf, buflen, offset) == Decoder::no_error) {
1374    return true;
1375  }
1376  if (offset != NULL)  *offset  = -1;
1377  if (buf != NULL) buf[0] = '\0';
1378  return false;
1379}
1380
1381void* os::dll_lookup(void* handle, const char* name) {
1382  return GetProcAddress((HMODULE)handle, name);
1383}
1384
1385// save the start and end address of jvm.dll into param[0] and param[1]
1386static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1387                    unsigned size, void * param) {
1388   if (!param) return -1;
1389
1390   if (base_addr     <= (address)_locate_jvm_dll &&
1391       base_addr+size > (address)_locate_jvm_dll) {
1392         ((address*)param)[0] = base_addr;
1393         ((address*)param)[1] = base_addr + size;
1394         return 1;
1395   }
1396   return 0;
1397}
1398
1399address vm_lib_location[2];    // start and end address of jvm.dll
1400
1401// check if addr is inside jvm.dll
1402bool os::address_is_in_vm(address addr) {
1403  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1404    int pid = os::current_process_id();
1405    if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1406      assert(false, "Can't find jvm module.");
1407      return false;
1408    }
1409  }
1410
1411  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412}
1413
1414// print module info; param is outputStream*
1415static int _print_module(int pid, char* fname, address base,
1416                         unsigned size, void* param) {
1417   if (!param) return -1;
1418
1419   outputStream* st = (outputStream*)param;
1420
1421   address end_addr = base + size;
1422   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1423   return 0;
1424}
1425
1426// Loads .dll/.so and
1427// in case of error it checks if .dll/.so was built for the
1428// same architecture as Hotspot is running on
1429void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1430{
1431  void * result = LoadLibrary(name);
1432  if (result != NULL)
1433  {
1434    return result;
1435  }
1436
1437  long errcode = GetLastError();
1438  if (errcode == ERROR_MOD_NOT_FOUND) {
1439    strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1440    ebuf[ebuflen-1]='\0';
1441    return NULL;
1442  }
1443
1444  // Parsing dll below
1445  // If we can read dll-info and find that dll was built
1446  // for an architecture other than Hotspot is running in
1447  // - then print to buffer "DLL was built for a different architecture"
1448  // else call getLastErrorString to obtain system error message
1449
1450  // Read system error message into ebuf
1451  // It may or may not be overwritten below (in the for loop and just above)
1452  getLastErrorString(ebuf, (size_t) ebuflen);
1453  ebuf[ebuflen-1]='\0';
1454  int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1455  if (file_descriptor<0)
1456  {
1457    return NULL;
1458  }
1459
1460  uint32_t signature_offset;
1461  uint16_t lib_arch=0;
1462  bool failed_to_get_lib_arch=
1463  (
1464    //Go to position 3c in the dll
1465    (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1466    ||
1467    // Read loacation of signature
1468    (sizeof(signature_offset)!=
1469      (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1470    ||
1471    //Go to COFF File Header in dll
1472    //that is located after"signature" (4 bytes long)
1473    (os::seek_to_file_offset(file_descriptor,
1474      signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1475    ||
1476    //Read field that contains code of architecture
1477    // that dll was build for
1478    (sizeof(lib_arch)!=
1479      (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1480  );
1481
1482  ::close(file_descriptor);
1483  if (failed_to_get_lib_arch)
1484  {
1485    // file i/o error - report getLastErrorString(...) msg
1486    return NULL;
1487  }
1488
1489  typedef struct
1490  {
1491    uint16_t arch_code;
1492    char* arch_name;
1493  } arch_t;
1494
1495  static const arch_t arch_array[]={
1496    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1497    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1498    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1499  };
1500  #if   (defined _M_IA64)
1501    static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1502  #elif (defined _M_AMD64)
1503    static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1504  #elif (defined _M_IX86)
1505    static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1506  #else
1507    #error Method os::dll_load requires that one of following \
1508           is defined :_M_IA64,_M_AMD64 or _M_IX86
1509  #endif
1510
1511
1512  // Obtain a string for printf operation
1513  // lib_arch_str shall contain string what platform this .dll was built for
1514  // running_arch_str shall string contain what platform Hotspot was built for
1515  char *running_arch_str=NULL,*lib_arch_str=NULL;
1516  for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1517  {
1518    if (lib_arch==arch_array[i].arch_code)
1519      lib_arch_str=arch_array[i].arch_name;
1520    if (running_arch==arch_array[i].arch_code)
1521      running_arch_str=arch_array[i].arch_name;
1522  }
1523
1524  assert(running_arch_str,
1525    "Didn't find runing architecture code in arch_array");
1526
1527  // If the architure is right
1528  // but some other error took place - report getLastErrorString(...) msg
1529  if (lib_arch == running_arch)
1530  {
1531    return NULL;
1532  }
1533
1534  if (lib_arch_str!=NULL)
1535  {
1536    ::_snprintf(ebuf, ebuflen-1,
1537      "Can't load %s-bit .dll on a %s-bit platform",
1538      lib_arch_str,running_arch_str);
1539  }
1540  else
1541  {
1542    // don't know what architecture this dll was build for
1543    ::_snprintf(ebuf, ebuflen-1,
1544      "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1545      lib_arch,running_arch_str);
1546  }
1547
1548  return NULL;
1549}
1550
1551
1552void os::print_dll_info(outputStream *st) {
1553   int pid = os::current_process_id();
1554   st->print_cr("Dynamic libraries:");
1555   enumerate_modules(pid, _print_module, (void *)st);
1556}
1557
1558// function pointer to Windows API "GetNativeSystemInfo".
1559typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1560static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1561
1562void os::print_os_info(outputStream* st) {
1563  st->print("OS:");
1564
1565  OSVERSIONINFOEX osvi;
1566  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1567  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1568
1569  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1570    st->print_cr("N/A");
1571    return;
1572  }
1573
1574  int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1575  if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1576    switch (os_vers) {
1577    case 3051: st->print(" Windows NT 3.51"); break;
1578    case 4000: st->print(" Windows NT 4.0"); break;
1579    case 5000: st->print(" Windows 2000"); break;
1580    case 5001: st->print(" Windows XP"); break;
1581    case 5002:
1582    case 6000:
1583    case 6001: {
1584      // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1585      // find out whether we are running on 64 bit processor or not.
1586      SYSTEM_INFO si;
1587      ZeroMemory(&si, sizeof(SYSTEM_INFO));
1588      // Check to see if _GetNativeSystemInfo has been initialized.
1589      if (_GetNativeSystemInfo == NULL) {
1590        HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1591        _GetNativeSystemInfo =
1592            CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1593                           GetProcAddress(hKernel32,
1594                                          "GetNativeSystemInfo"));
1595        if (_GetNativeSystemInfo == NULL)
1596          GetSystemInfo(&si);
1597      } else {
1598        _GetNativeSystemInfo(&si);
1599      }
1600      if (os_vers == 5002) {
1601        if (osvi.wProductType == VER_NT_WORKSTATION &&
1602            si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1603          st->print(" Windows XP x64 Edition");
1604        else
1605            st->print(" Windows Server 2003 family");
1606      } else if (os_vers == 6000) {
1607        if (osvi.wProductType == VER_NT_WORKSTATION)
1608            st->print(" Windows Vista");
1609        else
1610            st->print(" Windows Server 2008");
1611        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1612            st->print(" , 64 bit");
1613      } else if (os_vers == 6001) {
1614        if (osvi.wProductType == VER_NT_WORKSTATION) {
1615            st->print(" Windows 7");
1616        } else {
1617            // Unrecognized windows, print out its major and minor versions
1618            st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1619        }
1620        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1621            st->print(" , 64 bit");
1622      } else { // future os
1623        // Unrecognized windows, print out its major and minor versions
1624        st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1625        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1626            st->print(" , 64 bit");
1627      }
1628      break;
1629    }
1630    default: // future windows, print out its major and minor versions
1631      st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1632    }
1633  } else {
1634    switch (os_vers) {
1635    case 4000: st->print(" Windows 95"); break;
1636    case 4010: st->print(" Windows 98"); break;
1637    case 4090: st->print(" Windows Me"); break;
1638    default: // future windows, print out its major and minor versions
1639      st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1640    }
1641  }
1642  st->print(" Build %d", osvi.dwBuildNumber);
1643  st->print(" %s", osvi.szCSDVersion);           // service pack
1644  st->cr();
1645}
1646
1647void os::print_memory_info(outputStream* st) {
1648  st->print("Memory:");
1649  st->print(" %dk page", os::vm_page_size()>>10);
1650
1651  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1652  // value if total memory is larger than 4GB
1653  MEMORYSTATUSEX ms;
1654  ms.dwLength = sizeof(ms);
1655  GlobalMemoryStatusEx(&ms);
1656
1657  st->print(", physical %uk", os::physical_memory() >> 10);
1658  st->print("(%uk free)", os::available_memory() >> 10);
1659
1660  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1661  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1662  st->cr();
1663}
1664
1665void os::print_siginfo(outputStream *st, void *siginfo) {
1666  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1667  st->print("siginfo:");
1668  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1669
1670  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1671      er->NumberParameters >= 2) {
1672      switch (er->ExceptionInformation[0]) {
1673      case 0: st->print(", reading address"); break;
1674      case 1: st->print(", writing address"); break;
1675      default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1676                            er->ExceptionInformation[0]);
1677      }
1678      st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1679  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1680             er->NumberParameters >= 2 && UseSharedSpaces) {
1681    FileMapInfo* mapinfo = FileMapInfo::current_info();
1682    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1683      st->print("\n\nError accessing class data sharing archive."       \
1684                " Mapped file inaccessible during execution, "          \
1685                " possible disk/network problem.");
1686    }
1687  } else {
1688    int num = er->NumberParameters;
1689    if (num > 0) {
1690      st->print(", ExceptionInformation=");
1691      for (int i = 0; i < num; i++) {
1692        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1693      }
1694    }
1695  }
1696  st->cr();
1697}
1698
1699void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1700  // do nothing
1701}
1702
1703static char saved_jvm_path[MAX_PATH] = {0};
1704
1705// Find the full path to the current module, jvm.dll or jvm_g.dll
1706void os::jvm_path(char *buf, jint buflen) {
1707  // Error checking.
1708  if (buflen < MAX_PATH) {
1709    assert(false, "must use a large-enough buffer");
1710    buf[0] = '\0';
1711    return;
1712  }
1713  // Lazy resolve the path to current module.
1714  if (saved_jvm_path[0] != 0) {
1715    strcpy(buf, saved_jvm_path);
1716    return;
1717  }
1718
1719  GetModuleFileName(vm_lib_handle, buf, buflen);
1720  strcpy(saved_jvm_path, buf);
1721}
1722
1723
1724void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1725#ifndef _WIN64
1726  st->print("_");
1727#endif
1728}
1729
1730
1731void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1732#ifndef _WIN64
1733  st->print("@%d", args_size  * sizeof(int));
1734#endif
1735}
1736
1737// sun.misc.Signal
1738// NOTE that this is a workaround for an apparent kernel bug where if
1739// a signal handler for SIGBREAK is installed then that signal handler
1740// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1741// See bug 4416763.
1742static void (*sigbreakHandler)(int) = NULL;
1743
1744static void UserHandler(int sig, void *siginfo, void *context) {
1745  os::signal_notify(sig);
1746  // We need to reinstate the signal handler each time...
1747  os::signal(sig, (void*)UserHandler);
1748}
1749
1750void* os::user_handler() {
1751  return (void*) UserHandler;
1752}
1753
1754void* os::signal(int signal_number, void* handler) {
1755  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1756    void (*oldHandler)(int) = sigbreakHandler;
1757    sigbreakHandler = (void (*)(int)) handler;
1758    return (void*) oldHandler;
1759  } else {
1760    return (void*)::signal(signal_number, (void (*)(int))handler);
1761  }
1762}
1763
1764void os::signal_raise(int signal_number) {
1765  raise(signal_number);
1766}
1767
1768// The Win32 C runtime library maps all console control events other than ^C
1769// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1770// logoff, and shutdown events.  We therefore install our own console handler
1771// that raises SIGTERM for the latter cases.
1772//
1773static BOOL WINAPI consoleHandler(DWORD event) {
1774  switch(event) {
1775    case CTRL_C_EVENT:
1776      if (is_error_reported()) {
1777        // Ctrl-C is pressed during error reporting, likely because the error
1778        // handler fails to abort. Let VM die immediately.
1779        os::die();
1780      }
1781
1782      os::signal_raise(SIGINT);
1783      return TRUE;
1784      break;
1785    case CTRL_BREAK_EVENT:
1786      if (sigbreakHandler != NULL) {
1787        (*sigbreakHandler)(SIGBREAK);
1788      }
1789      return TRUE;
1790      break;
1791    case CTRL_CLOSE_EVENT:
1792    case CTRL_LOGOFF_EVENT:
1793    case CTRL_SHUTDOWN_EVENT:
1794      os::signal_raise(SIGTERM);
1795      return TRUE;
1796      break;
1797    default:
1798      break;
1799  }
1800  return FALSE;
1801}
1802
1803/*
1804 * The following code is moved from os.cpp for making this
1805 * code platform specific, which it is by its very nature.
1806 */
1807
1808// Return maximum OS signal used + 1 for internal use only
1809// Used as exit signal for signal_thread
1810int os::sigexitnum_pd(){
1811  return NSIG;
1812}
1813
1814// a counter for each possible signal value, including signal_thread exit signal
1815static volatile jint pending_signals[NSIG+1] = { 0 };
1816static HANDLE sig_sem;
1817
1818void os::signal_init_pd() {
1819  // Initialize signal structures
1820  memset((void*)pending_signals, 0, sizeof(pending_signals));
1821
1822  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1823
1824  // Programs embedding the VM do not want it to attempt to receive
1825  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1826  // shutdown hooks mechanism introduced in 1.3.  For example, when
1827  // the VM is run as part of a Windows NT service (i.e., a servlet
1828  // engine in a web server), the correct behavior is for any console
1829  // control handler to return FALSE, not TRUE, because the OS's
1830  // "final" handler for such events allows the process to continue if
1831  // it is a service (while terminating it if it is not a service).
1832  // To make this behavior uniform and the mechanism simpler, we
1833  // completely disable the VM's usage of these console events if -Xrs
1834  // (=ReduceSignalUsage) is specified.  This means, for example, that
1835  // the CTRL-BREAK thread dump mechanism is also disabled in this
1836  // case.  See bugs 4323062, 4345157, and related bugs.
1837
1838  if (!ReduceSignalUsage) {
1839    // Add a CTRL-C handler
1840    SetConsoleCtrlHandler(consoleHandler, TRUE);
1841  }
1842}
1843
1844void os::signal_notify(int signal_number) {
1845  BOOL ret;
1846
1847  Atomic::inc(&pending_signals[signal_number]);
1848  ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1849  assert(ret != 0, "ReleaseSemaphore() failed");
1850}
1851
1852static int check_pending_signals(bool wait_for_signal) {
1853  DWORD ret;
1854  while (true) {
1855    for (int i = 0; i < NSIG + 1; i++) {
1856      jint n = pending_signals[i];
1857      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1858        return i;
1859      }
1860    }
1861    if (!wait_for_signal) {
1862      return -1;
1863    }
1864
1865    JavaThread *thread = JavaThread::current();
1866
1867    ThreadBlockInVM tbivm(thread);
1868
1869    bool threadIsSuspended;
1870    do {
1871      thread->set_suspend_equivalent();
1872      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1873      ret = ::WaitForSingleObject(sig_sem, INFINITE);
1874      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1875
1876      // were we externally suspended while we were waiting?
1877      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1878      if (threadIsSuspended) {
1879        //
1880        // The semaphore has been incremented, but while we were waiting
1881        // another thread suspended us. We don't want to continue running
1882        // while suspended because that would surprise the thread that
1883        // suspended us.
1884        //
1885        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1886        assert(ret != 0, "ReleaseSemaphore() failed");
1887
1888        thread->java_suspend_self();
1889      }
1890    } while (threadIsSuspended);
1891  }
1892}
1893
1894int os::signal_lookup() {
1895  return check_pending_signals(false);
1896}
1897
1898int os::signal_wait() {
1899  return check_pending_signals(true);
1900}
1901
1902// Implicit OS exception handling
1903
1904LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1905  JavaThread* thread = JavaThread::current();
1906  // Save pc in thread
1907#ifdef _M_IA64
1908  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1909  // Set pc to handler
1910  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1911#elif _M_AMD64
1912  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1913  // Set pc to handler
1914  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1915#else
1916  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1917  // Set pc to handler
1918  exceptionInfo->ContextRecord->Eip = (LONG)handler;
1919#endif
1920
1921  // Continue the execution
1922  return EXCEPTION_CONTINUE_EXECUTION;
1923}
1924
1925
1926// Used for PostMortemDump
1927extern "C" void safepoints();
1928extern "C" void find(int x);
1929extern "C" void events();
1930
1931// According to Windows API documentation, an illegal instruction sequence should generate
1932// the 0xC000001C exception code. However, real world experience shows that occasionnaly
1933// the execution of an illegal instruction can generate the exception code 0xC000001E. This
1934// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1935
1936#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1937
1938// From "Execution Protection in the Windows Operating System" draft 0.35
1939// Once a system header becomes available, the "real" define should be
1940// included or copied here.
1941#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1942
1943#define def_excpt(val) #val, val
1944
1945struct siglabel {
1946  char *name;
1947  int   number;
1948};
1949
1950struct siglabel exceptlabels[] = {
1951    def_excpt(EXCEPTION_ACCESS_VIOLATION),
1952    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1953    def_excpt(EXCEPTION_BREAKPOINT),
1954    def_excpt(EXCEPTION_SINGLE_STEP),
1955    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1956    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1957    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1958    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1959    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1960    def_excpt(EXCEPTION_FLT_OVERFLOW),
1961    def_excpt(EXCEPTION_FLT_STACK_CHECK),
1962    def_excpt(EXCEPTION_FLT_UNDERFLOW),
1963    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1964    def_excpt(EXCEPTION_INT_OVERFLOW),
1965    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1966    def_excpt(EXCEPTION_IN_PAGE_ERROR),
1967    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1968    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1969    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1970    def_excpt(EXCEPTION_STACK_OVERFLOW),
1971    def_excpt(EXCEPTION_INVALID_DISPOSITION),
1972    def_excpt(EXCEPTION_GUARD_PAGE),
1973    def_excpt(EXCEPTION_INVALID_HANDLE),
1974    NULL, 0
1975};
1976
1977const char* os::exception_name(int exception_code, char *buf, size_t size) {
1978  for (int i = 0; exceptlabels[i].name != NULL; i++) {
1979    if (exceptlabels[i].number == exception_code) {
1980       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1981       return buf;
1982    }
1983  }
1984
1985  return NULL;
1986}
1987
1988//-----------------------------------------------------------------------------
1989LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1990  // handle exception caused by idiv; should only happen for -MinInt/-1
1991  // (division by zero is handled explicitly)
1992#ifdef _M_IA64
1993  assert(0, "Fix Handle_IDiv_Exception");
1994#elif _M_AMD64
1995  PCONTEXT ctx = exceptionInfo->ContextRecord;
1996  address pc = (address)ctx->Rip;
1997  NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1998  assert(pc[0] == 0xF7, "not an idiv opcode");
1999  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2000  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2001  // set correct result values and continue after idiv instruction
2002  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2003  ctx->Rax = (DWORD)min_jint;      // result
2004  ctx->Rdx = (DWORD)0;             // remainder
2005  // Continue the execution
2006#else
2007  PCONTEXT ctx = exceptionInfo->ContextRecord;
2008  address pc = (address)ctx->Eip;
2009  NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
2010  assert(pc[0] == 0xF7, "not an idiv opcode");
2011  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2012  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2013  // set correct result values and continue after idiv instruction
2014  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2015  ctx->Eax = (DWORD)min_jint;      // result
2016  ctx->Edx = (DWORD)0;             // remainder
2017  // Continue the execution
2018#endif
2019  return EXCEPTION_CONTINUE_EXECUTION;
2020}
2021
2022#ifndef  _WIN64
2023//-----------------------------------------------------------------------------
2024LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2025  // handle exception caused by native method modifying control word
2026  PCONTEXT ctx = exceptionInfo->ContextRecord;
2027  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2028
2029  switch (exception_code) {
2030    case EXCEPTION_FLT_DENORMAL_OPERAND:
2031    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2032    case EXCEPTION_FLT_INEXACT_RESULT:
2033    case EXCEPTION_FLT_INVALID_OPERATION:
2034    case EXCEPTION_FLT_OVERFLOW:
2035    case EXCEPTION_FLT_STACK_CHECK:
2036    case EXCEPTION_FLT_UNDERFLOW:
2037      jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2038      if (fp_control_word != ctx->FloatSave.ControlWord) {
2039        // Restore FPCW and mask out FLT exceptions
2040        ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2041        // Mask out pending FLT exceptions
2042        ctx->FloatSave.StatusWord &=  0xffffff00;
2043        return EXCEPTION_CONTINUE_EXECUTION;
2044      }
2045  }
2046
2047  if (prev_uef_handler != NULL) {
2048    // We didn't handle this exception so pass it to the previous
2049    // UnhandledExceptionFilter.
2050    return (prev_uef_handler)(exceptionInfo);
2051  }
2052
2053  return EXCEPTION_CONTINUE_SEARCH;
2054}
2055#else //_WIN64
2056/*
2057  On Windows, the mxcsr control bits are non-volatile across calls
2058  See also CR 6192333
2059  If EXCEPTION_FLT_* happened after some native method modified
2060  mxcsr - it is not a jvm fault.
2061  However should we decide to restore of mxcsr after a faulty
2062  native method we can uncomment following code
2063      jint MxCsr = INITIAL_MXCSR;
2064        // we can't use StubRoutines::addr_mxcsr_std()
2065        // because in Win64 mxcsr is not saved there
2066      if (MxCsr != ctx->MxCsr) {
2067        ctx->MxCsr = MxCsr;
2068        return EXCEPTION_CONTINUE_EXECUTION;
2069      }
2070
2071*/
2072#endif //_WIN64
2073
2074
2075// Fatal error reporting is single threaded so we can make this a
2076// static and preallocated.  If it's more than MAX_PATH silently ignore
2077// it.
2078static char saved_error_file[MAX_PATH] = {0};
2079
2080void os::set_error_file(const char *logfile) {
2081  if (strlen(logfile) <= MAX_PATH) {
2082    strncpy(saved_error_file, logfile, MAX_PATH);
2083  }
2084}
2085
2086static inline void report_error(Thread* t, DWORD exception_code,
2087                                address addr, void* siginfo, void* context) {
2088  VMError err(t, exception_code, addr, siginfo, context);
2089  err.report_and_die();
2090
2091  // If UseOsErrorReporting, this will return here and save the error file
2092  // somewhere where we can find it in the minidump.
2093}
2094
2095//-----------------------------------------------------------------------------
2096LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2097  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2098  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2099#ifdef _M_IA64
2100  address pc = (address) exceptionInfo->ContextRecord->StIIP;
2101#elif _M_AMD64
2102  address pc = (address) exceptionInfo->ContextRecord->Rip;
2103#else
2104  address pc = (address) exceptionInfo->ContextRecord->Eip;
2105#endif
2106  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2107
2108#ifndef _WIN64
2109  // Execution protection violation - win32 running on AMD64 only
2110  // Handled first to avoid misdiagnosis as a "normal" access violation;
2111  // This is safe to do because we have a new/unique ExceptionInformation
2112  // code for this condition.
2113  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2114    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2115    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2116    address addr = (address) exceptionRecord->ExceptionInformation[1];
2117
2118    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2119      int page_size = os::vm_page_size();
2120
2121      // Make sure the pc and the faulting address are sane.
2122      //
2123      // If an instruction spans a page boundary, and the page containing
2124      // the beginning of the instruction is executable but the following
2125      // page is not, the pc and the faulting address might be slightly
2126      // different - we still want to unguard the 2nd page in this case.
2127      //
2128      // 15 bytes seems to be a (very) safe value for max instruction size.
2129      bool pc_is_near_addr =
2130        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2131      bool instr_spans_page_boundary =
2132        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2133                         (intptr_t) page_size) > 0);
2134
2135      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2136        static volatile address last_addr =
2137          (address) os::non_memory_address_word();
2138
2139        // In conservative mode, don't unguard unless the address is in the VM
2140        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2141            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2142
2143          // Set memory to RWX and retry
2144          address page_start =
2145            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2146          bool res = os::protect_memory((char*) page_start, page_size,
2147                                        os::MEM_PROT_RWX);
2148
2149          if (PrintMiscellaneous && Verbose) {
2150            char buf[256];
2151            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2152                         "at " INTPTR_FORMAT
2153                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2154                         page_start, (res ? "success" : strerror(errno)));
2155            tty->print_raw_cr(buf);
2156          }
2157
2158          // Set last_addr so if we fault again at the same address, we don't
2159          // end up in an endless loop.
2160          //
2161          // There are two potential complications here.  Two threads trapping
2162          // at the same address at the same time could cause one of the
2163          // threads to think it already unguarded, and abort the VM.  Likely
2164          // very rare.
2165          //
2166          // The other race involves two threads alternately trapping at
2167          // different addresses and failing to unguard the page, resulting in
2168          // an endless loop.  This condition is probably even more unlikely
2169          // than the first.
2170          //
2171          // Although both cases could be avoided by using locks or thread
2172          // local last_addr, these solutions are unnecessary complication:
2173          // this handler is a best-effort safety net, not a complete solution.
2174          // It is disabled by default and should only be used as a workaround
2175          // in case we missed any no-execute-unsafe VM code.
2176
2177          last_addr = addr;
2178
2179          return EXCEPTION_CONTINUE_EXECUTION;
2180        }
2181      }
2182
2183      // Last unguard failed or not unguarding
2184      tty->print_raw_cr("Execution protection violation");
2185      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2186                   exceptionInfo->ContextRecord);
2187      return EXCEPTION_CONTINUE_SEARCH;
2188    }
2189  }
2190#endif // _WIN64
2191
2192  // Check to see if we caught the safepoint code in the
2193  // process of write protecting the memory serialization page.
2194  // It write enables the page immediately after protecting it
2195  // so just return.
2196  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2197    JavaThread* thread = (JavaThread*) t;
2198    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2199    address addr = (address) exceptionRecord->ExceptionInformation[1];
2200    if ( os::is_memory_serialize_page(thread, addr) ) {
2201      // Block current thread until the memory serialize page permission restored.
2202      os::block_on_serialize_page_trap();
2203      return EXCEPTION_CONTINUE_EXECUTION;
2204    }
2205  }
2206
2207
2208  if (t != NULL && t->is_Java_thread()) {
2209    JavaThread* thread = (JavaThread*) t;
2210    bool in_java = thread->thread_state() == _thread_in_Java;
2211
2212    // Handle potential stack overflows up front.
2213    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2214      if (os::uses_stack_guard_pages()) {
2215#ifdef _M_IA64
2216        //
2217        // If it's a legal stack address continue, Windows will map it in.
2218        //
2219        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2220        address addr = (address) exceptionRecord->ExceptionInformation[1];
2221        if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2222          return EXCEPTION_CONTINUE_EXECUTION;
2223
2224        // The register save area is the same size as the memory stack
2225        // and starts at the page just above the start of the memory stack.
2226        // If we get a fault in this area, we've run out of register
2227        // stack.  If we are in java, try throwing a stack overflow exception.
2228        if (addr > thread->stack_base() &&
2229                      addr <= (thread->stack_base()+thread->stack_size()) ) {
2230          char buf[256];
2231          jio_snprintf(buf, sizeof(buf),
2232                       "Register stack overflow, addr:%p, stack_base:%p\n",
2233                       addr, thread->stack_base() );
2234          tty->print_raw_cr(buf);
2235          // If not in java code, return and hope for the best.
2236          return in_java ? Handle_Exception(exceptionInfo,
2237            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2238            :  EXCEPTION_CONTINUE_EXECUTION;
2239        }
2240#endif
2241        if (thread->stack_yellow_zone_enabled()) {
2242          // Yellow zone violation.  The o/s has unprotected the first yellow
2243          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2244          // update the enabled status, even if the zone contains only one page.
2245          thread->disable_stack_yellow_zone();
2246          // If not in java code, return and hope for the best.
2247          return in_java ? Handle_Exception(exceptionInfo,
2248            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2249            :  EXCEPTION_CONTINUE_EXECUTION;
2250        } else {
2251          // Fatal red zone violation.
2252          thread->disable_stack_red_zone();
2253          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2254          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2255                       exceptionInfo->ContextRecord);
2256          return EXCEPTION_CONTINUE_SEARCH;
2257        }
2258      } else if (in_java) {
2259        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2260        // a one-time-only guard page, which it has released to us.  The next
2261        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2262        return Handle_Exception(exceptionInfo,
2263          SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2264      } else {
2265        // Can only return and hope for the best.  Further stack growth will
2266        // result in an ACCESS_VIOLATION.
2267        return EXCEPTION_CONTINUE_EXECUTION;
2268      }
2269    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2270      // Either stack overflow or null pointer exception.
2271      if (in_java) {
2272        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2273        address addr = (address) exceptionRecord->ExceptionInformation[1];
2274        address stack_end = thread->stack_base() - thread->stack_size();
2275        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2276          // Stack overflow.
2277          assert(!os::uses_stack_guard_pages(),
2278            "should be caught by red zone code above.");
2279          return Handle_Exception(exceptionInfo,
2280            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2281        }
2282        //
2283        // Check for safepoint polling and implicit null
2284        // We only expect null pointers in the stubs (vtable)
2285        // the rest are checked explicitly now.
2286        //
2287        CodeBlob* cb = CodeCache::find_blob(pc);
2288        if (cb != NULL) {
2289          if (os::is_poll_address(addr)) {
2290            address stub = SharedRuntime::get_poll_stub(pc);
2291            return Handle_Exception(exceptionInfo, stub);
2292          }
2293        }
2294        {
2295#ifdef _WIN64
2296          //
2297          // If it's a legal stack address map the entire region in
2298          //
2299          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2300          address addr = (address) exceptionRecord->ExceptionInformation[1];
2301          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2302                  addr = (address)((uintptr_t)addr &
2303                         (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2304                  os::commit_memory((char *)addr, thread->stack_base() - addr,
2305                                    false );
2306                  return EXCEPTION_CONTINUE_EXECUTION;
2307          }
2308          else
2309#endif
2310          {
2311            // Null pointer exception.
2312#ifdef _M_IA64
2313            // We catch register stack overflows in compiled code by doing
2314            // an explicit compare and executing a st8(G0, G0) if the
2315            // BSP enters into our guard area.  We test for the overflow
2316            // condition and fall into the normal null pointer exception
2317            // code if BSP hasn't overflowed.
2318            if ( in_java ) {
2319              if(thread->register_stack_overflow()) {
2320                assert((address)exceptionInfo->ContextRecord->IntS3 ==
2321                                thread->register_stack_limit(),
2322                               "GR7 doesn't contain register_stack_limit");
2323                // Disable the yellow zone which sets the state that
2324                // we've got a stack overflow problem.
2325                if (thread->stack_yellow_zone_enabled()) {
2326                  thread->disable_stack_yellow_zone();
2327                }
2328                // Give us some room to process the exception
2329                thread->disable_register_stack_guard();
2330                // Update GR7 with the new limit so we can continue running
2331                // compiled code.
2332                exceptionInfo->ContextRecord->IntS3 =
2333                               (ULONGLONG)thread->register_stack_limit();
2334                return Handle_Exception(exceptionInfo,
2335                       SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2336              } else {
2337                //
2338                // Check for implicit null
2339                // We only expect null pointers in the stubs (vtable)
2340                // the rest are checked explicitly now.
2341                //
2342                if (((uintptr_t)addr) < os::vm_page_size() ) {
2343                  // an access to the first page of VM--assume it is a null pointer
2344                  address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2345                  if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2346                }
2347              }
2348            } // in_java
2349
2350            // IA64 doesn't use implicit null checking yet. So we shouldn't
2351            // get here.
2352            tty->print_raw_cr("Access violation, possible null pointer exception");
2353            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2354                         exceptionInfo->ContextRecord);
2355            return EXCEPTION_CONTINUE_SEARCH;
2356#else /* !IA64 */
2357
2358            // Windows 98 reports faulting addresses incorrectly
2359            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2360                !os::win32::is_nt()) {
2361              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2362              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2363            }
2364            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2365                         exceptionInfo->ContextRecord);
2366            return EXCEPTION_CONTINUE_SEARCH;
2367#endif
2368          }
2369        }
2370      }
2371
2372#ifdef _WIN64
2373      // Special care for fast JNI field accessors.
2374      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2375      // in and the heap gets shrunk before the field access.
2376      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2377        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2378        if (addr != (address)-1) {
2379          return Handle_Exception(exceptionInfo, addr);
2380        }
2381      }
2382#endif
2383
2384#ifdef _WIN64
2385      // Windows will sometimes generate an access violation
2386      // when we call malloc.  Since we use VectoredExceptions
2387      // on 64 bit platforms, we see this exception.  We must
2388      // pass this exception on so Windows can recover.
2389      // We check to see if the pc of the fault is in NTDLL.DLL
2390      // if so, we pass control on to Windows for handling.
2391      if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2392#endif
2393
2394      // Stack overflow or null pointer exception in native code.
2395      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2396                   exceptionInfo->ContextRecord);
2397      return EXCEPTION_CONTINUE_SEARCH;
2398    }
2399
2400    if (in_java) {
2401      switch (exception_code) {
2402      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2403        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2404
2405      case EXCEPTION_INT_OVERFLOW:
2406        return Handle_IDiv_Exception(exceptionInfo);
2407
2408      } // switch
2409    }
2410#ifndef _WIN64
2411    if ((thread->thread_state() == _thread_in_Java) ||
2412        (thread->thread_state() == _thread_in_native) )
2413    {
2414      LONG result=Handle_FLT_Exception(exceptionInfo);
2415      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2416    }
2417#endif //_WIN64
2418  }
2419
2420  if (exception_code != EXCEPTION_BREAKPOINT) {
2421#ifndef _WIN64
2422    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2423                 exceptionInfo->ContextRecord);
2424#else
2425    // Itanium Windows uses a VectoredExceptionHandler
2426    // Which means that C++ programatic exception handlers (try/except)
2427    // will get here.  Continue the search for the right except block if
2428    // the exception code is not a fatal code.
2429    switch ( exception_code ) {
2430      case EXCEPTION_ACCESS_VIOLATION:
2431      case EXCEPTION_STACK_OVERFLOW:
2432      case EXCEPTION_ILLEGAL_INSTRUCTION:
2433      case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2434      case EXCEPTION_INT_OVERFLOW:
2435      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2436      {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2437                       exceptionInfo->ContextRecord);
2438      }
2439        break;
2440      default:
2441        break;
2442    }
2443#endif
2444  }
2445  return EXCEPTION_CONTINUE_SEARCH;
2446}
2447
2448#ifndef _WIN64
2449// Special care for fast JNI accessors.
2450// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2451// the heap gets shrunk before the field access.
2452// Need to install our own structured exception handler since native code may
2453// install its own.
2454LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2455  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2456  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2457    address pc = (address) exceptionInfo->ContextRecord->Eip;
2458    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2459    if (addr != (address)-1) {
2460      return Handle_Exception(exceptionInfo, addr);
2461    }
2462  }
2463  return EXCEPTION_CONTINUE_SEARCH;
2464}
2465
2466#define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2467Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2468  __try { \
2469    return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2470  } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2471  } \
2472  return 0; \
2473}
2474
2475DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2476DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2477DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2478DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2479DEFINE_FAST_GETFIELD(jint,     int,    Int)
2480DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2481DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2482DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2483
2484address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2485  switch (type) {
2486    case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2487    case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2488    case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2489    case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2490    case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2491    case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2492    case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2493    case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2494    default:        ShouldNotReachHere();
2495  }
2496  return (address)-1;
2497}
2498#endif
2499
2500// Virtual Memory
2501
2502int os::vm_page_size() { return os::win32::vm_page_size(); }
2503int os::vm_allocation_granularity() {
2504  return os::win32::vm_allocation_granularity();
2505}
2506
2507// Windows large page support is available on Windows 2003. In order to use
2508// large page memory, the administrator must first assign additional privilege
2509// to the user:
2510//   + select Control Panel -> Administrative Tools -> Local Security Policy
2511//   + select Local Policies -> User Rights Assignment
2512//   + double click "Lock pages in memory", add users and/or groups
2513//   + reboot
2514// Note the above steps are needed for administrator as well, as administrators
2515// by default do not have the privilege to lock pages in memory.
2516//
2517// Note about Windows 2003: although the API supports committing large page
2518// memory on a page-by-page basis and VirtualAlloc() returns success under this
2519// scenario, I found through experiment it only uses large page if the entire
2520// memory region is reserved and committed in a single VirtualAlloc() call.
2521// This makes Windows large page support more or less like Solaris ISM, in
2522// that the entire heap must be committed upfront. This probably will change
2523// in the future, if so the code below needs to be revisited.
2524
2525#ifndef MEM_LARGE_PAGES
2526#define MEM_LARGE_PAGES 0x20000000
2527#endif
2528
2529// GetLargePageMinimum is only available on Windows 2003. The other functions
2530// are available on NT but not on Windows 98/Me. We have to resolve them at
2531// runtime.
2532typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2533typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2534             (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2535typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2536typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2537
2538static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2539static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2540static OpenProcessToken_func_type      _OpenProcessToken;
2541static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2542
2543static HINSTANCE _kernel32;
2544static HINSTANCE _advapi32;
2545static HANDLE    _hProcess;
2546static HANDLE    _hToken;
2547
2548static size_t _large_page_size = 0;
2549
2550static bool resolve_functions_for_large_page_init() {
2551  _kernel32 = LoadLibrary("kernel32.dll");
2552  if (_kernel32 == NULL) return false;
2553
2554  _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2555                            GetProcAddress(_kernel32, "GetLargePageMinimum"));
2556  if (_GetLargePageMinimum == NULL) return false;
2557
2558  _advapi32 = LoadLibrary("advapi32.dll");
2559  if (_advapi32 == NULL) return false;
2560
2561  _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2562                            GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2563  _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2564                            GetProcAddress(_advapi32, "OpenProcessToken"));
2565  _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2566                            GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2567  return _AdjustTokenPrivileges != NULL &&
2568         _OpenProcessToken      != NULL &&
2569         _LookupPrivilegeValue  != NULL;
2570}
2571
2572static bool request_lock_memory_privilege() {
2573  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2574                                os::current_process_id());
2575
2576  LUID luid;
2577  if (_hProcess != NULL &&
2578      _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2579      _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2580
2581    TOKEN_PRIVILEGES tp;
2582    tp.PrivilegeCount = 1;
2583    tp.Privileges[0].Luid = luid;
2584    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2585
2586    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2587    // privilege. Check GetLastError() too. See MSDN document.
2588    if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2589        (GetLastError() == ERROR_SUCCESS)) {
2590      return true;
2591    }
2592  }
2593
2594  return false;
2595}
2596
2597static void cleanup_after_large_page_init() {
2598  _GetLargePageMinimum = NULL;
2599  _AdjustTokenPrivileges = NULL;
2600  _OpenProcessToken = NULL;
2601  _LookupPrivilegeValue = NULL;
2602  if (_kernel32) FreeLibrary(_kernel32);
2603  _kernel32 = NULL;
2604  if (_advapi32) FreeLibrary(_advapi32);
2605  _advapi32 = NULL;
2606  if (_hProcess) CloseHandle(_hProcess);
2607  _hProcess = NULL;
2608  if (_hToken) CloseHandle(_hToken);
2609  _hToken = NULL;
2610}
2611
2612bool os::large_page_init() {
2613  if (!UseLargePages) return false;
2614
2615  // print a warning if any large page related flag is specified on command line
2616  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2617                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2618  bool success = false;
2619
2620# define WARN(msg) if (warn_on_failure) { warning(msg); }
2621  if (resolve_functions_for_large_page_init()) {
2622    if (request_lock_memory_privilege()) {
2623      size_t s = _GetLargePageMinimum();
2624      if (s) {
2625#if defined(IA32) || defined(AMD64)
2626        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2627          WARN("JVM cannot use large pages bigger than 4mb.");
2628        } else {
2629#endif
2630          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2631            _large_page_size = LargePageSizeInBytes;
2632          } else {
2633            _large_page_size = s;
2634          }
2635          success = true;
2636#if defined(IA32) || defined(AMD64)
2637        }
2638#endif
2639      } else {
2640        WARN("Large page is not supported by the processor.");
2641      }
2642    } else {
2643      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2644    }
2645  } else {
2646    WARN("Large page is not supported by the operating system.");
2647  }
2648#undef WARN
2649
2650  const size_t default_page_size = (size_t) vm_page_size();
2651  if (success && _large_page_size > default_page_size) {
2652    _page_sizes[0] = _large_page_size;
2653    _page_sizes[1] = default_page_size;
2654    _page_sizes[2] = 0;
2655  }
2656
2657  cleanup_after_large_page_init();
2658  return success;
2659}
2660
2661// On win32, one cannot release just a part of reserved memory, it's an
2662// all or nothing deal.  When we split a reservation, we must break the
2663// reservation into two reservations.
2664void os::split_reserved_memory(char *base, size_t size, size_t split,
2665                              bool realloc) {
2666  if (size > 0) {
2667    release_memory(base, size);
2668    if (realloc) {
2669      reserve_memory(split, base);
2670    }
2671    if (size != split) {
2672      reserve_memory(size - split, base + split);
2673    }
2674  }
2675}
2676
2677char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2678  assert((size_t)addr % os::vm_allocation_granularity() == 0,
2679         "reserve alignment");
2680  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2681  char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2682  assert(res == NULL || addr == NULL || addr == res,
2683         "Unexpected address from reserve.");
2684  return res;
2685}
2686
2687// Reserve memory at an arbitrary address, only if that area is
2688// available (and not reserved for something else).
2689char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2690  // Windows os::reserve_memory() fails of the requested address range is
2691  // not avilable.
2692  return reserve_memory(bytes, requested_addr);
2693}
2694
2695size_t os::large_page_size() {
2696  return _large_page_size;
2697}
2698
2699bool os::can_commit_large_page_memory() {
2700  // Windows only uses large page memory when the entire region is reserved
2701  // and committed in a single VirtualAlloc() call. This may change in the
2702  // future, but with Windows 2003 it's not possible to commit on demand.
2703  return false;
2704}
2705
2706bool os::can_execute_large_page_memory() {
2707  return true;
2708}
2709
2710char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2711
2712  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2713
2714  if (UseLargePagesIndividualAllocation) {
2715    if (TracePageSizes && Verbose) {
2716       tty->print_cr("Reserving large pages individually.");
2717    }
2718    char * p_buf;
2719    // first reserve enough address space in advance since we want to be
2720    // able to break a single contiguous virtual address range into multiple
2721    // large page commits but WS2003 does not allow reserving large page space
2722    // so we just use 4K pages for reserve, this gives us a legal contiguous
2723    // address space. then we will deallocate that reservation, and re alloc
2724    // using large pages
2725    const size_t size_of_reserve = bytes + _large_page_size;
2726    if (bytes > size_of_reserve) {
2727      // Overflowed.
2728      warning("Individually allocated large pages failed, "
2729        "use -XX:-UseLargePagesIndividualAllocation to turn off");
2730      return NULL;
2731    }
2732    p_buf = (char *) VirtualAlloc(addr,
2733                                 size_of_reserve,  // size of Reserve
2734                                 MEM_RESERVE,
2735                                 PAGE_READWRITE);
2736    // If reservation failed, return NULL
2737    if (p_buf == NULL) return NULL;
2738
2739    release_memory(p_buf, bytes + _large_page_size);
2740    // round up to page boundary.  If the size_of_reserve did not
2741    // overflow and the reservation did not fail, this align up
2742    // should not overflow.
2743    p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2744
2745    // now go through and allocate one page at a time until all bytes are
2746    // allocated
2747    size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2748    // An overflow of align_size_up() would have been caught above
2749    // in the calculation of size_of_reserve.
2750    char * next_alloc_addr = p_buf;
2751
2752#ifdef ASSERT
2753    // Variable for the failure injection
2754    long ran_num = os::random();
2755    size_t fail_after = ran_num % bytes;
2756#endif
2757
2758    while (bytes_remaining) {
2759      size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2760      // Note allocate and commit
2761      char * p_new;
2762
2763#ifdef ASSERT
2764      bool inject_error = LargePagesIndividualAllocationInjectError &&
2765          (bytes_remaining <= fail_after);
2766#else
2767      const bool inject_error = false;
2768#endif
2769
2770      if (inject_error) {
2771        p_new = NULL;
2772      } else {
2773        p_new = (char *) VirtualAlloc(next_alloc_addr,
2774                                    bytes_to_rq,
2775                                    MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2776                                    prot);
2777      }
2778
2779      if (p_new == NULL) {
2780        // Free any allocated pages
2781        if (next_alloc_addr > p_buf) {
2782          // Some memory was committed so release it.
2783          size_t bytes_to_release = bytes - bytes_remaining;
2784          release_memory(p_buf, bytes_to_release);
2785        }
2786#ifdef ASSERT
2787        if (UseLargePagesIndividualAllocation &&
2788            LargePagesIndividualAllocationInjectError) {
2789          if (TracePageSizes && Verbose) {
2790             tty->print_cr("Reserving large pages individually failed.");
2791          }
2792        }
2793#endif
2794        return NULL;
2795      }
2796      bytes_remaining -= bytes_to_rq;
2797      next_alloc_addr += bytes_to_rq;
2798    }
2799
2800    return p_buf;
2801
2802  } else {
2803    // normal policy just allocate it all at once
2804    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2805    char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2806    return res;
2807  }
2808}
2809
2810bool os::release_memory_special(char* base, size_t bytes) {
2811  return release_memory(base, bytes);
2812}
2813
2814void os::print_statistics() {
2815}
2816
2817bool os::commit_memory(char* addr, size_t bytes, bool exec) {
2818  if (bytes == 0) {
2819    // Don't bother the OS with noops.
2820    return true;
2821  }
2822  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2823  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2824  // Don't attempt to print anything if the OS call fails. We're
2825  // probably low on resources, so the print itself may cause crashes.
2826  bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
2827  if (result != NULL && exec) {
2828    DWORD oldprot;
2829    // Windows doc says to use VirtualProtect to get execute permissions
2830    return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
2831  } else {
2832    return result;
2833  }
2834}
2835
2836bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2837                       bool exec) {
2838  return commit_memory(addr, size, exec);
2839}
2840
2841bool os::uncommit_memory(char* addr, size_t bytes) {
2842  if (bytes == 0) {
2843    // Don't bother the OS with noops.
2844    return true;
2845  }
2846  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2847  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2848  return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2849}
2850
2851bool os::release_memory(char* addr, size_t bytes) {
2852  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2853}
2854
2855bool os::create_stack_guard_pages(char* addr, size_t size) {
2856  return os::commit_memory(addr, size);
2857}
2858
2859bool os::remove_stack_guard_pages(char* addr, size_t size) {
2860  return os::uncommit_memory(addr, size);
2861}
2862
2863// Set protections specified
2864bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2865                        bool is_committed) {
2866  unsigned int p = 0;
2867  switch (prot) {
2868  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2869  case MEM_PROT_READ: p = PAGE_READONLY; break;
2870  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2871  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2872  default:
2873    ShouldNotReachHere();
2874  }
2875
2876  DWORD old_status;
2877
2878  // Strange enough, but on Win32 one can change protection only for committed
2879  // memory, not a big deal anyway, as bytes less or equal than 64K
2880  if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
2881    fatal("cannot commit protection page");
2882  }
2883  // One cannot use os::guard_memory() here, as on Win32 guard page
2884  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2885  //
2886  // Pages in the region become guard pages. Any attempt to access a guard page
2887  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2888  // the guard page status. Guard pages thus act as a one-time access alarm.
2889  return VirtualProtect(addr, bytes, p, &old_status) != 0;
2890}
2891
2892bool os::guard_memory(char* addr, size_t bytes) {
2893  DWORD old_status;
2894  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2895}
2896
2897bool os::unguard_memory(char* addr, size_t bytes) {
2898  DWORD old_status;
2899  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2900}
2901
2902void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2903void os::free_memory(char *addr, size_t bytes)         { }
2904void os::numa_make_global(char *addr, size_t bytes)    { }
2905void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2906bool os::numa_topology_changed()                       { return false; }
2907size_t os::numa_get_groups_num()                       { return 1; }
2908int os::numa_get_group_id()                            { return 0; }
2909size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2910  if (size > 0) {
2911    ids[0] = 0;
2912    return 1;
2913  }
2914  return 0;
2915}
2916
2917bool os::get_page_info(char *start, page_info* info) {
2918  return false;
2919}
2920
2921char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2922  return end;
2923}
2924
2925char* os::non_memory_address_word() {
2926  // Must never look like an address returned by reserve_memory,
2927  // even in its subfields (as defined by the CPU immediate fields,
2928  // if the CPU splits constants across multiple instructions).
2929  return (char*)-1;
2930}
2931
2932#define MAX_ERROR_COUNT 100
2933#define SYS_THREAD_ERROR 0xffffffffUL
2934
2935void os::pd_start_thread(Thread* thread) {
2936  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2937  // Returns previous suspend state:
2938  // 0:  Thread was not suspended
2939  // 1:  Thread is running now
2940  // >1: Thread is still suspended.
2941  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2942}
2943
2944size_t os::read(int fd, void *buf, unsigned int nBytes) {
2945  return ::read(fd, buf, nBytes);
2946}
2947
2948class HighResolutionInterval {
2949  // The default timer resolution seems to be 10 milliseconds.
2950  // (Where is this written down?)
2951  // If someone wants to sleep for only a fraction of the default,
2952  // then we set the timer resolution down to 1 millisecond for
2953  // the duration of their interval.
2954  // We carefully set the resolution back, since otherwise we
2955  // seem to incur an overhead (3%?) that we don't need.
2956  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2957  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2958  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2959  // timeBeginPeriod() if the relative error exceeded some threshold.
2960  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2961  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2962  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2963  // resolution timers running.
2964private:
2965    jlong resolution;
2966public:
2967  HighResolutionInterval(jlong ms) {
2968    resolution = ms % 10L;
2969    if (resolution != 0) {
2970      MMRESULT result = timeBeginPeriod(1L);
2971    }
2972  }
2973  ~HighResolutionInterval() {
2974    if (resolution != 0) {
2975      MMRESULT result = timeEndPeriod(1L);
2976    }
2977    resolution = 0L;
2978  }
2979};
2980
2981int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2982  jlong limit = (jlong) MAXDWORD;
2983
2984  while(ms > limit) {
2985    int res;
2986    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2987      return res;
2988    ms -= limit;
2989  }
2990
2991  assert(thread == Thread::current(),  "thread consistency check");
2992  OSThread* osthread = thread->osthread();
2993  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2994  int result;
2995  if (interruptable) {
2996    assert(thread->is_Java_thread(), "must be java thread");
2997    JavaThread *jt = (JavaThread *) thread;
2998    ThreadBlockInVM tbivm(jt);
2999
3000    jt->set_suspend_equivalent();
3001    // cleared by handle_special_suspend_equivalent_condition() or
3002    // java_suspend_self() via check_and_wait_while_suspended()
3003
3004    HANDLE events[1];
3005    events[0] = osthread->interrupt_event();
3006    HighResolutionInterval *phri=NULL;
3007    if(!ForceTimeHighResolution)
3008      phri = new HighResolutionInterval( ms );
3009    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3010      result = OS_TIMEOUT;
3011    } else {
3012      ResetEvent(osthread->interrupt_event());
3013      osthread->set_interrupted(false);
3014      result = OS_INTRPT;
3015    }
3016    delete phri; //if it is NULL, harmless
3017
3018    // were we externally suspended while we were waiting?
3019    jt->check_and_wait_while_suspended();
3020  } else {
3021    assert(!thread->is_Java_thread(), "must not be java thread");
3022    Sleep((long) ms);
3023    result = OS_TIMEOUT;
3024  }
3025  return result;
3026}
3027
3028// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3029void os::infinite_sleep() {
3030  while (true) {    // sleep forever ...
3031    Sleep(100000);  // ... 100 seconds at a time
3032  }
3033}
3034
3035typedef BOOL (WINAPI * STTSignature)(void) ;
3036
3037os::YieldResult os::NakedYield() {
3038  // Use either SwitchToThread() or Sleep(0)
3039  // Consider passing back the return value from SwitchToThread().
3040  // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
3041  // In that case we revert to Sleep(0).
3042  static volatile STTSignature stt = (STTSignature) 1 ;
3043
3044  if (stt == ((STTSignature) 1)) {
3045    stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
3046    // It's OK if threads race during initialization as the operation above is idempotent.
3047  }
3048  if (stt != NULL) {
3049    return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3050  } else {
3051    Sleep (0) ;
3052  }
3053  return os::YIELD_UNKNOWN ;
3054}
3055
3056void os::yield() {  os::NakedYield(); }
3057
3058void os::yield_all(int attempts) {
3059  // Yields to all threads, including threads with lower priorities
3060  Sleep(1);
3061}
3062
3063// Win32 only gives you access to seven real priorities at a time,
3064// so we compress Java's ten down to seven.  It would be better
3065// if we dynamically adjusted relative priorities.
3066
3067int os::java_to_os_priority[MaxPriority + 1] = {
3068  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3069  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3070  THREAD_PRIORITY_LOWEST,                       // 2
3071  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3072  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3073  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3074  THREAD_PRIORITY_NORMAL,                       // 6
3075  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3076  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3077  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3078  THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3079};
3080
3081int prio_policy1[MaxPriority + 1] = {
3082  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3083  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3084  THREAD_PRIORITY_LOWEST,                       // 2
3085  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3086  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3087  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3088  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3089  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3090  THREAD_PRIORITY_HIGHEST,                      // 8
3091  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3092  THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3093};
3094
3095static int prio_init() {
3096  // If ThreadPriorityPolicy is 1, switch tables
3097  if (ThreadPriorityPolicy == 1) {
3098    int i;
3099    for (i = 0; i < MaxPriority + 1; i++) {
3100      os::java_to_os_priority[i] = prio_policy1[i];
3101    }
3102  }
3103  return 0;
3104}
3105
3106OSReturn os::set_native_priority(Thread* thread, int priority) {
3107  if (!UseThreadPriorities) return OS_OK;
3108  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3109  return ret ? OS_OK : OS_ERR;
3110}
3111
3112OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3113  if ( !UseThreadPriorities ) {
3114    *priority_ptr = java_to_os_priority[NormPriority];
3115    return OS_OK;
3116  }
3117  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3118  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3119    assert(false, "GetThreadPriority failed");
3120    return OS_ERR;
3121  }
3122  *priority_ptr = os_prio;
3123  return OS_OK;
3124}
3125
3126
3127// Hint to the underlying OS that a task switch would not be good.
3128// Void return because it's a hint and can fail.
3129void os::hint_no_preempt() {}
3130
3131void os::interrupt(Thread* thread) {
3132  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3133         "possibility of dangling Thread pointer");
3134
3135  OSThread* osthread = thread->osthread();
3136  osthread->set_interrupted(true);
3137  // More than one thread can get here with the same value of osthread,
3138  // resulting in multiple notifications.  We do, however, want the store
3139  // to interrupted() to be visible to other threads before we post
3140  // the interrupt event.
3141  OrderAccess::release();
3142  SetEvent(osthread->interrupt_event());
3143  // For JSR166:  unpark after setting status
3144  if (thread->is_Java_thread())
3145    ((JavaThread*)thread)->parker()->unpark();
3146
3147  ParkEvent * ev = thread->_ParkEvent ;
3148  if (ev != NULL) ev->unpark() ;
3149
3150}
3151
3152
3153bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3154  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3155         "possibility of dangling Thread pointer");
3156
3157  OSThread* osthread = thread->osthread();
3158  bool interrupted;
3159  interrupted = osthread->interrupted();
3160  if (clear_interrupted == true) {
3161    osthread->set_interrupted(false);
3162    ResetEvent(osthread->interrupt_event());
3163  } // Otherwise leave the interrupted state alone
3164
3165  return interrupted;
3166}
3167
3168// Get's a pc (hint) for a running thread. Currently used only for profiling.
3169ExtendedPC os::get_thread_pc(Thread* thread) {
3170  CONTEXT context;
3171  context.ContextFlags = CONTEXT_CONTROL;
3172  HANDLE handle = thread->osthread()->thread_handle();
3173#ifdef _M_IA64
3174  assert(0, "Fix get_thread_pc");
3175  return ExtendedPC(NULL);
3176#else
3177  if (GetThreadContext(handle, &context)) {
3178#ifdef _M_AMD64
3179    return ExtendedPC((address) context.Rip);
3180#else
3181    return ExtendedPC((address) context.Eip);
3182#endif
3183  } else {
3184    return ExtendedPC(NULL);
3185  }
3186#endif
3187}
3188
3189// GetCurrentThreadId() returns DWORD
3190intx os::current_thread_id()          { return GetCurrentThreadId(); }
3191
3192static int _initial_pid = 0;
3193
3194int os::current_process_id()
3195{
3196  return (_initial_pid ? _initial_pid : _getpid());
3197}
3198
3199int    os::win32::_vm_page_size       = 0;
3200int    os::win32::_vm_allocation_granularity = 0;
3201int    os::win32::_processor_type     = 0;
3202// Processor level is not available on non-NT systems, use vm_version instead
3203int    os::win32::_processor_level    = 0;
3204julong os::win32::_physical_memory    = 0;
3205size_t os::win32::_default_stack_size = 0;
3206
3207         intx os::win32::_os_thread_limit    = 0;
3208volatile intx os::win32::_os_thread_count    = 0;
3209
3210bool   os::win32::_is_nt              = false;
3211bool   os::win32::_is_windows_2003    = false;
3212
3213
3214void os::win32::initialize_system_info() {
3215  SYSTEM_INFO si;
3216  GetSystemInfo(&si);
3217  _vm_page_size    = si.dwPageSize;
3218  _vm_allocation_granularity = si.dwAllocationGranularity;
3219  _processor_type  = si.dwProcessorType;
3220  _processor_level = si.wProcessorLevel;
3221  set_processor_count(si.dwNumberOfProcessors);
3222
3223  MEMORYSTATUSEX ms;
3224  ms.dwLength = sizeof(ms);
3225
3226  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3227  // dwMemoryLoad (% of memory in use)
3228  GlobalMemoryStatusEx(&ms);
3229  _physical_memory = ms.ullTotalPhys;
3230
3231  OSVERSIONINFO oi;
3232  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3233  GetVersionEx(&oi);
3234  switch(oi.dwPlatformId) {
3235    case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3236    case VER_PLATFORM_WIN32_NT:
3237      _is_nt = true;
3238      {
3239        int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3240        if (os_vers == 5002) {
3241          _is_windows_2003 = true;
3242        }
3243      }
3244      break;
3245    default: fatal("Unknown platform");
3246  }
3247
3248  _default_stack_size = os::current_stack_size();
3249  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3250  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3251    "stack size not a multiple of page size");
3252
3253  initialize_performance_counter();
3254
3255  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3256  // known to deadlock the system, if the VM issues to thread operations with
3257  // a too high frequency, e.g., such as changing the priorities.
3258  // The 6000 seems to work well - no deadlocks has been notices on the test
3259  // programs that we have seen experience this problem.
3260  if (!os::win32::is_nt()) {
3261    StarvationMonitorInterval = 6000;
3262  }
3263}
3264
3265
3266void os::win32::setmode_streams() {
3267  _setmode(_fileno(stdin), _O_BINARY);
3268  _setmode(_fileno(stdout), _O_BINARY);
3269  _setmode(_fileno(stderr), _O_BINARY);
3270}
3271
3272
3273int os::message_box(const char* title, const char* message) {
3274  int result = MessageBox(NULL, message, title,
3275                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3276  return result == IDYES;
3277}
3278
3279int os::allocate_thread_local_storage() {
3280  return TlsAlloc();
3281}
3282
3283
3284void os::free_thread_local_storage(int index) {
3285  TlsFree(index);
3286}
3287
3288
3289void os::thread_local_storage_at_put(int index, void* value) {
3290  TlsSetValue(index, value);
3291  assert(thread_local_storage_at(index) == value, "Just checking");
3292}
3293
3294
3295void* os::thread_local_storage_at(int index) {
3296  return TlsGetValue(index);
3297}
3298
3299
3300#ifndef PRODUCT
3301#ifndef _WIN64
3302// Helpers to check whether NX protection is enabled
3303int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3304  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3305      pex->ExceptionRecord->NumberParameters > 0 &&
3306      pex->ExceptionRecord->ExceptionInformation[0] ==
3307      EXCEPTION_INFO_EXEC_VIOLATION) {
3308    return EXCEPTION_EXECUTE_HANDLER;
3309  }
3310  return EXCEPTION_CONTINUE_SEARCH;
3311}
3312
3313void nx_check_protection() {
3314  // If NX is enabled we'll get an exception calling into code on the stack
3315  char code[] = { (char)0xC3 }; // ret
3316  void *code_ptr = (void *)code;
3317  __try {
3318    __asm call code_ptr
3319  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3320    tty->print_raw_cr("NX protection detected.");
3321  }
3322}
3323#endif // _WIN64
3324#endif // PRODUCT
3325
3326// this is called _before_ the global arguments have been parsed
3327void os::init(void) {
3328  _initial_pid = _getpid();
3329
3330  init_random(1234567);
3331
3332  win32::initialize_system_info();
3333  win32::setmode_streams();
3334  init_page_sizes((size_t) win32::vm_page_size());
3335
3336  // For better scalability on MP systems (must be called after initialize_system_info)
3337#ifndef PRODUCT
3338  if (is_MP()) {
3339    NoYieldsInMicrolock = true;
3340  }
3341#endif
3342  // This may be overridden later when argument processing is done.
3343  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3344    os::win32::is_windows_2003());
3345
3346  // Initialize main_process and main_thread
3347  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3348 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3349                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3350    fatal("DuplicateHandle failed\n");
3351  }
3352  main_thread_id = (int) GetCurrentThreadId();
3353}
3354
3355// To install functions for atexit processing
3356extern "C" {
3357  static void perfMemory_exit_helper() {
3358    perfMemory_exit();
3359  }
3360}
3361
3362// this is called _after_ the global arguments have been parsed
3363jint os::init_2(void) {
3364  // Allocate a single page and mark it as readable for safepoint polling
3365  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3366  guarantee( polling_page != NULL, "Reserve Failed for polling page");
3367
3368  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3369  guarantee( return_page != NULL, "Commit Failed for polling page");
3370
3371  os::set_polling_page( polling_page );
3372
3373#ifndef PRODUCT
3374  if( Verbose && PrintMiscellaneous )
3375    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3376#endif
3377
3378  if (!UseMembar) {
3379    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3380    guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3381
3382    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3383    guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3384
3385    os::set_memory_serialize_page( mem_serialize_page );
3386
3387#ifndef PRODUCT
3388    if(Verbose && PrintMiscellaneous)
3389      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3390#endif
3391}
3392
3393  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3394
3395  // Setup Windows Exceptions
3396
3397  // On Itanium systems, Structured Exception Handling does not
3398  // work since stack frames must be walkable by the OS.  Since
3399  // much of our code is dynamically generated, and we do not have
3400  // proper unwind .xdata sections, the system simply exits
3401  // rather than delivering the exception.  To work around
3402  // this we use VectorExceptions instead.
3403#ifdef _WIN64
3404  if (UseVectoredExceptions) {
3405    topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3406  }
3407#endif
3408
3409  // for debugging float code generation bugs
3410  if (ForceFloatExceptions) {
3411#ifndef  _WIN64
3412    static long fp_control_word = 0;
3413    __asm { fstcw fp_control_word }
3414    // see Intel PPro Manual, Vol. 2, p 7-16
3415    const long precision = 0x20;
3416    const long underflow = 0x10;
3417    const long overflow  = 0x08;
3418    const long zero_div  = 0x04;
3419    const long denorm    = 0x02;
3420    const long invalid   = 0x01;
3421    fp_control_word |= invalid;
3422    __asm { fldcw fp_control_word }
3423#endif
3424  }
3425
3426  // Initialize HPI.
3427  jint hpi_result = hpi::initialize();
3428  if (hpi_result != JNI_OK) { return hpi_result; }
3429
3430  // If stack_commit_size is 0, windows will reserve the default size,
3431  // but only commit a small portion of it.
3432  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3433  size_t default_reserve_size = os::win32::default_stack_size();
3434  size_t actual_reserve_size = stack_commit_size;
3435  if (stack_commit_size < default_reserve_size) {
3436    // If stack_commit_size == 0, we want this too
3437    actual_reserve_size = default_reserve_size;
3438  }
3439
3440  // Check minimum allowable stack size for thread creation and to initialize
3441  // the java system classes, including StackOverflowError - depends on page
3442  // size.  Add a page for compiler2 recursion in main thread.
3443  // Add in 2*BytesPerWord times page size to account for VM stack during
3444  // class initialization depending on 32 or 64 bit VM.
3445  size_t min_stack_allowed =
3446            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3447            2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3448  if (actual_reserve_size < min_stack_allowed) {
3449    tty->print_cr("\nThe stack size specified is too small, "
3450                  "Specify at least %dk",
3451                  min_stack_allowed / K);
3452    return JNI_ERR;
3453  }
3454
3455  JavaThread::set_stack_size_at_create(stack_commit_size);
3456
3457  // Calculate theoretical max. size of Threads to guard gainst artifical
3458  // out-of-memory situations, where all available address-space has been
3459  // reserved by thread stacks.
3460  assert(actual_reserve_size != 0, "Must have a stack");
3461
3462  // Calculate the thread limit when we should start doing Virtual Memory
3463  // banging. Currently when the threads will have used all but 200Mb of space.
3464  //
3465  // TODO: consider performing a similar calculation for commit size instead
3466  // as reserve size, since on a 64-bit platform we'll run into that more
3467  // often than running out of virtual memory space.  We can use the
3468  // lower value of the two calculations as the os_thread_limit.
3469  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3470  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3471
3472  // at exit methods are called in the reverse order of their registration.
3473  // there is no limit to the number of functions registered. atexit does
3474  // not set errno.
3475
3476  if (PerfAllowAtExitRegistration) {
3477    // only register atexit functions if PerfAllowAtExitRegistration is set.
3478    // atexit functions can be delayed until process exit time, which
3479    // can be problematic for embedded VM situations. Embedded VMs should
3480    // call DestroyJavaVM() to assure that VM resources are released.
3481
3482    // note: perfMemory_exit_helper atexit function may be removed in
3483    // the future if the appropriate cleanup code can be added to the
3484    // VM_Exit VMOperation's doit method.
3485    if (atexit(perfMemory_exit_helper) != 0) {
3486      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3487    }
3488  }
3489
3490  // initialize PSAPI or ToolHelp for fatal error handler
3491  if (win32::is_nt()) _init_psapi();
3492  else _init_toolhelp();
3493
3494#ifndef _WIN64
3495  // Print something if NX is enabled (win32 on AMD64)
3496  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3497#endif
3498
3499  // initialize thread priority policy
3500  prio_init();
3501
3502  if (UseNUMA && !ForceNUMA) {
3503    UseNUMA = false; // Currently unsupported.
3504  }
3505
3506  return JNI_OK;
3507}
3508
3509void os::init_3(void) {
3510  return;
3511}
3512
3513// Mark the polling page as unreadable
3514void os::make_polling_page_unreadable(void) {
3515  DWORD old_status;
3516  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3517    fatal("Could not disable polling page");
3518};
3519
3520// Mark the polling page as readable
3521void os::make_polling_page_readable(void) {
3522  DWORD old_status;
3523  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3524    fatal("Could not enable polling page");
3525};
3526
3527
3528int os::stat(const char *path, struct stat *sbuf) {
3529  char pathbuf[MAX_PATH];
3530  if (strlen(path) > MAX_PATH - 1) {
3531    errno = ENAMETOOLONG;
3532    return -1;
3533  }
3534  hpi::native_path(strcpy(pathbuf, path));
3535  int ret = ::stat(pathbuf, sbuf);
3536  if (sbuf != NULL && UseUTCFileTimestamp) {
3537    // Fix for 6539723.  st_mtime returned from stat() is dependent on
3538    // the system timezone and so can return different values for the
3539    // same file if/when daylight savings time changes.  This adjustment
3540    // makes sure the same timestamp is returned regardless of the TZ.
3541    //
3542    // See:
3543    // http://msdn.microsoft.com/library/
3544    //   default.asp?url=/library/en-us/sysinfo/base/
3545    //   time_zone_information_str.asp
3546    // and
3547    // http://msdn.microsoft.com/library/default.asp?url=
3548    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3549    //
3550    // NOTE: there is a insidious bug here:  If the timezone is changed
3551    // after the call to stat() but before 'GetTimeZoneInformation()', then
3552    // the adjustment we do here will be wrong and we'll return the wrong
3553    // value (which will likely end up creating an invalid class data
3554    // archive).  Absent a better API for this, or some time zone locking
3555    // mechanism, we'll have to live with this risk.
3556    TIME_ZONE_INFORMATION tz;
3557    DWORD tzid = GetTimeZoneInformation(&tz);
3558    int daylightBias =
3559      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3560    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3561  }
3562  return ret;
3563}
3564
3565
3566#define FT2INT64(ft) \
3567  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3568
3569
3570// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3571// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3572// of a thread.
3573//
3574// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3575// the fast estimate available on the platform.
3576
3577// current_thread_cpu_time() is not optimized for Windows yet
3578jlong os::current_thread_cpu_time() {
3579  // return user + sys since the cost is the same
3580  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3581}
3582
3583jlong os::thread_cpu_time(Thread* thread) {
3584  // consistent with what current_thread_cpu_time() returns.
3585  return os::thread_cpu_time(thread, true /* user+sys */);
3586}
3587
3588jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3589  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3590}
3591
3592jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3593  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3594  // If this function changes, os::is_thread_cpu_time_supported() should too
3595  if (os::win32::is_nt()) {
3596    FILETIME CreationTime;
3597    FILETIME ExitTime;
3598    FILETIME KernelTime;
3599    FILETIME UserTime;
3600
3601    if ( GetThreadTimes(thread->osthread()->thread_handle(),
3602                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3603      return -1;
3604    else
3605      if (user_sys_cpu_time) {
3606        return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3607      } else {
3608        return FT2INT64(UserTime) * 100;
3609      }
3610  } else {
3611    return (jlong) timeGetTime() * 1000000;
3612  }
3613}
3614
3615void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3616  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3617  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3618  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3619  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3620}
3621
3622void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3623  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3624  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3625  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3626  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3627}
3628
3629bool os::is_thread_cpu_time_supported() {
3630  // see os::thread_cpu_time
3631  if (os::win32::is_nt()) {
3632    FILETIME CreationTime;
3633    FILETIME ExitTime;
3634    FILETIME KernelTime;
3635    FILETIME UserTime;
3636
3637    if ( GetThreadTimes(GetCurrentThread(),
3638                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3639      return false;
3640    else
3641      return true;
3642  } else {
3643    return false;
3644  }
3645}
3646
3647// Windows does't provide a loadavg primitive so this is stubbed out for now.
3648// It does have primitives (PDH API) to get CPU usage and run queue length.
3649// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3650// If we wanted to implement loadavg on Windows, we have a few options:
3651//
3652// a) Query CPU usage and run queue length and "fake" an answer by
3653//    returning the CPU usage if it's under 100%, and the run queue
3654//    length otherwise.  It turns out that querying is pretty slow
3655//    on Windows, on the order of 200 microseconds on a fast machine.
3656//    Note that on the Windows the CPU usage value is the % usage
3657//    since the last time the API was called (and the first call
3658//    returns 100%), so we'd have to deal with that as well.
3659//
3660// b) Sample the "fake" answer using a sampling thread and store
3661//    the answer in a global variable.  The call to loadavg would
3662//    just return the value of the global, avoiding the slow query.
3663//
3664// c) Sample a better answer using exponential decay to smooth the
3665//    value.  This is basically the algorithm used by UNIX kernels.
3666//
3667// Note that sampling thread starvation could affect both (b) and (c).
3668int os::loadavg(double loadavg[], int nelem) {
3669  return -1;
3670}
3671
3672
3673// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3674bool os::dont_yield() {
3675  return DontYieldALot;
3676}
3677
3678// Is a (classpath) directory empty?
3679bool os::dir_is_empty(const char* path) {
3680  WIN32_FIND_DATA fd;
3681  HANDLE f = FindFirstFile(path, &fd);
3682  if (f == INVALID_HANDLE_VALUE) {
3683    return true;
3684  }
3685  FindClose(f);
3686  return false;
3687}
3688
3689// create binary file, rewriting existing file if required
3690int os::create_binary_file(const char* path, bool rewrite_existing) {
3691  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3692  if (!rewrite_existing) {
3693    oflags |= _O_EXCL;
3694  }
3695  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3696}
3697
3698// return current position of file pointer
3699jlong os::current_file_offset(int fd) {
3700  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3701}
3702
3703// move file pointer to the specified offset
3704jlong os::seek_to_file_offset(int fd, jlong offset) {
3705  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3706}
3707
3708
3709// Map a block of memory.
3710char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3711                     char *addr, size_t bytes, bool read_only,
3712                     bool allow_exec) {
3713  HANDLE hFile;
3714  char* base;
3715
3716  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3717                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3718  if (hFile == NULL) {
3719    if (PrintMiscellaneous && Verbose) {
3720      DWORD err = GetLastError();
3721      tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3722    }
3723    return NULL;
3724  }
3725
3726  if (allow_exec) {
3727    // CreateFileMapping/MapViewOfFileEx can't map executable memory
3728    // unless it comes from a PE image (which the shared archive is not.)
3729    // Even VirtualProtect refuses to give execute access to mapped memory
3730    // that was not previously executable.
3731    //
3732    // Instead, stick the executable region in anonymous memory.  Yuck.
3733    // Penalty is that ~4 pages will not be shareable - in the future
3734    // we might consider DLLizing the shared archive with a proper PE
3735    // header so that mapping executable + sharing is possible.
3736
3737    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3738                                PAGE_READWRITE);
3739    if (base == NULL) {
3740      if (PrintMiscellaneous && Verbose) {
3741        DWORD err = GetLastError();
3742        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3743      }
3744      CloseHandle(hFile);
3745      return NULL;
3746    }
3747
3748    DWORD bytes_read;
3749    OVERLAPPED overlapped;
3750    overlapped.Offset = (DWORD)file_offset;
3751    overlapped.OffsetHigh = 0;
3752    overlapped.hEvent = NULL;
3753    // ReadFile guarantees that if the return value is true, the requested
3754    // number of bytes were read before returning.
3755    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3756    if (!res) {
3757      if (PrintMiscellaneous && Verbose) {
3758        DWORD err = GetLastError();
3759        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3760      }
3761      release_memory(base, bytes);
3762      CloseHandle(hFile);
3763      return NULL;
3764    }
3765  } else {
3766    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3767                                    NULL /*file_name*/);
3768    if (hMap == NULL) {
3769      if (PrintMiscellaneous && Verbose) {
3770        DWORD err = GetLastError();
3771        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3772      }
3773      CloseHandle(hFile);
3774      return NULL;
3775    }
3776
3777    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3778    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3779                                  (DWORD)bytes, addr);
3780    if (base == NULL) {
3781      if (PrintMiscellaneous && Verbose) {
3782        DWORD err = GetLastError();
3783        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3784      }
3785      CloseHandle(hMap);
3786      CloseHandle(hFile);
3787      return NULL;
3788    }
3789
3790    if (CloseHandle(hMap) == 0) {
3791      if (PrintMiscellaneous && Verbose) {
3792        DWORD err = GetLastError();
3793        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3794      }
3795      CloseHandle(hFile);
3796      return base;
3797    }
3798  }
3799
3800  if (allow_exec) {
3801    DWORD old_protect;
3802    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3803    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3804
3805    if (!res) {
3806      if (PrintMiscellaneous && Verbose) {
3807        DWORD err = GetLastError();
3808        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3809      }
3810      // Don't consider this a hard error, on IA32 even if the
3811      // VirtualProtect fails, we should still be able to execute
3812      CloseHandle(hFile);
3813      return base;
3814    }
3815  }
3816
3817  if (CloseHandle(hFile) == 0) {
3818    if (PrintMiscellaneous && Verbose) {
3819      DWORD err = GetLastError();
3820      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3821    }
3822    return base;
3823  }
3824
3825  return base;
3826}
3827
3828
3829// Remap a block of memory.
3830char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3831                       char *addr, size_t bytes, bool read_only,
3832                       bool allow_exec) {
3833  // This OS does not allow existing memory maps to be remapped so we
3834  // have to unmap the memory before we remap it.
3835  if (!os::unmap_memory(addr, bytes)) {
3836    return NULL;
3837  }
3838
3839  // There is a very small theoretical window between the unmap_memory()
3840  // call above and the map_memory() call below where a thread in native
3841  // code may be able to access an address that is no longer mapped.
3842
3843  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3844                        allow_exec);
3845}
3846
3847
3848// Unmap a block of memory.
3849// Returns true=success, otherwise false.
3850
3851bool os::unmap_memory(char* addr, size_t bytes) {
3852  BOOL result = UnmapViewOfFile(addr);
3853  if (result == 0) {
3854    if (PrintMiscellaneous && Verbose) {
3855      DWORD err = GetLastError();
3856      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3857    }
3858    return false;
3859  }
3860  return true;
3861}
3862
3863void os::pause() {
3864  char filename[MAX_PATH];
3865  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3866    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3867  } else {
3868    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3869  }
3870
3871  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3872  if (fd != -1) {
3873    struct stat buf;
3874    close(fd);
3875    while (::stat(filename, &buf) == 0) {
3876      Sleep(100);
3877    }
3878  } else {
3879    jio_fprintf(stderr,
3880      "Could not open pause file '%s', continuing immediately.\n", filename);
3881  }
3882}
3883
3884// An Event wraps a win32 "CreateEvent" kernel handle.
3885//
3886// We have a number of choices regarding "CreateEvent" win32 handle leakage:
3887//
3888// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3889//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3890//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3891//     In addition, an unpark() operation might fetch the handle field, but the
3892//     event could recycle between the fetch and the SetEvent() operation.
3893//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3894//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3895//     on an stale but recycled handle would be harmless, but in practice this might
3896//     confuse other non-Sun code, so it's not a viable approach.
3897//
3898// 2:  Once a win32 event handle is associated with an Event, it remains associated
3899//     with the Event.  The event handle is never closed.  This could be construed
3900//     as handle leakage, but only up to the maximum # of threads that have been extant
3901//     at any one time.  This shouldn't be an issue, as windows platforms typically
3902//     permit a process to have hundreds of thousands of open handles.
3903//
3904// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3905//     and release unused handles.
3906//
3907// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3908//     It's not clear, however, that we wouldn't be trading one type of leak for another.
3909//
3910// 5.  Use an RCU-like mechanism (Read-Copy Update).
3911//     Or perhaps something similar to Maged Michael's "Hazard pointers".
3912//
3913// We use (2).
3914//
3915// TODO-FIXME:
3916// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3917// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3918//     to recover from (or at least detect) the dreaded Windows 841176 bug.
3919// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3920//     into a single win32 CreateEvent() handle.
3921//
3922// _Event transitions in park()
3923//   -1 => -1 : illegal
3924//    1 =>  0 : pass - return immediately
3925//    0 => -1 : block
3926//
3927// _Event serves as a restricted-range semaphore :
3928//    -1 : thread is blocked
3929//     0 : neutral  - thread is running or ready
3930//     1 : signaled - thread is running or ready
3931//
3932// Another possible encoding of _Event would be
3933// with explicit "PARKED" and "SIGNALED" bits.
3934
3935int os::PlatformEvent::park (jlong Millis) {
3936    guarantee (_ParkHandle != NULL , "Invariant") ;
3937    guarantee (Millis > 0          , "Invariant") ;
3938    int v ;
3939
3940    // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3941    // the initial park() operation.
3942
3943    for (;;) {
3944        v = _Event ;
3945        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3946    }
3947    guarantee ((v == 0) || (v == 1), "invariant") ;
3948    if (v != 0) return OS_OK ;
3949
3950    // Do this the hard way by blocking ...
3951    // TODO: consider a brief spin here, gated on the success of recent
3952    // spin attempts by this thread.
3953    //
3954    // We decompose long timeouts into series of shorter timed waits.
3955    // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3956    // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3957    // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3958    // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3959    // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3960    // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3961    // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3962    // for the already waited time.  This policy does not admit any new outcomes.
3963    // In the future, however, we might want to track the accumulated wait time and
3964    // adjust Millis accordingly if we encounter a spurious wakeup.
3965
3966    const int MAXTIMEOUT = 0x10000000 ;
3967    DWORD rv = WAIT_TIMEOUT ;
3968    while (_Event < 0 && Millis > 0) {
3969       DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3970       if (Millis > MAXTIMEOUT) {
3971          prd = MAXTIMEOUT ;
3972       }
3973       rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3974       assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3975       if (rv == WAIT_TIMEOUT) {
3976           Millis -= prd ;
3977       }
3978    }
3979    v = _Event ;
3980    _Event = 0 ;
3981    OrderAccess::fence() ;
3982    // If we encounter a nearly simultanous timeout expiry and unpark()
3983    // we return OS_OK indicating we awoke via unpark().
3984    // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3985    return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3986}
3987
3988void os::PlatformEvent::park () {
3989    guarantee (_ParkHandle != NULL, "Invariant") ;
3990    // Invariant: Only the thread associated with the Event/PlatformEvent
3991    // may call park().
3992    int v ;
3993    for (;;) {
3994        v = _Event ;
3995        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3996    }
3997    guarantee ((v == 0) || (v == 1), "invariant") ;
3998    if (v != 0) return ;
3999
4000    // Do this the hard way by blocking ...
4001    // TODO: consider a brief spin here, gated on the success of recent
4002    // spin attempts by this thread.
4003    while (_Event < 0) {
4004       DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4005       assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4006    }
4007
4008    // Usually we'll find _Event == 0 at this point, but as
4009    // an optional optimization we clear it, just in case can
4010    // multiple unpark() operations drove _Event up to 1.
4011    _Event = 0 ;
4012    OrderAccess::fence() ;
4013    guarantee (_Event >= 0, "invariant") ;
4014}
4015
4016void os::PlatformEvent::unpark() {
4017  guarantee (_ParkHandle != NULL, "Invariant") ;
4018  int v ;
4019  for (;;) {
4020      v = _Event ;      // Increment _Event if it's < 1.
4021      if (v > 0) {
4022         // If it's already signaled just return.
4023         // The LD of _Event could have reordered or be satisfied
4024         // by a read-aside from this processor's write buffer.
4025         // To avoid problems execute a barrier and then
4026         // ratify the value.  A degenerate CAS() would also work.
4027         // Viz., CAS (v+0, &_Event, v) == v).
4028         OrderAccess::fence() ;
4029         if (_Event == v) return ;
4030         continue ;
4031      }
4032      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4033  }
4034  if (v < 0) {
4035     ::SetEvent (_ParkHandle) ;
4036  }
4037}
4038
4039
4040// JSR166
4041// -------------------------------------------------------
4042
4043/*
4044 * The Windows implementation of Park is very straightforward: Basic
4045 * operations on Win32 Events turn out to have the right semantics to
4046 * use them directly. We opportunistically resuse the event inherited
4047 * from Monitor.
4048 */
4049
4050
4051void Parker::park(bool isAbsolute, jlong time) {
4052  guarantee (_ParkEvent != NULL, "invariant") ;
4053  // First, demultiplex/decode time arguments
4054  if (time < 0) { // don't wait
4055    return;
4056  }
4057  else if (time == 0 && !isAbsolute) {
4058    time = INFINITE;
4059  }
4060  else if  (isAbsolute) {
4061    time -= os::javaTimeMillis(); // convert to relative time
4062    if (time <= 0) // already elapsed
4063      return;
4064  }
4065  else { // relative
4066    time /= 1000000; // Must coarsen from nanos to millis
4067    if (time == 0)   // Wait for the minimal time unit if zero
4068      time = 1;
4069  }
4070
4071  JavaThread* thread = (JavaThread*)(Thread::current());
4072  assert(thread->is_Java_thread(), "Must be JavaThread");
4073  JavaThread *jt = (JavaThread *)thread;
4074
4075  // Don't wait if interrupted or already triggered
4076  if (Thread::is_interrupted(thread, false) ||
4077    WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4078    ResetEvent(_ParkEvent);
4079    return;
4080  }
4081  else {
4082    ThreadBlockInVM tbivm(jt);
4083    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4084    jt->set_suspend_equivalent();
4085
4086    WaitForSingleObject(_ParkEvent,  time);
4087    ResetEvent(_ParkEvent);
4088
4089    // If externally suspended while waiting, re-suspend
4090    if (jt->handle_special_suspend_equivalent_condition()) {
4091      jt->java_suspend_self();
4092    }
4093  }
4094}
4095
4096void Parker::unpark() {
4097  guarantee (_ParkEvent != NULL, "invariant") ;
4098  SetEvent(_ParkEvent);
4099}
4100
4101// Run the specified command in a separate process. Return its exit value,
4102// or -1 on failure (e.g. can't create a new process).
4103int os::fork_and_exec(char* cmd) {
4104  STARTUPINFO si;
4105  PROCESS_INFORMATION pi;
4106
4107  memset(&si, 0, sizeof(si));
4108  si.cb = sizeof(si);
4109  memset(&pi, 0, sizeof(pi));
4110  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4111                            cmd,    // command line
4112                            NULL,   // process security attribute
4113                            NULL,   // thread security attribute
4114                            TRUE,   // inherits system handles
4115                            0,      // no creation flags
4116                            NULL,   // use parent's environment block
4117                            NULL,   // use parent's starting directory
4118                            &si,    // (in) startup information
4119                            &pi);   // (out) process information
4120
4121  if (rslt) {
4122    // Wait until child process exits.
4123    WaitForSingleObject(pi.hProcess, INFINITE);
4124
4125    DWORD exit_code;
4126    GetExitCodeProcess(pi.hProcess, &exit_code);
4127
4128    // Close process and thread handles.
4129    CloseHandle(pi.hProcess);
4130    CloseHandle(pi.hThread);
4131
4132    return (int)exit_code;
4133  } else {
4134    return -1;
4135  }
4136}
4137
4138//--------------------------------------------------------------------------------------------------
4139// Non-product code
4140
4141static int mallocDebugIntervalCounter = 0;
4142static int mallocDebugCounter = 0;
4143bool os::check_heap(bool force) {
4144  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4145  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4146    // Note: HeapValidate executes two hardware breakpoints when it finds something
4147    // wrong; at these points, eax contains the address of the offending block (I think).
4148    // To get to the exlicit error message(s) below, just continue twice.
4149    HANDLE heap = GetProcessHeap();
4150    { HeapLock(heap);
4151      PROCESS_HEAP_ENTRY phe;
4152      phe.lpData = NULL;
4153      while (HeapWalk(heap, &phe) != 0) {
4154        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4155            !HeapValidate(heap, 0, phe.lpData)) {
4156          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4157          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4158          fatal("corrupted C heap");
4159        }
4160      }
4161      int err = GetLastError();
4162      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4163        fatal(err_msg("heap walk aborted with error %d", err));
4164      }
4165      HeapUnlock(heap);
4166    }
4167    mallocDebugIntervalCounter = 0;
4168  }
4169  return true;
4170}
4171
4172
4173bool os::find(address addr, outputStream* st) {
4174  // Nothing yet
4175  return false;
4176}
4177
4178LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4179  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4180
4181  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4182    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4183    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4184    address addr = (address) exceptionRecord->ExceptionInformation[1];
4185
4186    if (os::is_memory_serialize_page(thread, addr))
4187      return EXCEPTION_CONTINUE_EXECUTION;
4188  }
4189
4190  return EXCEPTION_CONTINUE_SEARCH;
4191}
4192
4193static int getLastErrorString(char *buf, size_t len)
4194{
4195    long errval;
4196
4197    if ((errval = GetLastError()) != 0)
4198    {
4199      /* DOS error */
4200      size_t n = (size_t)FormatMessage(
4201            FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4202            NULL,
4203            errval,
4204            0,
4205            buf,
4206            (DWORD)len,
4207            NULL);
4208      if (n > 3) {
4209        /* Drop final '.', CR, LF */
4210        if (buf[n - 1] == '\n') n--;
4211        if (buf[n - 1] == '\r') n--;
4212        if (buf[n - 1] == '.') n--;
4213        buf[n] = '\0';
4214      }
4215      return (int)n;
4216    }
4217
4218    if (errno != 0)
4219    {
4220      /* C runtime error that has no corresponding DOS error code */
4221      const char *s = strerror(errno);
4222      size_t n = strlen(s);
4223      if (n >= len) n = len - 1;
4224      strncpy(buf, s, n);
4225      buf[n] = '\0';
4226      return (int)n;
4227    }
4228    return 0;
4229}
4230
4231
4232// We don't build a headless jre for Windows
4233bool os::is_headless_jre() { return false; }
4234
4235