os_windows.cpp revision 1214:0fc941df6fb7
1301169Slidl/*
2301169Slidl * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
3301169Slidl * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4301169Slidl *
5301169Slidl * This code is free software; you can redistribute it and/or modify it
6301169Slidl * under the terms of the GNU General Public License version 2 only, as
7301169Slidl * published by the Free Software Foundation.
8301169Slidl *
9301169Slidl * This code is distributed in the hope that it will be useful, but WITHOUT
10301169Slidl * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11301169Slidl * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12301169Slidl * version 2 for more details (a copy is included in the LICENSE file that
13301169Slidl * accompanied this code).
14301169Slidl *
15301169Slidl * You should have received a copy of the GNU General Public License version
16301169Slidl * 2 along with this work; if not, write to the Free Software Foundation,
17301169Slidl * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18301169Slidl *
19301169Slidl * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20301169Slidl * CA 95054 USA or visit www.sun.com if you need additional information or
21301169Slidl * have any questions.
22301169Slidl *
23301169Slidl */
24301169Slidl
25301169Slidl#ifdef _WIN64
26301169Slidl// Must be at least Windows 2000 or XP to use VectoredExceptions
27301169Slidl#define _WIN32_WINNT 0x500
28301169Slidl#endif
29301169Slidl
30301169Slidl// do not include precompiled header file
31301169Slidl# include "incls/_os_windows.cpp.incl"
32301169Slidl
33301169Slidl#ifdef _DEBUG
34301169Slidl#include <crtdbg.h>
35301169Slidl#endif
36301169Slidl
37301169Slidl
38301169Slidl#include <windows.h>
39301169Slidl#include <sys/types.h>
40301169Slidl#include <sys/stat.h>
41301169Slidl#include <sys/timeb.h>
42301169Slidl#include <objidl.h>
43301169Slidl#include <shlobj.h>
44301169Slidl
45301169Slidl#include <malloc.h>
46301169Slidl#include <signal.h>
47301169Slidl#include <direct.h>
48301169Slidl#include <errno.h>
49301169Slidl#include <fcntl.h>
50301169Slidl#include <io.h>
51301169Slidl#include <process.h>              // For _beginthreadex(), _endthreadex()
52301169Slidl#include <imagehlp.h>             // For os::dll_address_to_function_name
53301169Slidl
54301169Slidl/* for enumerating dll libraries */
55301169Slidl#include <tlhelp32.h>
56301169Slidl#include <vdmdbg.h>
57301169Slidl
58301169Slidl// for timer info max values which include all bits
59301169Slidl#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
60301169Slidl
61301169Slidl// For DLL loading/load error detection
62301169Slidl// Values of PE COFF
63301169Slidl#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
64301169Slidl#define IMAGE_FILE_SIGNATURE_LENGTH 4
65301169Slidl
66static HANDLE main_process;
67static HANDLE main_thread;
68static int    main_thread_id;
69
70static FILETIME process_creation_time;
71static FILETIME process_exit_time;
72static FILETIME process_user_time;
73static FILETIME process_kernel_time;
74
75#ifdef _WIN64
76PVOID  topLevelVectoredExceptionHandler = NULL;
77#endif
78
79#ifdef _M_IA64
80#define __CPU__ ia64
81#elif _M_AMD64
82#define __CPU__ amd64
83#else
84#define __CPU__ i486
85#endif
86
87// save DLL module handle, used by GetModuleFileName
88
89HINSTANCE vm_lib_handle;
90static int getLastErrorString(char *buf, size_t len);
91
92BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
93  switch (reason) {
94    case DLL_PROCESS_ATTACH:
95      vm_lib_handle = hinst;
96      if(ForceTimeHighResolution)
97        timeBeginPeriod(1L);
98      break;
99    case DLL_PROCESS_DETACH:
100      if(ForceTimeHighResolution)
101        timeEndPeriod(1L);
102#ifdef _WIN64
103      if (topLevelVectoredExceptionHandler != NULL) {
104        RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
105        topLevelVectoredExceptionHandler = NULL;
106      }
107#endif
108      break;
109    default:
110      break;
111  }
112  return true;
113}
114
115static inline double fileTimeAsDouble(FILETIME* time) {
116  const double high  = (double) ((unsigned int) ~0);
117  const double split = 10000000.0;
118  double result = (time->dwLowDateTime / split) +
119                   time->dwHighDateTime * (high/split);
120  return result;
121}
122
123// Implementation of os
124
125bool os::getenv(const char* name, char* buffer, int len) {
126 int result = GetEnvironmentVariable(name, buffer, len);
127 return result > 0 && result < len;
128}
129
130
131// No setuid programs under Windows.
132bool os::have_special_privileges() {
133  return false;
134}
135
136
137// This method is  a periodic task to check for misbehaving JNI applications
138// under CheckJNI, we can add any periodic checks here.
139// For Windows at the moment does nothing
140void os::run_periodic_checks() {
141  return;
142}
143
144#ifndef _WIN64
145// previous UnhandledExceptionFilter, if there is one
146static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
147
148LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
149#endif
150void os::init_system_properties_values() {
151  /* sysclasspath, java_home, dll_dir */
152  {
153      char *home_path;
154      char *dll_path;
155      char *pslash;
156      char *bin = "\\bin";
157      char home_dir[MAX_PATH];
158
159      if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
160          os::jvm_path(home_dir, sizeof(home_dir));
161          // Found the full path to jvm[_g].dll.
162          // Now cut the path to <java_home>/jre if we can.
163          *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
164          pslash = strrchr(home_dir, '\\');
165          if (pslash != NULL) {
166              *pslash = '\0';                 /* get rid of \{client|server} */
167              pslash = strrchr(home_dir, '\\');
168              if (pslash != NULL)
169                  *pslash = '\0';             /* get rid of \bin */
170          }
171      }
172
173      home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
174      if (home_path == NULL)
175          return;
176      strcpy(home_path, home_dir);
177      Arguments::set_java_home(home_path);
178
179      dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
180      if (dll_path == NULL)
181          return;
182      strcpy(dll_path, home_dir);
183      strcat(dll_path, bin);
184      Arguments::set_dll_dir(dll_path);
185
186      if (!set_boot_path('\\', ';'))
187          return;
188  }
189
190  /* library_path */
191  #define EXT_DIR "\\lib\\ext"
192  #define BIN_DIR "\\bin"
193  #define PACKAGE_DIR "\\Sun\\Java"
194  {
195    /* Win32 library search order (See the documentation for LoadLibrary):
196     *
197     * 1. The directory from which application is loaded.
198     * 2. The current directory
199     * 3. The system wide Java Extensions directory (Java only)
200     * 4. System directory (GetSystemDirectory)
201     * 5. Windows directory (GetWindowsDirectory)
202     * 6. The PATH environment variable
203     */
204
205    char *library_path;
206    char tmp[MAX_PATH];
207    char *path_str = ::getenv("PATH");
208
209    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
210        sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
211
212    library_path[0] = '\0';
213
214    GetModuleFileName(NULL, tmp, sizeof(tmp));
215    *(strrchr(tmp, '\\')) = '\0';
216    strcat(library_path, tmp);
217
218    strcat(library_path, ";.");
219
220    GetWindowsDirectory(tmp, sizeof(tmp));
221    strcat(library_path, ";");
222    strcat(library_path, tmp);
223    strcat(library_path, PACKAGE_DIR BIN_DIR);
224
225    GetSystemDirectory(tmp, sizeof(tmp));
226    strcat(library_path, ";");
227    strcat(library_path, tmp);
228
229    GetWindowsDirectory(tmp, sizeof(tmp));
230    strcat(library_path, ";");
231    strcat(library_path, tmp);
232
233    if (path_str) {
234        strcat(library_path, ";");
235        strcat(library_path, path_str);
236    }
237
238    Arguments::set_library_path(library_path);
239    FREE_C_HEAP_ARRAY(char, library_path);
240  }
241
242  /* Default extensions directory */
243  {
244    char path[MAX_PATH];
245    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
246    GetWindowsDirectory(path, MAX_PATH);
247    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
248        path, PACKAGE_DIR, EXT_DIR);
249    Arguments::set_ext_dirs(buf);
250  }
251  #undef EXT_DIR
252  #undef BIN_DIR
253  #undef PACKAGE_DIR
254
255  /* Default endorsed standards directory. */
256  {
257    #define ENDORSED_DIR "\\lib\\endorsed"
258    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
259    char * buf = NEW_C_HEAP_ARRAY(char, len);
260    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
261    Arguments::set_endorsed_dirs(buf);
262    #undef ENDORSED_DIR
263  }
264
265#ifndef _WIN64
266  // set our UnhandledExceptionFilter and save any previous one
267  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
268#endif
269
270  // Done
271  return;
272}
273
274void os::breakpoint() {
275  DebugBreak();
276}
277
278// Invoked from the BREAKPOINT Macro
279extern "C" void breakpoint() {
280  os::breakpoint();
281}
282
283// Returns an estimate of the current stack pointer. Result must be guaranteed
284// to point into the calling threads stack, and be no lower than the current
285// stack pointer.
286
287address os::current_stack_pointer() {
288  int dummy;
289  address sp = (address)&dummy;
290  return sp;
291}
292
293// os::current_stack_base()
294//
295//   Returns the base of the stack, which is the stack's
296//   starting address.  This function must be called
297//   while running on the stack of the thread being queried.
298
299address os::current_stack_base() {
300  MEMORY_BASIC_INFORMATION minfo;
301  address stack_bottom;
302  size_t stack_size;
303
304  VirtualQuery(&minfo, &minfo, sizeof(minfo));
305  stack_bottom =  (address)minfo.AllocationBase;
306  stack_size = minfo.RegionSize;
307
308  // Add up the sizes of all the regions with the same
309  // AllocationBase.
310  while( 1 )
311  {
312    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
313    if ( stack_bottom == (address)minfo.AllocationBase )
314      stack_size += minfo.RegionSize;
315    else
316      break;
317  }
318
319#ifdef _M_IA64
320  // IA64 has memory and register stacks
321  stack_size = stack_size / 2;
322#endif
323  return stack_bottom + stack_size;
324}
325
326size_t os::current_stack_size() {
327  size_t sz;
328  MEMORY_BASIC_INFORMATION minfo;
329  VirtualQuery(&minfo, &minfo, sizeof(minfo));
330  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
331  return sz;
332}
333
334
335LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
336
337// Thread start routine for all new Java threads
338static unsigned __stdcall java_start(Thread* thread) {
339  // Try to randomize the cache line index of hot stack frames.
340  // This helps when threads of the same stack traces evict each other's
341  // cache lines. The threads can be either from the same JVM instance, or
342  // from different JVM instances. The benefit is especially true for
343  // processors with hyperthreading technology.
344  static int counter = 0;
345  int pid = os::current_process_id();
346  _alloca(((pid ^ counter++) & 7) * 128);
347
348  OSThread* osthr = thread->osthread();
349  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
350
351  if (UseNUMA) {
352    int lgrp_id = os::numa_get_group_id();
353    if (lgrp_id != -1) {
354      thread->set_lgrp_id(lgrp_id);
355    }
356  }
357
358
359  if (UseVectoredExceptions) {
360    // If we are using vectored exception we don't need to set a SEH
361    thread->run();
362  }
363  else {
364    // Install a win32 structured exception handler around every thread created
365    // by VM, so VM can genrate error dump when an exception occurred in non-
366    // Java thread (e.g. VM thread).
367    __try {
368       thread->run();
369    } __except(topLevelExceptionFilter(
370               (_EXCEPTION_POINTERS*)_exception_info())) {
371        // Nothing to do.
372    }
373  }
374
375  // One less thread is executing
376  // When the VMThread gets here, the main thread may have already exited
377  // which frees the CodeHeap containing the Atomic::add code
378  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
379    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
380  }
381
382  return 0;
383}
384
385static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
386  // Allocate the OSThread object
387  OSThread* osthread = new OSThread(NULL, NULL);
388  if (osthread == NULL) return NULL;
389
390  // Initialize support for Java interrupts
391  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
392  if (interrupt_event == NULL) {
393    delete osthread;
394    return NULL;
395  }
396  osthread->set_interrupt_event(interrupt_event);
397
398  // Store info on the Win32 thread into the OSThread
399  osthread->set_thread_handle(thread_handle);
400  osthread->set_thread_id(thread_id);
401
402  if (UseNUMA) {
403    int lgrp_id = os::numa_get_group_id();
404    if (lgrp_id != -1) {
405      thread->set_lgrp_id(lgrp_id);
406    }
407  }
408
409  // Initial thread state is INITIALIZED, not SUSPENDED
410  osthread->set_state(INITIALIZED);
411
412  return osthread;
413}
414
415
416bool os::create_attached_thread(JavaThread* thread) {
417#ifdef ASSERT
418  thread->verify_not_published();
419#endif
420  HANDLE thread_h;
421  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
422                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
423    fatal("DuplicateHandle failed\n");
424  }
425  OSThread* osthread = create_os_thread(thread, thread_h,
426                                        (int)current_thread_id());
427  if (osthread == NULL) {
428     return false;
429  }
430
431  // Initial thread state is RUNNABLE
432  osthread->set_state(RUNNABLE);
433
434  thread->set_osthread(osthread);
435  return true;
436}
437
438bool os::create_main_thread(JavaThread* thread) {
439#ifdef ASSERT
440  thread->verify_not_published();
441#endif
442  if (_starting_thread == NULL) {
443    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
444     if (_starting_thread == NULL) {
445        return false;
446     }
447  }
448
449  // The primordial thread is runnable from the start)
450  _starting_thread->set_state(RUNNABLE);
451
452  thread->set_osthread(_starting_thread);
453  return true;
454}
455
456// Allocate and initialize a new OSThread
457bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
458  unsigned thread_id;
459
460  // Allocate the OSThread object
461  OSThread* osthread = new OSThread(NULL, NULL);
462  if (osthread == NULL) {
463    return false;
464  }
465
466  // Initialize support for Java interrupts
467  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
468  if (interrupt_event == NULL) {
469    delete osthread;
470    return NULL;
471  }
472  osthread->set_interrupt_event(interrupt_event);
473  osthread->set_interrupted(false);
474
475  thread->set_osthread(osthread);
476
477  if (stack_size == 0) {
478    switch (thr_type) {
479    case os::java_thread:
480      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
481      if (JavaThread::stack_size_at_create() > 0)
482        stack_size = JavaThread::stack_size_at_create();
483      break;
484    case os::compiler_thread:
485      if (CompilerThreadStackSize > 0) {
486        stack_size = (size_t)(CompilerThreadStackSize * K);
487        break;
488      } // else fall through:
489        // use VMThreadStackSize if CompilerThreadStackSize is not defined
490    case os::vm_thread:
491    case os::pgc_thread:
492    case os::cgc_thread:
493    case os::watcher_thread:
494      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
495      break;
496    }
497  }
498
499  // Create the Win32 thread
500  //
501  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
502  // does not specify stack size. Instead, it specifies the size of
503  // initially committed space. The stack size is determined by
504  // PE header in the executable. If the committed "stack_size" is larger
505  // than default value in the PE header, the stack is rounded up to the
506  // nearest multiple of 1MB. For example if the launcher has default
507  // stack size of 320k, specifying any size less than 320k does not
508  // affect the actual stack size at all, it only affects the initial
509  // commitment. On the other hand, specifying 'stack_size' larger than
510  // default value may cause significant increase in memory usage, because
511  // not only the stack space will be rounded up to MB, but also the
512  // entire space is committed upfront.
513  //
514  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
515  // for CreateThread() that can treat 'stack_size' as stack size. However we
516  // are not supposed to call CreateThread() directly according to MSDN
517  // document because JVM uses C runtime library. The good news is that the
518  // flag appears to work with _beginthredex() as well.
519
520#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
521#define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
522#endif
523
524  HANDLE thread_handle =
525    (HANDLE)_beginthreadex(NULL,
526                           (unsigned)stack_size,
527                           (unsigned (__stdcall *)(void*)) java_start,
528                           thread,
529                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
530                           &thread_id);
531  if (thread_handle == NULL) {
532    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
533    // without the flag.
534    thread_handle =
535    (HANDLE)_beginthreadex(NULL,
536                           (unsigned)stack_size,
537                           (unsigned (__stdcall *)(void*)) java_start,
538                           thread,
539                           CREATE_SUSPENDED,
540                           &thread_id);
541  }
542  if (thread_handle == NULL) {
543    // Need to clean up stuff we've allocated so far
544    CloseHandle(osthread->interrupt_event());
545    thread->set_osthread(NULL);
546    delete osthread;
547    return NULL;
548  }
549
550  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
551
552  // Store info on the Win32 thread into the OSThread
553  osthread->set_thread_handle(thread_handle);
554  osthread->set_thread_id(thread_id);
555
556  // Initial thread state is INITIALIZED, not SUSPENDED
557  osthread->set_state(INITIALIZED);
558
559  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
560  return true;
561}
562
563
564// Free Win32 resources related to the OSThread
565void os::free_thread(OSThread* osthread) {
566  assert(osthread != NULL, "osthread not set");
567  CloseHandle(osthread->thread_handle());
568  CloseHandle(osthread->interrupt_event());
569  delete osthread;
570}
571
572
573static int    has_performance_count = 0;
574static jlong first_filetime;
575static jlong initial_performance_count;
576static jlong performance_frequency;
577
578
579jlong as_long(LARGE_INTEGER x) {
580  jlong result = 0; // initialization to avoid warning
581  set_high(&result, x.HighPart);
582  set_low(&result,  x.LowPart);
583  return result;
584}
585
586
587jlong os::elapsed_counter() {
588  LARGE_INTEGER count;
589  if (has_performance_count) {
590    QueryPerformanceCounter(&count);
591    return as_long(count) - initial_performance_count;
592  } else {
593    FILETIME wt;
594    GetSystemTimeAsFileTime(&wt);
595    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
596  }
597}
598
599
600jlong os::elapsed_frequency() {
601  if (has_performance_count) {
602    return performance_frequency;
603  } else {
604   // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
605   return 10000000;
606  }
607}
608
609
610julong os::available_memory() {
611  return win32::available_memory();
612}
613
614julong os::win32::available_memory() {
615  // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
616  // is larger than 4GB
617  MEMORYSTATUS ms;
618  GlobalMemoryStatus(&ms);
619
620  return (julong)ms.dwAvailPhys;
621}
622
623julong os::physical_memory() {
624  return win32::physical_memory();
625}
626
627julong os::allocatable_physical_memory(julong size) {
628#ifdef _LP64
629  return size;
630#else
631  // Limit to 1400m because of the 2gb address space wall
632  return MIN2(size, (julong)1400*M);
633#endif
634}
635
636// VC6 lacks DWORD_PTR
637#if _MSC_VER < 1300
638typedef UINT_PTR DWORD_PTR;
639#endif
640
641int os::active_processor_count() {
642  DWORD_PTR lpProcessAffinityMask = 0;
643  DWORD_PTR lpSystemAffinityMask = 0;
644  int proc_count = processor_count();
645  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
646      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
647    // Nof active processors is number of bits in process affinity mask
648    int bitcount = 0;
649    while (lpProcessAffinityMask != 0) {
650      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
651      bitcount++;
652    }
653    return bitcount;
654  } else {
655    return proc_count;
656  }
657}
658
659bool os::distribute_processes(uint length, uint* distribution) {
660  // Not yet implemented.
661  return false;
662}
663
664bool os::bind_to_processor(uint processor_id) {
665  // Not yet implemented.
666  return false;
667}
668
669static void initialize_performance_counter() {
670  LARGE_INTEGER count;
671  if (QueryPerformanceFrequency(&count)) {
672    has_performance_count = 1;
673    performance_frequency = as_long(count);
674    QueryPerformanceCounter(&count);
675    initial_performance_count = as_long(count);
676  } else {
677    has_performance_count = 0;
678    FILETIME wt;
679    GetSystemTimeAsFileTime(&wt);
680    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
681  }
682}
683
684
685double os::elapsedTime() {
686  return (double) elapsed_counter() / (double) elapsed_frequency();
687}
688
689
690// Windows format:
691//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
692// Java format:
693//   Java standards require the number of milliseconds since 1/1/1970
694
695// Constant offset - calculated using offset()
696static jlong  _offset   = 116444736000000000;
697// Fake time counter for reproducible results when debugging
698static jlong  fake_time = 0;
699
700#ifdef ASSERT
701// Just to be safe, recalculate the offset in debug mode
702static jlong _calculated_offset = 0;
703static int   _has_calculated_offset = 0;
704
705jlong offset() {
706  if (_has_calculated_offset) return _calculated_offset;
707  SYSTEMTIME java_origin;
708  java_origin.wYear          = 1970;
709  java_origin.wMonth         = 1;
710  java_origin.wDayOfWeek     = 0; // ignored
711  java_origin.wDay           = 1;
712  java_origin.wHour          = 0;
713  java_origin.wMinute        = 0;
714  java_origin.wSecond        = 0;
715  java_origin.wMilliseconds  = 0;
716  FILETIME jot;
717  if (!SystemTimeToFileTime(&java_origin, &jot)) {
718    fatal1("Error = %d\nWindows error", GetLastError());
719  }
720  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
721  _has_calculated_offset = 1;
722  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
723  return _calculated_offset;
724}
725#else
726jlong offset() {
727  return _offset;
728}
729#endif
730
731jlong windows_to_java_time(FILETIME wt) {
732  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
733  return (a - offset()) / 10000;
734}
735
736FILETIME java_to_windows_time(jlong l) {
737  jlong a = (l * 10000) + offset();
738  FILETIME result;
739  result.dwHighDateTime = high(a);
740  result.dwLowDateTime  = low(a);
741  return result;
742}
743
744// For now, we say that Windows does not support vtime.  I have no idea
745// whether it can actually be made to (DLD, 9/13/05).
746
747bool os::supports_vtime() { return false; }
748bool os::enable_vtime() { return false; }
749bool os::vtime_enabled() { return false; }
750double os::elapsedVTime() {
751  // better than nothing, but not much
752  return elapsedTime();
753}
754
755jlong os::javaTimeMillis() {
756  if (UseFakeTimers) {
757    return fake_time++;
758  } else {
759    FILETIME wt;
760    GetSystemTimeAsFileTime(&wt);
761    return windows_to_java_time(wt);
762  }
763}
764
765#define NANOS_PER_SEC         CONST64(1000000000)
766#define NANOS_PER_MILLISEC    1000000
767jlong os::javaTimeNanos() {
768  if (!has_performance_count) {
769    return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
770  } else {
771    LARGE_INTEGER current_count;
772    QueryPerformanceCounter(&current_count);
773    double current = as_long(current_count);
774    double freq = performance_frequency;
775    jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
776    return time;
777  }
778}
779
780void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
781  if (!has_performance_count) {
782    // javaTimeMillis() doesn't have much percision,
783    // but it is not going to wrap -- so all 64 bits
784    info_ptr->max_value = ALL_64_BITS;
785
786    // this is a wall clock timer, so may skip
787    info_ptr->may_skip_backward = true;
788    info_ptr->may_skip_forward = true;
789  } else {
790    jlong freq = performance_frequency;
791    if (freq < NANOS_PER_SEC) {
792      // the performance counter is 64 bits and we will
793      // be multiplying it -- so no wrap in 64 bits
794      info_ptr->max_value = ALL_64_BITS;
795    } else if (freq > NANOS_PER_SEC) {
796      // use the max value the counter can reach to
797      // determine the max value which could be returned
798      julong max_counter = (julong)ALL_64_BITS;
799      info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
800    } else {
801      // the performance counter is 64 bits and we will
802      // be using it directly -- so no wrap in 64 bits
803      info_ptr->max_value = ALL_64_BITS;
804    }
805
806    // using a counter, so no skipping
807    info_ptr->may_skip_backward = false;
808    info_ptr->may_skip_forward = false;
809  }
810  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
811}
812
813char* os::local_time_string(char *buf, size_t buflen) {
814  SYSTEMTIME st;
815  GetLocalTime(&st);
816  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
817               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
818  return buf;
819}
820
821bool os::getTimesSecs(double* process_real_time,
822                     double* process_user_time,
823                     double* process_system_time) {
824  HANDLE h_process = GetCurrentProcess();
825  FILETIME create_time, exit_time, kernel_time, user_time;
826  BOOL result = GetProcessTimes(h_process,
827                               &create_time,
828                               &exit_time,
829                               &kernel_time,
830                               &user_time);
831  if (result != 0) {
832    FILETIME wt;
833    GetSystemTimeAsFileTime(&wt);
834    jlong rtc_millis = windows_to_java_time(wt);
835    jlong user_millis = windows_to_java_time(user_time);
836    jlong system_millis = windows_to_java_time(kernel_time);
837    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
838    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
839    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
840    return true;
841  } else {
842    return false;
843  }
844}
845
846void os::shutdown() {
847
848  // allow PerfMemory to attempt cleanup of any persistent resources
849  perfMemory_exit();
850
851  // flush buffered output, finish log files
852  ostream_abort();
853
854  // Check for abort hook
855  abort_hook_t abort_hook = Arguments::abort_hook();
856  if (abort_hook != NULL) {
857    abort_hook();
858  }
859}
860
861void os::abort(bool dump_core)
862{
863  os::shutdown();
864  // no core dump on Windows
865  ::exit(1);
866}
867
868// Die immediately, no exit hook, no abort hook, no cleanup.
869void os::die() {
870  _exit(-1);
871}
872
873// Directory routines copied from src/win32/native/java/io/dirent_md.c
874//  * dirent_md.c       1.15 00/02/02
875//
876// The declarations for DIR and struct dirent are in jvm_win32.h.
877
878/* Caller must have already run dirname through JVM_NativePath, which removes
879   duplicate slashes and converts all instances of '/' into '\\'. */
880
881DIR *
882os::opendir(const char *dirname)
883{
884    assert(dirname != NULL, "just checking");   // hotspot change
885    DIR *dirp = (DIR *)malloc(sizeof(DIR));
886    DWORD fattr;                                // hotspot change
887    char alt_dirname[4] = { 0, 0, 0, 0 };
888
889    if (dirp == 0) {
890        errno = ENOMEM;
891        return 0;
892    }
893
894    /*
895     * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
896     * as a directory in FindFirstFile().  We detect this case here and
897     * prepend the current drive name.
898     */
899    if (dirname[1] == '\0' && dirname[0] == '\\') {
900        alt_dirname[0] = _getdrive() + 'A' - 1;
901        alt_dirname[1] = ':';
902        alt_dirname[2] = '\\';
903        alt_dirname[3] = '\0';
904        dirname = alt_dirname;
905    }
906
907    dirp->path = (char *)malloc(strlen(dirname) + 5);
908    if (dirp->path == 0) {
909        free(dirp);
910        errno = ENOMEM;
911        return 0;
912    }
913    strcpy(dirp->path, dirname);
914
915    fattr = GetFileAttributes(dirp->path);
916    if (fattr == 0xffffffff) {
917        free(dirp->path);
918        free(dirp);
919        errno = ENOENT;
920        return 0;
921    } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
922        free(dirp->path);
923        free(dirp);
924        errno = ENOTDIR;
925        return 0;
926    }
927
928    /* Append "*.*", or possibly "\\*.*", to path */
929    if (dirp->path[1] == ':'
930        && (dirp->path[2] == '\0'
931            || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
932        /* No '\\' needed for cases like "Z:" or "Z:\" */
933        strcat(dirp->path, "*.*");
934    } else {
935        strcat(dirp->path, "\\*.*");
936    }
937
938    dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
939    if (dirp->handle == INVALID_HANDLE_VALUE) {
940        if (GetLastError() != ERROR_FILE_NOT_FOUND) {
941            free(dirp->path);
942            free(dirp);
943            errno = EACCES;
944            return 0;
945        }
946    }
947    return dirp;
948}
949
950/* parameter dbuf unused on Windows */
951
952struct dirent *
953os::readdir(DIR *dirp, dirent *dbuf)
954{
955    assert(dirp != NULL, "just checking");      // hotspot change
956    if (dirp->handle == INVALID_HANDLE_VALUE) {
957        return 0;
958    }
959
960    strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
961
962    if (!FindNextFile(dirp->handle, &dirp->find_data)) {
963        if (GetLastError() == ERROR_INVALID_HANDLE) {
964            errno = EBADF;
965            return 0;
966        }
967        FindClose(dirp->handle);
968        dirp->handle = INVALID_HANDLE_VALUE;
969    }
970
971    return &dirp->dirent;
972}
973
974int
975os::closedir(DIR *dirp)
976{
977    assert(dirp != NULL, "just checking");      // hotspot change
978    if (dirp->handle != INVALID_HANDLE_VALUE) {
979        if (!FindClose(dirp->handle)) {
980            errno = EBADF;
981            return -1;
982        }
983        dirp->handle = INVALID_HANDLE_VALUE;
984    }
985    free(dirp->path);
986    free(dirp);
987    return 0;
988}
989
990const char* os::dll_file_extension() { return ".dll"; }
991
992const char * os::get_temp_directory()
993{
994    static char path_buf[MAX_PATH];
995    if (GetTempPath(MAX_PATH, path_buf)>0)
996      return path_buf;
997    else{
998      path_buf[0]='\0';
999      return path_buf;
1000    }
1001}
1002
1003void os::dll_build_name(char *holder, size_t holderlen,
1004                        const char* pname, const char* fname)
1005{
1006    // copied from libhpi
1007    const size_t pnamelen = pname ? strlen(pname) : 0;
1008    const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1009
1010    /* Quietly truncates on buffer overflow. Should be an error. */
1011    if (pnamelen + strlen(fname) + 10 > holderlen) {
1012        *holder = '\0';
1013        return;
1014    }
1015
1016    if (pnamelen == 0) {
1017        sprintf(holder, "%s.dll", fname);
1018    } else if (c == ':' || c == '\\') {
1019        sprintf(holder, "%s%s.dll", pname, fname);
1020    } else {
1021        sprintf(holder, "%s\\%s.dll", pname, fname);
1022    }
1023}
1024
1025// Needs to be in os specific directory because windows requires another
1026// header file <direct.h>
1027const char* os::get_current_directory(char *buf, int buflen) {
1028  return _getcwd(buf, buflen);
1029}
1030
1031//-----------------------------------------------------------
1032// Helper functions for fatal error handler
1033
1034// The following library functions are resolved dynamically at runtime:
1035
1036// PSAPI functions, for Windows NT, 2000, XP
1037
1038// psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1039// SDK from Microsoft.  Here are the definitions copied from psapi.h
1040typedef struct _MODULEINFO {
1041    LPVOID lpBaseOfDll;
1042    DWORD SizeOfImage;
1043    LPVOID EntryPoint;
1044} MODULEINFO, *LPMODULEINFO;
1045
1046static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1047static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1048static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1049
1050// ToolHelp Functions, for Windows 95, 98 and ME
1051
1052static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1053static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1054static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1055
1056bool _has_psapi;
1057bool _psapi_init = false;
1058bool _has_toolhelp;
1059
1060static bool _init_psapi() {
1061  HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1062  if( psapi == NULL ) return false ;
1063
1064  _EnumProcessModules = CAST_TO_FN_PTR(
1065      BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1066      GetProcAddress(psapi, "EnumProcessModules")) ;
1067  _GetModuleFileNameEx = CAST_TO_FN_PTR(
1068      DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1069      GetProcAddress(psapi, "GetModuleFileNameExA"));
1070  _GetModuleInformation = CAST_TO_FN_PTR(
1071      BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1072      GetProcAddress(psapi, "GetModuleInformation"));
1073
1074  _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1075  _psapi_init = true;
1076  return _has_psapi;
1077}
1078
1079static bool _init_toolhelp() {
1080  HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1081  if (kernel32 == NULL) return false ;
1082
1083  _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1084      HANDLE(WINAPI *)(DWORD,DWORD),
1085      GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1086  _Module32First = CAST_TO_FN_PTR(
1087      BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1088      GetProcAddress(kernel32, "Module32First" ));
1089  _Module32Next = CAST_TO_FN_PTR(
1090      BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1091      GetProcAddress(kernel32, "Module32Next" ));
1092
1093  _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1094  return _has_toolhelp;
1095}
1096
1097#ifdef _WIN64
1098// Helper routine which returns true if address in
1099// within the NTDLL address space.
1100//
1101static bool _addr_in_ntdll( address addr )
1102{
1103  HMODULE hmod;
1104  MODULEINFO minfo;
1105
1106  hmod = GetModuleHandle("NTDLL.DLL");
1107  if ( hmod == NULL ) return false;
1108  if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1109                               &minfo, sizeof(MODULEINFO)) )
1110    return false;
1111
1112  if ( (addr >= minfo.lpBaseOfDll) &&
1113       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1114    return true;
1115  else
1116    return false;
1117}
1118#endif
1119
1120
1121// Enumerate all modules for a given process ID
1122//
1123// Notice that Windows 95/98/Me and Windows NT/2000/XP have
1124// different API for doing this. We use PSAPI.DLL on NT based
1125// Windows and ToolHelp on 95/98/Me.
1126
1127// Callback function that is called by enumerate_modules() on
1128// every DLL module.
1129// Input parameters:
1130//    int       pid,
1131//    char*     module_file_name,
1132//    address   module_base_addr,
1133//    unsigned  module_size,
1134//    void*     param
1135typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1136
1137// enumerate_modules for Windows NT, using PSAPI
1138static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1139{
1140  HANDLE   hProcess ;
1141
1142# define MAX_NUM_MODULES 128
1143  HMODULE     modules[MAX_NUM_MODULES];
1144  static char filename[ MAX_PATH ];
1145  int         result = 0;
1146
1147  if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1148
1149  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1150                         FALSE, pid ) ;
1151  if (hProcess == NULL) return 0;
1152
1153  DWORD size_needed;
1154  if (!_EnumProcessModules(hProcess, modules,
1155                           sizeof(modules), &size_needed)) {
1156      CloseHandle( hProcess );
1157      return 0;
1158  }
1159
1160  // number of modules that are currently loaded
1161  int num_modules = size_needed / sizeof(HMODULE);
1162
1163  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1164    // Get Full pathname:
1165    if(!_GetModuleFileNameEx(hProcess, modules[i],
1166                             filename, sizeof(filename))) {
1167        filename[0] = '\0';
1168    }
1169
1170    MODULEINFO modinfo;
1171    if (!_GetModuleInformation(hProcess, modules[i],
1172                               &modinfo, sizeof(modinfo))) {
1173        modinfo.lpBaseOfDll = NULL;
1174        modinfo.SizeOfImage = 0;
1175    }
1176
1177    // Invoke callback function
1178    result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1179                  modinfo.SizeOfImage, param);
1180    if (result) break;
1181  }
1182
1183  CloseHandle( hProcess ) ;
1184  return result;
1185}
1186
1187
1188// enumerate_modules for Windows 95/98/ME, using TOOLHELP
1189static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1190{
1191  HANDLE                hSnapShot ;
1192  static MODULEENTRY32  modentry ;
1193  int                   result = 0;
1194
1195  if (!_has_toolhelp) return 0;
1196
1197  // Get a handle to a Toolhelp snapshot of the system
1198  hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1199  if( hSnapShot == INVALID_HANDLE_VALUE ) {
1200      return FALSE ;
1201  }
1202
1203  // iterate through all modules
1204  modentry.dwSize = sizeof(MODULEENTRY32) ;
1205  bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1206
1207  while( not_done ) {
1208    // invoke the callback
1209    result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1210                modentry.modBaseSize, param);
1211    if (result) break;
1212
1213    modentry.dwSize = sizeof(MODULEENTRY32) ;
1214    not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1215  }
1216
1217  CloseHandle(hSnapShot);
1218  return result;
1219}
1220
1221int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1222{
1223  // Get current process ID if caller doesn't provide it.
1224  if (!pid) pid = os::current_process_id();
1225
1226  if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1227  else                    return _enumerate_modules_windows(pid, func, param);
1228}
1229
1230struct _modinfo {
1231   address addr;
1232   char*   full_path;   // point to a char buffer
1233   int     buflen;      // size of the buffer
1234   address base_addr;
1235};
1236
1237static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1238                                  unsigned size, void * param) {
1239   struct _modinfo *pmod = (struct _modinfo *)param;
1240   if (!pmod) return -1;
1241
1242   if (base_addr     <= pmod->addr &&
1243       base_addr+size > pmod->addr) {
1244     // if a buffer is provided, copy path name to the buffer
1245     if (pmod->full_path) {
1246       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1247     }
1248     pmod->base_addr = base_addr;
1249     return 1;
1250   }
1251   return 0;
1252}
1253
1254bool os::dll_address_to_library_name(address addr, char* buf,
1255                                     int buflen, int* offset) {
1256// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1257//       return the full path to the DLL file, sometimes it returns path
1258//       to the corresponding PDB file (debug info); sometimes it only
1259//       returns partial path, which makes life painful.
1260
1261   struct _modinfo mi;
1262   mi.addr      = addr;
1263   mi.full_path = buf;
1264   mi.buflen    = buflen;
1265   int pid = os::current_process_id();
1266   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1267      // buf already contains path name
1268      if (offset) *offset = addr - mi.base_addr;
1269      return true;
1270   } else {
1271      if (buf) buf[0] = '\0';
1272      if (offset) *offset = -1;
1273      return false;
1274   }
1275}
1276
1277bool os::dll_address_to_function_name(address addr, char *buf,
1278                                      int buflen, int *offset) {
1279  // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1280  // we need to initialize imagehlp/dbghelp, then load symbol table
1281  // for every module. That's too much work to do after a fatal error.
1282  // For an example on how to implement this function, see 1.4.2.
1283  if (offset)  *offset  = -1;
1284  if (buf) buf[0] = '\0';
1285  return false;
1286}
1287
1288void* os::dll_lookup(void* handle, const char* name) {
1289  return GetProcAddress((HMODULE)handle, name);
1290}
1291
1292// save the start and end address of jvm.dll into param[0] and param[1]
1293static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1294                    unsigned size, void * param) {
1295   if (!param) return -1;
1296
1297   if (base_addr     <= (address)_locate_jvm_dll &&
1298       base_addr+size > (address)_locate_jvm_dll) {
1299         ((address*)param)[0] = base_addr;
1300         ((address*)param)[1] = base_addr + size;
1301         return 1;
1302   }
1303   return 0;
1304}
1305
1306address vm_lib_location[2];    // start and end address of jvm.dll
1307
1308// check if addr is inside jvm.dll
1309bool os::address_is_in_vm(address addr) {
1310  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1311    int pid = os::current_process_id();
1312    if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1313      assert(false, "Can't find jvm module.");
1314      return false;
1315    }
1316  }
1317
1318  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1319}
1320
1321// print module info; param is outputStream*
1322static int _print_module(int pid, char* fname, address base,
1323                         unsigned size, void* param) {
1324   if (!param) return -1;
1325
1326   outputStream* st = (outputStream*)param;
1327
1328   address end_addr = base + size;
1329   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1330   return 0;
1331}
1332
1333// Loads .dll/.so and
1334// in case of error it checks if .dll/.so was built for the
1335// same architecture as Hotspot is running on
1336void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1337{
1338  void * result = LoadLibrary(name);
1339  if (result != NULL)
1340  {
1341    return result;
1342  }
1343
1344  long errcode = GetLastError();
1345  if (errcode == ERROR_MOD_NOT_FOUND) {
1346    strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1347    ebuf[ebuflen-1]='\0';
1348    return NULL;
1349  }
1350
1351  // Parsing dll below
1352  // If we can read dll-info and find that dll was built
1353  // for an architecture other than Hotspot is running in
1354  // - then print to buffer "DLL was built for a different architecture"
1355  // else call getLastErrorString to obtain system error message
1356
1357  // Read system error message into ebuf
1358  // It may or may not be overwritten below (in the for loop and just above)
1359  getLastErrorString(ebuf, (size_t) ebuflen);
1360  ebuf[ebuflen-1]='\0';
1361  int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1362  if (file_descriptor<0)
1363  {
1364    return NULL;
1365  }
1366
1367  uint32_t signature_offset;
1368  uint16_t lib_arch=0;
1369  bool failed_to_get_lib_arch=
1370  (
1371    //Go to position 3c in the dll
1372    (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1373    ||
1374    // Read loacation of signature
1375    (sizeof(signature_offset)!=
1376      (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1377    ||
1378    //Go to COFF File Header in dll
1379    //that is located after"signature" (4 bytes long)
1380    (os::seek_to_file_offset(file_descriptor,
1381      signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1382    ||
1383    //Read field that contains code of architecture
1384    // that dll was build for
1385    (sizeof(lib_arch)!=
1386      (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1387  );
1388
1389  ::close(file_descriptor);
1390  if (failed_to_get_lib_arch)
1391  {
1392    // file i/o error - report getLastErrorString(...) msg
1393    return NULL;
1394  }
1395
1396  typedef struct
1397  {
1398    uint16_t arch_code;
1399    char* arch_name;
1400  } arch_t;
1401
1402  static const arch_t arch_array[]={
1403    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1404    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1405    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1406  };
1407  #if   (defined _M_IA64)
1408    static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1409  #elif (defined _M_AMD64)
1410    static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1411  #elif (defined _M_IX86)
1412    static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1413  #else
1414    #error Method os::dll_load requires that one of following \
1415           is defined :_M_IA64,_M_AMD64 or _M_IX86
1416  #endif
1417
1418
1419  // Obtain a string for printf operation
1420  // lib_arch_str shall contain string what platform this .dll was built for
1421  // running_arch_str shall string contain what platform Hotspot was built for
1422  char *running_arch_str=NULL,*lib_arch_str=NULL;
1423  for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1424  {
1425    if (lib_arch==arch_array[i].arch_code)
1426      lib_arch_str=arch_array[i].arch_name;
1427    if (running_arch==arch_array[i].arch_code)
1428      running_arch_str=arch_array[i].arch_name;
1429  }
1430
1431  assert(running_arch_str,
1432    "Didn't find runing architecture code in arch_array");
1433
1434  // If the architure is right
1435  // but some other error took place - report getLastErrorString(...) msg
1436  if (lib_arch == running_arch)
1437  {
1438    return NULL;
1439  }
1440
1441  if (lib_arch_str!=NULL)
1442  {
1443    ::_snprintf(ebuf, ebuflen-1,
1444      "Can't load %s-bit .dll on a %s-bit platform",
1445      lib_arch_str,running_arch_str);
1446  }
1447  else
1448  {
1449    // don't know what architecture this dll was build for
1450    ::_snprintf(ebuf, ebuflen-1,
1451      "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1452      lib_arch,running_arch_str);
1453  }
1454
1455  return NULL;
1456}
1457
1458
1459void os::print_dll_info(outputStream *st) {
1460   int pid = os::current_process_id();
1461   st->print_cr("Dynamic libraries:");
1462   enumerate_modules(pid, _print_module, (void *)st);
1463}
1464
1465// function pointer to Windows API "GetNativeSystemInfo".
1466typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1467static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1468
1469void os::print_os_info(outputStream* st) {
1470  st->print("OS:");
1471
1472  OSVERSIONINFOEX osvi;
1473  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1474  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1475
1476  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1477    st->print_cr("N/A");
1478    return;
1479  }
1480
1481  int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1482  if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1483    switch (os_vers) {
1484    case 3051: st->print(" Windows NT 3.51"); break;
1485    case 4000: st->print(" Windows NT 4.0"); break;
1486    case 5000: st->print(" Windows 2000"); break;
1487    case 5001: st->print(" Windows XP"); break;
1488    case 5002:
1489    case 6000: {
1490      // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1491      // find out whether we are running on 64 bit processor or not.
1492      SYSTEM_INFO si;
1493      ZeroMemory(&si, sizeof(SYSTEM_INFO));
1494      // Check to see if _GetNativeSystemInfo has been initialized.
1495      if (_GetNativeSystemInfo == NULL) {
1496        HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1497        _GetNativeSystemInfo =
1498            CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1499                           GetProcAddress(hKernel32,
1500                                          "GetNativeSystemInfo"));
1501        if (_GetNativeSystemInfo == NULL)
1502          GetSystemInfo(&si);
1503      } else {
1504        _GetNativeSystemInfo(&si);
1505      }
1506      if (os_vers == 5002) {
1507        if (osvi.wProductType == VER_NT_WORKSTATION &&
1508            si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1509          st->print(" Windows XP x64 Edition");
1510        else
1511            st->print(" Windows Server 2003 family");
1512      } else { // os_vers == 6000
1513        if (osvi.wProductType == VER_NT_WORKSTATION)
1514            st->print(" Windows Vista");
1515        else
1516            st->print(" Windows Server 2008");
1517        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1518            st->print(" , 64 bit");
1519      }
1520      break;
1521    }
1522    default: // future windows, print out its major and minor versions
1523      st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1524    }
1525  } else {
1526    switch (os_vers) {
1527    case 4000: st->print(" Windows 95"); break;
1528    case 4010: st->print(" Windows 98"); break;
1529    case 4090: st->print(" Windows Me"); break;
1530    default: // future windows, print out its major and minor versions
1531      st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1532    }
1533  }
1534  st->print(" Build %d", osvi.dwBuildNumber);
1535  st->print(" %s", osvi.szCSDVersion);           // service pack
1536  st->cr();
1537}
1538
1539void os::print_memory_info(outputStream* st) {
1540  st->print("Memory:");
1541  st->print(" %dk page", os::vm_page_size()>>10);
1542
1543  // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
1544  // is larger than 4GB
1545  MEMORYSTATUS ms;
1546  GlobalMemoryStatus(&ms);
1547
1548  st->print(", physical %uk", os::physical_memory() >> 10);
1549  st->print("(%uk free)", os::available_memory() >> 10);
1550
1551  st->print(", swap %uk", ms.dwTotalPageFile >> 10);
1552  st->print("(%uk free)", ms.dwAvailPageFile >> 10);
1553  st->cr();
1554}
1555
1556void os::print_siginfo(outputStream *st, void *siginfo) {
1557  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1558  st->print("siginfo:");
1559  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1560
1561  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1562      er->NumberParameters >= 2) {
1563      switch (er->ExceptionInformation[0]) {
1564      case 0: st->print(", reading address"); break;
1565      case 1: st->print(", writing address"); break;
1566      default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1567                            er->ExceptionInformation[0]);
1568      }
1569      st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1570  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1571             er->NumberParameters >= 2 && UseSharedSpaces) {
1572    FileMapInfo* mapinfo = FileMapInfo::current_info();
1573    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1574      st->print("\n\nError accessing class data sharing archive."       \
1575                " Mapped file inaccessible during execution, "          \
1576                " possible disk/network problem.");
1577    }
1578  } else {
1579    int num = er->NumberParameters;
1580    if (num > 0) {
1581      st->print(", ExceptionInformation=");
1582      for (int i = 0; i < num; i++) {
1583        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1584      }
1585    }
1586  }
1587  st->cr();
1588}
1589
1590void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1591  // do nothing
1592}
1593
1594static char saved_jvm_path[MAX_PATH] = {0};
1595
1596// Find the full path to the current module, jvm.dll or jvm_g.dll
1597void os::jvm_path(char *buf, jint buflen) {
1598  // Error checking.
1599  if (buflen < MAX_PATH) {
1600    assert(false, "must use a large-enough buffer");
1601    buf[0] = '\0';
1602    return;
1603  }
1604  // Lazy resolve the path to current module.
1605  if (saved_jvm_path[0] != 0) {
1606    strcpy(buf, saved_jvm_path);
1607    return;
1608  }
1609
1610  GetModuleFileName(vm_lib_handle, buf, buflen);
1611  strcpy(saved_jvm_path, buf);
1612}
1613
1614
1615void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1616#ifndef _WIN64
1617  st->print("_");
1618#endif
1619}
1620
1621
1622void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1623#ifndef _WIN64
1624  st->print("@%d", args_size  * sizeof(int));
1625#endif
1626}
1627
1628// sun.misc.Signal
1629// NOTE that this is a workaround for an apparent kernel bug where if
1630// a signal handler for SIGBREAK is installed then that signal handler
1631// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1632// See bug 4416763.
1633static void (*sigbreakHandler)(int) = NULL;
1634
1635static void UserHandler(int sig, void *siginfo, void *context) {
1636  os::signal_notify(sig);
1637  // We need to reinstate the signal handler each time...
1638  os::signal(sig, (void*)UserHandler);
1639}
1640
1641void* os::user_handler() {
1642  return (void*) UserHandler;
1643}
1644
1645void* os::signal(int signal_number, void* handler) {
1646  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1647    void (*oldHandler)(int) = sigbreakHandler;
1648    sigbreakHandler = (void (*)(int)) handler;
1649    return (void*) oldHandler;
1650  } else {
1651    return (void*)::signal(signal_number, (void (*)(int))handler);
1652  }
1653}
1654
1655void os::signal_raise(int signal_number) {
1656  raise(signal_number);
1657}
1658
1659// The Win32 C runtime library maps all console control events other than ^C
1660// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1661// logoff, and shutdown events.  We therefore install our own console handler
1662// that raises SIGTERM for the latter cases.
1663//
1664static BOOL WINAPI consoleHandler(DWORD event) {
1665  switch(event) {
1666    case CTRL_C_EVENT:
1667      if (is_error_reported()) {
1668        // Ctrl-C is pressed during error reporting, likely because the error
1669        // handler fails to abort. Let VM die immediately.
1670        os::die();
1671      }
1672
1673      os::signal_raise(SIGINT);
1674      return TRUE;
1675      break;
1676    case CTRL_BREAK_EVENT:
1677      if (sigbreakHandler != NULL) {
1678        (*sigbreakHandler)(SIGBREAK);
1679      }
1680      return TRUE;
1681      break;
1682    case CTRL_CLOSE_EVENT:
1683    case CTRL_LOGOFF_EVENT:
1684    case CTRL_SHUTDOWN_EVENT:
1685      os::signal_raise(SIGTERM);
1686      return TRUE;
1687      break;
1688    default:
1689      break;
1690  }
1691  return FALSE;
1692}
1693
1694/*
1695 * The following code is moved from os.cpp for making this
1696 * code platform specific, which it is by its very nature.
1697 */
1698
1699// Return maximum OS signal used + 1 for internal use only
1700// Used as exit signal for signal_thread
1701int os::sigexitnum_pd(){
1702  return NSIG;
1703}
1704
1705// a counter for each possible signal value, including signal_thread exit signal
1706static volatile jint pending_signals[NSIG+1] = { 0 };
1707static HANDLE sig_sem;
1708
1709void os::signal_init_pd() {
1710  // Initialize signal structures
1711  memset((void*)pending_signals, 0, sizeof(pending_signals));
1712
1713  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1714
1715  // Programs embedding the VM do not want it to attempt to receive
1716  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1717  // shutdown hooks mechanism introduced in 1.3.  For example, when
1718  // the VM is run as part of a Windows NT service (i.e., a servlet
1719  // engine in a web server), the correct behavior is for any console
1720  // control handler to return FALSE, not TRUE, because the OS's
1721  // "final" handler for such events allows the process to continue if
1722  // it is a service (while terminating it if it is not a service).
1723  // To make this behavior uniform and the mechanism simpler, we
1724  // completely disable the VM's usage of these console events if -Xrs
1725  // (=ReduceSignalUsage) is specified.  This means, for example, that
1726  // the CTRL-BREAK thread dump mechanism is also disabled in this
1727  // case.  See bugs 4323062, 4345157, and related bugs.
1728
1729  if (!ReduceSignalUsage) {
1730    // Add a CTRL-C handler
1731    SetConsoleCtrlHandler(consoleHandler, TRUE);
1732  }
1733}
1734
1735void os::signal_notify(int signal_number) {
1736  BOOL ret;
1737
1738  Atomic::inc(&pending_signals[signal_number]);
1739  ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1740  assert(ret != 0, "ReleaseSemaphore() failed");
1741}
1742
1743static int check_pending_signals(bool wait_for_signal) {
1744  DWORD ret;
1745  while (true) {
1746    for (int i = 0; i < NSIG + 1; i++) {
1747      jint n = pending_signals[i];
1748      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1749        return i;
1750      }
1751    }
1752    if (!wait_for_signal) {
1753      return -1;
1754    }
1755
1756    JavaThread *thread = JavaThread::current();
1757
1758    ThreadBlockInVM tbivm(thread);
1759
1760    bool threadIsSuspended;
1761    do {
1762      thread->set_suspend_equivalent();
1763      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1764      ret = ::WaitForSingleObject(sig_sem, INFINITE);
1765      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1766
1767      // were we externally suspended while we were waiting?
1768      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1769      if (threadIsSuspended) {
1770        //
1771        // The semaphore has been incremented, but while we were waiting
1772        // another thread suspended us. We don't want to continue running
1773        // while suspended because that would surprise the thread that
1774        // suspended us.
1775        //
1776        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1777        assert(ret != 0, "ReleaseSemaphore() failed");
1778
1779        thread->java_suspend_self();
1780      }
1781    } while (threadIsSuspended);
1782  }
1783}
1784
1785int os::signal_lookup() {
1786  return check_pending_signals(false);
1787}
1788
1789int os::signal_wait() {
1790  return check_pending_signals(true);
1791}
1792
1793// Implicit OS exception handling
1794
1795LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1796  JavaThread* thread = JavaThread::current();
1797  // Save pc in thread
1798#ifdef _M_IA64
1799  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1800  // Set pc to handler
1801  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1802#elif _M_AMD64
1803  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1804  // Set pc to handler
1805  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1806#else
1807  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1808  // Set pc to handler
1809  exceptionInfo->ContextRecord->Eip = (LONG)handler;
1810#endif
1811
1812  // Continue the execution
1813  return EXCEPTION_CONTINUE_EXECUTION;
1814}
1815
1816
1817// Used for PostMortemDump
1818extern "C" void safepoints();
1819extern "C" void find(int x);
1820extern "C" void events();
1821
1822// According to Windows API documentation, an illegal instruction sequence should generate
1823// the 0xC000001C exception code. However, real world experience shows that occasionnaly
1824// the execution of an illegal instruction can generate the exception code 0xC000001E. This
1825// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1826
1827#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1828
1829// From "Execution Protection in the Windows Operating System" draft 0.35
1830// Once a system header becomes available, the "real" define should be
1831// included or copied here.
1832#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1833
1834#define def_excpt(val) #val, val
1835
1836struct siglabel {
1837  char *name;
1838  int   number;
1839};
1840
1841struct siglabel exceptlabels[] = {
1842    def_excpt(EXCEPTION_ACCESS_VIOLATION),
1843    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1844    def_excpt(EXCEPTION_BREAKPOINT),
1845    def_excpt(EXCEPTION_SINGLE_STEP),
1846    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1847    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1848    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1849    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1850    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1851    def_excpt(EXCEPTION_FLT_OVERFLOW),
1852    def_excpt(EXCEPTION_FLT_STACK_CHECK),
1853    def_excpt(EXCEPTION_FLT_UNDERFLOW),
1854    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1855    def_excpt(EXCEPTION_INT_OVERFLOW),
1856    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1857    def_excpt(EXCEPTION_IN_PAGE_ERROR),
1858    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1859    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1860    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1861    def_excpt(EXCEPTION_STACK_OVERFLOW),
1862    def_excpt(EXCEPTION_INVALID_DISPOSITION),
1863    def_excpt(EXCEPTION_GUARD_PAGE),
1864    def_excpt(EXCEPTION_INVALID_HANDLE),
1865    NULL, 0
1866};
1867
1868const char* os::exception_name(int exception_code, char *buf, size_t size) {
1869  for (int i = 0; exceptlabels[i].name != NULL; i++) {
1870    if (exceptlabels[i].number == exception_code) {
1871       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1872       return buf;
1873    }
1874  }
1875
1876  return NULL;
1877}
1878
1879//-----------------------------------------------------------------------------
1880LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1881  // handle exception caused by idiv; should only happen for -MinInt/-1
1882  // (division by zero is handled explicitly)
1883#ifdef _M_IA64
1884  assert(0, "Fix Handle_IDiv_Exception");
1885#elif _M_AMD64
1886  PCONTEXT ctx = exceptionInfo->ContextRecord;
1887  address pc = (address)ctx->Rip;
1888  NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1889  assert(pc[0] == 0xF7, "not an idiv opcode");
1890  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1891  assert(ctx->Rax == min_jint, "unexpected idiv exception");
1892  // set correct result values and continue after idiv instruction
1893  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1894  ctx->Rax = (DWORD)min_jint;      // result
1895  ctx->Rdx = (DWORD)0;             // remainder
1896  // Continue the execution
1897#else
1898  PCONTEXT ctx = exceptionInfo->ContextRecord;
1899  address pc = (address)ctx->Eip;
1900  NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1901  assert(pc[0] == 0xF7, "not an idiv opcode");
1902  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1903  assert(ctx->Eax == min_jint, "unexpected idiv exception");
1904  // set correct result values and continue after idiv instruction
1905  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1906  ctx->Eax = (DWORD)min_jint;      // result
1907  ctx->Edx = (DWORD)0;             // remainder
1908  // Continue the execution
1909#endif
1910  return EXCEPTION_CONTINUE_EXECUTION;
1911}
1912
1913#ifndef  _WIN64
1914//-----------------------------------------------------------------------------
1915LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1916  // handle exception caused by native method modifying control word
1917  PCONTEXT ctx = exceptionInfo->ContextRecord;
1918  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1919
1920  switch (exception_code) {
1921    case EXCEPTION_FLT_DENORMAL_OPERAND:
1922    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1923    case EXCEPTION_FLT_INEXACT_RESULT:
1924    case EXCEPTION_FLT_INVALID_OPERATION:
1925    case EXCEPTION_FLT_OVERFLOW:
1926    case EXCEPTION_FLT_STACK_CHECK:
1927    case EXCEPTION_FLT_UNDERFLOW:
1928      jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
1929      if (fp_control_word != ctx->FloatSave.ControlWord) {
1930        // Restore FPCW and mask out FLT exceptions
1931        ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
1932        // Mask out pending FLT exceptions
1933        ctx->FloatSave.StatusWord &=  0xffffff00;
1934        return EXCEPTION_CONTINUE_EXECUTION;
1935      }
1936  }
1937
1938  if (prev_uef_handler != NULL) {
1939    // We didn't handle this exception so pass it to the previous
1940    // UnhandledExceptionFilter.
1941    return (prev_uef_handler)(exceptionInfo);
1942  }
1943
1944  return EXCEPTION_CONTINUE_SEARCH;
1945}
1946#else //_WIN64
1947/*
1948  On Windows, the mxcsr control bits are non-volatile across calls
1949  See also CR 6192333
1950  If EXCEPTION_FLT_* happened after some native method modified
1951  mxcsr - it is not a jvm fault.
1952  However should we decide to restore of mxcsr after a faulty
1953  native method we can uncomment following code
1954      jint MxCsr = INITIAL_MXCSR;
1955        // we can't use StubRoutines::addr_mxcsr_std()
1956        // because in Win64 mxcsr is not saved there
1957      if (MxCsr != ctx->MxCsr) {
1958        ctx->MxCsr = MxCsr;
1959        return EXCEPTION_CONTINUE_EXECUTION;
1960      }
1961
1962*/
1963#endif //_WIN64
1964
1965
1966// Fatal error reporting is single threaded so we can make this a
1967// static and preallocated.  If it's more than MAX_PATH silently ignore
1968// it.
1969static char saved_error_file[MAX_PATH] = {0};
1970
1971void os::set_error_file(const char *logfile) {
1972  if (strlen(logfile) <= MAX_PATH) {
1973    strncpy(saved_error_file, logfile, MAX_PATH);
1974  }
1975}
1976
1977static inline void report_error(Thread* t, DWORD exception_code,
1978                                address addr, void* siginfo, void* context) {
1979  VMError err(t, exception_code, addr, siginfo, context);
1980  err.report_and_die();
1981
1982  // If UseOsErrorReporting, this will return here and save the error file
1983  // somewhere where we can find it in the minidump.
1984}
1985
1986//-----------------------------------------------------------------------------
1987LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
1988  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
1989  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1990#ifdef _M_IA64
1991  address pc = (address) exceptionInfo->ContextRecord->StIIP;
1992#elif _M_AMD64
1993  address pc = (address) exceptionInfo->ContextRecord->Rip;
1994#else
1995  address pc = (address) exceptionInfo->ContextRecord->Eip;
1996#endif
1997  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
1998
1999#ifndef _WIN64
2000  // Execution protection violation - win32 running on AMD64 only
2001  // Handled first to avoid misdiagnosis as a "normal" access violation;
2002  // This is safe to do because we have a new/unique ExceptionInformation
2003  // code for this condition.
2004  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2005    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2006    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2007    address addr = (address) exceptionRecord->ExceptionInformation[1];
2008
2009    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2010      int page_size = os::vm_page_size();
2011
2012      // Make sure the pc and the faulting address are sane.
2013      //
2014      // If an instruction spans a page boundary, and the page containing
2015      // the beginning of the instruction is executable but the following
2016      // page is not, the pc and the faulting address might be slightly
2017      // different - we still want to unguard the 2nd page in this case.
2018      //
2019      // 15 bytes seems to be a (very) safe value for max instruction size.
2020      bool pc_is_near_addr =
2021        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2022      bool instr_spans_page_boundary =
2023        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2024                         (intptr_t) page_size) > 0);
2025
2026      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2027        static volatile address last_addr =
2028          (address) os::non_memory_address_word();
2029
2030        // In conservative mode, don't unguard unless the address is in the VM
2031        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2032            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2033
2034          // Set memory to RWX and retry
2035          address page_start =
2036            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2037          bool res = os::protect_memory((char*) page_start, page_size,
2038                                        os::MEM_PROT_RWX);
2039
2040          if (PrintMiscellaneous && Verbose) {
2041            char buf[256];
2042            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2043                         "at " INTPTR_FORMAT
2044                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2045                         page_start, (res ? "success" : strerror(errno)));
2046            tty->print_raw_cr(buf);
2047          }
2048
2049          // Set last_addr so if we fault again at the same address, we don't
2050          // end up in an endless loop.
2051          //
2052          // There are two potential complications here.  Two threads trapping
2053          // at the same address at the same time could cause one of the
2054          // threads to think it already unguarded, and abort the VM.  Likely
2055          // very rare.
2056          //
2057          // The other race involves two threads alternately trapping at
2058          // different addresses and failing to unguard the page, resulting in
2059          // an endless loop.  This condition is probably even more unlikely
2060          // than the first.
2061          //
2062          // Although both cases could be avoided by using locks or thread
2063          // local last_addr, these solutions are unnecessary complication:
2064          // this handler is a best-effort safety net, not a complete solution.
2065          // It is disabled by default and should only be used as a workaround
2066          // in case we missed any no-execute-unsafe VM code.
2067
2068          last_addr = addr;
2069
2070          return EXCEPTION_CONTINUE_EXECUTION;
2071        }
2072      }
2073
2074      // Last unguard failed or not unguarding
2075      tty->print_raw_cr("Execution protection violation");
2076      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2077                   exceptionInfo->ContextRecord);
2078      return EXCEPTION_CONTINUE_SEARCH;
2079    }
2080  }
2081#endif // _WIN64
2082
2083  // Check to see if we caught the safepoint code in the
2084  // process of write protecting the memory serialization page.
2085  // It write enables the page immediately after protecting it
2086  // so just return.
2087  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2088    JavaThread* thread = (JavaThread*) t;
2089    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2090    address addr = (address) exceptionRecord->ExceptionInformation[1];
2091    if ( os::is_memory_serialize_page(thread, addr) ) {
2092      // Block current thread until the memory serialize page permission restored.
2093      os::block_on_serialize_page_trap();
2094      return EXCEPTION_CONTINUE_EXECUTION;
2095    }
2096  }
2097
2098
2099  if (t != NULL && t->is_Java_thread()) {
2100    JavaThread* thread = (JavaThread*) t;
2101    bool in_java = thread->thread_state() == _thread_in_Java;
2102
2103    // Handle potential stack overflows up front.
2104    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2105      if (os::uses_stack_guard_pages()) {
2106#ifdef _M_IA64
2107        //
2108        // If it's a legal stack address continue, Windows will map it in.
2109        //
2110        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2111        address addr = (address) exceptionRecord->ExceptionInformation[1];
2112        if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2113          return EXCEPTION_CONTINUE_EXECUTION;
2114
2115        // The register save area is the same size as the memory stack
2116        // and starts at the page just above the start of the memory stack.
2117        // If we get a fault in this area, we've run out of register
2118        // stack.  If we are in java, try throwing a stack overflow exception.
2119        if (addr > thread->stack_base() &&
2120                      addr <= (thread->stack_base()+thread->stack_size()) ) {
2121          char buf[256];
2122          jio_snprintf(buf, sizeof(buf),
2123                       "Register stack overflow, addr:%p, stack_base:%p\n",
2124                       addr, thread->stack_base() );
2125          tty->print_raw_cr(buf);
2126          // If not in java code, return and hope for the best.
2127          return in_java ? Handle_Exception(exceptionInfo,
2128            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2129            :  EXCEPTION_CONTINUE_EXECUTION;
2130        }
2131#endif
2132        if (thread->stack_yellow_zone_enabled()) {
2133          // Yellow zone violation.  The o/s has unprotected the first yellow
2134          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2135          // update the enabled status, even if the zone contains only one page.
2136          thread->disable_stack_yellow_zone();
2137          // If not in java code, return and hope for the best.
2138          return in_java ? Handle_Exception(exceptionInfo,
2139            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2140            :  EXCEPTION_CONTINUE_EXECUTION;
2141        } else {
2142          // Fatal red zone violation.
2143          thread->disable_stack_red_zone();
2144          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2145          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2146                       exceptionInfo->ContextRecord);
2147          return EXCEPTION_CONTINUE_SEARCH;
2148        }
2149      } else if (in_java) {
2150        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2151        // a one-time-only guard page, which it has released to us.  The next
2152        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2153        return Handle_Exception(exceptionInfo,
2154          SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2155      } else {
2156        // Can only return and hope for the best.  Further stack growth will
2157        // result in an ACCESS_VIOLATION.
2158        return EXCEPTION_CONTINUE_EXECUTION;
2159      }
2160    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2161      // Either stack overflow or null pointer exception.
2162      if (in_java) {
2163        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2164        address addr = (address) exceptionRecord->ExceptionInformation[1];
2165        address stack_end = thread->stack_base() - thread->stack_size();
2166        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2167          // Stack overflow.
2168          assert(!os::uses_stack_guard_pages(),
2169            "should be caught by red zone code above.");
2170          return Handle_Exception(exceptionInfo,
2171            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2172        }
2173        //
2174        // Check for safepoint polling and implicit null
2175        // We only expect null pointers in the stubs (vtable)
2176        // the rest are checked explicitly now.
2177        //
2178        CodeBlob* cb = CodeCache::find_blob(pc);
2179        if (cb != NULL) {
2180          if (os::is_poll_address(addr)) {
2181            address stub = SharedRuntime::get_poll_stub(pc);
2182            return Handle_Exception(exceptionInfo, stub);
2183          }
2184        }
2185        {
2186#ifdef _WIN64
2187          //
2188          // If it's a legal stack address map the entire region in
2189          //
2190          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2191          address addr = (address) exceptionRecord->ExceptionInformation[1];
2192          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2193                  addr = (address)((uintptr_t)addr &
2194                         (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2195                  os::commit_memory( (char *)addr, thread->stack_base() - addr );
2196                  return EXCEPTION_CONTINUE_EXECUTION;
2197          }
2198          else
2199#endif
2200          {
2201            // Null pointer exception.
2202#ifdef _M_IA64
2203            // We catch register stack overflows in compiled code by doing
2204            // an explicit compare and executing a st8(G0, G0) if the
2205            // BSP enters into our guard area.  We test for the overflow
2206            // condition and fall into the normal null pointer exception
2207            // code if BSP hasn't overflowed.
2208            if ( in_java ) {
2209              if(thread->register_stack_overflow()) {
2210                assert((address)exceptionInfo->ContextRecord->IntS3 ==
2211                                thread->register_stack_limit(),
2212                               "GR7 doesn't contain register_stack_limit");
2213                // Disable the yellow zone which sets the state that
2214                // we've got a stack overflow problem.
2215                if (thread->stack_yellow_zone_enabled()) {
2216                  thread->disable_stack_yellow_zone();
2217                }
2218                // Give us some room to process the exception
2219                thread->disable_register_stack_guard();
2220                // Update GR7 with the new limit so we can continue running
2221                // compiled code.
2222                exceptionInfo->ContextRecord->IntS3 =
2223                               (ULONGLONG)thread->register_stack_limit();
2224                return Handle_Exception(exceptionInfo,
2225                       SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2226              } else {
2227                //
2228                // Check for implicit null
2229                // We only expect null pointers in the stubs (vtable)
2230                // the rest are checked explicitly now.
2231                //
2232                if (((uintptr_t)addr) < os::vm_page_size() ) {
2233                  // an access to the first page of VM--assume it is a null pointer
2234                  address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2235                  if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2236                }
2237              }
2238            } // in_java
2239
2240            // IA64 doesn't use implicit null checking yet. So we shouldn't
2241            // get here.
2242            tty->print_raw_cr("Access violation, possible null pointer exception");
2243            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2244                         exceptionInfo->ContextRecord);
2245            return EXCEPTION_CONTINUE_SEARCH;
2246#else /* !IA64 */
2247
2248            // Windows 98 reports faulting addresses incorrectly
2249            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2250                !os::win32::is_nt()) {
2251              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2252              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2253            }
2254            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2255                         exceptionInfo->ContextRecord);
2256            return EXCEPTION_CONTINUE_SEARCH;
2257#endif
2258          }
2259        }
2260      }
2261
2262#ifdef _WIN64
2263      // Special care for fast JNI field accessors.
2264      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2265      // in and the heap gets shrunk before the field access.
2266      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2267        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2268        if (addr != (address)-1) {
2269          return Handle_Exception(exceptionInfo, addr);
2270        }
2271      }
2272#endif
2273
2274#ifdef _WIN64
2275      // Windows will sometimes generate an access violation
2276      // when we call malloc.  Since we use VectoredExceptions
2277      // on 64 bit platforms, we see this exception.  We must
2278      // pass this exception on so Windows can recover.
2279      // We check to see if the pc of the fault is in NTDLL.DLL
2280      // if so, we pass control on to Windows for handling.
2281      if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2282#endif
2283
2284      // Stack overflow or null pointer exception in native code.
2285      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2286                   exceptionInfo->ContextRecord);
2287      return EXCEPTION_CONTINUE_SEARCH;
2288    }
2289
2290    if (in_java) {
2291      switch (exception_code) {
2292      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2293        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2294
2295      case EXCEPTION_INT_OVERFLOW:
2296        return Handle_IDiv_Exception(exceptionInfo);
2297
2298      } // switch
2299    }
2300#ifndef _WIN64
2301    if ((thread->thread_state() == _thread_in_Java) ||
2302        (thread->thread_state() == _thread_in_native) )
2303    {
2304      LONG result=Handle_FLT_Exception(exceptionInfo);
2305      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2306    }
2307#endif //_WIN64
2308  }
2309
2310  if (exception_code != EXCEPTION_BREAKPOINT) {
2311#ifndef _WIN64
2312    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2313                 exceptionInfo->ContextRecord);
2314#else
2315    // Itanium Windows uses a VectoredExceptionHandler
2316    // Which means that C++ programatic exception handlers (try/except)
2317    // will get here.  Continue the search for the right except block if
2318    // the exception code is not a fatal code.
2319    switch ( exception_code ) {
2320      case EXCEPTION_ACCESS_VIOLATION:
2321      case EXCEPTION_STACK_OVERFLOW:
2322      case EXCEPTION_ILLEGAL_INSTRUCTION:
2323      case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2324      case EXCEPTION_INT_OVERFLOW:
2325      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2326      {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2327                       exceptionInfo->ContextRecord);
2328      }
2329        break;
2330      default:
2331        break;
2332    }
2333#endif
2334  }
2335  return EXCEPTION_CONTINUE_SEARCH;
2336}
2337
2338#ifndef _WIN64
2339// Special care for fast JNI accessors.
2340// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2341// the heap gets shrunk before the field access.
2342// Need to install our own structured exception handler since native code may
2343// install its own.
2344LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2345  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2346  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2347    address pc = (address) exceptionInfo->ContextRecord->Eip;
2348    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2349    if (addr != (address)-1) {
2350      return Handle_Exception(exceptionInfo, addr);
2351    }
2352  }
2353  return EXCEPTION_CONTINUE_SEARCH;
2354}
2355
2356#define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2357Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2358  __try { \
2359    return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2360  } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2361  } \
2362  return 0; \
2363}
2364
2365DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2366DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2367DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2368DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2369DEFINE_FAST_GETFIELD(jint,     int,    Int)
2370DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2371DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2372DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2373
2374address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2375  switch (type) {
2376    case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2377    case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2378    case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2379    case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2380    case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2381    case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2382    case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2383    case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2384    default:        ShouldNotReachHere();
2385  }
2386  return (address)-1;
2387}
2388#endif
2389
2390// Virtual Memory
2391
2392int os::vm_page_size() { return os::win32::vm_page_size(); }
2393int os::vm_allocation_granularity() {
2394  return os::win32::vm_allocation_granularity();
2395}
2396
2397// Windows large page support is available on Windows 2003. In order to use
2398// large page memory, the administrator must first assign additional privilege
2399// to the user:
2400//   + select Control Panel -> Administrative Tools -> Local Security Policy
2401//   + select Local Policies -> User Rights Assignment
2402//   + double click "Lock pages in memory", add users and/or groups
2403//   + reboot
2404// Note the above steps are needed for administrator as well, as administrators
2405// by default do not have the privilege to lock pages in memory.
2406//
2407// Note about Windows 2003: although the API supports committing large page
2408// memory on a page-by-page basis and VirtualAlloc() returns success under this
2409// scenario, I found through experiment it only uses large page if the entire
2410// memory region is reserved and committed in a single VirtualAlloc() call.
2411// This makes Windows large page support more or less like Solaris ISM, in
2412// that the entire heap must be committed upfront. This probably will change
2413// in the future, if so the code below needs to be revisited.
2414
2415#ifndef MEM_LARGE_PAGES
2416#define MEM_LARGE_PAGES 0x20000000
2417#endif
2418
2419// GetLargePageMinimum is only available on Windows 2003. The other functions
2420// are available on NT but not on Windows 98/Me. We have to resolve them at
2421// runtime.
2422typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2423typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2424             (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2425typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2426typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2427
2428static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2429static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2430static OpenProcessToken_func_type      _OpenProcessToken;
2431static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2432
2433static HINSTANCE _kernel32;
2434static HINSTANCE _advapi32;
2435static HANDLE    _hProcess;
2436static HANDLE    _hToken;
2437
2438static size_t _large_page_size = 0;
2439
2440static bool resolve_functions_for_large_page_init() {
2441  _kernel32 = LoadLibrary("kernel32.dll");
2442  if (_kernel32 == NULL) return false;
2443
2444  _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2445                            GetProcAddress(_kernel32, "GetLargePageMinimum"));
2446  if (_GetLargePageMinimum == NULL) return false;
2447
2448  _advapi32 = LoadLibrary("advapi32.dll");
2449  if (_advapi32 == NULL) return false;
2450
2451  _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2452                            GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2453  _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2454                            GetProcAddress(_advapi32, "OpenProcessToken"));
2455  _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2456                            GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2457  return _AdjustTokenPrivileges != NULL &&
2458         _OpenProcessToken      != NULL &&
2459         _LookupPrivilegeValue  != NULL;
2460}
2461
2462static bool request_lock_memory_privilege() {
2463  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2464                                os::current_process_id());
2465
2466  LUID luid;
2467  if (_hProcess != NULL &&
2468      _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2469      _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2470
2471    TOKEN_PRIVILEGES tp;
2472    tp.PrivilegeCount = 1;
2473    tp.Privileges[0].Luid = luid;
2474    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2475
2476    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2477    // privilege. Check GetLastError() too. See MSDN document.
2478    if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2479        (GetLastError() == ERROR_SUCCESS)) {
2480      return true;
2481    }
2482  }
2483
2484  return false;
2485}
2486
2487static void cleanup_after_large_page_init() {
2488  _GetLargePageMinimum = NULL;
2489  _AdjustTokenPrivileges = NULL;
2490  _OpenProcessToken = NULL;
2491  _LookupPrivilegeValue = NULL;
2492  if (_kernel32) FreeLibrary(_kernel32);
2493  _kernel32 = NULL;
2494  if (_advapi32) FreeLibrary(_advapi32);
2495  _advapi32 = NULL;
2496  if (_hProcess) CloseHandle(_hProcess);
2497  _hProcess = NULL;
2498  if (_hToken) CloseHandle(_hToken);
2499  _hToken = NULL;
2500}
2501
2502bool os::large_page_init() {
2503  if (!UseLargePages) return false;
2504
2505  // print a warning if any large page related flag is specified on command line
2506  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2507                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2508  bool success = false;
2509
2510# define WARN(msg) if (warn_on_failure) { warning(msg); }
2511  if (resolve_functions_for_large_page_init()) {
2512    if (request_lock_memory_privilege()) {
2513      size_t s = _GetLargePageMinimum();
2514      if (s) {
2515#if defined(IA32) || defined(AMD64)
2516        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2517          WARN("JVM cannot use large pages bigger than 4mb.");
2518        } else {
2519#endif
2520          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2521            _large_page_size = LargePageSizeInBytes;
2522          } else {
2523            _large_page_size = s;
2524          }
2525          success = true;
2526#if defined(IA32) || defined(AMD64)
2527        }
2528#endif
2529      } else {
2530        WARN("Large page is not supported by the processor.");
2531      }
2532    } else {
2533      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2534    }
2535  } else {
2536    WARN("Large page is not supported by the operating system.");
2537  }
2538#undef WARN
2539
2540  const size_t default_page_size = (size_t) vm_page_size();
2541  if (success && _large_page_size > default_page_size) {
2542    _page_sizes[0] = _large_page_size;
2543    _page_sizes[1] = default_page_size;
2544    _page_sizes[2] = 0;
2545  }
2546
2547  cleanup_after_large_page_init();
2548  return success;
2549}
2550
2551// On win32, one cannot release just a part of reserved memory, it's an
2552// all or nothing deal.  When we split a reservation, we must break the
2553// reservation into two reservations.
2554void os::split_reserved_memory(char *base, size_t size, size_t split,
2555                              bool realloc) {
2556  if (size > 0) {
2557    release_memory(base, size);
2558    if (realloc) {
2559      reserve_memory(split, base);
2560    }
2561    if (size != split) {
2562      reserve_memory(size - split, base + split);
2563    }
2564  }
2565}
2566
2567char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2568  assert((size_t)addr % os::vm_allocation_granularity() == 0,
2569         "reserve alignment");
2570  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2571  char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE,
2572                                  PAGE_EXECUTE_READWRITE);
2573  assert(res == NULL || addr == NULL || addr == res,
2574         "Unexpected address from reserve.");
2575  return res;
2576}
2577
2578// Reserve memory at an arbitrary address, only if that area is
2579// available (and not reserved for something else).
2580char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2581  // Windows os::reserve_memory() fails of the requested address range is
2582  // not avilable.
2583  return reserve_memory(bytes, requested_addr);
2584}
2585
2586size_t os::large_page_size() {
2587  return _large_page_size;
2588}
2589
2590bool os::can_commit_large_page_memory() {
2591  // Windows only uses large page memory when the entire region is reserved
2592  // and committed in a single VirtualAlloc() call. This may change in the
2593  // future, but with Windows 2003 it's not possible to commit on demand.
2594  return false;
2595}
2596
2597bool os::can_execute_large_page_memory() {
2598  return true;
2599}
2600
2601char* os::reserve_memory_special(size_t bytes) {
2602
2603  if (UseLargePagesIndividualAllocation) {
2604    if (TracePageSizes && Verbose) {
2605       tty->print_cr("Reserving large pages individually.");
2606    }
2607    char * p_buf;
2608    // first reserve enough address space in advance since we want to be
2609    // able to break a single contiguous virtual address range into multiple
2610    // large page commits but WS2003 does not allow reserving large page space
2611    // so we just use 4K pages for reserve, this gives us a legal contiguous
2612    // address space. then we will deallocate that reservation, and re alloc
2613    // using large pages
2614    const size_t size_of_reserve = bytes + _large_page_size;
2615    if (bytes > size_of_reserve) {
2616      // Overflowed.
2617      warning("Individually allocated large pages failed, "
2618        "use -XX:-UseLargePagesIndividualAllocation to turn off");
2619      return NULL;
2620    }
2621    p_buf = (char *) VirtualAlloc(NULL,
2622                                 size_of_reserve,  // size of Reserve
2623                                 MEM_RESERVE,
2624                                 PAGE_EXECUTE_READWRITE);
2625    // If reservation failed, return NULL
2626    if (p_buf == NULL) return NULL;
2627
2628    release_memory(p_buf, bytes + _large_page_size);
2629    // round up to page boundary.  If the size_of_reserve did not
2630    // overflow and the reservation did not fail, this align up
2631    // should not overflow.
2632    p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2633
2634    // now go through and allocate one page at a time until all bytes are
2635    // allocated
2636    size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2637    // An overflow of align_size_up() would have been caught above
2638    // in the calculation of size_of_reserve.
2639    char * next_alloc_addr = p_buf;
2640
2641#ifdef ASSERT
2642    // Variable for the failure injection
2643    long ran_num = os::random();
2644    size_t fail_after = ran_num % bytes;
2645#endif
2646
2647    while (bytes_remaining) {
2648      size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2649      // Note allocate and commit
2650      char * p_new;
2651
2652#ifdef ASSERT
2653      bool inject_error = LargePagesIndividualAllocationInjectError &&
2654          (bytes_remaining <= fail_after);
2655#else
2656      const bool inject_error = false;
2657#endif
2658
2659      if (inject_error) {
2660        p_new = NULL;
2661      } else {
2662        p_new = (char *) VirtualAlloc(next_alloc_addr,
2663                                    bytes_to_rq,
2664                                    MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2665                                    PAGE_EXECUTE_READWRITE);
2666      }
2667
2668      if (p_new == NULL) {
2669        // Free any allocated pages
2670        if (next_alloc_addr > p_buf) {
2671          // Some memory was committed so release it.
2672          size_t bytes_to_release = bytes - bytes_remaining;
2673          release_memory(p_buf, bytes_to_release);
2674        }
2675#ifdef ASSERT
2676        if (UseLargePagesIndividualAllocation &&
2677            LargePagesIndividualAllocationInjectError) {
2678          if (TracePageSizes && Verbose) {
2679             tty->print_cr("Reserving large pages individually failed.");
2680          }
2681        }
2682#endif
2683        return NULL;
2684      }
2685      bytes_remaining -= bytes_to_rq;
2686      next_alloc_addr += bytes_to_rq;
2687    }
2688
2689    return p_buf;
2690
2691  } else {
2692    // normal policy just allocate it all at once
2693    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2694    char * res = (char *)VirtualAlloc(NULL,
2695                                      bytes,
2696                                      flag,
2697                                      PAGE_EXECUTE_READWRITE);
2698    return res;
2699  }
2700}
2701
2702bool os::release_memory_special(char* base, size_t bytes) {
2703  return release_memory(base, bytes);
2704}
2705
2706void os::print_statistics() {
2707}
2708
2709bool os::commit_memory(char* addr, size_t bytes) {
2710  if (bytes == 0) {
2711    // Don't bother the OS with noops.
2712    return true;
2713  }
2714  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2715  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2716  // Don't attempt to print anything if the OS call fails. We're
2717  // probably low on resources, so the print itself may cause crashes.
2718  return VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE) != NULL;
2719}
2720
2721bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
2722  return commit_memory(addr, size);
2723}
2724
2725bool os::uncommit_memory(char* addr, size_t bytes) {
2726  if (bytes == 0) {
2727    // Don't bother the OS with noops.
2728    return true;
2729  }
2730  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2731  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2732  return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2733}
2734
2735bool os::release_memory(char* addr, size_t bytes) {
2736  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2737}
2738
2739// Set protections specified
2740bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2741                        bool is_committed) {
2742  unsigned int p = 0;
2743  switch (prot) {
2744  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2745  case MEM_PROT_READ: p = PAGE_READONLY; break;
2746  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2747  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2748  default:
2749    ShouldNotReachHere();
2750  }
2751
2752  DWORD old_status;
2753
2754  // Strange enough, but on Win32 one can change protection only for committed
2755  // memory, not a big deal anyway, as bytes less or equal than 64K
2756  if (!is_committed && !commit_memory(addr, bytes)) {
2757    fatal("cannot commit protection page");
2758  }
2759  // One cannot use os::guard_memory() here, as on Win32 guard page
2760  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2761  //
2762  // Pages in the region become guard pages. Any attempt to access a guard page
2763  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2764  // the guard page status. Guard pages thus act as a one-time access alarm.
2765  return VirtualProtect(addr, bytes, p, &old_status) != 0;
2766}
2767
2768bool os::guard_memory(char* addr, size_t bytes) {
2769  DWORD old_status;
2770  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2771}
2772
2773bool os::unguard_memory(char* addr, size_t bytes) {
2774  DWORD old_status;
2775  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2776}
2777
2778void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2779void os::free_memory(char *addr, size_t bytes)         { }
2780void os::numa_make_global(char *addr, size_t bytes)    { }
2781void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2782bool os::numa_topology_changed()                       { return false; }
2783size_t os::numa_get_groups_num()                       { return 1; }
2784int os::numa_get_group_id()                            { return 0; }
2785size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2786  if (size > 0) {
2787    ids[0] = 0;
2788    return 1;
2789  }
2790  return 0;
2791}
2792
2793bool os::get_page_info(char *start, page_info* info) {
2794  return false;
2795}
2796
2797char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2798  return end;
2799}
2800
2801char* os::non_memory_address_word() {
2802  // Must never look like an address returned by reserve_memory,
2803  // even in its subfields (as defined by the CPU immediate fields,
2804  // if the CPU splits constants across multiple instructions).
2805  return (char*)-1;
2806}
2807
2808#define MAX_ERROR_COUNT 100
2809#define SYS_THREAD_ERROR 0xffffffffUL
2810
2811void os::pd_start_thread(Thread* thread) {
2812  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2813  // Returns previous suspend state:
2814  // 0:  Thread was not suspended
2815  // 1:  Thread is running now
2816  // >1: Thread is still suspended.
2817  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2818}
2819
2820size_t os::read(int fd, void *buf, unsigned int nBytes) {
2821  return ::read(fd, buf, nBytes);
2822}
2823
2824class HighResolutionInterval {
2825  // The default timer resolution seems to be 10 milliseconds.
2826  // (Where is this written down?)
2827  // If someone wants to sleep for only a fraction of the default,
2828  // then we set the timer resolution down to 1 millisecond for
2829  // the duration of their interval.
2830  // We carefully set the resolution back, since otherwise we
2831  // seem to incur an overhead (3%?) that we don't need.
2832  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2833  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2834  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2835  // timeBeginPeriod() if the relative error exceeded some threshold.
2836  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2837  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2838  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2839  // resolution timers running.
2840private:
2841    jlong resolution;
2842public:
2843  HighResolutionInterval(jlong ms) {
2844    resolution = ms % 10L;
2845    if (resolution != 0) {
2846      MMRESULT result = timeBeginPeriod(1L);
2847    }
2848  }
2849  ~HighResolutionInterval() {
2850    if (resolution != 0) {
2851      MMRESULT result = timeEndPeriod(1L);
2852    }
2853    resolution = 0L;
2854  }
2855};
2856
2857int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2858  jlong limit = (jlong) MAXDWORD;
2859
2860  while(ms > limit) {
2861    int res;
2862    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2863      return res;
2864    ms -= limit;
2865  }
2866
2867  assert(thread == Thread::current(),  "thread consistency check");
2868  OSThread* osthread = thread->osthread();
2869  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2870  int result;
2871  if (interruptable) {
2872    assert(thread->is_Java_thread(), "must be java thread");
2873    JavaThread *jt = (JavaThread *) thread;
2874    ThreadBlockInVM tbivm(jt);
2875
2876    jt->set_suspend_equivalent();
2877    // cleared by handle_special_suspend_equivalent_condition() or
2878    // java_suspend_self() via check_and_wait_while_suspended()
2879
2880    HANDLE events[1];
2881    events[0] = osthread->interrupt_event();
2882    HighResolutionInterval *phri=NULL;
2883    if(!ForceTimeHighResolution)
2884      phri = new HighResolutionInterval( ms );
2885    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
2886      result = OS_TIMEOUT;
2887    } else {
2888      ResetEvent(osthread->interrupt_event());
2889      osthread->set_interrupted(false);
2890      result = OS_INTRPT;
2891    }
2892    delete phri; //if it is NULL, harmless
2893
2894    // were we externally suspended while we were waiting?
2895    jt->check_and_wait_while_suspended();
2896  } else {
2897    assert(!thread->is_Java_thread(), "must not be java thread");
2898    Sleep((long) ms);
2899    result = OS_TIMEOUT;
2900  }
2901  return result;
2902}
2903
2904// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2905void os::infinite_sleep() {
2906  while (true) {    // sleep forever ...
2907    Sleep(100000);  // ... 100 seconds at a time
2908  }
2909}
2910
2911typedef BOOL (WINAPI * STTSignature)(void) ;
2912
2913os::YieldResult os::NakedYield() {
2914  // Use either SwitchToThread() or Sleep(0)
2915  // Consider passing back the return value from SwitchToThread().
2916  // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
2917  // In that case we revert to Sleep(0).
2918  static volatile STTSignature stt = (STTSignature) 1 ;
2919
2920  if (stt == ((STTSignature) 1)) {
2921    stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
2922    // It's OK if threads race during initialization as the operation above is idempotent.
2923  }
2924  if (stt != NULL) {
2925    return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
2926  } else {
2927    Sleep (0) ;
2928  }
2929  return os::YIELD_UNKNOWN ;
2930}
2931
2932void os::yield() {  os::NakedYield(); }
2933
2934void os::yield_all(int attempts) {
2935  // Yields to all threads, including threads with lower priorities
2936  Sleep(1);
2937}
2938
2939// Win32 only gives you access to seven real priorities at a time,
2940// so we compress Java's ten down to seven.  It would be better
2941// if we dynamically adjusted relative priorities.
2942
2943int os::java_to_os_priority[MaxPriority + 1] = {
2944  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
2945  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
2946  THREAD_PRIORITY_LOWEST,                       // 2
2947  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
2948  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
2949  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
2950  THREAD_PRIORITY_NORMAL,                       // 6
2951  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
2952  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
2953  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
2954  THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
2955};
2956
2957int prio_policy1[MaxPriority + 1] = {
2958  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
2959  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
2960  THREAD_PRIORITY_LOWEST,                       // 2
2961  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
2962  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
2963  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
2964  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
2965  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
2966  THREAD_PRIORITY_HIGHEST,                      // 8
2967  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
2968  THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
2969};
2970
2971static int prio_init() {
2972  // If ThreadPriorityPolicy is 1, switch tables
2973  if (ThreadPriorityPolicy == 1) {
2974    int i;
2975    for (i = 0; i < MaxPriority + 1; i++) {
2976      os::java_to_os_priority[i] = prio_policy1[i];
2977    }
2978  }
2979  return 0;
2980}
2981
2982OSReturn os::set_native_priority(Thread* thread, int priority) {
2983  if (!UseThreadPriorities) return OS_OK;
2984  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
2985  return ret ? OS_OK : OS_ERR;
2986}
2987
2988OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
2989  if ( !UseThreadPriorities ) {
2990    *priority_ptr = java_to_os_priority[NormPriority];
2991    return OS_OK;
2992  }
2993  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
2994  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
2995    assert(false, "GetThreadPriority failed");
2996    return OS_ERR;
2997  }
2998  *priority_ptr = os_prio;
2999  return OS_OK;
3000}
3001
3002
3003// Hint to the underlying OS that a task switch would not be good.
3004// Void return because it's a hint and can fail.
3005void os::hint_no_preempt() {}
3006
3007void os::interrupt(Thread* thread) {
3008  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3009         "possibility of dangling Thread pointer");
3010
3011  OSThread* osthread = thread->osthread();
3012  osthread->set_interrupted(true);
3013  // More than one thread can get here with the same value of osthread,
3014  // resulting in multiple notifications.  We do, however, want the store
3015  // to interrupted() to be visible to other threads before we post
3016  // the interrupt event.
3017  OrderAccess::release();
3018  SetEvent(osthread->interrupt_event());
3019  // For JSR166:  unpark after setting status
3020  if (thread->is_Java_thread())
3021    ((JavaThread*)thread)->parker()->unpark();
3022
3023  ParkEvent * ev = thread->_ParkEvent ;
3024  if (ev != NULL) ev->unpark() ;
3025
3026}
3027
3028
3029bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3030  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3031         "possibility of dangling Thread pointer");
3032
3033  OSThread* osthread = thread->osthread();
3034  bool interrupted;
3035  interrupted = osthread->interrupted();
3036  if (clear_interrupted == true) {
3037    osthread->set_interrupted(false);
3038    ResetEvent(osthread->interrupt_event());
3039  } // Otherwise leave the interrupted state alone
3040
3041  return interrupted;
3042}
3043
3044// Get's a pc (hint) for a running thread. Currently used only for profiling.
3045ExtendedPC os::get_thread_pc(Thread* thread) {
3046  CONTEXT context;
3047  context.ContextFlags = CONTEXT_CONTROL;
3048  HANDLE handle = thread->osthread()->thread_handle();
3049#ifdef _M_IA64
3050  assert(0, "Fix get_thread_pc");
3051  return ExtendedPC(NULL);
3052#else
3053  if (GetThreadContext(handle, &context)) {
3054#ifdef _M_AMD64
3055    return ExtendedPC((address) context.Rip);
3056#else
3057    return ExtendedPC((address) context.Eip);
3058#endif
3059  } else {
3060    return ExtendedPC(NULL);
3061  }
3062#endif
3063}
3064
3065// GetCurrentThreadId() returns DWORD
3066intx os::current_thread_id()          { return GetCurrentThreadId(); }
3067
3068static int _initial_pid = 0;
3069
3070int os::current_process_id()
3071{
3072  return (_initial_pid ? _initial_pid : _getpid());
3073}
3074
3075int    os::win32::_vm_page_size       = 0;
3076int    os::win32::_vm_allocation_granularity = 0;
3077int    os::win32::_processor_type     = 0;
3078// Processor level is not available on non-NT systems, use vm_version instead
3079int    os::win32::_processor_level    = 0;
3080julong os::win32::_physical_memory    = 0;
3081size_t os::win32::_default_stack_size = 0;
3082
3083         intx os::win32::_os_thread_limit    = 0;
3084volatile intx os::win32::_os_thread_count    = 0;
3085
3086bool   os::win32::_is_nt              = false;
3087bool   os::win32::_is_windows_2003    = false;
3088
3089
3090void os::win32::initialize_system_info() {
3091  SYSTEM_INFO si;
3092  GetSystemInfo(&si);
3093  _vm_page_size    = si.dwPageSize;
3094  _vm_allocation_granularity = si.dwAllocationGranularity;
3095  _processor_type  = si.dwProcessorType;
3096  _processor_level = si.wProcessorLevel;
3097  _processor_count = si.dwNumberOfProcessors;
3098
3099  MEMORYSTATUS ms;
3100  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3101  // dwMemoryLoad (% of memory in use)
3102  GlobalMemoryStatus(&ms);
3103  _physical_memory = ms.dwTotalPhys;
3104
3105  OSVERSIONINFO oi;
3106  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3107  GetVersionEx(&oi);
3108  switch(oi.dwPlatformId) {
3109    case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3110    case VER_PLATFORM_WIN32_NT:
3111      _is_nt = true;
3112      {
3113        int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3114        if (os_vers == 5002) {
3115          _is_windows_2003 = true;
3116        }
3117      }
3118      break;
3119    default: fatal("Unknown platform");
3120  }
3121
3122  _default_stack_size = os::current_stack_size();
3123  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3124  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3125    "stack size not a multiple of page size");
3126
3127  initialize_performance_counter();
3128
3129  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3130  // known to deadlock the system, if the VM issues to thread operations with
3131  // a too high frequency, e.g., such as changing the priorities.
3132  // The 6000 seems to work well - no deadlocks has been notices on the test
3133  // programs that we have seen experience this problem.
3134  if (!os::win32::is_nt()) {
3135    StarvationMonitorInterval = 6000;
3136  }
3137}
3138
3139
3140void os::win32::setmode_streams() {
3141  _setmode(_fileno(stdin), _O_BINARY);
3142  _setmode(_fileno(stdout), _O_BINARY);
3143  _setmode(_fileno(stderr), _O_BINARY);
3144}
3145
3146
3147int os::message_box(const char* title, const char* message) {
3148  int result = MessageBox(NULL, message, title,
3149                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3150  return result == IDYES;
3151}
3152
3153int os::allocate_thread_local_storage() {
3154  return TlsAlloc();
3155}
3156
3157
3158void os::free_thread_local_storage(int index) {
3159  TlsFree(index);
3160}
3161
3162
3163void os::thread_local_storage_at_put(int index, void* value) {
3164  TlsSetValue(index, value);
3165  assert(thread_local_storage_at(index) == value, "Just checking");
3166}
3167
3168
3169void* os::thread_local_storage_at(int index) {
3170  return TlsGetValue(index);
3171}
3172
3173
3174#ifndef PRODUCT
3175#ifndef _WIN64
3176// Helpers to check whether NX protection is enabled
3177int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3178  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3179      pex->ExceptionRecord->NumberParameters > 0 &&
3180      pex->ExceptionRecord->ExceptionInformation[0] ==
3181      EXCEPTION_INFO_EXEC_VIOLATION) {
3182    return EXCEPTION_EXECUTE_HANDLER;
3183  }
3184  return EXCEPTION_CONTINUE_SEARCH;
3185}
3186
3187void nx_check_protection() {
3188  // If NX is enabled we'll get an exception calling into code on the stack
3189  char code[] = { (char)0xC3 }; // ret
3190  void *code_ptr = (void *)code;
3191  __try {
3192    __asm call code_ptr
3193  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3194    tty->print_raw_cr("NX protection detected.");
3195  }
3196}
3197#endif // _WIN64
3198#endif // PRODUCT
3199
3200// this is called _before_ the global arguments have been parsed
3201void os::init(void) {
3202  _initial_pid = _getpid();
3203
3204  init_random(1234567);
3205
3206  win32::initialize_system_info();
3207  win32::setmode_streams();
3208  init_page_sizes((size_t) win32::vm_page_size());
3209
3210  // For better scalability on MP systems (must be called after initialize_system_info)
3211#ifndef PRODUCT
3212  if (is_MP()) {
3213    NoYieldsInMicrolock = true;
3214  }
3215#endif
3216  // This may be overridden later when argument processing is done.
3217  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3218    os::win32::is_windows_2003());
3219
3220  // Initialize main_process and main_thread
3221  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3222 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3223                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3224    fatal("DuplicateHandle failed\n");
3225  }
3226  main_thread_id = (int) GetCurrentThreadId();
3227}
3228
3229// To install functions for atexit processing
3230extern "C" {
3231  static void perfMemory_exit_helper() {
3232    perfMemory_exit();
3233  }
3234}
3235
3236
3237// this is called _after_ the global arguments have been parsed
3238jint os::init_2(void) {
3239  // Allocate a single page and mark it as readable for safepoint polling
3240  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3241  guarantee( polling_page != NULL, "Reserve Failed for polling page");
3242
3243  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3244  guarantee( return_page != NULL, "Commit Failed for polling page");
3245
3246  os::set_polling_page( polling_page );
3247
3248#ifndef PRODUCT
3249  if( Verbose && PrintMiscellaneous )
3250    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3251#endif
3252
3253  if (!UseMembar) {
3254    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_EXECUTE_READWRITE);
3255    guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3256
3257    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
3258    guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3259
3260    os::set_memory_serialize_page( mem_serialize_page );
3261
3262#ifndef PRODUCT
3263    if(Verbose && PrintMiscellaneous)
3264      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3265#endif
3266}
3267
3268  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3269
3270  // Setup Windows Exceptions
3271
3272  // On Itanium systems, Structured Exception Handling does not
3273  // work since stack frames must be walkable by the OS.  Since
3274  // much of our code is dynamically generated, and we do not have
3275  // proper unwind .xdata sections, the system simply exits
3276  // rather than delivering the exception.  To work around
3277  // this we use VectorExceptions instead.
3278#ifdef _WIN64
3279  if (UseVectoredExceptions) {
3280    topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3281  }
3282#endif
3283
3284  // for debugging float code generation bugs
3285  if (ForceFloatExceptions) {
3286#ifndef  _WIN64
3287    static long fp_control_word = 0;
3288    __asm { fstcw fp_control_word }
3289    // see Intel PPro Manual, Vol. 2, p 7-16
3290    const long precision = 0x20;
3291    const long underflow = 0x10;
3292    const long overflow  = 0x08;
3293    const long zero_div  = 0x04;
3294    const long denorm    = 0x02;
3295    const long invalid   = 0x01;
3296    fp_control_word |= invalid;
3297    __asm { fldcw fp_control_word }
3298#endif
3299  }
3300
3301  // Initialize HPI.
3302  jint hpi_result = hpi::initialize();
3303  if (hpi_result != JNI_OK) { return hpi_result; }
3304
3305  // If stack_commit_size is 0, windows will reserve the default size,
3306  // but only commit a small portion of it.
3307  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3308  size_t default_reserve_size = os::win32::default_stack_size();
3309  size_t actual_reserve_size = stack_commit_size;
3310  if (stack_commit_size < default_reserve_size) {
3311    // If stack_commit_size == 0, we want this too
3312    actual_reserve_size = default_reserve_size;
3313  }
3314
3315  JavaThread::set_stack_size_at_create(stack_commit_size);
3316
3317  // Calculate theoretical max. size of Threads to guard gainst artifical
3318  // out-of-memory situations, where all available address-space has been
3319  // reserved by thread stacks.
3320  assert(actual_reserve_size != 0, "Must have a stack");
3321
3322  // Calculate the thread limit when we should start doing Virtual Memory
3323  // banging. Currently when the threads will have used all but 200Mb of space.
3324  //
3325  // TODO: consider performing a similar calculation for commit size instead
3326  // as reserve size, since on a 64-bit platform we'll run into that more
3327  // often than running out of virtual memory space.  We can use the
3328  // lower value of the two calculations as the os_thread_limit.
3329  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3330  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3331
3332  // at exit methods are called in the reverse order of their registration.
3333  // there is no limit to the number of functions registered. atexit does
3334  // not set errno.
3335
3336  if (PerfAllowAtExitRegistration) {
3337    // only register atexit functions if PerfAllowAtExitRegistration is set.
3338    // atexit functions can be delayed until process exit time, which
3339    // can be problematic for embedded VM situations. Embedded VMs should
3340    // call DestroyJavaVM() to assure that VM resources are released.
3341
3342    // note: perfMemory_exit_helper atexit function may be removed in
3343    // the future if the appropriate cleanup code can be added to the
3344    // VM_Exit VMOperation's doit method.
3345    if (atexit(perfMemory_exit_helper) != 0) {
3346      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3347    }
3348  }
3349
3350  // initialize PSAPI or ToolHelp for fatal error handler
3351  if (win32::is_nt()) _init_psapi();
3352  else _init_toolhelp();
3353
3354#ifndef _WIN64
3355  // Print something if NX is enabled (win32 on AMD64)
3356  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3357#endif
3358
3359  // initialize thread priority policy
3360  prio_init();
3361
3362  if (UseNUMA && !ForceNUMA) {
3363    UseNUMA = false; // Currently unsupported.
3364  }
3365
3366  return JNI_OK;
3367}
3368
3369
3370// Mark the polling page as unreadable
3371void os::make_polling_page_unreadable(void) {
3372  DWORD old_status;
3373  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3374    fatal("Could not disable polling page");
3375};
3376
3377// Mark the polling page as readable
3378void os::make_polling_page_readable(void) {
3379  DWORD old_status;
3380  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3381    fatal("Could not enable polling page");
3382};
3383
3384
3385int os::stat(const char *path, struct stat *sbuf) {
3386  char pathbuf[MAX_PATH];
3387  if (strlen(path) > MAX_PATH - 1) {
3388    errno = ENAMETOOLONG;
3389    return -1;
3390  }
3391  hpi::native_path(strcpy(pathbuf, path));
3392  int ret = ::stat(pathbuf, sbuf);
3393  if (sbuf != NULL && UseUTCFileTimestamp) {
3394    // Fix for 6539723.  st_mtime returned from stat() is dependent on
3395    // the system timezone and so can return different values for the
3396    // same file if/when daylight savings time changes.  This adjustment
3397    // makes sure the same timestamp is returned regardless of the TZ.
3398    //
3399    // See:
3400    // http://msdn.microsoft.com/library/
3401    //   default.asp?url=/library/en-us/sysinfo/base/
3402    //   time_zone_information_str.asp
3403    // and
3404    // http://msdn.microsoft.com/library/default.asp?url=
3405    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3406    //
3407    // NOTE: there is a insidious bug here:  If the timezone is changed
3408    // after the call to stat() but before 'GetTimeZoneInformation()', then
3409    // the adjustment we do here will be wrong and we'll return the wrong
3410    // value (which will likely end up creating an invalid class data
3411    // archive).  Absent a better API for this, or some time zone locking
3412    // mechanism, we'll have to live with this risk.
3413    TIME_ZONE_INFORMATION tz;
3414    DWORD tzid = GetTimeZoneInformation(&tz);
3415    int daylightBias =
3416      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3417    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3418  }
3419  return ret;
3420}
3421
3422
3423#define FT2INT64(ft) \
3424  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3425
3426
3427// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3428// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3429// of a thread.
3430//
3431// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3432// the fast estimate available on the platform.
3433
3434// current_thread_cpu_time() is not optimized for Windows yet
3435jlong os::current_thread_cpu_time() {
3436  // return user + sys since the cost is the same
3437  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3438}
3439
3440jlong os::thread_cpu_time(Thread* thread) {
3441  // consistent with what current_thread_cpu_time() returns.
3442  return os::thread_cpu_time(thread, true /* user+sys */);
3443}
3444
3445jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3446  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3447}
3448
3449jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3450  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3451  // If this function changes, os::is_thread_cpu_time_supported() should too
3452  if (os::win32::is_nt()) {
3453    FILETIME CreationTime;
3454    FILETIME ExitTime;
3455    FILETIME KernelTime;
3456    FILETIME UserTime;
3457
3458    if ( GetThreadTimes(thread->osthread()->thread_handle(),
3459                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3460      return -1;
3461    else
3462      if (user_sys_cpu_time) {
3463        return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3464      } else {
3465        return FT2INT64(UserTime) * 100;
3466      }
3467  } else {
3468    return (jlong) timeGetTime() * 1000000;
3469  }
3470}
3471
3472void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3473  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3474  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3475  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3476  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3477}
3478
3479void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3480  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3481  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3482  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3483  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3484}
3485
3486bool os::is_thread_cpu_time_supported() {
3487  // see os::thread_cpu_time
3488  if (os::win32::is_nt()) {
3489    FILETIME CreationTime;
3490    FILETIME ExitTime;
3491    FILETIME KernelTime;
3492    FILETIME UserTime;
3493
3494    if ( GetThreadTimes(GetCurrentThread(),
3495                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3496      return false;
3497    else
3498      return true;
3499  } else {
3500    return false;
3501  }
3502}
3503
3504// Windows does't provide a loadavg primitive so this is stubbed out for now.
3505// It does have primitives (PDH API) to get CPU usage and run queue length.
3506// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3507// If we wanted to implement loadavg on Windows, we have a few options:
3508//
3509// a) Query CPU usage and run queue length and "fake" an answer by
3510//    returning the CPU usage if it's under 100%, and the run queue
3511//    length otherwise.  It turns out that querying is pretty slow
3512//    on Windows, on the order of 200 microseconds on a fast machine.
3513//    Note that on the Windows the CPU usage value is the % usage
3514//    since the last time the API was called (and the first call
3515//    returns 100%), so we'd have to deal with that as well.
3516//
3517// b) Sample the "fake" answer using a sampling thread and store
3518//    the answer in a global variable.  The call to loadavg would
3519//    just return the value of the global, avoiding the slow query.
3520//
3521// c) Sample a better answer using exponential decay to smooth the
3522//    value.  This is basically the algorithm used by UNIX kernels.
3523//
3524// Note that sampling thread starvation could affect both (b) and (c).
3525int os::loadavg(double loadavg[], int nelem) {
3526  return -1;
3527}
3528
3529
3530// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3531bool os::dont_yield() {
3532  return DontYieldALot;
3533}
3534
3535// Is a (classpath) directory empty?
3536bool os::dir_is_empty(const char* path) {
3537  WIN32_FIND_DATA fd;
3538  HANDLE f = FindFirstFile(path, &fd);
3539  if (f == INVALID_HANDLE_VALUE) {
3540    return true;
3541  }
3542  FindClose(f);
3543  return false;
3544}
3545
3546// create binary file, rewriting existing file if required
3547int os::create_binary_file(const char* path, bool rewrite_existing) {
3548  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3549  if (!rewrite_existing) {
3550    oflags |= _O_EXCL;
3551  }
3552  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3553}
3554
3555// return current position of file pointer
3556jlong os::current_file_offset(int fd) {
3557  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3558}
3559
3560// move file pointer to the specified offset
3561jlong os::seek_to_file_offset(int fd, jlong offset) {
3562  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3563}
3564
3565
3566// Map a block of memory.
3567char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3568                     char *addr, size_t bytes, bool read_only,
3569                     bool allow_exec) {
3570  HANDLE hFile;
3571  char* base;
3572
3573  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3574                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3575  if (hFile == NULL) {
3576    if (PrintMiscellaneous && Verbose) {
3577      DWORD err = GetLastError();
3578      tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3579    }
3580    return NULL;
3581  }
3582
3583  if (allow_exec) {
3584    // CreateFileMapping/MapViewOfFileEx can't map executable memory
3585    // unless it comes from a PE image (which the shared archive is not.)
3586    // Even VirtualProtect refuses to give execute access to mapped memory
3587    // that was not previously executable.
3588    //
3589    // Instead, stick the executable region in anonymous memory.  Yuck.
3590    // Penalty is that ~4 pages will not be shareable - in the future
3591    // we might consider DLLizing the shared archive with a proper PE
3592    // header so that mapping executable + sharing is possible.
3593
3594    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3595                                PAGE_READWRITE);
3596    if (base == NULL) {
3597      if (PrintMiscellaneous && Verbose) {
3598        DWORD err = GetLastError();
3599        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3600      }
3601      CloseHandle(hFile);
3602      return NULL;
3603    }
3604
3605    DWORD bytes_read;
3606    OVERLAPPED overlapped;
3607    overlapped.Offset = (DWORD)file_offset;
3608    overlapped.OffsetHigh = 0;
3609    overlapped.hEvent = NULL;
3610    // ReadFile guarantees that if the return value is true, the requested
3611    // number of bytes were read before returning.
3612    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3613    if (!res) {
3614      if (PrintMiscellaneous && Verbose) {
3615        DWORD err = GetLastError();
3616        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3617      }
3618      release_memory(base, bytes);
3619      CloseHandle(hFile);
3620      return NULL;
3621    }
3622  } else {
3623    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3624                                    NULL /*file_name*/);
3625    if (hMap == NULL) {
3626      if (PrintMiscellaneous && Verbose) {
3627        DWORD err = GetLastError();
3628        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3629      }
3630      CloseHandle(hFile);
3631      return NULL;
3632    }
3633
3634    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3635    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3636                                  (DWORD)bytes, addr);
3637    if (base == NULL) {
3638      if (PrintMiscellaneous && Verbose) {
3639        DWORD err = GetLastError();
3640        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3641      }
3642      CloseHandle(hMap);
3643      CloseHandle(hFile);
3644      return NULL;
3645    }
3646
3647    if (CloseHandle(hMap) == 0) {
3648      if (PrintMiscellaneous && Verbose) {
3649        DWORD err = GetLastError();
3650        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3651      }
3652      CloseHandle(hFile);
3653      return base;
3654    }
3655  }
3656
3657  if (allow_exec) {
3658    DWORD old_protect;
3659    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3660    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3661
3662    if (!res) {
3663      if (PrintMiscellaneous && Verbose) {
3664        DWORD err = GetLastError();
3665        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3666      }
3667      // Don't consider this a hard error, on IA32 even if the
3668      // VirtualProtect fails, we should still be able to execute
3669      CloseHandle(hFile);
3670      return base;
3671    }
3672  }
3673
3674  if (CloseHandle(hFile) == 0) {
3675    if (PrintMiscellaneous && Verbose) {
3676      DWORD err = GetLastError();
3677      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3678    }
3679    return base;
3680  }
3681
3682  return base;
3683}
3684
3685
3686// Remap a block of memory.
3687char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3688                       char *addr, size_t bytes, bool read_only,
3689                       bool allow_exec) {
3690  // This OS does not allow existing memory maps to be remapped so we
3691  // have to unmap the memory before we remap it.
3692  if (!os::unmap_memory(addr, bytes)) {
3693    return NULL;
3694  }
3695
3696  // There is a very small theoretical window between the unmap_memory()
3697  // call above and the map_memory() call below where a thread in native
3698  // code may be able to access an address that is no longer mapped.
3699
3700  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3701                        allow_exec);
3702}
3703
3704
3705// Unmap a block of memory.
3706// Returns true=success, otherwise false.
3707
3708bool os::unmap_memory(char* addr, size_t bytes) {
3709  BOOL result = UnmapViewOfFile(addr);
3710  if (result == 0) {
3711    if (PrintMiscellaneous && Verbose) {
3712      DWORD err = GetLastError();
3713      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3714    }
3715    return false;
3716  }
3717  return true;
3718}
3719
3720void os::pause() {
3721  char filename[MAX_PATH];
3722  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3723    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3724  } else {
3725    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3726  }
3727
3728  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3729  if (fd != -1) {
3730    struct stat buf;
3731    close(fd);
3732    while (::stat(filename, &buf) == 0) {
3733      Sleep(100);
3734    }
3735  } else {
3736    jio_fprintf(stderr,
3737      "Could not open pause file '%s', continuing immediately.\n", filename);
3738  }
3739}
3740
3741// An Event wraps a win32 "CreateEvent" kernel handle.
3742//
3743// We have a number of choices regarding "CreateEvent" win32 handle leakage:
3744//
3745// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3746//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3747//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3748//     In addition, an unpark() operation might fetch the handle field, but the
3749//     event could recycle between the fetch and the SetEvent() operation.
3750//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3751//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3752//     on an stale but recycled handle would be harmless, but in practice this might
3753//     confuse other non-Sun code, so it's not a viable approach.
3754//
3755// 2:  Once a win32 event handle is associated with an Event, it remains associated
3756//     with the Event.  The event handle is never closed.  This could be construed
3757//     as handle leakage, but only up to the maximum # of threads that have been extant
3758//     at any one time.  This shouldn't be an issue, as windows platforms typically
3759//     permit a process to have hundreds of thousands of open handles.
3760//
3761// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3762//     and release unused handles.
3763//
3764// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3765//     It's not clear, however, that we wouldn't be trading one type of leak for another.
3766//
3767// 5.  Use an RCU-like mechanism (Read-Copy Update).
3768//     Or perhaps something similar to Maged Michael's "Hazard pointers".
3769//
3770// We use (2).
3771//
3772// TODO-FIXME:
3773// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3774// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3775//     to recover from (or at least detect) the dreaded Windows 841176 bug.
3776// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3777//     into a single win32 CreateEvent() handle.
3778//
3779// _Event transitions in park()
3780//   -1 => -1 : illegal
3781//    1 =>  0 : pass - return immediately
3782//    0 => -1 : block
3783//
3784// _Event serves as a restricted-range semaphore :
3785//    -1 : thread is blocked
3786//     0 : neutral  - thread is running or ready
3787//     1 : signaled - thread is running or ready
3788//
3789// Another possible encoding of _Event would be
3790// with explicit "PARKED" and "SIGNALED" bits.
3791
3792int os::PlatformEvent::park (jlong Millis) {
3793    guarantee (_ParkHandle != NULL , "Invariant") ;
3794    guarantee (Millis > 0          , "Invariant") ;
3795    int v ;
3796
3797    // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3798    // the initial park() operation.
3799
3800    for (;;) {
3801        v = _Event ;
3802        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3803    }
3804    guarantee ((v == 0) || (v == 1), "invariant") ;
3805    if (v != 0) return OS_OK ;
3806
3807    // Do this the hard way by blocking ...
3808    // TODO: consider a brief spin here, gated on the success of recent
3809    // spin attempts by this thread.
3810    //
3811    // We decompose long timeouts into series of shorter timed waits.
3812    // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3813    // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3814    // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3815    // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3816    // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3817    // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3818    // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3819    // for the already waited time.  This policy does not admit any new outcomes.
3820    // In the future, however, we might want to track the accumulated wait time and
3821    // adjust Millis accordingly if we encounter a spurious wakeup.
3822
3823    const int MAXTIMEOUT = 0x10000000 ;
3824    DWORD rv = WAIT_TIMEOUT ;
3825    while (_Event < 0 && Millis > 0) {
3826       DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3827       if (Millis > MAXTIMEOUT) {
3828          prd = MAXTIMEOUT ;
3829       }
3830       rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3831       assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3832       if (rv == WAIT_TIMEOUT) {
3833           Millis -= prd ;
3834       }
3835    }
3836    v = _Event ;
3837    _Event = 0 ;
3838    OrderAccess::fence() ;
3839    // If we encounter a nearly simultanous timeout expiry and unpark()
3840    // we return OS_OK indicating we awoke via unpark().
3841    // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3842    return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3843}
3844
3845void os::PlatformEvent::park () {
3846    guarantee (_ParkHandle != NULL, "Invariant") ;
3847    // Invariant: Only the thread associated with the Event/PlatformEvent
3848    // may call park().
3849    int v ;
3850    for (;;) {
3851        v = _Event ;
3852        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3853    }
3854    guarantee ((v == 0) || (v == 1), "invariant") ;
3855    if (v != 0) return ;
3856
3857    // Do this the hard way by blocking ...
3858    // TODO: consider a brief spin here, gated on the success of recent
3859    // spin attempts by this thread.
3860    while (_Event < 0) {
3861       DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
3862       assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
3863    }
3864
3865    // Usually we'll find _Event == 0 at this point, but as
3866    // an optional optimization we clear it, just in case can
3867    // multiple unpark() operations drove _Event up to 1.
3868    _Event = 0 ;
3869    OrderAccess::fence() ;
3870    guarantee (_Event >= 0, "invariant") ;
3871}
3872
3873void os::PlatformEvent::unpark() {
3874  guarantee (_ParkHandle != NULL, "Invariant") ;
3875  int v ;
3876  for (;;) {
3877      v = _Event ;      // Increment _Event if it's < 1.
3878      if (v > 0) {
3879         // If it's already signaled just return.
3880         // The LD of _Event could have reordered or be satisfied
3881         // by a read-aside from this processor's write buffer.
3882         // To avoid problems execute a barrier and then
3883         // ratify the value.  A degenerate CAS() would also work.
3884         // Viz., CAS (v+0, &_Event, v) == v).
3885         OrderAccess::fence() ;
3886         if (_Event == v) return ;
3887         continue ;
3888      }
3889      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
3890  }
3891  if (v < 0) {
3892     ::SetEvent (_ParkHandle) ;
3893  }
3894}
3895
3896
3897// JSR166
3898// -------------------------------------------------------
3899
3900/*
3901 * The Windows implementation of Park is very straightforward: Basic
3902 * operations on Win32 Events turn out to have the right semantics to
3903 * use them directly. We opportunistically resuse the event inherited
3904 * from Monitor.
3905 */
3906
3907
3908void Parker::park(bool isAbsolute, jlong time) {
3909  guarantee (_ParkEvent != NULL, "invariant") ;
3910  // First, demultiplex/decode time arguments
3911  if (time < 0) { // don't wait
3912    return;
3913  }
3914  else if (time == 0) {
3915    time = INFINITE;
3916  }
3917  else if  (isAbsolute) {
3918    time -= os::javaTimeMillis(); // convert to relative time
3919    if (time <= 0) // already elapsed
3920      return;
3921  }
3922  else { // relative
3923    time /= 1000000; // Must coarsen from nanos to millis
3924    if (time == 0)   // Wait for the minimal time unit if zero
3925      time = 1;
3926  }
3927
3928  JavaThread* thread = (JavaThread*)(Thread::current());
3929  assert(thread->is_Java_thread(), "Must be JavaThread");
3930  JavaThread *jt = (JavaThread *)thread;
3931
3932  // Don't wait if interrupted or already triggered
3933  if (Thread::is_interrupted(thread, false) ||
3934    WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
3935    ResetEvent(_ParkEvent);
3936    return;
3937  }
3938  else {
3939    ThreadBlockInVM tbivm(jt);
3940    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3941    jt->set_suspend_equivalent();
3942
3943    WaitForSingleObject(_ParkEvent,  time);
3944    ResetEvent(_ParkEvent);
3945
3946    // If externally suspended while waiting, re-suspend
3947    if (jt->handle_special_suspend_equivalent_condition()) {
3948      jt->java_suspend_self();
3949    }
3950  }
3951}
3952
3953void Parker::unpark() {
3954  guarantee (_ParkEvent != NULL, "invariant") ;
3955  SetEvent(_ParkEvent);
3956}
3957
3958// Run the specified command in a separate process. Return its exit value,
3959// or -1 on failure (e.g. can't create a new process).
3960int os::fork_and_exec(char* cmd) {
3961  STARTUPINFO si;
3962  PROCESS_INFORMATION pi;
3963
3964  memset(&si, 0, sizeof(si));
3965  si.cb = sizeof(si);
3966  memset(&pi, 0, sizeof(pi));
3967  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
3968                            cmd,    // command line
3969                            NULL,   // process security attribute
3970                            NULL,   // thread security attribute
3971                            TRUE,   // inherits system handles
3972                            0,      // no creation flags
3973                            NULL,   // use parent's environment block
3974                            NULL,   // use parent's starting directory
3975                            &si,    // (in) startup information
3976                            &pi);   // (out) process information
3977
3978  if (rslt) {
3979    // Wait until child process exits.
3980    WaitForSingleObject(pi.hProcess, INFINITE);
3981
3982    DWORD exit_code;
3983    GetExitCodeProcess(pi.hProcess, &exit_code);
3984
3985    // Close process and thread handles.
3986    CloseHandle(pi.hProcess);
3987    CloseHandle(pi.hThread);
3988
3989    return (int)exit_code;
3990  } else {
3991    return -1;
3992  }
3993}
3994
3995//--------------------------------------------------------------------------------------------------
3996// Non-product code
3997
3998static int mallocDebugIntervalCounter = 0;
3999static int mallocDebugCounter = 0;
4000bool os::check_heap(bool force) {
4001  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4002  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4003    // Note: HeapValidate executes two hardware breakpoints when it finds something
4004    // wrong; at these points, eax contains the address of the offending block (I think).
4005    // To get to the exlicit error message(s) below, just continue twice.
4006    HANDLE heap = GetProcessHeap();
4007    { HeapLock(heap);
4008      PROCESS_HEAP_ENTRY phe;
4009      phe.lpData = NULL;
4010      while (HeapWalk(heap, &phe) != 0) {
4011        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4012            !HeapValidate(heap, 0, phe.lpData)) {
4013          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4014          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4015          fatal("corrupted C heap");
4016        }
4017      }
4018      int err = GetLastError();
4019      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4020        fatal1("heap walk aborted with error %d", err);
4021      }
4022      HeapUnlock(heap);
4023    }
4024    mallocDebugIntervalCounter = 0;
4025  }
4026  return true;
4027}
4028
4029
4030#ifndef PRODUCT
4031bool os::find(address addr) {
4032  // Nothing yet
4033  return false;
4034}
4035#endif
4036
4037LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4038  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4039
4040  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4041    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4042    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4043    address addr = (address) exceptionRecord->ExceptionInformation[1];
4044
4045    if (os::is_memory_serialize_page(thread, addr))
4046      return EXCEPTION_CONTINUE_EXECUTION;
4047  }
4048
4049  return EXCEPTION_CONTINUE_SEARCH;
4050}
4051
4052static int getLastErrorString(char *buf, size_t len)
4053{
4054    long errval;
4055
4056    if ((errval = GetLastError()) != 0)
4057    {
4058      /* DOS error */
4059      size_t n = (size_t)FormatMessage(
4060            FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4061            NULL,
4062            errval,
4063            0,
4064            buf,
4065            (DWORD)len,
4066            NULL);
4067      if (n > 3) {
4068        /* Drop final '.', CR, LF */
4069        if (buf[n - 1] == '\n') n--;
4070        if (buf[n - 1] == '\r') n--;
4071        if (buf[n - 1] == '.') n--;
4072        buf[n] = '\0';
4073      }
4074      return (int)n;
4075    }
4076
4077    if (errno != 0)
4078    {
4079      /* C runtime error that has no corresponding DOS error code */
4080      const char *s = strerror(errno);
4081      size_t n = strlen(s);
4082      if (n >= len) n = len - 1;
4083      strncpy(buf, s, n);
4084      buf[n] = '\0';
4085      return (int)n;
4086    }
4087    return 0;
4088}
4089