os_windows.cpp revision 1123:167c2986d91b
1/*
2 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#ifdef _WIN64
26// Must be at least Windows 2000 or XP to use VectoredExceptions
27#define _WIN32_WINNT 0x500
28#endif
29
30// do not include precompiled header file
31# include "incls/_os_windows.cpp.incl"
32
33#ifdef _DEBUG
34#include <crtdbg.h>
35#endif
36
37
38#include <windows.h>
39#include <sys/types.h>
40#include <sys/stat.h>
41#include <sys/timeb.h>
42#include <objidl.h>
43#include <shlobj.h>
44
45#include <malloc.h>
46#include <signal.h>
47#include <direct.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <io.h>
51#include <process.h>              // For _beginthreadex(), _endthreadex()
52#include <imagehlp.h>             // For os::dll_address_to_function_name
53
54/* for enumerating dll libraries */
55#include <tlhelp32.h>
56#include <vdmdbg.h>
57
58// for timer info max values which include all bits
59#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
60
61// For DLL loading/load error detection
62// Values of PE COFF
63#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
64#define IMAGE_FILE_SIGNATURE_LENGTH 4
65
66static HANDLE main_process;
67static HANDLE main_thread;
68static int    main_thread_id;
69
70static FILETIME process_creation_time;
71static FILETIME process_exit_time;
72static FILETIME process_user_time;
73static FILETIME process_kernel_time;
74
75#ifdef _WIN64
76PVOID  topLevelVectoredExceptionHandler = NULL;
77#endif
78
79#ifdef _M_IA64
80#define __CPU__ ia64
81#elif _M_AMD64
82#define __CPU__ amd64
83#else
84#define __CPU__ i486
85#endif
86
87// save DLL module handle, used by GetModuleFileName
88
89HINSTANCE vm_lib_handle;
90static int getLastErrorString(char *buf, size_t len);
91
92BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
93  switch (reason) {
94    case DLL_PROCESS_ATTACH:
95      vm_lib_handle = hinst;
96      if(ForceTimeHighResolution)
97        timeBeginPeriod(1L);
98      break;
99    case DLL_PROCESS_DETACH:
100      if(ForceTimeHighResolution)
101        timeEndPeriod(1L);
102#ifdef _WIN64
103      if (topLevelVectoredExceptionHandler != NULL) {
104        RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
105        topLevelVectoredExceptionHandler = NULL;
106      }
107#endif
108      break;
109    default:
110      break;
111  }
112  return true;
113}
114
115static inline double fileTimeAsDouble(FILETIME* time) {
116  const double high  = (double) ((unsigned int) ~0);
117  const double split = 10000000.0;
118  double result = (time->dwLowDateTime / split) +
119                   time->dwHighDateTime * (high/split);
120  return result;
121}
122
123// Implementation of os
124
125bool os::getenv(const char* name, char* buffer, int len) {
126 int result = GetEnvironmentVariable(name, buffer, len);
127 return result > 0 && result < len;
128}
129
130
131// No setuid programs under Windows.
132bool os::have_special_privileges() {
133  return false;
134}
135
136
137// This method is  a periodic task to check for misbehaving JNI applications
138// under CheckJNI, we can add any periodic checks here.
139// For Windows at the moment does nothing
140void os::run_periodic_checks() {
141  return;
142}
143
144#ifndef _WIN64
145LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
146#endif
147void os::init_system_properties_values() {
148  /* sysclasspath, java_home, dll_dir */
149  {
150      char *home_path;
151      char *dll_path;
152      char *pslash;
153      char *bin = "\\bin";
154      char home_dir[MAX_PATH];
155
156      if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
157          os::jvm_path(home_dir, sizeof(home_dir));
158          // Found the full path to jvm[_g].dll.
159          // Now cut the path to <java_home>/jre if we can.
160          *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
161          pslash = strrchr(home_dir, '\\');
162          if (pslash != NULL) {
163              *pslash = '\0';                 /* get rid of \{client|server} */
164              pslash = strrchr(home_dir, '\\');
165              if (pslash != NULL)
166                  *pslash = '\0';             /* get rid of \bin */
167          }
168      }
169
170      home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
171      if (home_path == NULL)
172          return;
173      strcpy(home_path, home_dir);
174      Arguments::set_java_home(home_path);
175
176      dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
177      if (dll_path == NULL)
178          return;
179      strcpy(dll_path, home_dir);
180      strcat(dll_path, bin);
181      Arguments::set_dll_dir(dll_path);
182
183      if (!set_boot_path('\\', ';'))
184          return;
185  }
186
187  /* library_path */
188  #define EXT_DIR "\\lib\\ext"
189  #define BIN_DIR "\\bin"
190  #define PACKAGE_DIR "\\Sun\\Java"
191  {
192    /* Win32 library search order (See the documentation for LoadLibrary):
193     *
194     * 1. The directory from which application is loaded.
195     * 2. The current directory
196     * 3. The system wide Java Extensions directory (Java only)
197     * 4. System directory (GetSystemDirectory)
198     * 5. Windows directory (GetWindowsDirectory)
199     * 6. The PATH environment variable
200     */
201
202    char *library_path;
203    char tmp[MAX_PATH];
204    char *path_str = ::getenv("PATH");
205
206    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
207        sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
208
209    library_path[0] = '\0';
210
211    GetModuleFileName(NULL, tmp, sizeof(tmp));
212    *(strrchr(tmp, '\\')) = '\0';
213    strcat(library_path, tmp);
214
215    strcat(library_path, ";.");
216
217    GetWindowsDirectory(tmp, sizeof(tmp));
218    strcat(library_path, ";");
219    strcat(library_path, tmp);
220    strcat(library_path, PACKAGE_DIR BIN_DIR);
221
222    GetSystemDirectory(tmp, sizeof(tmp));
223    strcat(library_path, ";");
224    strcat(library_path, tmp);
225
226    GetWindowsDirectory(tmp, sizeof(tmp));
227    strcat(library_path, ";");
228    strcat(library_path, tmp);
229
230    if (path_str) {
231        strcat(library_path, ";");
232        strcat(library_path, path_str);
233    }
234
235    Arguments::set_library_path(library_path);
236    FREE_C_HEAP_ARRAY(char, library_path);
237  }
238
239  /* Default extensions directory */
240  {
241    char path[MAX_PATH];
242    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
243    GetWindowsDirectory(path, MAX_PATH);
244    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
245        path, PACKAGE_DIR, EXT_DIR);
246    Arguments::set_ext_dirs(buf);
247  }
248  #undef EXT_DIR
249  #undef BIN_DIR
250  #undef PACKAGE_DIR
251
252  /* Default endorsed standards directory. */
253  {
254    #define ENDORSED_DIR "\\lib\\endorsed"
255    size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
256    char * buf = NEW_C_HEAP_ARRAY(char, len);
257    sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
258    Arguments::set_endorsed_dirs(buf);
259    #undef ENDORSED_DIR
260  }
261
262#ifndef _WIN64
263  SetUnhandledExceptionFilter(Handle_FLT_Exception);
264#endif
265
266  // Done
267  return;
268}
269
270void os::breakpoint() {
271  DebugBreak();
272}
273
274// Invoked from the BREAKPOINT Macro
275extern "C" void breakpoint() {
276  os::breakpoint();
277}
278
279// Returns an estimate of the current stack pointer. Result must be guaranteed
280// to point into the calling threads stack, and be no lower than the current
281// stack pointer.
282
283address os::current_stack_pointer() {
284  int dummy;
285  address sp = (address)&dummy;
286  return sp;
287}
288
289// os::current_stack_base()
290//
291//   Returns the base of the stack, which is the stack's
292//   starting address.  This function must be called
293//   while running on the stack of the thread being queried.
294
295address os::current_stack_base() {
296  MEMORY_BASIC_INFORMATION minfo;
297  address stack_bottom;
298  size_t stack_size;
299
300  VirtualQuery(&minfo, &minfo, sizeof(minfo));
301  stack_bottom =  (address)minfo.AllocationBase;
302  stack_size = minfo.RegionSize;
303
304  // Add up the sizes of all the regions with the same
305  // AllocationBase.
306  while( 1 )
307  {
308    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
309    if ( stack_bottom == (address)minfo.AllocationBase )
310      stack_size += minfo.RegionSize;
311    else
312      break;
313  }
314
315#ifdef _M_IA64
316  // IA64 has memory and register stacks
317  stack_size = stack_size / 2;
318#endif
319  return stack_bottom + stack_size;
320}
321
322size_t os::current_stack_size() {
323  size_t sz;
324  MEMORY_BASIC_INFORMATION minfo;
325  VirtualQuery(&minfo, &minfo, sizeof(minfo));
326  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
327  return sz;
328}
329
330struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
331  const struct tm* time_struct_ptr = localtime(clock);
332  if (time_struct_ptr != NULL) {
333    *res = *time_struct_ptr;
334    return res;
335  }
336  return NULL;
337}
338
339LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
340
341// Thread start routine for all new Java threads
342static unsigned __stdcall java_start(Thread* thread) {
343  // Try to randomize the cache line index of hot stack frames.
344  // This helps when threads of the same stack traces evict each other's
345  // cache lines. The threads can be either from the same JVM instance, or
346  // from different JVM instances. The benefit is especially true for
347  // processors with hyperthreading technology.
348  static int counter = 0;
349  int pid = os::current_process_id();
350  _alloca(((pid ^ counter++) & 7) * 128);
351
352  OSThread* osthr = thread->osthread();
353  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
354
355  if (UseNUMA) {
356    int lgrp_id = os::numa_get_group_id();
357    if (lgrp_id != -1) {
358      thread->set_lgrp_id(lgrp_id);
359    }
360  }
361
362
363  if (UseVectoredExceptions) {
364    // If we are using vectored exception we don't need to set a SEH
365    thread->run();
366  }
367  else {
368    // Install a win32 structured exception handler around every thread created
369    // by VM, so VM can genrate error dump when an exception occurred in non-
370    // Java thread (e.g. VM thread).
371    __try {
372       thread->run();
373    } __except(topLevelExceptionFilter(
374               (_EXCEPTION_POINTERS*)_exception_info())) {
375        // Nothing to do.
376    }
377  }
378
379  // One less thread is executing
380  // When the VMThread gets here, the main thread may have already exited
381  // which frees the CodeHeap containing the Atomic::add code
382  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
383    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
384  }
385
386  return 0;
387}
388
389static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
390  // Allocate the OSThread object
391  OSThread* osthread = new OSThread(NULL, NULL);
392  if (osthread == NULL) return NULL;
393
394  // Initialize support for Java interrupts
395  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
396  if (interrupt_event == NULL) {
397    delete osthread;
398    return NULL;
399  }
400  osthread->set_interrupt_event(interrupt_event);
401
402  // Store info on the Win32 thread into the OSThread
403  osthread->set_thread_handle(thread_handle);
404  osthread->set_thread_id(thread_id);
405
406  if (UseNUMA) {
407    int lgrp_id = os::numa_get_group_id();
408    if (lgrp_id != -1) {
409      thread->set_lgrp_id(lgrp_id);
410    }
411  }
412
413  // Initial thread state is INITIALIZED, not SUSPENDED
414  osthread->set_state(INITIALIZED);
415
416  return osthread;
417}
418
419
420bool os::create_attached_thread(JavaThread* thread) {
421#ifdef ASSERT
422  thread->verify_not_published();
423#endif
424  HANDLE thread_h;
425  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
426                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
427    fatal("DuplicateHandle failed\n");
428  }
429  OSThread* osthread = create_os_thread(thread, thread_h,
430                                        (int)current_thread_id());
431  if (osthread == NULL) {
432     return false;
433  }
434
435  // Initial thread state is RUNNABLE
436  osthread->set_state(RUNNABLE);
437
438  thread->set_osthread(osthread);
439  return true;
440}
441
442bool os::create_main_thread(JavaThread* thread) {
443#ifdef ASSERT
444  thread->verify_not_published();
445#endif
446  if (_starting_thread == NULL) {
447    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
448     if (_starting_thread == NULL) {
449        return false;
450     }
451  }
452
453  // The primordial thread is runnable from the start)
454  _starting_thread->set_state(RUNNABLE);
455
456  thread->set_osthread(_starting_thread);
457  return true;
458}
459
460// Allocate and initialize a new OSThread
461bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
462  unsigned thread_id;
463
464  // Allocate the OSThread object
465  OSThread* osthread = new OSThread(NULL, NULL);
466  if (osthread == NULL) {
467    return false;
468  }
469
470  // Initialize support for Java interrupts
471  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
472  if (interrupt_event == NULL) {
473    delete osthread;
474    return NULL;
475  }
476  osthread->set_interrupt_event(interrupt_event);
477  osthread->set_interrupted(false);
478
479  thread->set_osthread(osthread);
480
481  if (stack_size == 0) {
482    switch (thr_type) {
483    case os::java_thread:
484      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
485      if (JavaThread::stack_size_at_create() > 0)
486        stack_size = JavaThread::stack_size_at_create();
487      break;
488    case os::compiler_thread:
489      if (CompilerThreadStackSize > 0) {
490        stack_size = (size_t)(CompilerThreadStackSize * K);
491        break;
492      } // else fall through:
493        // use VMThreadStackSize if CompilerThreadStackSize is not defined
494    case os::vm_thread:
495    case os::pgc_thread:
496    case os::cgc_thread:
497    case os::watcher_thread:
498      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
499      break;
500    }
501  }
502
503  // Create the Win32 thread
504  //
505  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
506  // does not specify stack size. Instead, it specifies the size of
507  // initially committed space. The stack size is determined by
508  // PE header in the executable. If the committed "stack_size" is larger
509  // than default value in the PE header, the stack is rounded up to the
510  // nearest multiple of 1MB. For example if the launcher has default
511  // stack size of 320k, specifying any size less than 320k does not
512  // affect the actual stack size at all, it only affects the initial
513  // commitment. On the other hand, specifying 'stack_size' larger than
514  // default value may cause significant increase in memory usage, because
515  // not only the stack space will be rounded up to MB, but also the
516  // entire space is committed upfront.
517  //
518  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
519  // for CreateThread() that can treat 'stack_size' as stack size. However we
520  // are not supposed to call CreateThread() directly according to MSDN
521  // document because JVM uses C runtime library. The good news is that the
522  // flag appears to work with _beginthredex() as well.
523
524#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
525#define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
526#endif
527
528  HANDLE thread_handle =
529    (HANDLE)_beginthreadex(NULL,
530                           (unsigned)stack_size,
531                           (unsigned (__stdcall *)(void*)) java_start,
532                           thread,
533                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
534                           &thread_id);
535  if (thread_handle == NULL) {
536    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
537    // without the flag.
538    thread_handle =
539    (HANDLE)_beginthreadex(NULL,
540                           (unsigned)stack_size,
541                           (unsigned (__stdcall *)(void*)) java_start,
542                           thread,
543                           CREATE_SUSPENDED,
544                           &thread_id);
545  }
546  if (thread_handle == NULL) {
547    // Need to clean up stuff we've allocated so far
548    CloseHandle(osthread->interrupt_event());
549    thread->set_osthread(NULL);
550    delete osthread;
551    return NULL;
552  }
553
554  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
555
556  // Store info on the Win32 thread into the OSThread
557  osthread->set_thread_handle(thread_handle);
558  osthread->set_thread_id(thread_id);
559
560  // Initial thread state is INITIALIZED, not SUSPENDED
561  osthread->set_state(INITIALIZED);
562
563  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
564  return true;
565}
566
567
568// Free Win32 resources related to the OSThread
569void os::free_thread(OSThread* osthread) {
570  assert(osthread != NULL, "osthread not set");
571  CloseHandle(osthread->thread_handle());
572  CloseHandle(osthread->interrupt_event());
573  delete osthread;
574}
575
576
577static int    has_performance_count = 0;
578static jlong first_filetime;
579static jlong initial_performance_count;
580static jlong performance_frequency;
581
582
583jlong as_long(LARGE_INTEGER x) {
584  jlong result = 0; // initialization to avoid warning
585  set_high(&result, x.HighPart);
586  set_low(&result,  x.LowPart);
587  return result;
588}
589
590
591jlong os::elapsed_counter() {
592  LARGE_INTEGER count;
593  if (has_performance_count) {
594    QueryPerformanceCounter(&count);
595    return as_long(count) - initial_performance_count;
596  } else {
597    FILETIME wt;
598    GetSystemTimeAsFileTime(&wt);
599    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
600  }
601}
602
603
604jlong os::elapsed_frequency() {
605  if (has_performance_count) {
606    return performance_frequency;
607  } else {
608   // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
609   return 10000000;
610  }
611}
612
613
614julong os::available_memory() {
615  return win32::available_memory();
616}
617
618julong os::win32::available_memory() {
619  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
620  // value if total memory is larger than 4GB
621  MEMORYSTATUSEX ms;
622  ms.dwLength = sizeof(ms);
623  GlobalMemoryStatusEx(&ms);
624
625  return (julong)ms.ullAvailPhys;
626}
627
628julong os::physical_memory() {
629  return win32::physical_memory();
630}
631
632julong os::allocatable_physical_memory(julong size) {
633#ifdef _LP64
634  return size;
635#else
636  // Limit to 1400m because of the 2gb address space wall
637  return MIN2(size, (julong)1400*M);
638#endif
639}
640
641// VC6 lacks DWORD_PTR
642#if _MSC_VER < 1300
643typedef UINT_PTR DWORD_PTR;
644#endif
645
646int os::active_processor_count() {
647  DWORD_PTR lpProcessAffinityMask = 0;
648  DWORD_PTR lpSystemAffinityMask = 0;
649  int proc_count = processor_count();
650  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
651      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
652    // Nof active processors is number of bits in process affinity mask
653    int bitcount = 0;
654    while (lpProcessAffinityMask != 0) {
655      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
656      bitcount++;
657    }
658    return bitcount;
659  } else {
660    return proc_count;
661  }
662}
663
664bool os::distribute_processes(uint length, uint* distribution) {
665  // Not yet implemented.
666  return false;
667}
668
669bool os::bind_to_processor(uint processor_id) {
670  // Not yet implemented.
671  return false;
672}
673
674static void initialize_performance_counter() {
675  LARGE_INTEGER count;
676  if (QueryPerformanceFrequency(&count)) {
677    has_performance_count = 1;
678    performance_frequency = as_long(count);
679    QueryPerformanceCounter(&count);
680    initial_performance_count = as_long(count);
681  } else {
682    has_performance_count = 0;
683    FILETIME wt;
684    GetSystemTimeAsFileTime(&wt);
685    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
686  }
687}
688
689
690double os::elapsedTime() {
691  return (double) elapsed_counter() / (double) elapsed_frequency();
692}
693
694
695// Windows format:
696//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
697// Java format:
698//   Java standards require the number of milliseconds since 1/1/1970
699
700// Constant offset - calculated using offset()
701static jlong  _offset   = 116444736000000000;
702// Fake time counter for reproducible results when debugging
703static jlong  fake_time = 0;
704
705#ifdef ASSERT
706// Just to be safe, recalculate the offset in debug mode
707static jlong _calculated_offset = 0;
708static int   _has_calculated_offset = 0;
709
710jlong offset() {
711  if (_has_calculated_offset) return _calculated_offset;
712  SYSTEMTIME java_origin;
713  java_origin.wYear          = 1970;
714  java_origin.wMonth         = 1;
715  java_origin.wDayOfWeek     = 0; // ignored
716  java_origin.wDay           = 1;
717  java_origin.wHour          = 0;
718  java_origin.wMinute        = 0;
719  java_origin.wSecond        = 0;
720  java_origin.wMilliseconds  = 0;
721  FILETIME jot;
722  if (!SystemTimeToFileTime(&java_origin, &jot)) {
723    fatal1("Error = %d\nWindows error", GetLastError());
724  }
725  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
726  _has_calculated_offset = 1;
727  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
728  return _calculated_offset;
729}
730#else
731jlong offset() {
732  return _offset;
733}
734#endif
735
736jlong windows_to_java_time(FILETIME wt) {
737  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
738  return (a - offset()) / 10000;
739}
740
741FILETIME java_to_windows_time(jlong l) {
742  jlong a = (l * 10000) + offset();
743  FILETIME result;
744  result.dwHighDateTime = high(a);
745  result.dwLowDateTime  = low(a);
746  return result;
747}
748
749// For now, we say that Windows does not support vtime.  I have no idea
750// whether it can actually be made to (DLD, 9/13/05).
751
752bool os::supports_vtime() { return false; }
753bool os::enable_vtime() { return false; }
754bool os::vtime_enabled() { return false; }
755double os::elapsedVTime() {
756  // better than nothing, but not much
757  return elapsedTime();
758}
759
760jlong os::javaTimeMillis() {
761  if (UseFakeTimers) {
762    return fake_time++;
763  } else {
764    FILETIME wt;
765    GetSystemTimeAsFileTime(&wt);
766    return windows_to_java_time(wt);
767  }
768}
769
770#define NANOS_PER_SEC         CONST64(1000000000)
771#define NANOS_PER_MILLISEC    1000000
772jlong os::javaTimeNanos() {
773  if (!has_performance_count) {
774    return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
775  } else {
776    LARGE_INTEGER current_count;
777    QueryPerformanceCounter(&current_count);
778    double current = as_long(current_count);
779    double freq = performance_frequency;
780    jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
781    return time;
782  }
783}
784
785void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
786  if (!has_performance_count) {
787    // javaTimeMillis() doesn't have much percision,
788    // but it is not going to wrap -- so all 64 bits
789    info_ptr->max_value = ALL_64_BITS;
790
791    // this is a wall clock timer, so may skip
792    info_ptr->may_skip_backward = true;
793    info_ptr->may_skip_forward = true;
794  } else {
795    jlong freq = performance_frequency;
796    if (freq < NANOS_PER_SEC) {
797      // the performance counter is 64 bits and we will
798      // be multiplying it -- so no wrap in 64 bits
799      info_ptr->max_value = ALL_64_BITS;
800    } else if (freq > NANOS_PER_SEC) {
801      // use the max value the counter can reach to
802      // determine the max value which could be returned
803      julong max_counter = (julong)ALL_64_BITS;
804      info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
805    } else {
806      // the performance counter is 64 bits and we will
807      // be using it directly -- so no wrap in 64 bits
808      info_ptr->max_value = ALL_64_BITS;
809    }
810
811    // using a counter, so no skipping
812    info_ptr->may_skip_backward = false;
813    info_ptr->may_skip_forward = false;
814  }
815  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
816}
817
818char* os::local_time_string(char *buf, size_t buflen) {
819  SYSTEMTIME st;
820  GetLocalTime(&st);
821  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
822               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
823  return buf;
824}
825
826bool os::getTimesSecs(double* process_real_time,
827                     double* process_user_time,
828                     double* process_system_time) {
829  HANDLE h_process = GetCurrentProcess();
830  FILETIME create_time, exit_time, kernel_time, user_time;
831  BOOL result = GetProcessTimes(h_process,
832                               &create_time,
833                               &exit_time,
834                               &kernel_time,
835                               &user_time);
836  if (result != 0) {
837    FILETIME wt;
838    GetSystemTimeAsFileTime(&wt);
839    jlong rtc_millis = windows_to_java_time(wt);
840    jlong user_millis = windows_to_java_time(user_time);
841    jlong system_millis = windows_to_java_time(kernel_time);
842    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
843    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
844    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
845    return true;
846  } else {
847    return false;
848  }
849}
850
851void os::shutdown() {
852
853  // allow PerfMemory to attempt cleanup of any persistent resources
854  perfMemory_exit();
855
856  // flush buffered output, finish log files
857  ostream_abort();
858
859  // Check for abort hook
860  abort_hook_t abort_hook = Arguments::abort_hook();
861  if (abort_hook != NULL) {
862    abort_hook();
863  }
864}
865
866void os::abort(bool dump_core)
867{
868  os::shutdown();
869  // no core dump on Windows
870  ::exit(1);
871}
872
873// Die immediately, no exit hook, no abort hook, no cleanup.
874void os::die() {
875  _exit(-1);
876}
877
878// Directory routines copied from src/win32/native/java/io/dirent_md.c
879//  * dirent_md.c       1.15 00/02/02
880//
881// The declarations for DIR and struct dirent are in jvm_win32.h.
882
883/* Caller must have already run dirname through JVM_NativePath, which removes
884   duplicate slashes and converts all instances of '/' into '\\'. */
885
886DIR *
887os::opendir(const char *dirname)
888{
889    assert(dirname != NULL, "just checking");   // hotspot change
890    DIR *dirp = (DIR *)malloc(sizeof(DIR));
891    DWORD fattr;                                // hotspot change
892    char alt_dirname[4] = { 0, 0, 0, 0 };
893
894    if (dirp == 0) {
895        errno = ENOMEM;
896        return 0;
897    }
898
899    /*
900     * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
901     * as a directory in FindFirstFile().  We detect this case here and
902     * prepend the current drive name.
903     */
904    if (dirname[1] == '\0' && dirname[0] == '\\') {
905        alt_dirname[0] = _getdrive() + 'A' - 1;
906        alt_dirname[1] = ':';
907        alt_dirname[2] = '\\';
908        alt_dirname[3] = '\0';
909        dirname = alt_dirname;
910    }
911
912    dirp->path = (char *)malloc(strlen(dirname) + 5);
913    if (dirp->path == 0) {
914        free(dirp);
915        errno = ENOMEM;
916        return 0;
917    }
918    strcpy(dirp->path, dirname);
919
920    fattr = GetFileAttributes(dirp->path);
921    if (fattr == 0xffffffff) {
922        free(dirp->path);
923        free(dirp);
924        errno = ENOENT;
925        return 0;
926    } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
927        free(dirp->path);
928        free(dirp);
929        errno = ENOTDIR;
930        return 0;
931    }
932
933    /* Append "*.*", or possibly "\\*.*", to path */
934    if (dirp->path[1] == ':'
935        && (dirp->path[2] == '\0'
936            || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
937        /* No '\\' needed for cases like "Z:" or "Z:\" */
938        strcat(dirp->path, "*.*");
939    } else {
940        strcat(dirp->path, "\\*.*");
941    }
942
943    dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
944    if (dirp->handle == INVALID_HANDLE_VALUE) {
945        if (GetLastError() != ERROR_FILE_NOT_FOUND) {
946            free(dirp->path);
947            free(dirp);
948            errno = EACCES;
949            return 0;
950        }
951    }
952    return dirp;
953}
954
955/* parameter dbuf unused on Windows */
956
957struct dirent *
958os::readdir(DIR *dirp, dirent *dbuf)
959{
960    assert(dirp != NULL, "just checking");      // hotspot change
961    if (dirp->handle == INVALID_HANDLE_VALUE) {
962        return 0;
963    }
964
965    strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
966
967    if (!FindNextFile(dirp->handle, &dirp->find_data)) {
968        if (GetLastError() == ERROR_INVALID_HANDLE) {
969            errno = EBADF;
970            return 0;
971        }
972        FindClose(dirp->handle);
973        dirp->handle = INVALID_HANDLE_VALUE;
974    }
975
976    return &dirp->dirent;
977}
978
979int
980os::closedir(DIR *dirp)
981{
982    assert(dirp != NULL, "just checking");      // hotspot change
983    if (dirp->handle != INVALID_HANDLE_VALUE) {
984        if (!FindClose(dirp->handle)) {
985            errno = EBADF;
986            return -1;
987        }
988        dirp->handle = INVALID_HANDLE_VALUE;
989    }
990    free(dirp->path);
991    free(dirp);
992    return 0;
993}
994
995const char* os::dll_file_extension() { return ".dll"; }
996
997const char * os::get_temp_directory()
998{
999    static char path_buf[MAX_PATH];
1000    if (GetTempPath(MAX_PATH, path_buf)>0)
1001      return path_buf;
1002    else{
1003      path_buf[0]='\0';
1004      return path_buf;
1005    }
1006}
1007
1008static bool file_exists(const char* filename) {
1009  if (filename == NULL || strlen(filename) == 0) {
1010    return false;
1011  }
1012  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1013}
1014
1015void os::dll_build_name(char *buffer, size_t buflen,
1016                        const char* pname, const char* fname) {
1017  // Copied from libhpi
1018  const size_t pnamelen = pname ? strlen(pname) : 0;
1019  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1020
1021  // Quietly truncates on buffer overflow. Should be an error.
1022  if (pnamelen + strlen(fname) + 10 > buflen) {
1023    *buffer = '\0';
1024    return;
1025  }
1026
1027  if (pnamelen == 0) {
1028    jio_snprintf(buffer, buflen, "%s.dll", fname);
1029  } else if (c == ':' || c == '\\') {
1030    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1031  } else if (strchr(pname, *os::path_separator()) != NULL) {
1032    int n;
1033    char** pelements = split_path(pname, &n);
1034    for (int i = 0 ; i < n ; i++) {
1035      char* path = pelements[i];
1036      // Really shouldn't be NULL, but check can't hurt
1037      size_t plen = (path == NULL) ? 0 : strlen(path);
1038      if (plen == 0) {
1039        continue; // skip the empty path values
1040      }
1041      const char lastchar = path[plen - 1];
1042      if (lastchar == ':' || lastchar == '\\') {
1043        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1044      } else {
1045        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1046      }
1047      if (file_exists(buffer)) {
1048        break;
1049      }
1050    }
1051    // release the storage
1052    for (int i = 0 ; i < n ; i++) {
1053      if (pelements[i] != NULL) {
1054        FREE_C_HEAP_ARRAY(char, pelements[i]);
1055      }
1056    }
1057    if (pelements != NULL) {
1058      FREE_C_HEAP_ARRAY(char*, pelements);
1059    }
1060  } else {
1061    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1062  }
1063}
1064
1065// Needs to be in os specific directory because windows requires another
1066// header file <direct.h>
1067const char* os::get_current_directory(char *buf, int buflen) {
1068  return _getcwd(buf, buflen);
1069}
1070
1071//-----------------------------------------------------------
1072// Helper functions for fatal error handler
1073
1074// The following library functions are resolved dynamically at runtime:
1075
1076// PSAPI functions, for Windows NT, 2000, XP
1077
1078// psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1079// SDK from Microsoft.  Here are the definitions copied from psapi.h
1080typedef struct _MODULEINFO {
1081    LPVOID lpBaseOfDll;
1082    DWORD SizeOfImage;
1083    LPVOID EntryPoint;
1084} MODULEINFO, *LPMODULEINFO;
1085
1086static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1087static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1088static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1089
1090// ToolHelp Functions, for Windows 95, 98 and ME
1091
1092static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1093static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1094static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1095
1096bool _has_psapi;
1097bool _psapi_init = false;
1098bool _has_toolhelp;
1099
1100static bool _init_psapi() {
1101  HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1102  if( psapi == NULL ) return false ;
1103
1104  _EnumProcessModules = CAST_TO_FN_PTR(
1105      BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1106      GetProcAddress(psapi, "EnumProcessModules")) ;
1107  _GetModuleFileNameEx = CAST_TO_FN_PTR(
1108      DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1109      GetProcAddress(psapi, "GetModuleFileNameExA"));
1110  _GetModuleInformation = CAST_TO_FN_PTR(
1111      BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1112      GetProcAddress(psapi, "GetModuleInformation"));
1113
1114  _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1115  _psapi_init = true;
1116  return _has_psapi;
1117}
1118
1119static bool _init_toolhelp() {
1120  HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1121  if (kernel32 == NULL) return false ;
1122
1123  _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1124      HANDLE(WINAPI *)(DWORD,DWORD),
1125      GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1126  _Module32First = CAST_TO_FN_PTR(
1127      BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1128      GetProcAddress(kernel32, "Module32First" ));
1129  _Module32Next = CAST_TO_FN_PTR(
1130      BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1131      GetProcAddress(kernel32, "Module32Next" ));
1132
1133  _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1134  return _has_toolhelp;
1135}
1136
1137#ifdef _WIN64
1138// Helper routine which returns true if address in
1139// within the NTDLL address space.
1140//
1141static bool _addr_in_ntdll( address addr )
1142{
1143  HMODULE hmod;
1144  MODULEINFO minfo;
1145
1146  hmod = GetModuleHandle("NTDLL.DLL");
1147  if ( hmod == NULL ) return false;
1148  if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1149                               &minfo, sizeof(MODULEINFO)) )
1150    return false;
1151
1152  if ( (addr >= minfo.lpBaseOfDll) &&
1153       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1154    return true;
1155  else
1156    return false;
1157}
1158#endif
1159
1160
1161// Enumerate all modules for a given process ID
1162//
1163// Notice that Windows 95/98/Me and Windows NT/2000/XP have
1164// different API for doing this. We use PSAPI.DLL on NT based
1165// Windows and ToolHelp on 95/98/Me.
1166
1167// Callback function that is called by enumerate_modules() on
1168// every DLL module.
1169// Input parameters:
1170//    int       pid,
1171//    char*     module_file_name,
1172//    address   module_base_addr,
1173//    unsigned  module_size,
1174//    void*     param
1175typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1176
1177// enumerate_modules for Windows NT, using PSAPI
1178static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1179{
1180  HANDLE   hProcess ;
1181
1182# define MAX_NUM_MODULES 128
1183  HMODULE     modules[MAX_NUM_MODULES];
1184  static char filename[ MAX_PATH ];
1185  int         result = 0;
1186
1187  if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1188
1189  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1190                         FALSE, pid ) ;
1191  if (hProcess == NULL) return 0;
1192
1193  DWORD size_needed;
1194  if (!_EnumProcessModules(hProcess, modules,
1195                           sizeof(modules), &size_needed)) {
1196      CloseHandle( hProcess );
1197      return 0;
1198  }
1199
1200  // number of modules that are currently loaded
1201  int num_modules = size_needed / sizeof(HMODULE);
1202
1203  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1204    // Get Full pathname:
1205    if(!_GetModuleFileNameEx(hProcess, modules[i],
1206                             filename, sizeof(filename))) {
1207        filename[0] = '\0';
1208    }
1209
1210    MODULEINFO modinfo;
1211    if (!_GetModuleInformation(hProcess, modules[i],
1212                               &modinfo, sizeof(modinfo))) {
1213        modinfo.lpBaseOfDll = NULL;
1214        modinfo.SizeOfImage = 0;
1215    }
1216
1217    // Invoke callback function
1218    result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1219                  modinfo.SizeOfImage, param);
1220    if (result) break;
1221  }
1222
1223  CloseHandle( hProcess ) ;
1224  return result;
1225}
1226
1227
1228// enumerate_modules for Windows 95/98/ME, using TOOLHELP
1229static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1230{
1231  HANDLE                hSnapShot ;
1232  static MODULEENTRY32  modentry ;
1233  int                   result = 0;
1234
1235  if (!_has_toolhelp) return 0;
1236
1237  // Get a handle to a Toolhelp snapshot of the system
1238  hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1239  if( hSnapShot == INVALID_HANDLE_VALUE ) {
1240      return FALSE ;
1241  }
1242
1243  // iterate through all modules
1244  modentry.dwSize = sizeof(MODULEENTRY32) ;
1245  bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1246
1247  while( not_done ) {
1248    // invoke the callback
1249    result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1250                modentry.modBaseSize, param);
1251    if (result) break;
1252
1253    modentry.dwSize = sizeof(MODULEENTRY32) ;
1254    not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1255  }
1256
1257  CloseHandle(hSnapShot);
1258  return result;
1259}
1260
1261int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1262{
1263  // Get current process ID if caller doesn't provide it.
1264  if (!pid) pid = os::current_process_id();
1265
1266  if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1267  else                    return _enumerate_modules_windows(pid, func, param);
1268}
1269
1270struct _modinfo {
1271   address addr;
1272   char*   full_path;   // point to a char buffer
1273   int     buflen;      // size of the buffer
1274   address base_addr;
1275};
1276
1277static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1278                                  unsigned size, void * param) {
1279   struct _modinfo *pmod = (struct _modinfo *)param;
1280   if (!pmod) return -1;
1281
1282   if (base_addr     <= pmod->addr &&
1283       base_addr+size > pmod->addr) {
1284     // if a buffer is provided, copy path name to the buffer
1285     if (pmod->full_path) {
1286       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1287     }
1288     pmod->base_addr = base_addr;
1289     return 1;
1290   }
1291   return 0;
1292}
1293
1294bool os::dll_address_to_library_name(address addr, char* buf,
1295                                     int buflen, int* offset) {
1296// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1297//       return the full path to the DLL file, sometimes it returns path
1298//       to the corresponding PDB file (debug info); sometimes it only
1299//       returns partial path, which makes life painful.
1300
1301   struct _modinfo mi;
1302   mi.addr      = addr;
1303   mi.full_path = buf;
1304   mi.buflen    = buflen;
1305   int pid = os::current_process_id();
1306   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1307      // buf already contains path name
1308      if (offset) *offset = addr - mi.base_addr;
1309      return true;
1310   } else {
1311      if (buf) buf[0] = '\0';
1312      if (offset) *offset = -1;
1313      return false;
1314   }
1315}
1316
1317bool os::dll_address_to_function_name(address addr, char *buf,
1318                                      int buflen, int *offset) {
1319  // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1320  // we need to initialize imagehlp/dbghelp, then load symbol table
1321  // for every module. That's too much work to do after a fatal error.
1322  // For an example on how to implement this function, see 1.4.2.
1323  if (offset)  *offset  = -1;
1324  if (buf) buf[0] = '\0';
1325  return false;
1326}
1327
1328void* os::dll_lookup(void* handle, const char* name) {
1329  return GetProcAddress((HMODULE)handle, name);
1330}
1331
1332// save the start and end address of jvm.dll into param[0] and param[1]
1333static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1334                    unsigned size, void * param) {
1335   if (!param) return -1;
1336
1337   if (base_addr     <= (address)_locate_jvm_dll &&
1338       base_addr+size > (address)_locate_jvm_dll) {
1339         ((address*)param)[0] = base_addr;
1340         ((address*)param)[1] = base_addr + size;
1341         return 1;
1342   }
1343   return 0;
1344}
1345
1346address vm_lib_location[2];    // start and end address of jvm.dll
1347
1348// check if addr is inside jvm.dll
1349bool os::address_is_in_vm(address addr) {
1350  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1351    int pid = os::current_process_id();
1352    if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1353      assert(false, "Can't find jvm module.");
1354      return false;
1355    }
1356  }
1357
1358  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1359}
1360
1361// print module info; param is outputStream*
1362static int _print_module(int pid, char* fname, address base,
1363                         unsigned size, void* param) {
1364   if (!param) return -1;
1365
1366   outputStream* st = (outputStream*)param;
1367
1368   address end_addr = base + size;
1369   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1370   return 0;
1371}
1372
1373// Loads .dll/.so and
1374// in case of error it checks if .dll/.so was built for the
1375// same architecture as Hotspot is running on
1376void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1377{
1378  void * result = LoadLibrary(name);
1379  if (result != NULL)
1380  {
1381    return result;
1382  }
1383
1384  long errcode = GetLastError();
1385  if (errcode == ERROR_MOD_NOT_FOUND) {
1386    strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1387    ebuf[ebuflen-1]='\0';
1388    return NULL;
1389  }
1390
1391  // Parsing dll below
1392  // If we can read dll-info and find that dll was built
1393  // for an architecture other than Hotspot is running in
1394  // - then print to buffer "DLL was built for a different architecture"
1395  // else call getLastErrorString to obtain system error message
1396
1397  // Read system error message into ebuf
1398  // It may or may not be overwritten below (in the for loop and just above)
1399  getLastErrorString(ebuf, (size_t) ebuflen);
1400  ebuf[ebuflen-1]='\0';
1401  int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1402  if (file_descriptor<0)
1403  {
1404    return NULL;
1405  }
1406
1407  uint32_t signature_offset;
1408  uint16_t lib_arch=0;
1409  bool failed_to_get_lib_arch=
1410  (
1411    //Go to position 3c in the dll
1412    (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1413    ||
1414    // Read loacation of signature
1415    (sizeof(signature_offset)!=
1416      (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1417    ||
1418    //Go to COFF File Header in dll
1419    //that is located after"signature" (4 bytes long)
1420    (os::seek_to_file_offset(file_descriptor,
1421      signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1422    ||
1423    //Read field that contains code of architecture
1424    // that dll was build for
1425    (sizeof(lib_arch)!=
1426      (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1427  );
1428
1429  ::close(file_descriptor);
1430  if (failed_to_get_lib_arch)
1431  {
1432    // file i/o error - report getLastErrorString(...) msg
1433    return NULL;
1434  }
1435
1436  typedef struct
1437  {
1438    uint16_t arch_code;
1439    char* arch_name;
1440  } arch_t;
1441
1442  static const arch_t arch_array[]={
1443    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1444    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1445    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1446  };
1447  #if   (defined _M_IA64)
1448    static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1449  #elif (defined _M_AMD64)
1450    static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1451  #elif (defined _M_IX86)
1452    static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1453  #else
1454    #error Method os::dll_load requires that one of following \
1455           is defined :_M_IA64,_M_AMD64 or _M_IX86
1456  #endif
1457
1458
1459  // Obtain a string for printf operation
1460  // lib_arch_str shall contain string what platform this .dll was built for
1461  // running_arch_str shall string contain what platform Hotspot was built for
1462  char *running_arch_str=NULL,*lib_arch_str=NULL;
1463  for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1464  {
1465    if (lib_arch==arch_array[i].arch_code)
1466      lib_arch_str=arch_array[i].arch_name;
1467    if (running_arch==arch_array[i].arch_code)
1468      running_arch_str=arch_array[i].arch_name;
1469  }
1470
1471  assert(running_arch_str,
1472    "Didn't find runing architecture code in arch_array");
1473
1474  // If the architure is right
1475  // but some other error took place - report getLastErrorString(...) msg
1476  if (lib_arch == running_arch)
1477  {
1478    return NULL;
1479  }
1480
1481  if (lib_arch_str!=NULL)
1482  {
1483    ::_snprintf(ebuf, ebuflen-1,
1484      "Can't load %s-bit .dll on a %s-bit platform",
1485      lib_arch_str,running_arch_str);
1486  }
1487  else
1488  {
1489    // don't know what architecture this dll was build for
1490    ::_snprintf(ebuf, ebuflen-1,
1491      "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1492      lib_arch,running_arch_str);
1493  }
1494
1495  return NULL;
1496}
1497
1498
1499void os::print_dll_info(outputStream *st) {
1500   int pid = os::current_process_id();
1501   st->print_cr("Dynamic libraries:");
1502   enumerate_modules(pid, _print_module, (void *)st);
1503}
1504
1505// function pointer to Windows API "GetNativeSystemInfo".
1506typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1507static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1508
1509void os::print_os_info(outputStream* st) {
1510  st->print("OS:");
1511
1512  OSVERSIONINFOEX osvi;
1513  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1514  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1515
1516  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1517    st->print_cr("N/A");
1518    return;
1519  }
1520
1521  int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1522  if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1523    switch (os_vers) {
1524    case 3051: st->print(" Windows NT 3.51"); break;
1525    case 4000: st->print(" Windows NT 4.0"); break;
1526    case 5000: st->print(" Windows 2000"); break;
1527    case 5001: st->print(" Windows XP"); break;
1528    case 5002:
1529    case 6000:
1530    case 6001: {
1531      // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1532      // find out whether we are running on 64 bit processor or not.
1533      SYSTEM_INFO si;
1534      ZeroMemory(&si, sizeof(SYSTEM_INFO));
1535      // Check to see if _GetNativeSystemInfo has been initialized.
1536      if (_GetNativeSystemInfo == NULL) {
1537        HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1538        _GetNativeSystemInfo =
1539            CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1540                           GetProcAddress(hKernel32,
1541                                          "GetNativeSystemInfo"));
1542        if (_GetNativeSystemInfo == NULL)
1543          GetSystemInfo(&si);
1544      } else {
1545        _GetNativeSystemInfo(&si);
1546      }
1547      if (os_vers == 5002) {
1548        if (osvi.wProductType == VER_NT_WORKSTATION &&
1549            si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1550          st->print(" Windows XP x64 Edition");
1551        else
1552            st->print(" Windows Server 2003 family");
1553      } else if (os_vers == 6000) {
1554        if (osvi.wProductType == VER_NT_WORKSTATION)
1555            st->print(" Windows Vista");
1556        else
1557            st->print(" Windows Server 2008");
1558        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1559            st->print(" , 64 bit");
1560      } else if (os_vers == 6001) {
1561        if (osvi.wProductType == VER_NT_WORKSTATION) {
1562            st->print(" Windows 7");
1563        } else {
1564            // Unrecognized windows, print out its major and minor versions
1565            st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1566        }
1567        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1568            st->print(" , 64 bit");
1569      } else { // future os
1570        // Unrecognized windows, print out its major and minor versions
1571        st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1572        if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1573            st->print(" , 64 bit");
1574      }
1575      break;
1576    }
1577    default: // future windows, print out its major and minor versions
1578      st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1579    }
1580  } else {
1581    switch (os_vers) {
1582    case 4000: st->print(" Windows 95"); break;
1583    case 4010: st->print(" Windows 98"); break;
1584    case 4090: st->print(" Windows Me"); break;
1585    default: // future windows, print out its major and minor versions
1586      st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1587    }
1588  }
1589  st->print(" Build %d", osvi.dwBuildNumber);
1590  st->print(" %s", osvi.szCSDVersion);           // service pack
1591  st->cr();
1592}
1593
1594void os::print_memory_info(outputStream* st) {
1595  st->print("Memory:");
1596  st->print(" %dk page", os::vm_page_size()>>10);
1597
1598  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1599  // value if total memory is larger than 4GB
1600  MEMORYSTATUSEX ms;
1601  ms.dwLength = sizeof(ms);
1602  GlobalMemoryStatusEx(&ms);
1603
1604  st->print(", physical %uk", os::physical_memory() >> 10);
1605  st->print("(%uk free)", os::available_memory() >> 10);
1606
1607  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1608  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1609  st->cr();
1610}
1611
1612void os::print_siginfo(outputStream *st, void *siginfo) {
1613  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1614  st->print("siginfo:");
1615  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1616
1617  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1618      er->NumberParameters >= 2) {
1619      switch (er->ExceptionInformation[0]) {
1620      case 0: st->print(", reading address"); break;
1621      case 1: st->print(", writing address"); break;
1622      default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1623                            er->ExceptionInformation[0]);
1624      }
1625      st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1626  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1627             er->NumberParameters >= 2 && UseSharedSpaces) {
1628    FileMapInfo* mapinfo = FileMapInfo::current_info();
1629    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1630      st->print("\n\nError accessing class data sharing archive."       \
1631                " Mapped file inaccessible during execution, "          \
1632                " possible disk/network problem.");
1633    }
1634  } else {
1635    int num = er->NumberParameters;
1636    if (num > 0) {
1637      st->print(", ExceptionInformation=");
1638      for (int i = 0; i < num; i++) {
1639        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1640      }
1641    }
1642  }
1643  st->cr();
1644}
1645
1646void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1647  // do nothing
1648}
1649
1650static char saved_jvm_path[MAX_PATH] = {0};
1651
1652// Find the full path to the current module, jvm.dll or jvm_g.dll
1653void os::jvm_path(char *buf, jint buflen) {
1654  // Error checking.
1655  if (buflen < MAX_PATH) {
1656    assert(false, "must use a large-enough buffer");
1657    buf[0] = '\0';
1658    return;
1659  }
1660  // Lazy resolve the path to current module.
1661  if (saved_jvm_path[0] != 0) {
1662    strcpy(buf, saved_jvm_path);
1663    return;
1664  }
1665
1666  GetModuleFileName(vm_lib_handle, buf, buflen);
1667  strcpy(saved_jvm_path, buf);
1668}
1669
1670
1671void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1672#ifndef _WIN64
1673  st->print("_");
1674#endif
1675}
1676
1677
1678void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1679#ifndef _WIN64
1680  st->print("@%d", args_size  * sizeof(int));
1681#endif
1682}
1683
1684// sun.misc.Signal
1685// NOTE that this is a workaround for an apparent kernel bug where if
1686// a signal handler for SIGBREAK is installed then that signal handler
1687// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1688// See bug 4416763.
1689static void (*sigbreakHandler)(int) = NULL;
1690
1691static void UserHandler(int sig, void *siginfo, void *context) {
1692  os::signal_notify(sig);
1693  // We need to reinstate the signal handler each time...
1694  os::signal(sig, (void*)UserHandler);
1695}
1696
1697void* os::user_handler() {
1698  return (void*) UserHandler;
1699}
1700
1701void* os::signal(int signal_number, void* handler) {
1702  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1703    void (*oldHandler)(int) = sigbreakHandler;
1704    sigbreakHandler = (void (*)(int)) handler;
1705    return (void*) oldHandler;
1706  } else {
1707    return (void*)::signal(signal_number, (void (*)(int))handler);
1708  }
1709}
1710
1711void os::signal_raise(int signal_number) {
1712  raise(signal_number);
1713}
1714
1715// The Win32 C runtime library maps all console control events other than ^C
1716// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1717// logoff, and shutdown events.  We therefore install our own console handler
1718// that raises SIGTERM for the latter cases.
1719//
1720static BOOL WINAPI consoleHandler(DWORD event) {
1721  switch(event) {
1722    case CTRL_C_EVENT:
1723      if (is_error_reported()) {
1724        // Ctrl-C is pressed during error reporting, likely because the error
1725        // handler fails to abort. Let VM die immediately.
1726        os::die();
1727      }
1728
1729      os::signal_raise(SIGINT);
1730      return TRUE;
1731      break;
1732    case CTRL_BREAK_EVENT:
1733      if (sigbreakHandler != NULL) {
1734        (*sigbreakHandler)(SIGBREAK);
1735      }
1736      return TRUE;
1737      break;
1738    case CTRL_CLOSE_EVENT:
1739    case CTRL_LOGOFF_EVENT:
1740    case CTRL_SHUTDOWN_EVENT:
1741      os::signal_raise(SIGTERM);
1742      return TRUE;
1743      break;
1744    default:
1745      break;
1746  }
1747  return FALSE;
1748}
1749
1750/*
1751 * The following code is moved from os.cpp for making this
1752 * code platform specific, which it is by its very nature.
1753 */
1754
1755// Return maximum OS signal used + 1 for internal use only
1756// Used as exit signal for signal_thread
1757int os::sigexitnum_pd(){
1758  return NSIG;
1759}
1760
1761// a counter for each possible signal value, including signal_thread exit signal
1762static volatile jint pending_signals[NSIG+1] = { 0 };
1763static HANDLE sig_sem;
1764
1765void os::signal_init_pd() {
1766  // Initialize signal structures
1767  memset((void*)pending_signals, 0, sizeof(pending_signals));
1768
1769  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1770
1771  // Programs embedding the VM do not want it to attempt to receive
1772  // events like CTRL_LOGOFF_EVENT, which are used to implement the
1773  // shutdown hooks mechanism introduced in 1.3.  For example, when
1774  // the VM is run as part of a Windows NT service (i.e., a servlet
1775  // engine in a web server), the correct behavior is for any console
1776  // control handler to return FALSE, not TRUE, because the OS's
1777  // "final" handler for such events allows the process to continue if
1778  // it is a service (while terminating it if it is not a service).
1779  // To make this behavior uniform and the mechanism simpler, we
1780  // completely disable the VM's usage of these console events if -Xrs
1781  // (=ReduceSignalUsage) is specified.  This means, for example, that
1782  // the CTRL-BREAK thread dump mechanism is also disabled in this
1783  // case.  See bugs 4323062, 4345157, and related bugs.
1784
1785  if (!ReduceSignalUsage) {
1786    // Add a CTRL-C handler
1787    SetConsoleCtrlHandler(consoleHandler, TRUE);
1788  }
1789}
1790
1791void os::signal_notify(int signal_number) {
1792  BOOL ret;
1793
1794  Atomic::inc(&pending_signals[signal_number]);
1795  ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1796  assert(ret != 0, "ReleaseSemaphore() failed");
1797}
1798
1799static int check_pending_signals(bool wait_for_signal) {
1800  DWORD ret;
1801  while (true) {
1802    for (int i = 0; i < NSIG + 1; i++) {
1803      jint n = pending_signals[i];
1804      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1805        return i;
1806      }
1807    }
1808    if (!wait_for_signal) {
1809      return -1;
1810    }
1811
1812    JavaThread *thread = JavaThread::current();
1813
1814    ThreadBlockInVM tbivm(thread);
1815
1816    bool threadIsSuspended;
1817    do {
1818      thread->set_suspend_equivalent();
1819      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1820      ret = ::WaitForSingleObject(sig_sem, INFINITE);
1821      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1822
1823      // were we externally suspended while we were waiting?
1824      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1825      if (threadIsSuspended) {
1826        //
1827        // The semaphore has been incremented, but while we were waiting
1828        // another thread suspended us. We don't want to continue running
1829        // while suspended because that would surprise the thread that
1830        // suspended us.
1831        //
1832        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1833        assert(ret != 0, "ReleaseSemaphore() failed");
1834
1835        thread->java_suspend_self();
1836      }
1837    } while (threadIsSuspended);
1838  }
1839}
1840
1841int os::signal_lookup() {
1842  return check_pending_signals(false);
1843}
1844
1845int os::signal_wait() {
1846  return check_pending_signals(true);
1847}
1848
1849// Implicit OS exception handling
1850
1851LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1852  JavaThread* thread = JavaThread::current();
1853  // Save pc in thread
1854#ifdef _M_IA64
1855  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1856  // Set pc to handler
1857  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1858#elif _M_AMD64
1859  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1860  // Set pc to handler
1861  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1862#else
1863  thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1864  // Set pc to handler
1865  exceptionInfo->ContextRecord->Eip = (LONG)handler;
1866#endif
1867
1868  // Continue the execution
1869  return EXCEPTION_CONTINUE_EXECUTION;
1870}
1871
1872
1873// Used for PostMortemDump
1874extern "C" void safepoints();
1875extern "C" void find(int x);
1876extern "C" void events();
1877
1878// According to Windows API documentation, an illegal instruction sequence should generate
1879// the 0xC000001C exception code. However, real world experience shows that occasionnaly
1880// the execution of an illegal instruction can generate the exception code 0xC000001E. This
1881// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1882
1883#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1884
1885// From "Execution Protection in the Windows Operating System" draft 0.35
1886// Once a system header becomes available, the "real" define should be
1887// included or copied here.
1888#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1889
1890#define def_excpt(val) #val, val
1891
1892struct siglabel {
1893  char *name;
1894  int   number;
1895};
1896
1897struct siglabel exceptlabels[] = {
1898    def_excpt(EXCEPTION_ACCESS_VIOLATION),
1899    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1900    def_excpt(EXCEPTION_BREAKPOINT),
1901    def_excpt(EXCEPTION_SINGLE_STEP),
1902    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1903    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1904    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1905    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1906    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1907    def_excpt(EXCEPTION_FLT_OVERFLOW),
1908    def_excpt(EXCEPTION_FLT_STACK_CHECK),
1909    def_excpt(EXCEPTION_FLT_UNDERFLOW),
1910    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1911    def_excpt(EXCEPTION_INT_OVERFLOW),
1912    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1913    def_excpt(EXCEPTION_IN_PAGE_ERROR),
1914    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1915    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1916    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1917    def_excpt(EXCEPTION_STACK_OVERFLOW),
1918    def_excpt(EXCEPTION_INVALID_DISPOSITION),
1919    def_excpt(EXCEPTION_GUARD_PAGE),
1920    def_excpt(EXCEPTION_INVALID_HANDLE),
1921    NULL, 0
1922};
1923
1924const char* os::exception_name(int exception_code, char *buf, size_t size) {
1925  for (int i = 0; exceptlabels[i].name != NULL; i++) {
1926    if (exceptlabels[i].number == exception_code) {
1927       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1928       return buf;
1929    }
1930  }
1931
1932  return NULL;
1933}
1934
1935//-----------------------------------------------------------------------------
1936LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1937  // handle exception caused by idiv; should only happen for -MinInt/-1
1938  // (division by zero is handled explicitly)
1939#ifdef _M_IA64
1940  assert(0, "Fix Handle_IDiv_Exception");
1941#elif _M_AMD64
1942  PCONTEXT ctx = exceptionInfo->ContextRecord;
1943  address pc = (address)ctx->Rip;
1944  NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1945  assert(pc[0] == 0xF7, "not an idiv opcode");
1946  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1947  assert(ctx->Rax == min_jint, "unexpected idiv exception");
1948  // set correct result values and continue after idiv instruction
1949  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1950  ctx->Rax = (DWORD)min_jint;      // result
1951  ctx->Rdx = (DWORD)0;             // remainder
1952  // Continue the execution
1953#else
1954  PCONTEXT ctx = exceptionInfo->ContextRecord;
1955  address pc = (address)ctx->Eip;
1956  NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1957  assert(pc[0] == 0xF7, "not an idiv opcode");
1958  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1959  assert(ctx->Eax == min_jint, "unexpected idiv exception");
1960  // set correct result values and continue after idiv instruction
1961  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1962  ctx->Eax = (DWORD)min_jint;      // result
1963  ctx->Edx = (DWORD)0;             // remainder
1964  // Continue the execution
1965#endif
1966  return EXCEPTION_CONTINUE_EXECUTION;
1967}
1968
1969#ifndef  _WIN64
1970//-----------------------------------------------------------------------------
1971LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1972  // handle exception caused by native mothod modifying control word
1973  PCONTEXT ctx = exceptionInfo->ContextRecord;
1974  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1975
1976  switch (exception_code) {
1977    case EXCEPTION_FLT_DENORMAL_OPERAND:
1978    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1979    case EXCEPTION_FLT_INEXACT_RESULT:
1980    case EXCEPTION_FLT_INVALID_OPERATION:
1981    case EXCEPTION_FLT_OVERFLOW:
1982    case EXCEPTION_FLT_STACK_CHECK:
1983    case EXCEPTION_FLT_UNDERFLOW:
1984      jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
1985      if (fp_control_word != ctx->FloatSave.ControlWord) {
1986        // Restore FPCW and mask out FLT exceptions
1987        ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
1988        // Mask out pending FLT exceptions
1989        ctx->FloatSave.StatusWord &=  0xffffff00;
1990        return EXCEPTION_CONTINUE_EXECUTION;
1991      }
1992  }
1993  return EXCEPTION_CONTINUE_SEARCH;
1994}
1995#else //_WIN64
1996/*
1997  On Windows, the mxcsr control bits are non-volatile across calls
1998  See also CR 6192333
1999  If EXCEPTION_FLT_* happened after some native method modified
2000  mxcsr - it is not a jvm fault.
2001  However should we decide to restore of mxcsr after a faulty
2002  native method we can uncomment following code
2003      jint MxCsr = INITIAL_MXCSR;
2004        // we can't use StubRoutines::addr_mxcsr_std()
2005        // because in Win64 mxcsr is not saved there
2006      if (MxCsr != ctx->MxCsr) {
2007        ctx->MxCsr = MxCsr;
2008        return EXCEPTION_CONTINUE_EXECUTION;
2009      }
2010
2011*/
2012#endif //_WIN64
2013
2014
2015// Fatal error reporting is single threaded so we can make this a
2016// static and preallocated.  If it's more than MAX_PATH silently ignore
2017// it.
2018static char saved_error_file[MAX_PATH] = {0};
2019
2020void os::set_error_file(const char *logfile) {
2021  if (strlen(logfile) <= MAX_PATH) {
2022    strncpy(saved_error_file, logfile, MAX_PATH);
2023  }
2024}
2025
2026static inline void report_error(Thread* t, DWORD exception_code,
2027                                address addr, void* siginfo, void* context) {
2028  VMError err(t, exception_code, addr, siginfo, context);
2029  err.report_and_die();
2030
2031  // If UseOsErrorReporting, this will return here and save the error file
2032  // somewhere where we can find it in the minidump.
2033}
2034
2035//-----------------------------------------------------------------------------
2036LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2037  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2038  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2039#ifdef _M_IA64
2040  address pc = (address) exceptionInfo->ContextRecord->StIIP;
2041#elif _M_AMD64
2042  address pc = (address) exceptionInfo->ContextRecord->Rip;
2043#else
2044  address pc = (address) exceptionInfo->ContextRecord->Eip;
2045#endif
2046  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2047
2048#ifndef _WIN64
2049  // Execution protection violation - win32 running on AMD64 only
2050  // Handled first to avoid misdiagnosis as a "normal" access violation;
2051  // This is safe to do because we have a new/unique ExceptionInformation
2052  // code for this condition.
2053  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2054    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2055    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2056    address addr = (address) exceptionRecord->ExceptionInformation[1];
2057
2058    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2059      int page_size = os::vm_page_size();
2060
2061      // Make sure the pc and the faulting address are sane.
2062      //
2063      // If an instruction spans a page boundary, and the page containing
2064      // the beginning of the instruction is executable but the following
2065      // page is not, the pc and the faulting address might be slightly
2066      // different - we still want to unguard the 2nd page in this case.
2067      //
2068      // 15 bytes seems to be a (very) safe value for max instruction size.
2069      bool pc_is_near_addr =
2070        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2071      bool instr_spans_page_boundary =
2072        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2073                         (intptr_t) page_size) > 0);
2074
2075      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2076        static volatile address last_addr =
2077          (address) os::non_memory_address_word();
2078
2079        // In conservative mode, don't unguard unless the address is in the VM
2080        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2081            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2082
2083          // Set memory to RWX and retry
2084          address page_start =
2085            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2086          bool res = os::protect_memory((char*) page_start, page_size,
2087                                        os::MEM_PROT_RWX);
2088
2089          if (PrintMiscellaneous && Verbose) {
2090            char buf[256];
2091            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2092                         "at " INTPTR_FORMAT
2093                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2094                         page_start, (res ? "success" : strerror(errno)));
2095            tty->print_raw_cr(buf);
2096          }
2097
2098          // Set last_addr so if we fault again at the same address, we don't
2099          // end up in an endless loop.
2100          //
2101          // There are two potential complications here.  Two threads trapping
2102          // at the same address at the same time could cause one of the
2103          // threads to think it already unguarded, and abort the VM.  Likely
2104          // very rare.
2105          //
2106          // The other race involves two threads alternately trapping at
2107          // different addresses and failing to unguard the page, resulting in
2108          // an endless loop.  This condition is probably even more unlikely
2109          // than the first.
2110          //
2111          // Although both cases could be avoided by using locks or thread
2112          // local last_addr, these solutions are unnecessary complication:
2113          // this handler is a best-effort safety net, not a complete solution.
2114          // It is disabled by default and should only be used as a workaround
2115          // in case we missed any no-execute-unsafe VM code.
2116
2117          last_addr = addr;
2118
2119          return EXCEPTION_CONTINUE_EXECUTION;
2120        }
2121      }
2122
2123      // Last unguard failed or not unguarding
2124      tty->print_raw_cr("Execution protection violation");
2125      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2126                   exceptionInfo->ContextRecord);
2127      return EXCEPTION_CONTINUE_SEARCH;
2128    }
2129  }
2130#endif // _WIN64
2131
2132  // Check to see if we caught the safepoint code in the
2133  // process of write protecting the memory serialization page.
2134  // It write enables the page immediately after protecting it
2135  // so just return.
2136  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2137    JavaThread* thread = (JavaThread*) t;
2138    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2139    address addr = (address) exceptionRecord->ExceptionInformation[1];
2140    if ( os::is_memory_serialize_page(thread, addr) ) {
2141      // Block current thread until the memory serialize page permission restored.
2142      os::block_on_serialize_page_trap();
2143      return EXCEPTION_CONTINUE_EXECUTION;
2144    }
2145  }
2146
2147
2148  if (t != NULL && t->is_Java_thread()) {
2149    JavaThread* thread = (JavaThread*) t;
2150    bool in_java = thread->thread_state() == _thread_in_Java;
2151
2152    // Handle potential stack overflows up front.
2153    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2154      if (os::uses_stack_guard_pages()) {
2155#ifdef _M_IA64
2156        //
2157        // If it's a legal stack address continue, Windows will map it in.
2158        //
2159        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2160        address addr = (address) exceptionRecord->ExceptionInformation[1];
2161        if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2162          return EXCEPTION_CONTINUE_EXECUTION;
2163
2164        // The register save area is the same size as the memory stack
2165        // and starts at the page just above the start of the memory stack.
2166        // If we get a fault in this area, we've run out of register
2167        // stack.  If we are in java, try throwing a stack overflow exception.
2168        if (addr > thread->stack_base() &&
2169                      addr <= (thread->stack_base()+thread->stack_size()) ) {
2170          char buf[256];
2171          jio_snprintf(buf, sizeof(buf),
2172                       "Register stack overflow, addr:%p, stack_base:%p\n",
2173                       addr, thread->stack_base() );
2174          tty->print_raw_cr(buf);
2175          // If not in java code, return and hope for the best.
2176          return in_java ? Handle_Exception(exceptionInfo,
2177            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2178            :  EXCEPTION_CONTINUE_EXECUTION;
2179        }
2180#endif
2181        if (thread->stack_yellow_zone_enabled()) {
2182          // Yellow zone violation.  The o/s has unprotected the first yellow
2183          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2184          // update the enabled status, even if the zone contains only one page.
2185          thread->disable_stack_yellow_zone();
2186          // If not in java code, return and hope for the best.
2187          return in_java ? Handle_Exception(exceptionInfo,
2188            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2189            :  EXCEPTION_CONTINUE_EXECUTION;
2190        } else {
2191          // Fatal red zone violation.
2192          thread->disable_stack_red_zone();
2193          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2194          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2195                       exceptionInfo->ContextRecord);
2196          return EXCEPTION_CONTINUE_SEARCH;
2197        }
2198      } else if (in_java) {
2199        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2200        // a one-time-only guard page, which it has released to us.  The next
2201        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2202        return Handle_Exception(exceptionInfo,
2203          SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2204      } else {
2205        // Can only return and hope for the best.  Further stack growth will
2206        // result in an ACCESS_VIOLATION.
2207        return EXCEPTION_CONTINUE_EXECUTION;
2208      }
2209    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2210      // Either stack overflow or null pointer exception.
2211      if (in_java) {
2212        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2213        address addr = (address) exceptionRecord->ExceptionInformation[1];
2214        address stack_end = thread->stack_base() - thread->stack_size();
2215        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2216          // Stack overflow.
2217          assert(!os::uses_stack_guard_pages(),
2218            "should be caught by red zone code above.");
2219          return Handle_Exception(exceptionInfo,
2220            SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2221        }
2222        //
2223        // Check for safepoint polling and implicit null
2224        // We only expect null pointers in the stubs (vtable)
2225        // the rest are checked explicitly now.
2226        //
2227        CodeBlob* cb = CodeCache::find_blob(pc);
2228        if (cb != NULL) {
2229          if (os::is_poll_address(addr)) {
2230            address stub = SharedRuntime::get_poll_stub(pc);
2231            return Handle_Exception(exceptionInfo, stub);
2232          }
2233        }
2234        {
2235#ifdef _WIN64
2236          //
2237          // If it's a legal stack address map the entire region in
2238          //
2239          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2240          address addr = (address) exceptionRecord->ExceptionInformation[1];
2241          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2242                  addr = (address)((uintptr_t)addr &
2243                         (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2244                  os::commit_memory((char *)addr, thread->stack_base() - addr,
2245                                    false );
2246                  return EXCEPTION_CONTINUE_EXECUTION;
2247          }
2248          else
2249#endif
2250          {
2251            // Null pointer exception.
2252#ifdef _M_IA64
2253            // We catch register stack overflows in compiled code by doing
2254            // an explicit compare and executing a st8(G0, G0) if the
2255            // BSP enters into our guard area.  We test for the overflow
2256            // condition and fall into the normal null pointer exception
2257            // code if BSP hasn't overflowed.
2258            if ( in_java ) {
2259              if(thread->register_stack_overflow()) {
2260                assert((address)exceptionInfo->ContextRecord->IntS3 ==
2261                                thread->register_stack_limit(),
2262                               "GR7 doesn't contain register_stack_limit");
2263                // Disable the yellow zone which sets the state that
2264                // we've got a stack overflow problem.
2265                if (thread->stack_yellow_zone_enabled()) {
2266                  thread->disable_stack_yellow_zone();
2267                }
2268                // Give us some room to process the exception
2269                thread->disable_register_stack_guard();
2270                // Update GR7 with the new limit so we can continue running
2271                // compiled code.
2272                exceptionInfo->ContextRecord->IntS3 =
2273                               (ULONGLONG)thread->register_stack_limit();
2274                return Handle_Exception(exceptionInfo,
2275                       SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2276              } else {
2277                //
2278                // Check for implicit null
2279                // We only expect null pointers in the stubs (vtable)
2280                // the rest are checked explicitly now.
2281                //
2282                if (((uintptr_t)addr) < os::vm_page_size() ) {
2283                  // an access to the first page of VM--assume it is a null pointer
2284                  address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2285                  if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2286                }
2287              }
2288            } // in_java
2289
2290            // IA64 doesn't use implicit null checking yet. So we shouldn't
2291            // get here.
2292            tty->print_raw_cr("Access violation, possible null pointer exception");
2293            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2294                         exceptionInfo->ContextRecord);
2295            return EXCEPTION_CONTINUE_SEARCH;
2296#else /* !IA64 */
2297
2298            // Windows 98 reports faulting addresses incorrectly
2299            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2300                !os::win32::is_nt()) {
2301              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2302              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2303            }
2304            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2305                         exceptionInfo->ContextRecord);
2306            return EXCEPTION_CONTINUE_SEARCH;
2307#endif
2308          }
2309        }
2310      }
2311
2312#ifdef _WIN64
2313      // Special care for fast JNI field accessors.
2314      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2315      // in and the heap gets shrunk before the field access.
2316      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2317        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2318        if (addr != (address)-1) {
2319          return Handle_Exception(exceptionInfo, addr);
2320        }
2321      }
2322#endif
2323
2324#ifdef _WIN64
2325      // Windows will sometimes generate an access violation
2326      // when we call malloc.  Since we use VectoredExceptions
2327      // on 64 bit platforms, we see this exception.  We must
2328      // pass this exception on so Windows can recover.
2329      // We check to see if the pc of the fault is in NTDLL.DLL
2330      // if so, we pass control on to Windows for handling.
2331      if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2332#endif
2333
2334      // Stack overflow or null pointer exception in native code.
2335      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2336                   exceptionInfo->ContextRecord);
2337      return EXCEPTION_CONTINUE_SEARCH;
2338    }
2339
2340    if (in_java) {
2341      switch (exception_code) {
2342      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2343        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2344
2345      case EXCEPTION_INT_OVERFLOW:
2346        return Handle_IDiv_Exception(exceptionInfo);
2347
2348      } // switch
2349    }
2350#ifndef _WIN64
2351    if ((thread->thread_state() == _thread_in_Java) ||
2352        (thread->thread_state() == _thread_in_native) )
2353    {
2354      LONG result=Handle_FLT_Exception(exceptionInfo);
2355      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2356    }
2357#endif //_WIN64
2358  }
2359
2360  if (exception_code != EXCEPTION_BREAKPOINT) {
2361#ifndef _WIN64
2362    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2363                 exceptionInfo->ContextRecord);
2364#else
2365    // Itanium Windows uses a VectoredExceptionHandler
2366    // Which means that C++ programatic exception handlers (try/except)
2367    // will get here.  Continue the search for the right except block if
2368    // the exception code is not a fatal code.
2369    switch ( exception_code ) {
2370      case EXCEPTION_ACCESS_VIOLATION:
2371      case EXCEPTION_STACK_OVERFLOW:
2372      case EXCEPTION_ILLEGAL_INSTRUCTION:
2373      case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2374      case EXCEPTION_INT_OVERFLOW:
2375      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2376      {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2377                       exceptionInfo->ContextRecord);
2378      }
2379        break;
2380      default:
2381        break;
2382    }
2383#endif
2384  }
2385  return EXCEPTION_CONTINUE_SEARCH;
2386}
2387
2388#ifndef _WIN64
2389// Special care for fast JNI accessors.
2390// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2391// the heap gets shrunk before the field access.
2392// Need to install our own structured exception handler since native code may
2393// install its own.
2394LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2395  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2396  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2397    address pc = (address) exceptionInfo->ContextRecord->Eip;
2398    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2399    if (addr != (address)-1) {
2400      return Handle_Exception(exceptionInfo, addr);
2401    }
2402  }
2403  return EXCEPTION_CONTINUE_SEARCH;
2404}
2405
2406#define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2407Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2408  __try { \
2409    return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2410  } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2411  } \
2412  return 0; \
2413}
2414
2415DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2416DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2417DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2418DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2419DEFINE_FAST_GETFIELD(jint,     int,    Int)
2420DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2421DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2422DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2423
2424address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2425  switch (type) {
2426    case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2427    case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2428    case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2429    case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2430    case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2431    case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2432    case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2433    case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2434    default:        ShouldNotReachHere();
2435  }
2436  return (address)-1;
2437}
2438#endif
2439
2440// Virtual Memory
2441
2442int os::vm_page_size() { return os::win32::vm_page_size(); }
2443int os::vm_allocation_granularity() {
2444  return os::win32::vm_allocation_granularity();
2445}
2446
2447// Windows large page support is available on Windows 2003. In order to use
2448// large page memory, the administrator must first assign additional privilege
2449// to the user:
2450//   + select Control Panel -> Administrative Tools -> Local Security Policy
2451//   + select Local Policies -> User Rights Assignment
2452//   + double click "Lock pages in memory", add users and/or groups
2453//   + reboot
2454// Note the above steps are needed for administrator as well, as administrators
2455// by default do not have the privilege to lock pages in memory.
2456//
2457// Note about Windows 2003: although the API supports committing large page
2458// memory on a page-by-page basis and VirtualAlloc() returns success under this
2459// scenario, I found through experiment it only uses large page if the entire
2460// memory region is reserved and committed in a single VirtualAlloc() call.
2461// This makes Windows large page support more or less like Solaris ISM, in
2462// that the entire heap must be committed upfront. This probably will change
2463// in the future, if so the code below needs to be revisited.
2464
2465#ifndef MEM_LARGE_PAGES
2466#define MEM_LARGE_PAGES 0x20000000
2467#endif
2468
2469// GetLargePageMinimum is only available on Windows 2003. The other functions
2470// are available on NT but not on Windows 98/Me. We have to resolve them at
2471// runtime.
2472typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2473typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2474             (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2475typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2476typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2477
2478static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2479static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2480static OpenProcessToken_func_type      _OpenProcessToken;
2481static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2482
2483static HINSTANCE _kernel32;
2484static HINSTANCE _advapi32;
2485static HANDLE    _hProcess;
2486static HANDLE    _hToken;
2487
2488static size_t _large_page_size = 0;
2489
2490static bool resolve_functions_for_large_page_init() {
2491  _kernel32 = LoadLibrary("kernel32.dll");
2492  if (_kernel32 == NULL) return false;
2493
2494  _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2495                            GetProcAddress(_kernel32, "GetLargePageMinimum"));
2496  if (_GetLargePageMinimum == NULL) return false;
2497
2498  _advapi32 = LoadLibrary("advapi32.dll");
2499  if (_advapi32 == NULL) return false;
2500
2501  _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2502                            GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2503  _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2504                            GetProcAddress(_advapi32, "OpenProcessToken"));
2505  _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2506                            GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2507  return _AdjustTokenPrivileges != NULL &&
2508         _OpenProcessToken      != NULL &&
2509         _LookupPrivilegeValue  != NULL;
2510}
2511
2512static bool request_lock_memory_privilege() {
2513  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2514                                os::current_process_id());
2515
2516  LUID luid;
2517  if (_hProcess != NULL &&
2518      _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2519      _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2520
2521    TOKEN_PRIVILEGES tp;
2522    tp.PrivilegeCount = 1;
2523    tp.Privileges[0].Luid = luid;
2524    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2525
2526    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2527    // privilege. Check GetLastError() too. See MSDN document.
2528    if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2529        (GetLastError() == ERROR_SUCCESS)) {
2530      return true;
2531    }
2532  }
2533
2534  return false;
2535}
2536
2537static void cleanup_after_large_page_init() {
2538  _GetLargePageMinimum = NULL;
2539  _AdjustTokenPrivileges = NULL;
2540  _OpenProcessToken = NULL;
2541  _LookupPrivilegeValue = NULL;
2542  if (_kernel32) FreeLibrary(_kernel32);
2543  _kernel32 = NULL;
2544  if (_advapi32) FreeLibrary(_advapi32);
2545  _advapi32 = NULL;
2546  if (_hProcess) CloseHandle(_hProcess);
2547  _hProcess = NULL;
2548  if (_hToken) CloseHandle(_hToken);
2549  _hToken = NULL;
2550}
2551
2552bool os::large_page_init() {
2553  if (!UseLargePages) return false;
2554
2555  // print a warning if any large page related flag is specified on command line
2556  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2557                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2558  bool success = false;
2559
2560# define WARN(msg) if (warn_on_failure) { warning(msg); }
2561  if (resolve_functions_for_large_page_init()) {
2562    if (request_lock_memory_privilege()) {
2563      size_t s = _GetLargePageMinimum();
2564      if (s) {
2565#if defined(IA32) || defined(AMD64)
2566        if (s > 4*M || LargePageSizeInBytes > 4*M) {
2567          WARN("JVM cannot use large pages bigger than 4mb.");
2568        } else {
2569#endif
2570          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2571            _large_page_size = LargePageSizeInBytes;
2572          } else {
2573            _large_page_size = s;
2574          }
2575          success = true;
2576#if defined(IA32) || defined(AMD64)
2577        }
2578#endif
2579      } else {
2580        WARN("Large page is not supported by the processor.");
2581      }
2582    } else {
2583      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2584    }
2585  } else {
2586    WARN("Large page is not supported by the operating system.");
2587  }
2588#undef WARN
2589
2590  const size_t default_page_size = (size_t) vm_page_size();
2591  if (success && _large_page_size > default_page_size) {
2592    _page_sizes[0] = _large_page_size;
2593    _page_sizes[1] = default_page_size;
2594    _page_sizes[2] = 0;
2595  }
2596
2597  cleanup_after_large_page_init();
2598  return success;
2599}
2600
2601// On win32, one cannot release just a part of reserved memory, it's an
2602// all or nothing deal.  When we split a reservation, we must break the
2603// reservation into two reservations.
2604void os::split_reserved_memory(char *base, size_t size, size_t split,
2605                              bool realloc) {
2606  if (size > 0) {
2607    release_memory(base, size);
2608    if (realloc) {
2609      reserve_memory(split, base);
2610    }
2611    if (size != split) {
2612      reserve_memory(size - split, base + split);
2613    }
2614  }
2615}
2616
2617char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2618  assert((size_t)addr % os::vm_allocation_granularity() == 0,
2619         "reserve alignment");
2620  assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2621  char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2622  assert(res == NULL || addr == NULL || addr == res,
2623         "Unexpected address from reserve.");
2624  return res;
2625}
2626
2627// Reserve memory at an arbitrary address, only if that area is
2628// available (and not reserved for something else).
2629char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2630  // Windows os::reserve_memory() fails of the requested address range is
2631  // not avilable.
2632  return reserve_memory(bytes, requested_addr);
2633}
2634
2635size_t os::large_page_size() {
2636  return _large_page_size;
2637}
2638
2639bool os::can_commit_large_page_memory() {
2640  // Windows only uses large page memory when the entire region is reserved
2641  // and committed in a single VirtualAlloc() call. This may change in the
2642  // future, but with Windows 2003 it's not possible to commit on demand.
2643  return false;
2644}
2645
2646bool os::can_execute_large_page_memory() {
2647  return true;
2648}
2649
2650char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2651
2652  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2653
2654  if (UseLargePagesIndividualAllocation) {
2655    if (TracePageSizes && Verbose) {
2656       tty->print_cr("Reserving large pages individually.");
2657    }
2658    char * p_buf;
2659    // first reserve enough address space in advance since we want to be
2660    // able to break a single contiguous virtual address range into multiple
2661    // large page commits but WS2003 does not allow reserving large page space
2662    // so we just use 4K pages for reserve, this gives us a legal contiguous
2663    // address space. then we will deallocate that reservation, and re alloc
2664    // using large pages
2665    const size_t size_of_reserve = bytes + _large_page_size;
2666    if (bytes > size_of_reserve) {
2667      // Overflowed.
2668      warning("Individually allocated large pages failed, "
2669        "use -XX:-UseLargePagesIndividualAllocation to turn off");
2670      return NULL;
2671    }
2672    p_buf = (char *) VirtualAlloc(addr,
2673                                 size_of_reserve,  // size of Reserve
2674                                 MEM_RESERVE,
2675                                 PAGE_READWRITE);
2676    // If reservation failed, return NULL
2677    if (p_buf == NULL) return NULL;
2678
2679    release_memory(p_buf, bytes + _large_page_size);
2680    // round up to page boundary.  If the size_of_reserve did not
2681    // overflow and the reservation did not fail, this align up
2682    // should not overflow.
2683    p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2684
2685    // now go through and allocate one page at a time until all bytes are
2686    // allocated
2687    size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2688    // An overflow of align_size_up() would have been caught above
2689    // in the calculation of size_of_reserve.
2690    char * next_alloc_addr = p_buf;
2691
2692#ifdef ASSERT
2693    // Variable for the failure injection
2694    long ran_num = os::random();
2695    size_t fail_after = ran_num % bytes;
2696#endif
2697
2698    while (bytes_remaining) {
2699      size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2700      // Note allocate and commit
2701      char * p_new;
2702
2703#ifdef ASSERT
2704      bool inject_error = LargePagesIndividualAllocationInjectError &&
2705          (bytes_remaining <= fail_after);
2706#else
2707      const bool inject_error = false;
2708#endif
2709
2710      if (inject_error) {
2711        p_new = NULL;
2712      } else {
2713        p_new = (char *) VirtualAlloc(next_alloc_addr,
2714                                    bytes_to_rq,
2715                                    MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2716                                    prot);
2717      }
2718
2719      if (p_new == NULL) {
2720        // Free any allocated pages
2721        if (next_alloc_addr > p_buf) {
2722          // Some memory was committed so release it.
2723          size_t bytes_to_release = bytes - bytes_remaining;
2724          release_memory(p_buf, bytes_to_release);
2725        }
2726#ifdef ASSERT
2727        if (UseLargePagesIndividualAllocation &&
2728            LargePagesIndividualAllocationInjectError) {
2729          if (TracePageSizes && Verbose) {
2730             tty->print_cr("Reserving large pages individually failed.");
2731          }
2732        }
2733#endif
2734        return NULL;
2735      }
2736      bytes_remaining -= bytes_to_rq;
2737      next_alloc_addr += bytes_to_rq;
2738    }
2739
2740    return p_buf;
2741
2742  } else {
2743    // normal policy just allocate it all at once
2744    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2745    char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2746    return res;
2747  }
2748}
2749
2750bool os::release_memory_special(char* base, size_t bytes) {
2751  return release_memory(base, bytes);
2752}
2753
2754void os::print_statistics() {
2755}
2756
2757bool os::commit_memory(char* addr, size_t bytes, bool exec) {
2758  if (bytes == 0) {
2759    // Don't bother the OS with noops.
2760    return true;
2761  }
2762  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2763  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2764  // Don't attempt to print anything if the OS call fails. We're
2765  // probably low on resources, so the print itself may cause crashes.
2766  bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
2767  if (result != NULL && exec) {
2768    DWORD oldprot;
2769    // Windows doc says to use VirtualProtect to get execute permissions
2770    return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
2771  } else {
2772    return result;
2773  }
2774}
2775
2776bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2777                       bool exec) {
2778  return commit_memory(addr, size, exec);
2779}
2780
2781bool os::uncommit_memory(char* addr, size_t bytes) {
2782  if (bytes == 0) {
2783    // Don't bother the OS with noops.
2784    return true;
2785  }
2786  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2787  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2788  return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2789}
2790
2791bool os::release_memory(char* addr, size_t bytes) {
2792  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2793}
2794
2795// Set protections specified
2796bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2797                        bool is_committed) {
2798  unsigned int p = 0;
2799  switch (prot) {
2800  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2801  case MEM_PROT_READ: p = PAGE_READONLY; break;
2802  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2803  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2804  default:
2805    ShouldNotReachHere();
2806  }
2807
2808  DWORD old_status;
2809
2810  // Strange enough, but on Win32 one can change protection only for committed
2811  // memory, not a big deal anyway, as bytes less or equal than 64K
2812  if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
2813    fatal("cannot commit protection page");
2814  }
2815  // One cannot use os::guard_memory() here, as on Win32 guard page
2816  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2817  //
2818  // Pages in the region become guard pages. Any attempt to access a guard page
2819  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2820  // the guard page status. Guard pages thus act as a one-time access alarm.
2821  return VirtualProtect(addr, bytes, p, &old_status) != 0;
2822}
2823
2824bool os::guard_memory(char* addr, size_t bytes) {
2825  DWORD old_status;
2826  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2827}
2828
2829bool os::unguard_memory(char* addr, size_t bytes) {
2830  DWORD old_status;
2831  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2832}
2833
2834void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2835void os::free_memory(char *addr, size_t bytes)         { }
2836void os::numa_make_global(char *addr, size_t bytes)    { }
2837void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2838bool os::numa_topology_changed()                       { return false; }
2839size_t os::numa_get_groups_num()                       { return 1; }
2840int os::numa_get_group_id()                            { return 0; }
2841size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2842  if (size > 0) {
2843    ids[0] = 0;
2844    return 1;
2845  }
2846  return 0;
2847}
2848
2849bool os::get_page_info(char *start, page_info* info) {
2850  return false;
2851}
2852
2853char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2854  return end;
2855}
2856
2857char* os::non_memory_address_word() {
2858  // Must never look like an address returned by reserve_memory,
2859  // even in its subfields (as defined by the CPU immediate fields,
2860  // if the CPU splits constants across multiple instructions).
2861  return (char*)-1;
2862}
2863
2864#define MAX_ERROR_COUNT 100
2865#define SYS_THREAD_ERROR 0xffffffffUL
2866
2867void os::pd_start_thread(Thread* thread) {
2868  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2869  // Returns previous suspend state:
2870  // 0:  Thread was not suspended
2871  // 1:  Thread is running now
2872  // >1: Thread is still suspended.
2873  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2874}
2875
2876size_t os::read(int fd, void *buf, unsigned int nBytes) {
2877  return ::read(fd, buf, nBytes);
2878}
2879
2880class HighResolutionInterval {
2881  // The default timer resolution seems to be 10 milliseconds.
2882  // (Where is this written down?)
2883  // If someone wants to sleep for only a fraction of the default,
2884  // then we set the timer resolution down to 1 millisecond for
2885  // the duration of their interval.
2886  // We carefully set the resolution back, since otherwise we
2887  // seem to incur an overhead (3%?) that we don't need.
2888  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2889  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2890  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2891  // timeBeginPeriod() if the relative error exceeded some threshold.
2892  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2893  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2894  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2895  // resolution timers running.
2896private:
2897    jlong resolution;
2898public:
2899  HighResolutionInterval(jlong ms) {
2900    resolution = ms % 10L;
2901    if (resolution != 0) {
2902      MMRESULT result = timeBeginPeriod(1L);
2903    }
2904  }
2905  ~HighResolutionInterval() {
2906    if (resolution != 0) {
2907      MMRESULT result = timeEndPeriod(1L);
2908    }
2909    resolution = 0L;
2910  }
2911};
2912
2913int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2914  jlong limit = (jlong) MAXDWORD;
2915
2916  while(ms > limit) {
2917    int res;
2918    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2919      return res;
2920    ms -= limit;
2921  }
2922
2923  assert(thread == Thread::current(),  "thread consistency check");
2924  OSThread* osthread = thread->osthread();
2925  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2926  int result;
2927  if (interruptable) {
2928    assert(thread->is_Java_thread(), "must be java thread");
2929    JavaThread *jt = (JavaThread *) thread;
2930    ThreadBlockInVM tbivm(jt);
2931
2932    jt->set_suspend_equivalent();
2933    // cleared by handle_special_suspend_equivalent_condition() or
2934    // java_suspend_self() via check_and_wait_while_suspended()
2935
2936    HANDLE events[1];
2937    events[0] = osthread->interrupt_event();
2938    HighResolutionInterval *phri=NULL;
2939    if(!ForceTimeHighResolution)
2940      phri = new HighResolutionInterval( ms );
2941    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
2942      result = OS_TIMEOUT;
2943    } else {
2944      ResetEvent(osthread->interrupt_event());
2945      osthread->set_interrupted(false);
2946      result = OS_INTRPT;
2947    }
2948    delete phri; //if it is NULL, harmless
2949
2950    // were we externally suspended while we were waiting?
2951    jt->check_and_wait_while_suspended();
2952  } else {
2953    assert(!thread->is_Java_thread(), "must not be java thread");
2954    Sleep((long) ms);
2955    result = OS_TIMEOUT;
2956  }
2957  return result;
2958}
2959
2960// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2961void os::infinite_sleep() {
2962  while (true) {    // sleep forever ...
2963    Sleep(100000);  // ... 100 seconds at a time
2964  }
2965}
2966
2967typedef BOOL (WINAPI * STTSignature)(void) ;
2968
2969os::YieldResult os::NakedYield() {
2970  // Use either SwitchToThread() or Sleep(0)
2971  // Consider passing back the return value from SwitchToThread().
2972  // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
2973  // In that case we revert to Sleep(0).
2974  static volatile STTSignature stt = (STTSignature) 1 ;
2975
2976  if (stt == ((STTSignature) 1)) {
2977    stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
2978    // It's OK if threads race during initialization as the operation above is idempotent.
2979  }
2980  if (stt != NULL) {
2981    return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
2982  } else {
2983    Sleep (0) ;
2984  }
2985  return os::YIELD_UNKNOWN ;
2986}
2987
2988void os::yield() {  os::NakedYield(); }
2989
2990void os::yield_all(int attempts) {
2991  // Yields to all threads, including threads with lower priorities
2992  Sleep(1);
2993}
2994
2995// Win32 only gives you access to seven real priorities at a time,
2996// so we compress Java's ten down to seven.  It would be better
2997// if we dynamically adjusted relative priorities.
2998
2999int os::java_to_os_priority[MaxPriority + 1] = {
3000  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3001  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3002  THREAD_PRIORITY_LOWEST,                       // 2
3003  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3004  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3005  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3006  THREAD_PRIORITY_NORMAL,                       // 6
3007  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3008  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3009  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3010  THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3011};
3012
3013int prio_policy1[MaxPriority + 1] = {
3014  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3015  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3016  THREAD_PRIORITY_LOWEST,                       // 2
3017  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3018  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3019  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3020  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3021  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3022  THREAD_PRIORITY_HIGHEST,                      // 8
3023  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3024  THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3025};
3026
3027static int prio_init() {
3028  // If ThreadPriorityPolicy is 1, switch tables
3029  if (ThreadPriorityPolicy == 1) {
3030    int i;
3031    for (i = 0; i < MaxPriority + 1; i++) {
3032      os::java_to_os_priority[i] = prio_policy1[i];
3033    }
3034  }
3035  return 0;
3036}
3037
3038OSReturn os::set_native_priority(Thread* thread, int priority) {
3039  if (!UseThreadPriorities) return OS_OK;
3040  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3041  return ret ? OS_OK : OS_ERR;
3042}
3043
3044OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3045  if ( !UseThreadPriorities ) {
3046    *priority_ptr = java_to_os_priority[NormPriority];
3047    return OS_OK;
3048  }
3049  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3050  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3051    assert(false, "GetThreadPriority failed");
3052    return OS_ERR;
3053  }
3054  *priority_ptr = os_prio;
3055  return OS_OK;
3056}
3057
3058
3059// Hint to the underlying OS that a task switch would not be good.
3060// Void return because it's a hint and can fail.
3061void os::hint_no_preempt() {}
3062
3063void os::interrupt(Thread* thread) {
3064  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3065         "possibility of dangling Thread pointer");
3066
3067  OSThread* osthread = thread->osthread();
3068  osthread->set_interrupted(true);
3069  // More than one thread can get here with the same value of osthread,
3070  // resulting in multiple notifications.  We do, however, want the store
3071  // to interrupted() to be visible to other threads before we post
3072  // the interrupt event.
3073  OrderAccess::release();
3074  SetEvent(osthread->interrupt_event());
3075  // For JSR166:  unpark after setting status
3076  if (thread->is_Java_thread())
3077    ((JavaThread*)thread)->parker()->unpark();
3078
3079  ParkEvent * ev = thread->_ParkEvent ;
3080  if (ev != NULL) ev->unpark() ;
3081
3082}
3083
3084
3085bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3086  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3087         "possibility of dangling Thread pointer");
3088
3089  OSThread* osthread = thread->osthread();
3090  bool interrupted;
3091  interrupted = osthread->interrupted();
3092  if (clear_interrupted == true) {
3093    osthread->set_interrupted(false);
3094    ResetEvent(osthread->interrupt_event());
3095  } // Otherwise leave the interrupted state alone
3096
3097  return interrupted;
3098}
3099
3100// Get's a pc (hint) for a running thread. Currently used only for profiling.
3101ExtendedPC os::get_thread_pc(Thread* thread) {
3102  CONTEXT context;
3103  context.ContextFlags = CONTEXT_CONTROL;
3104  HANDLE handle = thread->osthread()->thread_handle();
3105#ifdef _M_IA64
3106  assert(0, "Fix get_thread_pc");
3107  return ExtendedPC(NULL);
3108#else
3109  if (GetThreadContext(handle, &context)) {
3110#ifdef _M_AMD64
3111    return ExtendedPC((address) context.Rip);
3112#else
3113    return ExtendedPC((address) context.Eip);
3114#endif
3115  } else {
3116    return ExtendedPC(NULL);
3117  }
3118#endif
3119}
3120
3121// GetCurrentThreadId() returns DWORD
3122intx os::current_thread_id()          { return GetCurrentThreadId(); }
3123
3124static int _initial_pid = 0;
3125
3126int os::current_process_id()
3127{
3128  return (_initial_pid ? _initial_pid : _getpid());
3129}
3130
3131int    os::win32::_vm_page_size       = 0;
3132int    os::win32::_vm_allocation_granularity = 0;
3133int    os::win32::_processor_type     = 0;
3134// Processor level is not available on non-NT systems, use vm_version instead
3135int    os::win32::_processor_level    = 0;
3136julong os::win32::_physical_memory    = 0;
3137size_t os::win32::_default_stack_size = 0;
3138
3139         intx os::win32::_os_thread_limit    = 0;
3140volatile intx os::win32::_os_thread_count    = 0;
3141
3142bool   os::win32::_is_nt              = false;
3143bool   os::win32::_is_windows_2003    = false;
3144
3145
3146void os::win32::initialize_system_info() {
3147  SYSTEM_INFO si;
3148  GetSystemInfo(&si);
3149  _vm_page_size    = si.dwPageSize;
3150  _vm_allocation_granularity = si.dwAllocationGranularity;
3151  _processor_type  = si.dwProcessorType;
3152  _processor_level = si.wProcessorLevel;
3153  set_processor_count(si.dwNumberOfProcessors);
3154
3155  MEMORYSTATUSEX ms;
3156  ms.dwLength = sizeof(ms);
3157
3158  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3159  // dwMemoryLoad (% of memory in use)
3160  GlobalMemoryStatusEx(&ms);
3161  _physical_memory = ms.ullTotalPhys;
3162
3163  OSVERSIONINFO oi;
3164  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3165  GetVersionEx(&oi);
3166  switch(oi.dwPlatformId) {
3167    case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3168    case VER_PLATFORM_WIN32_NT:
3169      _is_nt = true;
3170      {
3171        int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3172        if (os_vers == 5002) {
3173          _is_windows_2003 = true;
3174        }
3175      }
3176      break;
3177    default: fatal("Unknown platform");
3178  }
3179
3180  _default_stack_size = os::current_stack_size();
3181  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3182  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3183    "stack size not a multiple of page size");
3184
3185  initialize_performance_counter();
3186
3187  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3188  // known to deadlock the system, if the VM issues to thread operations with
3189  // a too high frequency, e.g., such as changing the priorities.
3190  // The 6000 seems to work well - no deadlocks has been notices on the test
3191  // programs that we have seen experience this problem.
3192  if (!os::win32::is_nt()) {
3193    StarvationMonitorInterval = 6000;
3194  }
3195}
3196
3197
3198void os::win32::setmode_streams() {
3199  _setmode(_fileno(stdin), _O_BINARY);
3200  _setmode(_fileno(stdout), _O_BINARY);
3201  _setmode(_fileno(stderr), _O_BINARY);
3202}
3203
3204
3205int os::message_box(const char* title, const char* message) {
3206  int result = MessageBox(NULL, message, title,
3207                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3208  return result == IDYES;
3209}
3210
3211int os::allocate_thread_local_storage() {
3212  return TlsAlloc();
3213}
3214
3215
3216void os::free_thread_local_storage(int index) {
3217  TlsFree(index);
3218}
3219
3220
3221void os::thread_local_storage_at_put(int index, void* value) {
3222  TlsSetValue(index, value);
3223  assert(thread_local_storage_at(index) == value, "Just checking");
3224}
3225
3226
3227void* os::thread_local_storage_at(int index) {
3228  return TlsGetValue(index);
3229}
3230
3231
3232#ifndef PRODUCT
3233#ifndef _WIN64
3234// Helpers to check whether NX protection is enabled
3235int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3236  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3237      pex->ExceptionRecord->NumberParameters > 0 &&
3238      pex->ExceptionRecord->ExceptionInformation[0] ==
3239      EXCEPTION_INFO_EXEC_VIOLATION) {
3240    return EXCEPTION_EXECUTE_HANDLER;
3241  }
3242  return EXCEPTION_CONTINUE_SEARCH;
3243}
3244
3245void nx_check_protection() {
3246  // If NX is enabled we'll get an exception calling into code on the stack
3247  char code[] = { (char)0xC3 }; // ret
3248  void *code_ptr = (void *)code;
3249  __try {
3250    __asm call code_ptr
3251  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3252    tty->print_raw_cr("NX protection detected.");
3253  }
3254}
3255#endif // _WIN64
3256#endif // PRODUCT
3257
3258// this is called _before_ the global arguments have been parsed
3259void os::init(void) {
3260  _initial_pid = _getpid();
3261
3262  init_random(1234567);
3263
3264  win32::initialize_system_info();
3265  win32::setmode_streams();
3266  init_page_sizes((size_t) win32::vm_page_size());
3267
3268  // For better scalability on MP systems (must be called after initialize_system_info)
3269#ifndef PRODUCT
3270  if (is_MP()) {
3271    NoYieldsInMicrolock = true;
3272  }
3273#endif
3274  // This may be overridden later when argument processing is done.
3275  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3276    os::win32::is_windows_2003());
3277
3278  // Initialize main_process and main_thread
3279  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3280 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3281                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3282    fatal("DuplicateHandle failed\n");
3283  }
3284  main_thread_id = (int) GetCurrentThreadId();
3285}
3286
3287// To install functions for atexit processing
3288extern "C" {
3289  static void perfMemory_exit_helper() {
3290    perfMemory_exit();
3291  }
3292}
3293
3294
3295// this is called _after_ the global arguments have been parsed
3296jint os::init_2(void) {
3297  // Allocate a single page and mark it as readable for safepoint polling
3298  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3299  guarantee( polling_page != NULL, "Reserve Failed for polling page");
3300
3301  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3302  guarantee( return_page != NULL, "Commit Failed for polling page");
3303
3304  os::set_polling_page( polling_page );
3305
3306#ifndef PRODUCT
3307  if( Verbose && PrintMiscellaneous )
3308    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3309#endif
3310
3311  if (!UseMembar) {
3312    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3313    guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3314
3315    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3316    guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3317
3318    os::set_memory_serialize_page( mem_serialize_page );
3319
3320#ifndef PRODUCT
3321    if(Verbose && PrintMiscellaneous)
3322      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3323#endif
3324}
3325
3326  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3327
3328  // Setup Windows Exceptions
3329
3330  // On Itanium systems, Structured Exception Handling does not
3331  // work since stack frames must be walkable by the OS.  Since
3332  // much of our code is dynamically generated, and we do not have
3333  // proper unwind .xdata sections, the system simply exits
3334  // rather than delivering the exception.  To work around
3335  // this we use VectorExceptions instead.
3336#ifdef _WIN64
3337  if (UseVectoredExceptions) {
3338    topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3339  }
3340#endif
3341
3342  // for debugging float code generation bugs
3343  if (ForceFloatExceptions) {
3344#ifndef  _WIN64
3345    static long fp_control_word = 0;
3346    __asm { fstcw fp_control_word }
3347    // see Intel PPro Manual, Vol. 2, p 7-16
3348    const long precision = 0x20;
3349    const long underflow = 0x10;
3350    const long overflow  = 0x08;
3351    const long zero_div  = 0x04;
3352    const long denorm    = 0x02;
3353    const long invalid   = 0x01;
3354    fp_control_word |= invalid;
3355    __asm { fldcw fp_control_word }
3356#endif
3357  }
3358
3359  // Initialize HPI.
3360  jint hpi_result = hpi::initialize();
3361  if (hpi_result != JNI_OK) { return hpi_result; }
3362
3363  // If stack_commit_size is 0, windows will reserve the default size,
3364  // but only commit a small portion of it.
3365  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3366  size_t default_reserve_size = os::win32::default_stack_size();
3367  size_t actual_reserve_size = stack_commit_size;
3368  if (stack_commit_size < default_reserve_size) {
3369    // If stack_commit_size == 0, we want this too
3370    actual_reserve_size = default_reserve_size;
3371  }
3372
3373  JavaThread::set_stack_size_at_create(stack_commit_size);
3374
3375  // Calculate theoretical max. size of Threads to guard gainst artifical
3376  // out-of-memory situations, where all available address-space has been
3377  // reserved by thread stacks.
3378  assert(actual_reserve_size != 0, "Must have a stack");
3379
3380  // Calculate the thread limit when we should start doing Virtual Memory
3381  // banging. Currently when the threads will have used all but 200Mb of space.
3382  //
3383  // TODO: consider performing a similar calculation for commit size instead
3384  // as reserve size, since on a 64-bit platform we'll run into that more
3385  // often than running out of virtual memory space.  We can use the
3386  // lower value of the two calculations as the os_thread_limit.
3387  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3388  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3389
3390  // at exit methods are called in the reverse order of their registration.
3391  // there is no limit to the number of functions registered. atexit does
3392  // not set errno.
3393
3394  if (PerfAllowAtExitRegistration) {
3395    // only register atexit functions if PerfAllowAtExitRegistration is set.
3396    // atexit functions can be delayed until process exit time, which
3397    // can be problematic for embedded VM situations. Embedded VMs should
3398    // call DestroyJavaVM() to assure that VM resources are released.
3399
3400    // note: perfMemory_exit_helper atexit function may be removed in
3401    // the future if the appropriate cleanup code can be added to the
3402    // VM_Exit VMOperation's doit method.
3403    if (atexit(perfMemory_exit_helper) != 0) {
3404      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3405    }
3406  }
3407
3408  // initialize PSAPI or ToolHelp for fatal error handler
3409  if (win32::is_nt()) _init_psapi();
3410  else _init_toolhelp();
3411
3412#ifndef _WIN64
3413  // Print something if NX is enabled (win32 on AMD64)
3414  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3415#endif
3416
3417  // initialize thread priority policy
3418  prio_init();
3419
3420  if (UseNUMA && !ForceNUMA) {
3421    UseNUMA = false; // Currently unsupported.
3422  }
3423
3424  return JNI_OK;
3425}
3426
3427
3428// Mark the polling page as unreadable
3429void os::make_polling_page_unreadable(void) {
3430  DWORD old_status;
3431  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3432    fatal("Could not disable polling page");
3433};
3434
3435// Mark the polling page as readable
3436void os::make_polling_page_readable(void) {
3437  DWORD old_status;
3438  if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3439    fatal("Could not enable polling page");
3440};
3441
3442
3443int os::stat(const char *path, struct stat *sbuf) {
3444  char pathbuf[MAX_PATH];
3445  if (strlen(path) > MAX_PATH - 1) {
3446    errno = ENAMETOOLONG;
3447    return -1;
3448  }
3449  hpi::native_path(strcpy(pathbuf, path));
3450  int ret = ::stat(pathbuf, sbuf);
3451  if (sbuf != NULL && UseUTCFileTimestamp) {
3452    // Fix for 6539723.  st_mtime returned from stat() is dependent on
3453    // the system timezone and so can return different values for the
3454    // same file if/when daylight savings time changes.  This adjustment
3455    // makes sure the same timestamp is returned regardless of the TZ.
3456    //
3457    // See:
3458    // http://msdn.microsoft.com/library/
3459    //   default.asp?url=/library/en-us/sysinfo/base/
3460    //   time_zone_information_str.asp
3461    // and
3462    // http://msdn.microsoft.com/library/default.asp?url=
3463    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3464    //
3465    // NOTE: there is a insidious bug here:  If the timezone is changed
3466    // after the call to stat() but before 'GetTimeZoneInformation()', then
3467    // the adjustment we do here will be wrong and we'll return the wrong
3468    // value (which will likely end up creating an invalid class data
3469    // archive).  Absent a better API for this, or some time zone locking
3470    // mechanism, we'll have to live with this risk.
3471    TIME_ZONE_INFORMATION tz;
3472    DWORD tzid = GetTimeZoneInformation(&tz);
3473    int daylightBias =
3474      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3475    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3476  }
3477  return ret;
3478}
3479
3480
3481#define FT2INT64(ft) \
3482  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3483
3484
3485// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3486// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3487// of a thread.
3488//
3489// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3490// the fast estimate available on the platform.
3491
3492// current_thread_cpu_time() is not optimized for Windows yet
3493jlong os::current_thread_cpu_time() {
3494  // return user + sys since the cost is the same
3495  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3496}
3497
3498jlong os::thread_cpu_time(Thread* thread) {
3499  // consistent with what current_thread_cpu_time() returns.
3500  return os::thread_cpu_time(thread, true /* user+sys */);
3501}
3502
3503jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3504  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3505}
3506
3507jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3508  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3509  // If this function changes, os::is_thread_cpu_time_supported() should too
3510  if (os::win32::is_nt()) {
3511    FILETIME CreationTime;
3512    FILETIME ExitTime;
3513    FILETIME KernelTime;
3514    FILETIME UserTime;
3515
3516    if ( GetThreadTimes(thread->osthread()->thread_handle(),
3517                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3518      return -1;
3519    else
3520      if (user_sys_cpu_time) {
3521        return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3522      } else {
3523        return FT2INT64(UserTime) * 100;
3524      }
3525  } else {
3526    return (jlong) timeGetTime() * 1000000;
3527  }
3528}
3529
3530void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3531  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3532  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3533  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3534  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3535}
3536
3537void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3538  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3539  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3540  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3541  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3542}
3543
3544bool os::is_thread_cpu_time_supported() {
3545  // see os::thread_cpu_time
3546  if (os::win32::is_nt()) {
3547    FILETIME CreationTime;
3548    FILETIME ExitTime;
3549    FILETIME KernelTime;
3550    FILETIME UserTime;
3551
3552    if ( GetThreadTimes(GetCurrentThread(),
3553                    &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3554      return false;
3555    else
3556      return true;
3557  } else {
3558    return false;
3559  }
3560}
3561
3562// Windows does't provide a loadavg primitive so this is stubbed out for now.
3563// It does have primitives (PDH API) to get CPU usage and run queue length.
3564// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3565// If we wanted to implement loadavg on Windows, we have a few options:
3566//
3567// a) Query CPU usage and run queue length and "fake" an answer by
3568//    returning the CPU usage if it's under 100%, and the run queue
3569//    length otherwise.  It turns out that querying is pretty slow
3570//    on Windows, on the order of 200 microseconds on a fast machine.
3571//    Note that on the Windows the CPU usage value is the % usage
3572//    since the last time the API was called (and the first call
3573//    returns 100%), so we'd have to deal with that as well.
3574//
3575// b) Sample the "fake" answer using a sampling thread and store
3576//    the answer in a global variable.  The call to loadavg would
3577//    just return the value of the global, avoiding the slow query.
3578//
3579// c) Sample a better answer using exponential decay to smooth the
3580//    value.  This is basically the algorithm used by UNIX kernels.
3581//
3582// Note that sampling thread starvation could affect both (b) and (c).
3583int os::loadavg(double loadavg[], int nelem) {
3584  return -1;
3585}
3586
3587
3588// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3589bool os::dont_yield() {
3590  return DontYieldALot;
3591}
3592
3593// Is a (classpath) directory empty?
3594bool os::dir_is_empty(const char* path) {
3595  WIN32_FIND_DATA fd;
3596  HANDLE f = FindFirstFile(path, &fd);
3597  if (f == INVALID_HANDLE_VALUE) {
3598    return true;
3599  }
3600  FindClose(f);
3601  return false;
3602}
3603
3604// create binary file, rewriting existing file if required
3605int os::create_binary_file(const char* path, bool rewrite_existing) {
3606  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3607  if (!rewrite_existing) {
3608    oflags |= _O_EXCL;
3609  }
3610  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3611}
3612
3613// return current position of file pointer
3614jlong os::current_file_offset(int fd) {
3615  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3616}
3617
3618// move file pointer to the specified offset
3619jlong os::seek_to_file_offset(int fd, jlong offset) {
3620  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3621}
3622
3623
3624// Map a block of memory.
3625char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3626                     char *addr, size_t bytes, bool read_only,
3627                     bool allow_exec) {
3628  HANDLE hFile;
3629  char* base;
3630
3631  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3632                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3633  if (hFile == NULL) {
3634    if (PrintMiscellaneous && Verbose) {
3635      DWORD err = GetLastError();
3636      tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3637    }
3638    return NULL;
3639  }
3640
3641  if (allow_exec) {
3642    // CreateFileMapping/MapViewOfFileEx can't map executable memory
3643    // unless it comes from a PE image (which the shared archive is not.)
3644    // Even VirtualProtect refuses to give execute access to mapped memory
3645    // that was not previously executable.
3646    //
3647    // Instead, stick the executable region in anonymous memory.  Yuck.
3648    // Penalty is that ~4 pages will not be shareable - in the future
3649    // we might consider DLLizing the shared archive with a proper PE
3650    // header so that mapping executable + sharing is possible.
3651
3652    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3653                                PAGE_READWRITE);
3654    if (base == NULL) {
3655      if (PrintMiscellaneous && Verbose) {
3656        DWORD err = GetLastError();
3657        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3658      }
3659      CloseHandle(hFile);
3660      return NULL;
3661    }
3662
3663    DWORD bytes_read;
3664    OVERLAPPED overlapped;
3665    overlapped.Offset = (DWORD)file_offset;
3666    overlapped.OffsetHigh = 0;
3667    overlapped.hEvent = NULL;
3668    // ReadFile guarantees that if the return value is true, the requested
3669    // number of bytes were read before returning.
3670    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3671    if (!res) {
3672      if (PrintMiscellaneous && Verbose) {
3673        DWORD err = GetLastError();
3674        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3675      }
3676      release_memory(base, bytes);
3677      CloseHandle(hFile);
3678      return NULL;
3679    }
3680  } else {
3681    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3682                                    NULL /*file_name*/);
3683    if (hMap == NULL) {
3684      if (PrintMiscellaneous && Verbose) {
3685        DWORD err = GetLastError();
3686        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3687      }
3688      CloseHandle(hFile);
3689      return NULL;
3690    }
3691
3692    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3693    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3694                                  (DWORD)bytes, addr);
3695    if (base == NULL) {
3696      if (PrintMiscellaneous && Verbose) {
3697        DWORD err = GetLastError();
3698        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3699      }
3700      CloseHandle(hMap);
3701      CloseHandle(hFile);
3702      return NULL;
3703    }
3704
3705    if (CloseHandle(hMap) == 0) {
3706      if (PrintMiscellaneous && Verbose) {
3707        DWORD err = GetLastError();
3708        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3709      }
3710      CloseHandle(hFile);
3711      return base;
3712    }
3713  }
3714
3715  if (allow_exec) {
3716    DWORD old_protect;
3717    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3718    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3719
3720    if (!res) {
3721      if (PrintMiscellaneous && Verbose) {
3722        DWORD err = GetLastError();
3723        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3724      }
3725      // Don't consider this a hard error, on IA32 even if the
3726      // VirtualProtect fails, we should still be able to execute
3727      CloseHandle(hFile);
3728      return base;
3729    }
3730  }
3731
3732  if (CloseHandle(hFile) == 0) {
3733    if (PrintMiscellaneous && Verbose) {
3734      DWORD err = GetLastError();
3735      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3736    }
3737    return base;
3738  }
3739
3740  return base;
3741}
3742
3743
3744// Remap a block of memory.
3745char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3746                       char *addr, size_t bytes, bool read_only,
3747                       bool allow_exec) {
3748  // This OS does not allow existing memory maps to be remapped so we
3749  // have to unmap the memory before we remap it.
3750  if (!os::unmap_memory(addr, bytes)) {
3751    return NULL;
3752  }
3753
3754  // There is a very small theoretical window between the unmap_memory()
3755  // call above and the map_memory() call below where a thread in native
3756  // code may be able to access an address that is no longer mapped.
3757
3758  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3759                        allow_exec);
3760}
3761
3762
3763// Unmap a block of memory.
3764// Returns true=success, otherwise false.
3765
3766bool os::unmap_memory(char* addr, size_t bytes) {
3767  BOOL result = UnmapViewOfFile(addr);
3768  if (result == 0) {
3769    if (PrintMiscellaneous && Verbose) {
3770      DWORD err = GetLastError();
3771      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3772    }
3773    return false;
3774  }
3775  return true;
3776}
3777
3778void os::pause() {
3779  char filename[MAX_PATH];
3780  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3781    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3782  } else {
3783    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3784  }
3785
3786  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3787  if (fd != -1) {
3788    struct stat buf;
3789    close(fd);
3790    while (::stat(filename, &buf) == 0) {
3791      Sleep(100);
3792    }
3793  } else {
3794    jio_fprintf(stderr,
3795      "Could not open pause file '%s', continuing immediately.\n", filename);
3796  }
3797}
3798
3799// An Event wraps a win32 "CreateEvent" kernel handle.
3800//
3801// We have a number of choices regarding "CreateEvent" win32 handle leakage:
3802//
3803// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3804//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3805//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3806//     In addition, an unpark() operation might fetch the handle field, but the
3807//     event could recycle between the fetch and the SetEvent() operation.
3808//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3809//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3810//     on an stale but recycled handle would be harmless, but in practice this might
3811//     confuse other non-Sun code, so it's not a viable approach.
3812//
3813// 2:  Once a win32 event handle is associated with an Event, it remains associated
3814//     with the Event.  The event handle is never closed.  This could be construed
3815//     as handle leakage, but only up to the maximum # of threads that have been extant
3816//     at any one time.  This shouldn't be an issue, as windows platforms typically
3817//     permit a process to have hundreds of thousands of open handles.
3818//
3819// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3820//     and release unused handles.
3821//
3822// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3823//     It's not clear, however, that we wouldn't be trading one type of leak for another.
3824//
3825// 5.  Use an RCU-like mechanism (Read-Copy Update).
3826//     Or perhaps something similar to Maged Michael's "Hazard pointers".
3827//
3828// We use (2).
3829//
3830// TODO-FIXME:
3831// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3832// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3833//     to recover from (or at least detect) the dreaded Windows 841176 bug.
3834// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3835//     into a single win32 CreateEvent() handle.
3836//
3837// _Event transitions in park()
3838//   -1 => -1 : illegal
3839//    1 =>  0 : pass - return immediately
3840//    0 => -1 : block
3841//
3842// _Event serves as a restricted-range semaphore :
3843//    -1 : thread is blocked
3844//     0 : neutral  - thread is running or ready
3845//     1 : signaled - thread is running or ready
3846//
3847// Another possible encoding of _Event would be
3848// with explicit "PARKED" and "SIGNALED" bits.
3849
3850int os::PlatformEvent::park (jlong Millis) {
3851    guarantee (_ParkHandle != NULL , "Invariant") ;
3852    guarantee (Millis > 0          , "Invariant") ;
3853    int v ;
3854
3855    // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3856    // the initial park() operation.
3857
3858    for (;;) {
3859        v = _Event ;
3860        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3861    }
3862    guarantee ((v == 0) || (v == 1), "invariant") ;
3863    if (v != 0) return OS_OK ;
3864
3865    // Do this the hard way by blocking ...
3866    // TODO: consider a brief spin here, gated on the success of recent
3867    // spin attempts by this thread.
3868    //
3869    // We decompose long timeouts into series of shorter timed waits.
3870    // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3871    // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3872    // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3873    // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3874    // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3875    // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3876    // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3877    // for the already waited time.  This policy does not admit any new outcomes.
3878    // In the future, however, we might want to track the accumulated wait time and
3879    // adjust Millis accordingly if we encounter a spurious wakeup.
3880
3881    const int MAXTIMEOUT = 0x10000000 ;
3882    DWORD rv = WAIT_TIMEOUT ;
3883    while (_Event < 0 && Millis > 0) {
3884       DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3885       if (Millis > MAXTIMEOUT) {
3886          prd = MAXTIMEOUT ;
3887       }
3888       rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3889       assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3890       if (rv == WAIT_TIMEOUT) {
3891           Millis -= prd ;
3892       }
3893    }
3894    v = _Event ;
3895    _Event = 0 ;
3896    OrderAccess::fence() ;
3897    // If we encounter a nearly simultanous timeout expiry and unpark()
3898    // we return OS_OK indicating we awoke via unpark().
3899    // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3900    return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3901}
3902
3903void os::PlatformEvent::park () {
3904    guarantee (_ParkHandle != NULL, "Invariant") ;
3905    // Invariant: Only the thread associated with the Event/PlatformEvent
3906    // may call park().
3907    int v ;
3908    for (;;) {
3909        v = _Event ;
3910        if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3911    }
3912    guarantee ((v == 0) || (v == 1), "invariant") ;
3913    if (v != 0) return ;
3914
3915    // Do this the hard way by blocking ...
3916    // TODO: consider a brief spin here, gated on the success of recent
3917    // spin attempts by this thread.
3918    while (_Event < 0) {
3919       DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
3920       assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
3921    }
3922
3923    // Usually we'll find _Event == 0 at this point, but as
3924    // an optional optimization we clear it, just in case can
3925    // multiple unpark() operations drove _Event up to 1.
3926    _Event = 0 ;
3927    OrderAccess::fence() ;
3928    guarantee (_Event >= 0, "invariant") ;
3929}
3930
3931void os::PlatformEvent::unpark() {
3932  guarantee (_ParkHandle != NULL, "Invariant") ;
3933  int v ;
3934  for (;;) {
3935      v = _Event ;      // Increment _Event if it's < 1.
3936      if (v > 0) {
3937         // If it's already signaled just return.
3938         // The LD of _Event could have reordered or be satisfied
3939         // by a read-aside from this processor's write buffer.
3940         // To avoid problems execute a barrier and then
3941         // ratify the value.  A degenerate CAS() would also work.
3942         // Viz., CAS (v+0, &_Event, v) == v).
3943         OrderAccess::fence() ;
3944         if (_Event == v) return ;
3945         continue ;
3946      }
3947      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
3948  }
3949  if (v < 0) {
3950     ::SetEvent (_ParkHandle) ;
3951  }
3952}
3953
3954
3955// JSR166
3956// -------------------------------------------------------
3957
3958/*
3959 * The Windows implementation of Park is very straightforward: Basic
3960 * operations on Win32 Events turn out to have the right semantics to
3961 * use them directly. We opportunistically resuse the event inherited
3962 * from Monitor.
3963 */
3964
3965
3966void Parker::park(bool isAbsolute, jlong time) {
3967  guarantee (_ParkEvent != NULL, "invariant") ;
3968  // First, demultiplex/decode time arguments
3969  if (time < 0) { // don't wait
3970    return;
3971  }
3972  else if (time == 0) {
3973    time = INFINITE;
3974  }
3975  else if  (isAbsolute) {
3976    time -= os::javaTimeMillis(); // convert to relative time
3977    if (time <= 0) // already elapsed
3978      return;
3979  }
3980  else { // relative
3981    time /= 1000000; // Must coarsen from nanos to millis
3982    if (time == 0)   // Wait for the minimal time unit if zero
3983      time = 1;
3984  }
3985
3986  JavaThread* thread = (JavaThread*)(Thread::current());
3987  assert(thread->is_Java_thread(), "Must be JavaThread");
3988  JavaThread *jt = (JavaThread *)thread;
3989
3990  // Don't wait if interrupted or already triggered
3991  if (Thread::is_interrupted(thread, false) ||
3992    WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
3993    ResetEvent(_ParkEvent);
3994    return;
3995  }
3996  else {
3997    ThreadBlockInVM tbivm(jt);
3998    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3999    jt->set_suspend_equivalent();
4000
4001    WaitForSingleObject(_ParkEvent,  time);
4002    ResetEvent(_ParkEvent);
4003
4004    // If externally suspended while waiting, re-suspend
4005    if (jt->handle_special_suspend_equivalent_condition()) {
4006      jt->java_suspend_self();
4007    }
4008  }
4009}
4010
4011void Parker::unpark() {
4012  guarantee (_ParkEvent != NULL, "invariant") ;
4013  SetEvent(_ParkEvent);
4014}
4015
4016// Run the specified command in a separate process. Return its exit value,
4017// or -1 on failure (e.g. can't create a new process).
4018int os::fork_and_exec(char* cmd) {
4019  STARTUPINFO si;
4020  PROCESS_INFORMATION pi;
4021
4022  memset(&si, 0, sizeof(si));
4023  si.cb = sizeof(si);
4024  memset(&pi, 0, sizeof(pi));
4025  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4026                            cmd,    // command line
4027                            NULL,   // process security attribute
4028                            NULL,   // thread security attribute
4029                            TRUE,   // inherits system handles
4030                            0,      // no creation flags
4031                            NULL,   // use parent's environment block
4032                            NULL,   // use parent's starting directory
4033                            &si,    // (in) startup information
4034                            &pi);   // (out) process information
4035
4036  if (rslt) {
4037    // Wait until child process exits.
4038    WaitForSingleObject(pi.hProcess, INFINITE);
4039
4040    DWORD exit_code;
4041    GetExitCodeProcess(pi.hProcess, &exit_code);
4042
4043    // Close process and thread handles.
4044    CloseHandle(pi.hProcess);
4045    CloseHandle(pi.hThread);
4046
4047    return (int)exit_code;
4048  } else {
4049    return -1;
4050  }
4051}
4052
4053//--------------------------------------------------------------------------------------------------
4054// Non-product code
4055
4056static int mallocDebugIntervalCounter = 0;
4057static int mallocDebugCounter = 0;
4058bool os::check_heap(bool force) {
4059  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4060  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4061    // Note: HeapValidate executes two hardware breakpoints when it finds something
4062    // wrong; at these points, eax contains the address of the offending block (I think).
4063    // To get to the exlicit error message(s) below, just continue twice.
4064    HANDLE heap = GetProcessHeap();
4065    { HeapLock(heap);
4066      PROCESS_HEAP_ENTRY phe;
4067      phe.lpData = NULL;
4068      while (HeapWalk(heap, &phe) != 0) {
4069        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4070            !HeapValidate(heap, 0, phe.lpData)) {
4071          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4072          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4073          fatal("corrupted C heap");
4074        }
4075      }
4076      int err = GetLastError();
4077      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4078        fatal1("heap walk aborted with error %d", err);
4079      }
4080      HeapUnlock(heap);
4081    }
4082    mallocDebugIntervalCounter = 0;
4083  }
4084  return true;
4085}
4086
4087
4088#ifndef PRODUCT
4089bool os::find(address addr) {
4090  // Nothing yet
4091  return false;
4092}
4093#endif
4094
4095LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4096  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4097
4098  if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4099    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4100    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4101    address addr = (address) exceptionRecord->ExceptionInformation[1];
4102
4103    if (os::is_memory_serialize_page(thread, addr))
4104      return EXCEPTION_CONTINUE_EXECUTION;
4105  }
4106
4107  return EXCEPTION_CONTINUE_SEARCH;
4108}
4109
4110static int getLastErrorString(char *buf, size_t len)
4111{
4112    long errval;
4113
4114    if ((errval = GetLastError()) != 0)
4115    {
4116      /* DOS error */
4117      size_t n = (size_t)FormatMessage(
4118            FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4119            NULL,
4120            errval,
4121            0,
4122            buf,
4123            (DWORD)len,
4124            NULL);
4125      if (n > 3) {
4126        /* Drop final '.', CR, LF */
4127        if (buf[n - 1] == '\n') n--;
4128        if (buf[n - 1] == '\r') n--;
4129        if (buf[n - 1] == '.') n--;
4130        buf[n] = '\0';
4131      }
4132      return (int)n;
4133    }
4134
4135    if (errno != 0)
4136    {
4137      /* C runtime error that has no corresponding DOS error code */
4138      const char *s = strerror(errno);
4139      size_t n = strlen(s);
4140      if (n >= len) n = len - 1;
4141      strncpy(buf, s, n);
4142      buf[n] = '\0';
4143      return (int)n;
4144    }
4145    return 0;
4146}
4147