perfMemory_solaris.cpp revision 4820:a837fa3d3f86
1/*
2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/oop.inline.hpp"
30#include "os_solaris.inline.hpp"
31#include "runtime/handles.inline.hpp"
32#include "runtime/perfMemory.hpp"
33#include "services/memTracker.hpp"
34#include "utilities/exceptions.hpp"
35
36// put OS-includes here
37# include <sys/types.h>
38# include <sys/mman.h>
39# include <errno.h>
40# include <stdio.h>
41# include <unistd.h>
42# include <sys/stat.h>
43# include <signal.h>
44# include <pwd.h>
45# include <procfs.h>
46
47
48static char* backing_store_file_name = NULL;  // name of the backing store
49                                              // file, if successfully created.
50
51// Standard Memory Implementation Details
52
53// create the PerfData memory region in standard memory.
54//
55static char* create_standard_memory(size_t size) {
56
57  // allocate an aligned chuck of memory
58  char* mapAddress = os::reserve_memory(size);
59
60  if (mapAddress == NULL) {
61    return NULL;
62  }
63
64  // commit memory
65  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
66    if (PrintMiscellaneous && Verbose) {
67      warning("Could not commit PerfData memory\n");
68    }
69    os::release_memory(mapAddress, size);
70    return NULL;
71  }
72
73  return mapAddress;
74}
75
76// delete the PerfData memory region
77//
78static void delete_standard_memory(char* addr, size_t size) {
79
80  // there are no persistent external resources to cleanup for standard
81  // memory. since DestroyJavaVM does not support unloading of the JVM,
82  // cleanup of the memory resource is not performed. The memory will be
83  // reclaimed by the OS upon termination of the process.
84  //
85  return;
86}
87
88// save the specified memory region to the given file
89//
90// Note: this function might be called from signal handler (by os::abort()),
91// don't allocate heap memory.
92//
93static void save_memory_to_file(char* addr, size_t size) {
94
95  const char* destfile = PerfMemory::get_perfdata_file_path();
96  assert(destfile[0] != '\0', "invalid PerfData file path");
97
98  int result;
99
100  RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
101              result);;
102  if (result == OS_ERR) {
103    if (PrintMiscellaneous && Verbose) {
104      warning("Could not create Perfdata save file: %s: %s\n",
105              destfile, strerror(errno));
106    }
107  } else {
108
109    int fd = result;
110
111    for (size_t remaining = size; remaining > 0;) {
112
113      RESTARTABLE(::write(fd, addr, remaining), result);
114      if (result == OS_ERR) {
115        if (PrintMiscellaneous && Verbose) {
116          warning("Could not write Perfdata save file: %s: %s\n",
117                  destfile, strerror(errno));
118        }
119        break;
120      }
121      remaining -= (size_t)result;
122      addr += result;
123    }
124
125    RESTARTABLE(::close(fd), result);
126    if (PrintMiscellaneous && Verbose) {
127      if (result == OS_ERR) {
128        warning("Could not close %s: %s\n", destfile, strerror(errno));
129      }
130    }
131  }
132  FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
133}
134
135
136// Shared Memory Implementation Details
137
138// Note: the solaris and linux shared memory implementation uses the mmap
139// interface with a backing store file to implement named shared memory.
140// Using the file system as the name space for shared memory allows a
141// common name space to be supported across a variety of platforms. It
142// also provides a name space that Java applications can deal with through
143// simple file apis.
144//
145// The solaris and linux implementations store the backing store file in
146// a user specific temporary directory located in the /tmp file system,
147// which is always a local file system and is sometimes a RAM based file
148// system.
149
150// return the user specific temporary directory name.
151//
152// the caller is expected to free the allocated memory.
153//
154static char* get_user_tmp_dir(const char* user) {
155
156  const char* tmpdir = os::get_temp_directory();
157  const char* perfdir = PERFDATA_NAME;
158  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
159  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
160
161  // construct the path name to user specific tmp directory
162  snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
163
164  return dirname;
165}
166
167// convert the given file name into a process id. if the file
168// does not meet the file naming constraints, return 0.
169//
170static pid_t filename_to_pid(const char* filename) {
171
172  // a filename that doesn't begin with a digit is not a
173  // candidate for conversion.
174  //
175  if (!isdigit(*filename)) {
176    return 0;
177  }
178
179  // check if file name can be converted to an integer without
180  // any leftover characters.
181  //
182  char* remainder = NULL;
183  errno = 0;
184  pid_t pid = (pid_t)strtol(filename, &remainder, 10);
185
186  if (errno != 0) {
187    return 0;
188  }
189
190  // check for left over characters. If any, then the filename is
191  // not a candidate for conversion.
192  //
193  if (remainder != NULL && *remainder != '\0') {
194    return 0;
195  }
196
197  // successful conversion, return the pid
198  return pid;
199}
200
201
202// check if the given path is considered a secure directory for
203// the backing store files. Returns true if the directory exists
204// and is considered a secure location. Returns false if the path
205// is a symbolic link or if an error occurred.
206//
207static bool is_directory_secure(const char* path) {
208  struct stat statbuf;
209  int result = 0;
210
211  RESTARTABLE(::lstat(path, &statbuf), result);
212  if (result == OS_ERR) {
213    return false;
214  }
215
216  // the path exists, now check it's mode
217  if (S_ISLNK(statbuf.st_mode) || !S_ISDIR(statbuf.st_mode)) {
218    // the path represents a link or some non-directory file type,
219    // which is not what we expected. declare it insecure.
220    //
221    return false;
222  }
223  else {
224    // we have an existing directory, check if the permissions are safe.
225    //
226    if ((statbuf.st_mode & (S_IWGRP|S_IWOTH)) != 0) {
227      // the directory is open for writing and could be subjected
228      // to a symlnk attack. declare it insecure.
229      //
230      return false;
231    }
232  }
233  return true;
234}
235
236
237// return the user name for the given user id
238//
239// the caller is expected to free the allocated memory.
240//
241static char* get_user_name(uid_t uid) {
242
243  struct passwd pwent;
244
245  // determine the max pwbuf size from sysconf, and hardcode
246  // a default if this not available through sysconf.
247  //
248  long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
249  if (bufsize == -1)
250    bufsize = 1024;
251
252  char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
253
254#ifdef _GNU_SOURCE
255  struct passwd* p = NULL;
256  int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
257#else  // _GNU_SOURCE
258  struct passwd* p = getpwuid_r(uid, &pwent, pwbuf, (int)bufsize);
259#endif // _GNU_SOURCE
260
261  if (p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
262    if (PrintMiscellaneous && Verbose) {
263      if (p == NULL) {
264        warning("Could not retrieve passwd entry: %s\n",
265                strerror(errno));
266      }
267      else {
268        warning("Could not determine user name: %s\n",
269                p->pw_name == NULL ? "pw_name = NULL" :
270                                     "pw_name zero length");
271      }
272    }
273    FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
274    return NULL;
275  }
276
277  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
278  strcpy(user_name, p->pw_name);
279
280  FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
281  return user_name;
282}
283
284// return the name of the user that owns the process identified by vmid.
285//
286// This method uses a slow directory search algorithm to find the backing
287// store file for the specified vmid and returns the user name, as determined
288// by the user name suffix of the hsperfdata_<username> directory name.
289//
290// the caller is expected to free the allocated memory.
291//
292static char* get_user_name_slow(int vmid, TRAPS) {
293
294  // short circuit the directory search if the process doesn't even exist.
295  if (kill(vmid, 0) == OS_ERR) {
296    if (errno == ESRCH) {
297      THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
298                  "Process not found");
299    }
300    else /* EPERM */ {
301      THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
302    }
303  }
304
305  // directory search
306  char* oldest_user = NULL;
307  time_t oldest_ctime = 0;
308
309  const char* tmpdirname = os::get_temp_directory();
310
311  DIR* tmpdirp = os::opendir(tmpdirname);
312
313  if (tmpdirp == NULL) {
314    return NULL;
315  }
316
317  // for each entry in the directory that matches the pattern hsperfdata_*,
318  // open the directory and check if the file for the given vmid exists.
319  // The file with the expected name and the latest creation date is used
320  // to determine the user name for the process id.
321  //
322  struct dirent* dentry;
323  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
324  errno = 0;
325  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
326
327    // check if the directory entry is a hsperfdata file
328    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
329      continue;
330    }
331
332    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
333                  strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
334    strcpy(usrdir_name, tmpdirname);
335    strcat(usrdir_name, "/");
336    strcat(usrdir_name, dentry->d_name);
337
338    DIR* subdirp = os::opendir(usrdir_name);
339
340    if (subdirp == NULL) {
341      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
342      continue;
343    }
344
345    // Since we don't create the backing store files in directories
346    // pointed to by symbolic links, we also don't follow them when
347    // looking for the files. We check for a symbolic link after the
348    // call to opendir in order to eliminate a small window where the
349    // symlink can be exploited.
350    //
351    if (!is_directory_secure(usrdir_name)) {
352      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
353      os::closedir(subdirp);
354      continue;
355    }
356
357    struct dirent* udentry;
358    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
359    errno = 0;
360    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
361
362      if (filename_to_pid(udentry->d_name) == vmid) {
363        struct stat statbuf;
364        int result;
365
366        char* filename = NEW_C_HEAP_ARRAY(char,
367                 strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
368
369        strcpy(filename, usrdir_name);
370        strcat(filename, "/");
371        strcat(filename, udentry->d_name);
372
373        // don't follow symbolic links for the file
374        RESTARTABLE(::lstat(filename, &statbuf), result);
375        if (result == OS_ERR) {
376           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
377           continue;
378        }
379
380        // skip over files that are not regular files.
381        if (!S_ISREG(statbuf.st_mode)) {
382          FREE_C_HEAP_ARRAY(char, filename, mtInternal);
383          continue;
384        }
385
386        // compare and save filename with latest creation time
387        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
388
389          if (statbuf.st_ctime > oldest_ctime) {
390            char* user = strchr(dentry->d_name, '_') + 1;
391
392            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
393            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
394
395            strcpy(oldest_user, user);
396            oldest_ctime = statbuf.st_ctime;
397          }
398        }
399
400        FREE_C_HEAP_ARRAY(char, filename, mtInternal);
401      }
402    }
403    os::closedir(subdirp);
404    FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
405    FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
406  }
407  os::closedir(tmpdirp);
408  FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
409
410  return(oldest_user);
411}
412
413// return the name of the user that owns the JVM indicated by the given vmid.
414//
415static char* get_user_name(int vmid, TRAPS) {
416
417  char psinfo_name[PATH_MAX];
418  int result;
419
420  snprintf(psinfo_name, PATH_MAX, "/proc/%d/psinfo", vmid);
421
422  RESTARTABLE(::open(psinfo_name, O_RDONLY), result);
423
424  if (result != OS_ERR) {
425    int fd = result;
426
427    psinfo_t psinfo;
428    char* addr = (char*)&psinfo;
429
430    for (size_t remaining = sizeof(psinfo_t); remaining > 0;) {
431
432      RESTARTABLE(::read(fd, addr, remaining), result);
433      if (result == OS_ERR) {
434        THROW_MSG_0(vmSymbols::java_io_IOException(), "Read error");
435      }
436      remaining-=result;
437      addr+=result;
438    }
439
440    RESTARTABLE(::close(fd), result);
441
442    // get the user name for the effective user id of the process
443    char* user_name = get_user_name(psinfo.pr_euid);
444
445    return user_name;
446  }
447
448  if (result == OS_ERR && errno == EACCES) {
449
450    // In this case, the psinfo file for the process id existed,
451    // but we didn't have permission to access it.
452    THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
453                strerror(errno));
454  }
455
456  // at this point, we don't know if the process id itself doesn't
457  // exist or if the psinfo file doesn't exit. If the psinfo file
458  // doesn't exist, then we are running on Solaris 2.5.1 or earlier.
459  // since the structured procfs and old procfs interfaces can't be
460  // mixed, we attempt to find the file through a directory search.
461
462  return get_user_name_slow(vmid, CHECK_NULL);
463}
464
465// return the file name of the backing store file for the named
466// shared memory region for the given user name and vmid.
467//
468// the caller is expected to free the allocated memory.
469//
470static char* get_sharedmem_filename(const char* dirname, int vmid) {
471
472  // add 2 for the file separator and a NULL terminator.
473  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
474
475  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
476  snprintf(name, nbytes, "%s/%d", dirname, vmid);
477
478  return name;
479}
480
481
482// remove file
483//
484// this method removes the file specified by the given path
485//
486static void remove_file(const char* path) {
487
488  int result;
489
490  // if the file is a directory, the following unlink will fail. since
491  // we don't expect to find directories in the user temp directory, we
492  // won't try to handle this situation. even if accidentially or
493  // maliciously planted, the directory's presence won't hurt anything.
494  //
495  RESTARTABLE(::unlink(path), result);
496  if (PrintMiscellaneous && Verbose && result == OS_ERR) {
497    if (errno != ENOENT) {
498      warning("Could not unlink shared memory backing"
499              " store file %s : %s\n", path, strerror(errno));
500    }
501  }
502}
503
504
505// remove file
506//
507// this method removes the file with the given file name in the
508// named directory.
509//
510static void remove_file(const char* dirname, const char* filename) {
511
512  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
513  char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
514
515  strcpy(path, dirname);
516  strcat(path, "/");
517  strcat(path, filename);
518
519  remove_file(path);
520
521  FREE_C_HEAP_ARRAY(char, path, mtInternal);
522}
523
524
525// cleanup stale shared memory resources
526//
527// This method attempts to remove all stale shared memory files in
528// the named user temporary directory. It scans the named directory
529// for files matching the pattern ^$[0-9]*$. For each file found, the
530// process id is extracted from the file name and a test is run to
531// determine if the process is alive. If the process is not alive,
532// any stale file resources are removed.
533//
534static void cleanup_sharedmem_resources(const char* dirname) {
535
536  // open the user temp directory
537  DIR* dirp = os::opendir(dirname);
538
539  if (dirp == NULL) {
540    // directory doesn't exist, so there is nothing to cleanup
541    return;
542  }
543
544  if (!is_directory_secure(dirname)) {
545    // the directory is not a secure directory
546    return;
547  }
548
549  // for each entry in the directory that matches the expected file
550  // name pattern, determine if the file resources are stale and if
551  // so, remove the file resources. Note, instrumented HotSpot processes
552  // for this user may start and/or terminate during this search and
553  // remove or create new files in this directory. The behavior of this
554  // loop under these conditions is dependent upon the implementation of
555  // opendir/readdir.
556  //
557  struct dirent* entry;
558  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
559  errno = 0;
560  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
561
562    pid_t pid = filename_to_pid(entry->d_name);
563
564    if (pid == 0) {
565
566      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
567
568        // attempt to remove all unexpected files, except "." and ".."
569        remove_file(dirname, entry->d_name);
570      }
571
572      errno = 0;
573      continue;
574    }
575
576    // we now have a file name that converts to a valid integer
577    // that could represent a process id . if this process id
578    // matches the current process id or the process is not running,
579    // then remove the stale file resources.
580    //
581    // process liveness is detected by sending signal number 0 to
582    // the process id (see kill(2)). if kill determines that the
583    // process does not exist, then the file resources are removed.
584    // if kill determines that that we don't have permission to
585    // signal the process, then the file resources are assumed to
586    // be stale and are removed because the resources for such a
587    // process should be in a different user specific directory.
588    //
589    if ((pid == os::current_process_id()) ||
590        (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
591
592        remove_file(dirname, entry->d_name);
593    }
594    errno = 0;
595  }
596  os::closedir(dirp);
597  FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
598}
599
600// make the user specific temporary directory. Returns true if
601// the directory exists and is secure upon return. Returns false
602// if the directory exists but is either a symlink, is otherwise
603// insecure, or if an error occurred.
604//
605static bool make_user_tmp_dir(const char* dirname) {
606
607  // create the directory with 0755 permissions. note that the directory
608  // will be owned by euid::egid, which may not be the same as uid::gid.
609  //
610  if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
611    if (errno == EEXIST) {
612      // The directory already exists and was probably created by another
613      // JVM instance. However, this could also be the result of a
614      // deliberate symlink. Verify that the existing directory is safe.
615      //
616      if (!is_directory_secure(dirname)) {
617        // directory is not secure
618        if (PrintMiscellaneous && Verbose) {
619          warning("%s directory is insecure\n", dirname);
620        }
621        return false;
622      }
623    }
624    else {
625      // we encountered some other failure while attempting
626      // to create the directory
627      //
628      if (PrintMiscellaneous && Verbose) {
629        warning("could not create directory %s: %s\n",
630                dirname, strerror(errno));
631      }
632      return false;
633    }
634  }
635  return true;
636}
637
638// create the shared memory file resources
639//
640// This method creates the shared memory file with the given size
641// This method also creates the user specific temporary directory, if
642// it does not yet exist.
643//
644static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
645
646  // make the user temporary directory
647  if (!make_user_tmp_dir(dirname)) {
648    // could not make/find the directory or the found directory
649    // was not secure
650    return -1;
651  }
652
653  int result;
654
655  RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_TRUNC, S_IREAD|S_IWRITE), result);
656  if (result == OS_ERR) {
657    if (PrintMiscellaneous && Verbose) {
658      warning("could not create file %s: %s\n", filename, strerror(errno));
659    }
660    return -1;
661  }
662
663  // save the file descriptor
664  int fd = result;
665
666  // set the file size
667  RESTARTABLE(::ftruncate(fd, (off_t)size), result);
668  if (result == OS_ERR) {
669    if (PrintMiscellaneous && Verbose) {
670      warning("could not set shared memory file size: %s\n", strerror(errno));
671    }
672    RESTARTABLE(::close(fd), result);
673    return -1;
674  }
675
676  return fd;
677}
678
679// open the shared memory file for the given user and vmid. returns
680// the file descriptor for the open file or -1 if the file could not
681// be opened.
682//
683static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
684
685  // open the file
686  int result;
687  RESTARTABLE(::open(filename, oflags), result);
688  if (result == OS_ERR) {
689    if (errno == ENOENT) {
690      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
691                  "Process not found", OS_ERR);
692    }
693    else if (errno == EACCES) {
694      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
695                  "Permission denied", OS_ERR);
696    }
697    else {
698      THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
699    }
700  }
701
702  return result;
703}
704
705// create a named shared memory region. returns the address of the
706// memory region on success or NULL on failure. A return value of
707// NULL will ultimately disable the shared memory feature.
708//
709// On Solaris and Linux, the name space for shared memory objects
710// is the file system name space.
711//
712// A monitoring application attaching to a JVM does not need to know
713// the file system name of the shared memory object. However, it may
714// be convenient for applications to discover the existence of newly
715// created and terminating JVMs by watching the file system name space
716// for files being created or removed.
717//
718static char* mmap_create_shared(size_t size) {
719
720  int result;
721  int fd;
722  char* mapAddress;
723
724  int vmid = os::current_process_id();
725
726  char* user_name = get_user_name(geteuid());
727
728  if (user_name == NULL)
729    return NULL;
730
731  char* dirname = get_user_tmp_dir(user_name);
732  char* filename = get_sharedmem_filename(dirname, vmid);
733
734  // cleanup any stale shared memory files
735  cleanup_sharedmem_resources(dirname);
736
737  assert(((size > 0) && (size % os::vm_page_size() == 0)),
738         "unexpected PerfMemory region size");
739
740  fd = create_sharedmem_resources(dirname, filename, size);
741
742  FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
743  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
744
745  if (fd == -1) {
746    FREE_C_HEAP_ARRAY(char, filename, mtInternal);
747    return NULL;
748  }
749
750  mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
751
752  // attempt to close the file - restart it if it was interrupted,
753  // but ignore other failures
754  RESTARTABLE(::close(fd), result);
755  assert(result != OS_ERR, "could not close file");
756
757  if (mapAddress == MAP_FAILED) {
758    if (PrintMiscellaneous && Verbose) {
759      warning("mmap failed -  %s\n", strerror(errno));
760    }
761    remove_file(filename);
762    FREE_C_HEAP_ARRAY(char, filename, mtInternal);
763    return NULL;
764  }
765
766  // save the file name for use in delete_shared_memory()
767  backing_store_file_name = filename;
768
769  // clear the shared memory region
770  (void)::memset((void*) mapAddress, 0, size);
771
772  // it does not go through os api, the operation has to record from here
773  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, CURRENT_PC);
774  MemTracker::record_virtual_memory_type((address)mapAddress, mtInternal);
775
776  return mapAddress;
777}
778
779// release a named shared memory region
780//
781static void unmap_shared(char* addr, size_t bytes) {
782  os::release_memory(addr, bytes);
783}
784
785// create the PerfData memory region in shared memory.
786//
787static char* create_shared_memory(size_t size) {
788
789  // create the shared memory region.
790  return mmap_create_shared(size);
791}
792
793// delete the shared PerfData memory region
794//
795static void delete_shared_memory(char* addr, size_t size) {
796
797  // cleanup the persistent shared memory resources. since DestroyJavaVM does
798  // not support unloading of the JVM, unmapping of the memory resource is
799  // not performed. The memory will be reclaimed by the OS upon termination of
800  // the process. The backing store file is deleted from the file system.
801
802  assert(!PerfDisableSharedMem, "shouldn't be here");
803
804  if (backing_store_file_name != NULL) {
805    remove_file(backing_store_file_name);
806    // Don't.. Free heap memory could deadlock os::abort() if it is called
807    // from signal handler. OS will reclaim the heap memory.
808    // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
809    backing_store_file_name = NULL;
810  }
811}
812
813// return the size of the file for the given file descriptor
814// or 0 if it is not a valid size for a shared memory file
815//
816static size_t sharedmem_filesize(int fd, TRAPS) {
817
818  struct stat statbuf;
819  int result;
820
821  RESTARTABLE(::fstat(fd, &statbuf), result);
822  if (result == OS_ERR) {
823    if (PrintMiscellaneous && Verbose) {
824      warning("fstat failed: %s\n", strerror(errno));
825    }
826    THROW_MSG_0(vmSymbols::java_io_IOException(),
827                "Could not determine PerfMemory size");
828  }
829
830  if ((statbuf.st_size == 0) ||
831     ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
832    THROW_MSG_0(vmSymbols::java_lang_Exception(),
833                "Invalid PerfMemory size");
834  }
835
836  return (size_t)statbuf.st_size;
837}
838
839// attach to a named shared memory region.
840//
841static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
842
843  char* mapAddress;
844  int result;
845  int fd;
846  size_t size = 0;
847  const char* luser = NULL;
848
849  int mmap_prot;
850  int file_flags;
851
852  ResourceMark rm;
853
854  // map the high level access mode to the appropriate permission
855  // constructs for the file and the shared memory mapping.
856  if (mode == PerfMemory::PERF_MODE_RO) {
857    mmap_prot = PROT_READ;
858    file_flags = O_RDONLY;
859  }
860  else if (mode == PerfMemory::PERF_MODE_RW) {
861#ifdef LATER
862    mmap_prot = PROT_READ | PROT_WRITE;
863    file_flags = O_RDWR;
864#else
865    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
866              "Unsupported access mode");
867#endif
868  }
869  else {
870    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
871              "Illegal access mode");
872  }
873
874  if (user == NULL || strlen(user) == 0) {
875    luser = get_user_name(vmid, CHECK);
876  }
877  else {
878    luser = user;
879  }
880
881  if (luser == NULL) {
882    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
883              "Could not map vmid to user Name");
884  }
885
886  char* dirname = get_user_tmp_dir(luser);
887
888  // since we don't follow symbolic links when creating the backing
889  // store file, we don't follow them when attaching either.
890  //
891  if (!is_directory_secure(dirname)) {
892    FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
893    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
894              "Process not found");
895  }
896
897  char* filename = get_sharedmem_filename(dirname, vmid);
898
899  // copy heap memory to resource memory. the open_sharedmem_file
900  // method below need to use the filename, but could throw an
901  // exception. using a resource array prevents the leak that
902  // would otherwise occur.
903  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
904  strcpy(rfilename, filename);
905
906  // free the c heap resources that are no longer needed
907  if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
908  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
909  FREE_C_HEAP_ARRAY(char, filename, mtInternal);
910
911  // open the shared memory file for the give vmid
912  fd = open_sharedmem_file(rfilename, file_flags, CHECK);
913  assert(fd != OS_ERR, "unexpected value");
914
915  if (*sizep == 0) {
916    size = sharedmem_filesize(fd, CHECK);
917  } else {
918    size = *sizep;
919  }
920
921  assert(size > 0, "unexpected size <= 0");
922
923  mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
924
925  // attempt to close the file - restart if it gets interrupted,
926  // but ignore other failures
927  RESTARTABLE(::close(fd), result);
928  assert(result != OS_ERR, "could not close file");
929
930  if (mapAddress == MAP_FAILED) {
931    if (PrintMiscellaneous && Verbose) {
932      warning("mmap failed: %s\n", strerror(errno));
933    }
934    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
935              "Could not map PerfMemory");
936  }
937
938  // it does not go through os api, the operation has to record from here
939  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, CURRENT_PC);
940  MemTracker::record_virtual_memory_type((address)mapAddress, mtInternal);
941
942  *addr = mapAddress;
943  *sizep = size;
944
945  if (PerfTraceMemOps) {
946    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
947               INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
948  }
949}
950
951
952
953
954// create the PerfData memory region
955//
956// This method creates the memory region used to store performance
957// data for the JVM. The memory may be created in standard or
958// shared memory.
959//
960void PerfMemory::create_memory_region(size_t size) {
961
962  if (PerfDisableSharedMem) {
963    // do not share the memory for the performance data.
964    _start = create_standard_memory(size);
965  }
966  else {
967    _start = create_shared_memory(size);
968    if (_start == NULL) {
969
970      // creation of the shared memory region failed, attempt
971      // to create a contiguous, non-shared memory region instead.
972      //
973      if (PrintMiscellaneous && Verbose) {
974        warning("Reverting to non-shared PerfMemory region.\n");
975      }
976      PerfDisableSharedMem = true;
977      _start = create_standard_memory(size);
978    }
979  }
980
981  if (_start != NULL) _capacity = size;
982
983}
984
985// delete the PerfData memory region
986//
987// This method deletes the memory region used to store performance
988// data for the JVM. The memory region indicated by the <address, size>
989// tuple will be inaccessible after a call to this method.
990//
991void PerfMemory::delete_memory_region() {
992
993  assert((start() != NULL && capacity() > 0), "verify proper state");
994
995  // If user specifies PerfDataSaveFile, it will save the performance data
996  // to the specified file name no matter whether PerfDataSaveToFile is specified
997  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
998  // -XX:+PerfDataSaveToFile.
999  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1000    save_memory_to_file(start(), capacity());
1001  }
1002
1003  if (PerfDisableSharedMem) {
1004    delete_standard_memory(start(), capacity());
1005  }
1006  else {
1007    delete_shared_memory(start(), capacity());
1008  }
1009}
1010
1011// attach to the PerfData memory region for another JVM
1012//
1013// This method returns an <address, size> tuple that points to
1014// a memory buffer that is kept reasonably synchronized with
1015// the PerfData memory region for the indicated JVM. This
1016// buffer may be kept in synchronization via shared memory
1017// or some other mechanism that keeps the buffer updated.
1018//
1019// If the JVM chooses not to support the attachability feature,
1020// this method should throw an UnsupportedOperation exception.
1021//
1022// This implementation utilizes named shared memory to map
1023// the indicated process's PerfData memory region into this JVMs
1024// address space.
1025//
1026void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1027
1028  if (vmid == 0 || vmid == os::current_process_id()) {
1029     *addrp = start();
1030     *sizep = capacity();
1031     return;
1032  }
1033
1034  mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1035}
1036
1037// detach from the PerfData memory region of another JVM
1038//
1039// This method detaches the PerfData memory region of another
1040// JVM, specified as an <address, size> tuple of a buffer
1041// in this process's address space. This method may perform
1042// arbitrary actions to accomplish the detachment. The memory
1043// region specified by <address, size> will be inaccessible after
1044// a call to this method.
1045//
1046// If the JVM chooses not to support the attachability feature,
1047// this method should throw an UnsupportedOperation exception.
1048//
1049// This implementation utilizes named shared memory to detach
1050// the indicated process's PerfData memory region from this
1051// process's address space.
1052//
1053void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1054
1055  assert(addr != 0, "address sanity check");
1056  assert(bytes > 0, "capacity sanity check");
1057
1058  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1059    // prevent accidental detachment of this process's PerfMemory region
1060    return;
1061  }
1062
1063  unmap_shared(addr, bytes);
1064}
1065
1066char* PerfMemory::backing_store_filename() {
1067  return backing_store_file_name;
1068}
1069