perfMemory_solaris.cpp revision 11743:ae67f85487cb
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/oop.inline.hpp"
30#include "os_solaris.inline.hpp"
31#include "runtime/handles.inline.hpp"
32#include "runtime/perfMemory.hpp"
33#include "services/memTracker.hpp"
34#include "utilities/exceptions.hpp"
35
36// put OS-includes here
37#include <sys/types.h>
38#include <sys/mman.h>
39#include <errno.h>
40#include <stdio.h>
41#include <unistd.h>
42#include <sys/stat.h>
43#include <signal.h>
44#include <procfs.h>
45
46/* For POSIX-compliant getpwuid_r on Solaris */
47#define _POSIX_PTHREAD_SEMANTICS
48#include <pwd.h>
49
50static char* backing_store_file_name = NULL;  // name of the backing store
51                                              // file, if successfully created.
52
53// Standard Memory Implementation Details
54
55// create the PerfData memory region in standard memory.
56//
57static char* create_standard_memory(size_t size) {
58
59  // allocate an aligned chuck of memory
60  char* mapAddress = os::reserve_memory(size);
61
62  if (mapAddress == NULL) {
63    return NULL;
64  }
65
66  // commit memory
67  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
68    if (PrintMiscellaneous && Verbose) {
69      warning("Could not commit PerfData memory\n");
70    }
71    os::release_memory(mapAddress, size);
72    return NULL;
73  }
74
75  return mapAddress;
76}
77
78// delete the PerfData memory region
79//
80static void delete_standard_memory(char* addr, size_t size) {
81
82  // there are no persistent external resources to cleanup for standard
83  // memory. since DestroyJavaVM does not support unloading of the JVM,
84  // cleanup of the memory resource is not performed. The memory will be
85  // reclaimed by the OS upon termination of the process.
86  //
87  return;
88}
89
90// save the specified memory region to the given file
91//
92// Note: this function might be called from signal handler (by os::abort()),
93// don't allocate heap memory.
94//
95static void save_memory_to_file(char* addr, size_t size) {
96
97  const char* destfile = PerfMemory::get_perfdata_file_path();
98  assert(destfile[0] != '\0', "invalid PerfData file path");
99
100  int result;
101
102  RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
103              result);;
104  if (result == OS_ERR) {
105    if (PrintMiscellaneous && Verbose) {
106      warning("Could not create Perfdata save file: %s: %s\n",
107              destfile, os::strerror(errno));
108    }
109  } else {
110
111    int fd = result;
112
113    for (size_t remaining = size; remaining > 0;) {
114
115      RESTARTABLE(::write(fd, addr, remaining), result);
116      if (result == OS_ERR) {
117        if (PrintMiscellaneous && Verbose) {
118          warning("Could not write Perfdata save file: %s: %s\n",
119                  destfile, os::strerror(errno));
120        }
121        break;
122      }
123      remaining -= (size_t)result;
124      addr += result;
125    }
126
127    result = ::close(fd);
128    if (PrintMiscellaneous && Verbose) {
129      if (result == OS_ERR) {
130        warning("Could not close %s: %s\n", destfile, os::strerror(errno));
131      }
132    }
133  }
134  FREE_C_HEAP_ARRAY(char, destfile);
135}
136
137
138// Shared Memory Implementation Details
139
140// Note: the solaris and linux shared memory implementation uses the mmap
141// interface with a backing store file to implement named shared memory.
142// Using the file system as the name space for shared memory allows a
143// common name space to be supported across a variety of platforms. It
144// also provides a name space that Java applications can deal with through
145// simple file apis.
146//
147// The solaris and linux implementations store the backing store file in
148// a user specific temporary directory located in the /tmp file system,
149// which is always a local file system and is sometimes a RAM based file
150// system.
151
152// return the user specific temporary directory name.
153//
154// the caller is expected to free the allocated memory.
155//
156static char* get_user_tmp_dir(const char* user) {
157
158  const char* tmpdir = os::get_temp_directory();
159  const char* perfdir = PERFDATA_NAME;
160  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
161  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
162
163  // construct the path name to user specific tmp directory
164  snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
165
166  return dirname;
167}
168
169// convert the given file name into a process id. if the file
170// does not meet the file naming constraints, return 0.
171//
172static pid_t filename_to_pid(const char* filename) {
173
174  // a filename that doesn't begin with a digit is not a
175  // candidate for conversion.
176  //
177  if (!isdigit(*filename)) {
178    return 0;
179  }
180
181  // check if file name can be converted to an integer without
182  // any leftover characters.
183  //
184  char* remainder = NULL;
185  errno = 0;
186  pid_t pid = (pid_t)strtol(filename, &remainder, 10);
187
188  if (errno != 0) {
189    return 0;
190  }
191
192  // check for left over characters. If any, then the filename is
193  // not a candidate for conversion.
194  //
195  if (remainder != NULL && *remainder != '\0') {
196    return 0;
197  }
198
199  // successful conversion, return the pid
200  return pid;
201}
202
203
204// Check if the given statbuf is considered a secure directory for
205// the backing store files. Returns true if the directory is considered
206// a secure location. Returns false if the statbuf is a symbolic link or
207// if an error occurred.
208//
209static bool is_statbuf_secure(struct stat *statp) {
210  if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
211    // The path represents a link or some non-directory file type,
212    // which is not what we expected. Declare it insecure.
213    //
214    return false;
215  }
216  // We have an existing directory, check if the permissions are safe.
217  //
218  if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
219    // The directory is open for writing and could be subjected
220    // to a symlink or a hard link attack. Declare it insecure.
221    //
222    return false;
223  }
224  // If user is not root then see if the uid of the directory matches the effective uid of the process.
225  uid_t euid = geteuid();
226  if ((euid != 0) && (statp->st_uid != euid)) {
227    // The directory was not created by this user, declare it insecure.
228    //
229    return false;
230  }
231  return true;
232}
233
234
235// Check if the given path is considered a secure directory for
236// the backing store files. Returns true if the directory exists
237// and is considered a secure location. Returns false if the path
238// is a symbolic link or if an error occurred.
239//
240static bool is_directory_secure(const char* path) {
241  struct stat statbuf;
242  int result = 0;
243
244  RESTARTABLE(::lstat(path, &statbuf), result);
245  if (result == OS_ERR) {
246    return false;
247  }
248
249  // The path exists, see if it is secure.
250  return is_statbuf_secure(&statbuf);
251}
252
253
254// Check if the given directory file descriptor is considered a secure
255// directory for the backing store files. Returns true if the directory
256// exists and is considered a secure location. Returns false if the path
257// is a symbolic link or if an error occurred.
258//
259static bool is_dirfd_secure(int dir_fd) {
260  struct stat statbuf;
261  int result = 0;
262
263  RESTARTABLE(::fstat(dir_fd, &statbuf), result);
264  if (result == OS_ERR) {
265    return false;
266  }
267
268  // The path exists, now check its mode.
269  return is_statbuf_secure(&statbuf);
270}
271
272
273// Check to make sure fd1 and fd2 are referencing the same file system object.
274//
275static bool is_same_fsobject(int fd1, int fd2) {
276  struct stat statbuf1;
277  struct stat statbuf2;
278  int result = 0;
279
280  RESTARTABLE(::fstat(fd1, &statbuf1), result);
281  if (result == OS_ERR) {
282    return false;
283  }
284  RESTARTABLE(::fstat(fd2, &statbuf2), result);
285  if (result == OS_ERR) {
286    return false;
287  }
288
289  if ((statbuf1.st_ino == statbuf2.st_ino) &&
290      (statbuf1.st_dev == statbuf2.st_dev)) {
291    return true;
292  } else {
293    return false;
294  }
295}
296
297
298// Open the directory of the given path and validate it.
299// Return a DIR * of the open directory.
300//
301static DIR *open_directory_secure(const char* dirname) {
302  // Open the directory using open() so that it can be verified
303  // to be secure by calling is_dirfd_secure(), opendir() and then check
304  // to see if they are the same file system object.  This method does not
305  // introduce a window of opportunity for the directory to be attacked that
306  // calling opendir() and is_directory_secure() does.
307  int result;
308  DIR *dirp = NULL;
309  RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
310  if (result == OS_ERR) {
311    // Directory doesn't exist or is a symlink, so there is nothing to cleanup.
312    if (PrintMiscellaneous && Verbose) {
313      if (errno == ELOOP) {
314        warning("directory %s is a symlink and is not secure\n", dirname);
315      } else {
316        warning("could not open directory %s: %s\n", dirname, os::strerror(errno));
317      }
318    }
319    return dirp;
320  }
321  int fd = result;
322
323  // Determine if the open directory is secure.
324  if (!is_dirfd_secure(fd)) {
325    // The directory is not a secure directory.
326    os::close(fd);
327    return dirp;
328  }
329
330  // Open the directory.
331  dirp = ::opendir(dirname);
332  if (dirp == NULL) {
333    // The directory doesn't exist, close fd and return.
334    os::close(fd);
335    return dirp;
336  }
337
338  // Check to make sure fd and dirp are referencing the same file system object.
339  if (!is_same_fsobject(fd, dirp->d_fd)) {
340    // The directory is not secure.
341    os::close(fd);
342    os::closedir(dirp);
343    dirp = NULL;
344    return dirp;
345  }
346
347  // Close initial open now that we know directory is secure
348  os::close(fd);
349
350  return dirp;
351}
352
353// NOTE: The code below uses fchdir(), open() and unlink() because
354// fdopendir(), openat() and unlinkat() are not supported on all
355// versions.  Once the support for fdopendir(), openat() and unlinkat()
356// is available on all supported versions the code can be changed
357// to use these functions.
358
359// Open the directory of the given path, validate it and set the
360// current working directory to it.
361// Return a DIR * of the open directory and the saved cwd fd.
362//
363static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
364
365  // Open the directory.
366  DIR* dirp = open_directory_secure(dirname);
367  if (dirp == NULL) {
368    // Directory doesn't exist or is insecure, so there is nothing to cleanup.
369    return dirp;
370  }
371  int fd = dirp->d_fd;
372
373  // Open a fd to the cwd and save it off.
374  int result;
375  RESTARTABLE(::open(".", O_RDONLY), result);
376  if (result == OS_ERR) {
377    *saved_cwd_fd = -1;
378  } else {
379    *saved_cwd_fd = result;
380  }
381
382  // Set the current directory to dirname by using the fd of the directory and
383  // handle errors, otherwise shared memory files will be created in cwd.
384  result = fchdir(fd);
385  if (result == OS_ERR) {
386    if (PrintMiscellaneous && Verbose) {
387      warning("could not change to directory %s", dirname);
388    }
389    if (*saved_cwd_fd != -1) {
390      ::close(*saved_cwd_fd);
391      *saved_cwd_fd = -1;
392    }
393    // Close the directory.
394    os::closedir(dirp);
395    return NULL;
396  } else {
397    return dirp;
398  }
399}
400
401// Close the directory and restore the current working directory.
402//
403static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
404
405  int result;
406  // If we have a saved cwd change back to it and close the fd.
407  if (saved_cwd_fd != -1) {
408    result = fchdir(saved_cwd_fd);
409    ::close(saved_cwd_fd);
410  }
411
412  // Close the directory.
413  os::closedir(dirp);
414}
415
416// Check if the given file descriptor is considered a secure.
417//
418static bool is_file_secure(int fd, const char *filename) {
419
420  int result;
421  struct stat statbuf;
422
423  // Determine if the file is secure.
424  RESTARTABLE(::fstat(fd, &statbuf), result);
425  if (result == OS_ERR) {
426    if (PrintMiscellaneous && Verbose) {
427      warning("fstat failed on %s: %s\n", filename, os::strerror(errno));
428    }
429    return false;
430  }
431  if (statbuf.st_nlink > 1) {
432    // A file with multiple links is not expected.
433    if (PrintMiscellaneous && Verbose) {
434      warning("file %s has multiple links\n", filename);
435    }
436    return false;
437  }
438  return true;
439}
440
441// return the user name for the given user id
442//
443// the caller is expected to free the allocated memory.
444//
445static char* get_user_name(uid_t uid) {
446
447  struct passwd pwent;
448
449  // determine the max pwbuf size from sysconf, and hardcode
450  // a default if this not available through sysconf.
451  //
452  long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
453  if (bufsize == -1)
454    bufsize = 1024;
455
456  char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
457
458  struct passwd* p = NULL;
459  int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
460
461  if (p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
462    if (PrintMiscellaneous && Verbose) {
463      if (p == NULL) {
464        warning("Could not retrieve passwd entry: %s\n",
465                os::strerror(errno));
466      }
467      else {
468        warning("Could not determine user name: %s\n",
469                p->pw_name == NULL ? "pw_name = NULL" :
470                                     "pw_name zero length");
471      }
472    }
473    FREE_C_HEAP_ARRAY(char, pwbuf);
474    return NULL;
475  }
476
477  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
478  strcpy(user_name, p->pw_name);
479
480  FREE_C_HEAP_ARRAY(char, pwbuf);
481  return user_name;
482}
483
484// return the name of the user that owns the process identified by vmid.
485//
486// This method uses a slow directory search algorithm to find the backing
487// store file for the specified vmid and returns the user name, as determined
488// by the user name suffix of the hsperfdata_<username> directory name.
489//
490// the caller is expected to free the allocated memory.
491//
492static char* get_user_name_slow(int vmid, TRAPS) {
493
494  // short circuit the directory search if the process doesn't even exist.
495  if (kill(vmid, 0) == OS_ERR) {
496    if (errno == ESRCH) {
497      THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
498                  "Process not found");
499    }
500    else /* EPERM */ {
501      THROW_MSG_0(vmSymbols::java_io_IOException(), os::strerror(errno));
502    }
503  }
504
505  // directory search
506  char* oldest_user = NULL;
507  time_t oldest_ctime = 0;
508
509  const char* tmpdirname = os::get_temp_directory();
510
511  // open the temp directory
512  DIR* tmpdirp = os::opendir(tmpdirname);
513
514  if (tmpdirp == NULL) {
515    // Cannot open the directory to get the user name, return.
516    return NULL;
517  }
518
519  // for each entry in the directory that matches the pattern hsperfdata_*,
520  // open the directory and check if the file for the given vmid exists.
521  // The file with the expected name and the latest creation date is used
522  // to determine the user name for the process id.
523  //
524  struct dirent* dentry;
525  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
526  errno = 0;
527  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
528
529    // check if the directory entry is a hsperfdata file
530    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
531      continue;
532    }
533
534    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
535                  strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
536    strcpy(usrdir_name, tmpdirname);
537    strcat(usrdir_name, "/");
538    strcat(usrdir_name, dentry->d_name);
539
540    // open the user directory
541    DIR* subdirp = open_directory_secure(usrdir_name);
542
543    if (subdirp == NULL) {
544      FREE_C_HEAP_ARRAY(char, usrdir_name);
545      continue;
546    }
547
548    // Since we don't create the backing store files in directories
549    // pointed to by symbolic links, we also don't follow them when
550    // looking for the files. We check for a symbolic link after the
551    // call to opendir in order to eliminate a small window where the
552    // symlink can be exploited.
553    //
554    if (!is_directory_secure(usrdir_name)) {
555      FREE_C_HEAP_ARRAY(char, usrdir_name);
556      os::closedir(subdirp);
557      continue;
558    }
559
560    struct dirent* udentry;
561    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
562    errno = 0;
563    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
564
565      if (filename_to_pid(udentry->d_name) == vmid) {
566        struct stat statbuf;
567        int result;
568
569        char* filename = NEW_C_HEAP_ARRAY(char,
570                 strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
571
572        strcpy(filename, usrdir_name);
573        strcat(filename, "/");
574        strcat(filename, udentry->d_name);
575
576        // don't follow symbolic links for the file
577        RESTARTABLE(::lstat(filename, &statbuf), result);
578        if (result == OS_ERR) {
579           FREE_C_HEAP_ARRAY(char, filename);
580           continue;
581        }
582
583        // skip over files that are not regular files.
584        if (!S_ISREG(statbuf.st_mode)) {
585          FREE_C_HEAP_ARRAY(char, filename);
586          continue;
587        }
588
589        // compare and save filename with latest creation time
590        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
591
592          if (statbuf.st_ctime > oldest_ctime) {
593            char* user = strchr(dentry->d_name, '_') + 1;
594
595            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
596            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
597
598            strcpy(oldest_user, user);
599            oldest_ctime = statbuf.st_ctime;
600          }
601        }
602
603        FREE_C_HEAP_ARRAY(char, filename);
604      }
605    }
606    os::closedir(subdirp);
607    FREE_C_HEAP_ARRAY(char, udbuf);
608    FREE_C_HEAP_ARRAY(char, usrdir_name);
609  }
610  os::closedir(tmpdirp);
611  FREE_C_HEAP_ARRAY(char, tdbuf);
612
613  return(oldest_user);
614}
615
616// return the name of the user that owns the JVM indicated by the given vmid.
617//
618static char* get_user_name(int vmid, TRAPS) {
619
620  char psinfo_name[PATH_MAX];
621  int result;
622
623  snprintf(psinfo_name, PATH_MAX, "/proc/%d/psinfo", vmid);
624
625  RESTARTABLE(::open(psinfo_name, O_RDONLY), result);
626
627  if (result != OS_ERR) {
628    int fd = result;
629
630    psinfo_t psinfo;
631    char* addr = (char*)&psinfo;
632
633    for (size_t remaining = sizeof(psinfo_t); remaining > 0;) {
634
635      RESTARTABLE(::read(fd, addr, remaining), result);
636      if (result == OS_ERR) {
637        ::close(fd);
638        THROW_MSG_0(vmSymbols::java_io_IOException(), "Read error");
639      } else {
640        remaining-=result;
641        addr+=result;
642      }
643    }
644
645    ::close(fd);
646
647    // get the user name for the effective user id of the process
648    char* user_name = get_user_name(psinfo.pr_euid);
649
650    return user_name;
651  }
652
653  if (result == OS_ERR && errno == EACCES) {
654
655    // In this case, the psinfo file for the process id existed,
656    // but we didn't have permission to access it.
657    THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
658                os::strerror(errno));
659  }
660
661  // at this point, we don't know if the process id itself doesn't
662  // exist or if the psinfo file doesn't exit. If the psinfo file
663  // doesn't exist, then we are running on Solaris 2.5.1 or earlier.
664  // since the structured procfs and old procfs interfaces can't be
665  // mixed, we attempt to find the file through a directory search.
666
667  return get_user_name_slow(vmid, THREAD);
668}
669
670// return the file name of the backing store file for the named
671// shared memory region for the given user name and vmid.
672//
673// the caller is expected to free the allocated memory.
674//
675static char* get_sharedmem_filename(const char* dirname, int vmid) {
676
677  // add 2 for the file separator and a NULL terminator.
678  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
679
680  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
681  snprintf(name, nbytes, "%s/%d", dirname, vmid);
682
683  return name;
684}
685
686
687// remove file
688//
689// this method removes the file specified by the given path
690//
691static void remove_file(const char* path) {
692
693  int result;
694
695  // if the file is a directory, the following unlink will fail. since
696  // we don't expect to find directories in the user temp directory, we
697  // won't try to handle this situation. even if accidentially or
698  // maliciously planted, the directory's presence won't hurt anything.
699  //
700  RESTARTABLE(::unlink(path), result);
701  if (PrintMiscellaneous && Verbose && result == OS_ERR) {
702    if (errno != ENOENT) {
703      warning("Could not unlink shared memory backing"
704              " store file %s : %s\n", path, os::strerror(errno));
705    }
706  }
707}
708
709
710// cleanup stale shared memory resources
711//
712// This method attempts to remove all stale shared memory files in
713// the named user temporary directory. It scans the named directory
714// for files matching the pattern ^$[0-9]*$. For each file found, the
715// process id is extracted from the file name and a test is run to
716// determine if the process is alive. If the process is not alive,
717// any stale file resources are removed.
718//
719static void cleanup_sharedmem_resources(const char* dirname) {
720
721  int saved_cwd_fd;
722  // open the directory
723  DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
724  if (dirp == NULL) {
725    // directory doesn't exist or is insecure, so there is nothing to cleanup
726    return;
727  }
728
729  // for each entry in the directory that matches the expected file
730  // name pattern, determine if the file resources are stale and if
731  // so, remove the file resources. Note, instrumented HotSpot processes
732  // for this user may start and/or terminate during this search and
733  // remove or create new files in this directory. The behavior of this
734  // loop under these conditions is dependent upon the implementation of
735  // opendir/readdir.
736  //
737  struct dirent* entry;
738  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
739
740  errno = 0;
741  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
742
743    pid_t pid = filename_to_pid(entry->d_name);
744
745    if (pid == 0) {
746
747      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
748
749        // attempt to remove all unexpected files, except "." and ".."
750        unlink(entry->d_name);
751      }
752
753      errno = 0;
754      continue;
755    }
756
757    // we now have a file name that converts to a valid integer
758    // that could represent a process id . if this process id
759    // matches the current process id or the process is not running,
760    // then remove the stale file resources.
761    //
762    // process liveness is detected by sending signal number 0 to
763    // the process id (see kill(2)). if kill determines that the
764    // process does not exist, then the file resources are removed.
765    // if kill determines that that we don't have permission to
766    // signal the process, then the file resources are assumed to
767    // be stale and are removed because the resources for such a
768    // process should be in a different user specific directory.
769    //
770    if ((pid == os::current_process_id()) ||
771        (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
772
773        unlink(entry->d_name);
774    }
775    errno = 0;
776  }
777
778  // close the directory and reset the current working directory
779  close_directory_secure_cwd(dirp, saved_cwd_fd);
780
781  FREE_C_HEAP_ARRAY(char, dbuf);
782}
783
784// make the user specific temporary directory. Returns true if
785// the directory exists and is secure upon return. Returns false
786// if the directory exists but is either a symlink, is otherwise
787// insecure, or if an error occurred.
788//
789static bool make_user_tmp_dir(const char* dirname) {
790
791  // create the directory with 0755 permissions. note that the directory
792  // will be owned by euid::egid, which may not be the same as uid::gid.
793  //
794  if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
795    if (errno == EEXIST) {
796      // The directory already exists and was probably created by another
797      // JVM instance. However, this could also be the result of a
798      // deliberate symlink. Verify that the existing directory is safe.
799      //
800      if (!is_directory_secure(dirname)) {
801        // directory is not secure
802        if (PrintMiscellaneous && Verbose) {
803          warning("%s directory is insecure\n", dirname);
804        }
805        return false;
806      }
807    }
808    else {
809      // we encountered some other failure while attempting
810      // to create the directory
811      //
812      if (PrintMiscellaneous && Verbose) {
813        warning("could not create directory %s: %s\n",
814                dirname, os::strerror(errno));
815      }
816      return false;
817    }
818  }
819  return true;
820}
821
822// create the shared memory file resources
823//
824// This method creates the shared memory file with the given size
825// This method also creates the user specific temporary directory, if
826// it does not yet exist.
827//
828static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
829
830  // make the user temporary directory
831  if (!make_user_tmp_dir(dirname)) {
832    // could not make/find the directory or the found directory
833    // was not secure
834    return -1;
835  }
836
837  int saved_cwd_fd;
838  // open the directory and set the current working directory to it
839  DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
840  if (dirp == NULL) {
841    // Directory doesn't exist or is insecure, so cannot create shared
842    // memory file.
843    return -1;
844  }
845
846  // Open the filename in the current directory.
847  // Cannot use O_TRUNC here; truncation of an existing file has to happen
848  // after the is_file_secure() check below.
849  int result;
850  RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
851  if (result == OS_ERR) {
852    if (PrintMiscellaneous && Verbose) {
853      if (errno == ELOOP) {
854        warning("file %s is a symlink and is not secure\n", filename);
855      } else {
856        warning("could not create file %s: %s\n", filename, os::strerror(errno));
857      }
858    }
859    // close the directory and reset the current working directory
860    close_directory_secure_cwd(dirp, saved_cwd_fd);
861
862    return -1;
863  }
864  // close the directory and reset the current working directory
865  close_directory_secure_cwd(dirp, saved_cwd_fd);
866
867  // save the file descriptor
868  int fd = result;
869
870  // check to see if the file is secure
871  if (!is_file_secure(fd, filename)) {
872    ::close(fd);
873    return -1;
874  }
875
876  // truncate the file to get rid of any existing data
877  RESTARTABLE(::ftruncate(fd, (off_t)0), result);
878  if (result == OS_ERR) {
879    if (PrintMiscellaneous && Verbose) {
880      warning("could not truncate shared memory file: %s\n", os::strerror(errno));
881    }
882    ::close(fd);
883    return -1;
884  }
885  // set the file size
886  RESTARTABLE(::ftruncate(fd, (off_t)size), result);
887  if (result == OS_ERR) {
888    if (PrintMiscellaneous && Verbose) {
889      warning("could not set shared memory file size: %s\n", os::strerror(errno));
890    }
891    ::close(fd);
892    return -1;
893  }
894
895  return fd;
896}
897
898// open the shared memory file for the given user and vmid. returns
899// the file descriptor for the open file or -1 if the file could not
900// be opened.
901//
902static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
903
904  // open the file
905  int result;
906  RESTARTABLE(::open(filename, oflags), result);
907  if (result == OS_ERR) {
908    if (errno == ENOENT) {
909      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
910                  "Process not found", OS_ERR);
911    }
912    else if (errno == EACCES) {
913      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
914                  "Permission denied", OS_ERR);
915    }
916    else {
917      THROW_MSG_(vmSymbols::java_io_IOException(), os::strerror(errno), OS_ERR);
918    }
919  }
920  int fd = result;
921
922  // check to see if the file is secure
923  if (!is_file_secure(fd, filename)) {
924    ::close(fd);
925    return -1;
926  }
927
928  return fd;
929}
930
931// create a named shared memory region. returns the address of the
932// memory region on success or NULL on failure. A return value of
933// NULL will ultimately disable the shared memory feature.
934//
935// On Solaris and Linux, the name space for shared memory objects
936// is the file system name space.
937//
938// A monitoring application attaching to a JVM does not need to know
939// the file system name of the shared memory object. However, it may
940// be convenient for applications to discover the existence of newly
941// created and terminating JVMs by watching the file system name space
942// for files being created or removed.
943//
944static char* mmap_create_shared(size_t size) {
945
946  int result;
947  int fd;
948  char* mapAddress;
949
950  int vmid = os::current_process_id();
951
952  char* user_name = get_user_name(geteuid());
953
954  if (user_name == NULL)
955    return NULL;
956
957  char* dirname = get_user_tmp_dir(user_name);
958  char* filename = get_sharedmem_filename(dirname, vmid);
959
960  // get the short filename
961  char* short_filename = strrchr(filename, '/');
962  if (short_filename == NULL) {
963    short_filename = filename;
964  } else {
965    short_filename++;
966  }
967
968  // cleanup any stale shared memory files
969  cleanup_sharedmem_resources(dirname);
970
971  assert(((size > 0) && (size % os::vm_page_size() == 0)),
972         "unexpected PerfMemory region size");
973
974  fd = create_sharedmem_resources(dirname, short_filename, size);
975
976  FREE_C_HEAP_ARRAY(char, user_name);
977  FREE_C_HEAP_ARRAY(char, dirname);
978
979  if (fd == -1) {
980    FREE_C_HEAP_ARRAY(char, filename);
981    return NULL;
982  }
983
984  mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
985
986  result = ::close(fd);
987  assert(result != OS_ERR, "could not close file");
988
989  if (mapAddress == MAP_FAILED) {
990    if (PrintMiscellaneous && Verbose) {
991      warning("mmap failed -  %s\n", os::strerror(errno));
992    }
993    remove_file(filename);
994    FREE_C_HEAP_ARRAY(char, filename);
995    return NULL;
996  }
997
998  // save the file name for use in delete_shared_memory()
999  backing_store_file_name = filename;
1000
1001  // clear the shared memory region
1002  (void)::memset((void*) mapAddress, 0, size);
1003
1004  // it does not go through os api, the operation has to record from here
1005  MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1006    size, CURRENT_PC, mtInternal);
1007
1008  return mapAddress;
1009}
1010
1011// release a named shared memory region
1012//
1013static void unmap_shared(char* addr, size_t bytes) {
1014  os::release_memory(addr, bytes);
1015}
1016
1017// create the PerfData memory region in shared memory.
1018//
1019static char* create_shared_memory(size_t size) {
1020
1021  // create the shared memory region.
1022  return mmap_create_shared(size);
1023}
1024
1025// delete the shared PerfData memory region
1026//
1027static void delete_shared_memory(char* addr, size_t size) {
1028
1029  // cleanup the persistent shared memory resources. since DestroyJavaVM does
1030  // not support unloading of the JVM, unmapping of the memory resource is
1031  // not performed. The memory will be reclaimed by the OS upon termination of
1032  // the process. The backing store file is deleted from the file system.
1033
1034  assert(!PerfDisableSharedMem, "shouldn't be here");
1035
1036  if (backing_store_file_name != NULL) {
1037    remove_file(backing_store_file_name);
1038    // Don't.. Free heap memory could deadlock os::abort() if it is called
1039    // from signal handler. OS will reclaim the heap memory.
1040    // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1041    backing_store_file_name = NULL;
1042  }
1043}
1044
1045// return the size of the file for the given file descriptor
1046// or 0 if it is not a valid size for a shared memory file
1047//
1048static size_t sharedmem_filesize(int fd, TRAPS) {
1049
1050  struct stat statbuf;
1051  int result;
1052
1053  RESTARTABLE(::fstat(fd, &statbuf), result);
1054  if (result == OS_ERR) {
1055    if (PrintMiscellaneous && Verbose) {
1056      warning("fstat failed: %s\n", os::strerror(errno));
1057    }
1058    THROW_MSG_0(vmSymbols::java_io_IOException(),
1059                "Could not determine PerfMemory size");
1060  }
1061
1062  if ((statbuf.st_size == 0) ||
1063     ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1064    THROW_MSG_0(vmSymbols::java_lang_Exception(),
1065                "Invalid PerfMemory size");
1066  }
1067
1068  return (size_t)statbuf.st_size;
1069}
1070
1071// attach to a named shared memory region.
1072//
1073static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1074
1075  char* mapAddress;
1076  int result;
1077  int fd;
1078  size_t size = 0;
1079  const char* luser = NULL;
1080
1081  int mmap_prot;
1082  int file_flags;
1083
1084  ResourceMark rm;
1085
1086  // map the high level access mode to the appropriate permission
1087  // constructs for the file and the shared memory mapping.
1088  if (mode == PerfMemory::PERF_MODE_RO) {
1089    mmap_prot = PROT_READ;
1090    file_flags = O_RDONLY | O_NOFOLLOW;
1091  }
1092  else if (mode == PerfMemory::PERF_MODE_RW) {
1093#ifdef LATER
1094    mmap_prot = PROT_READ | PROT_WRITE;
1095    file_flags = O_RDWR | O_NOFOLLOW;
1096#else
1097    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1098              "Unsupported access mode");
1099#endif
1100  }
1101  else {
1102    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1103              "Illegal access mode");
1104  }
1105
1106  if (user == NULL || strlen(user) == 0) {
1107    luser = get_user_name(vmid, CHECK);
1108  }
1109  else {
1110    luser = user;
1111  }
1112
1113  if (luser == NULL) {
1114    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1115              "Could not map vmid to user Name");
1116  }
1117
1118  char* dirname = get_user_tmp_dir(luser);
1119
1120  // since we don't follow symbolic links when creating the backing
1121  // store file, we don't follow them when attaching either.
1122  //
1123  if (!is_directory_secure(dirname)) {
1124    FREE_C_HEAP_ARRAY(char, dirname);
1125    if (luser != user) {
1126      FREE_C_HEAP_ARRAY(char, luser);
1127    }
1128    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1129              "Process not found");
1130  }
1131
1132  char* filename = get_sharedmem_filename(dirname, vmid);
1133
1134  // copy heap memory to resource memory. the open_sharedmem_file
1135  // method below need to use the filename, but could throw an
1136  // exception. using a resource array prevents the leak that
1137  // would otherwise occur.
1138  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1139  strcpy(rfilename, filename);
1140
1141  // free the c heap resources that are no longer needed
1142  if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1143  FREE_C_HEAP_ARRAY(char, dirname);
1144  FREE_C_HEAP_ARRAY(char, filename);
1145
1146  // open the shared memory file for the give vmid
1147  fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1148
1149  if (fd == OS_ERR) {
1150    return;
1151  }
1152
1153  if (HAS_PENDING_EXCEPTION) {
1154    ::close(fd);
1155    return;
1156  }
1157
1158  if (*sizep == 0) {
1159    size = sharedmem_filesize(fd, CHECK);
1160  } else {
1161    size = *sizep;
1162  }
1163
1164  assert(size > 0, "unexpected size <= 0");
1165
1166  mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1167
1168  result = ::close(fd);
1169  assert(result != OS_ERR, "could not close file");
1170
1171  if (mapAddress == MAP_FAILED) {
1172    if (PrintMiscellaneous && Verbose) {
1173      warning("mmap failed: %s\n", os::strerror(errno));
1174    }
1175    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1176              "Could not map PerfMemory");
1177  }
1178
1179  // it does not go through os api, the operation has to record from here
1180  MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1181    size, CURRENT_PC, mtInternal);
1182
1183  *addr = mapAddress;
1184  *sizep = size;
1185
1186  if (PerfTraceMemOps) {
1187    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1188               INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
1189  }
1190}
1191
1192
1193
1194
1195// create the PerfData memory region
1196//
1197// This method creates the memory region used to store performance
1198// data for the JVM. The memory may be created in standard or
1199// shared memory.
1200//
1201void PerfMemory::create_memory_region(size_t size) {
1202
1203  if (PerfDisableSharedMem) {
1204    // do not share the memory for the performance data.
1205    _start = create_standard_memory(size);
1206  }
1207  else {
1208    _start = create_shared_memory(size);
1209    if (_start == NULL) {
1210
1211      // creation of the shared memory region failed, attempt
1212      // to create a contiguous, non-shared memory region instead.
1213      //
1214      if (PrintMiscellaneous && Verbose) {
1215        warning("Reverting to non-shared PerfMemory region.\n");
1216      }
1217      PerfDisableSharedMem = true;
1218      _start = create_standard_memory(size);
1219    }
1220  }
1221
1222  if (_start != NULL) _capacity = size;
1223
1224}
1225
1226// delete the PerfData memory region
1227//
1228// This method deletes the memory region used to store performance
1229// data for the JVM. The memory region indicated by the <address, size>
1230// tuple will be inaccessible after a call to this method.
1231//
1232void PerfMemory::delete_memory_region() {
1233
1234  assert((start() != NULL && capacity() > 0), "verify proper state");
1235
1236  // If user specifies PerfDataSaveFile, it will save the performance data
1237  // to the specified file name no matter whether PerfDataSaveToFile is specified
1238  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1239  // -XX:+PerfDataSaveToFile.
1240  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1241    save_memory_to_file(start(), capacity());
1242  }
1243
1244  if (PerfDisableSharedMem) {
1245    delete_standard_memory(start(), capacity());
1246  }
1247  else {
1248    delete_shared_memory(start(), capacity());
1249  }
1250}
1251
1252// attach to the PerfData memory region for another JVM
1253//
1254// This method returns an <address, size> tuple that points to
1255// a memory buffer that is kept reasonably synchronized with
1256// the PerfData memory region for the indicated JVM. This
1257// buffer may be kept in synchronization via shared memory
1258// or some other mechanism that keeps the buffer updated.
1259//
1260// If the JVM chooses not to support the attachability feature,
1261// this method should throw an UnsupportedOperation exception.
1262//
1263// This implementation utilizes named shared memory to map
1264// the indicated process's PerfData memory region into this JVMs
1265// address space.
1266//
1267void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1268
1269  if (vmid == 0 || vmid == os::current_process_id()) {
1270     *addrp = start();
1271     *sizep = capacity();
1272     return;
1273  }
1274
1275  mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1276}
1277
1278// detach from the PerfData memory region of another JVM
1279//
1280// This method detaches the PerfData memory region of another
1281// JVM, specified as an <address, size> tuple of a buffer
1282// in this process's address space. This method may perform
1283// arbitrary actions to accomplish the detachment. The memory
1284// region specified by <address, size> will be inaccessible after
1285// a call to this method.
1286//
1287// If the JVM chooses not to support the attachability feature,
1288// this method should throw an UnsupportedOperation exception.
1289//
1290// This implementation utilizes named shared memory to detach
1291// the indicated process's PerfData memory region from this
1292// process's address space.
1293//
1294void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1295
1296  assert(addr != 0, "address sanity check");
1297  assert(bytes > 0, "capacity sanity check");
1298
1299  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1300    // prevent accidental detachment of this process's PerfMemory region
1301    return;
1302  }
1303
1304  unmap_shared(addr, bytes);
1305}
1306