perfMemory_solaris.cpp revision 10627:1537c752a7f5
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/oop.inline.hpp"
30#include "os_solaris.inline.hpp"
31#include "runtime/handles.inline.hpp"
32#include "runtime/perfMemory.hpp"
33#include "services/memTracker.hpp"
34#include "utilities/exceptions.hpp"
35
36// put OS-includes here
37# include <sys/types.h>
38# include <sys/mman.h>
39# include <errno.h>
40# include <stdio.h>
41# include <unistd.h>
42# include <sys/stat.h>
43# include <signal.h>
44# include <pwd.h>
45# include <procfs.h>
46
47
48static char* backing_store_file_name = NULL;  // name of the backing store
49                                              // file, if successfully created.
50
51// Standard Memory Implementation Details
52
53// create the PerfData memory region in standard memory.
54//
55static char* create_standard_memory(size_t size) {
56
57  // allocate an aligned chuck of memory
58  char* mapAddress = os::reserve_memory(size);
59
60  if (mapAddress == NULL) {
61    return NULL;
62  }
63
64  // commit memory
65  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
66    if (PrintMiscellaneous && Verbose) {
67      warning("Could not commit PerfData memory\n");
68    }
69    os::release_memory(mapAddress, size);
70    return NULL;
71  }
72
73  return mapAddress;
74}
75
76// delete the PerfData memory region
77//
78static void delete_standard_memory(char* addr, size_t size) {
79
80  // there are no persistent external resources to cleanup for standard
81  // memory. since DestroyJavaVM does not support unloading of the JVM,
82  // cleanup of the memory resource is not performed. The memory will be
83  // reclaimed by the OS upon termination of the process.
84  //
85  return;
86}
87
88// save the specified memory region to the given file
89//
90// Note: this function might be called from signal handler (by os::abort()),
91// don't allocate heap memory.
92//
93static void save_memory_to_file(char* addr, size_t size) {
94
95  const char* destfile = PerfMemory::get_perfdata_file_path();
96  assert(destfile[0] != '\0', "invalid PerfData file path");
97
98  int result;
99
100  RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
101              result);;
102  if (result == OS_ERR) {
103    if (PrintMiscellaneous && Verbose) {
104      warning("Could not create Perfdata save file: %s: %s\n",
105              destfile, os::strerror(errno));
106    }
107  } else {
108
109    int fd = result;
110
111    for (size_t remaining = size; remaining > 0;) {
112
113      RESTARTABLE(::write(fd, addr, remaining), result);
114      if (result == OS_ERR) {
115        if (PrintMiscellaneous && Verbose) {
116          warning("Could not write Perfdata save file: %s: %s\n",
117                  destfile, os::strerror(errno));
118        }
119        break;
120      }
121      remaining -= (size_t)result;
122      addr += result;
123    }
124
125    result = ::close(fd);
126    if (PrintMiscellaneous && Verbose) {
127      if (result == OS_ERR) {
128        warning("Could not close %s: %s\n", destfile, os::strerror(errno));
129      }
130    }
131  }
132  FREE_C_HEAP_ARRAY(char, destfile);
133}
134
135
136// Shared Memory Implementation Details
137
138// Note: the solaris and linux shared memory implementation uses the mmap
139// interface with a backing store file to implement named shared memory.
140// Using the file system as the name space for shared memory allows a
141// common name space to be supported across a variety of platforms. It
142// also provides a name space that Java applications can deal with through
143// simple file apis.
144//
145// The solaris and linux implementations store the backing store file in
146// a user specific temporary directory located in the /tmp file system,
147// which is always a local file system and is sometimes a RAM based file
148// system.
149
150// return the user specific temporary directory name.
151//
152// the caller is expected to free the allocated memory.
153//
154static char* get_user_tmp_dir(const char* user) {
155
156  const char* tmpdir = os::get_temp_directory();
157  const char* perfdir = PERFDATA_NAME;
158  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
159  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
160
161  // construct the path name to user specific tmp directory
162  snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
163
164  return dirname;
165}
166
167// convert the given file name into a process id. if the file
168// does not meet the file naming constraints, return 0.
169//
170static pid_t filename_to_pid(const char* filename) {
171
172  // a filename that doesn't begin with a digit is not a
173  // candidate for conversion.
174  //
175  if (!isdigit(*filename)) {
176    return 0;
177  }
178
179  // check if file name can be converted to an integer without
180  // any leftover characters.
181  //
182  char* remainder = NULL;
183  errno = 0;
184  pid_t pid = (pid_t)strtol(filename, &remainder, 10);
185
186  if (errno != 0) {
187    return 0;
188  }
189
190  // check for left over characters. If any, then the filename is
191  // not a candidate for conversion.
192  //
193  if (remainder != NULL && *remainder != '\0') {
194    return 0;
195  }
196
197  // successful conversion, return the pid
198  return pid;
199}
200
201
202// Check if the given statbuf is considered a secure directory for
203// the backing store files. Returns true if the directory is considered
204// a secure location. Returns false if the statbuf is a symbolic link or
205// if an error occurred.
206//
207static bool is_statbuf_secure(struct stat *statp) {
208  if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
209    // The path represents a link or some non-directory file type,
210    // which is not what we expected. Declare it insecure.
211    //
212    return false;
213  }
214  // We have an existing directory, check if the permissions are safe.
215  //
216  if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
217    // The directory is open for writing and could be subjected
218    // to a symlink or a hard link attack. Declare it insecure.
219    //
220    return false;
221  }
222  // If user is not root then see if the uid of the directory matches the effective uid of the process.
223  uid_t euid = geteuid();
224  if ((euid != 0) && (statp->st_uid != euid)) {
225    // The directory was not created by this user, declare it insecure.
226    //
227    return false;
228  }
229  return true;
230}
231
232
233// Check if the given path is considered a secure directory for
234// the backing store files. Returns true if the directory exists
235// and is considered a secure location. Returns false if the path
236// is a symbolic link or if an error occurred.
237//
238static bool is_directory_secure(const char* path) {
239  struct stat statbuf;
240  int result = 0;
241
242  RESTARTABLE(::lstat(path, &statbuf), result);
243  if (result == OS_ERR) {
244    return false;
245  }
246
247  // The path exists, see if it is secure.
248  return is_statbuf_secure(&statbuf);
249}
250
251
252// Check if the given directory file descriptor is considered a secure
253// directory for the backing store files. Returns true if the directory
254// exists and is considered a secure location. Returns false if the path
255// is a symbolic link or if an error occurred.
256//
257static bool is_dirfd_secure(int dir_fd) {
258  struct stat statbuf;
259  int result = 0;
260
261  RESTARTABLE(::fstat(dir_fd, &statbuf), result);
262  if (result == OS_ERR) {
263    return false;
264  }
265
266  // The path exists, now check its mode.
267  return is_statbuf_secure(&statbuf);
268}
269
270
271// Check to make sure fd1 and fd2 are referencing the same file system object.
272//
273static bool is_same_fsobject(int fd1, int fd2) {
274  struct stat statbuf1;
275  struct stat statbuf2;
276  int result = 0;
277
278  RESTARTABLE(::fstat(fd1, &statbuf1), result);
279  if (result == OS_ERR) {
280    return false;
281  }
282  RESTARTABLE(::fstat(fd2, &statbuf2), result);
283  if (result == OS_ERR) {
284    return false;
285  }
286
287  if ((statbuf1.st_ino == statbuf2.st_ino) &&
288      (statbuf1.st_dev == statbuf2.st_dev)) {
289    return true;
290  } else {
291    return false;
292  }
293}
294
295
296// Open the directory of the given path and validate it.
297// Return a DIR * of the open directory.
298//
299static DIR *open_directory_secure(const char* dirname) {
300  // Open the directory using open() so that it can be verified
301  // to be secure by calling is_dirfd_secure(), opendir() and then check
302  // to see if they are the same file system object.  This method does not
303  // introduce a window of opportunity for the directory to be attacked that
304  // calling opendir() and is_directory_secure() does.
305  int result;
306  DIR *dirp = NULL;
307  RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
308  if (result == OS_ERR) {
309    // Directory doesn't exist or is a symlink, so there is nothing to cleanup.
310    if (PrintMiscellaneous && Verbose) {
311      if (errno == ELOOP) {
312        warning("directory %s is a symlink and is not secure\n", dirname);
313      } else {
314        warning("could not open directory %s: %s\n", dirname, os::strerror(errno));
315      }
316    }
317    return dirp;
318  }
319  int fd = result;
320
321  // Determine if the open directory is secure.
322  if (!is_dirfd_secure(fd)) {
323    // The directory is not a secure directory.
324    os::close(fd);
325    return dirp;
326  }
327
328  // Open the directory.
329  dirp = ::opendir(dirname);
330  if (dirp == NULL) {
331    // The directory doesn't exist, close fd and return.
332    os::close(fd);
333    return dirp;
334  }
335
336  // Check to make sure fd and dirp are referencing the same file system object.
337  if (!is_same_fsobject(fd, dirp->dd_fd)) {
338    // The directory is not secure.
339    os::close(fd);
340    os::closedir(dirp);
341    dirp = NULL;
342    return dirp;
343  }
344
345  // Close initial open now that we know directory is secure
346  os::close(fd);
347
348  return dirp;
349}
350
351// NOTE: The code below uses fchdir(), open() and unlink() because
352// fdopendir(), openat() and unlinkat() are not supported on all
353// versions.  Once the support for fdopendir(), openat() and unlinkat()
354// is available on all supported versions the code can be changed
355// to use these functions.
356
357// Open the directory of the given path, validate it and set the
358// current working directory to it.
359// Return a DIR * of the open directory and the saved cwd fd.
360//
361static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
362
363  // Open the directory.
364  DIR* dirp = open_directory_secure(dirname);
365  if (dirp == NULL) {
366    // Directory doesn't exist or is insecure, so there is nothing to cleanup.
367    return dirp;
368  }
369  int fd = dirp->dd_fd;
370
371  // Open a fd to the cwd and save it off.
372  int result;
373  RESTARTABLE(::open(".", O_RDONLY), result);
374  if (result == OS_ERR) {
375    *saved_cwd_fd = -1;
376  } else {
377    *saved_cwd_fd = result;
378  }
379
380  // Set the current directory to dirname by using the fd of the directory and
381  // handle errors, otherwise shared memory files will be created in cwd.
382  result = fchdir(fd);
383  if (result == OS_ERR) {
384    if (PrintMiscellaneous && Verbose) {
385      warning("could not change to directory %s", dirname);
386    }
387    if (*saved_cwd_fd != -1) {
388      ::close(*saved_cwd_fd);
389      *saved_cwd_fd = -1;
390    }
391    // Close the directory.
392    os::closedir(dirp);
393    return NULL;
394  } else {
395    return dirp;
396  }
397}
398
399// Close the directory and restore the current working directory.
400//
401static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
402
403  int result;
404  // If we have a saved cwd change back to it and close the fd.
405  if (saved_cwd_fd != -1) {
406    result = fchdir(saved_cwd_fd);
407    ::close(saved_cwd_fd);
408  }
409
410  // Close the directory.
411  os::closedir(dirp);
412}
413
414// Check if the given file descriptor is considered a secure.
415//
416static bool is_file_secure(int fd, const char *filename) {
417
418  int result;
419  struct stat statbuf;
420
421  // Determine if the file is secure.
422  RESTARTABLE(::fstat(fd, &statbuf), result);
423  if (result == OS_ERR) {
424    if (PrintMiscellaneous && Verbose) {
425      warning("fstat failed on %s: %s\n", filename, os::strerror(errno));
426    }
427    return false;
428  }
429  if (statbuf.st_nlink > 1) {
430    // A file with multiple links is not expected.
431    if (PrintMiscellaneous && Verbose) {
432      warning("file %s has multiple links\n", filename);
433    }
434    return false;
435  }
436  return true;
437}
438
439// return the user name for the given user id
440//
441// the caller is expected to free the allocated memory.
442//
443static char* get_user_name(uid_t uid) {
444
445  struct passwd pwent;
446
447  // determine the max pwbuf size from sysconf, and hardcode
448  // a default if this not available through sysconf.
449  //
450  long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
451  if (bufsize == -1)
452    bufsize = 1024;
453
454  char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
455
456#ifdef _GNU_SOURCE
457  struct passwd* p = NULL;
458  int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
459#else  // _GNU_SOURCE
460  struct passwd* p = getpwuid_r(uid, &pwent, pwbuf, (int)bufsize);
461#endif // _GNU_SOURCE
462
463  if (p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
464    if (PrintMiscellaneous && Verbose) {
465      if (p == NULL) {
466        warning("Could not retrieve passwd entry: %s\n",
467                os::strerror(errno));
468      }
469      else {
470        warning("Could not determine user name: %s\n",
471                p->pw_name == NULL ? "pw_name = NULL" :
472                                     "pw_name zero length");
473      }
474    }
475    FREE_C_HEAP_ARRAY(char, pwbuf);
476    return NULL;
477  }
478
479  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
480  strcpy(user_name, p->pw_name);
481
482  FREE_C_HEAP_ARRAY(char, pwbuf);
483  return user_name;
484}
485
486// return the name of the user that owns the process identified by vmid.
487//
488// This method uses a slow directory search algorithm to find the backing
489// store file for the specified vmid and returns the user name, as determined
490// by the user name suffix of the hsperfdata_<username> directory name.
491//
492// the caller is expected to free the allocated memory.
493//
494static char* get_user_name_slow(int vmid, TRAPS) {
495
496  // short circuit the directory search if the process doesn't even exist.
497  if (kill(vmid, 0) == OS_ERR) {
498    if (errno == ESRCH) {
499      THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
500                  "Process not found");
501    }
502    else /* EPERM */ {
503      THROW_MSG_0(vmSymbols::java_io_IOException(), os::strerror(errno));
504    }
505  }
506
507  // directory search
508  char* oldest_user = NULL;
509  time_t oldest_ctime = 0;
510
511  const char* tmpdirname = os::get_temp_directory();
512
513  // open the temp directory
514  DIR* tmpdirp = os::opendir(tmpdirname);
515
516  if (tmpdirp == NULL) {
517    // Cannot open the directory to get the user name, return.
518    return NULL;
519  }
520
521  // for each entry in the directory that matches the pattern hsperfdata_*,
522  // open the directory and check if the file for the given vmid exists.
523  // The file with the expected name and the latest creation date is used
524  // to determine the user name for the process id.
525  //
526  struct dirent* dentry;
527  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
528  errno = 0;
529  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
530
531    // check if the directory entry is a hsperfdata file
532    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
533      continue;
534    }
535
536    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
537                  strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
538    strcpy(usrdir_name, tmpdirname);
539    strcat(usrdir_name, "/");
540    strcat(usrdir_name, dentry->d_name);
541
542    // open the user directory
543    DIR* subdirp = open_directory_secure(usrdir_name);
544
545    if (subdirp == NULL) {
546      FREE_C_HEAP_ARRAY(char, usrdir_name);
547      continue;
548    }
549
550    // Since we don't create the backing store files in directories
551    // pointed to by symbolic links, we also don't follow them when
552    // looking for the files. We check for a symbolic link after the
553    // call to opendir in order to eliminate a small window where the
554    // symlink can be exploited.
555    //
556    if (!is_directory_secure(usrdir_name)) {
557      FREE_C_HEAP_ARRAY(char, usrdir_name);
558      os::closedir(subdirp);
559      continue;
560    }
561
562    struct dirent* udentry;
563    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
564    errno = 0;
565    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
566
567      if (filename_to_pid(udentry->d_name) == vmid) {
568        struct stat statbuf;
569        int result;
570
571        char* filename = NEW_C_HEAP_ARRAY(char,
572                 strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
573
574        strcpy(filename, usrdir_name);
575        strcat(filename, "/");
576        strcat(filename, udentry->d_name);
577
578        // don't follow symbolic links for the file
579        RESTARTABLE(::lstat(filename, &statbuf), result);
580        if (result == OS_ERR) {
581           FREE_C_HEAP_ARRAY(char, filename);
582           continue;
583        }
584
585        // skip over files that are not regular files.
586        if (!S_ISREG(statbuf.st_mode)) {
587          FREE_C_HEAP_ARRAY(char, filename);
588          continue;
589        }
590
591        // compare and save filename with latest creation time
592        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
593
594          if (statbuf.st_ctime > oldest_ctime) {
595            char* user = strchr(dentry->d_name, '_') + 1;
596
597            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
598            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
599
600            strcpy(oldest_user, user);
601            oldest_ctime = statbuf.st_ctime;
602          }
603        }
604
605        FREE_C_HEAP_ARRAY(char, filename);
606      }
607    }
608    os::closedir(subdirp);
609    FREE_C_HEAP_ARRAY(char, udbuf);
610    FREE_C_HEAP_ARRAY(char, usrdir_name);
611  }
612  os::closedir(tmpdirp);
613  FREE_C_HEAP_ARRAY(char, tdbuf);
614
615  return(oldest_user);
616}
617
618// return the name of the user that owns the JVM indicated by the given vmid.
619//
620static char* get_user_name(int vmid, TRAPS) {
621
622  char psinfo_name[PATH_MAX];
623  int result;
624
625  snprintf(psinfo_name, PATH_MAX, "/proc/%d/psinfo", vmid);
626
627  RESTARTABLE(::open(psinfo_name, O_RDONLY), result);
628
629  if (result != OS_ERR) {
630    int fd = result;
631
632    psinfo_t psinfo;
633    char* addr = (char*)&psinfo;
634
635    for (size_t remaining = sizeof(psinfo_t); remaining > 0;) {
636
637      RESTARTABLE(::read(fd, addr, remaining), result);
638      if (result == OS_ERR) {
639        ::close(fd);
640        THROW_MSG_0(vmSymbols::java_io_IOException(), "Read error");
641      } else {
642        remaining-=result;
643        addr+=result;
644      }
645    }
646
647    ::close(fd);
648
649    // get the user name for the effective user id of the process
650    char* user_name = get_user_name(psinfo.pr_euid);
651
652    return user_name;
653  }
654
655  if (result == OS_ERR && errno == EACCES) {
656
657    // In this case, the psinfo file for the process id existed,
658    // but we didn't have permission to access it.
659    THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
660                os::strerror(errno));
661  }
662
663  // at this point, we don't know if the process id itself doesn't
664  // exist or if the psinfo file doesn't exit. If the psinfo file
665  // doesn't exist, then we are running on Solaris 2.5.1 or earlier.
666  // since the structured procfs and old procfs interfaces can't be
667  // mixed, we attempt to find the file through a directory search.
668
669  return get_user_name_slow(vmid, THREAD);
670}
671
672// return the file name of the backing store file for the named
673// shared memory region for the given user name and vmid.
674//
675// the caller is expected to free the allocated memory.
676//
677static char* get_sharedmem_filename(const char* dirname, int vmid) {
678
679  // add 2 for the file separator and a NULL terminator.
680  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
681
682  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
683  snprintf(name, nbytes, "%s/%d", dirname, vmid);
684
685  return name;
686}
687
688
689// remove file
690//
691// this method removes the file specified by the given path
692//
693static void remove_file(const char* path) {
694
695  int result;
696
697  // if the file is a directory, the following unlink will fail. since
698  // we don't expect to find directories in the user temp directory, we
699  // won't try to handle this situation. even if accidentially or
700  // maliciously planted, the directory's presence won't hurt anything.
701  //
702  RESTARTABLE(::unlink(path), result);
703  if (PrintMiscellaneous && Verbose && result == OS_ERR) {
704    if (errno != ENOENT) {
705      warning("Could not unlink shared memory backing"
706              " store file %s : %s\n", path, os::strerror(errno));
707    }
708  }
709}
710
711
712// cleanup stale shared memory resources
713//
714// This method attempts to remove all stale shared memory files in
715// the named user temporary directory. It scans the named directory
716// for files matching the pattern ^$[0-9]*$. For each file found, the
717// process id is extracted from the file name and a test is run to
718// determine if the process is alive. If the process is not alive,
719// any stale file resources are removed.
720//
721static void cleanup_sharedmem_resources(const char* dirname) {
722
723  int saved_cwd_fd;
724  // open the directory
725  DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
726  if (dirp == NULL) {
727    // directory doesn't exist or is insecure, so there is nothing to cleanup
728    return;
729  }
730
731  // for each entry in the directory that matches the expected file
732  // name pattern, determine if the file resources are stale and if
733  // so, remove the file resources. Note, instrumented HotSpot processes
734  // for this user may start and/or terminate during this search and
735  // remove or create new files in this directory. The behavior of this
736  // loop under these conditions is dependent upon the implementation of
737  // opendir/readdir.
738  //
739  struct dirent* entry;
740  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
741
742  errno = 0;
743  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
744
745    pid_t pid = filename_to_pid(entry->d_name);
746
747    if (pid == 0) {
748
749      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
750
751        // attempt to remove all unexpected files, except "." and ".."
752        unlink(entry->d_name);
753      }
754
755      errno = 0;
756      continue;
757    }
758
759    // we now have a file name that converts to a valid integer
760    // that could represent a process id . if this process id
761    // matches the current process id or the process is not running,
762    // then remove the stale file resources.
763    //
764    // process liveness is detected by sending signal number 0 to
765    // the process id (see kill(2)). if kill determines that the
766    // process does not exist, then the file resources are removed.
767    // if kill determines that that we don't have permission to
768    // signal the process, then the file resources are assumed to
769    // be stale and are removed because the resources for such a
770    // process should be in a different user specific directory.
771    //
772    if ((pid == os::current_process_id()) ||
773        (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
774
775        unlink(entry->d_name);
776    }
777    errno = 0;
778  }
779
780  // close the directory and reset the current working directory
781  close_directory_secure_cwd(dirp, saved_cwd_fd);
782
783  FREE_C_HEAP_ARRAY(char, dbuf);
784}
785
786// make the user specific temporary directory. Returns true if
787// the directory exists and is secure upon return. Returns false
788// if the directory exists but is either a symlink, is otherwise
789// insecure, or if an error occurred.
790//
791static bool make_user_tmp_dir(const char* dirname) {
792
793  // create the directory with 0755 permissions. note that the directory
794  // will be owned by euid::egid, which may not be the same as uid::gid.
795  //
796  if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
797    if (errno == EEXIST) {
798      // The directory already exists and was probably created by another
799      // JVM instance. However, this could also be the result of a
800      // deliberate symlink. Verify that the existing directory is safe.
801      //
802      if (!is_directory_secure(dirname)) {
803        // directory is not secure
804        if (PrintMiscellaneous && Verbose) {
805          warning("%s directory is insecure\n", dirname);
806        }
807        return false;
808      }
809    }
810    else {
811      // we encountered some other failure while attempting
812      // to create the directory
813      //
814      if (PrintMiscellaneous && Verbose) {
815        warning("could not create directory %s: %s\n",
816                dirname, os::strerror(errno));
817      }
818      return false;
819    }
820  }
821  return true;
822}
823
824// create the shared memory file resources
825//
826// This method creates the shared memory file with the given size
827// This method also creates the user specific temporary directory, if
828// it does not yet exist.
829//
830static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
831
832  // make the user temporary directory
833  if (!make_user_tmp_dir(dirname)) {
834    // could not make/find the directory or the found directory
835    // was not secure
836    return -1;
837  }
838
839  int saved_cwd_fd;
840  // open the directory and set the current working directory to it
841  DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
842  if (dirp == NULL) {
843    // Directory doesn't exist or is insecure, so cannot create shared
844    // memory file.
845    return -1;
846  }
847
848  // Open the filename in the current directory.
849  // Cannot use O_TRUNC here; truncation of an existing file has to happen
850  // after the is_file_secure() check below.
851  int result;
852  RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
853  if (result == OS_ERR) {
854    if (PrintMiscellaneous && Verbose) {
855      if (errno == ELOOP) {
856        warning("file %s is a symlink and is not secure\n", filename);
857      } else {
858        warning("could not create file %s: %s\n", filename, os::strerror(errno));
859      }
860    }
861    // close the directory and reset the current working directory
862    close_directory_secure_cwd(dirp, saved_cwd_fd);
863
864    return -1;
865  }
866  // close the directory and reset the current working directory
867  close_directory_secure_cwd(dirp, saved_cwd_fd);
868
869  // save the file descriptor
870  int fd = result;
871
872  // check to see if the file is secure
873  if (!is_file_secure(fd, filename)) {
874    ::close(fd);
875    return -1;
876  }
877
878  // truncate the file to get rid of any existing data
879  RESTARTABLE(::ftruncate(fd, (off_t)0), result);
880  if (result == OS_ERR) {
881    if (PrintMiscellaneous && Verbose) {
882      warning("could not truncate shared memory file: %s\n", os::strerror(errno));
883    }
884    ::close(fd);
885    return -1;
886  }
887  // set the file size
888  RESTARTABLE(::ftruncate(fd, (off_t)size), result);
889  if (result == OS_ERR) {
890    if (PrintMiscellaneous && Verbose) {
891      warning("could not set shared memory file size: %s\n", os::strerror(errno));
892    }
893    ::close(fd);
894    return -1;
895  }
896
897  return fd;
898}
899
900// open the shared memory file for the given user and vmid. returns
901// the file descriptor for the open file or -1 if the file could not
902// be opened.
903//
904static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
905
906  // open the file
907  int result;
908  RESTARTABLE(::open(filename, oflags), result);
909  if (result == OS_ERR) {
910    if (errno == ENOENT) {
911      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
912                  "Process not found", OS_ERR);
913    }
914    else if (errno == EACCES) {
915      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
916                  "Permission denied", OS_ERR);
917    }
918    else {
919      THROW_MSG_(vmSymbols::java_io_IOException(), os::strerror(errno), OS_ERR);
920    }
921  }
922  int fd = result;
923
924  // check to see if the file is secure
925  if (!is_file_secure(fd, filename)) {
926    ::close(fd);
927    return -1;
928  }
929
930  return fd;
931}
932
933// create a named shared memory region. returns the address of the
934// memory region on success or NULL on failure. A return value of
935// NULL will ultimately disable the shared memory feature.
936//
937// On Solaris and Linux, the name space for shared memory objects
938// is the file system name space.
939//
940// A monitoring application attaching to a JVM does not need to know
941// the file system name of the shared memory object. However, it may
942// be convenient for applications to discover the existence of newly
943// created and terminating JVMs by watching the file system name space
944// for files being created or removed.
945//
946static char* mmap_create_shared(size_t size) {
947
948  int result;
949  int fd;
950  char* mapAddress;
951
952  int vmid = os::current_process_id();
953
954  char* user_name = get_user_name(geteuid());
955
956  if (user_name == NULL)
957    return NULL;
958
959  char* dirname = get_user_tmp_dir(user_name);
960  char* filename = get_sharedmem_filename(dirname, vmid);
961
962  // get the short filename
963  char* short_filename = strrchr(filename, '/');
964  if (short_filename == NULL) {
965    short_filename = filename;
966  } else {
967    short_filename++;
968  }
969
970  // cleanup any stale shared memory files
971  cleanup_sharedmem_resources(dirname);
972
973  assert(((size > 0) && (size % os::vm_page_size() == 0)),
974         "unexpected PerfMemory region size");
975
976  fd = create_sharedmem_resources(dirname, short_filename, size);
977
978  FREE_C_HEAP_ARRAY(char, user_name);
979  FREE_C_HEAP_ARRAY(char, dirname);
980
981  if (fd == -1) {
982    FREE_C_HEAP_ARRAY(char, filename);
983    return NULL;
984  }
985
986  mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
987
988  result = ::close(fd);
989  assert(result != OS_ERR, "could not close file");
990
991  if (mapAddress == MAP_FAILED) {
992    if (PrintMiscellaneous && Verbose) {
993      warning("mmap failed -  %s\n", os::strerror(errno));
994    }
995    remove_file(filename);
996    FREE_C_HEAP_ARRAY(char, filename);
997    return NULL;
998  }
999
1000  // save the file name for use in delete_shared_memory()
1001  backing_store_file_name = filename;
1002
1003  // clear the shared memory region
1004  (void)::memset((void*) mapAddress, 0, size);
1005
1006  // it does not go through os api, the operation has to record from here
1007  MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1008    size, CURRENT_PC, mtInternal);
1009
1010  return mapAddress;
1011}
1012
1013// release a named shared memory region
1014//
1015static void unmap_shared(char* addr, size_t bytes) {
1016  os::release_memory(addr, bytes);
1017}
1018
1019// create the PerfData memory region in shared memory.
1020//
1021static char* create_shared_memory(size_t size) {
1022
1023  // create the shared memory region.
1024  return mmap_create_shared(size);
1025}
1026
1027// delete the shared PerfData memory region
1028//
1029static void delete_shared_memory(char* addr, size_t size) {
1030
1031  // cleanup the persistent shared memory resources. since DestroyJavaVM does
1032  // not support unloading of the JVM, unmapping of the memory resource is
1033  // not performed. The memory will be reclaimed by the OS upon termination of
1034  // the process. The backing store file is deleted from the file system.
1035
1036  assert(!PerfDisableSharedMem, "shouldn't be here");
1037
1038  if (backing_store_file_name != NULL) {
1039    remove_file(backing_store_file_name);
1040    // Don't.. Free heap memory could deadlock os::abort() if it is called
1041    // from signal handler. OS will reclaim the heap memory.
1042    // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1043    backing_store_file_name = NULL;
1044  }
1045}
1046
1047// return the size of the file for the given file descriptor
1048// or 0 if it is not a valid size for a shared memory file
1049//
1050static size_t sharedmem_filesize(int fd, TRAPS) {
1051
1052  struct stat statbuf;
1053  int result;
1054
1055  RESTARTABLE(::fstat(fd, &statbuf), result);
1056  if (result == OS_ERR) {
1057    if (PrintMiscellaneous && Verbose) {
1058      warning("fstat failed: %s\n", os::strerror(errno));
1059    }
1060    THROW_MSG_0(vmSymbols::java_io_IOException(),
1061                "Could not determine PerfMemory size");
1062  }
1063
1064  if ((statbuf.st_size == 0) ||
1065     ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1066    THROW_MSG_0(vmSymbols::java_lang_Exception(),
1067                "Invalid PerfMemory size");
1068  }
1069
1070  return (size_t)statbuf.st_size;
1071}
1072
1073// attach to a named shared memory region.
1074//
1075static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1076
1077  char* mapAddress;
1078  int result;
1079  int fd;
1080  size_t size = 0;
1081  const char* luser = NULL;
1082
1083  int mmap_prot;
1084  int file_flags;
1085
1086  ResourceMark rm;
1087
1088  // map the high level access mode to the appropriate permission
1089  // constructs for the file and the shared memory mapping.
1090  if (mode == PerfMemory::PERF_MODE_RO) {
1091    mmap_prot = PROT_READ;
1092    file_flags = O_RDONLY | O_NOFOLLOW;
1093  }
1094  else if (mode == PerfMemory::PERF_MODE_RW) {
1095#ifdef LATER
1096    mmap_prot = PROT_READ | PROT_WRITE;
1097    file_flags = O_RDWR | O_NOFOLLOW;
1098#else
1099    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1100              "Unsupported access mode");
1101#endif
1102  }
1103  else {
1104    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1105              "Illegal access mode");
1106  }
1107
1108  if (user == NULL || strlen(user) == 0) {
1109    luser = get_user_name(vmid, CHECK);
1110  }
1111  else {
1112    luser = user;
1113  }
1114
1115  if (luser == NULL) {
1116    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1117              "Could not map vmid to user Name");
1118  }
1119
1120  char* dirname = get_user_tmp_dir(luser);
1121
1122  // since we don't follow symbolic links when creating the backing
1123  // store file, we don't follow them when attaching either.
1124  //
1125  if (!is_directory_secure(dirname)) {
1126    FREE_C_HEAP_ARRAY(char, dirname);
1127    if (luser != user) {
1128      FREE_C_HEAP_ARRAY(char, luser);
1129    }
1130    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1131              "Process not found");
1132  }
1133
1134  char* filename = get_sharedmem_filename(dirname, vmid);
1135
1136  // copy heap memory to resource memory. the open_sharedmem_file
1137  // method below need to use the filename, but could throw an
1138  // exception. using a resource array prevents the leak that
1139  // would otherwise occur.
1140  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1141  strcpy(rfilename, filename);
1142
1143  // free the c heap resources that are no longer needed
1144  if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1145  FREE_C_HEAP_ARRAY(char, dirname);
1146  FREE_C_HEAP_ARRAY(char, filename);
1147
1148  // open the shared memory file for the give vmid
1149  fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1150
1151  if (fd == OS_ERR) {
1152    return;
1153  }
1154
1155  if (HAS_PENDING_EXCEPTION) {
1156    ::close(fd);
1157    return;
1158  }
1159
1160  if (*sizep == 0) {
1161    size = sharedmem_filesize(fd, CHECK);
1162  } else {
1163    size = *sizep;
1164  }
1165
1166  assert(size > 0, "unexpected size <= 0");
1167
1168  mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1169
1170  result = ::close(fd);
1171  assert(result != OS_ERR, "could not close file");
1172
1173  if (mapAddress == MAP_FAILED) {
1174    if (PrintMiscellaneous && Verbose) {
1175      warning("mmap failed: %s\n", os::strerror(errno));
1176    }
1177    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1178              "Could not map PerfMemory");
1179  }
1180
1181  // it does not go through os api, the operation has to record from here
1182  MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1183    size, CURRENT_PC, mtInternal);
1184
1185  *addr = mapAddress;
1186  *sizep = size;
1187
1188  if (PerfTraceMemOps) {
1189    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1190               INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
1191  }
1192}
1193
1194
1195
1196
1197// create the PerfData memory region
1198//
1199// This method creates the memory region used to store performance
1200// data for the JVM. The memory may be created in standard or
1201// shared memory.
1202//
1203void PerfMemory::create_memory_region(size_t size) {
1204
1205  if (PerfDisableSharedMem) {
1206    // do not share the memory for the performance data.
1207    _start = create_standard_memory(size);
1208  }
1209  else {
1210    _start = create_shared_memory(size);
1211    if (_start == NULL) {
1212
1213      // creation of the shared memory region failed, attempt
1214      // to create a contiguous, non-shared memory region instead.
1215      //
1216      if (PrintMiscellaneous && Verbose) {
1217        warning("Reverting to non-shared PerfMemory region.\n");
1218      }
1219      PerfDisableSharedMem = true;
1220      _start = create_standard_memory(size);
1221    }
1222  }
1223
1224  if (_start != NULL) _capacity = size;
1225
1226}
1227
1228// delete the PerfData memory region
1229//
1230// This method deletes the memory region used to store performance
1231// data for the JVM. The memory region indicated by the <address, size>
1232// tuple will be inaccessible after a call to this method.
1233//
1234void PerfMemory::delete_memory_region() {
1235
1236  assert((start() != NULL && capacity() > 0), "verify proper state");
1237
1238  // If user specifies PerfDataSaveFile, it will save the performance data
1239  // to the specified file name no matter whether PerfDataSaveToFile is specified
1240  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1241  // -XX:+PerfDataSaveToFile.
1242  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1243    save_memory_to_file(start(), capacity());
1244  }
1245
1246  if (PerfDisableSharedMem) {
1247    delete_standard_memory(start(), capacity());
1248  }
1249  else {
1250    delete_shared_memory(start(), capacity());
1251  }
1252}
1253
1254// attach to the PerfData memory region for another JVM
1255//
1256// This method returns an <address, size> tuple that points to
1257// a memory buffer that is kept reasonably synchronized with
1258// the PerfData memory region for the indicated JVM. This
1259// buffer may be kept in synchronization via shared memory
1260// or some other mechanism that keeps the buffer updated.
1261//
1262// If the JVM chooses not to support the attachability feature,
1263// this method should throw an UnsupportedOperation exception.
1264//
1265// This implementation utilizes named shared memory to map
1266// the indicated process's PerfData memory region into this JVMs
1267// address space.
1268//
1269void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1270
1271  if (vmid == 0 || vmid == os::current_process_id()) {
1272     *addrp = start();
1273     *sizep = capacity();
1274     return;
1275  }
1276
1277  mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1278}
1279
1280// detach from the PerfData memory region of another JVM
1281//
1282// This method detaches the PerfData memory region of another
1283// JVM, specified as an <address, size> tuple of a buffer
1284// in this process's address space. This method may perform
1285// arbitrary actions to accomplish the detachment. The memory
1286// region specified by <address, size> will be inaccessible after
1287// a call to this method.
1288//
1289// If the JVM chooses not to support the attachability feature,
1290// this method should throw an UnsupportedOperation exception.
1291//
1292// This implementation utilizes named shared memory to detach
1293// the indicated process's PerfData memory region from this
1294// process's address space.
1295//
1296void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1297
1298  assert(addr != 0, "address sanity check");
1299  assert(bytes > 0, "capacity sanity check");
1300
1301  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1302    // prevent accidental detachment of this process's PerfMemory region
1303    return;
1304  }
1305
1306  unmap_shared(addr, bytes);
1307}
1308