os_solaris.cpp revision 9842:4055f3ec41cd
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_solaris.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "os_solaris.inline.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "runtime/vm_version.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/vmError.hpp"
72
73// put OS-includes here
74# include <dlfcn.h>
75# include <errno.h>
76# include <exception>
77# include <link.h>
78# include <poll.h>
79# include <pthread.h>
80# include <pwd.h>
81# include <schedctl.h>
82# include <setjmp.h>
83# include <signal.h>
84# include <stdio.h>
85# include <alloca.h>
86# include <sys/filio.h>
87# include <sys/ipc.h>
88# include <sys/lwp.h>
89# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
90# include <sys/mman.h>
91# include <sys/processor.h>
92# include <sys/procset.h>
93# include <sys/pset.h>
94# include <sys/resource.h>
95# include <sys/shm.h>
96# include <sys/socket.h>
97# include <sys/stat.h>
98# include <sys/systeminfo.h>
99# include <sys/time.h>
100# include <sys/times.h>
101# include <sys/types.h>
102# include <sys/wait.h>
103# include <sys/utsname.h>
104# include <thread.h>
105# include <unistd.h>
106# include <sys/priocntl.h>
107# include <sys/rtpriocntl.h>
108# include <sys/tspriocntl.h>
109# include <sys/iapriocntl.h>
110# include <sys/fxpriocntl.h>
111# include <sys/loadavg.h>
112# include <string.h>
113# include <stdio.h>
114
115# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
116# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
117
118#define MAX_PATH (2 * K)
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123
124// Here are some liblgrp types from sys/lgrp_user.h to be able to
125// compile on older systems without this header file.
126
127#ifndef MADV_ACCESS_LWP
128  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
129#endif
130#ifndef MADV_ACCESS_MANY
131  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
132#endif
133
134#ifndef LGRP_RSRC_CPU
135  #define LGRP_RSRC_CPU      0       /* CPU resources */
136#endif
137#ifndef LGRP_RSRC_MEM
138  #define LGRP_RSRC_MEM      1       /* memory resources */
139#endif
140
141// Values for ThreadPriorityPolicy == 1
142int prio_policy1[CriticalPriority+1] = {
143  -99999,  0, 16,  32,  48,  64,
144          80, 96, 112, 124, 127, 127 };
145
146// System parameters used internally
147static clock_t clock_tics_per_sec = 100;
148
149// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
150static bool enabled_extended_FILE_stdio = false;
151
152// For diagnostics to print a message once. see run_periodic_checks
153static bool check_addr0_done = false;
154static sigset_t check_signal_done;
155static bool check_signals = true;
156
157address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
158address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
159
160address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
161
162
163// "default" initializers for missing libc APIs
164extern "C" {
165  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
166  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
167
168  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
169  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
170}
171
172// "default" initializers for pthread-based synchronization
173extern "C" {
174  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
175  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
176}
177
178static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
179
180static inline size_t adjust_stack_size(address base, size_t size) {
181  if ((ssize_t)size < 0) {
182    // 4759953: Compensate for ridiculous stack size.
183    size = max_intx;
184  }
185  if (size > (size_t)base) {
186    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
187    size = (size_t)base;
188  }
189  return size;
190}
191
192static inline stack_t get_stack_info() {
193  stack_t st;
194  int retval = thr_stksegment(&st);
195  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
196  assert(retval == 0, "incorrect return value from thr_stksegment");
197  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
198  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
199  return st;
200}
201
202address os::current_stack_base() {
203  int r = thr_main();
204  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
205  bool is_primordial_thread = r;
206
207  // Workaround 4352906, avoid calls to thr_stksegment by
208  // thr_main after the first one (it looks like we trash
209  // some data, causing the value for ss_sp to be incorrect).
210  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
211    stack_t st = get_stack_info();
212    if (is_primordial_thread) {
213      // cache initial value of stack base
214      os::Solaris::_main_stack_base = (address)st.ss_sp;
215    }
216    return (address)st.ss_sp;
217  } else {
218    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
219    return os::Solaris::_main_stack_base;
220  }
221}
222
223size_t os::current_stack_size() {
224  size_t size;
225
226  int r = thr_main();
227  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
228  if (!r) {
229    size = get_stack_info().ss_size;
230  } else {
231    struct rlimit limits;
232    getrlimit(RLIMIT_STACK, &limits);
233    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
234  }
235  // base may not be page aligned
236  address base = current_stack_base();
237  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
238  return (size_t)(base - bottom);
239}
240
241struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
242  return localtime_r(clock, res);
243}
244
245void os::Solaris::try_enable_extended_io() {
246  typedef int (*enable_extended_FILE_stdio_t)(int, int);
247
248  if (!UseExtendedFileIO) {
249    return;
250  }
251
252  enable_extended_FILE_stdio_t enabler =
253    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
254                                         "enable_extended_FILE_stdio");
255  if (enabler) {
256    enabler(-1, -1);
257  }
258}
259
260static int _processors_online = 0;
261
262jint os::Solaris::_os_thread_limit = 0;
263volatile jint os::Solaris::_os_thread_count = 0;
264
265julong os::available_memory() {
266  return Solaris::available_memory();
267}
268
269julong os::Solaris::available_memory() {
270  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
271}
272
273julong os::Solaris::_physical_memory = 0;
274
275julong os::physical_memory() {
276  return Solaris::physical_memory();
277}
278
279static hrtime_t first_hrtime = 0;
280static const hrtime_t hrtime_hz = 1000*1000*1000;
281static volatile hrtime_t max_hrtime = 0;
282
283
284void os::Solaris::initialize_system_info() {
285  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
286  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
287  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
288                                     (julong)sysconf(_SC_PAGESIZE);
289}
290
291int os::active_processor_count() {
292  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
293  pid_t pid = getpid();
294  psetid_t pset = PS_NONE;
295  // Are we running in a processor set or is there any processor set around?
296  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
297    uint_t pset_cpus;
298    // Query the number of cpus available to us.
299    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
300      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
301      _processors_online = pset_cpus;
302      return pset_cpus;
303    }
304  }
305  // Otherwise return number of online cpus
306  return online_cpus;
307}
308
309static bool find_processors_in_pset(psetid_t        pset,
310                                    processorid_t** id_array,
311                                    uint_t*         id_length) {
312  bool result = false;
313  // Find the number of processors in the processor set.
314  if (pset_info(pset, NULL, id_length, NULL) == 0) {
315    // Make up an array to hold their ids.
316    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
317    // Fill in the array with their processor ids.
318    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
319      result = true;
320    }
321  }
322  return result;
323}
324
325// Callers of find_processors_online() must tolerate imprecise results --
326// the system configuration can change asynchronously because of DR
327// or explicit psradm operations.
328//
329// We also need to take care that the loop (below) terminates as the
330// number of processors online can change between the _SC_NPROCESSORS_ONLN
331// request and the loop that builds the list of processor ids.   Unfortunately
332// there's no reliable way to determine the maximum valid processor id,
333// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
334// man pages, which claim the processor id set is "sparse, but
335// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
336// exit the loop.
337//
338// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
339// not available on S8.0.
340
341static bool find_processors_online(processorid_t** id_array,
342                                   uint*           id_length) {
343  const processorid_t MAX_PROCESSOR_ID = 100000;
344  // Find the number of processors online.
345  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
346  // Make up an array to hold their ids.
347  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
348  // Processors need not be numbered consecutively.
349  long found = 0;
350  processorid_t next = 0;
351  while (found < *id_length && next < MAX_PROCESSOR_ID) {
352    processor_info_t info;
353    if (processor_info(next, &info) == 0) {
354      // NB, PI_NOINTR processors are effectively online ...
355      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
356        (*id_array)[found] = next;
357        found += 1;
358      }
359    }
360    next += 1;
361  }
362  if (found < *id_length) {
363    // The loop above didn't identify the expected number of processors.
364    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
365    // and re-running the loop, above, but there's no guarantee of progress
366    // if the system configuration is in flux.  Instead, we just return what
367    // we've got.  Note that in the worst case find_processors_online() could
368    // return an empty set.  (As a fall-back in the case of the empty set we
369    // could just return the ID of the current processor).
370    *id_length = found;
371  }
372
373  return true;
374}
375
376static bool assign_distribution(processorid_t* id_array,
377                                uint           id_length,
378                                uint*          distribution,
379                                uint           distribution_length) {
380  // We assume we can assign processorid_t's to uint's.
381  assert(sizeof(processorid_t) == sizeof(uint),
382         "can't convert processorid_t to uint");
383  // Quick check to see if we won't succeed.
384  if (id_length < distribution_length) {
385    return false;
386  }
387  // Assign processor ids to the distribution.
388  // Try to shuffle processors to distribute work across boards,
389  // assuming 4 processors per board.
390  const uint processors_per_board = ProcessDistributionStride;
391  // Find the maximum processor id.
392  processorid_t max_id = 0;
393  for (uint m = 0; m < id_length; m += 1) {
394    max_id = MAX2(max_id, id_array[m]);
395  }
396  // The next id, to limit loops.
397  const processorid_t limit_id = max_id + 1;
398  // Make up markers for available processors.
399  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
400  for (uint c = 0; c < limit_id; c += 1) {
401    available_id[c] = false;
402  }
403  for (uint a = 0; a < id_length; a += 1) {
404    available_id[id_array[a]] = true;
405  }
406  // Step by "boards", then by "slot", copying to "assigned".
407  // NEEDS_CLEANUP: The assignment of processors should be stateful,
408  //                remembering which processors have been assigned by
409  //                previous calls, etc., so as to distribute several
410  //                independent calls of this method.  What we'd like is
411  //                It would be nice to have an API that let us ask
412  //                how many processes are bound to a processor,
413  //                but we don't have that, either.
414  //                In the short term, "board" is static so that
415  //                subsequent distributions don't all start at board 0.
416  static uint board = 0;
417  uint assigned = 0;
418  // Until we've found enough processors ....
419  while (assigned < distribution_length) {
420    // ... find the next available processor in the board.
421    for (uint slot = 0; slot < processors_per_board; slot += 1) {
422      uint try_id = board * processors_per_board + slot;
423      if ((try_id < limit_id) && (available_id[try_id] == true)) {
424        distribution[assigned] = try_id;
425        available_id[try_id] = false;
426        assigned += 1;
427        break;
428      }
429    }
430    board += 1;
431    if (board * processors_per_board + 0 >= limit_id) {
432      board = 0;
433    }
434  }
435  if (available_id != NULL) {
436    FREE_C_HEAP_ARRAY(bool, available_id);
437  }
438  return true;
439}
440
441void os::set_native_thread_name(const char *name) {
442  // Not yet implemented.
443  return;
444}
445
446bool os::distribute_processes(uint length, uint* distribution) {
447  bool result = false;
448  // Find the processor id's of all the available CPUs.
449  processorid_t* id_array  = NULL;
450  uint           id_length = 0;
451  // There are some races between querying information and using it,
452  // since processor sets can change dynamically.
453  psetid_t pset = PS_NONE;
454  // Are we running in a processor set?
455  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
456    result = find_processors_in_pset(pset, &id_array, &id_length);
457  } else {
458    result = find_processors_online(&id_array, &id_length);
459  }
460  if (result == true) {
461    if (id_length >= length) {
462      result = assign_distribution(id_array, id_length, distribution, length);
463    } else {
464      result = false;
465    }
466  }
467  if (id_array != NULL) {
468    FREE_C_HEAP_ARRAY(processorid_t, id_array);
469  }
470  return result;
471}
472
473bool os::bind_to_processor(uint processor_id) {
474  // We assume that a processorid_t can be stored in a uint.
475  assert(sizeof(uint) == sizeof(processorid_t),
476         "can't convert uint to processorid_t");
477  int bind_result =
478    processor_bind(P_LWPID,                       // bind LWP.
479                   P_MYID,                        // bind current LWP.
480                   (processorid_t) processor_id,  // id.
481                   NULL);                         // don't return old binding.
482  return (bind_result == 0);
483}
484
485// Return true if user is running as root.
486
487bool os::have_special_privileges() {
488  static bool init = false;
489  static bool privileges = false;
490  if (!init) {
491    privileges = (getuid() != geteuid()) || (getgid() != getegid());
492    init = true;
493  }
494  return privileges;
495}
496
497
498void os::init_system_properties_values() {
499  // The next steps are taken in the product version:
500  //
501  // Obtain the JAVA_HOME value from the location of libjvm.so.
502  // This library should be located at:
503  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
504  //
505  // If "/jre/lib/" appears at the right place in the path, then we
506  // assume libjvm.so is installed in a JDK and we use this path.
507  //
508  // Otherwise exit with message: "Could not create the Java virtual machine."
509  //
510  // The following extra steps are taken in the debugging version:
511  //
512  // If "/jre/lib/" does NOT appear at the right place in the path
513  // instead of exit check for $JAVA_HOME environment variable.
514  //
515  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
516  // then we append a fake suffix "hotspot/libjvm.so" to this path so
517  // it looks like libjvm.so is installed there
518  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
519  //
520  // Otherwise exit.
521  //
522  // Important note: if the location of libjvm.so changes this
523  // code needs to be changed accordingly.
524
525// Base path of extensions installed on the system.
526#define SYS_EXT_DIR     "/usr/jdk/packages"
527#define EXTENSIONS_DIR  "/lib/ext"
528
529  char cpu_arch[12];
530  // Buffer that fits several sprintfs.
531  // Note that the space for the colon and the trailing null are provided
532  // by the nulls included by the sizeof operator.
533  const size_t bufsize =
534    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
535         sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
536         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
537  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
538
539  // sysclasspath, java_home, dll_dir
540  {
541    char *pslash;
542    os::jvm_path(buf, bufsize);
543
544    // Found the full path to libjvm.so.
545    // Now cut the path to <java_home>/jre if we can.
546    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
547    pslash = strrchr(buf, '/');
548    if (pslash != NULL) {
549      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
550    }
551    Arguments::set_dll_dir(buf);
552
553    if (pslash != NULL) {
554      pslash = strrchr(buf, '/');
555      if (pslash != NULL) {
556        *pslash = '\0';          // Get rid of /<arch>.
557        pslash = strrchr(buf, '/');
558        if (pslash != NULL) {
559          *pslash = '\0';        // Get rid of /lib.
560        }
561      }
562    }
563    Arguments::set_java_home(buf);
564    set_boot_path('/', ':');
565  }
566
567  // Where to look for native libraries.
568  {
569    // Use dlinfo() to determine the correct java.library.path.
570    //
571    // If we're launched by the Java launcher, and the user
572    // does not set java.library.path explicitly on the commandline,
573    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
574    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
575    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
576    // /usr/lib), which is exactly what we want.
577    //
578    // If the user does set java.library.path, it completely
579    // overwrites this setting, and always has.
580    //
581    // If we're not launched by the Java launcher, we may
582    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
583    // settings.  Again, dlinfo does exactly what we want.
584
585    Dl_serinfo     info_sz, *info = &info_sz;
586    Dl_serpath     *path;
587    char           *library_path;
588    char           *common_path = buf;
589
590    // Determine search path count and required buffer size.
591    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
592      FREE_C_HEAP_ARRAY(char, buf);
593      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
594    }
595
596    // Allocate new buffer and initialize.
597    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
598    info->dls_size = info_sz.dls_size;
599    info->dls_cnt = info_sz.dls_cnt;
600
601    // Obtain search path information.
602    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
603      FREE_C_HEAP_ARRAY(char, buf);
604      FREE_C_HEAP_ARRAY(char, info);
605      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
606    }
607
608    path = &info->dls_serpath[0];
609
610    // Note: Due to a legacy implementation, most of the library path
611    // is set in the launcher. This was to accomodate linking restrictions
612    // on legacy Solaris implementations (which are no longer supported).
613    // Eventually, all the library path setting will be done here.
614    //
615    // However, to prevent the proliferation of improperly built native
616    // libraries, the new path component /usr/jdk/packages is added here.
617
618    // Determine the actual CPU architecture.
619    sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
620#ifdef _LP64
621    // If we are a 64-bit vm, perform the following translations:
622    //   sparc   -> sparcv9
623    //   i386    -> amd64
624    if (strcmp(cpu_arch, "sparc") == 0) {
625      strcat(cpu_arch, "v9");
626    } else if (strcmp(cpu_arch, "i386") == 0) {
627      strcpy(cpu_arch, "amd64");
628    }
629#endif
630
631    // Construct the invariant part of ld_library_path.
632    sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
633
634    // Struct size is more than sufficient for the path components obtained
635    // through the dlinfo() call, so only add additional space for the path
636    // components explicitly added here.
637    size_t library_path_size = info->dls_size + strlen(common_path);
638    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
639    library_path[0] = '\0';
640
641    // Construct the desired Java library path from the linker's library
642    // search path.
643    //
644    // For compatibility, it is optimal that we insert the additional path
645    // components specific to the Java VM after those components specified
646    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
647    // infrastructure.
648    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
649      strcpy(library_path, common_path);
650    } else {
651      int inserted = 0;
652      int i;
653      for (i = 0; i < info->dls_cnt; i++, path++) {
654        uint_t flags = path->dls_flags & LA_SER_MASK;
655        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
656          strcat(library_path, common_path);
657          strcat(library_path, os::path_separator());
658          inserted = 1;
659        }
660        strcat(library_path, path->dls_name);
661        strcat(library_path, os::path_separator());
662      }
663      // Eliminate trailing path separator.
664      library_path[strlen(library_path)-1] = '\0';
665    }
666
667    // happens before argument parsing - can't use a trace flag
668    // tty->print_raw("init_system_properties_values: native lib path: ");
669    // tty->print_raw_cr(library_path);
670
671    // Callee copies into its own buffer.
672    Arguments::set_library_path(library_path);
673
674    FREE_C_HEAP_ARRAY(char, library_path);
675    FREE_C_HEAP_ARRAY(char, info);
676  }
677
678  // Extensions directories.
679  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
680  Arguments::set_ext_dirs(buf);
681
682  FREE_C_HEAP_ARRAY(char, buf);
683
684#undef SYS_EXT_DIR
685#undef EXTENSIONS_DIR
686}
687
688void os::breakpoint() {
689  BREAKPOINT;
690}
691
692bool os::obsolete_option(const JavaVMOption *option) {
693  if (!strncmp(option->optionString, "-Xt", 3)) {
694    return true;
695  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
696    return true;
697  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
698    return true;
699  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
700    return true;
701  }
702  return false;
703}
704
705bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
706  address  stackStart  = (address)thread->stack_base();
707  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
708  if (sp < stackStart && sp >= stackEnd) return true;
709  return false;
710}
711
712extern "C" void breakpoint() {
713  // use debugger to set breakpoint here
714}
715
716static thread_t main_thread;
717
718// Thread start routine for all new Java threads
719extern "C" void* java_start(void* thread_addr) {
720  // Try to randomize the cache line index of hot stack frames.
721  // This helps when threads of the same stack traces evict each other's
722  // cache lines. The threads can be either from the same JVM instance, or
723  // from different JVM instances. The benefit is especially true for
724  // processors with hyperthreading technology.
725  static int counter = 0;
726  int pid = os::current_process_id();
727  alloca(((pid ^ counter++) & 7) * 128);
728
729  int prio;
730  Thread* thread = (Thread*)thread_addr;
731
732  thread->initialize_thread_current();
733
734  OSThread* osthr = thread->osthread();
735
736  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
737  thread->_schedctl = (void *) schedctl_init();
738
739  if (UseNUMA) {
740    int lgrp_id = os::numa_get_group_id();
741    if (lgrp_id != -1) {
742      thread->set_lgrp_id(lgrp_id);
743    }
744  }
745
746  // If the creator called set priority before we started,
747  // we need to call set_native_priority now that we have an lwp.
748  // We used to get the priority from thr_getprio (we called
749  // thr_setprio way back in create_thread) and pass it to
750  // set_native_priority, but Solaris scales the priority
751  // in java_to_os_priority, so when we read it back here,
752  // we pass trash to set_native_priority instead of what's
753  // in java_to_os_priority. So we save the native priority
754  // in the osThread and recall it here.
755
756  if (osthr->thread_id() != -1) {
757    if (UseThreadPriorities) {
758      int prio = osthr->native_priority();
759      if (ThreadPriorityVerbose) {
760        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
761                      INTPTR_FORMAT ", setting priority: %d\n",
762                      osthr->thread_id(), osthr->lwp_id(), prio);
763      }
764      os::set_native_priority(thread, prio);
765    }
766  } else if (ThreadPriorityVerbose) {
767    warning("Can't set priority in _start routine, thread id hasn't been set\n");
768  }
769
770  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
771
772  // initialize signal mask for this thread
773  os::Solaris::hotspot_sigmask(thread);
774
775  thread->run();
776
777  // One less thread is executing
778  // When the VMThread gets here, the main thread may have already exited
779  // which frees the CodeHeap containing the Atomic::dec code
780  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
781    Atomic::dec(&os::Solaris::_os_thread_count);
782  }
783
784  if (UseDetachedThreads) {
785    thr_exit(NULL);
786    ShouldNotReachHere();
787  }
788  return NULL;
789}
790
791static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
792  // Allocate the OSThread object
793  OSThread* osthread = new OSThread(NULL, NULL);
794  if (osthread == NULL) return NULL;
795
796  // Store info on the Solaris thread into the OSThread
797  osthread->set_thread_id(thread_id);
798  osthread->set_lwp_id(_lwp_self());
799  thread->_schedctl = (void *) schedctl_init();
800
801  if (UseNUMA) {
802    int lgrp_id = os::numa_get_group_id();
803    if (lgrp_id != -1) {
804      thread->set_lgrp_id(lgrp_id);
805    }
806  }
807
808  if (ThreadPriorityVerbose) {
809    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
810                  osthread->thread_id(), osthread->lwp_id());
811  }
812
813  // Initial thread state is INITIALIZED, not SUSPENDED
814  osthread->set_state(INITIALIZED);
815
816  return osthread;
817}
818
819void os::Solaris::hotspot_sigmask(Thread* thread) {
820  //Save caller's signal mask
821  sigset_t sigmask;
822  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
823  OSThread *osthread = thread->osthread();
824  osthread->set_caller_sigmask(sigmask);
825
826  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
827  if (!ReduceSignalUsage) {
828    if (thread->is_VM_thread()) {
829      // Only the VM thread handles BREAK_SIGNAL ...
830      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
831    } else {
832      // ... all other threads block BREAK_SIGNAL
833      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
834      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
835    }
836  }
837}
838
839bool os::create_attached_thread(JavaThread* thread) {
840#ifdef ASSERT
841  thread->verify_not_published();
842#endif
843  OSThread* osthread = create_os_thread(thread, thr_self());
844  if (osthread == NULL) {
845    return false;
846  }
847
848  // Initial thread state is RUNNABLE
849  osthread->set_state(RUNNABLE);
850  thread->set_osthread(osthread);
851
852  // initialize signal mask for this thread
853  // and save the caller's signal mask
854  os::Solaris::hotspot_sigmask(thread);
855
856  return true;
857}
858
859bool os::create_main_thread(JavaThread* thread) {
860#ifdef ASSERT
861  thread->verify_not_published();
862#endif
863  if (_starting_thread == NULL) {
864    _starting_thread = create_os_thread(thread, main_thread);
865    if (_starting_thread == NULL) {
866      return false;
867    }
868  }
869
870  // The primodial thread is runnable from the start
871  _starting_thread->set_state(RUNNABLE);
872
873  thread->set_osthread(_starting_thread);
874
875  // initialize signal mask for this thread
876  // and save the caller's signal mask
877  os::Solaris::hotspot_sigmask(thread);
878
879  return true;
880}
881
882
883bool os::create_thread(Thread* thread, ThreadType thr_type,
884                       size_t stack_size) {
885  // Allocate the OSThread object
886  OSThread* osthread = new OSThread(NULL, NULL);
887  if (osthread == NULL) {
888    return false;
889  }
890
891  if (ThreadPriorityVerbose) {
892    char *thrtyp;
893    switch (thr_type) {
894    case vm_thread:
895      thrtyp = (char *)"vm";
896      break;
897    case cgc_thread:
898      thrtyp = (char *)"cgc";
899      break;
900    case pgc_thread:
901      thrtyp = (char *)"pgc";
902      break;
903    case java_thread:
904      thrtyp = (char *)"java";
905      break;
906    case compiler_thread:
907      thrtyp = (char *)"compiler";
908      break;
909    case watcher_thread:
910      thrtyp = (char *)"watcher";
911      break;
912    default:
913      thrtyp = (char *)"unknown";
914      break;
915    }
916    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
917  }
918
919  // Calculate stack size if it's not specified by caller.
920  if (stack_size == 0) {
921    // The default stack size 1M (2M for LP64).
922    stack_size = (BytesPerWord >> 2) * K * K;
923
924    switch (thr_type) {
925    case os::java_thread:
926      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
927      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
928      break;
929    case os::compiler_thread:
930      if (CompilerThreadStackSize > 0) {
931        stack_size = (size_t)(CompilerThreadStackSize * K);
932        break;
933      } // else fall through:
934        // use VMThreadStackSize if CompilerThreadStackSize is not defined
935    case os::vm_thread:
936    case os::pgc_thread:
937    case os::cgc_thread:
938    case os::watcher_thread:
939      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
940      break;
941    }
942  }
943  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
944
945  // Initial state is ALLOCATED but not INITIALIZED
946  osthread->set_state(ALLOCATED);
947
948  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
949    // We got lots of threads. Check if we still have some address space left.
950    // Need to be at least 5Mb of unreserved address space. We do check by
951    // trying to reserve some.
952    const size_t VirtualMemoryBangSize = 20*K*K;
953    char* mem = os::reserve_memory(VirtualMemoryBangSize);
954    if (mem == NULL) {
955      delete osthread;
956      return false;
957    } else {
958      // Release the memory again
959      os::release_memory(mem, VirtualMemoryBangSize);
960    }
961  }
962
963  // Setup osthread because the child thread may need it.
964  thread->set_osthread(osthread);
965
966  // Create the Solaris thread
967  thread_t tid = 0;
968  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
969  int      status;
970
971  // Mark that we don't have an lwp or thread id yet.
972  // In case we attempt to set the priority before the thread starts.
973  osthread->set_lwp_id(-1);
974  osthread->set_thread_id(-1);
975
976  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
977  if (status != 0) {
978    if (PrintMiscellaneous && (Verbose || WizardMode)) {
979      perror("os::create_thread");
980    }
981    thread->set_osthread(NULL);
982    // Need to clean up stuff we've allocated so far
983    delete osthread;
984    return false;
985  }
986
987  Atomic::inc(&os::Solaris::_os_thread_count);
988
989  // Store info on the Solaris thread into the OSThread
990  osthread->set_thread_id(tid);
991
992  // Remember that we created this thread so we can set priority on it
993  osthread->set_vm_created();
994
995  // Initial thread state is INITIALIZED, not SUSPENDED
996  osthread->set_state(INITIALIZED);
997
998  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
999  return true;
1000}
1001
1002// defined for >= Solaris 10. This allows builds on earlier versions
1003// of Solaris to take advantage of the newly reserved Solaris JVM signals.
1004// With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1005// was SIGJVM1.
1006//
1007#if !defined(SIGJVM1)
1008  #define SIGJVM1 39
1009  #define SIGJVM2 40
1010#endif
1011
1012debug_only(static bool signal_sets_initialized = false);
1013static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1014
1015int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1016
1017bool os::Solaris::is_sig_ignored(int sig) {
1018  struct sigaction oact;
1019  sigaction(sig, (struct sigaction*)NULL, &oact);
1020  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1021                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1022  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1023    return true;
1024  } else {
1025    return false;
1026  }
1027}
1028
1029// Note: SIGRTMIN is a macro that calls sysconf() so it will
1030// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1031static bool isJVM1available() {
1032  return SIGJVM1 < SIGRTMIN;
1033}
1034
1035void os::Solaris::signal_sets_init() {
1036  // Should also have an assertion stating we are still single-threaded.
1037  assert(!signal_sets_initialized, "Already initialized");
1038  // Fill in signals that are necessarily unblocked for all threads in
1039  // the VM. Currently, we unblock the following signals:
1040  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1041  //                         by -Xrs (=ReduceSignalUsage));
1042  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1043  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1044  // the dispositions or masks wrt these signals.
1045  // Programs embedding the VM that want to use the above signals for their
1046  // own purposes must, at this time, use the "-Xrs" option to prevent
1047  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1048  // (See bug 4345157, and other related bugs).
1049  // In reality, though, unblocking these signals is really a nop, since
1050  // these signals are not blocked by default.
1051  sigemptyset(&unblocked_sigs);
1052  sigemptyset(&allowdebug_blocked_sigs);
1053  sigaddset(&unblocked_sigs, SIGILL);
1054  sigaddset(&unblocked_sigs, SIGSEGV);
1055  sigaddset(&unblocked_sigs, SIGBUS);
1056  sigaddset(&unblocked_sigs, SIGFPE);
1057
1058  // Always true on Solaris 10+
1059  guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1060  os::Solaris::set_SIGasync(SIGJVM2);
1061
1062  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1063
1064  if (!ReduceSignalUsage) {
1065    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1066      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1067      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1068    }
1069    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1070      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1071      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1072    }
1073    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1074      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1075      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1076    }
1077  }
1078  // Fill in signals that are blocked by all but the VM thread.
1079  sigemptyset(&vm_sigs);
1080  if (!ReduceSignalUsage) {
1081    sigaddset(&vm_sigs, BREAK_SIGNAL);
1082  }
1083  debug_only(signal_sets_initialized = true);
1084
1085  // For diagnostics only used in run_periodic_checks
1086  sigemptyset(&check_signal_done);
1087}
1088
1089// These are signals that are unblocked while a thread is running Java.
1090// (For some reason, they get blocked by default.)
1091sigset_t* os::Solaris::unblocked_signals() {
1092  assert(signal_sets_initialized, "Not initialized");
1093  return &unblocked_sigs;
1094}
1095
1096// These are the signals that are blocked while a (non-VM) thread is
1097// running Java. Only the VM thread handles these signals.
1098sigset_t* os::Solaris::vm_signals() {
1099  assert(signal_sets_initialized, "Not initialized");
1100  return &vm_sigs;
1101}
1102
1103// These are signals that are blocked during cond_wait to allow debugger in
1104sigset_t* os::Solaris::allowdebug_blocked_signals() {
1105  assert(signal_sets_initialized, "Not initialized");
1106  return &allowdebug_blocked_sigs;
1107}
1108
1109
1110void _handle_uncaught_cxx_exception() {
1111  VMError::report_and_die("An uncaught C++ exception");
1112}
1113
1114
1115// First crack at OS-specific initialization, from inside the new thread.
1116void os::initialize_thread(Thread* thr) {
1117  int r = thr_main();
1118  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1119  if (r) {
1120    JavaThread* jt = (JavaThread *)thr;
1121    assert(jt != NULL, "Sanity check");
1122    size_t stack_size;
1123    address base = jt->stack_base();
1124    if (Arguments::created_by_java_launcher()) {
1125      // Use 2MB to allow for Solaris 7 64 bit mode.
1126      stack_size = JavaThread::stack_size_at_create() == 0
1127        ? 2048*K : JavaThread::stack_size_at_create();
1128
1129      // There are rare cases when we may have already used more than
1130      // the basic stack size allotment before this method is invoked.
1131      // Attempt to allow for a normally sized java_stack.
1132      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1133      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1134    } else {
1135      // 6269555: If we were not created by a Java launcher, i.e. if we are
1136      // running embedded in a native application, treat the primordial thread
1137      // as much like a native attached thread as possible.  This means using
1138      // the current stack size from thr_stksegment(), unless it is too large
1139      // to reliably setup guard pages.  A reasonable max size is 8MB.
1140      size_t current_size = current_stack_size();
1141      // This should never happen, but just in case....
1142      if (current_size == 0) current_size = 2 * K * K;
1143      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1144    }
1145    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1146    stack_size = (size_t)(base - bottom);
1147
1148    assert(stack_size > 0, "Stack size calculation problem");
1149
1150    if (stack_size > jt->stack_size()) {
1151#ifndef PRODUCT
1152      struct rlimit limits;
1153      getrlimit(RLIMIT_STACK, &limits);
1154      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1155      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1156#endif
1157      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1158                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1159                    "See limit(1) to increase the stack size limit.",
1160                    stack_size / K, jt->stack_size() / K);
1161      vm_exit(1);
1162    }
1163    assert(jt->stack_size() >= stack_size,
1164           "Attempt to map more stack than was allocated");
1165    jt->set_stack_size(stack_size);
1166  }
1167
1168  // With the T2 libthread (T1 is no longer supported) threads are always bound
1169  // and we use stackbanging in all cases.
1170
1171  os::Solaris::init_thread_fpu_state();
1172  std::set_terminate(_handle_uncaught_cxx_exception);
1173}
1174
1175
1176
1177// Free Solaris resources related to the OSThread
1178void os::free_thread(OSThread* osthread) {
1179  assert(osthread != NULL, "os::free_thread but osthread not set");
1180
1181
1182  // We are told to free resources of the argument thread,
1183  // but we can only really operate on the current thread.
1184  // The main thread must take the VMThread down synchronously
1185  // before the main thread exits and frees up CodeHeap
1186  guarantee((Thread::current()->osthread() == osthread
1187             || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1188  if (Thread::current()->osthread() == osthread) {
1189    // Restore caller's signal mask
1190    sigset_t sigmask = osthread->caller_sigmask();
1191    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1192  }
1193  delete osthread;
1194}
1195
1196void os::pd_start_thread(Thread* thread) {
1197  int status = thr_continue(thread->osthread()->thread_id());
1198  assert_status(status == 0, status, "thr_continue failed");
1199}
1200
1201
1202intx os::current_thread_id() {
1203  return (intx)thr_self();
1204}
1205
1206static pid_t _initial_pid = 0;
1207
1208int os::current_process_id() {
1209  return (int)(_initial_pid ? _initial_pid : getpid());
1210}
1211
1212// gethrtime() should be monotonic according to the documentation,
1213// but some virtualized platforms are known to break this guarantee.
1214// getTimeNanos() must be guaranteed not to move backwards, so we
1215// are forced to add a check here.
1216inline hrtime_t getTimeNanos() {
1217  const hrtime_t now = gethrtime();
1218  const hrtime_t prev = max_hrtime;
1219  if (now <= prev) {
1220    return prev;   // same or retrograde time;
1221  }
1222  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1223  assert(obsv >= prev, "invariant");   // Monotonicity
1224  // If the CAS succeeded then we're done and return "now".
1225  // If the CAS failed and the observed value "obsv" is >= now then
1226  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1227  // some other thread raced this thread and installed a new value, in which case
1228  // we could either (a) retry the entire operation, (b) retry trying to install now
1229  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1230  // we might discard a higher "now" value in deference to a slightly lower but freshly
1231  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1232  // to (a) or (b) -- and greatly reduces coherence traffic.
1233  // We might also condition (c) on the magnitude of the delta between obsv and now.
1234  // Avoiding excessive CAS operations to hot RW locations is critical.
1235  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1236  return (prev == obsv) ? now : obsv;
1237}
1238
1239// Time since start-up in seconds to a fine granularity.
1240// Used by VMSelfDestructTimer and the MemProfiler.
1241double os::elapsedTime() {
1242  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1243}
1244
1245jlong os::elapsed_counter() {
1246  return (jlong)(getTimeNanos() - first_hrtime);
1247}
1248
1249jlong os::elapsed_frequency() {
1250  return hrtime_hz;
1251}
1252
1253// Return the real, user, and system times in seconds from an
1254// arbitrary fixed point in the past.
1255bool os::getTimesSecs(double* process_real_time,
1256                      double* process_user_time,
1257                      double* process_system_time) {
1258  struct tms ticks;
1259  clock_t real_ticks = times(&ticks);
1260
1261  if (real_ticks == (clock_t) (-1)) {
1262    return false;
1263  } else {
1264    double ticks_per_second = (double) clock_tics_per_sec;
1265    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1266    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1267    // For consistency return the real time from getTimeNanos()
1268    // converted to seconds.
1269    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1270
1271    return true;
1272  }
1273}
1274
1275bool os::supports_vtime() { return true; }
1276
1277bool os::enable_vtime() {
1278  int fd = ::open("/proc/self/ctl", O_WRONLY);
1279  if (fd == -1) {
1280    return false;
1281  }
1282
1283  long cmd[] = { PCSET, PR_MSACCT };
1284  int res = ::write(fd, cmd, sizeof(long) * 2);
1285  ::close(fd);
1286  if (res != sizeof(long) * 2) {
1287    return false;
1288  }
1289  return true;
1290}
1291
1292bool os::vtime_enabled() {
1293  int fd = ::open("/proc/self/status", O_RDONLY);
1294  if (fd == -1) {
1295    return false;
1296  }
1297
1298  pstatus_t status;
1299  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1300  ::close(fd);
1301  if (res != sizeof(pstatus_t)) {
1302    return false;
1303  }
1304  return status.pr_flags & PR_MSACCT;
1305}
1306
1307double os::elapsedVTime() {
1308  return (double)gethrvtime() / (double)hrtime_hz;
1309}
1310
1311// Used internally for comparisons only
1312// getTimeMillis guaranteed to not move backwards on Solaris
1313jlong getTimeMillis() {
1314  jlong nanotime = getTimeNanos();
1315  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1316}
1317
1318// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1319jlong os::javaTimeMillis() {
1320  timeval t;
1321  if (gettimeofday(&t, NULL) == -1) {
1322    fatal("os::javaTimeMillis: gettimeofday (%s)", strerror(errno));
1323  }
1324  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1325}
1326
1327void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1328  timeval t;
1329  if (gettimeofday(&t, NULL) == -1) {
1330    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", strerror(errno));
1331  }
1332  seconds = jlong(t.tv_sec);
1333  nanos = jlong(t.tv_usec) * 1000;
1334}
1335
1336
1337jlong os::javaTimeNanos() {
1338  return (jlong)getTimeNanos();
1339}
1340
1341void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1342  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1343  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1344  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1345  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1346}
1347
1348char * os::local_time_string(char *buf, size_t buflen) {
1349  struct tm t;
1350  time_t long_time;
1351  time(&long_time);
1352  localtime_r(&long_time, &t);
1353  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1354               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1355               t.tm_hour, t.tm_min, t.tm_sec);
1356  return buf;
1357}
1358
1359// Note: os::shutdown() might be called very early during initialization, or
1360// called from signal handler. Before adding something to os::shutdown(), make
1361// sure it is async-safe and can handle partially initialized VM.
1362void os::shutdown() {
1363
1364  // allow PerfMemory to attempt cleanup of any persistent resources
1365  perfMemory_exit();
1366
1367  // needs to remove object in file system
1368  AttachListener::abort();
1369
1370  // flush buffered output, finish log files
1371  ostream_abort();
1372
1373  // Check for abort hook
1374  abort_hook_t abort_hook = Arguments::abort_hook();
1375  if (abort_hook != NULL) {
1376    abort_hook();
1377  }
1378}
1379
1380// Note: os::abort() might be called very early during initialization, or
1381// called from signal handler. Before adding something to os::abort(), make
1382// sure it is async-safe and can handle partially initialized VM.
1383void os::abort(bool dump_core, void* siginfo, const void* context) {
1384  os::shutdown();
1385  if (dump_core) {
1386#ifndef PRODUCT
1387    fdStream out(defaultStream::output_fd());
1388    out.print_raw("Current thread is ");
1389    char buf[16];
1390    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1391    out.print_raw_cr(buf);
1392    out.print_raw_cr("Dumping core ...");
1393#endif
1394    ::abort(); // dump core (for debugging)
1395  }
1396
1397  ::exit(1);
1398}
1399
1400// Die immediately, no exit hook, no abort hook, no cleanup.
1401void os::die() {
1402  ::abort(); // dump core (for debugging)
1403}
1404
1405// DLL functions
1406
1407const char* os::dll_file_extension() { return ".so"; }
1408
1409// This must be hard coded because it's the system's temporary
1410// directory not the java application's temp directory, ala java.io.tmpdir.
1411const char* os::get_temp_directory() { return "/tmp"; }
1412
1413static bool file_exists(const char* filename) {
1414  struct stat statbuf;
1415  if (filename == NULL || strlen(filename) == 0) {
1416    return false;
1417  }
1418  return os::stat(filename, &statbuf) == 0;
1419}
1420
1421bool os::dll_build_name(char* buffer, size_t buflen,
1422                        const char* pname, const char* fname) {
1423  bool retval = false;
1424  const size_t pnamelen = pname ? strlen(pname) : 0;
1425
1426  // Return error on buffer overflow.
1427  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1428    return retval;
1429  }
1430
1431  if (pnamelen == 0) {
1432    snprintf(buffer, buflen, "lib%s.so", fname);
1433    retval = true;
1434  } else if (strchr(pname, *os::path_separator()) != NULL) {
1435    int n;
1436    char** pelements = split_path(pname, &n);
1437    if (pelements == NULL) {
1438      return false;
1439    }
1440    for (int i = 0; i < n; i++) {
1441      // really shouldn't be NULL but what the heck, check can't hurt
1442      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1443        continue; // skip the empty path values
1444      }
1445      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1446      if (file_exists(buffer)) {
1447        retval = true;
1448        break;
1449      }
1450    }
1451    // release the storage
1452    for (int i = 0; i < n; i++) {
1453      if (pelements[i] != NULL) {
1454        FREE_C_HEAP_ARRAY(char, pelements[i]);
1455      }
1456    }
1457    if (pelements != NULL) {
1458      FREE_C_HEAP_ARRAY(char*, pelements);
1459    }
1460  } else {
1461    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1462    retval = true;
1463  }
1464  return retval;
1465}
1466
1467// check if addr is inside libjvm.so
1468bool os::address_is_in_vm(address addr) {
1469  static address libjvm_base_addr;
1470  Dl_info dlinfo;
1471
1472  if (libjvm_base_addr == NULL) {
1473    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1474      libjvm_base_addr = (address)dlinfo.dli_fbase;
1475    }
1476    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1477  }
1478
1479  if (dladdr((void *)addr, &dlinfo) != 0) {
1480    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1481  }
1482
1483  return false;
1484}
1485
1486typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1487static dladdr1_func_type dladdr1_func = NULL;
1488
1489bool os::dll_address_to_function_name(address addr, char *buf,
1490                                      int buflen, int * offset,
1491                                      bool demangle) {
1492  // buf is not optional, but offset is optional
1493  assert(buf != NULL, "sanity check");
1494
1495  Dl_info dlinfo;
1496
1497  // dladdr1_func was initialized in os::init()
1498  if (dladdr1_func != NULL) {
1499    // yes, we have dladdr1
1500
1501    // Support for dladdr1 is checked at runtime; it may be
1502    // available even if the vm is built on a machine that does
1503    // not have dladdr1 support.  Make sure there is a value for
1504    // RTLD_DL_SYMENT.
1505#ifndef RTLD_DL_SYMENT
1506  #define RTLD_DL_SYMENT 1
1507#endif
1508#ifdef _LP64
1509    Elf64_Sym * info;
1510#else
1511    Elf32_Sym * info;
1512#endif
1513    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1514                     RTLD_DL_SYMENT) != 0) {
1515      // see if we have a matching symbol that covers our address
1516      if (dlinfo.dli_saddr != NULL &&
1517          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1518        if (dlinfo.dli_sname != NULL) {
1519          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1520            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1521          }
1522          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1523          return true;
1524        }
1525      }
1526      // no matching symbol so try for just file info
1527      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1528        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1529                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1530          return true;
1531        }
1532      }
1533    }
1534    buf[0] = '\0';
1535    if (offset != NULL) *offset  = -1;
1536    return false;
1537  }
1538
1539  // no, only dladdr is available
1540  if (dladdr((void *)addr, &dlinfo) != 0) {
1541    // see if we have a matching symbol
1542    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1543      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1544        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1545      }
1546      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1547      return true;
1548    }
1549    // no matching symbol so try for just file info
1550    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1551      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1552                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1553        return true;
1554      }
1555    }
1556  }
1557  buf[0] = '\0';
1558  if (offset != NULL) *offset  = -1;
1559  return false;
1560}
1561
1562bool os::dll_address_to_library_name(address addr, char* buf,
1563                                     int buflen, int* offset) {
1564  // buf is not optional, but offset is optional
1565  assert(buf != NULL, "sanity check");
1566
1567  Dl_info dlinfo;
1568
1569  if (dladdr((void*)addr, &dlinfo) != 0) {
1570    if (dlinfo.dli_fname != NULL) {
1571      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1572    }
1573    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1574      *offset = addr - (address)dlinfo.dli_fbase;
1575    }
1576    return true;
1577  }
1578
1579  buf[0] = '\0';
1580  if (offset) *offset = -1;
1581  return false;
1582}
1583
1584int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1585  Dl_info dli;
1586  // Sanity check?
1587  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1588      dli.dli_fname == NULL) {
1589    return 1;
1590  }
1591
1592  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1593  if (handle == NULL) {
1594    return 1;
1595  }
1596
1597  Link_map *map;
1598  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1599  if (map == NULL) {
1600    dlclose(handle);
1601    return 1;
1602  }
1603
1604  while (map->l_prev != NULL) {
1605    map = map->l_prev;
1606  }
1607
1608  while (map != NULL) {
1609    // Iterate through all map entries and call callback with fields of interest
1610    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1611      dlclose(handle);
1612      return 1;
1613    }
1614    map = map->l_next;
1615  }
1616
1617  dlclose(handle);
1618  return 0;
1619}
1620
1621int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1622  outputStream * out = (outputStream *) param;
1623  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1624  return 0;
1625}
1626
1627void os::print_dll_info(outputStream * st) {
1628  st->print_cr("Dynamic libraries:"); st->flush();
1629  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1630    st->print_cr("Error: Cannot print dynamic libraries.");
1631  }
1632}
1633
1634// Loads .dll/.so and
1635// in case of error it checks if .dll/.so was built for the
1636// same architecture as Hotspot is running on
1637
1638void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1639  void * result= ::dlopen(filename, RTLD_LAZY);
1640  if (result != NULL) {
1641    // Successful loading
1642    return result;
1643  }
1644
1645  Elf32_Ehdr elf_head;
1646
1647  // Read system error message into ebuf
1648  // It may or may not be overwritten below
1649  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1650  ebuf[ebuflen-1]='\0';
1651  int diag_msg_max_length=ebuflen-strlen(ebuf);
1652  char* diag_msg_buf=ebuf+strlen(ebuf);
1653
1654  if (diag_msg_max_length==0) {
1655    // No more space in ebuf for additional diagnostics message
1656    return NULL;
1657  }
1658
1659
1660  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1661
1662  if (file_descriptor < 0) {
1663    // Can't open library, report dlerror() message
1664    return NULL;
1665  }
1666
1667  bool failed_to_read_elf_head=
1668    (sizeof(elf_head)!=
1669     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1670
1671  ::close(file_descriptor);
1672  if (failed_to_read_elf_head) {
1673    // file i/o error - report dlerror() msg
1674    return NULL;
1675  }
1676
1677  typedef struct {
1678    Elf32_Half  code;         // Actual value as defined in elf.h
1679    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1680    char        elf_class;    // 32 or 64 bit
1681    char        endianess;    // MSB or LSB
1682    char*       name;         // String representation
1683  } arch_t;
1684
1685  static const arch_t arch_array[]={
1686    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1687    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1688    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1689    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1690    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1691    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1692    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1693    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1694    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1695    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1696  };
1697
1698#if  (defined IA32)
1699  static  Elf32_Half running_arch_code=EM_386;
1700#elif   (defined AMD64)
1701  static  Elf32_Half running_arch_code=EM_X86_64;
1702#elif  (defined IA64)
1703  static  Elf32_Half running_arch_code=EM_IA_64;
1704#elif  (defined __sparc) && (defined _LP64)
1705  static  Elf32_Half running_arch_code=EM_SPARCV9;
1706#elif  (defined __sparc) && (!defined _LP64)
1707  static  Elf32_Half running_arch_code=EM_SPARC;
1708#elif  (defined __powerpc64__)
1709  static  Elf32_Half running_arch_code=EM_PPC64;
1710#elif  (defined __powerpc__)
1711  static  Elf32_Half running_arch_code=EM_PPC;
1712#elif (defined ARM)
1713  static  Elf32_Half running_arch_code=EM_ARM;
1714#else
1715  #error Method os::dll_load requires that one of following is defined:\
1716       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1717#endif
1718
1719  // Identify compatability class for VM's architecture and library's architecture
1720  // Obtain string descriptions for architectures
1721
1722  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1723  int running_arch_index=-1;
1724
1725  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1726    if (running_arch_code == arch_array[i].code) {
1727      running_arch_index    = i;
1728    }
1729    if (lib_arch.code == arch_array[i].code) {
1730      lib_arch.compat_class = arch_array[i].compat_class;
1731      lib_arch.name         = arch_array[i].name;
1732    }
1733  }
1734
1735  assert(running_arch_index != -1,
1736         "Didn't find running architecture code (running_arch_code) in arch_array");
1737  if (running_arch_index == -1) {
1738    // Even though running architecture detection failed
1739    // we may still continue with reporting dlerror() message
1740    return NULL;
1741  }
1742
1743  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1744    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1745    return NULL;
1746  }
1747
1748  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1749    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1750    return NULL;
1751  }
1752
1753  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1754    if (lib_arch.name!=NULL) {
1755      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1756                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1757                 lib_arch.name, arch_array[running_arch_index].name);
1758    } else {
1759      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1760                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1761                 lib_arch.code,
1762                 arch_array[running_arch_index].name);
1763    }
1764  }
1765
1766  return NULL;
1767}
1768
1769void* os::dll_lookup(void* handle, const char* name) {
1770  return dlsym(handle, name);
1771}
1772
1773void* os::get_default_process_handle() {
1774  return (void*)::dlopen(NULL, RTLD_LAZY);
1775}
1776
1777int os::stat(const char *path, struct stat *sbuf) {
1778  char pathbuf[MAX_PATH];
1779  if (strlen(path) > MAX_PATH - 1) {
1780    errno = ENAMETOOLONG;
1781    return -1;
1782  }
1783  os::native_path(strcpy(pathbuf, path));
1784  return ::stat(pathbuf, sbuf);
1785}
1786
1787static bool _print_ascii_file(const char* filename, outputStream* st) {
1788  int fd = ::open(filename, O_RDONLY);
1789  if (fd == -1) {
1790    return false;
1791  }
1792
1793  char buf[32];
1794  int bytes;
1795  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1796    st->print_raw(buf, bytes);
1797  }
1798
1799  ::close(fd);
1800
1801  return true;
1802}
1803
1804void os::print_os_info_brief(outputStream* st) {
1805  os::Solaris::print_distro_info(st);
1806
1807  os::Posix::print_uname_info(st);
1808
1809  os::Solaris::print_libversion_info(st);
1810}
1811
1812void os::print_os_info(outputStream* st) {
1813  st->print("OS:");
1814
1815  os::Solaris::print_distro_info(st);
1816
1817  os::Posix::print_uname_info(st);
1818
1819  os::Solaris::print_libversion_info(st);
1820
1821  os::Posix::print_rlimit_info(st);
1822
1823  os::Posix::print_load_average(st);
1824}
1825
1826void os::Solaris::print_distro_info(outputStream* st) {
1827  if (!_print_ascii_file("/etc/release", st)) {
1828    st->print("Solaris");
1829  }
1830  st->cr();
1831}
1832
1833void os::get_summary_os_info(char* buf, size_t buflen) {
1834  strncpy(buf, "Solaris", buflen);  // default to plain solaris
1835  FILE* fp = fopen("/etc/release", "r");
1836  if (fp != NULL) {
1837    char tmp[256];
1838    // Only get the first line and chop out everything but the os name.
1839    if (fgets(tmp, sizeof(tmp), fp)) {
1840      char* ptr = tmp;
1841      // skip past whitespace characters
1842      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1843      if (*ptr != '\0') {
1844        char* nl = strchr(ptr, '\n');
1845        if (nl != NULL) *nl = '\0';
1846        strncpy(buf, ptr, buflen);
1847      }
1848    }
1849    fclose(fp);
1850  }
1851}
1852
1853void os::Solaris::print_libversion_info(outputStream* st) {
1854  st->print("  (T2 libthread)");
1855  st->cr();
1856}
1857
1858static bool check_addr0(outputStream* st) {
1859  jboolean status = false;
1860  int fd = ::open("/proc/self/map",O_RDONLY);
1861  if (fd >= 0) {
1862    prmap_t p;
1863    while (::read(fd, &p, sizeof(p)) > 0) {
1864      if (p.pr_vaddr == 0x0) {
1865        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
1866        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
1867        st->print("Access:");
1868        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
1869        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
1870        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
1871        st->cr();
1872        status = true;
1873      }
1874    }
1875    ::close(fd);
1876  }
1877  return status;
1878}
1879
1880void os::get_summary_cpu_info(char* buf, size_t buflen) {
1881  // Get MHz with system call. We don't seem to already have this.
1882  processor_info_t stats;
1883  processorid_t id = getcpuid();
1884  int clock = 0;
1885  if (processor_info(id, &stats) != -1) {
1886    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1887  }
1888#ifdef AMD64
1889  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1890#else
1891  // must be sparc
1892  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1893#endif
1894}
1895
1896void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1897  // Nothing to do for now.
1898}
1899
1900void os::print_memory_info(outputStream* st) {
1901  st->print("Memory:");
1902  st->print(" %dk page", os::vm_page_size()>>10);
1903  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1904  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1905  st->cr();
1906  (void) check_addr0(st);
1907}
1908
1909// Moved from whole group, because we need them here for diagnostic
1910// prints.
1911#define OLDMAXSIGNUM 32
1912static int Maxsignum = 0;
1913static int *ourSigFlags = NULL;
1914
1915int os::Solaris::get_our_sigflags(int sig) {
1916  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1917  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1918  return ourSigFlags[sig];
1919}
1920
1921void os::Solaris::set_our_sigflags(int sig, int flags) {
1922  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1923  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1924  ourSigFlags[sig] = flags;
1925}
1926
1927
1928static const char* get_signal_handler_name(address handler,
1929                                           char* buf, int buflen) {
1930  int offset;
1931  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1932  if (found) {
1933    // skip directory names
1934    const char *p1, *p2;
1935    p1 = buf;
1936    size_t len = strlen(os::file_separator());
1937    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1938    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1939  } else {
1940    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1941  }
1942  return buf;
1943}
1944
1945static void print_signal_handler(outputStream* st, int sig,
1946                                 char* buf, size_t buflen) {
1947  struct sigaction sa;
1948
1949  sigaction(sig, NULL, &sa);
1950
1951  st->print("%s: ", os::exception_name(sig, buf, buflen));
1952
1953  address handler = (sa.sa_flags & SA_SIGINFO)
1954                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1955                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
1956
1957  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1958    st->print("SIG_DFL");
1959  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1960    st->print("SIG_IGN");
1961  } else {
1962    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1963  }
1964
1965  st->print(", sa_mask[0]=");
1966  os::Posix::print_signal_set_short(st, &sa.sa_mask);
1967
1968  address rh = VMError::get_resetted_sighandler(sig);
1969  // May be, handler was resetted by VMError?
1970  if (rh != NULL) {
1971    handler = rh;
1972    sa.sa_flags = VMError::get_resetted_sigflags(sig);
1973  }
1974
1975  st->print(", sa_flags=");
1976  os::Posix::print_sa_flags(st, sa.sa_flags);
1977
1978  // Check: is it our handler?
1979  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1980    // It is our signal handler
1981    // check for flags
1982    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1983      st->print(
1984                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1985                os::Solaris::get_our_sigflags(sig));
1986    }
1987  }
1988  st->cr();
1989}
1990
1991void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1992  st->print_cr("Signal Handlers:");
1993  print_signal_handler(st, SIGSEGV, buf, buflen);
1994  print_signal_handler(st, SIGBUS , buf, buflen);
1995  print_signal_handler(st, SIGFPE , buf, buflen);
1996  print_signal_handler(st, SIGPIPE, buf, buflen);
1997  print_signal_handler(st, SIGXFSZ, buf, buflen);
1998  print_signal_handler(st, SIGILL , buf, buflen);
1999  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2000  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2001  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2002  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2003  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2004  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2005}
2006
2007static char saved_jvm_path[MAXPATHLEN] = { 0 };
2008
2009// Find the full path to the current module, libjvm.so
2010void os::jvm_path(char *buf, jint buflen) {
2011  // Error checking.
2012  if (buflen < MAXPATHLEN) {
2013    assert(false, "must use a large-enough buffer");
2014    buf[0] = '\0';
2015    return;
2016  }
2017  // Lazy resolve the path to current module.
2018  if (saved_jvm_path[0] != 0) {
2019    strcpy(buf, saved_jvm_path);
2020    return;
2021  }
2022
2023  Dl_info dlinfo;
2024  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2025  assert(ret != 0, "cannot locate libjvm");
2026  if (ret != 0 && dlinfo.dli_fname != NULL) {
2027    realpath((char *)dlinfo.dli_fname, buf);
2028  } else {
2029    buf[0] = '\0';
2030    return;
2031  }
2032
2033  if (Arguments::sun_java_launcher_is_altjvm()) {
2034    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2035    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2036    // If "/jre/lib/" appears at the right place in the string, then
2037    // assume we are installed in a JDK and we're done.  Otherwise, check
2038    // for a JAVA_HOME environment variable and fix up the path so it
2039    // looks like libjvm.so is installed there (append a fake suffix
2040    // hotspot/libjvm.so).
2041    const char *p = buf + strlen(buf) - 1;
2042    for (int count = 0; p > buf && count < 5; ++count) {
2043      for (--p; p > buf && *p != '/'; --p)
2044        /* empty */ ;
2045    }
2046
2047    if (strncmp(p, "/jre/lib/", 9) != 0) {
2048      // Look for JAVA_HOME in the environment.
2049      char* java_home_var = ::getenv("JAVA_HOME");
2050      if (java_home_var != NULL && java_home_var[0] != 0) {
2051        char cpu_arch[12];
2052        char* jrelib_p;
2053        int   len;
2054        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2055#ifdef _LP64
2056        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2057        if (strcmp(cpu_arch, "sparc") == 0) {
2058          strcat(cpu_arch, "v9");
2059        } else if (strcmp(cpu_arch, "i386") == 0) {
2060          strcpy(cpu_arch, "amd64");
2061        }
2062#endif
2063        // Check the current module name "libjvm.so".
2064        p = strrchr(buf, '/');
2065        assert(strstr(p, "/libjvm") == p, "invalid library name");
2066
2067        realpath(java_home_var, buf);
2068        // determine if this is a legacy image or modules image
2069        // modules image doesn't have "jre" subdirectory
2070        len = strlen(buf);
2071        assert(len < buflen, "Ran out of buffer space");
2072        jrelib_p = buf + len;
2073        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2074        if (0 != access(buf, F_OK)) {
2075          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2076        }
2077
2078        if (0 == access(buf, F_OK)) {
2079          // Use current module name "libjvm.so"
2080          len = strlen(buf);
2081          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2082        } else {
2083          // Go back to path of .so
2084          realpath((char *)dlinfo.dli_fname, buf);
2085        }
2086      }
2087    }
2088  }
2089
2090  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2091  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2092}
2093
2094
2095void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2096  // no prefix required, not even "_"
2097}
2098
2099
2100void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2101  // no suffix required
2102}
2103
2104// This method is a copy of JDK's sysGetLastErrorString
2105// from src/solaris/hpi/src/system_md.c
2106
2107size_t os::lasterror(char *buf, size_t len) {
2108  if (errno == 0)  return 0;
2109
2110  const char *s = ::strerror(errno);
2111  size_t n = ::strlen(s);
2112  if (n >= len) {
2113    n = len - 1;
2114  }
2115  ::strncpy(buf, s, n);
2116  buf[n] = '\0';
2117  return n;
2118}
2119
2120
2121// sun.misc.Signal
2122
2123extern "C" {
2124  static void UserHandler(int sig, void *siginfo, void *context) {
2125    // Ctrl-C is pressed during error reporting, likely because the error
2126    // handler fails to abort. Let VM die immediately.
2127    if (sig == SIGINT && is_error_reported()) {
2128      os::die();
2129    }
2130
2131    os::signal_notify(sig);
2132    // We do not need to reinstate the signal handler each time...
2133  }
2134}
2135
2136void* os::user_handler() {
2137  return CAST_FROM_FN_PTR(void*, UserHandler);
2138}
2139
2140struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2141  struct timespec ts;
2142  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2143
2144  return ts;
2145}
2146
2147extern "C" {
2148  typedef void (*sa_handler_t)(int);
2149  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2150}
2151
2152void* os::signal(int signal_number, void* handler) {
2153  struct sigaction sigAct, oldSigAct;
2154  sigfillset(&(sigAct.sa_mask));
2155  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2156  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2157
2158  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2159    // -1 means registration failed
2160    return (void *)-1;
2161  }
2162
2163  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2164}
2165
2166void os::signal_raise(int signal_number) {
2167  raise(signal_number);
2168}
2169
2170// The following code is moved from os.cpp for making this
2171// code platform specific, which it is by its very nature.
2172
2173// a counter for each possible signal value
2174static int Sigexit = 0;
2175static int Maxlibjsigsigs;
2176static jint *pending_signals = NULL;
2177static int *preinstalled_sigs = NULL;
2178static struct sigaction *chainedsigactions = NULL;
2179static sema_t sig_sem;
2180typedef int (*version_getting_t)();
2181version_getting_t os::Solaris::get_libjsig_version = NULL;
2182static int libjsigversion = NULL;
2183
2184int os::sigexitnum_pd() {
2185  assert(Sigexit > 0, "signal memory not yet initialized");
2186  return Sigexit;
2187}
2188
2189void os::Solaris::init_signal_mem() {
2190  // Initialize signal structures
2191  Maxsignum = SIGRTMAX;
2192  Sigexit = Maxsignum+1;
2193  assert(Maxsignum >0, "Unable to obtain max signal number");
2194
2195  Maxlibjsigsigs = Maxsignum;
2196
2197  // pending_signals has one int per signal
2198  // The additional signal is for SIGEXIT - exit signal to signal_thread
2199  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2200  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2201
2202  if (UseSignalChaining) {
2203    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2204                                                   * (Maxsignum + 1), mtInternal);
2205    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2206    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2207    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2208  }
2209  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2210  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2211}
2212
2213void os::signal_init_pd() {
2214  int ret;
2215
2216  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2217  assert(ret == 0, "sema_init() failed");
2218}
2219
2220void os::signal_notify(int signal_number) {
2221  int ret;
2222
2223  Atomic::inc(&pending_signals[signal_number]);
2224  ret = ::sema_post(&sig_sem);
2225  assert(ret == 0, "sema_post() failed");
2226}
2227
2228static int check_pending_signals(bool wait_for_signal) {
2229  int ret;
2230  while (true) {
2231    for (int i = 0; i < Sigexit + 1; i++) {
2232      jint n = pending_signals[i];
2233      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2234        return i;
2235      }
2236    }
2237    if (!wait_for_signal) {
2238      return -1;
2239    }
2240    JavaThread *thread = JavaThread::current();
2241    ThreadBlockInVM tbivm(thread);
2242
2243    bool threadIsSuspended;
2244    do {
2245      thread->set_suspend_equivalent();
2246      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2247      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2248        ;
2249      assert(ret == 0, "sema_wait() failed");
2250
2251      // were we externally suspended while we were waiting?
2252      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2253      if (threadIsSuspended) {
2254        // The semaphore has been incremented, but while we were waiting
2255        // another thread suspended us. We don't want to continue running
2256        // while suspended because that would surprise the thread that
2257        // suspended us.
2258        ret = ::sema_post(&sig_sem);
2259        assert(ret == 0, "sema_post() failed");
2260
2261        thread->java_suspend_self();
2262      }
2263    } while (threadIsSuspended);
2264  }
2265}
2266
2267int os::signal_lookup() {
2268  return check_pending_signals(false);
2269}
2270
2271int os::signal_wait() {
2272  return check_pending_signals(true);
2273}
2274
2275////////////////////////////////////////////////////////////////////////////////
2276// Virtual Memory
2277
2278static int page_size = -1;
2279
2280// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2281// clear this var if support is not available.
2282static bool has_map_align = true;
2283
2284int os::vm_page_size() {
2285  assert(page_size != -1, "must call os::init");
2286  return page_size;
2287}
2288
2289// Solaris allocates memory by pages.
2290int os::vm_allocation_granularity() {
2291  assert(page_size != -1, "must call os::init");
2292  return page_size;
2293}
2294
2295static bool recoverable_mmap_error(int err) {
2296  // See if the error is one we can let the caller handle. This
2297  // list of errno values comes from the Solaris mmap(2) man page.
2298  switch (err) {
2299  case EBADF:
2300  case EINVAL:
2301  case ENOTSUP:
2302    // let the caller deal with these errors
2303    return true;
2304
2305  default:
2306    // Any remaining errors on this OS can cause our reserved mapping
2307    // to be lost. That can cause confusion where different data
2308    // structures think they have the same memory mapped. The worst
2309    // scenario is if both the VM and a library think they have the
2310    // same memory mapped.
2311    return false;
2312  }
2313}
2314
2315static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2316                                    int err) {
2317  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2318          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2319          strerror(err), err);
2320}
2321
2322static void warn_fail_commit_memory(char* addr, size_t bytes,
2323                                    size_t alignment_hint, bool exec,
2324                                    int err) {
2325  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2326          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2327          alignment_hint, exec, strerror(err), err);
2328}
2329
2330int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2331  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2332  size_t size = bytes;
2333  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2334  if (res != NULL) {
2335    if (UseNUMAInterleaving) {
2336      numa_make_global(addr, bytes);
2337    }
2338    return 0;
2339  }
2340
2341  int err = errno;  // save errno from mmap() call in mmap_chunk()
2342
2343  if (!recoverable_mmap_error(err)) {
2344    warn_fail_commit_memory(addr, bytes, exec, err);
2345    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2346  }
2347
2348  return err;
2349}
2350
2351bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2352  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2353}
2354
2355void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2356                                  const char* mesg) {
2357  assert(mesg != NULL, "mesg must be specified");
2358  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2359  if (err != 0) {
2360    // the caller wants all commit errors to exit with the specified mesg:
2361    warn_fail_commit_memory(addr, bytes, exec, err);
2362    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2363  }
2364}
2365
2366size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2367  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2368         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2369         alignment, (size_t) vm_page_size());
2370
2371  for (int i = 0; _page_sizes[i] != 0; i++) {
2372    if (is_size_aligned(alignment, _page_sizes[i])) {
2373      return _page_sizes[i];
2374    }
2375  }
2376
2377  return (size_t) vm_page_size();
2378}
2379
2380int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2381                                    size_t alignment_hint, bool exec) {
2382  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2383  if (err == 0 && UseLargePages && alignment_hint > 0) {
2384    assert(is_size_aligned(bytes, alignment_hint),
2385           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2386
2387    // The syscall memcntl requires an exact page size (see man memcntl for details).
2388    size_t page_size = page_size_for_alignment(alignment_hint);
2389    if (page_size > (size_t) vm_page_size()) {
2390      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2391    }
2392  }
2393  return err;
2394}
2395
2396bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2397                          bool exec) {
2398  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2399}
2400
2401void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2402                                  size_t alignment_hint, bool exec,
2403                                  const char* mesg) {
2404  assert(mesg != NULL, "mesg must be specified");
2405  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2406  if (err != 0) {
2407    // the caller wants all commit errors to exit with the specified mesg:
2408    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2409    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2410  }
2411}
2412
2413// Uncommit the pages in a specified region.
2414void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2415  if (madvise(addr, bytes, MADV_FREE) < 0) {
2416    debug_only(warning("MADV_FREE failed."));
2417    return;
2418  }
2419}
2420
2421bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2422  return os::commit_memory(addr, size, !ExecMem);
2423}
2424
2425bool os::remove_stack_guard_pages(char* addr, size_t size) {
2426  return os::uncommit_memory(addr, size);
2427}
2428
2429// Change the page size in a given range.
2430void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2431  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2432  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2433  if (UseLargePages) {
2434    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2435    if (page_size > (size_t) vm_page_size()) {
2436      Solaris::setup_large_pages(addr, bytes, page_size);
2437    }
2438  }
2439}
2440
2441// Tell the OS to make the range local to the first-touching LWP
2442void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2443  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2444  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2445    debug_only(warning("MADV_ACCESS_LWP failed."));
2446  }
2447}
2448
2449// Tell the OS that this range would be accessed from different LWPs.
2450void os::numa_make_global(char *addr, size_t bytes) {
2451  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2452  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2453    debug_only(warning("MADV_ACCESS_MANY failed."));
2454  }
2455}
2456
2457// Get the number of the locality groups.
2458size_t os::numa_get_groups_num() {
2459  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2460  return n != -1 ? n : 1;
2461}
2462
2463// Get a list of leaf locality groups. A leaf lgroup is group that
2464// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2465// board. An LWP is assigned to one of these groups upon creation.
2466size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2467  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2468    ids[0] = 0;
2469    return 1;
2470  }
2471  int result_size = 0, top = 1, bottom = 0, cur = 0;
2472  for (int k = 0; k < size; k++) {
2473    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2474                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2475    if (r == -1) {
2476      ids[0] = 0;
2477      return 1;
2478    }
2479    if (!r) {
2480      // That's a leaf node.
2481      assert(bottom <= cur, "Sanity check");
2482      // Check if the node has memory
2483      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2484                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2485        ids[bottom++] = ids[cur];
2486      }
2487    }
2488    top += r;
2489    cur++;
2490  }
2491  if (bottom == 0) {
2492    // Handle a situation, when the OS reports no memory available.
2493    // Assume UMA architecture.
2494    ids[0] = 0;
2495    return 1;
2496  }
2497  return bottom;
2498}
2499
2500// Detect the topology change. Typically happens during CPU plugging-unplugging.
2501bool os::numa_topology_changed() {
2502  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2503  if (is_stale != -1 && is_stale) {
2504    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2505    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2506    assert(c != 0, "Failure to initialize LGRP API");
2507    Solaris::set_lgrp_cookie(c);
2508    return true;
2509  }
2510  return false;
2511}
2512
2513// Get the group id of the current LWP.
2514int os::numa_get_group_id() {
2515  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2516  if (lgrp_id == -1) {
2517    return 0;
2518  }
2519  const int size = os::numa_get_groups_num();
2520  int *ids = (int*)alloca(size * sizeof(int));
2521
2522  // Get the ids of all lgroups with memory; r is the count.
2523  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2524                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2525  if (r <= 0) {
2526    return 0;
2527  }
2528  return ids[os::random() % r];
2529}
2530
2531// Request information about the page.
2532bool os::get_page_info(char *start, page_info* info) {
2533  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2534  uint64_t addr = (uintptr_t)start;
2535  uint64_t outdata[2];
2536  uint_t validity = 0;
2537
2538  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2539    return false;
2540  }
2541
2542  info->size = 0;
2543  info->lgrp_id = -1;
2544
2545  if ((validity & 1) != 0) {
2546    if ((validity & 2) != 0) {
2547      info->lgrp_id = outdata[0];
2548    }
2549    if ((validity & 4) != 0) {
2550      info->size = outdata[1];
2551    }
2552    return true;
2553  }
2554  return false;
2555}
2556
2557// Scan the pages from start to end until a page different than
2558// the one described in the info parameter is encountered.
2559char *os::scan_pages(char *start, char* end, page_info* page_expected,
2560                     page_info* page_found) {
2561  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2562  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2563  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2564  uint_t validity[MAX_MEMINFO_CNT];
2565
2566  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2567  uint64_t p = (uint64_t)start;
2568  while (p < (uint64_t)end) {
2569    addrs[0] = p;
2570    size_t addrs_count = 1;
2571    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2572      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2573      addrs_count++;
2574    }
2575
2576    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2577      return NULL;
2578    }
2579
2580    size_t i = 0;
2581    for (; i < addrs_count; i++) {
2582      if ((validity[i] & 1) != 0) {
2583        if ((validity[i] & 4) != 0) {
2584          if (outdata[types * i + 1] != page_expected->size) {
2585            break;
2586          }
2587        } else if (page_expected->size != 0) {
2588          break;
2589        }
2590
2591        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2592          if (outdata[types * i] != page_expected->lgrp_id) {
2593            break;
2594          }
2595        }
2596      } else {
2597        return NULL;
2598      }
2599    }
2600
2601    if (i < addrs_count) {
2602      if ((validity[i] & 2) != 0) {
2603        page_found->lgrp_id = outdata[types * i];
2604      } else {
2605        page_found->lgrp_id = -1;
2606      }
2607      if ((validity[i] & 4) != 0) {
2608        page_found->size = outdata[types * i + 1];
2609      } else {
2610        page_found->size = 0;
2611      }
2612      return (char*)addrs[i];
2613    }
2614
2615    p = addrs[addrs_count - 1] + page_size;
2616  }
2617  return end;
2618}
2619
2620bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2621  size_t size = bytes;
2622  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2623  // uncommitted page. Otherwise, the read/write might succeed if we
2624  // have enough swap space to back the physical page.
2625  return
2626    NULL != Solaris::mmap_chunk(addr, size,
2627                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2628                                PROT_NONE);
2629}
2630
2631char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2632  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2633
2634  if (b == MAP_FAILED) {
2635    return NULL;
2636  }
2637  return b;
2638}
2639
2640char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2641                             size_t alignment_hint, bool fixed) {
2642  char* addr = requested_addr;
2643  int flags = MAP_PRIVATE | MAP_NORESERVE;
2644
2645  assert(!(fixed && (alignment_hint > 0)),
2646         "alignment hint meaningless with fixed mmap");
2647
2648  if (fixed) {
2649    flags |= MAP_FIXED;
2650  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2651    flags |= MAP_ALIGN;
2652    addr = (char*) alignment_hint;
2653  }
2654
2655  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2656  // uncommitted page. Otherwise, the read/write might succeed if we
2657  // have enough swap space to back the physical page.
2658  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2659}
2660
2661char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2662                            size_t alignment_hint) {
2663  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2664                                  (requested_addr != NULL));
2665
2666  guarantee(requested_addr == NULL || requested_addr == addr,
2667            "OS failed to return requested mmap address.");
2668  return addr;
2669}
2670
2671// Reserve memory at an arbitrary address, only if that area is
2672// available (and not reserved for something else).
2673
2674char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2675  const int max_tries = 10;
2676  char* base[max_tries];
2677  size_t size[max_tries];
2678
2679  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2680  // is dependent on the requested size and the MMU.  Our initial gap
2681  // value here is just a guess and will be corrected later.
2682  bool had_top_overlap = false;
2683  bool have_adjusted_gap = false;
2684  size_t gap = 0x400000;
2685
2686  // Assert only that the size is a multiple of the page size, since
2687  // that's all that mmap requires, and since that's all we really know
2688  // about at this low abstraction level.  If we need higher alignment,
2689  // we can either pass an alignment to this method or verify alignment
2690  // in one of the methods further up the call chain.  See bug 5044738.
2691  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2692
2693  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2694  // Give it a try, if the kernel honors the hint we can return immediately.
2695  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2696
2697  volatile int err = errno;
2698  if (addr == requested_addr) {
2699    return addr;
2700  } else if (addr != NULL) {
2701    pd_unmap_memory(addr, bytes);
2702  }
2703
2704  if (PrintMiscellaneous && Verbose) {
2705    char buf[256];
2706    buf[0] = '\0';
2707    if (addr == NULL) {
2708      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2709    }
2710    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2711            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2712            "%s", bytes, requested_addr, addr, buf);
2713  }
2714
2715  // Address hint method didn't work.  Fall back to the old method.
2716  // In theory, once SNV becomes our oldest supported platform, this
2717  // code will no longer be needed.
2718  //
2719  // Repeatedly allocate blocks until the block is allocated at the
2720  // right spot. Give up after max_tries.
2721  int i;
2722  for (i = 0; i < max_tries; ++i) {
2723    base[i] = reserve_memory(bytes);
2724
2725    if (base[i] != NULL) {
2726      // Is this the block we wanted?
2727      if (base[i] == requested_addr) {
2728        size[i] = bytes;
2729        break;
2730      }
2731
2732      // check that the gap value is right
2733      if (had_top_overlap && !have_adjusted_gap) {
2734        size_t actual_gap = base[i-1] - base[i] - bytes;
2735        if (gap != actual_gap) {
2736          // adjust the gap value and retry the last 2 allocations
2737          assert(i > 0, "gap adjustment code problem");
2738          have_adjusted_gap = true;  // adjust the gap only once, just in case
2739          gap = actual_gap;
2740          if (PrintMiscellaneous && Verbose) {
2741            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2742          }
2743          unmap_memory(base[i], bytes);
2744          unmap_memory(base[i-1], size[i-1]);
2745          i-=2;
2746          continue;
2747        }
2748      }
2749
2750      // Does this overlap the block we wanted? Give back the overlapped
2751      // parts and try again.
2752      //
2753      // There is still a bug in this code: if top_overlap == bytes,
2754      // the overlap is offset from requested region by the value of gap.
2755      // In this case giving back the overlapped part will not work,
2756      // because we'll give back the entire block at base[i] and
2757      // therefore the subsequent allocation will not generate a new gap.
2758      // This could be fixed with a new algorithm that used larger
2759      // or variable size chunks to find the requested region -
2760      // but such a change would introduce additional complications.
2761      // It's rare enough that the planets align for this bug,
2762      // so we'll just wait for a fix for 6204603/5003415 which
2763      // will provide a mmap flag to allow us to avoid this business.
2764
2765      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2766      if (top_overlap >= 0 && top_overlap < bytes) {
2767        had_top_overlap = true;
2768        unmap_memory(base[i], top_overlap);
2769        base[i] += top_overlap;
2770        size[i] = bytes - top_overlap;
2771      } else {
2772        size_t bottom_overlap = base[i] + bytes - requested_addr;
2773        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2774          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2775            warning("attempt_reserve_memory_at: possible alignment bug");
2776          }
2777          unmap_memory(requested_addr, bottom_overlap);
2778          size[i] = bytes - bottom_overlap;
2779        } else {
2780          size[i] = bytes;
2781        }
2782      }
2783    }
2784  }
2785
2786  // Give back the unused reserved pieces.
2787
2788  for (int j = 0; j < i; ++j) {
2789    if (base[j] != NULL) {
2790      unmap_memory(base[j], size[j]);
2791    }
2792  }
2793
2794  return (i < max_tries) ? requested_addr : NULL;
2795}
2796
2797bool os::pd_release_memory(char* addr, size_t bytes) {
2798  size_t size = bytes;
2799  return munmap(addr, size) == 0;
2800}
2801
2802static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2803  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2804         "addr must be page aligned");
2805  int retVal = mprotect(addr, bytes, prot);
2806  return retVal == 0;
2807}
2808
2809// Protect memory (Used to pass readonly pages through
2810// JNI GetArray<type>Elements with empty arrays.)
2811// Also, used for serialization page and for compressed oops null pointer
2812// checking.
2813bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2814                        bool is_committed) {
2815  unsigned int p = 0;
2816  switch (prot) {
2817  case MEM_PROT_NONE: p = PROT_NONE; break;
2818  case MEM_PROT_READ: p = PROT_READ; break;
2819  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2820  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2821  default:
2822    ShouldNotReachHere();
2823  }
2824  // is_committed is unused.
2825  return solaris_mprotect(addr, bytes, p);
2826}
2827
2828// guard_memory and unguard_memory only happens within stack guard pages.
2829// Since ISM pertains only to the heap, guard and unguard memory should not
2830/// happen with an ISM region.
2831bool os::guard_memory(char* addr, size_t bytes) {
2832  return solaris_mprotect(addr, bytes, PROT_NONE);
2833}
2834
2835bool os::unguard_memory(char* addr, size_t bytes) {
2836  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2837}
2838
2839// Large page support
2840static size_t _large_page_size = 0;
2841
2842// Insertion sort for small arrays (descending order).
2843static void insertion_sort_descending(size_t* array, int len) {
2844  for (int i = 0; i < len; i++) {
2845    size_t val = array[i];
2846    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2847      size_t tmp = array[key];
2848      array[key] = array[key - 1];
2849      array[key - 1] = tmp;
2850    }
2851  }
2852}
2853
2854bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2855  const unsigned int usable_count = VM_Version::page_size_count();
2856  if (usable_count == 1) {
2857    return false;
2858  }
2859
2860  // Find the right getpagesizes interface.  When solaris 11 is the minimum
2861  // build platform, getpagesizes() (without the '2') can be called directly.
2862  typedef int (*gps_t)(size_t[], int);
2863  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2864  if (gps_func == NULL) {
2865    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2866    if (gps_func == NULL) {
2867      if (warn) {
2868        warning("MPSS is not supported by the operating system.");
2869      }
2870      return false;
2871    }
2872  }
2873
2874  // Fill the array of page sizes.
2875  int n = (*gps_func)(_page_sizes, page_sizes_max);
2876  assert(n > 0, "Solaris bug?");
2877
2878  if (n == page_sizes_max) {
2879    // Add a sentinel value (necessary only if the array was completely filled
2880    // since it is static (zeroed at initialization)).
2881    _page_sizes[--n] = 0;
2882    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2883  }
2884  assert(_page_sizes[n] == 0, "missing sentinel");
2885  trace_page_sizes("available page sizes", _page_sizes, n);
2886
2887  if (n == 1) return false;     // Only one page size available.
2888
2889  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2890  // select up to usable_count elements.  First sort the array, find the first
2891  // acceptable value, then copy the usable sizes to the top of the array and
2892  // trim the rest.  Make sure to include the default page size :-).
2893  //
2894  // A better policy could get rid of the 4M limit by taking the sizes of the
2895  // important VM memory regions (java heap and possibly the code cache) into
2896  // account.
2897  insertion_sort_descending(_page_sizes, n);
2898  const size_t size_limit =
2899    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2900  int beg;
2901  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2902  const int end = MIN2((int)usable_count, n) - 1;
2903  for (int cur = 0; cur < end; ++cur, ++beg) {
2904    _page_sizes[cur] = _page_sizes[beg];
2905  }
2906  _page_sizes[end] = vm_page_size();
2907  _page_sizes[end + 1] = 0;
2908
2909  if (_page_sizes[end] > _page_sizes[end - 1]) {
2910    // Default page size is not the smallest; sort again.
2911    insertion_sort_descending(_page_sizes, end + 1);
2912  }
2913  *page_size = _page_sizes[0];
2914
2915  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2916  return true;
2917}
2918
2919void os::large_page_init() {
2920  if (UseLargePages) {
2921    // print a warning if any large page related flag is specified on command line
2922    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2923                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2924
2925    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2926  }
2927}
2928
2929bool os::Solaris::is_valid_page_size(size_t bytes) {
2930  for (int i = 0; _page_sizes[i] != 0; i++) {
2931    if (_page_sizes[i] == bytes) {
2932      return true;
2933    }
2934  }
2935  return false;
2936}
2937
2938bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2939  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2940  assert(is_ptr_aligned((void*) start, align),
2941         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2942  assert(is_size_aligned(bytes, align),
2943         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2944
2945  // Signal to OS that we want large pages for addresses
2946  // from addr, addr + bytes
2947  struct memcntl_mha mpss_struct;
2948  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2949  mpss_struct.mha_pagesize = align;
2950  mpss_struct.mha_flags = 0;
2951  // Upon successful completion, memcntl() returns 0
2952  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2953    debug_only(warning("Attempt to use MPSS failed."));
2954    return false;
2955  }
2956  return true;
2957}
2958
2959char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2960  fatal("os::reserve_memory_special should not be called on Solaris.");
2961  return NULL;
2962}
2963
2964bool os::release_memory_special(char* base, size_t bytes) {
2965  fatal("os::release_memory_special should not be called on Solaris.");
2966  return false;
2967}
2968
2969size_t os::large_page_size() {
2970  return _large_page_size;
2971}
2972
2973// MPSS allows application to commit large page memory on demand; with ISM
2974// the entire memory region must be allocated as shared memory.
2975bool os::can_commit_large_page_memory() {
2976  return true;
2977}
2978
2979bool os::can_execute_large_page_memory() {
2980  return true;
2981}
2982
2983// Read calls from inside the vm need to perform state transitions
2984size_t os::read(int fd, void *buf, unsigned int nBytes) {
2985  size_t res;
2986  JavaThread* thread = (JavaThread*)Thread::current();
2987  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2988  ThreadBlockInVM tbiv(thread);
2989  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2990  return res;
2991}
2992
2993size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2994  size_t res;
2995  JavaThread* thread = (JavaThread*)Thread::current();
2996  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2997  ThreadBlockInVM tbiv(thread);
2998  RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
2999  return res;
3000}
3001
3002size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3003  size_t res;
3004  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3005         "Assumed _thread_in_native");
3006  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3007  return res;
3008}
3009
3010void os::naked_short_sleep(jlong ms) {
3011  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3012
3013  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3014  // Solaris requires -lrt for this.
3015  usleep((ms * 1000));
3016
3017  return;
3018}
3019
3020// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3021void os::infinite_sleep() {
3022  while (true) {    // sleep forever ...
3023    ::sleep(100);   // ... 100 seconds at a time
3024  }
3025}
3026
3027// Used to convert frequent JVM_Yield() to nops
3028bool os::dont_yield() {
3029  if (DontYieldALot) {
3030    static hrtime_t last_time = 0;
3031    hrtime_t diff = getTimeNanos() - last_time;
3032
3033    if (diff < DontYieldALotInterval * 1000000) {
3034      return true;
3035    }
3036
3037    last_time += diff;
3038
3039    return false;
3040  } else {
3041    return false;
3042  }
3043}
3044
3045// Note that yield semantics are defined by the scheduling class to which
3046// the thread currently belongs.  Typically, yield will _not yield to
3047// other equal or higher priority threads that reside on the dispatch queues
3048// of other CPUs.
3049
3050void os::naked_yield() {
3051  thr_yield();
3052}
3053
3054// Interface for setting lwp priorities.  If we are using T2 libthread,
3055// which forces the use of BoundThreads or we manually set UseBoundThreads,
3056// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3057// function is meaningless in this mode so we must adjust the real lwp's priority
3058// The routines below implement the getting and setting of lwp priorities.
3059//
3060// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3061//       being deprecated and all threads are now BoundThreads
3062//
3063// Note: There are three priority scales used on Solaris.  Java priotities
3064//       which range from 1 to 10, libthread "thr_setprio" scale which range
3065//       from 0 to 127, and the current scheduling class of the process we
3066//       are running in.  This is typically from -60 to +60.
3067//       The setting of the lwp priorities in done after a call to thr_setprio
3068//       so Java priorities are mapped to libthread priorities and we map from
3069//       the latter to lwp priorities.  We don't keep priorities stored in
3070//       Java priorities since some of our worker threads want to set priorities
3071//       higher than all Java threads.
3072//
3073// For related information:
3074// (1)  man -s 2 priocntl
3075// (2)  man -s 4 priocntl
3076// (3)  man dispadmin
3077// =    librt.so
3078// =    libthread/common/rtsched.c - thrp_setlwpprio().
3079// =    ps -cL <pid> ... to validate priority.
3080// =    sched_get_priority_min and _max
3081//              pthread_create
3082//              sched_setparam
3083//              pthread_setschedparam
3084//
3085// Assumptions:
3086// +    We assume that all threads in the process belong to the same
3087//              scheduling class.   IE. an homogenous process.
3088// +    Must be root or in IA group to change change "interactive" attribute.
3089//              Priocntl() will fail silently.  The only indication of failure is when
3090//              we read-back the value and notice that it hasn't changed.
3091// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3092// +    For RT, change timeslice as well.  Invariant:
3093//              constant "priority integral"
3094//              Konst == TimeSlice * (60-Priority)
3095//              Given a priority, compute appropriate timeslice.
3096// +    Higher numerical values have higher priority.
3097
3098// sched class attributes
3099typedef struct {
3100  int   schedPolicy;              // classID
3101  int   maxPrio;
3102  int   minPrio;
3103} SchedInfo;
3104
3105
3106static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3107
3108#ifdef ASSERT
3109static int  ReadBackValidate = 1;
3110#endif
3111static int  myClass     = 0;
3112static int  myMin       = 0;
3113static int  myMax       = 0;
3114static int  myCur       = 0;
3115static bool priocntl_enable = false;
3116
3117static const int criticalPrio = FXCriticalPriority;
3118static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3119
3120
3121// lwp_priocntl_init
3122//
3123// Try to determine the priority scale for our process.
3124//
3125// Return errno or 0 if OK.
3126//
3127static int lwp_priocntl_init() {
3128  int rslt;
3129  pcinfo_t ClassInfo;
3130  pcparms_t ParmInfo;
3131  int i;
3132
3133  if (!UseThreadPriorities) return 0;
3134
3135  // If ThreadPriorityPolicy is 1, switch tables
3136  if (ThreadPriorityPolicy == 1) {
3137    for (i = 0; i < CriticalPriority+1; i++)
3138      os::java_to_os_priority[i] = prio_policy1[i];
3139  }
3140  if (UseCriticalJavaThreadPriority) {
3141    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3142    // See set_native_priority() and set_lwp_class_and_priority().
3143    // Save original MaxPriority mapping in case attempt to
3144    // use critical priority fails.
3145    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3146    // Set negative to distinguish from other priorities
3147    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3148  }
3149
3150  // Get IDs for a set of well-known scheduling classes.
3151  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3152  // the system.  We should have a loop that iterates over the
3153  // classID values, which are known to be "small" integers.
3154
3155  strcpy(ClassInfo.pc_clname, "TS");
3156  ClassInfo.pc_cid = -1;
3157  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3158  if (rslt < 0) return errno;
3159  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3160  tsLimits.schedPolicy = ClassInfo.pc_cid;
3161  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3162  tsLimits.minPrio = -tsLimits.maxPrio;
3163
3164  strcpy(ClassInfo.pc_clname, "IA");
3165  ClassInfo.pc_cid = -1;
3166  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3167  if (rslt < 0) return errno;
3168  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3169  iaLimits.schedPolicy = ClassInfo.pc_cid;
3170  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3171  iaLimits.minPrio = -iaLimits.maxPrio;
3172
3173  strcpy(ClassInfo.pc_clname, "RT");
3174  ClassInfo.pc_cid = -1;
3175  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3176  if (rslt < 0) return errno;
3177  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3178  rtLimits.schedPolicy = ClassInfo.pc_cid;
3179  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3180  rtLimits.minPrio = 0;
3181
3182  strcpy(ClassInfo.pc_clname, "FX");
3183  ClassInfo.pc_cid = -1;
3184  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3185  if (rslt < 0) return errno;
3186  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3187  fxLimits.schedPolicy = ClassInfo.pc_cid;
3188  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3189  fxLimits.minPrio = 0;
3190
3191  // Query our "current" scheduling class.
3192  // This will normally be IA, TS or, rarely, FX or RT.
3193  memset(&ParmInfo, 0, sizeof(ParmInfo));
3194  ParmInfo.pc_cid = PC_CLNULL;
3195  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3196  if (rslt < 0) return errno;
3197  myClass = ParmInfo.pc_cid;
3198
3199  // We now know our scheduling classId, get specific information
3200  // about the class.
3201  ClassInfo.pc_cid = myClass;
3202  ClassInfo.pc_clname[0] = 0;
3203  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3204  if (rslt < 0) return errno;
3205
3206  if (ThreadPriorityVerbose) {
3207    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3208  }
3209
3210  memset(&ParmInfo, 0, sizeof(pcparms_t));
3211  ParmInfo.pc_cid = PC_CLNULL;
3212  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3213  if (rslt < 0) return errno;
3214
3215  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3216    myMin = rtLimits.minPrio;
3217    myMax = rtLimits.maxPrio;
3218  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3219    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3220    myMin = iaLimits.minPrio;
3221    myMax = iaLimits.maxPrio;
3222    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3223  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3224    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3225    myMin = tsLimits.minPrio;
3226    myMax = tsLimits.maxPrio;
3227    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3228  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3229    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3230    myMin = fxLimits.minPrio;
3231    myMax = fxLimits.maxPrio;
3232    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3233  } else {
3234    // No clue - punt
3235    if (ThreadPriorityVerbose) {
3236      tty->print_cr("Unknown scheduling class: %s ... \n",
3237                    ClassInfo.pc_clname);
3238    }
3239    return EINVAL;      // no clue, punt
3240  }
3241
3242  if (ThreadPriorityVerbose) {
3243    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3244  }
3245
3246  priocntl_enable = true;  // Enable changing priorities
3247  return 0;
3248}
3249
3250#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3251#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3252#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3253#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3254
3255
3256// scale_to_lwp_priority
3257//
3258// Convert from the libthread "thr_setprio" scale to our current
3259// lwp scheduling class scale.
3260//
3261static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3262  int v;
3263
3264  if (x == 127) return rMax;            // avoid round-down
3265  v = (((x*(rMax-rMin)))/128)+rMin;
3266  return v;
3267}
3268
3269
3270// set_lwp_class_and_priority
3271int set_lwp_class_and_priority(int ThreadID, int lwpid,
3272                               int newPrio, int new_class, bool scale) {
3273  int rslt;
3274  int Actual, Expected, prv;
3275  pcparms_t ParmInfo;                   // for GET-SET
3276#ifdef ASSERT
3277  pcparms_t ReadBack;                   // for readback
3278#endif
3279
3280  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3281  // Query current values.
3282  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3283  // Cache "pcparms_t" in global ParmCache.
3284  // TODO: elide set-to-same-value
3285
3286  // If something went wrong on init, don't change priorities.
3287  if (!priocntl_enable) {
3288    if (ThreadPriorityVerbose) {
3289      tty->print_cr("Trying to set priority but init failed, ignoring");
3290    }
3291    return EINVAL;
3292  }
3293
3294  // If lwp hasn't started yet, just return
3295  // the _start routine will call us again.
3296  if (lwpid <= 0) {
3297    if (ThreadPriorityVerbose) {
3298      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3299                    INTPTR_FORMAT " to %d, lwpid not set",
3300                    ThreadID, newPrio);
3301    }
3302    return 0;
3303  }
3304
3305  if (ThreadPriorityVerbose) {
3306    tty->print_cr ("set_lwp_class_and_priority("
3307                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3308                   ThreadID, lwpid, newPrio);
3309  }
3310
3311  memset(&ParmInfo, 0, sizeof(pcparms_t));
3312  ParmInfo.pc_cid = PC_CLNULL;
3313  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3314  if (rslt < 0) return errno;
3315
3316  int cur_class = ParmInfo.pc_cid;
3317  ParmInfo.pc_cid = (id_t)new_class;
3318
3319  if (new_class == rtLimits.schedPolicy) {
3320    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3321    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3322                                                       rtLimits.maxPrio, newPrio)
3323                               : newPrio;
3324    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3325    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3326    if (ThreadPriorityVerbose) {
3327      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3328    }
3329  } else if (new_class == iaLimits.schedPolicy) {
3330    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3331    int maxClamped     = MIN2(iaLimits.maxPrio,
3332                              cur_class == new_class
3333                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3334    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3335                                                       maxClamped, newPrio)
3336                               : newPrio;
3337    iaInfo->ia_uprilim = cur_class == new_class
3338                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3339    iaInfo->ia_mode    = IA_NOCHANGE;
3340    if (ThreadPriorityVerbose) {
3341      tty->print_cr("IA: [%d...%d] %d->%d\n",
3342                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3343    }
3344  } else if (new_class == tsLimits.schedPolicy) {
3345    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3346    int maxClamped     = MIN2(tsLimits.maxPrio,
3347                              cur_class == new_class
3348                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3349    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3350                                                       maxClamped, newPrio)
3351                               : newPrio;
3352    tsInfo->ts_uprilim = cur_class == new_class
3353                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3354    if (ThreadPriorityVerbose) {
3355      tty->print_cr("TS: [%d...%d] %d->%d\n",
3356                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3357    }
3358  } else if (new_class == fxLimits.schedPolicy) {
3359    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3360    int maxClamped     = MIN2(fxLimits.maxPrio,
3361                              cur_class == new_class
3362                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3363    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3364                                                       maxClamped, newPrio)
3365                               : newPrio;
3366    fxInfo->fx_uprilim = cur_class == new_class
3367                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3368    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3369    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3370    if (ThreadPriorityVerbose) {
3371      tty->print_cr("FX: [%d...%d] %d->%d\n",
3372                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3373    }
3374  } else {
3375    if (ThreadPriorityVerbose) {
3376      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3377    }
3378    return EINVAL;    // no clue, punt
3379  }
3380
3381  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3382  if (ThreadPriorityVerbose && rslt) {
3383    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3384  }
3385  if (rslt < 0) return errno;
3386
3387#ifdef ASSERT
3388  // Sanity check: read back what we just attempted to set.
3389  // In theory it could have changed in the interim ...
3390  //
3391  // The priocntl system call is tricky.
3392  // Sometimes it'll validate the priority value argument and
3393  // return EINVAL if unhappy.  At other times it fails silently.
3394  // Readbacks are prudent.
3395
3396  if (!ReadBackValidate) return 0;
3397
3398  memset(&ReadBack, 0, sizeof(pcparms_t));
3399  ReadBack.pc_cid = PC_CLNULL;
3400  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3401  assert(rslt >= 0, "priocntl failed");
3402  Actual = Expected = 0xBAD;
3403  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3404  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3405    Actual   = RTPRI(ReadBack)->rt_pri;
3406    Expected = RTPRI(ParmInfo)->rt_pri;
3407  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3408    Actual   = IAPRI(ReadBack)->ia_upri;
3409    Expected = IAPRI(ParmInfo)->ia_upri;
3410  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3411    Actual   = TSPRI(ReadBack)->ts_upri;
3412    Expected = TSPRI(ParmInfo)->ts_upri;
3413  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3414    Actual   = FXPRI(ReadBack)->fx_upri;
3415    Expected = FXPRI(ParmInfo)->fx_upri;
3416  } else {
3417    if (ThreadPriorityVerbose) {
3418      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3419                    ParmInfo.pc_cid);
3420    }
3421  }
3422
3423  if (Actual != Expected) {
3424    if (ThreadPriorityVerbose) {
3425      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3426                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3427    }
3428  }
3429#endif
3430
3431  return 0;
3432}
3433
3434// Solaris only gives access to 128 real priorities at a time,
3435// so we expand Java's ten to fill this range.  This would be better
3436// if we dynamically adjusted relative priorities.
3437//
3438// The ThreadPriorityPolicy option allows us to select 2 different
3439// priority scales.
3440//
3441// ThreadPriorityPolicy=0
3442// Since the Solaris' default priority is MaximumPriority, we do not
3443// set a priority lower than Max unless a priority lower than
3444// NormPriority is requested.
3445//
3446// ThreadPriorityPolicy=1
3447// This mode causes the priority table to get filled with
3448// linear values.  NormPriority get's mapped to 50% of the
3449// Maximum priority an so on.  This will cause VM threads
3450// to get unfair treatment against other Solaris processes
3451// which do not explicitly alter their thread priorities.
3452
3453int os::java_to_os_priority[CriticalPriority + 1] = {
3454  -99999,         // 0 Entry should never be used
3455
3456  0,              // 1 MinPriority
3457  32,             // 2
3458  64,             // 3
3459
3460  96,             // 4
3461  127,            // 5 NormPriority
3462  127,            // 6
3463
3464  127,            // 7
3465  127,            // 8
3466  127,            // 9 NearMaxPriority
3467
3468  127,            // 10 MaxPriority
3469
3470  -criticalPrio   // 11 CriticalPriority
3471};
3472
3473OSReturn os::set_native_priority(Thread* thread, int newpri) {
3474  OSThread* osthread = thread->osthread();
3475
3476  // Save requested priority in case the thread hasn't been started
3477  osthread->set_native_priority(newpri);
3478
3479  // Check for critical priority request
3480  bool fxcritical = false;
3481  if (newpri == -criticalPrio) {
3482    fxcritical = true;
3483    newpri = criticalPrio;
3484  }
3485
3486  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3487  if (!UseThreadPriorities) return OS_OK;
3488
3489  int status = 0;
3490
3491  if (!fxcritical) {
3492    // Use thr_setprio only if we have a priority that thr_setprio understands
3493    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3494  }
3495
3496  int lwp_status =
3497          set_lwp_class_and_priority(osthread->thread_id(),
3498                                     osthread->lwp_id(),
3499                                     newpri,
3500                                     fxcritical ? fxLimits.schedPolicy : myClass,
3501                                     !fxcritical);
3502  if (lwp_status != 0 && fxcritical) {
3503    // Try again, this time without changing the scheduling class
3504    newpri = java_MaxPriority_to_os_priority;
3505    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3506                                            osthread->lwp_id(),
3507                                            newpri, myClass, false);
3508  }
3509  status |= lwp_status;
3510  return (status == 0) ? OS_OK : OS_ERR;
3511}
3512
3513
3514OSReturn os::get_native_priority(const Thread* const thread,
3515                                 int *priority_ptr) {
3516  int p;
3517  if (!UseThreadPriorities) {
3518    *priority_ptr = NormalPriority;
3519    return OS_OK;
3520  }
3521  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3522  if (status != 0) {
3523    return OS_ERR;
3524  }
3525  *priority_ptr = p;
3526  return OS_OK;
3527}
3528
3529
3530// Hint to the underlying OS that a task switch would not be good.
3531// Void return because it's a hint and can fail.
3532void os::hint_no_preempt() {
3533  schedctl_start(schedctl_init());
3534}
3535
3536static void resume_clear_context(OSThread *osthread) {
3537  osthread->set_ucontext(NULL);
3538}
3539
3540static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3541  osthread->set_ucontext(context);
3542}
3543
3544static PosixSemaphore sr_semaphore;
3545
3546void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3547  // Save and restore errno to avoid confusing native code with EINTR
3548  // after sigsuspend.
3549  int old_errno = errno;
3550
3551  OSThread* osthread = thread->osthread();
3552  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3553
3554  os::SuspendResume::State current = osthread->sr.state();
3555  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3556    suspend_save_context(osthread, uc);
3557
3558    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3559    os::SuspendResume::State state = osthread->sr.suspended();
3560    if (state == os::SuspendResume::SR_SUSPENDED) {
3561      sigset_t suspend_set;  // signals for sigsuspend()
3562
3563      // get current set of blocked signals and unblock resume signal
3564      thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
3565      sigdelset(&suspend_set, os::Solaris::SIGasync());
3566
3567      sr_semaphore.signal();
3568      // wait here until we are resumed
3569      while (1) {
3570        sigsuspend(&suspend_set);
3571
3572        os::SuspendResume::State result = osthread->sr.running();
3573        if (result == os::SuspendResume::SR_RUNNING) {
3574          sr_semaphore.signal();
3575          break;
3576        }
3577      }
3578
3579    } else if (state == os::SuspendResume::SR_RUNNING) {
3580      // request was cancelled, continue
3581    } else {
3582      ShouldNotReachHere();
3583    }
3584
3585    resume_clear_context(osthread);
3586  } else if (current == os::SuspendResume::SR_RUNNING) {
3587    // request was cancelled, continue
3588  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3589    // ignore
3590  } else {
3591    // ignore
3592  }
3593
3594  errno = old_errno;
3595}
3596
3597void os::print_statistics() {
3598}
3599
3600bool os::message_box(const char* title, const char* message) {
3601  int i;
3602  fdStream err(defaultStream::error_fd());
3603  for (i = 0; i < 78; i++) err.print_raw("=");
3604  err.cr();
3605  err.print_raw_cr(title);
3606  for (i = 0; i < 78; i++) err.print_raw("-");
3607  err.cr();
3608  err.print_raw_cr(message);
3609  for (i = 0; i < 78; i++) err.print_raw("=");
3610  err.cr();
3611
3612  char buf[16];
3613  // Prevent process from exiting upon "read error" without consuming all CPU
3614  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3615
3616  return buf[0] == 'y' || buf[0] == 'Y';
3617}
3618
3619static int sr_notify(OSThread* osthread) {
3620  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3621  assert_status(status == 0, status, "thr_kill");
3622  return status;
3623}
3624
3625// "Randomly" selected value for how long we want to spin
3626// before bailing out on suspending a thread, also how often
3627// we send a signal to a thread we want to resume
3628static const int RANDOMLY_LARGE_INTEGER = 1000000;
3629static const int RANDOMLY_LARGE_INTEGER2 = 100;
3630
3631static bool do_suspend(OSThread* osthread) {
3632  assert(osthread->sr.is_running(), "thread should be running");
3633  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3634
3635  // mark as suspended and send signal
3636  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3637    // failed to switch, state wasn't running?
3638    ShouldNotReachHere();
3639    return false;
3640  }
3641
3642  if (sr_notify(osthread) != 0) {
3643    ShouldNotReachHere();
3644  }
3645
3646  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3647  while (true) {
3648    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3649      break;
3650    } else {
3651      // timeout
3652      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3653      if (cancelled == os::SuspendResume::SR_RUNNING) {
3654        return false;
3655      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3656        // make sure that we consume the signal on the semaphore as well
3657        sr_semaphore.wait();
3658        break;
3659      } else {
3660        ShouldNotReachHere();
3661        return false;
3662      }
3663    }
3664  }
3665
3666  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3667  return true;
3668}
3669
3670static void do_resume(OSThread* osthread) {
3671  assert(osthread->sr.is_suspended(), "thread should be suspended");
3672  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3673
3674  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3675    // failed to switch to WAKEUP_REQUEST
3676    ShouldNotReachHere();
3677    return;
3678  }
3679
3680  while (true) {
3681    if (sr_notify(osthread) == 0) {
3682      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3683        if (osthread->sr.is_running()) {
3684          return;
3685        }
3686      }
3687    } else {
3688      ShouldNotReachHere();
3689    }
3690  }
3691
3692  guarantee(osthread->sr.is_running(), "Must be running!");
3693}
3694
3695void os::SuspendedThreadTask::internal_do_task() {
3696  if (do_suspend(_thread->osthread())) {
3697    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3698    do_task(context);
3699    do_resume(_thread->osthread());
3700  }
3701}
3702
3703class PcFetcher : public os::SuspendedThreadTask {
3704 public:
3705  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3706  ExtendedPC result();
3707 protected:
3708  void do_task(const os::SuspendedThreadTaskContext& context);
3709 private:
3710  ExtendedPC _epc;
3711};
3712
3713ExtendedPC PcFetcher::result() {
3714  guarantee(is_done(), "task is not done yet.");
3715  return _epc;
3716}
3717
3718void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3719  Thread* thread = context.thread();
3720  OSThread* osthread = thread->osthread();
3721  if (osthread->ucontext() != NULL) {
3722    _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3723  } else {
3724    // NULL context is unexpected, double-check this is the VMThread
3725    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3726  }
3727}
3728
3729// A lightweight implementation that does not suspend the target thread and
3730// thus returns only a hint. Used for profiling only!
3731ExtendedPC os::get_thread_pc(Thread* thread) {
3732  // Make sure that it is called by the watcher and the Threads lock is owned.
3733  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3734  // For now, is only used to profile the VM Thread
3735  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3736  PcFetcher fetcher(thread);
3737  fetcher.run();
3738  return fetcher.result();
3739}
3740
3741
3742// This does not do anything on Solaris. This is basically a hook for being
3743// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3744void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3745                              const methodHandle& method, JavaCallArguments* args,
3746                              Thread* thread) {
3747  f(value, method, args, thread);
3748}
3749
3750// This routine may be used by user applications as a "hook" to catch signals.
3751// The user-defined signal handler must pass unrecognized signals to this
3752// routine, and if it returns true (non-zero), then the signal handler must
3753// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3754// routine will never retun false (zero), but instead will execute a VM panic
3755// routine kill the process.
3756//
3757// If this routine returns false, it is OK to call it again.  This allows
3758// the user-defined signal handler to perform checks either before or after
3759// the VM performs its own checks.  Naturally, the user code would be making
3760// a serious error if it tried to handle an exception (such as a null check
3761// or breakpoint) that the VM was generating for its own correct operation.
3762//
3763// This routine may recognize any of the following kinds of signals:
3764// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3765// os::Solaris::SIGasync
3766// It should be consulted by handlers for any of those signals.
3767//
3768// The caller of this routine must pass in the three arguments supplied
3769// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3770// field of the structure passed to sigaction().  This routine assumes that
3771// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3772//
3773// Note that the VM will print warnings if it detects conflicting signal
3774// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3775//
3776extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3777                                                   siginfo_t* siginfo,
3778                                                   void* ucontext,
3779                                                   int abort_if_unrecognized);
3780
3781
3782void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3783  int orig_errno = errno;  // Preserve errno value over signal handler.
3784  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3785  errno = orig_errno;
3786}
3787
3788// This boolean allows users to forward their own non-matching signals
3789// to JVM_handle_solaris_signal, harmlessly.
3790bool os::Solaris::signal_handlers_are_installed = false;
3791
3792// For signal-chaining
3793bool os::Solaris::libjsig_is_loaded = false;
3794typedef struct sigaction *(*get_signal_t)(int);
3795get_signal_t os::Solaris::get_signal_action = NULL;
3796
3797struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3798  struct sigaction *actp = NULL;
3799
3800  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3801    // Retrieve the old signal handler from libjsig
3802    actp = (*get_signal_action)(sig);
3803  }
3804  if (actp == NULL) {
3805    // Retrieve the preinstalled signal handler from jvm
3806    actp = get_preinstalled_handler(sig);
3807  }
3808
3809  return actp;
3810}
3811
3812static bool call_chained_handler(struct sigaction *actp, int sig,
3813                                 siginfo_t *siginfo, void *context) {
3814  // Call the old signal handler
3815  if (actp->sa_handler == SIG_DFL) {
3816    // It's more reasonable to let jvm treat it as an unexpected exception
3817    // instead of taking the default action.
3818    return false;
3819  } else if (actp->sa_handler != SIG_IGN) {
3820    if ((actp->sa_flags & SA_NODEFER) == 0) {
3821      // automaticlly block the signal
3822      sigaddset(&(actp->sa_mask), sig);
3823    }
3824
3825    sa_handler_t hand;
3826    sa_sigaction_t sa;
3827    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3828    // retrieve the chained handler
3829    if (siginfo_flag_set) {
3830      sa = actp->sa_sigaction;
3831    } else {
3832      hand = actp->sa_handler;
3833    }
3834
3835    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3836      actp->sa_handler = SIG_DFL;
3837    }
3838
3839    // try to honor the signal mask
3840    sigset_t oset;
3841    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3842
3843    // call into the chained handler
3844    if (siginfo_flag_set) {
3845      (*sa)(sig, siginfo, context);
3846    } else {
3847      (*hand)(sig);
3848    }
3849
3850    // restore the signal mask
3851    thr_sigsetmask(SIG_SETMASK, &oset, 0);
3852  }
3853  // Tell jvm's signal handler the signal is taken care of.
3854  return true;
3855}
3856
3857bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3858  bool chained = false;
3859  // signal-chaining
3860  if (UseSignalChaining) {
3861    struct sigaction *actp = get_chained_signal_action(sig);
3862    if (actp != NULL) {
3863      chained = call_chained_handler(actp, sig, siginfo, context);
3864    }
3865  }
3866  return chained;
3867}
3868
3869struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3870  assert((chainedsigactions != (struct sigaction *)NULL) &&
3871         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3872  if (preinstalled_sigs[sig] != 0) {
3873    return &chainedsigactions[sig];
3874  }
3875  return NULL;
3876}
3877
3878void os::Solaris::save_preinstalled_handler(int sig,
3879                                            struct sigaction& oldAct) {
3880  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3881  assert((chainedsigactions != (struct sigaction *)NULL) &&
3882         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3883  chainedsigactions[sig] = oldAct;
3884  preinstalled_sigs[sig] = 1;
3885}
3886
3887void os::Solaris::set_signal_handler(int sig, bool set_installed,
3888                                     bool oktochain) {
3889  // Check for overwrite.
3890  struct sigaction oldAct;
3891  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3892  void* oldhand =
3893      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3894                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3895  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3896      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3897      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3898    if (AllowUserSignalHandlers || !set_installed) {
3899      // Do not overwrite; user takes responsibility to forward to us.
3900      return;
3901    } else if (UseSignalChaining) {
3902      if (oktochain) {
3903        // save the old handler in jvm
3904        save_preinstalled_handler(sig, oldAct);
3905      } else {
3906        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3907      }
3908      // libjsig also interposes the sigaction() call below and saves the
3909      // old sigaction on it own.
3910    } else {
3911      fatal("Encountered unexpected pre-existing sigaction handler "
3912            "%#lx for signal %d.", (long)oldhand, sig);
3913    }
3914  }
3915
3916  struct sigaction sigAct;
3917  sigfillset(&(sigAct.sa_mask));
3918  sigAct.sa_handler = SIG_DFL;
3919
3920  sigAct.sa_sigaction = signalHandler;
3921  // Handle SIGSEGV on alternate signal stack if
3922  // not using stack banging
3923  if (!UseStackBanging && sig == SIGSEGV) {
3924    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3925  } else {
3926    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3927  }
3928  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3929
3930  sigaction(sig, &sigAct, &oldAct);
3931
3932  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3933                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3934  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3935}
3936
3937
3938#define DO_SIGNAL_CHECK(sig)                      \
3939  do {                                            \
3940    if (!sigismember(&check_signal_done, sig)) {  \
3941      os::Solaris::check_signal_handler(sig);     \
3942    }                                             \
3943  } while (0)
3944
3945// This method is a periodic task to check for misbehaving JNI applications
3946// under CheckJNI, we can add any periodic checks here
3947
3948void os::run_periodic_checks() {
3949  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3950  // thereby preventing a NULL checks.
3951  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3952
3953  if (check_signals == false) return;
3954
3955  // SEGV and BUS if overridden could potentially prevent
3956  // generation of hs*.log in the event of a crash, debugging
3957  // such a case can be very challenging, so we absolutely
3958  // check for the following for a good measure:
3959  DO_SIGNAL_CHECK(SIGSEGV);
3960  DO_SIGNAL_CHECK(SIGILL);
3961  DO_SIGNAL_CHECK(SIGFPE);
3962  DO_SIGNAL_CHECK(SIGBUS);
3963  DO_SIGNAL_CHECK(SIGPIPE);
3964  DO_SIGNAL_CHECK(SIGXFSZ);
3965
3966  // ReduceSignalUsage allows the user to override these handlers
3967  // see comments at the very top and jvm_solaris.h
3968  if (!ReduceSignalUsage) {
3969    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3970    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3971    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3972    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3973  }
3974
3975  // See comments above for using JVM1/JVM2
3976  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
3977
3978}
3979
3980typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3981
3982static os_sigaction_t os_sigaction = NULL;
3983
3984void os::Solaris::check_signal_handler(int sig) {
3985  char buf[O_BUFLEN];
3986  address jvmHandler = NULL;
3987
3988  struct sigaction act;
3989  if (os_sigaction == NULL) {
3990    // only trust the default sigaction, in case it has been interposed
3991    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3992    if (os_sigaction == NULL) return;
3993  }
3994
3995  os_sigaction(sig, (struct sigaction*)NULL, &act);
3996
3997  address thisHandler = (act.sa_flags & SA_SIGINFO)
3998    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3999    : CAST_FROM_FN_PTR(address, act.sa_handler);
4000
4001
4002  switch (sig) {
4003  case SIGSEGV:
4004  case SIGBUS:
4005  case SIGFPE:
4006  case SIGPIPE:
4007  case SIGXFSZ:
4008  case SIGILL:
4009    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4010    break;
4011
4012  case SHUTDOWN1_SIGNAL:
4013  case SHUTDOWN2_SIGNAL:
4014  case SHUTDOWN3_SIGNAL:
4015  case BREAK_SIGNAL:
4016    jvmHandler = (address)user_handler();
4017    break;
4018
4019  default:
4020    int asynsig = os::Solaris::SIGasync();
4021
4022    if (sig == asynsig) {
4023      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4024    } else {
4025      return;
4026    }
4027    break;
4028  }
4029
4030
4031  if (thisHandler != jvmHandler) {
4032    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4033    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4034    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4035    // No need to check this sig any longer
4036    sigaddset(&check_signal_done, sig);
4037    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4038    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4039      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4040                    exception_name(sig, buf, O_BUFLEN));
4041    }
4042  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4043    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4044    tty->print("expected:");
4045    os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4046    tty->cr();
4047    tty->print("  found:");
4048    os::Posix::print_sa_flags(tty, act.sa_flags);
4049    tty->cr();
4050    // No need to check this sig any longer
4051    sigaddset(&check_signal_done, sig);
4052  }
4053
4054  // Print all the signal handler state
4055  if (sigismember(&check_signal_done, sig)) {
4056    print_signal_handlers(tty, buf, O_BUFLEN);
4057  }
4058
4059}
4060
4061void os::Solaris::install_signal_handlers() {
4062  bool libjsigdone = false;
4063  signal_handlers_are_installed = true;
4064
4065  // signal-chaining
4066  typedef void (*signal_setting_t)();
4067  signal_setting_t begin_signal_setting = NULL;
4068  signal_setting_t end_signal_setting = NULL;
4069  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4070                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4071  if (begin_signal_setting != NULL) {
4072    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4073                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4074    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4075                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4076    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4077                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4078    libjsig_is_loaded = true;
4079    if (os::Solaris::get_libjsig_version != NULL) {
4080      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4081    }
4082    assert(UseSignalChaining, "should enable signal-chaining");
4083  }
4084  if (libjsig_is_loaded) {
4085    // Tell libjsig jvm is setting signal handlers
4086    (*begin_signal_setting)();
4087  }
4088
4089  set_signal_handler(SIGSEGV, true, true);
4090  set_signal_handler(SIGPIPE, true, true);
4091  set_signal_handler(SIGXFSZ, true, true);
4092  set_signal_handler(SIGBUS, true, true);
4093  set_signal_handler(SIGILL, true, true);
4094  set_signal_handler(SIGFPE, true, true);
4095
4096
4097  if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4098    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4099    // can not register overridable signals which might be > 32
4100    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4101      // Tell libjsig jvm has finished setting signal handlers
4102      (*end_signal_setting)();
4103      libjsigdone = true;
4104    }
4105  }
4106
4107  set_signal_handler(os::Solaris::SIGasync(), true, true);
4108
4109  if (libjsig_is_loaded && !libjsigdone) {
4110    // Tell libjsig jvm finishes setting signal handlers
4111    (*end_signal_setting)();
4112  }
4113
4114  // We don't activate signal checker if libjsig is in place, we trust ourselves
4115  // and if UserSignalHandler is installed all bets are off.
4116  // Log that signal checking is off only if -verbose:jni is specified.
4117  if (CheckJNICalls) {
4118    if (libjsig_is_loaded) {
4119      if (PrintJNIResolving) {
4120        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4121      }
4122      check_signals = false;
4123    }
4124    if (AllowUserSignalHandlers) {
4125      if (PrintJNIResolving) {
4126        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4127      }
4128      check_signals = false;
4129    }
4130  }
4131}
4132
4133
4134void report_error(const char* file_name, int line_no, const char* title,
4135                  const char* format, ...);
4136
4137// (Static) wrapper for getisax(2) call.
4138os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4139
4140// (Static) wrappers for the liblgrp API
4141os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4142os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4143os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4144os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4145os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4146os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4147os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4148os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4149os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4150
4151// (Static) wrapper for meminfo() call.
4152os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4153
4154static address resolve_symbol_lazy(const char* name) {
4155  address addr = (address) dlsym(RTLD_DEFAULT, name);
4156  if (addr == NULL) {
4157    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4158    addr = (address) dlsym(RTLD_NEXT, name);
4159  }
4160  return addr;
4161}
4162
4163static address resolve_symbol(const char* name) {
4164  address addr = resolve_symbol_lazy(name);
4165  if (addr == NULL) {
4166    fatal(dlerror());
4167  }
4168  return addr;
4169}
4170
4171void os::Solaris::libthread_init() {
4172  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4173
4174  lwp_priocntl_init();
4175
4176  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4177  if (func == NULL) {
4178    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4179    // Guarantee that this VM is running on an new enough OS (5.6 or
4180    // later) that it will have a new enough libthread.so.
4181    guarantee(func != NULL, "libthread.so is too old.");
4182  }
4183
4184  int size;
4185  void (*handler_info_func)(address *, int *);
4186  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4187  handler_info_func(&handler_start, &size);
4188  handler_end = handler_start + size;
4189}
4190
4191
4192int_fnP_mutex_tP os::Solaris::_mutex_lock;
4193int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4194int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4195int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4196int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4197int os::Solaris::_mutex_scope = USYNC_THREAD;
4198
4199int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4200int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4201int_fnP_cond_tP os::Solaris::_cond_signal;
4202int_fnP_cond_tP os::Solaris::_cond_broadcast;
4203int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4204int_fnP_cond_tP os::Solaris::_cond_destroy;
4205int os::Solaris::_cond_scope = USYNC_THREAD;
4206
4207void os::Solaris::synchronization_init() {
4208  if (UseLWPSynchronization) {
4209    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4210    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4211    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4212    os::Solaris::set_mutex_init(lwp_mutex_init);
4213    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4214    os::Solaris::set_mutex_scope(USYNC_THREAD);
4215
4216    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4217    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4218    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4219    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4220    os::Solaris::set_cond_init(lwp_cond_init);
4221    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4222    os::Solaris::set_cond_scope(USYNC_THREAD);
4223  } else {
4224    os::Solaris::set_mutex_scope(USYNC_THREAD);
4225    os::Solaris::set_cond_scope(USYNC_THREAD);
4226
4227    if (UsePthreads) {
4228      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4229      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4230      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4231      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4232      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4233
4234      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4235      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4236      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4237      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4238      os::Solaris::set_cond_init(pthread_cond_default_init);
4239      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4240    } else {
4241      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4242      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4243      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4244      os::Solaris::set_mutex_init(::mutex_init);
4245      os::Solaris::set_mutex_destroy(::mutex_destroy);
4246
4247      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4248      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4249      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4250      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4251      os::Solaris::set_cond_init(::cond_init);
4252      os::Solaris::set_cond_destroy(::cond_destroy);
4253    }
4254  }
4255}
4256
4257bool os::Solaris::liblgrp_init() {
4258  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4259  if (handle != NULL) {
4260    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4261    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4262    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4263    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4264    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4265    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4266    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4267    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4268                                                      dlsym(handle, "lgrp_cookie_stale")));
4269
4270    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4271    set_lgrp_cookie(c);
4272    return true;
4273  }
4274  return false;
4275}
4276
4277void os::Solaris::misc_sym_init() {
4278  address func;
4279
4280  // getisax
4281  func = resolve_symbol_lazy("getisax");
4282  if (func != NULL) {
4283    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4284  }
4285
4286  // meminfo
4287  func = resolve_symbol_lazy("meminfo");
4288  if (func != NULL) {
4289    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4290  }
4291}
4292
4293uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4294  assert(_getisax != NULL, "_getisax not set");
4295  return _getisax(array, n);
4296}
4297
4298// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4299typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4300static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4301
4302void init_pset_getloadavg_ptr(void) {
4303  pset_getloadavg_ptr =
4304    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4305  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4306    warning("pset_getloadavg function not found");
4307  }
4308}
4309
4310int os::Solaris::_dev_zero_fd = -1;
4311
4312// this is called _before_ the global arguments have been parsed
4313void os::init(void) {
4314  _initial_pid = getpid();
4315
4316  max_hrtime = first_hrtime = gethrtime();
4317
4318  init_random(1234567);
4319
4320  page_size = sysconf(_SC_PAGESIZE);
4321  if (page_size == -1) {
4322    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno));
4323  }
4324  init_page_sizes((size_t) page_size);
4325
4326  Solaris::initialize_system_info();
4327
4328  // Initialize misc. symbols as soon as possible, so we can use them
4329  // if we need them.
4330  Solaris::misc_sym_init();
4331
4332  int fd = ::open("/dev/zero", O_RDWR);
4333  if (fd < 0) {
4334    fatal("os::init: cannot open /dev/zero (%s)", strerror(errno));
4335  } else {
4336    Solaris::set_dev_zero_fd(fd);
4337
4338    // Close on exec, child won't inherit.
4339    fcntl(fd, F_SETFD, FD_CLOEXEC);
4340  }
4341
4342  clock_tics_per_sec = CLK_TCK;
4343
4344  // check if dladdr1() exists; dladdr1 can provide more information than
4345  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4346  // and is available on linker patches for 5.7 and 5.8.
4347  // libdl.so must have been loaded, this call is just an entry lookup
4348  void * hdl = dlopen("libdl.so", RTLD_NOW);
4349  if (hdl) {
4350    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4351  }
4352
4353  // (Solaris only) this switches to calls that actually do locking.
4354  ThreadCritical::initialize();
4355
4356  main_thread = thr_self();
4357
4358  // Constant minimum stack size allowed. It must be at least
4359  // the minimum of what the OS supports (thr_min_stack()), and
4360  // enough to allow the thread to get to user bytecode execution.
4361  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4362  // If the pagesize of the VM is greater than 8K determine the appropriate
4363  // number of initial guard pages.  The user can change this with the
4364  // command line arguments, if needed.
4365  if (vm_page_size() > 8*K) {
4366    StackYellowPages = 1;
4367    StackRedPages = 1;
4368    StackReservedPages = 1;
4369    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
4370  }
4371}
4372
4373// To install functions for atexit system call
4374extern "C" {
4375  static void perfMemory_exit_helper() {
4376    perfMemory_exit();
4377  }
4378}
4379
4380// this is called _after_ the global arguments have been parsed
4381jint os::init_2(void) {
4382  // try to enable extended file IO ASAP, see 6431278
4383  os::Solaris::try_enable_extended_io();
4384
4385  // Allocate a single page and mark it as readable for safepoint polling.  Also
4386  // use this first mmap call to check support for MAP_ALIGN.
4387  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4388                                                      page_size,
4389                                                      MAP_PRIVATE | MAP_ALIGN,
4390                                                      PROT_READ);
4391  if (polling_page == NULL) {
4392    has_map_align = false;
4393    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4394                                                PROT_READ);
4395  }
4396
4397  os::set_polling_page(polling_page);
4398
4399#ifndef PRODUCT
4400  if (Verbose && PrintMiscellaneous) {
4401    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4402               (intptr_t)polling_page);
4403  }
4404#endif
4405
4406  if (!UseMembar) {
4407    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4408    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4409    os::set_memory_serialize_page(mem_serialize_page);
4410
4411#ifndef PRODUCT
4412    if (Verbose && PrintMiscellaneous) {
4413      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4414                 (intptr_t)mem_serialize_page);
4415    }
4416#endif
4417  }
4418
4419  // Check minimum allowable stack size for thread creation and to initialize
4420  // the java system classes, including StackOverflowError - depends on page
4421  // size.  Add a page for compiler2 recursion in main thread.
4422  // Add in 2*BytesPerWord times page size to account for VM stack during
4423  // class initialization depending on 32 or 64 bit VM.
4424  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4425                                        (size_t)(StackReservedPages+StackYellowPages+StackRedPages+StackShadowPages+
4426                                        2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4427
4428  size_t threadStackSizeInBytes = ThreadStackSize * K;
4429  if (threadStackSizeInBytes != 0 &&
4430      threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4431    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4432                  os::Solaris::min_stack_allowed/K);
4433    return JNI_ERR;
4434  }
4435
4436  // For 64kbps there will be a 64kb page size, which makes
4437  // the usable default stack size quite a bit less.  Increase the
4438  // stack for 64kb (or any > than 8kb) pages, this increases
4439  // virtual memory fragmentation (since we're not creating the
4440  // stack on a power of 2 boundary.  The real fix for this
4441  // should be to fix the guard page mechanism.
4442
4443  if (vm_page_size() > 8*K) {
4444    threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4445       ? threadStackSizeInBytes +
4446         ((StackYellowPages + StackRedPages) * vm_page_size())
4447       : 0;
4448    ThreadStackSize = threadStackSizeInBytes/K;
4449  }
4450
4451  // Make the stack size a multiple of the page size so that
4452  // the yellow/red zones can be guarded.
4453  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4454                                                vm_page_size()));
4455
4456  Solaris::libthread_init();
4457
4458  if (UseNUMA) {
4459    if (!Solaris::liblgrp_init()) {
4460      UseNUMA = false;
4461    } else {
4462      size_t lgrp_limit = os::numa_get_groups_num();
4463      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4464      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4465      FREE_C_HEAP_ARRAY(int, lgrp_ids);
4466      if (lgrp_num < 2) {
4467        // There's only one locality group, disable NUMA.
4468        UseNUMA = false;
4469      }
4470    }
4471    if (!UseNUMA && ForceNUMA) {
4472      UseNUMA = true;
4473    }
4474  }
4475
4476  Solaris::signal_sets_init();
4477  Solaris::init_signal_mem();
4478  Solaris::install_signal_handlers();
4479
4480  if (libjsigversion < JSIG_VERSION_1_4_1) {
4481    Maxlibjsigsigs = OLDMAXSIGNUM;
4482  }
4483
4484  // initialize synchronization primitives to use either thread or
4485  // lwp synchronization (controlled by UseLWPSynchronization)
4486  Solaris::synchronization_init();
4487
4488  if (MaxFDLimit) {
4489    // set the number of file descriptors to max. print out error
4490    // if getrlimit/setrlimit fails but continue regardless.
4491    struct rlimit nbr_files;
4492    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4493    if (status != 0) {
4494      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4495        perror("os::init_2 getrlimit failed");
4496      }
4497    } else {
4498      nbr_files.rlim_cur = nbr_files.rlim_max;
4499      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4500      if (status != 0) {
4501        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4502          perror("os::init_2 setrlimit failed");
4503        }
4504      }
4505    }
4506  }
4507
4508  // Calculate theoretical max. size of Threads to guard gainst
4509  // artifical out-of-memory situations, where all available address-
4510  // space has been reserved by thread stacks. Default stack size is 1Mb.
4511  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4512    JavaThread::stack_size_at_create() : (1*K*K);
4513  assert(pre_thread_stack_size != 0, "Must have a stack");
4514  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4515  // we should start doing Virtual Memory banging. Currently when the threads will
4516  // have used all but 200Mb of space.
4517  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4518  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4519
4520  // at-exit methods are called in the reverse order of their registration.
4521  // In Solaris 7 and earlier, atexit functions are called on return from
4522  // main or as a result of a call to exit(3C). There can be only 32 of
4523  // these functions registered and atexit() does not set errno. In Solaris
4524  // 8 and later, there is no limit to the number of functions registered
4525  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4526  // functions are called upon dlclose(3DL) in addition to return from main
4527  // and exit(3C).
4528
4529  if (PerfAllowAtExitRegistration) {
4530    // only register atexit functions if PerfAllowAtExitRegistration is set.
4531    // atexit functions can be delayed until process exit time, which
4532    // can be problematic for embedded VM situations. Embedded VMs should
4533    // call DestroyJavaVM() to assure that VM resources are released.
4534
4535    // note: perfMemory_exit_helper atexit function may be removed in
4536    // the future if the appropriate cleanup code can be added to the
4537    // VM_Exit VMOperation's doit method.
4538    if (atexit(perfMemory_exit_helper) != 0) {
4539      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4540    }
4541  }
4542
4543  // Init pset_loadavg function pointer
4544  init_pset_getloadavg_ptr();
4545
4546  return JNI_OK;
4547}
4548
4549// Mark the polling page as unreadable
4550void os::make_polling_page_unreadable(void) {
4551  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4552    fatal("Could not disable polling page");
4553  }
4554}
4555
4556// Mark the polling page as readable
4557void os::make_polling_page_readable(void) {
4558  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4559    fatal("Could not enable polling page");
4560  }
4561}
4562
4563// OS interface.
4564
4565bool os::check_heap(bool force) { return true; }
4566
4567// Is a (classpath) directory empty?
4568bool os::dir_is_empty(const char* path) {
4569  DIR *dir = NULL;
4570  struct dirent *ptr;
4571
4572  dir = opendir(path);
4573  if (dir == NULL) return true;
4574
4575  // Scan the directory
4576  bool result = true;
4577  char buf[sizeof(struct dirent) + MAX_PATH];
4578  struct dirent *dbuf = (struct dirent *) buf;
4579  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4580    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4581      result = false;
4582    }
4583  }
4584  closedir(dir);
4585  return result;
4586}
4587
4588// This code originates from JDK's sysOpen and open64_w
4589// from src/solaris/hpi/src/system_md.c
4590
4591int os::open(const char *path, int oflag, int mode) {
4592  if (strlen(path) > MAX_PATH - 1) {
4593    errno = ENAMETOOLONG;
4594    return -1;
4595  }
4596  int fd;
4597
4598  fd = ::open64(path, oflag, mode);
4599  if (fd == -1) return -1;
4600
4601  // If the open succeeded, the file might still be a directory
4602  {
4603    struct stat64 buf64;
4604    int ret = ::fstat64(fd, &buf64);
4605    int st_mode = buf64.st_mode;
4606
4607    if (ret != -1) {
4608      if ((st_mode & S_IFMT) == S_IFDIR) {
4609        errno = EISDIR;
4610        ::close(fd);
4611        return -1;
4612      }
4613    } else {
4614      ::close(fd);
4615      return -1;
4616    }
4617  }
4618
4619  // 32-bit Solaris systems suffer from:
4620  //
4621  // - an historical default soft limit of 256 per-process file
4622  //   descriptors that is too low for many Java programs.
4623  //
4624  // - a design flaw where file descriptors created using stdio
4625  //   fopen must be less than 256, _even_ when the first limit above
4626  //   has been raised.  This can cause calls to fopen (but not calls to
4627  //   open, for example) to fail mysteriously, perhaps in 3rd party
4628  //   native code (although the JDK itself uses fopen).  One can hardly
4629  //   criticize them for using this most standard of all functions.
4630  //
4631  // We attempt to make everything work anyways by:
4632  //
4633  // - raising the soft limit on per-process file descriptors beyond
4634  //   256
4635  //
4636  // - As of Solaris 10u4, we can request that Solaris raise the 256
4637  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4638  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4639  //
4640  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4641  //   workaround the bug by remapping non-stdio file descriptors below
4642  //   256 to ones beyond 256, which is done below.
4643  //
4644  // See:
4645  // 1085341: 32-bit stdio routines should support file descriptors >255
4646  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4647  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4648  //          enable_extended_FILE_stdio() in VM initialisation
4649  // Giri Mandalika's blog
4650  // http://technopark02.blogspot.com/2005_05_01_archive.html
4651  //
4652#ifndef  _LP64
4653  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4654    int newfd = ::fcntl(fd, F_DUPFD, 256);
4655    if (newfd != -1) {
4656      ::close(fd);
4657      fd = newfd;
4658    }
4659  }
4660#endif // 32-bit Solaris
4661
4662  // All file descriptors that are opened in the JVM and not
4663  // specifically destined for a subprocess should have the
4664  // close-on-exec flag set.  If we don't set it, then careless 3rd
4665  // party native code might fork and exec without closing all
4666  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4667  // UNIXProcess.c), and this in turn might:
4668  //
4669  // - cause end-of-file to fail to be detected on some file
4670  //   descriptors, resulting in mysterious hangs, or
4671  //
4672  // - might cause an fopen in the subprocess to fail on a system
4673  //   suffering from bug 1085341.
4674  //
4675  // (Yes, the default setting of the close-on-exec flag is a Unix
4676  // design flaw)
4677  //
4678  // See:
4679  // 1085341: 32-bit stdio routines should support file descriptors >255
4680  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4681  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4682  //
4683#ifdef FD_CLOEXEC
4684  {
4685    int flags = ::fcntl(fd, F_GETFD);
4686    if (flags != -1) {
4687      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4688    }
4689  }
4690#endif
4691
4692  return fd;
4693}
4694
4695// create binary file, rewriting existing file if required
4696int os::create_binary_file(const char* path, bool rewrite_existing) {
4697  int oflags = O_WRONLY | O_CREAT;
4698  if (!rewrite_existing) {
4699    oflags |= O_EXCL;
4700  }
4701  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4702}
4703
4704// return current position of file pointer
4705jlong os::current_file_offset(int fd) {
4706  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4707}
4708
4709// move file pointer to the specified offset
4710jlong os::seek_to_file_offset(int fd, jlong offset) {
4711  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4712}
4713
4714jlong os::lseek(int fd, jlong offset, int whence) {
4715  return (jlong) ::lseek64(fd, offset, whence);
4716}
4717
4718char * os::native_path(char *path) {
4719  return path;
4720}
4721
4722int os::ftruncate(int fd, jlong length) {
4723  return ::ftruncate64(fd, length);
4724}
4725
4726int os::fsync(int fd)  {
4727  RESTARTABLE_RETURN_INT(::fsync(fd));
4728}
4729
4730int os::available(int fd, jlong *bytes) {
4731  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4732         "Assumed _thread_in_native");
4733  jlong cur, end;
4734  int mode;
4735  struct stat64 buf64;
4736
4737  if (::fstat64(fd, &buf64) >= 0) {
4738    mode = buf64.st_mode;
4739    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4740      int n,ioctl_return;
4741
4742      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4743      if (ioctl_return>= 0) {
4744        *bytes = n;
4745        return 1;
4746      }
4747    }
4748  }
4749  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4750    return 0;
4751  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4752    return 0;
4753  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4754    return 0;
4755  }
4756  *bytes = end - cur;
4757  return 1;
4758}
4759
4760// Map a block of memory.
4761char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4762                        char *addr, size_t bytes, bool read_only,
4763                        bool allow_exec) {
4764  int prot;
4765  int flags;
4766
4767  if (read_only) {
4768    prot = PROT_READ;
4769    flags = MAP_SHARED;
4770  } else {
4771    prot = PROT_READ | PROT_WRITE;
4772    flags = MAP_PRIVATE;
4773  }
4774
4775  if (allow_exec) {
4776    prot |= PROT_EXEC;
4777  }
4778
4779  if (addr != NULL) {
4780    flags |= MAP_FIXED;
4781  }
4782
4783  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4784                                     fd, file_offset);
4785  if (mapped_address == MAP_FAILED) {
4786    return NULL;
4787  }
4788  return mapped_address;
4789}
4790
4791
4792// Remap a block of memory.
4793char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4794                          char *addr, size_t bytes, bool read_only,
4795                          bool allow_exec) {
4796  // same as map_memory() on this OS
4797  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4798                        allow_exec);
4799}
4800
4801
4802// Unmap a block of memory.
4803bool os::pd_unmap_memory(char* addr, size_t bytes) {
4804  return munmap(addr, bytes) == 0;
4805}
4806
4807void os::pause() {
4808  char filename[MAX_PATH];
4809  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4810    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4811  } else {
4812    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4813  }
4814
4815  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4816  if (fd != -1) {
4817    struct stat buf;
4818    ::close(fd);
4819    while (::stat(filename, &buf) == 0) {
4820      (void)::poll(NULL, 0, 100);
4821    }
4822  } else {
4823    jio_fprintf(stderr,
4824                "Could not open pause file '%s', continuing immediately.\n", filename);
4825  }
4826}
4827
4828#ifndef PRODUCT
4829#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4830// Turn this on if you need to trace synch operations.
4831// Set RECORD_SYNCH_LIMIT to a large-enough value,
4832// and call record_synch_enable and record_synch_disable
4833// around the computation of interest.
4834
4835void record_synch(char* name, bool returning);  // defined below
4836
4837class RecordSynch {
4838  char* _name;
4839 public:
4840  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4841  ~RecordSynch()                       { record_synch(_name, true); }
4842};
4843
4844#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4845extern "C" ret name params {                                    \
4846  typedef ret name##_t params;                                  \
4847  static name##_t* implem = NULL;                               \
4848  static int callcount = 0;                                     \
4849  if (implem == NULL) {                                         \
4850    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4851    if (implem == NULL)  fatal(dlerror());                      \
4852  }                                                             \
4853  ++callcount;                                                  \
4854  RecordSynch _rs(#name);                                       \
4855  inner;                                                        \
4856  return implem args;                                           \
4857}
4858// in dbx, examine callcounts this way:
4859// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4860
4861#define CHECK_POINTER_OK(p) \
4862  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4863#define CHECK_MU \
4864  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4865#define CHECK_CV \
4866  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4867#define CHECK_P(p) \
4868  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4869
4870#define CHECK_MUTEX(mutex_op) \
4871  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4872
4873CHECK_MUTEX(   mutex_lock)
4874CHECK_MUTEX(  _mutex_lock)
4875CHECK_MUTEX( mutex_unlock)
4876CHECK_MUTEX(_mutex_unlock)
4877CHECK_MUTEX( mutex_trylock)
4878CHECK_MUTEX(_mutex_trylock)
4879
4880#define CHECK_COND(cond_op) \
4881  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4882
4883CHECK_COND( cond_wait);
4884CHECK_COND(_cond_wait);
4885CHECK_COND(_cond_wait_cancel);
4886
4887#define CHECK_COND2(cond_op) \
4888  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4889
4890CHECK_COND2( cond_timedwait);
4891CHECK_COND2(_cond_timedwait);
4892CHECK_COND2(_cond_timedwait_cancel);
4893
4894// do the _lwp_* versions too
4895#define mutex_t lwp_mutex_t
4896#define cond_t  lwp_cond_t
4897CHECK_MUTEX(  _lwp_mutex_lock)
4898CHECK_MUTEX(  _lwp_mutex_unlock)
4899CHECK_MUTEX(  _lwp_mutex_trylock)
4900CHECK_MUTEX( __lwp_mutex_lock)
4901CHECK_MUTEX( __lwp_mutex_unlock)
4902CHECK_MUTEX( __lwp_mutex_trylock)
4903CHECK_MUTEX(___lwp_mutex_lock)
4904CHECK_MUTEX(___lwp_mutex_unlock)
4905
4906CHECK_COND(  _lwp_cond_wait);
4907CHECK_COND( __lwp_cond_wait);
4908CHECK_COND(___lwp_cond_wait);
4909
4910CHECK_COND2(  _lwp_cond_timedwait);
4911CHECK_COND2( __lwp_cond_timedwait);
4912#undef mutex_t
4913#undef cond_t
4914
4915CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4916CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4917CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4918CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4919CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4920CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4921CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4922CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4923
4924
4925// recording machinery:
4926
4927enum { RECORD_SYNCH_LIMIT = 200 };
4928char* record_synch_name[RECORD_SYNCH_LIMIT];
4929void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4930bool record_synch_returning[RECORD_SYNCH_LIMIT];
4931thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4932int record_synch_count = 0;
4933bool record_synch_enabled = false;
4934
4935// in dbx, examine recorded data this way:
4936// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4937
4938void record_synch(char* name, bool returning) {
4939  if (record_synch_enabled) {
4940    if (record_synch_count < RECORD_SYNCH_LIMIT) {
4941      record_synch_name[record_synch_count] = name;
4942      record_synch_returning[record_synch_count] = returning;
4943      record_synch_thread[record_synch_count] = thr_self();
4944      record_synch_arg0ptr[record_synch_count] = &name;
4945      record_synch_count++;
4946    }
4947    // put more checking code here:
4948    // ...
4949  }
4950}
4951
4952void record_synch_enable() {
4953  // start collecting trace data, if not already doing so
4954  if (!record_synch_enabled)  record_synch_count = 0;
4955  record_synch_enabled = true;
4956}
4957
4958void record_synch_disable() {
4959  // stop collecting trace data
4960  record_synch_enabled = false;
4961}
4962
4963#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4964#endif // PRODUCT
4965
4966const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4967const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4968                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4969
4970
4971// JVMTI & JVM monitoring and management support
4972// The thread_cpu_time() and current_thread_cpu_time() are only
4973// supported if is_thread_cpu_time_supported() returns true.
4974// They are not supported on Solaris T1.
4975
4976// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4977// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4978// of a thread.
4979//
4980// current_thread_cpu_time() and thread_cpu_time(Thread *)
4981// returns the fast estimate available on the platform.
4982
4983// hrtime_t gethrvtime() return value includes
4984// user time but does not include system time
4985jlong os::current_thread_cpu_time() {
4986  return (jlong) gethrvtime();
4987}
4988
4989jlong os::thread_cpu_time(Thread *thread) {
4990  // return user level CPU time only to be consistent with
4991  // what current_thread_cpu_time returns.
4992  // thread_cpu_time_info() must be changed if this changes
4993  return os::thread_cpu_time(thread, false /* user time only */);
4994}
4995
4996jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4997  if (user_sys_cpu_time) {
4998    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4999  } else {
5000    return os::current_thread_cpu_time();
5001  }
5002}
5003
5004jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5005  char proc_name[64];
5006  int count;
5007  prusage_t prusage;
5008  jlong lwp_time;
5009  int fd;
5010
5011  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5012          getpid(),
5013          thread->osthread()->lwp_id());
5014  fd = ::open(proc_name, O_RDONLY);
5015  if (fd == -1) return -1;
5016
5017  do {
5018    count = ::pread(fd,
5019                    (void *)&prusage.pr_utime,
5020                    thr_time_size,
5021                    thr_time_off);
5022  } while (count < 0 && errno == EINTR);
5023  ::close(fd);
5024  if (count < 0) return -1;
5025
5026  if (user_sys_cpu_time) {
5027    // user + system CPU time
5028    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5029                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5030                 (jlong)prusage.pr_stime.tv_nsec +
5031                 (jlong)prusage.pr_utime.tv_nsec;
5032  } else {
5033    // user level CPU time only
5034    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5035                (jlong)prusage.pr_utime.tv_nsec;
5036  }
5037
5038  return (lwp_time);
5039}
5040
5041void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5042  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5043  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5044  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5045  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5046}
5047
5048void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5049  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5050  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5051  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5052  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5053}
5054
5055bool os::is_thread_cpu_time_supported() {
5056  return true;
5057}
5058
5059// System loadavg support.  Returns -1 if load average cannot be obtained.
5060// Return the load average for our processor set if the primitive exists
5061// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5062int os::loadavg(double loadavg[], int nelem) {
5063  if (pset_getloadavg_ptr != NULL) {
5064    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5065  } else {
5066    return ::getloadavg(loadavg, nelem);
5067  }
5068}
5069
5070//---------------------------------------------------------------------------------
5071
5072bool os::find(address addr, outputStream* st) {
5073  Dl_info dlinfo;
5074  memset(&dlinfo, 0, sizeof(dlinfo));
5075  if (dladdr(addr, &dlinfo) != 0) {
5076    st->print(PTR_FORMAT ": ", addr);
5077    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5078      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5079    } else if (dlinfo.dli_fbase != NULL) {
5080      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5081    } else {
5082      st->print("<absolute address>");
5083    }
5084    if (dlinfo.dli_fname != NULL) {
5085      st->print(" in %s", dlinfo.dli_fname);
5086    }
5087    if (dlinfo.dli_fbase != NULL) {
5088      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5089    }
5090    st->cr();
5091
5092    if (Verbose) {
5093      // decode some bytes around the PC
5094      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5095      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5096      address       lowest = (address) dlinfo.dli_sname;
5097      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5098      if (begin < lowest)  begin = lowest;
5099      Dl_info dlinfo2;
5100      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5101          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5102        end = (address) dlinfo2.dli_saddr;
5103      }
5104      Disassembler::decode(begin, end, st);
5105    }
5106    return true;
5107  }
5108  return false;
5109}
5110
5111// Following function has been added to support HotSparc's libjvm.so running
5112// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5113// src/solaris/hpi/native_threads in the EVM codebase.
5114//
5115// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5116// libraries and should thus be removed. We will leave it behind for a while
5117// until we no longer want to able to run on top of 1.3.0 Solaris production
5118// JDK. See 4341971.
5119
5120#define STACK_SLACK 0x800
5121
5122extern "C" {
5123  intptr_t sysThreadAvailableStackWithSlack() {
5124    stack_t st;
5125    intptr_t retval, stack_top;
5126    retval = thr_stksegment(&st);
5127    assert(retval == 0, "incorrect return value from thr_stksegment");
5128    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5129    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5130    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5131    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5132  }
5133}
5134
5135// ObjectMonitor park-unpark infrastructure ...
5136//
5137// We implement Solaris and Linux PlatformEvents with the
5138// obvious condvar-mutex-flag triple.
5139// Another alternative that works quite well is pipes:
5140// Each PlatformEvent consists of a pipe-pair.
5141// The thread associated with the PlatformEvent
5142// calls park(), which reads from the input end of the pipe.
5143// Unpark() writes into the other end of the pipe.
5144// The write-side of the pipe must be set NDELAY.
5145// Unfortunately pipes consume a large # of handles.
5146// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5147// Using pipes for the 1st few threads might be workable, however.
5148//
5149// park() is permitted to return spuriously.
5150// Callers of park() should wrap the call to park() in
5151// an appropriate loop.  A litmus test for the correct
5152// usage of park is the following: if park() were modified
5153// to immediately return 0 your code should still work,
5154// albeit degenerating to a spin loop.
5155//
5156// In a sense, park()-unpark() just provides more polite spinning
5157// and polling with the key difference over naive spinning being
5158// that a parked thread needs to be explicitly unparked() in order
5159// to wake up and to poll the underlying condition.
5160//
5161// Assumption:
5162//    Only one parker can exist on an event, which is why we allocate
5163//    them per-thread. Multiple unparkers can coexist.
5164//
5165// _Event transitions in park()
5166//   -1 => -1 : illegal
5167//    1 =>  0 : pass - return immediately
5168//    0 => -1 : block; then set _Event to 0 before returning
5169//
5170// _Event transitions in unpark()
5171//    0 => 1 : just return
5172//    1 => 1 : just return
5173//   -1 => either 0 or 1; must signal target thread
5174//         That is, we can safely transition _Event from -1 to either
5175//         0 or 1.
5176//
5177// _Event serves as a restricted-range semaphore.
5178//   -1 : thread is blocked, i.e. there is a waiter
5179//    0 : neutral: thread is running or ready,
5180//        could have been signaled after a wait started
5181//    1 : signaled - thread is running or ready
5182//
5183// Another possible encoding of _Event would be with
5184// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5185//
5186// TODO-FIXME: add DTRACE probes for:
5187// 1.   Tx parks
5188// 2.   Ty unparks Tx
5189// 3.   Tx resumes from park
5190
5191
5192// value determined through experimentation
5193#define ROUNDINGFIX 11
5194
5195// utility to compute the abstime argument to timedwait.
5196// TODO-FIXME: switch from compute_abstime() to unpackTime().
5197
5198static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5199  // millis is the relative timeout time
5200  // abstime will be the absolute timeout time
5201  if (millis < 0)  millis = 0;
5202  struct timeval now;
5203  int status = gettimeofday(&now, NULL);
5204  assert(status == 0, "gettimeofday");
5205  jlong seconds = millis / 1000;
5206  jlong max_wait_period;
5207
5208  if (UseLWPSynchronization) {
5209    // forward port of fix for 4275818 (not sleeping long enough)
5210    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5211    // _lwp_cond_timedwait() used a round_down algorithm rather
5212    // than a round_up. For millis less than our roundfactor
5213    // it rounded down to 0 which doesn't meet the spec.
5214    // For millis > roundfactor we may return a bit sooner, but
5215    // since we can not accurately identify the patch level and
5216    // this has already been fixed in Solaris 9 and 8 we will
5217    // leave it alone rather than always rounding down.
5218
5219    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5220    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5221    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5222    max_wait_period = 21000000;
5223  } else {
5224    max_wait_period = 50000000;
5225  }
5226  millis %= 1000;
5227  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5228    seconds = max_wait_period;
5229  }
5230  abstime->tv_sec = now.tv_sec  + seconds;
5231  long       usec = now.tv_usec + millis * 1000;
5232  if (usec >= 1000000) {
5233    abstime->tv_sec += 1;
5234    usec -= 1000000;
5235  }
5236  abstime->tv_nsec = usec * 1000;
5237  return abstime;
5238}
5239
5240void os::PlatformEvent::park() {           // AKA: down()
5241  // Transitions for _Event:
5242  //   -1 => -1 : illegal
5243  //    1 =>  0 : pass - return immediately
5244  //    0 => -1 : block; then set _Event to 0 before returning
5245
5246  // Invariant: Only the thread associated with the Event/PlatformEvent
5247  // may call park().
5248  assert(_nParked == 0, "invariant");
5249
5250  int v;
5251  for (;;) {
5252    v = _Event;
5253    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5254  }
5255  guarantee(v >= 0, "invariant");
5256  if (v == 0) {
5257    // Do this the hard way by blocking ...
5258    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5259    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5260    // Only for SPARC >= V8PlusA
5261#if defined(__sparc) && defined(COMPILER2)
5262    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5263#endif
5264    int status = os::Solaris::mutex_lock(_mutex);
5265    assert_status(status == 0, status, "mutex_lock");
5266    guarantee(_nParked == 0, "invariant");
5267    ++_nParked;
5268    while (_Event < 0) {
5269      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5270      // Treat this the same as if the wait was interrupted
5271      // With usr/lib/lwp going to kernel, always handle ETIME
5272      status = os::Solaris::cond_wait(_cond, _mutex);
5273      if (status == ETIME) status = EINTR;
5274      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5275    }
5276    --_nParked;
5277    _Event = 0;
5278    status = os::Solaris::mutex_unlock(_mutex);
5279    assert_status(status == 0, status, "mutex_unlock");
5280    // Paranoia to ensure our locked and lock-free paths interact
5281    // correctly with each other.
5282    OrderAccess::fence();
5283  }
5284}
5285
5286int os::PlatformEvent::park(jlong millis) {
5287  // Transitions for _Event:
5288  //   -1 => -1 : illegal
5289  //    1 =>  0 : pass - return immediately
5290  //    0 => -1 : block; then set _Event to 0 before returning
5291
5292  guarantee(_nParked == 0, "invariant");
5293  int v;
5294  for (;;) {
5295    v = _Event;
5296    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5297  }
5298  guarantee(v >= 0, "invariant");
5299  if (v != 0) return OS_OK;
5300
5301  int ret = OS_TIMEOUT;
5302  timestruc_t abst;
5303  compute_abstime(&abst, millis);
5304
5305  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5306  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5307  // Only for SPARC >= V8PlusA
5308#if defined(__sparc) && defined(COMPILER2)
5309  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5310#endif
5311  int status = os::Solaris::mutex_lock(_mutex);
5312  assert_status(status == 0, status, "mutex_lock");
5313  guarantee(_nParked == 0, "invariant");
5314  ++_nParked;
5315  while (_Event < 0) {
5316    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5317    assert_status(status == 0 || status == EINTR ||
5318                  status == ETIME || status == ETIMEDOUT,
5319                  status, "cond_timedwait");
5320    if (!FilterSpuriousWakeups) break;                // previous semantics
5321    if (status == ETIME || status == ETIMEDOUT) break;
5322    // We consume and ignore EINTR and spurious wakeups.
5323  }
5324  --_nParked;
5325  if (_Event >= 0) ret = OS_OK;
5326  _Event = 0;
5327  status = os::Solaris::mutex_unlock(_mutex);
5328  assert_status(status == 0, status, "mutex_unlock");
5329  // Paranoia to ensure our locked and lock-free paths interact
5330  // correctly with each other.
5331  OrderAccess::fence();
5332  return ret;
5333}
5334
5335void os::PlatformEvent::unpark() {
5336  // Transitions for _Event:
5337  //    0 => 1 : just return
5338  //    1 => 1 : just return
5339  //   -1 => either 0 or 1; must signal target thread
5340  //         That is, we can safely transition _Event from -1 to either
5341  //         0 or 1.
5342  // See also: "Semaphores in Plan 9" by Mullender & Cox
5343  //
5344  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5345  // that it will take two back-to-back park() calls for the owning
5346  // thread to block. This has the benefit of forcing a spurious return
5347  // from the first park() call after an unpark() call which will help
5348  // shake out uses of park() and unpark() without condition variables.
5349
5350  if (Atomic::xchg(1, &_Event) >= 0) return;
5351
5352  // If the thread associated with the event was parked, wake it.
5353  // Wait for the thread assoc with the PlatformEvent to vacate.
5354  int status = os::Solaris::mutex_lock(_mutex);
5355  assert_status(status == 0, status, "mutex_lock");
5356  int AnyWaiters = _nParked;
5357  status = os::Solaris::mutex_unlock(_mutex);
5358  assert_status(status == 0, status, "mutex_unlock");
5359  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5360  if (AnyWaiters != 0) {
5361    // Note that we signal() *after* dropping the lock for "immortal" Events.
5362    // This is safe and avoids a common class of  futile wakeups.  In rare
5363    // circumstances this can cause a thread to return prematurely from
5364    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5365    // will simply re-test the condition and re-park itself.
5366    // This provides particular benefit if the underlying platform does not
5367    // provide wait morphing.
5368    status = os::Solaris::cond_signal(_cond);
5369    assert_status(status == 0, status, "cond_signal");
5370  }
5371}
5372
5373// JSR166
5374// -------------------------------------------------------
5375
5376// The solaris and linux implementations of park/unpark are fairly
5377// conservative for now, but can be improved. They currently use a
5378// mutex/condvar pair, plus _counter.
5379// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5380// sets count to 1 and signals condvar.  Only one thread ever waits
5381// on the condvar. Contention seen when trying to park implies that someone
5382// is unparking you, so don't wait. And spurious returns are fine, so there
5383// is no need to track notifications.
5384
5385#define MAX_SECS 100000000
5386
5387// This code is common to linux and solaris and will be moved to a
5388// common place in dolphin.
5389//
5390// The passed in time value is either a relative time in nanoseconds
5391// or an absolute time in milliseconds. Either way it has to be unpacked
5392// into suitable seconds and nanoseconds components and stored in the
5393// given timespec structure.
5394// Given time is a 64-bit value and the time_t used in the timespec is only
5395// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5396// overflow if times way in the future are given. Further on Solaris versions
5397// prior to 10 there is a restriction (see cond_timedwait) that the specified
5398// number of seconds, in abstime, is less than current_time  + 100,000,000.
5399// As it will be 28 years before "now + 100000000" will overflow we can
5400// ignore overflow and just impose a hard-limit on seconds using the value
5401// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5402// years from "now".
5403//
5404static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5405  assert(time > 0, "convertTime");
5406
5407  struct timeval now;
5408  int status = gettimeofday(&now, NULL);
5409  assert(status == 0, "gettimeofday");
5410
5411  time_t max_secs = now.tv_sec + MAX_SECS;
5412
5413  if (isAbsolute) {
5414    jlong secs = time / 1000;
5415    if (secs > max_secs) {
5416      absTime->tv_sec = max_secs;
5417    } else {
5418      absTime->tv_sec = secs;
5419    }
5420    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5421  } else {
5422    jlong secs = time / NANOSECS_PER_SEC;
5423    if (secs >= MAX_SECS) {
5424      absTime->tv_sec = max_secs;
5425      absTime->tv_nsec = 0;
5426    } else {
5427      absTime->tv_sec = now.tv_sec + secs;
5428      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5429      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5430        absTime->tv_nsec -= NANOSECS_PER_SEC;
5431        ++absTime->tv_sec; // note: this must be <= max_secs
5432      }
5433    }
5434  }
5435  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5436  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5437  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5438  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5439}
5440
5441void Parker::park(bool isAbsolute, jlong time) {
5442  // Ideally we'd do something useful while spinning, such
5443  // as calling unpackTime().
5444
5445  // Optional fast-path check:
5446  // Return immediately if a permit is available.
5447  // We depend on Atomic::xchg() having full barrier semantics
5448  // since we are doing a lock-free update to _counter.
5449  if (Atomic::xchg(0, &_counter) > 0) return;
5450
5451  // Optional fast-exit: Check interrupt before trying to wait
5452  Thread* thread = Thread::current();
5453  assert(thread->is_Java_thread(), "Must be JavaThread");
5454  JavaThread *jt = (JavaThread *)thread;
5455  if (Thread::is_interrupted(thread, false)) {
5456    return;
5457  }
5458
5459  // First, demultiplex/decode time arguments
5460  timespec absTime;
5461  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5462    return;
5463  }
5464  if (time > 0) {
5465    // Warning: this code might be exposed to the old Solaris time
5466    // round-down bugs.  Grep "roundingFix" for details.
5467    unpackTime(&absTime, isAbsolute, time);
5468  }
5469
5470  // Enter safepoint region
5471  // Beware of deadlocks such as 6317397.
5472  // The per-thread Parker:: _mutex is a classic leaf-lock.
5473  // In particular a thread must never block on the Threads_lock while
5474  // holding the Parker:: mutex.  If safepoints are pending both the
5475  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5476  ThreadBlockInVM tbivm(jt);
5477
5478  // Don't wait if cannot get lock since interference arises from
5479  // unblocking.  Also. check interrupt before trying wait
5480  if (Thread::is_interrupted(thread, false) ||
5481      os::Solaris::mutex_trylock(_mutex) != 0) {
5482    return;
5483  }
5484
5485  int status;
5486
5487  if (_counter > 0)  { // no wait needed
5488    _counter = 0;
5489    status = os::Solaris::mutex_unlock(_mutex);
5490    assert(status == 0, "invariant");
5491    // Paranoia to ensure our locked and lock-free paths interact
5492    // correctly with each other and Java-level accesses.
5493    OrderAccess::fence();
5494    return;
5495  }
5496
5497#ifdef ASSERT
5498  // Don't catch signals while blocked; let the running threads have the signals.
5499  // (This allows a debugger to break into the running thread.)
5500  sigset_t oldsigs;
5501  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5502  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5503#endif
5504
5505  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5506  jt->set_suspend_equivalent();
5507  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5508
5509  // Do this the hard way by blocking ...
5510  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5511  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5512  // Only for SPARC >= V8PlusA
5513#if defined(__sparc) && defined(COMPILER2)
5514  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5515#endif
5516
5517  if (time == 0) {
5518    status = os::Solaris::cond_wait(_cond, _mutex);
5519  } else {
5520    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5521  }
5522  // Note that an untimed cond_wait() can sometimes return ETIME on older
5523  // versions of the Solaris.
5524  assert_status(status == 0 || status == EINTR ||
5525                status == ETIME || status == ETIMEDOUT,
5526                status, "cond_timedwait");
5527
5528#ifdef ASSERT
5529  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
5530#endif
5531  _counter = 0;
5532  status = os::Solaris::mutex_unlock(_mutex);
5533  assert_status(status == 0, status, "mutex_unlock");
5534  // Paranoia to ensure our locked and lock-free paths interact
5535  // correctly with each other and Java-level accesses.
5536  OrderAccess::fence();
5537
5538  // If externally suspended while waiting, re-suspend
5539  if (jt->handle_special_suspend_equivalent_condition()) {
5540    jt->java_suspend_self();
5541  }
5542}
5543
5544void Parker::unpark() {
5545  int status = os::Solaris::mutex_lock(_mutex);
5546  assert(status == 0, "invariant");
5547  const int s = _counter;
5548  _counter = 1;
5549  status = os::Solaris::mutex_unlock(_mutex);
5550  assert(status == 0, "invariant");
5551
5552  if (s < 1) {
5553    status = os::Solaris::cond_signal(_cond);
5554    assert(status == 0, "invariant");
5555  }
5556}
5557
5558extern char** environ;
5559
5560// Run the specified command in a separate process. Return its exit value,
5561// or -1 on failure (e.g. can't fork a new process).
5562// Unlike system(), this function can be called from signal handler. It
5563// doesn't block SIGINT et al.
5564int os::fork_and_exec(char* cmd) {
5565  char * argv[4];
5566  argv[0] = (char *)"sh";
5567  argv[1] = (char *)"-c";
5568  argv[2] = cmd;
5569  argv[3] = NULL;
5570
5571  // fork is async-safe, fork1 is not so can't use in signal handler
5572  pid_t pid;
5573  Thread* t = Thread::current_or_null_safe();
5574  if (t != NULL && t->is_inside_signal_handler()) {
5575    pid = fork();
5576  } else {
5577    pid = fork1();
5578  }
5579
5580  if (pid < 0) {
5581    // fork failed
5582    warning("fork failed: %s", strerror(errno));
5583    return -1;
5584
5585  } else if (pid == 0) {
5586    // child process
5587
5588    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5589    execve("/usr/bin/sh", argv, environ);
5590
5591    // execve failed
5592    _exit(-1);
5593
5594  } else  {
5595    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5596    // care about the actual exit code, for now.
5597
5598    int status;
5599
5600    // Wait for the child process to exit.  This returns immediately if
5601    // the child has already exited. */
5602    while (waitpid(pid, &status, 0) < 0) {
5603      switch (errno) {
5604      case ECHILD: return 0;
5605      case EINTR: break;
5606      default: return -1;
5607      }
5608    }
5609
5610    if (WIFEXITED(status)) {
5611      // The child exited normally; get its exit code.
5612      return WEXITSTATUS(status);
5613    } else if (WIFSIGNALED(status)) {
5614      // The child exited because of a signal
5615      // The best value to return is 0x80 + signal number,
5616      // because that is what all Unix shells do, and because
5617      // it allows callers to distinguish between process exit and
5618      // process death by signal.
5619      return 0x80 + WTERMSIG(status);
5620    } else {
5621      // Unknown exit code; pass it through
5622      return status;
5623    }
5624  }
5625}
5626
5627// is_headless_jre()
5628//
5629// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5630// in order to report if we are running in a headless jre
5631//
5632// Since JDK8 xawt/libmawt.so was moved into the same directory
5633// as libawt.so, and renamed libawt_xawt.so
5634//
5635bool os::is_headless_jre() {
5636  struct stat statbuf;
5637  char buf[MAXPATHLEN];
5638  char libmawtpath[MAXPATHLEN];
5639  const char *xawtstr  = "/xawt/libmawt.so";
5640  const char *new_xawtstr = "/libawt_xawt.so";
5641  char *p;
5642
5643  // Get path to libjvm.so
5644  os::jvm_path(buf, sizeof(buf));
5645
5646  // Get rid of libjvm.so
5647  p = strrchr(buf, '/');
5648  if (p == NULL) {
5649    return false;
5650  } else {
5651    *p = '\0';
5652  }
5653
5654  // Get rid of client or server
5655  p = strrchr(buf, '/');
5656  if (p == NULL) {
5657    return false;
5658  } else {
5659    *p = '\0';
5660  }
5661
5662  // check xawt/libmawt.so
5663  strcpy(libmawtpath, buf);
5664  strcat(libmawtpath, xawtstr);
5665  if (::stat(libmawtpath, &statbuf) == 0) return false;
5666
5667  // check libawt_xawt.so
5668  strcpy(libmawtpath, buf);
5669  strcat(libmawtpath, new_xawtstr);
5670  if (::stat(libmawtpath, &statbuf) == 0) return false;
5671
5672  return true;
5673}
5674
5675size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5676  size_t res;
5677  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5678         "Assumed _thread_in_native");
5679  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5680  return res;
5681}
5682
5683int os::close(int fd) {
5684  return ::close(fd);
5685}
5686
5687int os::socket_close(int fd) {
5688  return ::close(fd);
5689}
5690
5691int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5692  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5693         "Assumed _thread_in_native");
5694  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5695}
5696
5697int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5698  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5699         "Assumed _thread_in_native");
5700  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5701}
5702
5703int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5704  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5705}
5706
5707// As both poll and select can be interrupted by signals, we have to be
5708// prepared to restart the system call after updating the timeout, unless
5709// a poll() is done with timeout == -1, in which case we repeat with this
5710// "wait forever" value.
5711
5712int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5713  int _result;
5714  _result = ::connect(fd, him, len);
5715
5716  // On Solaris, when a connect() call is interrupted, the connection
5717  // can be established asynchronously (see 6343810). Subsequent calls
5718  // to connect() must check the errno value which has the semantic
5719  // described below (copied from the connect() man page). Handling
5720  // of asynchronously established connections is required for both
5721  // blocking and non-blocking sockets.
5722  //     EINTR            The  connection  attempt  was   interrupted
5723  //                      before  any data arrived by the delivery of
5724  //                      a signal. The connection, however, will  be
5725  //                      established asynchronously.
5726  //
5727  //     EINPROGRESS      The socket is non-blocking, and the connec-
5728  //                      tion  cannot  be completed immediately.
5729  //
5730  //     EALREADY         The socket is non-blocking,  and a previous
5731  //                      connection  attempt  has  not yet been com-
5732  //                      pleted.
5733  //
5734  //     EISCONN          The socket is already connected.
5735  if (_result == OS_ERR && errno == EINTR) {
5736    // restarting a connect() changes its errno semantics
5737    RESTARTABLE(::connect(fd, him, len), _result);
5738    // undo these changes
5739    if (_result == OS_ERR) {
5740      if (errno == EALREADY) {
5741        errno = EINPROGRESS; // fall through
5742      } else if (errno == EISCONN) {
5743        errno = 0;
5744        return OS_OK;
5745      }
5746    }
5747  }
5748  return _result;
5749}
5750
5751// Get the default path to the core file
5752// Returns the length of the string
5753int os::get_core_path(char* buffer, size_t bufferSize) {
5754  const char* p = get_current_directory(buffer, bufferSize);
5755
5756  if (p == NULL) {
5757    assert(p != NULL, "failed to get current directory");
5758    return 0;
5759  }
5760
5761  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5762                                              p, current_process_id());
5763
5764  return strlen(buffer);
5765}
5766
5767#ifndef PRODUCT
5768void TestReserveMemorySpecial_test() {
5769  // No tests available for this platform
5770}
5771#endif
5772
5773bool os::start_debugging(char *buf, int buflen) {
5774  int len = (int)strlen(buf);
5775  char *p = &buf[len];
5776
5777  jio_snprintf(p, buflen-len,
5778               "\n\n"
5779               "Do you want to debug the problem?\n\n"
5780               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5781               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5782               "Otherwise, press RETURN to abort...",
5783               os::current_process_id(), os::current_thread_id());
5784
5785  bool yes = os::message_box("Unexpected Error", buf);
5786
5787  if (yes) {
5788    // yes, user asked VM to launch debugger
5789    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5790
5791    os::fork_and_exec(buf);
5792    yes = false;
5793  }
5794  return yes;
5795}
5796