os_solaris.cpp revision 9639:f0dcbc6e99b1
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_solaris.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "os_solaris.inline.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "runtime/vm_version.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/vmError.hpp"
72
73// put OS-includes here
74# include <dlfcn.h>
75# include <errno.h>
76# include <exception>
77# include <link.h>
78# include <poll.h>
79# include <pthread.h>
80# include <pwd.h>
81# include <schedctl.h>
82# include <setjmp.h>
83# include <signal.h>
84# include <stdio.h>
85# include <alloca.h>
86# include <sys/filio.h>
87# include <sys/ipc.h>
88# include <sys/lwp.h>
89# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
90# include <sys/mman.h>
91# include <sys/processor.h>
92# include <sys/procset.h>
93# include <sys/pset.h>
94# include <sys/resource.h>
95# include <sys/shm.h>
96# include <sys/socket.h>
97# include <sys/stat.h>
98# include <sys/systeminfo.h>
99# include <sys/time.h>
100# include <sys/times.h>
101# include <sys/types.h>
102# include <sys/wait.h>
103# include <sys/utsname.h>
104# include <thread.h>
105# include <unistd.h>
106# include <sys/priocntl.h>
107# include <sys/rtpriocntl.h>
108# include <sys/tspriocntl.h>
109# include <sys/iapriocntl.h>
110# include <sys/fxpriocntl.h>
111# include <sys/loadavg.h>
112# include <string.h>
113# include <stdio.h>
114
115# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
116# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
117
118#define MAX_PATH (2 * K)
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123
124// Here are some liblgrp types from sys/lgrp_user.h to be able to
125// compile on older systems without this header file.
126
127#ifndef MADV_ACCESS_LWP
128  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
129#endif
130#ifndef MADV_ACCESS_MANY
131  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
132#endif
133
134#ifndef LGRP_RSRC_CPU
135  #define LGRP_RSRC_CPU      0       /* CPU resources */
136#endif
137#ifndef LGRP_RSRC_MEM
138  #define LGRP_RSRC_MEM      1       /* memory resources */
139#endif
140
141// Values for ThreadPriorityPolicy == 1
142int prio_policy1[CriticalPriority+1] = {
143  -99999,  0, 16,  32,  48,  64,
144          80, 96, 112, 124, 127, 127 };
145
146// System parameters used internally
147static clock_t clock_tics_per_sec = 100;
148
149// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
150static bool enabled_extended_FILE_stdio = false;
151
152// For diagnostics to print a message once. see run_periodic_checks
153static bool check_addr0_done = false;
154static sigset_t check_signal_done;
155static bool check_signals = true;
156
157address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
158address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
159
160address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
161
162
163// "default" initializers for missing libc APIs
164extern "C" {
165  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
166  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
167
168  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
169  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
170}
171
172// "default" initializers for pthread-based synchronization
173extern "C" {
174  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
175  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
176}
177
178static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
179
180static inline size_t adjust_stack_size(address base, size_t size) {
181  if ((ssize_t)size < 0) {
182    // 4759953: Compensate for ridiculous stack size.
183    size = max_intx;
184  }
185  if (size > (size_t)base) {
186    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
187    size = (size_t)base;
188  }
189  return size;
190}
191
192static inline stack_t get_stack_info() {
193  stack_t st;
194  int retval = thr_stksegment(&st);
195  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
196  assert(retval == 0, "incorrect return value from thr_stksegment");
197  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
198  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
199  return st;
200}
201
202address os::current_stack_base() {
203  int r = thr_main();
204  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
205  bool is_primordial_thread = r;
206
207  // Workaround 4352906, avoid calls to thr_stksegment by
208  // thr_main after the first one (it looks like we trash
209  // some data, causing the value for ss_sp to be incorrect).
210  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
211    stack_t st = get_stack_info();
212    if (is_primordial_thread) {
213      // cache initial value of stack base
214      os::Solaris::_main_stack_base = (address)st.ss_sp;
215    }
216    return (address)st.ss_sp;
217  } else {
218    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
219    return os::Solaris::_main_stack_base;
220  }
221}
222
223size_t os::current_stack_size() {
224  size_t size;
225
226  int r = thr_main();
227  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
228  if (!r) {
229    size = get_stack_info().ss_size;
230  } else {
231    struct rlimit limits;
232    getrlimit(RLIMIT_STACK, &limits);
233    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
234  }
235  // base may not be page aligned
236  address base = current_stack_base();
237  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
238  return (size_t)(base - bottom);
239}
240
241struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
242  return localtime_r(clock, res);
243}
244
245void os::Solaris::try_enable_extended_io() {
246  typedef int (*enable_extended_FILE_stdio_t)(int, int);
247
248  if (!UseExtendedFileIO) {
249    return;
250  }
251
252  enable_extended_FILE_stdio_t enabler =
253    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
254                                         "enable_extended_FILE_stdio");
255  if (enabler) {
256    enabler(-1, -1);
257  }
258}
259
260static int _processors_online = 0;
261
262jint os::Solaris::_os_thread_limit = 0;
263volatile jint os::Solaris::_os_thread_count = 0;
264
265julong os::available_memory() {
266  return Solaris::available_memory();
267}
268
269julong os::Solaris::available_memory() {
270  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
271}
272
273julong os::Solaris::_physical_memory = 0;
274
275julong os::physical_memory() {
276  return Solaris::physical_memory();
277}
278
279static hrtime_t first_hrtime = 0;
280static const hrtime_t hrtime_hz = 1000*1000*1000;
281static volatile hrtime_t max_hrtime = 0;
282
283
284void os::Solaris::initialize_system_info() {
285  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
286  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
287  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
288                                     (julong)sysconf(_SC_PAGESIZE);
289}
290
291int os::active_processor_count() {
292  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
293  pid_t pid = getpid();
294  psetid_t pset = PS_NONE;
295  // Are we running in a processor set or is there any processor set around?
296  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
297    uint_t pset_cpus;
298    // Query the number of cpus available to us.
299    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
300      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
301      _processors_online = pset_cpus;
302      return pset_cpus;
303    }
304  }
305  // Otherwise return number of online cpus
306  return online_cpus;
307}
308
309static bool find_processors_in_pset(psetid_t        pset,
310                                    processorid_t** id_array,
311                                    uint_t*         id_length) {
312  bool result = false;
313  // Find the number of processors in the processor set.
314  if (pset_info(pset, NULL, id_length, NULL) == 0) {
315    // Make up an array to hold their ids.
316    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
317    // Fill in the array with their processor ids.
318    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
319      result = true;
320    }
321  }
322  return result;
323}
324
325// Callers of find_processors_online() must tolerate imprecise results --
326// the system configuration can change asynchronously because of DR
327// or explicit psradm operations.
328//
329// We also need to take care that the loop (below) terminates as the
330// number of processors online can change between the _SC_NPROCESSORS_ONLN
331// request and the loop that builds the list of processor ids.   Unfortunately
332// there's no reliable way to determine the maximum valid processor id,
333// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
334// man pages, which claim the processor id set is "sparse, but
335// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
336// exit the loop.
337//
338// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
339// not available on S8.0.
340
341static bool find_processors_online(processorid_t** id_array,
342                                   uint*           id_length) {
343  const processorid_t MAX_PROCESSOR_ID = 100000;
344  // Find the number of processors online.
345  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
346  // Make up an array to hold their ids.
347  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
348  // Processors need not be numbered consecutively.
349  long found = 0;
350  processorid_t next = 0;
351  while (found < *id_length && next < MAX_PROCESSOR_ID) {
352    processor_info_t info;
353    if (processor_info(next, &info) == 0) {
354      // NB, PI_NOINTR processors are effectively online ...
355      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
356        (*id_array)[found] = next;
357        found += 1;
358      }
359    }
360    next += 1;
361  }
362  if (found < *id_length) {
363    // The loop above didn't identify the expected number of processors.
364    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
365    // and re-running the loop, above, but there's no guarantee of progress
366    // if the system configuration is in flux.  Instead, we just return what
367    // we've got.  Note that in the worst case find_processors_online() could
368    // return an empty set.  (As a fall-back in the case of the empty set we
369    // could just return the ID of the current processor).
370    *id_length = found;
371  }
372
373  return true;
374}
375
376static bool assign_distribution(processorid_t* id_array,
377                                uint           id_length,
378                                uint*          distribution,
379                                uint           distribution_length) {
380  // We assume we can assign processorid_t's to uint's.
381  assert(sizeof(processorid_t) == sizeof(uint),
382         "can't convert processorid_t to uint");
383  // Quick check to see if we won't succeed.
384  if (id_length < distribution_length) {
385    return false;
386  }
387  // Assign processor ids to the distribution.
388  // Try to shuffle processors to distribute work across boards,
389  // assuming 4 processors per board.
390  const uint processors_per_board = ProcessDistributionStride;
391  // Find the maximum processor id.
392  processorid_t max_id = 0;
393  for (uint m = 0; m < id_length; m += 1) {
394    max_id = MAX2(max_id, id_array[m]);
395  }
396  // The next id, to limit loops.
397  const processorid_t limit_id = max_id + 1;
398  // Make up markers for available processors.
399  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
400  for (uint c = 0; c < limit_id; c += 1) {
401    available_id[c] = false;
402  }
403  for (uint a = 0; a < id_length; a += 1) {
404    available_id[id_array[a]] = true;
405  }
406  // Step by "boards", then by "slot", copying to "assigned".
407  // NEEDS_CLEANUP: The assignment of processors should be stateful,
408  //                remembering which processors have been assigned by
409  //                previous calls, etc., so as to distribute several
410  //                independent calls of this method.  What we'd like is
411  //                It would be nice to have an API that let us ask
412  //                how many processes are bound to a processor,
413  //                but we don't have that, either.
414  //                In the short term, "board" is static so that
415  //                subsequent distributions don't all start at board 0.
416  static uint board = 0;
417  uint assigned = 0;
418  // Until we've found enough processors ....
419  while (assigned < distribution_length) {
420    // ... find the next available processor in the board.
421    for (uint slot = 0; slot < processors_per_board; slot += 1) {
422      uint try_id = board * processors_per_board + slot;
423      if ((try_id < limit_id) && (available_id[try_id] == true)) {
424        distribution[assigned] = try_id;
425        available_id[try_id] = false;
426        assigned += 1;
427        break;
428      }
429    }
430    board += 1;
431    if (board * processors_per_board + 0 >= limit_id) {
432      board = 0;
433    }
434  }
435  if (available_id != NULL) {
436    FREE_C_HEAP_ARRAY(bool, available_id);
437  }
438  return true;
439}
440
441void os::set_native_thread_name(const char *name) {
442  // Not yet implemented.
443  return;
444}
445
446bool os::distribute_processes(uint length, uint* distribution) {
447  bool result = false;
448  // Find the processor id's of all the available CPUs.
449  processorid_t* id_array  = NULL;
450  uint           id_length = 0;
451  // There are some races between querying information and using it,
452  // since processor sets can change dynamically.
453  psetid_t pset = PS_NONE;
454  // Are we running in a processor set?
455  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
456    result = find_processors_in_pset(pset, &id_array, &id_length);
457  } else {
458    result = find_processors_online(&id_array, &id_length);
459  }
460  if (result == true) {
461    if (id_length >= length) {
462      result = assign_distribution(id_array, id_length, distribution, length);
463    } else {
464      result = false;
465    }
466  }
467  if (id_array != NULL) {
468    FREE_C_HEAP_ARRAY(processorid_t, id_array);
469  }
470  return result;
471}
472
473bool os::bind_to_processor(uint processor_id) {
474  // We assume that a processorid_t can be stored in a uint.
475  assert(sizeof(uint) == sizeof(processorid_t),
476         "can't convert uint to processorid_t");
477  int bind_result =
478    processor_bind(P_LWPID,                       // bind LWP.
479                   P_MYID,                        // bind current LWP.
480                   (processorid_t) processor_id,  // id.
481                   NULL);                         // don't return old binding.
482  return (bind_result == 0);
483}
484
485// Return true if user is running as root.
486
487bool os::have_special_privileges() {
488  static bool init = false;
489  static bool privileges = false;
490  if (!init) {
491    privileges = (getuid() != geteuid()) || (getgid() != getegid());
492    init = true;
493  }
494  return privileges;
495}
496
497
498void os::init_system_properties_values() {
499  // The next steps are taken in the product version:
500  //
501  // Obtain the JAVA_HOME value from the location of libjvm.so.
502  // This library should be located at:
503  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
504  //
505  // If "/jre/lib/" appears at the right place in the path, then we
506  // assume libjvm.so is installed in a JDK and we use this path.
507  //
508  // Otherwise exit with message: "Could not create the Java virtual machine."
509  //
510  // The following extra steps are taken in the debugging version:
511  //
512  // If "/jre/lib/" does NOT appear at the right place in the path
513  // instead of exit check for $JAVA_HOME environment variable.
514  //
515  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
516  // then we append a fake suffix "hotspot/libjvm.so" to this path so
517  // it looks like libjvm.so is installed there
518  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
519  //
520  // Otherwise exit.
521  //
522  // Important note: if the location of libjvm.so changes this
523  // code needs to be changed accordingly.
524
525// Base path of extensions installed on the system.
526#define SYS_EXT_DIR     "/usr/jdk/packages"
527#define EXTENSIONS_DIR  "/lib/ext"
528
529  char cpu_arch[12];
530  // Buffer that fits several sprintfs.
531  // Note that the space for the colon and the trailing null are provided
532  // by the nulls included by the sizeof operator.
533  const size_t bufsize =
534    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
535         sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
536         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
537  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
538
539  // sysclasspath, java_home, dll_dir
540  {
541    char *pslash;
542    os::jvm_path(buf, bufsize);
543
544    // Found the full path to libjvm.so.
545    // Now cut the path to <java_home>/jre if we can.
546    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
547    pslash = strrchr(buf, '/');
548    if (pslash != NULL) {
549      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
550    }
551    Arguments::set_dll_dir(buf);
552
553    if (pslash != NULL) {
554      pslash = strrchr(buf, '/');
555      if (pslash != NULL) {
556        *pslash = '\0';          // Get rid of /<arch>.
557        pslash = strrchr(buf, '/');
558        if (pslash != NULL) {
559          *pslash = '\0';        // Get rid of /lib.
560        }
561      }
562    }
563    Arguments::set_java_home(buf);
564    set_boot_path('/', ':');
565  }
566
567  // Where to look for native libraries.
568  {
569    // Use dlinfo() to determine the correct java.library.path.
570    //
571    // If we're launched by the Java launcher, and the user
572    // does not set java.library.path explicitly on the commandline,
573    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
574    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
575    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
576    // /usr/lib), which is exactly what we want.
577    //
578    // If the user does set java.library.path, it completely
579    // overwrites this setting, and always has.
580    //
581    // If we're not launched by the Java launcher, we may
582    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
583    // settings.  Again, dlinfo does exactly what we want.
584
585    Dl_serinfo     info_sz, *info = &info_sz;
586    Dl_serpath     *path;
587    char           *library_path;
588    char           *common_path = buf;
589
590    // Determine search path count and required buffer size.
591    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
592      FREE_C_HEAP_ARRAY(char, buf);
593      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
594    }
595
596    // Allocate new buffer and initialize.
597    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
598    info->dls_size = info_sz.dls_size;
599    info->dls_cnt = info_sz.dls_cnt;
600
601    // Obtain search path information.
602    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
603      FREE_C_HEAP_ARRAY(char, buf);
604      FREE_C_HEAP_ARRAY(char, info);
605      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
606    }
607
608    path = &info->dls_serpath[0];
609
610    // Note: Due to a legacy implementation, most of the library path
611    // is set in the launcher. This was to accomodate linking restrictions
612    // on legacy Solaris implementations (which are no longer supported).
613    // Eventually, all the library path setting will be done here.
614    //
615    // However, to prevent the proliferation of improperly built native
616    // libraries, the new path component /usr/jdk/packages is added here.
617
618    // Determine the actual CPU architecture.
619    sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
620#ifdef _LP64
621    // If we are a 64-bit vm, perform the following translations:
622    //   sparc   -> sparcv9
623    //   i386    -> amd64
624    if (strcmp(cpu_arch, "sparc") == 0) {
625      strcat(cpu_arch, "v9");
626    } else if (strcmp(cpu_arch, "i386") == 0) {
627      strcpy(cpu_arch, "amd64");
628    }
629#endif
630
631    // Construct the invariant part of ld_library_path.
632    sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
633
634    // Struct size is more than sufficient for the path components obtained
635    // through the dlinfo() call, so only add additional space for the path
636    // components explicitly added here.
637    size_t library_path_size = info->dls_size + strlen(common_path);
638    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
639    library_path[0] = '\0';
640
641    // Construct the desired Java library path from the linker's library
642    // search path.
643    //
644    // For compatibility, it is optimal that we insert the additional path
645    // components specific to the Java VM after those components specified
646    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
647    // infrastructure.
648    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
649      strcpy(library_path, common_path);
650    } else {
651      int inserted = 0;
652      int i;
653      for (i = 0; i < info->dls_cnt; i++, path++) {
654        uint_t flags = path->dls_flags & LA_SER_MASK;
655        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
656          strcat(library_path, common_path);
657          strcat(library_path, os::path_separator());
658          inserted = 1;
659        }
660        strcat(library_path, path->dls_name);
661        strcat(library_path, os::path_separator());
662      }
663      // Eliminate trailing path separator.
664      library_path[strlen(library_path)-1] = '\0';
665    }
666
667    // happens before argument parsing - can't use a trace flag
668    // tty->print_raw("init_system_properties_values: native lib path: ");
669    // tty->print_raw_cr(library_path);
670
671    // Callee copies into its own buffer.
672    Arguments::set_library_path(library_path);
673
674    FREE_C_HEAP_ARRAY(char, library_path);
675    FREE_C_HEAP_ARRAY(char, info);
676  }
677
678  // Extensions directories.
679  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
680  Arguments::set_ext_dirs(buf);
681
682  FREE_C_HEAP_ARRAY(char, buf);
683
684#undef SYS_EXT_DIR
685#undef EXTENSIONS_DIR
686}
687
688void os::breakpoint() {
689  BREAKPOINT;
690}
691
692bool os::obsolete_option(const JavaVMOption *option) {
693  if (!strncmp(option->optionString, "-Xt", 3)) {
694    return true;
695  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
696    return true;
697  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
698    return true;
699  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
700    return true;
701  }
702  return false;
703}
704
705bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
706  address  stackStart  = (address)thread->stack_base();
707  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
708  if (sp < stackStart && sp >= stackEnd) return true;
709  return false;
710}
711
712extern "C" void breakpoint() {
713  // use debugger to set breakpoint here
714}
715
716static thread_t main_thread;
717
718// Thread start routine for all new Java threads
719extern "C" void* java_start(void* thread_addr) {
720  // Try to randomize the cache line index of hot stack frames.
721  // This helps when threads of the same stack traces evict each other's
722  // cache lines. The threads can be either from the same JVM instance, or
723  // from different JVM instances. The benefit is especially true for
724  // processors with hyperthreading technology.
725  static int counter = 0;
726  int pid = os::current_process_id();
727  alloca(((pid ^ counter++) & 7) * 128);
728
729  int prio;
730  Thread* thread = (Thread*)thread_addr;
731  OSThread* osthr = thread->osthread();
732
733  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
734  thread->_schedctl = (void *) schedctl_init();
735
736  if (UseNUMA) {
737    int lgrp_id = os::numa_get_group_id();
738    if (lgrp_id != -1) {
739      thread->set_lgrp_id(lgrp_id);
740    }
741  }
742
743  // If the creator called set priority before we started,
744  // we need to call set_native_priority now that we have an lwp.
745  // We used to get the priority from thr_getprio (we called
746  // thr_setprio way back in create_thread) and pass it to
747  // set_native_priority, but Solaris scales the priority
748  // in java_to_os_priority, so when we read it back here,
749  // we pass trash to set_native_priority instead of what's
750  // in java_to_os_priority. So we save the native priority
751  // in the osThread and recall it here.
752
753  if (osthr->thread_id() != -1) {
754    if (UseThreadPriorities) {
755      int prio = osthr->native_priority();
756      if (ThreadPriorityVerbose) {
757        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
758                      INTPTR_FORMAT ", setting priority: %d\n",
759                      osthr->thread_id(), osthr->lwp_id(), prio);
760      }
761      os::set_native_priority(thread, prio);
762    }
763  } else if (ThreadPriorityVerbose) {
764    warning("Can't set priority in _start routine, thread id hasn't been set\n");
765  }
766
767  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
768
769  // initialize signal mask for this thread
770  os::Solaris::hotspot_sigmask(thread);
771
772  thread->run();
773
774  // One less thread is executing
775  // When the VMThread gets here, the main thread may have already exited
776  // which frees the CodeHeap containing the Atomic::dec code
777  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
778    Atomic::dec(&os::Solaris::_os_thread_count);
779  }
780
781  if (UseDetachedThreads) {
782    thr_exit(NULL);
783    ShouldNotReachHere();
784  }
785  return NULL;
786}
787
788static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
789  // Allocate the OSThread object
790  OSThread* osthread = new OSThread(NULL, NULL);
791  if (osthread == NULL) return NULL;
792
793  // Store info on the Solaris thread into the OSThread
794  osthread->set_thread_id(thread_id);
795  osthread->set_lwp_id(_lwp_self());
796  thread->_schedctl = (void *) schedctl_init();
797
798  if (UseNUMA) {
799    int lgrp_id = os::numa_get_group_id();
800    if (lgrp_id != -1) {
801      thread->set_lgrp_id(lgrp_id);
802    }
803  }
804
805  if (ThreadPriorityVerbose) {
806    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
807                  osthread->thread_id(), osthread->lwp_id());
808  }
809
810  // Initial thread state is INITIALIZED, not SUSPENDED
811  osthread->set_state(INITIALIZED);
812
813  return osthread;
814}
815
816void os::Solaris::hotspot_sigmask(Thread* thread) {
817  //Save caller's signal mask
818  sigset_t sigmask;
819  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
820  OSThread *osthread = thread->osthread();
821  osthread->set_caller_sigmask(sigmask);
822
823  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
824  if (!ReduceSignalUsage) {
825    if (thread->is_VM_thread()) {
826      // Only the VM thread handles BREAK_SIGNAL ...
827      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
828    } else {
829      // ... all other threads block BREAK_SIGNAL
830      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
831      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
832    }
833  }
834}
835
836bool os::create_attached_thread(JavaThread* thread) {
837#ifdef ASSERT
838  thread->verify_not_published();
839#endif
840  OSThread* osthread = create_os_thread(thread, thr_self());
841  if (osthread == NULL) {
842    return false;
843  }
844
845  // Initial thread state is RUNNABLE
846  osthread->set_state(RUNNABLE);
847  thread->set_osthread(osthread);
848
849  // initialize signal mask for this thread
850  // and save the caller's signal mask
851  os::Solaris::hotspot_sigmask(thread);
852
853  return true;
854}
855
856bool os::create_main_thread(JavaThread* thread) {
857#ifdef ASSERT
858  thread->verify_not_published();
859#endif
860  if (_starting_thread == NULL) {
861    _starting_thread = create_os_thread(thread, main_thread);
862    if (_starting_thread == NULL) {
863      return false;
864    }
865  }
866
867  // The primodial thread is runnable from the start
868  _starting_thread->set_state(RUNNABLE);
869
870  thread->set_osthread(_starting_thread);
871
872  // initialize signal mask for this thread
873  // and save the caller's signal mask
874  os::Solaris::hotspot_sigmask(thread);
875
876  return true;
877}
878
879
880bool os::create_thread(Thread* thread, ThreadType thr_type,
881                       size_t stack_size) {
882  // Allocate the OSThread object
883  OSThread* osthread = new OSThread(NULL, NULL);
884  if (osthread == NULL) {
885    return false;
886  }
887
888  if (ThreadPriorityVerbose) {
889    char *thrtyp;
890    switch (thr_type) {
891    case vm_thread:
892      thrtyp = (char *)"vm";
893      break;
894    case cgc_thread:
895      thrtyp = (char *)"cgc";
896      break;
897    case pgc_thread:
898      thrtyp = (char *)"pgc";
899      break;
900    case java_thread:
901      thrtyp = (char *)"java";
902      break;
903    case compiler_thread:
904      thrtyp = (char *)"compiler";
905      break;
906    case watcher_thread:
907      thrtyp = (char *)"watcher";
908      break;
909    default:
910      thrtyp = (char *)"unknown";
911      break;
912    }
913    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
914  }
915
916  // Calculate stack size if it's not specified by caller.
917  if (stack_size == 0) {
918    // The default stack size 1M (2M for LP64).
919    stack_size = (BytesPerWord >> 2) * K * K;
920
921    switch (thr_type) {
922    case os::java_thread:
923      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
924      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
925      break;
926    case os::compiler_thread:
927      if (CompilerThreadStackSize > 0) {
928        stack_size = (size_t)(CompilerThreadStackSize * K);
929        break;
930      } // else fall through:
931        // use VMThreadStackSize if CompilerThreadStackSize is not defined
932    case os::vm_thread:
933    case os::pgc_thread:
934    case os::cgc_thread:
935    case os::watcher_thread:
936      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
937      break;
938    }
939  }
940  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
941
942  // Initial state is ALLOCATED but not INITIALIZED
943  osthread->set_state(ALLOCATED);
944
945  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
946    // We got lots of threads. Check if we still have some address space left.
947    // Need to be at least 5Mb of unreserved address space. We do check by
948    // trying to reserve some.
949    const size_t VirtualMemoryBangSize = 20*K*K;
950    char* mem = os::reserve_memory(VirtualMemoryBangSize);
951    if (mem == NULL) {
952      delete osthread;
953      return false;
954    } else {
955      // Release the memory again
956      os::release_memory(mem, VirtualMemoryBangSize);
957    }
958  }
959
960  // Setup osthread because the child thread may need it.
961  thread->set_osthread(osthread);
962
963  // Create the Solaris thread
964  thread_t tid = 0;
965  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
966  int      status;
967
968  // Mark that we don't have an lwp or thread id yet.
969  // In case we attempt to set the priority before the thread starts.
970  osthread->set_lwp_id(-1);
971  osthread->set_thread_id(-1);
972
973  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
974  if (status != 0) {
975    if (PrintMiscellaneous && (Verbose || WizardMode)) {
976      perror("os::create_thread");
977    }
978    thread->set_osthread(NULL);
979    // Need to clean up stuff we've allocated so far
980    delete osthread;
981    return false;
982  }
983
984  Atomic::inc(&os::Solaris::_os_thread_count);
985
986  // Store info on the Solaris thread into the OSThread
987  osthread->set_thread_id(tid);
988
989  // Remember that we created this thread so we can set priority on it
990  osthread->set_vm_created();
991
992  // Initial thread state is INITIALIZED, not SUSPENDED
993  osthread->set_state(INITIALIZED);
994
995  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
996  return true;
997}
998
999// defined for >= Solaris 10. This allows builds on earlier versions
1000// of Solaris to take advantage of the newly reserved Solaris JVM signals.
1001// With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1002// was SIGJVM1.
1003//
1004#if !defined(SIGJVM1)
1005  #define SIGJVM1 39
1006  #define SIGJVM2 40
1007#endif
1008
1009debug_only(static bool signal_sets_initialized = false);
1010static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1011
1012int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1013
1014bool os::Solaris::is_sig_ignored(int sig) {
1015  struct sigaction oact;
1016  sigaction(sig, (struct sigaction*)NULL, &oact);
1017  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1018                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1019  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1020    return true;
1021  } else {
1022    return false;
1023  }
1024}
1025
1026// Note: SIGRTMIN is a macro that calls sysconf() so it will
1027// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1028static bool isJVM1available() {
1029  return SIGJVM1 < SIGRTMIN;
1030}
1031
1032void os::Solaris::signal_sets_init() {
1033  // Should also have an assertion stating we are still single-threaded.
1034  assert(!signal_sets_initialized, "Already initialized");
1035  // Fill in signals that are necessarily unblocked for all threads in
1036  // the VM. Currently, we unblock the following signals:
1037  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1038  //                         by -Xrs (=ReduceSignalUsage));
1039  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1040  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1041  // the dispositions or masks wrt these signals.
1042  // Programs embedding the VM that want to use the above signals for their
1043  // own purposes must, at this time, use the "-Xrs" option to prevent
1044  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1045  // (See bug 4345157, and other related bugs).
1046  // In reality, though, unblocking these signals is really a nop, since
1047  // these signals are not blocked by default.
1048  sigemptyset(&unblocked_sigs);
1049  sigemptyset(&allowdebug_blocked_sigs);
1050  sigaddset(&unblocked_sigs, SIGILL);
1051  sigaddset(&unblocked_sigs, SIGSEGV);
1052  sigaddset(&unblocked_sigs, SIGBUS);
1053  sigaddset(&unblocked_sigs, SIGFPE);
1054
1055  // Always true on Solaris 10+
1056  guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1057  os::Solaris::set_SIGasync(SIGJVM2);
1058
1059  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1060
1061  if (!ReduceSignalUsage) {
1062    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1063      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1064      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1065    }
1066    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1067      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1068      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1069    }
1070    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1071      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1072      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1073    }
1074  }
1075  // Fill in signals that are blocked by all but the VM thread.
1076  sigemptyset(&vm_sigs);
1077  if (!ReduceSignalUsage) {
1078    sigaddset(&vm_sigs, BREAK_SIGNAL);
1079  }
1080  debug_only(signal_sets_initialized = true);
1081
1082  // For diagnostics only used in run_periodic_checks
1083  sigemptyset(&check_signal_done);
1084}
1085
1086// These are signals that are unblocked while a thread is running Java.
1087// (For some reason, they get blocked by default.)
1088sigset_t* os::Solaris::unblocked_signals() {
1089  assert(signal_sets_initialized, "Not initialized");
1090  return &unblocked_sigs;
1091}
1092
1093// These are the signals that are blocked while a (non-VM) thread is
1094// running Java. Only the VM thread handles these signals.
1095sigset_t* os::Solaris::vm_signals() {
1096  assert(signal_sets_initialized, "Not initialized");
1097  return &vm_sigs;
1098}
1099
1100// These are signals that are blocked during cond_wait to allow debugger in
1101sigset_t* os::Solaris::allowdebug_blocked_signals() {
1102  assert(signal_sets_initialized, "Not initialized");
1103  return &allowdebug_blocked_sigs;
1104}
1105
1106
1107void _handle_uncaught_cxx_exception() {
1108  VMError::report_and_die("An uncaught C++ exception");
1109}
1110
1111
1112// First crack at OS-specific initialization, from inside the new thread.
1113void os::initialize_thread(Thread* thr) {
1114  int r = thr_main();
1115  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1116  if (r) {
1117    JavaThread* jt = (JavaThread *)thr;
1118    assert(jt != NULL, "Sanity check");
1119    size_t stack_size;
1120    address base = jt->stack_base();
1121    if (Arguments::created_by_java_launcher()) {
1122      // Use 2MB to allow for Solaris 7 64 bit mode.
1123      stack_size = JavaThread::stack_size_at_create() == 0
1124        ? 2048*K : JavaThread::stack_size_at_create();
1125
1126      // There are rare cases when we may have already used more than
1127      // the basic stack size allotment before this method is invoked.
1128      // Attempt to allow for a normally sized java_stack.
1129      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1130      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1131    } else {
1132      // 6269555: If we were not created by a Java launcher, i.e. if we are
1133      // running embedded in a native application, treat the primordial thread
1134      // as much like a native attached thread as possible.  This means using
1135      // the current stack size from thr_stksegment(), unless it is too large
1136      // to reliably setup guard pages.  A reasonable max size is 8MB.
1137      size_t current_size = current_stack_size();
1138      // This should never happen, but just in case....
1139      if (current_size == 0) current_size = 2 * K * K;
1140      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1141    }
1142    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1143    stack_size = (size_t)(base - bottom);
1144
1145    assert(stack_size > 0, "Stack size calculation problem");
1146
1147    if (stack_size > jt->stack_size()) {
1148#ifndef PRODUCT
1149      struct rlimit limits;
1150      getrlimit(RLIMIT_STACK, &limits);
1151      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1152      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1153#endif
1154      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1155                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1156                    "See limit(1) to increase the stack size limit.",
1157                    stack_size / K, jt->stack_size() / K);
1158      vm_exit(1);
1159    }
1160    assert(jt->stack_size() >= stack_size,
1161           "Attempt to map more stack than was allocated");
1162    jt->set_stack_size(stack_size);
1163  }
1164
1165  // With the T2 libthread (T1 is no longer supported) threads are always bound
1166  // and we use stackbanging in all cases.
1167
1168  os::Solaris::init_thread_fpu_state();
1169  std::set_terminate(_handle_uncaught_cxx_exception);
1170}
1171
1172
1173
1174// Free Solaris resources related to the OSThread
1175void os::free_thread(OSThread* osthread) {
1176  assert(osthread != NULL, "os::free_thread but osthread not set");
1177
1178
1179  // We are told to free resources of the argument thread,
1180  // but we can only really operate on the current thread.
1181  // The main thread must take the VMThread down synchronously
1182  // before the main thread exits and frees up CodeHeap
1183  guarantee((Thread::current()->osthread() == osthread
1184             || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1185  if (Thread::current()->osthread() == osthread) {
1186    // Restore caller's signal mask
1187    sigset_t sigmask = osthread->caller_sigmask();
1188    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1189  }
1190  delete osthread;
1191}
1192
1193void os::pd_start_thread(Thread* thread) {
1194  int status = thr_continue(thread->osthread()->thread_id());
1195  assert_status(status == 0, status, "thr_continue failed");
1196}
1197
1198
1199intx os::current_thread_id() {
1200  return (intx)thr_self();
1201}
1202
1203static pid_t _initial_pid = 0;
1204
1205int os::current_process_id() {
1206  return (int)(_initial_pid ? _initial_pid : getpid());
1207}
1208
1209// gethrtime() should be monotonic according to the documentation,
1210// but some virtualized platforms are known to break this guarantee.
1211// getTimeNanos() must be guaranteed not to move backwards, so we
1212// are forced to add a check here.
1213inline hrtime_t getTimeNanos() {
1214  const hrtime_t now = gethrtime();
1215  const hrtime_t prev = max_hrtime;
1216  if (now <= prev) {
1217    return prev;   // same or retrograde time;
1218  }
1219  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1220  assert(obsv >= prev, "invariant");   // Monotonicity
1221  // If the CAS succeeded then we're done and return "now".
1222  // If the CAS failed and the observed value "obsv" is >= now then
1223  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1224  // some other thread raced this thread and installed a new value, in which case
1225  // we could either (a) retry the entire operation, (b) retry trying to install now
1226  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1227  // we might discard a higher "now" value in deference to a slightly lower but freshly
1228  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1229  // to (a) or (b) -- and greatly reduces coherence traffic.
1230  // We might also condition (c) on the magnitude of the delta between obsv and now.
1231  // Avoiding excessive CAS operations to hot RW locations is critical.
1232  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1233  return (prev == obsv) ? now : obsv;
1234}
1235
1236// Time since start-up in seconds to a fine granularity.
1237// Used by VMSelfDestructTimer and the MemProfiler.
1238double os::elapsedTime() {
1239  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1240}
1241
1242jlong os::elapsed_counter() {
1243  return (jlong)(getTimeNanos() - first_hrtime);
1244}
1245
1246jlong os::elapsed_frequency() {
1247  return hrtime_hz;
1248}
1249
1250// Return the real, user, and system times in seconds from an
1251// arbitrary fixed point in the past.
1252bool os::getTimesSecs(double* process_real_time,
1253                      double* process_user_time,
1254                      double* process_system_time) {
1255  struct tms ticks;
1256  clock_t real_ticks = times(&ticks);
1257
1258  if (real_ticks == (clock_t) (-1)) {
1259    return false;
1260  } else {
1261    double ticks_per_second = (double) clock_tics_per_sec;
1262    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1263    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1264    // For consistency return the real time from getTimeNanos()
1265    // converted to seconds.
1266    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1267
1268    return true;
1269  }
1270}
1271
1272bool os::supports_vtime() { return true; }
1273
1274bool os::enable_vtime() {
1275  int fd = ::open("/proc/self/ctl", O_WRONLY);
1276  if (fd == -1) {
1277    return false;
1278  }
1279
1280  long cmd[] = { PCSET, PR_MSACCT };
1281  int res = ::write(fd, cmd, sizeof(long) * 2);
1282  ::close(fd);
1283  if (res != sizeof(long) * 2) {
1284    return false;
1285  }
1286  return true;
1287}
1288
1289bool os::vtime_enabled() {
1290  int fd = ::open("/proc/self/status", O_RDONLY);
1291  if (fd == -1) {
1292    return false;
1293  }
1294
1295  pstatus_t status;
1296  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1297  ::close(fd);
1298  if (res != sizeof(pstatus_t)) {
1299    return false;
1300  }
1301  return status.pr_flags & PR_MSACCT;
1302}
1303
1304double os::elapsedVTime() {
1305  return (double)gethrvtime() / (double)hrtime_hz;
1306}
1307
1308// Used internally for comparisons only
1309// getTimeMillis guaranteed to not move backwards on Solaris
1310jlong getTimeMillis() {
1311  jlong nanotime = getTimeNanos();
1312  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1313}
1314
1315// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1316jlong os::javaTimeMillis() {
1317  timeval t;
1318  if (gettimeofday(&t, NULL) == -1) {
1319    fatal("os::javaTimeMillis: gettimeofday (%s)", strerror(errno));
1320  }
1321  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1322}
1323
1324void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1325  timeval t;
1326  if (gettimeofday(&t, NULL) == -1) {
1327    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", strerror(errno));
1328  }
1329  seconds = jlong(t.tv_sec);
1330  nanos = jlong(t.tv_usec) * 1000;
1331}
1332
1333
1334jlong os::javaTimeNanos() {
1335  return (jlong)getTimeNanos();
1336}
1337
1338void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1339  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1340  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1341  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1342  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1343}
1344
1345char * os::local_time_string(char *buf, size_t buflen) {
1346  struct tm t;
1347  time_t long_time;
1348  time(&long_time);
1349  localtime_r(&long_time, &t);
1350  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1351               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1352               t.tm_hour, t.tm_min, t.tm_sec);
1353  return buf;
1354}
1355
1356// Note: os::shutdown() might be called very early during initialization, or
1357// called from signal handler. Before adding something to os::shutdown(), make
1358// sure it is async-safe and can handle partially initialized VM.
1359void os::shutdown() {
1360
1361  // allow PerfMemory to attempt cleanup of any persistent resources
1362  perfMemory_exit();
1363
1364  // needs to remove object in file system
1365  AttachListener::abort();
1366
1367  // flush buffered output, finish log files
1368  ostream_abort();
1369
1370  // Check for abort hook
1371  abort_hook_t abort_hook = Arguments::abort_hook();
1372  if (abort_hook != NULL) {
1373    abort_hook();
1374  }
1375}
1376
1377// Note: os::abort() might be called very early during initialization, or
1378// called from signal handler. Before adding something to os::abort(), make
1379// sure it is async-safe and can handle partially initialized VM.
1380void os::abort(bool dump_core, void* siginfo, void* context) {
1381  os::shutdown();
1382  if (dump_core) {
1383#ifndef PRODUCT
1384    fdStream out(defaultStream::output_fd());
1385    out.print_raw("Current thread is ");
1386    char buf[16];
1387    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1388    out.print_raw_cr(buf);
1389    out.print_raw_cr("Dumping core ...");
1390#endif
1391    ::abort(); // dump core (for debugging)
1392  }
1393
1394  ::exit(1);
1395}
1396
1397// Die immediately, no exit hook, no abort hook, no cleanup.
1398void os::die() {
1399  ::abort(); // dump core (for debugging)
1400}
1401
1402// DLL functions
1403
1404const char* os::dll_file_extension() { return ".so"; }
1405
1406// This must be hard coded because it's the system's temporary
1407// directory not the java application's temp directory, ala java.io.tmpdir.
1408const char* os::get_temp_directory() { return "/tmp"; }
1409
1410static bool file_exists(const char* filename) {
1411  struct stat statbuf;
1412  if (filename == NULL || strlen(filename) == 0) {
1413    return false;
1414  }
1415  return os::stat(filename, &statbuf) == 0;
1416}
1417
1418bool os::dll_build_name(char* buffer, size_t buflen,
1419                        const char* pname, const char* fname) {
1420  bool retval = false;
1421  const size_t pnamelen = pname ? strlen(pname) : 0;
1422
1423  // Return error on buffer overflow.
1424  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1425    return retval;
1426  }
1427
1428  if (pnamelen == 0) {
1429    snprintf(buffer, buflen, "lib%s.so", fname);
1430    retval = true;
1431  } else if (strchr(pname, *os::path_separator()) != NULL) {
1432    int n;
1433    char** pelements = split_path(pname, &n);
1434    if (pelements == NULL) {
1435      return false;
1436    }
1437    for (int i = 0; i < n; i++) {
1438      // really shouldn't be NULL but what the heck, check can't hurt
1439      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1440        continue; // skip the empty path values
1441      }
1442      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1443      if (file_exists(buffer)) {
1444        retval = true;
1445        break;
1446      }
1447    }
1448    // release the storage
1449    for (int i = 0; i < n; i++) {
1450      if (pelements[i] != NULL) {
1451        FREE_C_HEAP_ARRAY(char, pelements[i]);
1452      }
1453    }
1454    if (pelements != NULL) {
1455      FREE_C_HEAP_ARRAY(char*, pelements);
1456    }
1457  } else {
1458    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1459    retval = true;
1460  }
1461  return retval;
1462}
1463
1464// check if addr is inside libjvm.so
1465bool os::address_is_in_vm(address addr) {
1466  static address libjvm_base_addr;
1467  Dl_info dlinfo;
1468
1469  if (libjvm_base_addr == NULL) {
1470    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1471      libjvm_base_addr = (address)dlinfo.dli_fbase;
1472    }
1473    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1474  }
1475
1476  if (dladdr((void *)addr, &dlinfo) != 0) {
1477    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1478  }
1479
1480  return false;
1481}
1482
1483typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1484static dladdr1_func_type dladdr1_func = NULL;
1485
1486bool os::dll_address_to_function_name(address addr, char *buf,
1487                                      int buflen, int * offset,
1488                                      bool demangle) {
1489  // buf is not optional, but offset is optional
1490  assert(buf != NULL, "sanity check");
1491
1492  Dl_info dlinfo;
1493
1494  // dladdr1_func was initialized in os::init()
1495  if (dladdr1_func != NULL) {
1496    // yes, we have dladdr1
1497
1498    // Support for dladdr1 is checked at runtime; it may be
1499    // available even if the vm is built on a machine that does
1500    // not have dladdr1 support.  Make sure there is a value for
1501    // RTLD_DL_SYMENT.
1502#ifndef RTLD_DL_SYMENT
1503  #define RTLD_DL_SYMENT 1
1504#endif
1505#ifdef _LP64
1506    Elf64_Sym * info;
1507#else
1508    Elf32_Sym * info;
1509#endif
1510    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1511                     RTLD_DL_SYMENT) != 0) {
1512      // see if we have a matching symbol that covers our address
1513      if (dlinfo.dli_saddr != NULL &&
1514          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1515        if (dlinfo.dli_sname != NULL) {
1516          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1517            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1518          }
1519          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1520          return true;
1521        }
1522      }
1523      // no matching symbol so try for just file info
1524      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1525        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1526                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1527          return true;
1528        }
1529      }
1530    }
1531    buf[0] = '\0';
1532    if (offset != NULL) *offset  = -1;
1533    return false;
1534  }
1535
1536  // no, only dladdr is available
1537  if (dladdr((void *)addr, &dlinfo) != 0) {
1538    // see if we have a matching symbol
1539    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1540      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1541        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1542      }
1543      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1544      return true;
1545    }
1546    // no matching symbol so try for just file info
1547    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1548      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1549                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1550        return true;
1551      }
1552    }
1553  }
1554  buf[0] = '\0';
1555  if (offset != NULL) *offset  = -1;
1556  return false;
1557}
1558
1559bool os::dll_address_to_library_name(address addr, char* buf,
1560                                     int buflen, int* offset) {
1561  // buf is not optional, but offset is optional
1562  assert(buf != NULL, "sanity check");
1563
1564  Dl_info dlinfo;
1565
1566  if (dladdr((void*)addr, &dlinfo) != 0) {
1567    if (dlinfo.dli_fname != NULL) {
1568      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1569    }
1570    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1571      *offset = addr - (address)dlinfo.dli_fbase;
1572    }
1573    return true;
1574  }
1575
1576  buf[0] = '\0';
1577  if (offset) *offset = -1;
1578  return false;
1579}
1580
1581int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1582  Dl_info dli;
1583  // Sanity check?
1584  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1585      dli.dli_fname == NULL) {
1586    return 1;
1587  }
1588
1589  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1590  if (handle == NULL) {
1591    return 1;
1592  }
1593
1594  Link_map *map;
1595  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1596  if (map == NULL) {
1597    dlclose(handle);
1598    return 1;
1599  }
1600
1601  while (map->l_prev != NULL) {
1602    map = map->l_prev;
1603  }
1604
1605  while (map != NULL) {
1606    // Iterate through all map entries and call callback with fields of interest
1607    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1608      dlclose(handle);
1609      return 1;
1610    }
1611    map = map->l_next;
1612  }
1613
1614  dlclose(handle);
1615  return 0;
1616}
1617
1618int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1619  outputStream * out = (outputStream *) param;
1620  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1621  return 0;
1622}
1623
1624void os::print_dll_info(outputStream * st) {
1625  st->print_cr("Dynamic libraries:"); st->flush();
1626  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1627    st->print_cr("Error: Cannot print dynamic libraries.");
1628  }
1629}
1630
1631// Loads .dll/.so and
1632// in case of error it checks if .dll/.so was built for the
1633// same architecture as Hotspot is running on
1634
1635void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1636  void * result= ::dlopen(filename, RTLD_LAZY);
1637  if (result != NULL) {
1638    // Successful loading
1639    return result;
1640  }
1641
1642  Elf32_Ehdr elf_head;
1643
1644  // Read system error message into ebuf
1645  // It may or may not be overwritten below
1646  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1647  ebuf[ebuflen-1]='\0';
1648  int diag_msg_max_length=ebuflen-strlen(ebuf);
1649  char* diag_msg_buf=ebuf+strlen(ebuf);
1650
1651  if (diag_msg_max_length==0) {
1652    // No more space in ebuf for additional diagnostics message
1653    return NULL;
1654  }
1655
1656
1657  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1658
1659  if (file_descriptor < 0) {
1660    // Can't open library, report dlerror() message
1661    return NULL;
1662  }
1663
1664  bool failed_to_read_elf_head=
1665    (sizeof(elf_head)!=
1666     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1667
1668  ::close(file_descriptor);
1669  if (failed_to_read_elf_head) {
1670    // file i/o error - report dlerror() msg
1671    return NULL;
1672  }
1673
1674  typedef struct {
1675    Elf32_Half  code;         // Actual value as defined in elf.h
1676    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1677    char        elf_class;    // 32 or 64 bit
1678    char        endianess;    // MSB or LSB
1679    char*       name;         // String representation
1680  } arch_t;
1681
1682  static const arch_t arch_array[]={
1683    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1684    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1685    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1686    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1687    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1688    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1689    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1690    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1691    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1692    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1693  };
1694
1695#if  (defined IA32)
1696  static  Elf32_Half running_arch_code=EM_386;
1697#elif   (defined AMD64)
1698  static  Elf32_Half running_arch_code=EM_X86_64;
1699#elif  (defined IA64)
1700  static  Elf32_Half running_arch_code=EM_IA_64;
1701#elif  (defined __sparc) && (defined _LP64)
1702  static  Elf32_Half running_arch_code=EM_SPARCV9;
1703#elif  (defined __sparc) && (!defined _LP64)
1704  static  Elf32_Half running_arch_code=EM_SPARC;
1705#elif  (defined __powerpc64__)
1706  static  Elf32_Half running_arch_code=EM_PPC64;
1707#elif  (defined __powerpc__)
1708  static  Elf32_Half running_arch_code=EM_PPC;
1709#elif (defined ARM)
1710  static  Elf32_Half running_arch_code=EM_ARM;
1711#else
1712  #error Method os::dll_load requires that one of following is defined:\
1713       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1714#endif
1715
1716  // Identify compatability class for VM's architecture and library's architecture
1717  // Obtain string descriptions for architectures
1718
1719  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1720  int running_arch_index=-1;
1721
1722  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1723    if (running_arch_code == arch_array[i].code) {
1724      running_arch_index    = i;
1725    }
1726    if (lib_arch.code == arch_array[i].code) {
1727      lib_arch.compat_class = arch_array[i].compat_class;
1728      lib_arch.name         = arch_array[i].name;
1729    }
1730  }
1731
1732  assert(running_arch_index != -1,
1733         "Didn't find running architecture code (running_arch_code) in arch_array");
1734  if (running_arch_index == -1) {
1735    // Even though running architecture detection failed
1736    // we may still continue with reporting dlerror() message
1737    return NULL;
1738  }
1739
1740  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1741    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1742    return NULL;
1743  }
1744
1745  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1746    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1747    return NULL;
1748  }
1749
1750  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1751    if (lib_arch.name!=NULL) {
1752      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1753                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1754                 lib_arch.name, arch_array[running_arch_index].name);
1755    } else {
1756      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1757                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1758                 lib_arch.code,
1759                 arch_array[running_arch_index].name);
1760    }
1761  }
1762
1763  return NULL;
1764}
1765
1766void* os::dll_lookup(void* handle, const char* name) {
1767  return dlsym(handle, name);
1768}
1769
1770void* os::get_default_process_handle() {
1771  return (void*)::dlopen(NULL, RTLD_LAZY);
1772}
1773
1774int os::stat(const char *path, struct stat *sbuf) {
1775  char pathbuf[MAX_PATH];
1776  if (strlen(path) > MAX_PATH - 1) {
1777    errno = ENAMETOOLONG;
1778    return -1;
1779  }
1780  os::native_path(strcpy(pathbuf, path));
1781  return ::stat(pathbuf, sbuf);
1782}
1783
1784static bool _print_ascii_file(const char* filename, outputStream* st) {
1785  int fd = ::open(filename, O_RDONLY);
1786  if (fd == -1) {
1787    return false;
1788  }
1789
1790  char buf[32];
1791  int bytes;
1792  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1793    st->print_raw(buf, bytes);
1794  }
1795
1796  ::close(fd);
1797
1798  return true;
1799}
1800
1801void os::print_os_info_brief(outputStream* st) {
1802  os::Solaris::print_distro_info(st);
1803
1804  os::Posix::print_uname_info(st);
1805
1806  os::Solaris::print_libversion_info(st);
1807}
1808
1809void os::print_os_info(outputStream* st) {
1810  st->print("OS:");
1811
1812  os::Solaris::print_distro_info(st);
1813
1814  os::Posix::print_uname_info(st);
1815
1816  os::Solaris::print_libversion_info(st);
1817
1818  os::Posix::print_rlimit_info(st);
1819
1820  os::Posix::print_load_average(st);
1821}
1822
1823void os::Solaris::print_distro_info(outputStream* st) {
1824  if (!_print_ascii_file("/etc/release", st)) {
1825    st->print("Solaris");
1826  }
1827  st->cr();
1828}
1829
1830void os::get_summary_os_info(char* buf, size_t buflen) {
1831  strncpy(buf, "Solaris", buflen);  // default to plain solaris
1832  FILE* fp = fopen("/etc/release", "r");
1833  if (fp != NULL) {
1834    char tmp[256];
1835    // Only get the first line and chop out everything but the os name.
1836    if (fgets(tmp, sizeof(tmp), fp)) {
1837      char* ptr = tmp;
1838      // skip past whitespace characters
1839      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1840      if (*ptr != '\0') {
1841        char* nl = strchr(ptr, '\n');
1842        if (nl != NULL) *nl = '\0';
1843        strncpy(buf, ptr, buflen);
1844      }
1845    }
1846    fclose(fp);
1847  }
1848}
1849
1850void os::Solaris::print_libversion_info(outputStream* st) {
1851  st->print("  (T2 libthread)");
1852  st->cr();
1853}
1854
1855static bool check_addr0(outputStream* st) {
1856  jboolean status = false;
1857  int fd = ::open("/proc/self/map",O_RDONLY);
1858  if (fd >= 0) {
1859    prmap_t p;
1860    while (::read(fd, &p, sizeof(p)) > 0) {
1861      if (p.pr_vaddr == 0x0) {
1862        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
1863        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
1864        st->print("Access:");
1865        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
1866        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
1867        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
1868        st->cr();
1869        status = true;
1870      }
1871    }
1872    ::close(fd);
1873  }
1874  return status;
1875}
1876
1877void os::get_summary_cpu_info(char* buf, size_t buflen) {
1878  // Get MHz with system call. We don't seem to already have this.
1879  processor_info_t stats;
1880  processorid_t id = getcpuid();
1881  int clock = 0;
1882  if (processor_info(id, &stats) != -1) {
1883    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1884  }
1885#ifdef AMD64
1886  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1887#else
1888  // must be sparc
1889  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1890#endif
1891}
1892
1893void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1894  // Nothing to do for now.
1895}
1896
1897void os::print_memory_info(outputStream* st) {
1898  st->print("Memory:");
1899  st->print(" %dk page", os::vm_page_size()>>10);
1900  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1901  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1902  st->cr();
1903  (void) check_addr0(st);
1904}
1905
1906void os::print_siginfo(outputStream* st, void* siginfo) {
1907  const siginfo_t* si = (const siginfo_t*)siginfo;
1908
1909  os::Posix::print_siginfo_brief(st, si);
1910
1911  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1912      UseSharedSpaces) {
1913    FileMapInfo* mapinfo = FileMapInfo::current_info();
1914    if (mapinfo->is_in_shared_space(si->si_addr)) {
1915      st->print("\n\nError accessing class data sharing archive."   \
1916                " Mapped file inaccessible during execution, "      \
1917                " possible disk/network problem.");
1918    }
1919  }
1920  st->cr();
1921}
1922
1923// Moved from whole group, because we need them here for diagnostic
1924// prints.
1925#define OLDMAXSIGNUM 32
1926static int Maxsignum = 0;
1927static int *ourSigFlags = NULL;
1928
1929int os::Solaris::get_our_sigflags(int sig) {
1930  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1931  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1932  return ourSigFlags[sig];
1933}
1934
1935void os::Solaris::set_our_sigflags(int sig, int flags) {
1936  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1937  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1938  ourSigFlags[sig] = flags;
1939}
1940
1941
1942static const char* get_signal_handler_name(address handler,
1943                                           char* buf, int buflen) {
1944  int offset;
1945  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1946  if (found) {
1947    // skip directory names
1948    const char *p1, *p2;
1949    p1 = buf;
1950    size_t len = strlen(os::file_separator());
1951    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1952    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1953  } else {
1954    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1955  }
1956  return buf;
1957}
1958
1959static void print_signal_handler(outputStream* st, int sig,
1960                                 char* buf, size_t buflen) {
1961  struct sigaction sa;
1962
1963  sigaction(sig, NULL, &sa);
1964
1965  st->print("%s: ", os::exception_name(sig, buf, buflen));
1966
1967  address handler = (sa.sa_flags & SA_SIGINFO)
1968                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1969                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
1970
1971  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1972    st->print("SIG_DFL");
1973  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1974    st->print("SIG_IGN");
1975  } else {
1976    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1977  }
1978
1979  st->print(", sa_mask[0]=");
1980  os::Posix::print_signal_set_short(st, &sa.sa_mask);
1981
1982  address rh = VMError::get_resetted_sighandler(sig);
1983  // May be, handler was resetted by VMError?
1984  if (rh != NULL) {
1985    handler = rh;
1986    sa.sa_flags = VMError::get_resetted_sigflags(sig);
1987  }
1988
1989  st->print(", sa_flags=");
1990  os::Posix::print_sa_flags(st, sa.sa_flags);
1991
1992  // Check: is it our handler?
1993  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1994    // It is our signal handler
1995    // check for flags
1996    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1997      st->print(
1998                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1999                os::Solaris::get_our_sigflags(sig));
2000    }
2001  }
2002  st->cr();
2003}
2004
2005void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2006  st->print_cr("Signal Handlers:");
2007  print_signal_handler(st, SIGSEGV, buf, buflen);
2008  print_signal_handler(st, SIGBUS , buf, buflen);
2009  print_signal_handler(st, SIGFPE , buf, buflen);
2010  print_signal_handler(st, SIGPIPE, buf, buflen);
2011  print_signal_handler(st, SIGXFSZ, buf, buflen);
2012  print_signal_handler(st, SIGILL , buf, buflen);
2013  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2014  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2015  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2016  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2017  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2018  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2019}
2020
2021static char saved_jvm_path[MAXPATHLEN] = { 0 };
2022
2023// Find the full path to the current module, libjvm.so
2024void os::jvm_path(char *buf, jint buflen) {
2025  // Error checking.
2026  if (buflen < MAXPATHLEN) {
2027    assert(false, "must use a large-enough buffer");
2028    buf[0] = '\0';
2029    return;
2030  }
2031  // Lazy resolve the path to current module.
2032  if (saved_jvm_path[0] != 0) {
2033    strcpy(buf, saved_jvm_path);
2034    return;
2035  }
2036
2037  Dl_info dlinfo;
2038  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2039  assert(ret != 0, "cannot locate libjvm");
2040  if (ret != 0 && dlinfo.dli_fname != NULL) {
2041    realpath((char *)dlinfo.dli_fname, buf);
2042  } else {
2043    buf[0] = '\0';
2044    return;
2045  }
2046
2047  if (Arguments::sun_java_launcher_is_altjvm()) {
2048    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2049    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2050    // If "/jre/lib/" appears at the right place in the string, then
2051    // assume we are installed in a JDK and we're done.  Otherwise, check
2052    // for a JAVA_HOME environment variable and fix up the path so it
2053    // looks like libjvm.so is installed there (append a fake suffix
2054    // hotspot/libjvm.so).
2055    const char *p = buf + strlen(buf) - 1;
2056    for (int count = 0; p > buf && count < 5; ++count) {
2057      for (--p; p > buf && *p != '/'; --p)
2058        /* empty */ ;
2059    }
2060
2061    if (strncmp(p, "/jre/lib/", 9) != 0) {
2062      // Look for JAVA_HOME in the environment.
2063      char* java_home_var = ::getenv("JAVA_HOME");
2064      if (java_home_var != NULL && java_home_var[0] != 0) {
2065        char cpu_arch[12];
2066        char* jrelib_p;
2067        int   len;
2068        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2069#ifdef _LP64
2070        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2071        if (strcmp(cpu_arch, "sparc") == 0) {
2072          strcat(cpu_arch, "v9");
2073        } else if (strcmp(cpu_arch, "i386") == 0) {
2074          strcpy(cpu_arch, "amd64");
2075        }
2076#endif
2077        // Check the current module name "libjvm.so".
2078        p = strrchr(buf, '/');
2079        assert(strstr(p, "/libjvm") == p, "invalid library name");
2080
2081        realpath(java_home_var, buf);
2082        // determine if this is a legacy image or modules image
2083        // modules image doesn't have "jre" subdirectory
2084        len = strlen(buf);
2085        assert(len < buflen, "Ran out of buffer space");
2086        jrelib_p = buf + len;
2087        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2088        if (0 != access(buf, F_OK)) {
2089          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2090        }
2091
2092        if (0 == access(buf, F_OK)) {
2093          // Use current module name "libjvm.so"
2094          len = strlen(buf);
2095          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2096        } else {
2097          // Go back to path of .so
2098          realpath((char *)dlinfo.dli_fname, buf);
2099        }
2100      }
2101    }
2102  }
2103
2104  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2105  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2106}
2107
2108
2109void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2110  // no prefix required, not even "_"
2111}
2112
2113
2114void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2115  // no suffix required
2116}
2117
2118// This method is a copy of JDK's sysGetLastErrorString
2119// from src/solaris/hpi/src/system_md.c
2120
2121size_t os::lasterror(char *buf, size_t len) {
2122  if (errno == 0)  return 0;
2123
2124  const char *s = ::strerror(errno);
2125  size_t n = ::strlen(s);
2126  if (n >= len) {
2127    n = len - 1;
2128  }
2129  ::strncpy(buf, s, n);
2130  buf[n] = '\0';
2131  return n;
2132}
2133
2134
2135// sun.misc.Signal
2136
2137extern "C" {
2138  static void UserHandler(int sig, void *siginfo, void *context) {
2139    // Ctrl-C is pressed during error reporting, likely because the error
2140    // handler fails to abort. Let VM die immediately.
2141    if (sig == SIGINT && is_error_reported()) {
2142      os::die();
2143    }
2144
2145    os::signal_notify(sig);
2146    // We do not need to reinstate the signal handler each time...
2147  }
2148}
2149
2150void* os::user_handler() {
2151  return CAST_FROM_FN_PTR(void*, UserHandler);
2152}
2153
2154struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2155  struct timespec ts;
2156  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2157
2158  return ts;
2159}
2160
2161extern "C" {
2162  typedef void (*sa_handler_t)(int);
2163  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2164}
2165
2166void* os::signal(int signal_number, void* handler) {
2167  struct sigaction sigAct, oldSigAct;
2168  sigfillset(&(sigAct.sa_mask));
2169  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2170  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2171
2172  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2173    // -1 means registration failed
2174    return (void *)-1;
2175  }
2176
2177  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2178}
2179
2180void os::signal_raise(int signal_number) {
2181  raise(signal_number);
2182}
2183
2184// The following code is moved from os.cpp for making this
2185// code platform specific, which it is by its very nature.
2186
2187// a counter for each possible signal value
2188static int Sigexit = 0;
2189static int Maxlibjsigsigs;
2190static jint *pending_signals = NULL;
2191static int *preinstalled_sigs = NULL;
2192static struct sigaction *chainedsigactions = NULL;
2193static sema_t sig_sem;
2194typedef int (*version_getting_t)();
2195version_getting_t os::Solaris::get_libjsig_version = NULL;
2196static int libjsigversion = NULL;
2197
2198int os::sigexitnum_pd() {
2199  assert(Sigexit > 0, "signal memory not yet initialized");
2200  return Sigexit;
2201}
2202
2203void os::Solaris::init_signal_mem() {
2204  // Initialize signal structures
2205  Maxsignum = SIGRTMAX;
2206  Sigexit = Maxsignum+1;
2207  assert(Maxsignum >0, "Unable to obtain max signal number");
2208
2209  Maxlibjsigsigs = Maxsignum;
2210
2211  // pending_signals has one int per signal
2212  // The additional signal is for SIGEXIT - exit signal to signal_thread
2213  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2214  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2215
2216  if (UseSignalChaining) {
2217    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2218                                                   * (Maxsignum + 1), mtInternal);
2219    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2220    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2221    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2222  }
2223  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2224  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2225}
2226
2227void os::signal_init_pd() {
2228  int ret;
2229
2230  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2231  assert(ret == 0, "sema_init() failed");
2232}
2233
2234void os::signal_notify(int signal_number) {
2235  int ret;
2236
2237  Atomic::inc(&pending_signals[signal_number]);
2238  ret = ::sema_post(&sig_sem);
2239  assert(ret == 0, "sema_post() failed");
2240}
2241
2242static int check_pending_signals(bool wait_for_signal) {
2243  int ret;
2244  while (true) {
2245    for (int i = 0; i < Sigexit + 1; i++) {
2246      jint n = pending_signals[i];
2247      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2248        return i;
2249      }
2250    }
2251    if (!wait_for_signal) {
2252      return -1;
2253    }
2254    JavaThread *thread = JavaThread::current();
2255    ThreadBlockInVM tbivm(thread);
2256
2257    bool threadIsSuspended;
2258    do {
2259      thread->set_suspend_equivalent();
2260      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2261      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2262        ;
2263      assert(ret == 0, "sema_wait() failed");
2264
2265      // were we externally suspended while we were waiting?
2266      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2267      if (threadIsSuspended) {
2268        // The semaphore has been incremented, but while we were waiting
2269        // another thread suspended us. We don't want to continue running
2270        // while suspended because that would surprise the thread that
2271        // suspended us.
2272        ret = ::sema_post(&sig_sem);
2273        assert(ret == 0, "sema_post() failed");
2274
2275        thread->java_suspend_self();
2276      }
2277    } while (threadIsSuspended);
2278  }
2279}
2280
2281int os::signal_lookup() {
2282  return check_pending_signals(false);
2283}
2284
2285int os::signal_wait() {
2286  return check_pending_signals(true);
2287}
2288
2289////////////////////////////////////////////////////////////////////////////////
2290// Virtual Memory
2291
2292static int page_size = -1;
2293
2294// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2295// clear this var if support is not available.
2296static bool has_map_align = true;
2297
2298int os::vm_page_size() {
2299  assert(page_size != -1, "must call os::init");
2300  return page_size;
2301}
2302
2303// Solaris allocates memory by pages.
2304int os::vm_allocation_granularity() {
2305  assert(page_size != -1, "must call os::init");
2306  return page_size;
2307}
2308
2309static bool recoverable_mmap_error(int err) {
2310  // See if the error is one we can let the caller handle. This
2311  // list of errno values comes from the Solaris mmap(2) man page.
2312  switch (err) {
2313  case EBADF:
2314  case EINVAL:
2315  case ENOTSUP:
2316    // let the caller deal with these errors
2317    return true;
2318
2319  default:
2320    // Any remaining errors on this OS can cause our reserved mapping
2321    // to be lost. That can cause confusion where different data
2322    // structures think they have the same memory mapped. The worst
2323    // scenario is if both the VM and a library think they have the
2324    // same memory mapped.
2325    return false;
2326  }
2327}
2328
2329static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2330                                    int err) {
2331  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2332          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2333          strerror(err), err);
2334}
2335
2336static void warn_fail_commit_memory(char* addr, size_t bytes,
2337                                    size_t alignment_hint, bool exec,
2338                                    int err) {
2339  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2340          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2341          alignment_hint, exec, strerror(err), err);
2342}
2343
2344int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2345  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2346  size_t size = bytes;
2347  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2348  if (res != NULL) {
2349    if (UseNUMAInterleaving) {
2350      numa_make_global(addr, bytes);
2351    }
2352    return 0;
2353  }
2354
2355  int err = errno;  // save errno from mmap() call in mmap_chunk()
2356
2357  if (!recoverable_mmap_error(err)) {
2358    warn_fail_commit_memory(addr, bytes, exec, err);
2359    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2360  }
2361
2362  return err;
2363}
2364
2365bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2366  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2367}
2368
2369void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2370                                  const char* mesg) {
2371  assert(mesg != NULL, "mesg must be specified");
2372  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2373  if (err != 0) {
2374    // the caller wants all commit errors to exit with the specified mesg:
2375    warn_fail_commit_memory(addr, bytes, exec, err);
2376    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2377  }
2378}
2379
2380size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2381  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2382         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2383         alignment, (size_t) vm_page_size());
2384
2385  for (int i = 0; _page_sizes[i] != 0; i++) {
2386    if (is_size_aligned(alignment, _page_sizes[i])) {
2387      return _page_sizes[i];
2388    }
2389  }
2390
2391  return (size_t) vm_page_size();
2392}
2393
2394int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2395                                    size_t alignment_hint, bool exec) {
2396  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2397  if (err == 0 && UseLargePages && alignment_hint > 0) {
2398    assert(is_size_aligned(bytes, alignment_hint),
2399           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2400
2401    // The syscall memcntl requires an exact page size (see man memcntl for details).
2402    size_t page_size = page_size_for_alignment(alignment_hint);
2403    if (page_size > (size_t) vm_page_size()) {
2404      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2405    }
2406  }
2407  return err;
2408}
2409
2410bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2411                          bool exec) {
2412  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2413}
2414
2415void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2416                                  size_t alignment_hint, bool exec,
2417                                  const char* mesg) {
2418  assert(mesg != NULL, "mesg must be specified");
2419  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2420  if (err != 0) {
2421    // the caller wants all commit errors to exit with the specified mesg:
2422    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2423    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2424  }
2425}
2426
2427// Uncommit the pages in a specified region.
2428void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2429  if (madvise(addr, bytes, MADV_FREE) < 0) {
2430    debug_only(warning("MADV_FREE failed."));
2431    return;
2432  }
2433}
2434
2435bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2436  return os::commit_memory(addr, size, !ExecMem);
2437}
2438
2439bool os::remove_stack_guard_pages(char* addr, size_t size) {
2440  return os::uncommit_memory(addr, size);
2441}
2442
2443// Change the page size in a given range.
2444void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2445  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2446  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2447  if (UseLargePages) {
2448    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2449    if (page_size > (size_t) vm_page_size()) {
2450      Solaris::setup_large_pages(addr, bytes, page_size);
2451    }
2452  }
2453}
2454
2455// Tell the OS to make the range local to the first-touching LWP
2456void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2457  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2458  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2459    debug_only(warning("MADV_ACCESS_LWP failed."));
2460  }
2461}
2462
2463// Tell the OS that this range would be accessed from different LWPs.
2464void os::numa_make_global(char *addr, size_t bytes) {
2465  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2466  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2467    debug_only(warning("MADV_ACCESS_MANY failed."));
2468  }
2469}
2470
2471// Get the number of the locality groups.
2472size_t os::numa_get_groups_num() {
2473  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2474  return n != -1 ? n : 1;
2475}
2476
2477// Get a list of leaf locality groups. A leaf lgroup is group that
2478// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2479// board. An LWP is assigned to one of these groups upon creation.
2480size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2481  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2482    ids[0] = 0;
2483    return 1;
2484  }
2485  int result_size = 0, top = 1, bottom = 0, cur = 0;
2486  for (int k = 0; k < size; k++) {
2487    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2488                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2489    if (r == -1) {
2490      ids[0] = 0;
2491      return 1;
2492    }
2493    if (!r) {
2494      // That's a leaf node.
2495      assert(bottom <= cur, "Sanity check");
2496      // Check if the node has memory
2497      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2498                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2499        ids[bottom++] = ids[cur];
2500      }
2501    }
2502    top += r;
2503    cur++;
2504  }
2505  if (bottom == 0) {
2506    // Handle a situation, when the OS reports no memory available.
2507    // Assume UMA architecture.
2508    ids[0] = 0;
2509    return 1;
2510  }
2511  return bottom;
2512}
2513
2514// Detect the topology change. Typically happens during CPU plugging-unplugging.
2515bool os::numa_topology_changed() {
2516  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2517  if (is_stale != -1 && is_stale) {
2518    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2519    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2520    assert(c != 0, "Failure to initialize LGRP API");
2521    Solaris::set_lgrp_cookie(c);
2522    return true;
2523  }
2524  return false;
2525}
2526
2527// Get the group id of the current LWP.
2528int os::numa_get_group_id() {
2529  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2530  if (lgrp_id == -1) {
2531    return 0;
2532  }
2533  const int size = os::numa_get_groups_num();
2534  int *ids = (int*)alloca(size * sizeof(int));
2535
2536  // Get the ids of all lgroups with memory; r is the count.
2537  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2538                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2539  if (r <= 0) {
2540    return 0;
2541  }
2542  return ids[os::random() % r];
2543}
2544
2545// Request information about the page.
2546bool os::get_page_info(char *start, page_info* info) {
2547  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2548  uint64_t addr = (uintptr_t)start;
2549  uint64_t outdata[2];
2550  uint_t validity = 0;
2551
2552  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2553    return false;
2554  }
2555
2556  info->size = 0;
2557  info->lgrp_id = -1;
2558
2559  if ((validity & 1) != 0) {
2560    if ((validity & 2) != 0) {
2561      info->lgrp_id = outdata[0];
2562    }
2563    if ((validity & 4) != 0) {
2564      info->size = outdata[1];
2565    }
2566    return true;
2567  }
2568  return false;
2569}
2570
2571// Scan the pages from start to end until a page different than
2572// the one described in the info parameter is encountered.
2573char *os::scan_pages(char *start, char* end, page_info* page_expected,
2574                     page_info* page_found) {
2575  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2576  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2577  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2578  uint_t validity[MAX_MEMINFO_CNT];
2579
2580  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2581  uint64_t p = (uint64_t)start;
2582  while (p < (uint64_t)end) {
2583    addrs[0] = p;
2584    size_t addrs_count = 1;
2585    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2586      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2587      addrs_count++;
2588    }
2589
2590    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2591      return NULL;
2592    }
2593
2594    size_t i = 0;
2595    for (; i < addrs_count; i++) {
2596      if ((validity[i] & 1) != 0) {
2597        if ((validity[i] & 4) != 0) {
2598          if (outdata[types * i + 1] != page_expected->size) {
2599            break;
2600          }
2601        } else if (page_expected->size != 0) {
2602          break;
2603        }
2604
2605        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2606          if (outdata[types * i] != page_expected->lgrp_id) {
2607            break;
2608          }
2609        }
2610      } else {
2611        return NULL;
2612      }
2613    }
2614
2615    if (i < addrs_count) {
2616      if ((validity[i] & 2) != 0) {
2617        page_found->lgrp_id = outdata[types * i];
2618      } else {
2619        page_found->lgrp_id = -1;
2620      }
2621      if ((validity[i] & 4) != 0) {
2622        page_found->size = outdata[types * i + 1];
2623      } else {
2624        page_found->size = 0;
2625      }
2626      return (char*)addrs[i];
2627    }
2628
2629    p = addrs[addrs_count - 1] + page_size;
2630  }
2631  return end;
2632}
2633
2634bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2635  size_t size = bytes;
2636  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2637  // uncommitted page. Otherwise, the read/write might succeed if we
2638  // have enough swap space to back the physical page.
2639  return
2640    NULL != Solaris::mmap_chunk(addr, size,
2641                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2642                                PROT_NONE);
2643}
2644
2645char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2646  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2647
2648  if (b == MAP_FAILED) {
2649    return NULL;
2650  }
2651  return b;
2652}
2653
2654char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2655                             size_t alignment_hint, bool fixed) {
2656  char* addr = requested_addr;
2657  int flags = MAP_PRIVATE | MAP_NORESERVE;
2658
2659  assert(!(fixed && (alignment_hint > 0)),
2660         "alignment hint meaningless with fixed mmap");
2661
2662  if (fixed) {
2663    flags |= MAP_FIXED;
2664  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2665    flags |= MAP_ALIGN;
2666    addr = (char*) alignment_hint;
2667  }
2668
2669  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2670  // uncommitted page. Otherwise, the read/write might succeed if we
2671  // have enough swap space to back the physical page.
2672  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2673}
2674
2675char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2676                            size_t alignment_hint) {
2677  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2678                                  (requested_addr != NULL));
2679
2680  guarantee(requested_addr == NULL || requested_addr == addr,
2681            "OS failed to return requested mmap address.");
2682  return addr;
2683}
2684
2685// Reserve memory at an arbitrary address, only if that area is
2686// available (and not reserved for something else).
2687
2688char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2689  const int max_tries = 10;
2690  char* base[max_tries];
2691  size_t size[max_tries];
2692
2693  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2694  // is dependent on the requested size and the MMU.  Our initial gap
2695  // value here is just a guess and will be corrected later.
2696  bool had_top_overlap = false;
2697  bool have_adjusted_gap = false;
2698  size_t gap = 0x400000;
2699
2700  // Assert only that the size is a multiple of the page size, since
2701  // that's all that mmap requires, and since that's all we really know
2702  // about at this low abstraction level.  If we need higher alignment,
2703  // we can either pass an alignment to this method or verify alignment
2704  // in one of the methods further up the call chain.  See bug 5044738.
2705  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2706
2707  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2708  // Give it a try, if the kernel honors the hint we can return immediately.
2709  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2710
2711  volatile int err = errno;
2712  if (addr == requested_addr) {
2713    return addr;
2714  } else if (addr != NULL) {
2715    pd_unmap_memory(addr, bytes);
2716  }
2717
2718  if (PrintMiscellaneous && Verbose) {
2719    char buf[256];
2720    buf[0] = '\0';
2721    if (addr == NULL) {
2722      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2723    }
2724    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2725            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2726            "%s", bytes, requested_addr, addr, buf);
2727  }
2728
2729  // Address hint method didn't work.  Fall back to the old method.
2730  // In theory, once SNV becomes our oldest supported platform, this
2731  // code will no longer be needed.
2732  //
2733  // Repeatedly allocate blocks until the block is allocated at the
2734  // right spot. Give up after max_tries.
2735  int i;
2736  for (i = 0; i < max_tries; ++i) {
2737    base[i] = reserve_memory(bytes);
2738
2739    if (base[i] != NULL) {
2740      // Is this the block we wanted?
2741      if (base[i] == requested_addr) {
2742        size[i] = bytes;
2743        break;
2744      }
2745
2746      // check that the gap value is right
2747      if (had_top_overlap && !have_adjusted_gap) {
2748        size_t actual_gap = base[i-1] - base[i] - bytes;
2749        if (gap != actual_gap) {
2750          // adjust the gap value and retry the last 2 allocations
2751          assert(i > 0, "gap adjustment code problem");
2752          have_adjusted_gap = true;  // adjust the gap only once, just in case
2753          gap = actual_gap;
2754          if (PrintMiscellaneous && Verbose) {
2755            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2756          }
2757          unmap_memory(base[i], bytes);
2758          unmap_memory(base[i-1], size[i-1]);
2759          i-=2;
2760          continue;
2761        }
2762      }
2763
2764      // Does this overlap the block we wanted? Give back the overlapped
2765      // parts and try again.
2766      //
2767      // There is still a bug in this code: if top_overlap == bytes,
2768      // the overlap is offset from requested region by the value of gap.
2769      // In this case giving back the overlapped part will not work,
2770      // because we'll give back the entire block at base[i] and
2771      // therefore the subsequent allocation will not generate a new gap.
2772      // This could be fixed with a new algorithm that used larger
2773      // or variable size chunks to find the requested region -
2774      // but such a change would introduce additional complications.
2775      // It's rare enough that the planets align for this bug,
2776      // so we'll just wait for a fix for 6204603/5003415 which
2777      // will provide a mmap flag to allow us to avoid this business.
2778
2779      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2780      if (top_overlap >= 0 && top_overlap < bytes) {
2781        had_top_overlap = true;
2782        unmap_memory(base[i], top_overlap);
2783        base[i] += top_overlap;
2784        size[i] = bytes - top_overlap;
2785      } else {
2786        size_t bottom_overlap = base[i] + bytes - requested_addr;
2787        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2788          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2789            warning("attempt_reserve_memory_at: possible alignment bug");
2790          }
2791          unmap_memory(requested_addr, bottom_overlap);
2792          size[i] = bytes - bottom_overlap;
2793        } else {
2794          size[i] = bytes;
2795        }
2796      }
2797    }
2798  }
2799
2800  // Give back the unused reserved pieces.
2801
2802  for (int j = 0; j < i; ++j) {
2803    if (base[j] != NULL) {
2804      unmap_memory(base[j], size[j]);
2805    }
2806  }
2807
2808  return (i < max_tries) ? requested_addr : NULL;
2809}
2810
2811bool os::pd_release_memory(char* addr, size_t bytes) {
2812  size_t size = bytes;
2813  return munmap(addr, size) == 0;
2814}
2815
2816static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2817  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2818         "addr must be page aligned");
2819  int retVal = mprotect(addr, bytes, prot);
2820  return retVal == 0;
2821}
2822
2823// Protect memory (Used to pass readonly pages through
2824// JNI GetArray<type>Elements with empty arrays.)
2825// Also, used for serialization page and for compressed oops null pointer
2826// checking.
2827bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2828                        bool is_committed) {
2829  unsigned int p = 0;
2830  switch (prot) {
2831  case MEM_PROT_NONE: p = PROT_NONE; break;
2832  case MEM_PROT_READ: p = PROT_READ; break;
2833  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2834  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2835  default:
2836    ShouldNotReachHere();
2837  }
2838  // is_committed is unused.
2839  return solaris_mprotect(addr, bytes, p);
2840}
2841
2842// guard_memory and unguard_memory only happens within stack guard pages.
2843// Since ISM pertains only to the heap, guard and unguard memory should not
2844/// happen with an ISM region.
2845bool os::guard_memory(char* addr, size_t bytes) {
2846  return solaris_mprotect(addr, bytes, PROT_NONE);
2847}
2848
2849bool os::unguard_memory(char* addr, size_t bytes) {
2850  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2851}
2852
2853// Large page support
2854static size_t _large_page_size = 0;
2855
2856// Insertion sort for small arrays (descending order).
2857static void insertion_sort_descending(size_t* array, int len) {
2858  for (int i = 0; i < len; i++) {
2859    size_t val = array[i];
2860    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2861      size_t tmp = array[key];
2862      array[key] = array[key - 1];
2863      array[key - 1] = tmp;
2864    }
2865  }
2866}
2867
2868bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2869  const unsigned int usable_count = VM_Version::page_size_count();
2870  if (usable_count == 1) {
2871    return false;
2872  }
2873
2874  // Find the right getpagesizes interface.  When solaris 11 is the minimum
2875  // build platform, getpagesizes() (without the '2') can be called directly.
2876  typedef int (*gps_t)(size_t[], int);
2877  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2878  if (gps_func == NULL) {
2879    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2880    if (gps_func == NULL) {
2881      if (warn) {
2882        warning("MPSS is not supported by the operating system.");
2883      }
2884      return false;
2885    }
2886  }
2887
2888  // Fill the array of page sizes.
2889  int n = (*gps_func)(_page_sizes, page_sizes_max);
2890  assert(n > 0, "Solaris bug?");
2891
2892  if (n == page_sizes_max) {
2893    // Add a sentinel value (necessary only if the array was completely filled
2894    // since it is static (zeroed at initialization)).
2895    _page_sizes[--n] = 0;
2896    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2897  }
2898  assert(_page_sizes[n] == 0, "missing sentinel");
2899  trace_page_sizes("available page sizes", _page_sizes, n);
2900
2901  if (n == 1) return false;     // Only one page size available.
2902
2903  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2904  // select up to usable_count elements.  First sort the array, find the first
2905  // acceptable value, then copy the usable sizes to the top of the array and
2906  // trim the rest.  Make sure to include the default page size :-).
2907  //
2908  // A better policy could get rid of the 4M limit by taking the sizes of the
2909  // important VM memory regions (java heap and possibly the code cache) into
2910  // account.
2911  insertion_sort_descending(_page_sizes, n);
2912  const size_t size_limit =
2913    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2914  int beg;
2915  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2916  const int end = MIN2((int)usable_count, n) - 1;
2917  for (int cur = 0; cur < end; ++cur, ++beg) {
2918    _page_sizes[cur] = _page_sizes[beg];
2919  }
2920  _page_sizes[end] = vm_page_size();
2921  _page_sizes[end + 1] = 0;
2922
2923  if (_page_sizes[end] > _page_sizes[end - 1]) {
2924    // Default page size is not the smallest; sort again.
2925    insertion_sort_descending(_page_sizes, end + 1);
2926  }
2927  *page_size = _page_sizes[0];
2928
2929  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2930  return true;
2931}
2932
2933void os::large_page_init() {
2934  if (UseLargePages) {
2935    // print a warning if any large page related flag is specified on command line
2936    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2937                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2938
2939    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2940  }
2941}
2942
2943bool os::Solaris::is_valid_page_size(size_t bytes) {
2944  for (int i = 0; _page_sizes[i] != 0; i++) {
2945    if (_page_sizes[i] == bytes) {
2946      return true;
2947    }
2948  }
2949  return false;
2950}
2951
2952bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2953  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2954  assert(is_ptr_aligned((void*) start, align),
2955         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2956  assert(is_size_aligned(bytes, align),
2957         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2958
2959  // Signal to OS that we want large pages for addresses
2960  // from addr, addr + bytes
2961  struct memcntl_mha mpss_struct;
2962  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2963  mpss_struct.mha_pagesize = align;
2964  mpss_struct.mha_flags = 0;
2965  // Upon successful completion, memcntl() returns 0
2966  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2967    debug_only(warning("Attempt to use MPSS failed."));
2968    return false;
2969  }
2970  return true;
2971}
2972
2973char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2974  fatal("os::reserve_memory_special should not be called on Solaris.");
2975  return NULL;
2976}
2977
2978bool os::release_memory_special(char* base, size_t bytes) {
2979  fatal("os::release_memory_special should not be called on Solaris.");
2980  return false;
2981}
2982
2983size_t os::large_page_size() {
2984  return _large_page_size;
2985}
2986
2987// MPSS allows application to commit large page memory on demand; with ISM
2988// the entire memory region must be allocated as shared memory.
2989bool os::can_commit_large_page_memory() {
2990  return true;
2991}
2992
2993bool os::can_execute_large_page_memory() {
2994  return true;
2995}
2996
2997// Read calls from inside the vm need to perform state transitions
2998size_t os::read(int fd, void *buf, unsigned int nBytes) {
2999  size_t res;
3000  JavaThread* thread = (JavaThread*)Thread::current();
3001  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3002  ThreadBlockInVM tbiv(thread);
3003  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3004  return res;
3005}
3006
3007size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3008  size_t res;
3009  JavaThread* thread = (JavaThread*)Thread::current();
3010  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3011  ThreadBlockInVM tbiv(thread);
3012  RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3013  return res;
3014}
3015
3016size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3017  size_t res;
3018  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3019         "Assumed _thread_in_native");
3020  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3021  return res;
3022}
3023
3024void os::naked_short_sleep(jlong ms) {
3025  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3026
3027  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3028  // Solaris requires -lrt for this.
3029  usleep((ms * 1000));
3030
3031  return;
3032}
3033
3034// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3035void os::infinite_sleep() {
3036  while (true) {    // sleep forever ...
3037    ::sleep(100);   // ... 100 seconds at a time
3038  }
3039}
3040
3041// Used to convert frequent JVM_Yield() to nops
3042bool os::dont_yield() {
3043  if (DontYieldALot) {
3044    static hrtime_t last_time = 0;
3045    hrtime_t diff = getTimeNanos() - last_time;
3046
3047    if (diff < DontYieldALotInterval * 1000000) {
3048      return true;
3049    }
3050
3051    last_time += diff;
3052
3053    return false;
3054  } else {
3055    return false;
3056  }
3057}
3058
3059// Note that yield semantics are defined by the scheduling class to which
3060// the thread currently belongs.  Typically, yield will _not yield to
3061// other equal or higher priority threads that reside on the dispatch queues
3062// of other CPUs.
3063
3064void os::naked_yield() {
3065  thr_yield();
3066}
3067
3068// Interface for setting lwp priorities.  If we are using T2 libthread,
3069// which forces the use of BoundThreads or we manually set UseBoundThreads,
3070// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3071// function is meaningless in this mode so we must adjust the real lwp's priority
3072// The routines below implement the getting and setting of lwp priorities.
3073//
3074// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3075//       being deprecated and all threads are now BoundThreads
3076//
3077// Note: There are three priority scales used on Solaris.  Java priotities
3078//       which range from 1 to 10, libthread "thr_setprio" scale which range
3079//       from 0 to 127, and the current scheduling class of the process we
3080//       are running in.  This is typically from -60 to +60.
3081//       The setting of the lwp priorities in done after a call to thr_setprio
3082//       so Java priorities are mapped to libthread priorities and we map from
3083//       the latter to lwp priorities.  We don't keep priorities stored in
3084//       Java priorities since some of our worker threads want to set priorities
3085//       higher than all Java threads.
3086//
3087// For related information:
3088// (1)  man -s 2 priocntl
3089// (2)  man -s 4 priocntl
3090// (3)  man dispadmin
3091// =    librt.so
3092// =    libthread/common/rtsched.c - thrp_setlwpprio().
3093// =    ps -cL <pid> ... to validate priority.
3094// =    sched_get_priority_min and _max
3095//              pthread_create
3096//              sched_setparam
3097//              pthread_setschedparam
3098//
3099// Assumptions:
3100// +    We assume that all threads in the process belong to the same
3101//              scheduling class.   IE. an homogenous process.
3102// +    Must be root or in IA group to change change "interactive" attribute.
3103//              Priocntl() will fail silently.  The only indication of failure is when
3104//              we read-back the value and notice that it hasn't changed.
3105// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3106// +    For RT, change timeslice as well.  Invariant:
3107//              constant "priority integral"
3108//              Konst == TimeSlice * (60-Priority)
3109//              Given a priority, compute appropriate timeslice.
3110// +    Higher numerical values have higher priority.
3111
3112// sched class attributes
3113typedef struct {
3114  int   schedPolicy;              // classID
3115  int   maxPrio;
3116  int   minPrio;
3117} SchedInfo;
3118
3119
3120static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3121
3122#ifdef ASSERT
3123static int  ReadBackValidate = 1;
3124#endif
3125static int  myClass     = 0;
3126static int  myMin       = 0;
3127static int  myMax       = 0;
3128static int  myCur       = 0;
3129static bool priocntl_enable = false;
3130
3131static const int criticalPrio = FXCriticalPriority;
3132static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3133
3134
3135// lwp_priocntl_init
3136//
3137// Try to determine the priority scale for our process.
3138//
3139// Return errno or 0 if OK.
3140//
3141static int lwp_priocntl_init() {
3142  int rslt;
3143  pcinfo_t ClassInfo;
3144  pcparms_t ParmInfo;
3145  int i;
3146
3147  if (!UseThreadPriorities) return 0;
3148
3149  // If ThreadPriorityPolicy is 1, switch tables
3150  if (ThreadPriorityPolicy == 1) {
3151    for (i = 0; i < CriticalPriority+1; i++)
3152      os::java_to_os_priority[i] = prio_policy1[i];
3153  }
3154  if (UseCriticalJavaThreadPriority) {
3155    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3156    // See set_native_priority() and set_lwp_class_and_priority().
3157    // Save original MaxPriority mapping in case attempt to
3158    // use critical priority fails.
3159    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3160    // Set negative to distinguish from other priorities
3161    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3162  }
3163
3164  // Get IDs for a set of well-known scheduling classes.
3165  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3166  // the system.  We should have a loop that iterates over the
3167  // classID values, which are known to be "small" integers.
3168
3169  strcpy(ClassInfo.pc_clname, "TS");
3170  ClassInfo.pc_cid = -1;
3171  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3172  if (rslt < 0) return errno;
3173  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3174  tsLimits.schedPolicy = ClassInfo.pc_cid;
3175  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3176  tsLimits.minPrio = -tsLimits.maxPrio;
3177
3178  strcpy(ClassInfo.pc_clname, "IA");
3179  ClassInfo.pc_cid = -1;
3180  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3181  if (rslt < 0) return errno;
3182  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3183  iaLimits.schedPolicy = ClassInfo.pc_cid;
3184  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3185  iaLimits.minPrio = -iaLimits.maxPrio;
3186
3187  strcpy(ClassInfo.pc_clname, "RT");
3188  ClassInfo.pc_cid = -1;
3189  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3190  if (rslt < 0) return errno;
3191  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3192  rtLimits.schedPolicy = ClassInfo.pc_cid;
3193  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3194  rtLimits.minPrio = 0;
3195
3196  strcpy(ClassInfo.pc_clname, "FX");
3197  ClassInfo.pc_cid = -1;
3198  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3199  if (rslt < 0) return errno;
3200  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3201  fxLimits.schedPolicy = ClassInfo.pc_cid;
3202  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3203  fxLimits.minPrio = 0;
3204
3205  // Query our "current" scheduling class.
3206  // This will normally be IA, TS or, rarely, FX or RT.
3207  memset(&ParmInfo, 0, sizeof(ParmInfo));
3208  ParmInfo.pc_cid = PC_CLNULL;
3209  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3210  if (rslt < 0) return errno;
3211  myClass = ParmInfo.pc_cid;
3212
3213  // We now know our scheduling classId, get specific information
3214  // about the class.
3215  ClassInfo.pc_cid = myClass;
3216  ClassInfo.pc_clname[0] = 0;
3217  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3218  if (rslt < 0) return errno;
3219
3220  if (ThreadPriorityVerbose) {
3221    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3222  }
3223
3224  memset(&ParmInfo, 0, sizeof(pcparms_t));
3225  ParmInfo.pc_cid = PC_CLNULL;
3226  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3227  if (rslt < 0) return errno;
3228
3229  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3230    myMin = rtLimits.minPrio;
3231    myMax = rtLimits.maxPrio;
3232  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3233    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3234    myMin = iaLimits.minPrio;
3235    myMax = iaLimits.maxPrio;
3236    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3237  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3238    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3239    myMin = tsLimits.minPrio;
3240    myMax = tsLimits.maxPrio;
3241    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3242  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3243    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3244    myMin = fxLimits.minPrio;
3245    myMax = fxLimits.maxPrio;
3246    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3247  } else {
3248    // No clue - punt
3249    if (ThreadPriorityVerbose) {
3250      tty->print_cr("Unknown scheduling class: %s ... \n",
3251                    ClassInfo.pc_clname);
3252    }
3253    return EINVAL;      // no clue, punt
3254  }
3255
3256  if (ThreadPriorityVerbose) {
3257    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3258  }
3259
3260  priocntl_enable = true;  // Enable changing priorities
3261  return 0;
3262}
3263
3264#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3265#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3266#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3267#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3268
3269
3270// scale_to_lwp_priority
3271//
3272// Convert from the libthread "thr_setprio" scale to our current
3273// lwp scheduling class scale.
3274//
3275static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3276  int v;
3277
3278  if (x == 127) return rMax;            // avoid round-down
3279  v = (((x*(rMax-rMin)))/128)+rMin;
3280  return v;
3281}
3282
3283
3284// set_lwp_class_and_priority
3285int set_lwp_class_and_priority(int ThreadID, int lwpid,
3286                               int newPrio, int new_class, bool scale) {
3287  int rslt;
3288  int Actual, Expected, prv;
3289  pcparms_t ParmInfo;                   // for GET-SET
3290#ifdef ASSERT
3291  pcparms_t ReadBack;                   // for readback
3292#endif
3293
3294  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3295  // Query current values.
3296  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3297  // Cache "pcparms_t" in global ParmCache.
3298  // TODO: elide set-to-same-value
3299
3300  // If something went wrong on init, don't change priorities.
3301  if (!priocntl_enable) {
3302    if (ThreadPriorityVerbose) {
3303      tty->print_cr("Trying to set priority but init failed, ignoring");
3304    }
3305    return EINVAL;
3306  }
3307
3308  // If lwp hasn't started yet, just return
3309  // the _start routine will call us again.
3310  if (lwpid <= 0) {
3311    if (ThreadPriorityVerbose) {
3312      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3313                    INTPTR_FORMAT " to %d, lwpid not set",
3314                    ThreadID, newPrio);
3315    }
3316    return 0;
3317  }
3318
3319  if (ThreadPriorityVerbose) {
3320    tty->print_cr ("set_lwp_class_and_priority("
3321                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3322                   ThreadID, lwpid, newPrio);
3323  }
3324
3325  memset(&ParmInfo, 0, sizeof(pcparms_t));
3326  ParmInfo.pc_cid = PC_CLNULL;
3327  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3328  if (rslt < 0) return errno;
3329
3330  int cur_class = ParmInfo.pc_cid;
3331  ParmInfo.pc_cid = (id_t)new_class;
3332
3333  if (new_class == rtLimits.schedPolicy) {
3334    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3335    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3336                                                       rtLimits.maxPrio, newPrio)
3337                               : newPrio;
3338    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3339    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3340    if (ThreadPriorityVerbose) {
3341      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3342    }
3343  } else if (new_class == iaLimits.schedPolicy) {
3344    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3345    int maxClamped     = MIN2(iaLimits.maxPrio,
3346                              cur_class == new_class
3347                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3348    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3349                                                       maxClamped, newPrio)
3350                               : newPrio;
3351    iaInfo->ia_uprilim = cur_class == new_class
3352                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3353    iaInfo->ia_mode    = IA_NOCHANGE;
3354    if (ThreadPriorityVerbose) {
3355      tty->print_cr("IA: [%d...%d] %d->%d\n",
3356                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3357    }
3358  } else if (new_class == tsLimits.schedPolicy) {
3359    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3360    int maxClamped     = MIN2(tsLimits.maxPrio,
3361                              cur_class == new_class
3362                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3363    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3364                                                       maxClamped, newPrio)
3365                               : newPrio;
3366    tsInfo->ts_uprilim = cur_class == new_class
3367                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3368    if (ThreadPriorityVerbose) {
3369      tty->print_cr("TS: [%d...%d] %d->%d\n",
3370                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3371    }
3372  } else if (new_class == fxLimits.schedPolicy) {
3373    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3374    int maxClamped     = MIN2(fxLimits.maxPrio,
3375                              cur_class == new_class
3376                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3377    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3378                                                       maxClamped, newPrio)
3379                               : newPrio;
3380    fxInfo->fx_uprilim = cur_class == new_class
3381                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3382    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3383    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3384    if (ThreadPriorityVerbose) {
3385      tty->print_cr("FX: [%d...%d] %d->%d\n",
3386                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3387    }
3388  } else {
3389    if (ThreadPriorityVerbose) {
3390      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3391    }
3392    return EINVAL;    // no clue, punt
3393  }
3394
3395  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3396  if (ThreadPriorityVerbose && rslt) {
3397    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3398  }
3399  if (rslt < 0) return errno;
3400
3401#ifdef ASSERT
3402  // Sanity check: read back what we just attempted to set.
3403  // In theory it could have changed in the interim ...
3404  //
3405  // The priocntl system call is tricky.
3406  // Sometimes it'll validate the priority value argument and
3407  // return EINVAL if unhappy.  At other times it fails silently.
3408  // Readbacks are prudent.
3409
3410  if (!ReadBackValidate) return 0;
3411
3412  memset(&ReadBack, 0, sizeof(pcparms_t));
3413  ReadBack.pc_cid = PC_CLNULL;
3414  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3415  assert(rslt >= 0, "priocntl failed");
3416  Actual = Expected = 0xBAD;
3417  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3418  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3419    Actual   = RTPRI(ReadBack)->rt_pri;
3420    Expected = RTPRI(ParmInfo)->rt_pri;
3421  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3422    Actual   = IAPRI(ReadBack)->ia_upri;
3423    Expected = IAPRI(ParmInfo)->ia_upri;
3424  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3425    Actual   = TSPRI(ReadBack)->ts_upri;
3426    Expected = TSPRI(ParmInfo)->ts_upri;
3427  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3428    Actual   = FXPRI(ReadBack)->fx_upri;
3429    Expected = FXPRI(ParmInfo)->fx_upri;
3430  } else {
3431    if (ThreadPriorityVerbose) {
3432      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3433                    ParmInfo.pc_cid);
3434    }
3435  }
3436
3437  if (Actual != Expected) {
3438    if (ThreadPriorityVerbose) {
3439      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3440                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3441    }
3442  }
3443#endif
3444
3445  return 0;
3446}
3447
3448// Solaris only gives access to 128 real priorities at a time,
3449// so we expand Java's ten to fill this range.  This would be better
3450// if we dynamically adjusted relative priorities.
3451//
3452// The ThreadPriorityPolicy option allows us to select 2 different
3453// priority scales.
3454//
3455// ThreadPriorityPolicy=0
3456// Since the Solaris' default priority is MaximumPriority, we do not
3457// set a priority lower than Max unless a priority lower than
3458// NormPriority is requested.
3459//
3460// ThreadPriorityPolicy=1
3461// This mode causes the priority table to get filled with
3462// linear values.  NormPriority get's mapped to 50% of the
3463// Maximum priority an so on.  This will cause VM threads
3464// to get unfair treatment against other Solaris processes
3465// which do not explicitly alter their thread priorities.
3466
3467int os::java_to_os_priority[CriticalPriority + 1] = {
3468  -99999,         // 0 Entry should never be used
3469
3470  0,              // 1 MinPriority
3471  32,             // 2
3472  64,             // 3
3473
3474  96,             // 4
3475  127,            // 5 NormPriority
3476  127,            // 6
3477
3478  127,            // 7
3479  127,            // 8
3480  127,            // 9 NearMaxPriority
3481
3482  127,            // 10 MaxPriority
3483
3484  -criticalPrio   // 11 CriticalPriority
3485};
3486
3487OSReturn os::set_native_priority(Thread* thread, int newpri) {
3488  OSThread* osthread = thread->osthread();
3489
3490  // Save requested priority in case the thread hasn't been started
3491  osthread->set_native_priority(newpri);
3492
3493  // Check for critical priority request
3494  bool fxcritical = false;
3495  if (newpri == -criticalPrio) {
3496    fxcritical = true;
3497    newpri = criticalPrio;
3498  }
3499
3500  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3501  if (!UseThreadPriorities) return OS_OK;
3502
3503  int status = 0;
3504
3505  if (!fxcritical) {
3506    // Use thr_setprio only if we have a priority that thr_setprio understands
3507    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3508  }
3509
3510  int lwp_status =
3511          set_lwp_class_and_priority(osthread->thread_id(),
3512                                     osthread->lwp_id(),
3513                                     newpri,
3514                                     fxcritical ? fxLimits.schedPolicy : myClass,
3515                                     !fxcritical);
3516  if (lwp_status != 0 && fxcritical) {
3517    // Try again, this time without changing the scheduling class
3518    newpri = java_MaxPriority_to_os_priority;
3519    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3520                                            osthread->lwp_id(),
3521                                            newpri, myClass, false);
3522  }
3523  status |= lwp_status;
3524  return (status == 0) ? OS_OK : OS_ERR;
3525}
3526
3527
3528OSReturn os::get_native_priority(const Thread* const thread,
3529                                 int *priority_ptr) {
3530  int p;
3531  if (!UseThreadPriorities) {
3532    *priority_ptr = NormalPriority;
3533    return OS_OK;
3534  }
3535  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3536  if (status != 0) {
3537    return OS_ERR;
3538  }
3539  *priority_ptr = p;
3540  return OS_OK;
3541}
3542
3543
3544// Hint to the underlying OS that a task switch would not be good.
3545// Void return because it's a hint and can fail.
3546void os::hint_no_preempt() {
3547  schedctl_start(schedctl_init());
3548}
3549
3550static void resume_clear_context(OSThread *osthread) {
3551  osthread->set_ucontext(NULL);
3552}
3553
3554static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3555  osthread->set_ucontext(context);
3556}
3557
3558static PosixSemaphore sr_semaphore;
3559
3560void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3561  // Save and restore errno to avoid confusing native code with EINTR
3562  // after sigsuspend.
3563  int old_errno = errno;
3564
3565  OSThread* osthread = thread->osthread();
3566  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3567
3568  os::SuspendResume::State current = osthread->sr.state();
3569  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3570    suspend_save_context(osthread, uc);
3571
3572    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3573    os::SuspendResume::State state = osthread->sr.suspended();
3574    if (state == os::SuspendResume::SR_SUSPENDED) {
3575      sigset_t suspend_set;  // signals for sigsuspend()
3576
3577      // get current set of blocked signals and unblock resume signal
3578      thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
3579      sigdelset(&suspend_set, os::Solaris::SIGasync());
3580
3581      sr_semaphore.signal();
3582      // wait here until we are resumed
3583      while (1) {
3584        sigsuspend(&suspend_set);
3585
3586        os::SuspendResume::State result = osthread->sr.running();
3587        if (result == os::SuspendResume::SR_RUNNING) {
3588          sr_semaphore.signal();
3589          break;
3590        }
3591      }
3592
3593    } else if (state == os::SuspendResume::SR_RUNNING) {
3594      // request was cancelled, continue
3595    } else {
3596      ShouldNotReachHere();
3597    }
3598
3599    resume_clear_context(osthread);
3600  } else if (current == os::SuspendResume::SR_RUNNING) {
3601    // request was cancelled, continue
3602  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3603    // ignore
3604  } else {
3605    // ignore
3606  }
3607
3608  errno = old_errno;
3609}
3610
3611void os::print_statistics() {
3612}
3613
3614bool os::message_box(const char* title, const char* message) {
3615  int i;
3616  fdStream err(defaultStream::error_fd());
3617  for (i = 0; i < 78; i++) err.print_raw("=");
3618  err.cr();
3619  err.print_raw_cr(title);
3620  for (i = 0; i < 78; i++) err.print_raw("-");
3621  err.cr();
3622  err.print_raw_cr(message);
3623  for (i = 0; i < 78; i++) err.print_raw("=");
3624  err.cr();
3625
3626  char buf[16];
3627  // Prevent process from exiting upon "read error" without consuming all CPU
3628  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3629
3630  return buf[0] == 'y' || buf[0] == 'Y';
3631}
3632
3633static int sr_notify(OSThread* osthread) {
3634  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3635  assert_status(status == 0, status, "thr_kill");
3636  return status;
3637}
3638
3639// "Randomly" selected value for how long we want to spin
3640// before bailing out on suspending a thread, also how often
3641// we send a signal to a thread we want to resume
3642static const int RANDOMLY_LARGE_INTEGER = 1000000;
3643static const int RANDOMLY_LARGE_INTEGER2 = 100;
3644
3645static bool do_suspend(OSThread* osthread) {
3646  assert(osthread->sr.is_running(), "thread should be running");
3647  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3648
3649  // mark as suspended and send signal
3650  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3651    // failed to switch, state wasn't running?
3652    ShouldNotReachHere();
3653    return false;
3654  }
3655
3656  if (sr_notify(osthread) != 0) {
3657    ShouldNotReachHere();
3658  }
3659
3660  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3661  while (true) {
3662    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3663      break;
3664    } else {
3665      // timeout
3666      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3667      if (cancelled == os::SuspendResume::SR_RUNNING) {
3668        return false;
3669      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3670        // make sure that we consume the signal on the semaphore as well
3671        sr_semaphore.wait();
3672        break;
3673      } else {
3674        ShouldNotReachHere();
3675        return false;
3676      }
3677    }
3678  }
3679
3680  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3681  return true;
3682}
3683
3684static void do_resume(OSThread* osthread) {
3685  assert(osthread->sr.is_suspended(), "thread should be suspended");
3686  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3687
3688  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3689    // failed to switch to WAKEUP_REQUEST
3690    ShouldNotReachHere();
3691    return;
3692  }
3693
3694  while (true) {
3695    if (sr_notify(osthread) == 0) {
3696      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3697        if (osthread->sr.is_running()) {
3698          return;
3699        }
3700      }
3701    } else {
3702      ShouldNotReachHere();
3703    }
3704  }
3705
3706  guarantee(osthread->sr.is_running(), "Must be running!");
3707}
3708
3709void os::SuspendedThreadTask::internal_do_task() {
3710  if (do_suspend(_thread->osthread())) {
3711    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3712    do_task(context);
3713    do_resume(_thread->osthread());
3714  }
3715}
3716
3717class PcFetcher : public os::SuspendedThreadTask {
3718 public:
3719  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3720  ExtendedPC result();
3721 protected:
3722  void do_task(const os::SuspendedThreadTaskContext& context);
3723 private:
3724  ExtendedPC _epc;
3725};
3726
3727ExtendedPC PcFetcher::result() {
3728  guarantee(is_done(), "task is not done yet.");
3729  return _epc;
3730}
3731
3732void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3733  Thread* thread = context.thread();
3734  OSThread* osthread = thread->osthread();
3735  if (osthread->ucontext() != NULL) {
3736    _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
3737  } else {
3738    // NULL context is unexpected, double-check this is the VMThread
3739    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3740  }
3741}
3742
3743// A lightweight implementation that does not suspend the target thread and
3744// thus returns only a hint. Used for profiling only!
3745ExtendedPC os::get_thread_pc(Thread* thread) {
3746  // Make sure that it is called by the watcher and the Threads lock is owned.
3747  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3748  // For now, is only used to profile the VM Thread
3749  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3750  PcFetcher fetcher(thread);
3751  fetcher.run();
3752  return fetcher.result();
3753}
3754
3755
3756// This does not do anything on Solaris. This is basically a hook for being
3757// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3758void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3759                              const methodHandle& method, JavaCallArguments* args,
3760                              Thread* thread) {
3761  f(value, method, args, thread);
3762}
3763
3764// This routine may be used by user applications as a "hook" to catch signals.
3765// The user-defined signal handler must pass unrecognized signals to this
3766// routine, and if it returns true (non-zero), then the signal handler must
3767// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3768// routine will never retun false (zero), but instead will execute a VM panic
3769// routine kill the process.
3770//
3771// If this routine returns false, it is OK to call it again.  This allows
3772// the user-defined signal handler to perform checks either before or after
3773// the VM performs its own checks.  Naturally, the user code would be making
3774// a serious error if it tried to handle an exception (such as a null check
3775// or breakpoint) that the VM was generating for its own correct operation.
3776//
3777// This routine may recognize any of the following kinds of signals:
3778// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3779// os::Solaris::SIGasync
3780// It should be consulted by handlers for any of those signals.
3781//
3782// The caller of this routine must pass in the three arguments supplied
3783// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3784// field of the structure passed to sigaction().  This routine assumes that
3785// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3786//
3787// Note that the VM will print warnings if it detects conflicting signal
3788// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3789//
3790extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3791                                                   siginfo_t* siginfo,
3792                                                   void* ucontext,
3793                                                   int abort_if_unrecognized);
3794
3795
3796void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3797  int orig_errno = errno;  // Preserve errno value over signal handler.
3798  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3799  errno = orig_errno;
3800}
3801
3802// This boolean allows users to forward their own non-matching signals
3803// to JVM_handle_solaris_signal, harmlessly.
3804bool os::Solaris::signal_handlers_are_installed = false;
3805
3806// For signal-chaining
3807bool os::Solaris::libjsig_is_loaded = false;
3808typedef struct sigaction *(*get_signal_t)(int);
3809get_signal_t os::Solaris::get_signal_action = NULL;
3810
3811struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3812  struct sigaction *actp = NULL;
3813
3814  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3815    // Retrieve the old signal handler from libjsig
3816    actp = (*get_signal_action)(sig);
3817  }
3818  if (actp == NULL) {
3819    // Retrieve the preinstalled signal handler from jvm
3820    actp = get_preinstalled_handler(sig);
3821  }
3822
3823  return actp;
3824}
3825
3826static bool call_chained_handler(struct sigaction *actp, int sig,
3827                                 siginfo_t *siginfo, void *context) {
3828  // Call the old signal handler
3829  if (actp->sa_handler == SIG_DFL) {
3830    // It's more reasonable to let jvm treat it as an unexpected exception
3831    // instead of taking the default action.
3832    return false;
3833  } else if (actp->sa_handler != SIG_IGN) {
3834    if ((actp->sa_flags & SA_NODEFER) == 0) {
3835      // automaticlly block the signal
3836      sigaddset(&(actp->sa_mask), sig);
3837    }
3838
3839    sa_handler_t hand;
3840    sa_sigaction_t sa;
3841    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3842    // retrieve the chained handler
3843    if (siginfo_flag_set) {
3844      sa = actp->sa_sigaction;
3845    } else {
3846      hand = actp->sa_handler;
3847    }
3848
3849    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3850      actp->sa_handler = SIG_DFL;
3851    }
3852
3853    // try to honor the signal mask
3854    sigset_t oset;
3855    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3856
3857    // call into the chained handler
3858    if (siginfo_flag_set) {
3859      (*sa)(sig, siginfo, context);
3860    } else {
3861      (*hand)(sig);
3862    }
3863
3864    // restore the signal mask
3865    thr_sigsetmask(SIG_SETMASK, &oset, 0);
3866  }
3867  // Tell jvm's signal handler the signal is taken care of.
3868  return true;
3869}
3870
3871bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3872  bool chained = false;
3873  // signal-chaining
3874  if (UseSignalChaining) {
3875    struct sigaction *actp = get_chained_signal_action(sig);
3876    if (actp != NULL) {
3877      chained = call_chained_handler(actp, sig, siginfo, context);
3878    }
3879  }
3880  return chained;
3881}
3882
3883struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3884  assert((chainedsigactions != (struct sigaction *)NULL) &&
3885         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3886  if (preinstalled_sigs[sig] != 0) {
3887    return &chainedsigactions[sig];
3888  }
3889  return NULL;
3890}
3891
3892void os::Solaris::save_preinstalled_handler(int sig,
3893                                            struct sigaction& oldAct) {
3894  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3895  assert((chainedsigactions != (struct sigaction *)NULL) &&
3896         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3897  chainedsigactions[sig] = oldAct;
3898  preinstalled_sigs[sig] = 1;
3899}
3900
3901void os::Solaris::set_signal_handler(int sig, bool set_installed,
3902                                     bool oktochain) {
3903  // Check for overwrite.
3904  struct sigaction oldAct;
3905  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3906  void* oldhand =
3907      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3908                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3909  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3910      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3911      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3912    if (AllowUserSignalHandlers || !set_installed) {
3913      // Do not overwrite; user takes responsibility to forward to us.
3914      return;
3915    } else if (UseSignalChaining) {
3916      if (oktochain) {
3917        // save the old handler in jvm
3918        save_preinstalled_handler(sig, oldAct);
3919      } else {
3920        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3921      }
3922      // libjsig also interposes the sigaction() call below and saves the
3923      // old sigaction on it own.
3924    } else {
3925      fatal("Encountered unexpected pre-existing sigaction handler "
3926            "%#lx for signal %d.", (long)oldhand, sig);
3927    }
3928  }
3929
3930  struct sigaction sigAct;
3931  sigfillset(&(sigAct.sa_mask));
3932  sigAct.sa_handler = SIG_DFL;
3933
3934  sigAct.sa_sigaction = signalHandler;
3935  // Handle SIGSEGV on alternate signal stack if
3936  // not using stack banging
3937  if (!UseStackBanging && sig == SIGSEGV) {
3938    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3939  } else {
3940    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3941  }
3942  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3943
3944  sigaction(sig, &sigAct, &oldAct);
3945
3946  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3947                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3948  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3949}
3950
3951
3952#define DO_SIGNAL_CHECK(sig)                      \
3953  do {                                            \
3954    if (!sigismember(&check_signal_done, sig)) {  \
3955      os::Solaris::check_signal_handler(sig);     \
3956    }                                             \
3957  } while (0)
3958
3959// This method is a periodic task to check for misbehaving JNI applications
3960// under CheckJNI, we can add any periodic checks here
3961
3962void os::run_periodic_checks() {
3963  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3964  // thereby preventing a NULL checks.
3965  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3966
3967  if (check_signals == false) return;
3968
3969  // SEGV and BUS if overridden could potentially prevent
3970  // generation of hs*.log in the event of a crash, debugging
3971  // such a case can be very challenging, so we absolutely
3972  // check for the following for a good measure:
3973  DO_SIGNAL_CHECK(SIGSEGV);
3974  DO_SIGNAL_CHECK(SIGILL);
3975  DO_SIGNAL_CHECK(SIGFPE);
3976  DO_SIGNAL_CHECK(SIGBUS);
3977  DO_SIGNAL_CHECK(SIGPIPE);
3978  DO_SIGNAL_CHECK(SIGXFSZ);
3979
3980  // ReduceSignalUsage allows the user to override these handlers
3981  // see comments at the very top and jvm_solaris.h
3982  if (!ReduceSignalUsage) {
3983    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3984    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3985    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3986    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3987  }
3988
3989  // See comments above for using JVM1/JVM2
3990  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
3991
3992}
3993
3994typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3995
3996static os_sigaction_t os_sigaction = NULL;
3997
3998void os::Solaris::check_signal_handler(int sig) {
3999  char buf[O_BUFLEN];
4000  address jvmHandler = NULL;
4001
4002  struct sigaction act;
4003  if (os_sigaction == NULL) {
4004    // only trust the default sigaction, in case it has been interposed
4005    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4006    if (os_sigaction == NULL) return;
4007  }
4008
4009  os_sigaction(sig, (struct sigaction*)NULL, &act);
4010
4011  address thisHandler = (act.sa_flags & SA_SIGINFO)
4012    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4013    : CAST_FROM_FN_PTR(address, act.sa_handler);
4014
4015
4016  switch (sig) {
4017  case SIGSEGV:
4018  case SIGBUS:
4019  case SIGFPE:
4020  case SIGPIPE:
4021  case SIGXFSZ:
4022  case SIGILL:
4023    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4024    break;
4025
4026  case SHUTDOWN1_SIGNAL:
4027  case SHUTDOWN2_SIGNAL:
4028  case SHUTDOWN3_SIGNAL:
4029  case BREAK_SIGNAL:
4030    jvmHandler = (address)user_handler();
4031    break;
4032
4033  default:
4034    int asynsig = os::Solaris::SIGasync();
4035
4036    if (sig == asynsig) {
4037      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4038    } else {
4039      return;
4040    }
4041    break;
4042  }
4043
4044
4045  if (thisHandler != jvmHandler) {
4046    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4047    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4048    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4049    // No need to check this sig any longer
4050    sigaddset(&check_signal_done, sig);
4051    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4052    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4053      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4054                    exception_name(sig, buf, O_BUFLEN));
4055    }
4056  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4057    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4058    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4059    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4060    // No need to check this sig any longer
4061    sigaddset(&check_signal_done, sig);
4062  }
4063
4064  // Print all the signal handler state
4065  if (sigismember(&check_signal_done, sig)) {
4066    print_signal_handlers(tty, buf, O_BUFLEN);
4067  }
4068
4069}
4070
4071void os::Solaris::install_signal_handlers() {
4072  bool libjsigdone = false;
4073  signal_handlers_are_installed = true;
4074
4075  // signal-chaining
4076  typedef void (*signal_setting_t)();
4077  signal_setting_t begin_signal_setting = NULL;
4078  signal_setting_t end_signal_setting = NULL;
4079  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4080                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4081  if (begin_signal_setting != NULL) {
4082    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4083                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4084    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4085                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4086    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4087                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4088    libjsig_is_loaded = true;
4089    if (os::Solaris::get_libjsig_version != NULL) {
4090      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4091    }
4092    assert(UseSignalChaining, "should enable signal-chaining");
4093  }
4094  if (libjsig_is_loaded) {
4095    // Tell libjsig jvm is setting signal handlers
4096    (*begin_signal_setting)();
4097  }
4098
4099  set_signal_handler(SIGSEGV, true, true);
4100  set_signal_handler(SIGPIPE, true, true);
4101  set_signal_handler(SIGXFSZ, true, true);
4102  set_signal_handler(SIGBUS, true, true);
4103  set_signal_handler(SIGILL, true, true);
4104  set_signal_handler(SIGFPE, true, true);
4105
4106
4107  if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4108    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4109    // can not register overridable signals which might be > 32
4110    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4111      // Tell libjsig jvm has finished setting signal handlers
4112      (*end_signal_setting)();
4113      libjsigdone = true;
4114    }
4115  }
4116
4117  set_signal_handler(os::Solaris::SIGasync(), true, true);
4118
4119  if (libjsig_is_loaded && !libjsigdone) {
4120    // Tell libjsig jvm finishes setting signal handlers
4121    (*end_signal_setting)();
4122  }
4123
4124  // We don't activate signal checker if libjsig is in place, we trust ourselves
4125  // and if UserSignalHandler is installed all bets are off.
4126  // Log that signal checking is off only if -verbose:jni is specified.
4127  if (CheckJNICalls) {
4128    if (libjsig_is_loaded) {
4129      if (PrintJNIResolving) {
4130        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4131      }
4132      check_signals = false;
4133    }
4134    if (AllowUserSignalHandlers) {
4135      if (PrintJNIResolving) {
4136        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4137      }
4138      check_signals = false;
4139    }
4140  }
4141}
4142
4143
4144void report_error(const char* file_name, int line_no, const char* title,
4145                  const char* format, ...);
4146
4147// (Static) wrapper for getisax(2) call.
4148os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4149
4150// (Static) wrappers for the liblgrp API
4151os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4152os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4153os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4154os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4155os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4156os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4157os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4158os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4159os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4160
4161// (Static) wrapper for meminfo() call.
4162os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4163
4164static address resolve_symbol_lazy(const char* name) {
4165  address addr = (address) dlsym(RTLD_DEFAULT, name);
4166  if (addr == NULL) {
4167    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4168    addr = (address) dlsym(RTLD_NEXT, name);
4169  }
4170  return addr;
4171}
4172
4173static address resolve_symbol(const char* name) {
4174  address addr = resolve_symbol_lazy(name);
4175  if (addr == NULL) {
4176    fatal(dlerror());
4177  }
4178  return addr;
4179}
4180
4181void os::Solaris::libthread_init() {
4182  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4183
4184  lwp_priocntl_init();
4185
4186  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4187  if (func == NULL) {
4188    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4189    // Guarantee that this VM is running on an new enough OS (5.6 or
4190    // later) that it will have a new enough libthread.so.
4191    guarantee(func != NULL, "libthread.so is too old.");
4192  }
4193
4194  int size;
4195  void (*handler_info_func)(address *, int *);
4196  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4197  handler_info_func(&handler_start, &size);
4198  handler_end = handler_start + size;
4199}
4200
4201
4202int_fnP_mutex_tP os::Solaris::_mutex_lock;
4203int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4204int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4205int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4206int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4207int os::Solaris::_mutex_scope = USYNC_THREAD;
4208
4209int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4210int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4211int_fnP_cond_tP os::Solaris::_cond_signal;
4212int_fnP_cond_tP os::Solaris::_cond_broadcast;
4213int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4214int_fnP_cond_tP os::Solaris::_cond_destroy;
4215int os::Solaris::_cond_scope = USYNC_THREAD;
4216
4217void os::Solaris::synchronization_init() {
4218  if (UseLWPSynchronization) {
4219    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4220    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4221    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4222    os::Solaris::set_mutex_init(lwp_mutex_init);
4223    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4224    os::Solaris::set_mutex_scope(USYNC_THREAD);
4225
4226    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4227    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4228    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4229    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4230    os::Solaris::set_cond_init(lwp_cond_init);
4231    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4232    os::Solaris::set_cond_scope(USYNC_THREAD);
4233  } else {
4234    os::Solaris::set_mutex_scope(USYNC_THREAD);
4235    os::Solaris::set_cond_scope(USYNC_THREAD);
4236
4237    if (UsePthreads) {
4238      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4239      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4240      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4241      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4242      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4243
4244      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4245      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4246      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4247      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4248      os::Solaris::set_cond_init(pthread_cond_default_init);
4249      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4250    } else {
4251      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4252      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4253      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4254      os::Solaris::set_mutex_init(::mutex_init);
4255      os::Solaris::set_mutex_destroy(::mutex_destroy);
4256
4257      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4258      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4259      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4260      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4261      os::Solaris::set_cond_init(::cond_init);
4262      os::Solaris::set_cond_destroy(::cond_destroy);
4263    }
4264  }
4265}
4266
4267bool os::Solaris::liblgrp_init() {
4268  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4269  if (handle != NULL) {
4270    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4271    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4272    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4273    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4274    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4275    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4276    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4277    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4278                                                      dlsym(handle, "lgrp_cookie_stale")));
4279
4280    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4281    set_lgrp_cookie(c);
4282    return true;
4283  }
4284  return false;
4285}
4286
4287void os::Solaris::misc_sym_init() {
4288  address func;
4289
4290  // getisax
4291  func = resolve_symbol_lazy("getisax");
4292  if (func != NULL) {
4293    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4294  }
4295
4296  // meminfo
4297  func = resolve_symbol_lazy("meminfo");
4298  if (func != NULL) {
4299    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4300  }
4301}
4302
4303uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4304  assert(_getisax != NULL, "_getisax not set");
4305  return _getisax(array, n);
4306}
4307
4308// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4309typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4310static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4311
4312void init_pset_getloadavg_ptr(void) {
4313  pset_getloadavg_ptr =
4314    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4315  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4316    warning("pset_getloadavg function not found");
4317  }
4318}
4319
4320int os::Solaris::_dev_zero_fd = -1;
4321
4322// this is called _before_ the global arguments have been parsed
4323void os::init(void) {
4324  _initial_pid = getpid();
4325
4326  max_hrtime = first_hrtime = gethrtime();
4327
4328  init_random(1234567);
4329
4330  page_size = sysconf(_SC_PAGESIZE);
4331  if (page_size == -1) {
4332    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno));
4333  }
4334  init_page_sizes((size_t) page_size);
4335
4336  Solaris::initialize_system_info();
4337
4338  // Initialize misc. symbols as soon as possible, so we can use them
4339  // if we need them.
4340  Solaris::misc_sym_init();
4341
4342  int fd = ::open("/dev/zero", O_RDWR);
4343  if (fd < 0) {
4344    fatal("os::init: cannot open /dev/zero (%s)", strerror(errno));
4345  } else {
4346    Solaris::set_dev_zero_fd(fd);
4347
4348    // Close on exec, child won't inherit.
4349    fcntl(fd, F_SETFD, FD_CLOEXEC);
4350  }
4351
4352  clock_tics_per_sec = CLK_TCK;
4353
4354  // check if dladdr1() exists; dladdr1 can provide more information than
4355  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4356  // and is available on linker patches for 5.7 and 5.8.
4357  // libdl.so must have been loaded, this call is just an entry lookup
4358  void * hdl = dlopen("libdl.so", RTLD_NOW);
4359  if (hdl) {
4360    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4361  }
4362
4363  // (Solaris only) this switches to calls that actually do locking.
4364  ThreadCritical::initialize();
4365
4366  main_thread = thr_self();
4367
4368  // Constant minimum stack size allowed. It must be at least
4369  // the minimum of what the OS supports (thr_min_stack()), and
4370  // enough to allow the thread to get to user bytecode execution.
4371  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4372  // If the pagesize of the VM is greater than 8K determine the appropriate
4373  // number of initial guard pages.  The user can change this with the
4374  // command line arguments, if needed.
4375  if (vm_page_size() > 8*K) {
4376    StackYellowPages = 1;
4377    StackRedPages = 1;
4378    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
4379  }
4380}
4381
4382// To install functions for atexit system call
4383extern "C" {
4384  static void perfMemory_exit_helper() {
4385    perfMemory_exit();
4386  }
4387}
4388
4389// this is called _after_ the global arguments have been parsed
4390jint os::init_2(void) {
4391  // try to enable extended file IO ASAP, see 6431278
4392  os::Solaris::try_enable_extended_io();
4393
4394  // Allocate a single page and mark it as readable for safepoint polling.  Also
4395  // use this first mmap call to check support for MAP_ALIGN.
4396  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4397                                                      page_size,
4398                                                      MAP_PRIVATE | MAP_ALIGN,
4399                                                      PROT_READ);
4400  if (polling_page == NULL) {
4401    has_map_align = false;
4402    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4403                                                PROT_READ);
4404  }
4405
4406  os::set_polling_page(polling_page);
4407
4408#ifndef PRODUCT
4409  if (Verbose && PrintMiscellaneous) {
4410    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4411               (intptr_t)polling_page);
4412  }
4413#endif
4414
4415  if (!UseMembar) {
4416    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4417    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4418    os::set_memory_serialize_page(mem_serialize_page);
4419
4420#ifndef PRODUCT
4421    if (Verbose && PrintMiscellaneous) {
4422      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4423                 (intptr_t)mem_serialize_page);
4424    }
4425#endif
4426  }
4427
4428  // Check minimum allowable stack size for thread creation and to initialize
4429  // the java system classes, including StackOverflowError - depends on page
4430  // size.  Add a page for compiler2 recursion in main thread.
4431  // Add in 2*BytesPerWord times page size to account for VM stack during
4432  // class initialization depending on 32 or 64 bit VM.
4433  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4434                                        (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4435                                        2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4436
4437  size_t threadStackSizeInBytes = ThreadStackSize * K;
4438  if (threadStackSizeInBytes != 0 &&
4439      threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4440    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4441                  os::Solaris::min_stack_allowed/K);
4442    return JNI_ERR;
4443  }
4444
4445  // For 64kbps there will be a 64kb page size, which makes
4446  // the usable default stack size quite a bit less.  Increase the
4447  // stack for 64kb (or any > than 8kb) pages, this increases
4448  // virtual memory fragmentation (since we're not creating the
4449  // stack on a power of 2 boundary.  The real fix for this
4450  // should be to fix the guard page mechanism.
4451
4452  if (vm_page_size() > 8*K) {
4453    threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4454       ? threadStackSizeInBytes +
4455         ((StackYellowPages + StackRedPages) * vm_page_size())
4456       : 0;
4457    ThreadStackSize = threadStackSizeInBytes/K;
4458  }
4459
4460  // Make the stack size a multiple of the page size so that
4461  // the yellow/red zones can be guarded.
4462  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4463                                                vm_page_size()));
4464
4465  Solaris::libthread_init();
4466
4467  if (UseNUMA) {
4468    if (!Solaris::liblgrp_init()) {
4469      UseNUMA = false;
4470    } else {
4471      size_t lgrp_limit = os::numa_get_groups_num();
4472      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4473      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4474      FREE_C_HEAP_ARRAY(int, lgrp_ids);
4475      if (lgrp_num < 2) {
4476        // There's only one locality group, disable NUMA.
4477        UseNUMA = false;
4478      }
4479    }
4480    if (!UseNUMA && ForceNUMA) {
4481      UseNUMA = true;
4482    }
4483  }
4484
4485  Solaris::signal_sets_init();
4486  Solaris::init_signal_mem();
4487  Solaris::install_signal_handlers();
4488
4489  if (libjsigversion < JSIG_VERSION_1_4_1) {
4490    Maxlibjsigsigs = OLDMAXSIGNUM;
4491  }
4492
4493  // initialize synchronization primitives to use either thread or
4494  // lwp synchronization (controlled by UseLWPSynchronization)
4495  Solaris::synchronization_init();
4496
4497  if (MaxFDLimit) {
4498    // set the number of file descriptors to max. print out error
4499    // if getrlimit/setrlimit fails but continue regardless.
4500    struct rlimit nbr_files;
4501    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4502    if (status != 0) {
4503      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4504        perror("os::init_2 getrlimit failed");
4505      }
4506    } else {
4507      nbr_files.rlim_cur = nbr_files.rlim_max;
4508      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4509      if (status != 0) {
4510        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4511          perror("os::init_2 setrlimit failed");
4512        }
4513      }
4514    }
4515  }
4516
4517  // Calculate theoretical max. size of Threads to guard gainst
4518  // artifical out-of-memory situations, where all available address-
4519  // space has been reserved by thread stacks. Default stack size is 1Mb.
4520  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4521    JavaThread::stack_size_at_create() : (1*K*K);
4522  assert(pre_thread_stack_size != 0, "Must have a stack");
4523  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4524  // we should start doing Virtual Memory banging. Currently when the threads will
4525  // have used all but 200Mb of space.
4526  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4527  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4528
4529  // at-exit methods are called in the reverse order of their registration.
4530  // In Solaris 7 and earlier, atexit functions are called on return from
4531  // main or as a result of a call to exit(3C). There can be only 32 of
4532  // these functions registered and atexit() does not set errno. In Solaris
4533  // 8 and later, there is no limit to the number of functions registered
4534  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4535  // functions are called upon dlclose(3DL) in addition to return from main
4536  // and exit(3C).
4537
4538  if (PerfAllowAtExitRegistration) {
4539    // only register atexit functions if PerfAllowAtExitRegistration is set.
4540    // atexit functions can be delayed until process exit time, which
4541    // can be problematic for embedded VM situations. Embedded VMs should
4542    // call DestroyJavaVM() to assure that VM resources are released.
4543
4544    // note: perfMemory_exit_helper atexit function may be removed in
4545    // the future if the appropriate cleanup code can be added to the
4546    // VM_Exit VMOperation's doit method.
4547    if (atexit(perfMemory_exit_helper) != 0) {
4548      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4549    }
4550  }
4551
4552  // Init pset_loadavg function pointer
4553  init_pset_getloadavg_ptr();
4554
4555  return JNI_OK;
4556}
4557
4558// Mark the polling page as unreadable
4559void os::make_polling_page_unreadable(void) {
4560  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4561    fatal("Could not disable polling page");
4562  }
4563}
4564
4565// Mark the polling page as readable
4566void os::make_polling_page_readable(void) {
4567  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4568    fatal("Could not enable polling page");
4569  }
4570}
4571
4572// OS interface.
4573
4574bool os::check_heap(bool force) { return true; }
4575
4576// Is a (classpath) directory empty?
4577bool os::dir_is_empty(const char* path) {
4578  DIR *dir = NULL;
4579  struct dirent *ptr;
4580
4581  dir = opendir(path);
4582  if (dir == NULL) return true;
4583
4584  // Scan the directory
4585  bool result = true;
4586  char buf[sizeof(struct dirent) + MAX_PATH];
4587  struct dirent *dbuf = (struct dirent *) buf;
4588  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4589    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4590      result = false;
4591    }
4592  }
4593  closedir(dir);
4594  return result;
4595}
4596
4597// This code originates from JDK's sysOpen and open64_w
4598// from src/solaris/hpi/src/system_md.c
4599
4600int os::open(const char *path, int oflag, int mode) {
4601  if (strlen(path) > MAX_PATH - 1) {
4602    errno = ENAMETOOLONG;
4603    return -1;
4604  }
4605  int fd;
4606
4607  fd = ::open64(path, oflag, mode);
4608  if (fd == -1) return -1;
4609
4610  // If the open succeeded, the file might still be a directory
4611  {
4612    struct stat64 buf64;
4613    int ret = ::fstat64(fd, &buf64);
4614    int st_mode = buf64.st_mode;
4615
4616    if (ret != -1) {
4617      if ((st_mode & S_IFMT) == S_IFDIR) {
4618        errno = EISDIR;
4619        ::close(fd);
4620        return -1;
4621      }
4622    } else {
4623      ::close(fd);
4624      return -1;
4625    }
4626  }
4627
4628  // 32-bit Solaris systems suffer from:
4629  //
4630  // - an historical default soft limit of 256 per-process file
4631  //   descriptors that is too low for many Java programs.
4632  //
4633  // - a design flaw where file descriptors created using stdio
4634  //   fopen must be less than 256, _even_ when the first limit above
4635  //   has been raised.  This can cause calls to fopen (but not calls to
4636  //   open, for example) to fail mysteriously, perhaps in 3rd party
4637  //   native code (although the JDK itself uses fopen).  One can hardly
4638  //   criticize them for using this most standard of all functions.
4639  //
4640  // We attempt to make everything work anyways by:
4641  //
4642  // - raising the soft limit on per-process file descriptors beyond
4643  //   256
4644  //
4645  // - As of Solaris 10u4, we can request that Solaris raise the 256
4646  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4647  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4648  //
4649  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4650  //   workaround the bug by remapping non-stdio file descriptors below
4651  //   256 to ones beyond 256, which is done below.
4652  //
4653  // See:
4654  // 1085341: 32-bit stdio routines should support file descriptors >255
4655  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4656  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4657  //          enable_extended_FILE_stdio() in VM initialisation
4658  // Giri Mandalika's blog
4659  // http://technopark02.blogspot.com/2005_05_01_archive.html
4660  //
4661#ifndef  _LP64
4662  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4663    int newfd = ::fcntl(fd, F_DUPFD, 256);
4664    if (newfd != -1) {
4665      ::close(fd);
4666      fd = newfd;
4667    }
4668  }
4669#endif // 32-bit Solaris
4670
4671  // All file descriptors that are opened in the JVM and not
4672  // specifically destined for a subprocess should have the
4673  // close-on-exec flag set.  If we don't set it, then careless 3rd
4674  // party native code might fork and exec without closing all
4675  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4676  // UNIXProcess.c), and this in turn might:
4677  //
4678  // - cause end-of-file to fail to be detected on some file
4679  //   descriptors, resulting in mysterious hangs, or
4680  //
4681  // - might cause an fopen in the subprocess to fail on a system
4682  //   suffering from bug 1085341.
4683  //
4684  // (Yes, the default setting of the close-on-exec flag is a Unix
4685  // design flaw)
4686  //
4687  // See:
4688  // 1085341: 32-bit stdio routines should support file descriptors >255
4689  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4690  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4691  //
4692#ifdef FD_CLOEXEC
4693  {
4694    int flags = ::fcntl(fd, F_GETFD);
4695    if (flags != -1) {
4696      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4697    }
4698  }
4699#endif
4700
4701  return fd;
4702}
4703
4704// create binary file, rewriting existing file if required
4705int os::create_binary_file(const char* path, bool rewrite_existing) {
4706  int oflags = O_WRONLY | O_CREAT;
4707  if (!rewrite_existing) {
4708    oflags |= O_EXCL;
4709  }
4710  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4711}
4712
4713// return current position of file pointer
4714jlong os::current_file_offset(int fd) {
4715  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4716}
4717
4718// move file pointer to the specified offset
4719jlong os::seek_to_file_offset(int fd, jlong offset) {
4720  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4721}
4722
4723jlong os::lseek(int fd, jlong offset, int whence) {
4724  return (jlong) ::lseek64(fd, offset, whence);
4725}
4726
4727char * os::native_path(char *path) {
4728  return path;
4729}
4730
4731int os::ftruncate(int fd, jlong length) {
4732  return ::ftruncate64(fd, length);
4733}
4734
4735int os::fsync(int fd)  {
4736  RESTARTABLE_RETURN_INT(::fsync(fd));
4737}
4738
4739int os::available(int fd, jlong *bytes) {
4740  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4741         "Assumed _thread_in_native");
4742  jlong cur, end;
4743  int mode;
4744  struct stat64 buf64;
4745
4746  if (::fstat64(fd, &buf64) >= 0) {
4747    mode = buf64.st_mode;
4748    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4749      int n,ioctl_return;
4750
4751      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4752      if (ioctl_return>= 0) {
4753        *bytes = n;
4754        return 1;
4755      }
4756    }
4757  }
4758  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4759    return 0;
4760  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4761    return 0;
4762  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4763    return 0;
4764  }
4765  *bytes = end - cur;
4766  return 1;
4767}
4768
4769// Map a block of memory.
4770char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4771                        char *addr, size_t bytes, bool read_only,
4772                        bool allow_exec) {
4773  int prot;
4774  int flags;
4775
4776  if (read_only) {
4777    prot = PROT_READ;
4778    flags = MAP_SHARED;
4779  } else {
4780    prot = PROT_READ | PROT_WRITE;
4781    flags = MAP_PRIVATE;
4782  }
4783
4784  if (allow_exec) {
4785    prot |= PROT_EXEC;
4786  }
4787
4788  if (addr != NULL) {
4789    flags |= MAP_FIXED;
4790  }
4791
4792  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4793                                     fd, file_offset);
4794  if (mapped_address == MAP_FAILED) {
4795    return NULL;
4796  }
4797  return mapped_address;
4798}
4799
4800
4801// Remap a block of memory.
4802char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4803                          char *addr, size_t bytes, bool read_only,
4804                          bool allow_exec) {
4805  // same as map_memory() on this OS
4806  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4807                        allow_exec);
4808}
4809
4810
4811// Unmap a block of memory.
4812bool os::pd_unmap_memory(char* addr, size_t bytes) {
4813  return munmap(addr, bytes) == 0;
4814}
4815
4816void os::pause() {
4817  char filename[MAX_PATH];
4818  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4819    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4820  } else {
4821    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4822  }
4823
4824  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4825  if (fd != -1) {
4826    struct stat buf;
4827    ::close(fd);
4828    while (::stat(filename, &buf) == 0) {
4829      (void)::poll(NULL, 0, 100);
4830    }
4831  } else {
4832    jio_fprintf(stderr,
4833                "Could not open pause file '%s', continuing immediately.\n", filename);
4834  }
4835}
4836
4837#ifndef PRODUCT
4838#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4839// Turn this on if you need to trace synch operations.
4840// Set RECORD_SYNCH_LIMIT to a large-enough value,
4841// and call record_synch_enable and record_synch_disable
4842// around the computation of interest.
4843
4844void record_synch(char* name, bool returning);  // defined below
4845
4846class RecordSynch {
4847  char* _name;
4848 public:
4849  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4850  ~RecordSynch()                       { record_synch(_name, true); }
4851};
4852
4853#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4854extern "C" ret name params {                                    \
4855  typedef ret name##_t params;                                  \
4856  static name##_t* implem = NULL;                               \
4857  static int callcount = 0;                                     \
4858  if (implem == NULL) {                                         \
4859    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4860    if (implem == NULL)  fatal(dlerror());                      \
4861  }                                                             \
4862  ++callcount;                                                  \
4863  RecordSynch _rs(#name);                                       \
4864  inner;                                                        \
4865  return implem args;                                           \
4866}
4867// in dbx, examine callcounts this way:
4868// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4869
4870#define CHECK_POINTER_OK(p) \
4871  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4872#define CHECK_MU \
4873  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4874#define CHECK_CV \
4875  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4876#define CHECK_P(p) \
4877  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4878
4879#define CHECK_MUTEX(mutex_op) \
4880  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4881
4882CHECK_MUTEX(   mutex_lock)
4883CHECK_MUTEX(  _mutex_lock)
4884CHECK_MUTEX( mutex_unlock)
4885CHECK_MUTEX(_mutex_unlock)
4886CHECK_MUTEX( mutex_trylock)
4887CHECK_MUTEX(_mutex_trylock)
4888
4889#define CHECK_COND(cond_op) \
4890  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4891
4892CHECK_COND( cond_wait);
4893CHECK_COND(_cond_wait);
4894CHECK_COND(_cond_wait_cancel);
4895
4896#define CHECK_COND2(cond_op) \
4897  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4898
4899CHECK_COND2( cond_timedwait);
4900CHECK_COND2(_cond_timedwait);
4901CHECK_COND2(_cond_timedwait_cancel);
4902
4903// do the _lwp_* versions too
4904#define mutex_t lwp_mutex_t
4905#define cond_t  lwp_cond_t
4906CHECK_MUTEX(  _lwp_mutex_lock)
4907CHECK_MUTEX(  _lwp_mutex_unlock)
4908CHECK_MUTEX(  _lwp_mutex_trylock)
4909CHECK_MUTEX( __lwp_mutex_lock)
4910CHECK_MUTEX( __lwp_mutex_unlock)
4911CHECK_MUTEX( __lwp_mutex_trylock)
4912CHECK_MUTEX(___lwp_mutex_lock)
4913CHECK_MUTEX(___lwp_mutex_unlock)
4914
4915CHECK_COND(  _lwp_cond_wait);
4916CHECK_COND( __lwp_cond_wait);
4917CHECK_COND(___lwp_cond_wait);
4918
4919CHECK_COND2(  _lwp_cond_timedwait);
4920CHECK_COND2( __lwp_cond_timedwait);
4921#undef mutex_t
4922#undef cond_t
4923
4924CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4925CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4926CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4927CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4928CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4929CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4930CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4931CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4932
4933
4934// recording machinery:
4935
4936enum { RECORD_SYNCH_LIMIT = 200 };
4937char* record_synch_name[RECORD_SYNCH_LIMIT];
4938void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4939bool record_synch_returning[RECORD_SYNCH_LIMIT];
4940thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4941int record_synch_count = 0;
4942bool record_synch_enabled = false;
4943
4944// in dbx, examine recorded data this way:
4945// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4946
4947void record_synch(char* name, bool returning) {
4948  if (record_synch_enabled) {
4949    if (record_synch_count < RECORD_SYNCH_LIMIT) {
4950      record_synch_name[record_synch_count] = name;
4951      record_synch_returning[record_synch_count] = returning;
4952      record_synch_thread[record_synch_count] = thr_self();
4953      record_synch_arg0ptr[record_synch_count] = &name;
4954      record_synch_count++;
4955    }
4956    // put more checking code here:
4957    // ...
4958  }
4959}
4960
4961void record_synch_enable() {
4962  // start collecting trace data, if not already doing so
4963  if (!record_synch_enabled)  record_synch_count = 0;
4964  record_synch_enabled = true;
4965}
4966
4967void record_synch_disable() {
4968  // stop collecting trace data
4969  record_synch_enabled = false;
4970}
4971
4972#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4973#endif // PRODUCT
4974
4975const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4976const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4977                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4978
4979
4980// JVMTI & JVM monitoring and management support
4981// The thread_cpu_time() and current_thread_cpu_time() are only
4982// supported if is_thread_cpu_time_supported() returns true.
4983// They are not supported on Solaris T1.
4984
4985// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4986// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4987// of a thread.
4988//
4989// current_thread_cpu_time() and thread_cpu_time(Thread *)
4990// returns the fast estimate available on the platform.
4991
4992// hrtime_t gethrvtime() return value includes
4993// user time but does not include system time
4994jlong os::current_thread_cpu_time() {
4995  return (jlong) gethrvtime();
4996}
4997
4998jlong os::thread_cpu_time(Thread *thread) {
4999  // return user level CPU time only to be consistent with
5000  // what current_thread_cpu_time returns.
5001  // thread_cpu_time_info() must be changed if this changes
5002  return os::thread_cpu_time(thread, false /* user time only */);
5003}
5004
5005jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5006  if (user_sys_cpu_time) {
5007    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5008  } else {
5009    return os::current_thread_cpu_time();
5010  }
5011}
5012
5013jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5014  char proc_name[64];
5015  int count;
5016  prusage_t prusage;
5017  jlong lwp_time;
5018  int fd;
5019
5020  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5021          getpid(),
5022          thread->osthread()->lwp_id());
5023  fd = ::open(proc_name, O_RDONLY);
5024  if (fd == -1) return -1;
5025
5026  do {
5027    count = ::pread(fd,
5028                    (void *)&prusage.pr_utime,
5029                    thr_time_size,
5030                    thr_time_off);
5031  } while (count < 0 && errno == EINTR);
5032  ::close(fd);
5033  if (count < 0) return -1;
5034
5035  if (user_sys_cpu_time) {
5036    // user + system CPU time
5037    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5038                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5039                 (jlong)prusage.pr_stime.tv_nsec +
5040                 (jlong)prusage.pr_utime.tv_nsec;
5041  } else {
5042    // user level CPU time only
5043    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5044                (jlong)prusage.pr_utime.tv_nsec;
5045  }
5046
5047  return (lwp_time);
5048}
5049
5050void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5051  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5052  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5053  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5054  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5055}
5056
5057void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5058  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5059  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5060  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5061  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5062}
5063
5064bool os::is_thread_cpu_time_supported() {
5065  return true;
5066}
5067
5068// System loadavg support.  Returns -1 if load average cannot be obtained.
5069// Return the load average for our processor set if the primitive exists
5070// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5071int os::loadavg(double loadavg[], int nelem) {
5072  if (pset_getloadavg_ptr != NULL) {
5073    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5074  } else {
5075    return ::getloadavg(loadavg, nelem);
5076  }
5077}
5078
5079//---------------------------------------------------------------------------------
5080
5081bool os::find(address addr, outputStream* st) {
5082  Dl_info dlinfo;
5083  memset(&dlinfo, 0, sizeof(dlinfo));
5084  if (dladdr(addr, &dlinfo) != 0) {
5085    st->print(PTR_FORMAT ": ", addr);
5086    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5087      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5088    } else if (dlinfo.dli_fbase != NULL) {
5089      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5090    } else {
5091      st->print("<absolute address>");
5092    }
5093    if (dlinfo.dli_fname != NULL) {
5094      st->print(" in %s", dlinfo.dli_fname);
5095    }
5096    if (dlinfo.dli_fbase != NULL) {
5097      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5098    }
5099    st->cr();
5100
5101    if (Verbose) {
5102      // decode some bytes around the PC
5103      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5104      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5105      address       lowest = (address) dlinfo.dli_sname;
5106      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5107      if (begin < lowest)  begin = lowest;
5108      Dl_info dlinfo2;
5109      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5110          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5111        end = (address) dlinfo2.dli_saddr;
5112      }
5113      Disassembler::decode(begin, end, st);
5114    }
5115    return true;
5116  }
5117  return false;
5118}
5119
5120// Following function has been added to support HotSparc's libjvm.so running
5121// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5122// src/solaris/hpi/native_threads in the EVM codebase.
5123//
5124// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5125// libraries and should thus be removed. We will leave it behind for a while
5126// until we no longer want to able to run on top of 1.3.0 Solaris production
5127// JDK. See 4341971.
5128
5129#define STACK_SLACK 0x800
5130
5131extern "C" {
5132  intptr_t sysThreadAvailableStackWithSlack() {
5133    stack_t st;
5134    intptr_t retval, stack_top;
5135    retval = thr_stksegment(&st);
5136    assert(retval == 0, "incorrect return value from thr_stksegment");
5137    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5138    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5139    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5140    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5141  }
5142}
5143
5144// ObjectMonitor park-unpark infrastructure ...
5145//
5146// We implement Solaris and Linux PlatformEvents with the
5147// obvious condvar-mutex-flag triple.
5148// Another alternative that works quite well is pipes:
5149// Each PlatformEvent consists of a pipe-pair.
5150// The thread associated with the PlatformEvent
5151// calls park(), which reads from the input end of the pipe.
5152// Unpark() writes into the other end of the pipe.
5153// The write-side of the pipe must be set NDELAY.
5154// Unfortunately pipes consume a large # of handles.
5155// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5156// Using pipes for the 1st few threads might be workable, however.
5157//
5158// park() is permitted to return spuriously.
5159// Callers of park() should wrap the call to park() in
5160// an appropriate loop.  A litmus test for the correct
5161// usage of park is the following: if park() were modified
5162// to immediately return 0 your code should still work,
5163// albeit degenerating to a spin loop.
5164//
5165// In a sense, park()-unpark() just provides more polite spinning
5166// and polling with the key difference over naive spinning being
5167// that a parked thread needs to be explicitly unparked() in order
5168// to wake up and to poll the underlying condition.
5169//
5170// Assumption:
5171//    Only one parker can exist on an event, which is why we allocate
5172//    them per-thread. Multiple unparkers can coexist.
5173//
5174// _Event transitions in park()
5175//   -1 => -1 : illegal
5176//    1 =>  0 : pass - return immediately
5177//    0 => -1 : block; then set _Event to 0 before returning
5178//
5179// _Event transitions in unpark()
5180//    0 => 1 : just return
5181//    1 => 1 : just return
5182//   -1 => either 0 or 1; must signal target thread
5183//         That is, we can safely transition _Event from -1 to either
5184//         0 or 1.
5185//
5186// _Event serves as a restricted-range semaphore.
5187//   -1 : thread is blocked, i.e. there is a waiter
5188//    0 : neutral: thread is running or ready,
5189//        could have been signaled after a wait started
5190//    1 : signaled - thread is running or ready
5191//
5192// Another possible encoding of _Event would be with
5193// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5194//
5195// TODO-FIXME: add DTRACE probes for:
5196// 1.   Tx parks
5197// 2.   Ty unparks Tx
5198// 3.   Tx resumes from park
5199
5200
5201// value determined through experimentation
5202#define ROUNDINGFIX 11
5203
5204// utility to compute the abstime argument to timedwait.
5205// TODO-FIXME: switch from compute_abstime() to unpackTime().
5206
5207static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5208  // millis is the relative timeout time
5209  // abstime will be the absolute timeout time
5210  if (millis < 0)  millis = 0;
5211  struct timeval now;
5212  int status = gettimeofday(&now, NULL);
5213  assert(status == 0, "gettimeofday");
5214  jlong seconds = millis / 1000;
5215  jlong max_wait_period;
5216
5217  if (UseLWPSynchronization) {
5218    // forward port of fix for 4275818 (not sleeping long enough)
5219    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5220    // _lwp_cond_timedwait() used a round_down algorithm rather
5221    // than a round_up. For millis less than our roundfactor
5222    // it rounded down to 0 which doesn't meet the spec.
5223    // For millis > roundfactor we may return a bit sooner, but
5224    // since we can not accurately identify the patch level and
5225    // this has already been fixed in Solaris 9 and 8 we will
5226    // leave it alone rather than always rounding down.
5227
5228    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5229    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5230    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5231    max_wait_period = 21000000;
5232  } else {
5233    max_wait_period = 50000000;
5234  }
5235  millis %= 1000;
5236  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5237    seconds = max_wait_period;
5238  }
5239  abstime->tv_sec = now.tv_sec  + seconds;
5240  long       usec = now.tv_usec + millis * 1000;
5241  if (usec >= 1000000) {
5242    abstime->tv_sec += 1;
5243    usec -= 1000000;
5244  }
5245  abstime->tv_nsec = usec * 1000;
5246  return abstime;
5247}
5248
5249void os::PlatformEvent::park() {           // AKA: down()
5250  // Transitions for _Event:
5251  //   -1 => -1 : illegal
5252  //    1 =>  0 : pass - return immediately
5253  //    0 => -1 : block; then set _Event to 0 before returning
5254
5255  // Invariant: Only the thread associated with the Event/PlatformEvent
5256  // may call park().
5257  assert(_nParked == 0, "invariant");
5258
5259  int v;
5260  for (;;) {
5261    v = _Event;
5262    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5263  }
5264  guarantee(v >= 0, "invariant");
5265  if (v == 0) {
5266    // Do this the hard way by blocking ...
5267    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5268    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5269    // Only for SPARC >= V8PlusA
5270#if defined(__sparc) && defined(COMPILER2)
5271    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5272#endif
5273    int status = os::Solaris::mutex_lock(_mutex);
5274    assert_status(status == 0, status, "mutex_lock");
5275    guarantee(_nParked == 0, "invariant");
5276    ++_nParked;
5277    while (_Event < 0) {
5278      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5279      // Treat this the same as if the wait was interrupted
5280      // With usr/lib/lwp going to kernel, always handle ETIME
5281      status = os::Solaris::cond_wait(_cond, _mutex);
5282      if (status == ETIME) status = EINTR;
5283      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5284    }
5285    --_nParked;
5286    _Event = 0;
5287    status = os::Solaris::mutex_unlock(_mutex);
5288    assert_status(status == 0, status, "mutex_unlock");
5289    // Paranoia to ensure our locked and lock-free paths interact
5290    // correctly with each other.
5291    OrderAccess::fence();
5292  }
5293}
5294
5295int os::PlatformEvent::park(jlong millis) {
5296  // Transitions for _Event:
5297  //   -1 => -1 : illegal
5298  //    1 =>  0 : pass - return immediately
5299  //    0 => -1 : block; then set _Event to 0 before returning
5300
5301  guarantee(_nParked == 0, "invariant");
5302  int v;
5303  for (;;) {
5304    v = _Event;
5305    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5306  }
5307  guarantee(v >= 0, "invariant");
5308  if (v != 0) return OS_OK;
5309
5310  int ret = OS_TIMEOUT;
5311  timestruc_t abst;
5312  compute_abstime(&abst, millis);
5313
5314  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5315  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5316  // Only for SPARC >= V8PlusA
5317#if defined(__sparc) && defined(COMPILER2)
5318  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5319#endif
5320  int status = os::Solaris::mutex_lock(_mutex);
5321  assert_status(status == 0, status, "mutex_lock");
5322  guarantee(_nParked == 0, "invariant");
5323  ++_nParked;
5324  while (_Event < 0) {
5325    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5326    assert_status(status == 0 || status == EINTR ||
5327                  status == ETIME || status == ETIMEDOUT,
5328                  status, "cond_timedwait");
5329    if (!FilterSpuriousWakeups) break;                // previous semantics
5330    if (status == ETIME || status == ETIMEDOUT) break;
5331    // We consume and ignore EINTR and spurious wakeups.
5332  }
5333  --_nParked;
5334  if (_Event >= 0) ret = OS_OK;
5335  _Event = 0;
5336  status = os::Solaris::mutex_unlock(_mutex);
5337  assert_status(status == 0, status, "mutex_unlock");
5338  // Paranoia to ensure our locked and lock-free paths interact
5339  // correctly with each other.
5340  OrderAccess::fence();
5341  return ret;
5342}
5343
5344void os::PlatformEvent::unpark() {
5345  // Transitions for _Event:
5346  //    0 => 1 : just return
5347  //    1 => 1 : just return
5348  //   -1 => either 0 or 1; must signal target thread
5349  //         That is, we can safely transition _Event from -1 to either
5350  //         0 or 1.
5351  // See also: "Semaphores in Plan 9" by Mullender & Cox
5352  //
5353  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5354  // that it will take two back-to-back park() calls for the owning
5355  // thread to block. This has the benefit of forcing a spurious return
5356  // from the first park() call after an unpark() call which will help
5357  // shake out uses of park() and unpark() without condition variables.
5358
5359  if (Atomic::xchg(1, &_Event) >= 0) return;
5360
5361  // If the thread associated with the event was parked, wake it.
5362  // Wait for the thread assoc with the PlatformEvent to vacate.
5363  int status = os::Solaris::mutex_lock(_mutex);
5364  assert_status(status == 0, status, "mutex_lock");
5365  int AnyWaiters = _nParked;
5366  status = os::Solaris::mutex_unlock(_mutex);
5367  assert_status(status == 0, status, "mutex_unlock");
5368  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5369  if (AnyWaiters != 0) {
5370    // Note that we signal() *after* dropping the lock for "immortal" Events.
5371    // This is safe and avoids a common class of  futile wakeups.  In rare
5372    // circumstances this can cause a thread to return prematurely from
5373    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5374    // will simply re-test the condition and re-park itself.
5375    // This provides particular benefit if the underlying platform does not
5376    // provide wait morphing.
5377    status = os::Solaris::cond_signal(_cond);
5378    assert_status(status == 0, status, "cond_signal");
5379  }
5380}
5381
5382// JSR166
5383// -------------------------------------------------------
5384
5385// The solaris and linux implementations of park/unpark are fairly
5386// conservative for now, but can be improved. They currently use a
5387// mutex/condvar pair, plus _counter.
5388// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5389// sets count to 1 and signals condvar.  Only one thread ever waits
5390// on the condvar. Contention seen when trying to park implies that someone
5391// is unparking you, so don't wait. And spurious returns are fine, so there
5392// is no need to track notifications.
5393
5394#define MAX_SECS 100000000
5395
5396// This code is common to linux and solaris and will be moved to a
5397// common place in dolphin.
5398//
5399// The passed in time value is either a relative time in nanoseconds
5400// or an absolute time in milliseconds. Either way it has to be unpacked
5401// into suitable seconds and nanoseconds components and stored in the
5402// given timespec structure.
5403// Given time is a 64-bit value and the time_t used in the timespec is only
5404// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5405// overflow if times way in the future are given. Further on Solaris versions
5406// prior to 10 there is a restriction (see cond_timedwait) that the specified
5407// number of seconds, in abstime, is less than current_time  + 100,000,000.
5408// As it will be 28 years before "now + 100000000" will overflow we can
5409// ignore overflow and just impose a hard-limit on seconds using the value
5410// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5411// years from "now".
5412//
5413static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5414  assert(time > 0, "convertTime");
5415
5416  struct timeval now;
5417  int status = gettimeofday(&now, NULL);
5418  assert(status == 0, "gettimeofday");
5419
5420  time_t max_secs = now.tv_sec + MAX_SECS;
5421
5422  if (isAbsolute) {
5423    jlong secs = time / 1000;
5424    if (secs > max_secs) {
5425      absTime->tv_sec = max_secs;
5426    } else {
5427      absTime->tv_sec = secs;
5428    }
5429    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5430  } else {
5431    jlong secs = time / NANOSECS_PER_SEC;
5432    if (secs >= MAX_SECS) {
5433      absTime->tv_sec = max_secs;
5434      absTime->tv_nsec = 0;
5435    } else {
5436      absTime->tv_sec = now.tv_sec + secs;
5437      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5438      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5439        absTime->tv_nsec -= NANOSECS_PER_SEC;
5440        ++absTime->tv_sec; // note: this must be <= max_secs
5441      }
5442    }
5443  }
5444  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5445  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5446  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5447  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5448}
5449
5450void Parker::park(bool isAbsolute, jlong time) {
5451  // Ideally we'd do something useful while spinning, such
5452  // as calling unpackTime().
5453
5454  // Optional fast-path check:
5455  // Return immediately if a permit is available.
5456  // We depend on Atomic::xchg() having full barrier semantics
5457  // since we are doing a lock-free update to _counter.
5458  if (Atomic::xchg(0, &_counter) > 0) return;
5459
5460  // Optional fast-exit: Check interrupt before trying to wait
5461  Thread* thread = Thread::current();
5462  assert(thread->is_Java_thread(), "Must be JavaThread");
5463  JavaThread *jt = (JavaThread *)thread;
5464  if (Thread::is_interrupted(thread, false)) {
5465    return;
5466  }
5467
5468  // First, demultiplex/decode time arguments
5469  timespec absTime;
5470  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5471    return;
5472  }
5473  if (time > 0) {
5474    // Warning: this code might be exposed to the old Solaris time
5475    // round-down bugs.  Grep "roundingFix" for details.
5476    unpackTime(&absTime, isAbsolute, time);
5477  }
5478
5479  // Enter safepoint region
5480  // Beware of deadlocks such as 6317397.
5481  // The per-thread Parker:: _mutex is a classic leaf-lock.
5482  // In particular a thread must never block on the Threads_lock while
5483  // holding the Parker:: mutex.  If safepoints are pending both the
5484  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5485  ThreadBlockInVM tbivm(jt);
5486
5487  // Don't wait if cannot get lock since interference arises from
5488  // unblocking.  Also. check interrupt before trying wait
5489  if (Thread::is_interrupted(thread, false) ||
5490      os::Solaris::mutex_trylock(_mutex) != 0) {
5491    return;
5492  }
5493
5494  int status;
5495
5496  if (_counter > 0)  { // no wait needed
5497    _counter = 0;
5498    status = os::Solaris::mutex_unlock(_mutex);
5499    assert(status == 0, "invariant");
5500    // Paranoia to ensure our locked and lock-free paths interact
5501    // correctly with each other and Java-level accesses.
5502    OrderAccess::fence();
5503    return;
5504  }
5505
5506#ifdef ASSERT
5507  // Don't catch signals while blocked; let the running threads have the signals.
5508  // (This allows a debugger to break into the running thread.)
5509  sigset_t oldsigs;
5510  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5511  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5512#endif
5513
5514  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5515  jt->set_suspend_equivalent();
5516  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5517
5518  // Do this the hard way by blocking ...
5519  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5520  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5521  // Only for SPARC >= V8PlusA
5522#if defined(__sparc) && defined(COMPILER2)
5523  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5524#endif
5525
5526  if (time == 0) {
5527    status = os::Solaris::cond_wait(_cond, _mutex);
5528  } else {
5529    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5530  }
5531  // Note that an untimed cond_wait() can sometimes return ETIME on older
5532  // versions of the Solaris.
5533  assert_status(status == 0 || status == EINTR ||
5534                status == ETIME || status == ETIMEDOUT,
5535                status, "cond_timedwait");
5536
5537#ifdef ASSERT
5538  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
5539#endif
5540  _counter = 0;
5541  status = os::Solaris::mutex_unlock(_mutex);
5542  assert_status(status == 0, status, "mutex_unlock");
5543  // Paranoia to ensure our locked and lock-free paths interact
5544  // correctly with each other and Java-level accesses.
5545  OrderAccess::fence();
5546
5547  // If externally suspended while waiting, re-suspend
5548  if (jt->handle_special_suspend_equivalent_condition()) {
5549    jt->java_suspend_self();
5550  }
5551}
5552
5553void Parker::unpark() {
5554  int status = os::Solaris::mutex_lock(_mutex);
5555  assert(status == 0, "invariant");
5556  const int s = _counter;
5557  _counter = 1;
5558  status = os::Solaris::mutex_unlock(_mutex);
5559  assert(status == 0, "invariant");
5560
5561  if (s < 1) {
5562    status = os::Solaris::cond_signal(_cond);
5563    assert(status == 0, "invariant");
5564  }
5565}
5566
5567extern char** environ;
5568
5569// Run the specified command in a separate process. Return its exit value,
5570// or -1 on failure (e.g. can't fork a new process).
5571// Unlike system(), this function can be called from signal handler. It
5572// doesn't block SIGINT et al.
5573int os::fork_and_exec(char* cmd) {
5574  char * argv[4];
5575  argv[0] = (char *)"sh";
5576  argv[1] = (char *)"-c";
5577  argv[2] = cmd;
5578  argv[3] = NULL;
5579
5580  // fork is async-safe, fork1 is not so can't use in signal handler
5581  pid_t pid;
5582  Thread* t = ThreadLocalStorage::get_thread_slow();
5583  if (t != NULL && t->is_inside_signal_handler()) {
5584    pid = fork();
5585  } else {
5586    pid = fork1();
5587  }
5588
5589  if (pid < 0) {
5590    // fork failed
5591    warning("fork failed: %s", strerror(errno));
5592    return -1;
5593
5594  } else if (pid == 0) {
5595    // child process
5596
5597    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5598    execve("/usr/bin/sh", argv, environ);
5599
5600    // execve failed
5601    _exit(-1);
5602
5603  } else  {
5604    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5605    // care about the actual exit code, for now.
5606
5607    int status;
5608
5609    // Wait for the child process to exit.  This returns immediately if
5610    // the child has already exited. */
5611    while (waitpid(pid, &status, 0) < 0) {
5612      switch (errno) {
5613      case ECHILD: return 0;
5614      case EINTR: break;
5615      default: return -1;
5616      }
5617    }
5618
5619    if (WIFEXITED(status)) {
5620      // The child exited normally; get its exit code.
5621      return WEXITSTATUS(status);
5622    } else if (WIFSIGNALED(status)) {
5623      // The child exited because of a signal
5624      // The best value to return is 0x80 + signal number,
5625      // because that is what all Unix shells do, and because
5626      // it allows callers to distinguish between process exit and
5627      // process death by signal.
5628      return 0x80 + WTERMSIG(status);
5629    } else {
5630      // Unknown exit code; pass it through
5631      return status;
5632    }
5633  }
5634}
5635
5636// is_headless_jre()
5637//
5638// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5639// in order to report if we are running in a headless jre
5640//
5641// Since JDK8 xawt/libmawt.so was moved into the same directory
5642// as libawt.so, and renamed libawt_xawt.so
5643//
5644bool os::is_headless_jre() {
5645  struct stat statbuf;
5646  char buf[MAXPATHLEN];
5647  char libmawtpath[MAXPATHLEN];
5648  const char *xawtstr  = "/xawt/libmawt.so";
5649  const char *new_xawtstr = "/libawt_xawt.so";
5650  char *p;
5651
5652  // Get path to libjvm.so
5653  os::jvm_path(buf, sizeof(buf));
5654
5655  // Get rid of libjvm.so
5656  p = strrchr(buf, '/');
5657  if (p == NULL) {
5658    return false;
5659  } else {
5660    *p = '\0';
5661  }
5662
5663  // Get rid of client or server
5664  p = strrchr(buf, '/');
5665  if (p == NULL) {
5666    return false;
5667  } else {
5668    *p = '\0';
5669  }
5670
5671  // check xawt/libmawt.so
5672  strcpy(libmawtpath, buf);
5673  strcat(libmawtpath, xawtstr);
5674  if (::stat(libmawtpath, &statbuf) == 0) return false;
5675
5676  // check libawt_xawt.so
5677  strcpy(libmawtpath, buf);
5678  strcat(libmawtpath, new_xawtstr);
5679  if (::stat(libmawtpath, &statbuf) == 0) return false;
5680
5681  return true;
5682}
5683
5684size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5685  size_t res;
5686  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5687         "Assumed _thread_in_native");
5688  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5689  return res;
5690}
5691
5692int os::close(int fd) {
5693  return ::close(fd);
5694}
5695
5696int os::socket_close(int fd) {
5697  return ::close(fd);
5698}
5699
5700int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5701  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5702         "Assumed _thread_in_native");
5703  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5704}
5705
5706int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5707  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5708         "Assumed _thread_in_native");
5709  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5710}
5711
5712int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5713  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5714}
5715
5716// As both poll and select can be interrupted by signals, we have to be
5717// prepared to restart the system call after updating the timeout, unless
5718// a poll() is done with timeout == -1, in which case we repeat with this
5719// "wait forever" value.
5720
5721int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5722  int _result;
5723  _result = ::connect(fd, him, len);
5724
5725  // On Solaris, when a connect() call is interrupted, the connection
5726  // can be established asynchronously (see 6343810). Subsequent calls
5727  // to connect() must check the errno value which has the semantic
5728  // described below (copied from the connect() man page). Handling
5729  // of asynchronously established connections is required for both
5730  // blocking and non-blocking sockets.
5731  //     EINTR            The  connection  attempt  was   interrupted
5732  //                      before  any data arrived by the delivery of
5733  //                      a signal. The connection, however, will  be
5734  //                      established asynchronously.
5735  //
5736  //     EINPROGRESS      The socket is non-blocking, and the connec-
5737  //                      tion  cannot  be completed immediately.
5738  //
5739  //     EALREADY         The socket is non-blocking,  and a previous
5740  //                      connection  attempt  has  not yet been com-
5741  //                      pleted.
5742  //
5743  //     EISCONN          The socket is already connected.
5744  if (_result == OS_ERR && errno == EINTR) {
5745    // restarting a connect() changes its errno semantics
5746    RESTARTABLE(::connect(fd, him, len), _result);
5747    // undo these changes
5748    if (_result == OS_ERR) {
5749      if (errno == EALREADY) {
5750        errno = EINPROGRESS; // fall through
5751      } else if (errno == EISCONN) {
5752        errno = 0;
5753        return OS_OK;
5754      }
5755    }
5756  }
5757  return _result;
5758}
5759
5760// Get the default path to the core file
5761// Returns the length of the string
5762int os::get_core_path(char* buffer, size_t bufferSize) {
5763  const char* p = get_current_directory(buffer, bufferSize);
5764
5765  if (p == NULL) {
5766    assert(p != NULL, "failed to get current directory");
5767    return 0;
5768  }
5769
5770  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5771                                              p, current_process_id());
5772
5773  return strlen(buffer);
5774}
5775
5776#ifndef PRODUCT
5777void TestReserveMemorySpecial_test() {
5778  // No tests available for this platform
5779}
5780#endif
5781
5782bool os::start_debugging(char *buf, int buflen) {
5783  int len = (int)strlen(buf);
5784  char *p = &buf[len];
5785
5786  jio_snprintf(p, buflen-len,
5787               "\n\n"
5788               "Do you want to debug the problem?\n\n"
5789               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5790               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5791               "Otherwise, press RETURN to abort...",
5792               os::current_process_id(), os::current_thread_id());
5793
5794  bool yes = os::message_box("Unexpected Error", buf);
5795
5796  if (yes) {
5797    // yes, user asked VM to launch debugger
5798    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5799
5800    os::fork_and_exec(buf);
5801    yes = false;
5802  }
5803  return yes;
5804}
5805