os_solaris.cpp revision 7331:110ec5963eb1
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_solaris.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "os_solaris.inline.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "runtime/vm_version.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <dlfcn.h>
74# include <errno.h>
75# include <exception>
76# include <link.h>
77# include <poll.h>
78# include <pthread.h>
79# include <pwd.h>
80# include <schedctl.h>
81# include <setjmp.h>
82# include <signal.h>
83# include <stdio.h>
84# include <alloca.h>
85# include <sys/filio.h>
86# include <sys/ipc.h>
87# include <sys/lwp.h>
88# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
89# include <sys/mman.h>
90# include <sys/processor.h>
91# include <sys/procset.h>
92# include <sys/pset.h>
93# include <sys/resource.h>
94# include <sys/shm.h>
95# include <sys/socket.h>
96# include <sys/stat.h>
97# include <sys/systeminfo.h>
98# include <sys/time.h>
99# include <sys/times.h>
100# include <sys/types.h>
101# include <sys/wait.h>
102# include <sys/utsname.h>
103# include <thread.h>
104# include <unistd.h>
105# include <sys/priocntl.h>
106# include <sys/rtpriocntl.h>
107# include <sys/tspriocntl.h>
108# include <sys/iapriocntl.h>
109# include <sys/fxpriocntl.h>
110# include <sys/loadavg.h>
111# include <string.h>
112# include <stdio.h>
113
114# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
115# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
116
117#define MAX_PATH (2 * K)
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122
123// Here are some liblgrp types from sys/lgrp_user.h to be able to
124// compile on older systems without this header file.
125
126#ifndef MADV_ACCESS_LWP
127  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
128#endif
129#ifndef MADV_ACCESS_MANY
130  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
131#endif
132
133#ifndef LGRP_RSRC_CPU
134  #define LGRP_RSRC_CPU      0       /* CPU resources */
135#endif
136#ifndef LGRP_RSRC_MEM
137  #define LGRP_RSRC_MEM      1       /* memory resources */
138#endif
139
140// see thr_setprio(3T) for the basis of these numbers
141#define MinimumPriority 0
142#define NormalPriority  64
143#define MaximumPriority 127
144
145// Values for ThreadPriorityPolicy == 1
146int prio_policy1[CriticalPriority+1] = {
147  -99999,  0, 16,  32,  48,  64,
148          80, 96, 112, 124, 127, 127 };
149
150// System parameters used internally
151static clock_t clock_tics_per_sec = 100;
152
153// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
154static bool enabled_extended_FILE_stdio = false;
155
156// For diagnostics to print a message once. see run_periodic_checks
157static bool check_addr0_done = false;
158static sigset_t check_signal_done;
159static bool check_signals = true;
160
161address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
162address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
163
164address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
165
166
167// "default" initializers for missing libc APIs
168extern "C" {
169  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
170  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
171
172  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
173  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
174}
175
176// "default" initializers for pthread-based synchronization
177extern "C" {
178  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
179  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
180}
181
182static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
183
184// Thread Local Storage
185// This is common to all Solaris platforms so it is defined here,
186// in this common file.
187// The declarations are in the os_cpu threadLS*.hpp files.
188//
189// Static member initialization for TLS
190Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
191
192#ifndef PRODUCT
193  #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
194
195int ThreadLocalStorage::_tcacheHit = 0;
196int ThreadLocalStorage::_tcacheMiss = 0;
197
198void ThreadLocalStorage::print_statistics() {
199  int total = _tcacheMiss+_tcacheHit;
200  tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
201                _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
202}
203  #undef _PCT
204#endif // PRODUCT
205
206Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
207                                                        int index) {
208  Thread *thread = get_thread_slow();
209  if (thread != NULL) {
210    address sp = os::current_stack_pointer();
211    guarantee(thread->_stack_base == NULL ||
212              (sp <= thread->_stack_base &&
213              sp >= thread->_stack_base - thread->_stack_size) ||
214              is_error_reported(),
215              "sp must be inside of selected thread stack");
216
217    thread->set_self_raw_id(raw_id);  // mark for quick retrieval
218    _get_thread_cache[index] = thread;
219  }
220  return thread;
221}
222
223
224static const double all_zero[sizeof(Thread) / sizeof(double) + 1] = {0};
225#define NO_CACHED_THREAD ((Thread*)all_zero)
226
227void ThreadLocalStorage::pd_set_thread(Thread* thread) {
228
229  // Store the new value before updating the cache to prevent a race
230  // between get_thread_via_cache_slowly() and this store operation.
231  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
232
233  // Update thread cache with new thread if setting on thread create,
234  // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
235  uintptr_t raw = pd_raw_thread_id();
236  int ix = pd_cache_index(raw);
237  _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
238}
239
240void ThreadLocalStorage::pd_init() {
241  for (int i = 0; i < _pd_cache_size; i++) {
242    _get_thread_cache[i] = NO_CACHED_THREAD;
243  }
244}
245
246// Invalidate all the caches (happens to be the same as pd_init).
247void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
248
249#undef NO_CACHED_THREAD
250
251// END Thread Local Storage
252
253static inline size_t adjust_stack_size(address base, size_t size) {
254  if ((ssize_t)size < 0) {
255    // 4759953: Compensate for ridiculous stack size.
256    size = max_intx;
257  }
258  if (size > (size_t)base) {
259    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
260    size = (size_t)base;
261  }
262  return size;
263}
264
265static inline stack_t get_stack_info() {
266  stack_t st;
267  int retval = thr_stksegment(&st);
268  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
269  assert(retval == 0, "incorrect return value from thr_stksegment");
270  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
271  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
272  return st;
273}
274
275address os::current_stack_base() {
276  int r = thr_main();
277  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
278  bool is_primordial_thread = r;
279
280  // Workaround 4352906, avoid calls to thr_stksegment by
281  // thr_main after the first one (it looks like we trash
282  // some data, causing the value for ss_sp to be incorrect).
283  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
284    stack_t st = get_stack_info();
285    if (is_primordial_thread) {
286      // cache initial value of stack base
287      os::Solaris::_main_stack_base = (address)st.ss_sp;
288    }
289    return (address)st.ss_sp;
290  } else {
291    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
292    return os::Solaris::_main_stack_base;
293  }
294}
295
296size_t os::current_stack_size() {
297  size_t size;
298
299  int r = thr_main();
300  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
301  if (!r) {
302    size = get_stack_info().ss_size;
303  } else {
304    struct rlimit limits;
305    getrlimit(RLIMIT_STACK, &limits);
306    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
307  }
308  // base may not be page aligned
309  address base = current_stack_base();
310  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
311  return (size_t)(base - bottom);
312}
313
314struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
315  return localtime_r(clock, res);
316}
317
318void os::Solaris::try_enable_extended_io() {
319  typedef int (*enable_extended_FILE_stdio_t)(int, int);
320
321  if (!UseExtendedFileIO) {
322    return;
323  }
324
325  enable_extended_FILE_stdio_t enabler =
326    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
327                                         "enable_extended_FILE_stdio");
328  if (enabler) {
329    enabler(-1, -1);
330  }
331}
332
333static int _processors_online = 0;
334
335jint os::Solaris::_os_thread_limit = 0;
336volatile jint os::Solaris::_os_thread_count = 0;
337
338julong os::available_memory() {
339  return Solaris::available_memory();
340}
341
342julong os::Solaris::available_memory() {
343  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
344}
345
346julong os::Solaris::_physical_memory = 0;
347
348julong os::physical_memory() {
349  return Solaris::physical_memory();
350}
351
352static hrtime_t first_hrtime = 0;
353static const hrtime_t hrtime_hz = 1000*1000*1000;
354static volatile hrtime_t max_hrtime = 0;
355
356
357void os::Solaris::initialize_system_info() {
358  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
359  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
360  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
361                                     (julong)sysconf(_SC_PAGESIZE);
362}
363
364int os::active_processor_count() {
365  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
366  pid_t pid = getpid();
367  psetid_t pset = PS_NONE;
368  // Are we running in a processor set or is there any processor set around?
369  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
370    uint_t pset_cpus;
371    // Query the number of cpus available to us.
372    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
373      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
374      _processors_online = pset_cpus;
375      return pset_cpus;
376    }
377  }
378  // Otherwise return number of online cpus
379  return online_cpus;
380}
381
382static bool find_processors_in_pset(psetid_t        pset,
383                                    processorid_t** id_array,
384                                    uint_t*         id_length) {
385  bool result = false;
386  // Find the number of processors in the processor set.
387  if (pset_info(pset, NULL, id_length, NULL) == 0) {
388    // Make up an array to hold their ids.
389    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
390    // Fill in the array with their processor ids.
391    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
392      result = true;
393    }
394  }
395  return result;
396}
397
398// Callers of find_processors_online() must tolerate imprecise results --
399// the system configuration can change asynchronously because of DR
400// or explicit psradm operations.
401//
402// We also need to take care that the loop (below) terminates as the
403// number of processors online can change between the _SC_NPROCESSORS_ONLN
404// request and the loop that builds the list of processor ids.   Unfortunately
405// there's no reliable way to determine the maximum valid processor id,
406// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
407// man pages, which claim the processor id set is "sparse, but
408// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
409// exit the loop.
410//
411// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
412// not available on S8.0.
413
414static bool find_processors_online(processorid_t** id_array,
415                                   uint*           id_length) {
416  const processorid_t MAX_PROCESSOR_ID = 100000;
417  // Find the number of processors online.
418  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
419  // Make up an array to hold their ids.
420  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
421  // Processors need not be numbered consecutively.
422  long found = 0;
423  processorid_t next = 0;
424  while (found < *id_length && next < MAX_PROCESSOR_ID) {
425    processor_info_t info;
426    if (processor_info(next, &info) == 0) {
427      // NB, PI_NOINTR processors are effectively online ...
428      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
429        (*id_array)[found] = next;
430        found += 1;
431      }
432    }
433    next += 1;
434  }
435  if (found < *id_length) {
436    // The loop above didn't identify the expected number of processors.
437    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
438    // and re-running the loop, above, but there's no guarantee of progress
439    // if the system configuration is in flux.  Instead, we just return what
440    // we've got.  Note that in the worst case find_processors_online() could
441    // return an empty set.  (As a fall-back in the case of the empty set we
442    // could just return the ID of the current processor).
443    *id_length = found;
444  }
445
446  return true;
447}
448
449static bool assign_distribution(processorid_t* id_array,
450                                uint           id_length,
451                                uint*          distribution,
452                                uint           distribution_length) {
453  // We assume we can assign processorid_t's to uint's.
454  assert(sizeof(processorid_t) == sizeof(uint),
455         "can't convert processorid_t to uint");
456  // Quick check to see if we won't succeed.
457  if (id_length < distribution_length) {
458    return false;
459  }
460  // Assign processor ids to the distribution.
461  // Try to shuffle processors to distribute work across boards,
462  // assuming 4 processors per board.
463  const uint processors_per_board = ProcessDistributionStride;
464  // Find the maximum processor id.
465  processorid_t max_id = 0;
466  for (uint m = 0; m < id_length; m += 1) {
467    max_id = MAX2(max_id, id_array[m]);
468  }
469  // The next id, to limit loops.
470  const processorid_t limit_id = max_id + 1;
471  // Make up markers for available processors.
472  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
473  for (uint c = 0; c < limit_id; c += 1) {
474    available_id[c] = false;
475  }
476  for (uint a = 0; a < id_length; a += 1) {
477    available_id[id_array[a]] = true;
478  }
479  // Step by "boards", then by "slot", copying to "assigned".
480  // NEEDS_CLEANUP: The assignment of processors should be stateful,
481  //                remembering which processors have been assigned by
482  //                previous calls, etc., so as to distribute several
483  //                independent calls of this method.  What we'd like is
484  //                It would be nice to have an API that let us ask
485  //                how many processes are bound to a processor,
486  //                but we don't have that, either.
487  //                In the short term, "board" is static so that
488  //                subsequent distributions don't all start at board 0.
489  static uint board = 0;
490  uint assigned = 0;
491  // Until we've found enough processors ....
492  while (assigned < distribution_length) {
493    // ... find the next available processor in the board.
494    for (uint slot = 0; slot < processors_per_board; slot += 1) {
495      uint try_id = board * processors_per_board + slot;
496      if ((try_id < limit_id) && (available_id[try_id] == true)) {
497        distribution[assigned] = try_id;
498        available_id[try_id] = false;
499        assigned += 1;
500        break;
501      }
502    }
503    board += 1;
504    if (board * processors_per_board + 0 >= limit_id) {
505      board = 0;
506    }
507  }
508  if (available_id != NULL) {
509    FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
510  }
511  return true;
512}
513
514void os::set_native_thread_name(const char *name) {
515  // Not yet implemented.
516  return;
517}
518
519bool os::distribute_processes(uint length, uint* distribution) {
520  bool result = false;
521  // Find the processor id's of all the available CPUs.
522  processorid_t* id_array  = NULL;
523  uint           id_length = 0;
524  // There are some races between querying information and using it,
525  // since processor sets can change dynamically.
526  psetid_t pset = PS_NONE;
527  // Are we running in a processor set?
528  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
529    result = find_processors_in_pset(pset, &id_array, &id_length);
530  } else {
531    result = find_processors_online(&id_array, &id_length);
532  }
533  if (result == true) {
534    if (id_length >= length) {
535      result = assign_distribution(id_array, id_length, distribution, length);
536    } else {
537      result = false;
538    }
539  }
540  if (id_array != NULL) {
541    FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
542  }
543  return result;
544}
545
546bool os::bind_to_processor(uint processor_id) {
547  // We assume that a processorid_t can be stored in a uint.
548  assert(sizeof(uint) == sizeof(processorid_t),
549         "can't convert uint to processorid_t");
550  int bind_result =
551    processor_bind(P_LWPID,                       // bind LWP.
552                   P_MYID,                        // bind current LWP.
553                   (processorid_t) processor_id,  // id.
554                   NULL);                         // don't return old binding.
555  return (bind_result == 0);
556}
557
558bool os::getenv(const char* name, char* buffer, int len) {
559  char* val = ::getenv(name);
560  if (val == NULL || strlen(val) + 1 > len) {
561    if (len > 0) buffer[0] = 0; // return a null string
562    return false;
563  }
564  strcpy(buffer, val);
565  return true;
566}
567
568
569// Return true if user is running as root.
570
571bool os::have_special_privileges() {
572  static bool init = false;
573  static bool privileges = false;
574  if (!init) {
575    privileges = (getuid() != geteuid()) || (getgid() != getegid());
576    init = true;
577  }
578  return privileges;
579}
580
581
582void os::init_system_properties_values() {
583  // The next steps are taken in the product version:
584  //
585  // Obtain the JAVA_HOME value from the location of libjvm.so.
586  // This library should be located at:
587  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
588  //
589  // If "/jre/lib/" appears at the right place in the path, then we
590  // assume libjvm.so is installed in a JDK and we use this path.
591  //
592  // Otherwise exit with message: "Could not create the Java virtual machine."
593  //
594  // The following extra steps are taken in the debugging version:
595  //
596  // If "/jre/lib/" does NOT appear at the right place in the path
597  // instead of exit check for $JAVA_HOME environment variable.
598  //
599  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
600  // then we append a fake suffix "hotspot/libjvm.so" to this path so
601  // it looks like libjvm.so is installed there
602  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
603  //
604  // Otherwise exit.
605  //
606  // Important note: if the location of libjvm.so changes this
607  // code needs to be changed accordingly.
608
609// Base path of extensions installed on the system.
610#define SYS_EXT_DIR     "/usr/jdk/packages"
611#define EXTENSIONS_DIR  "/lib/ext"
612#define ENDORSED_DIR    "/lib/endorsed"
613
614  char cpu_arch[12];
615  // Buffer that fits several sprintfs.
616  // Note that the space for the colon and the trailing null are provided
617  // by the nulls included by the sizeof operator.
618  const size_t bufsize =
619    MAX4((size_t)MAXPATHLEN,  // For dll_dir & friends.
620         sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
621         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
622         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
623  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
624
625  // sysclasspath, java_home, dll_dir
626  {
627    char *pslash;
628    os::jvm_path(buf, bufsize);
629
630    // Found the full path to libjvm.so.
631    // Now cut the path to <java_home>/jre if we can.
632    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
633    pslash = strrchr(buf, '/');
634    if (pslash != NULL) {
635      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
636    }
637    Arguments::set_dll_dir(buf);
638
639    if (pslash != NULL) {
640      pslash = strrchr(buf, '/');
641      if (pslash != NULL) {
642        *pslash = '\0';          // Get rid of /<arch>.
643        pslash = strrchr(buf, '/');
644        if (pslash != NULL) {
645          *pslash = '\0';        // Get rid of /lib.
646        }
647      }
648    }
649    Arguments::set_java_home(buf);
650    set_boot_path('/', ':');
651  }
652
653  // Where to look for native libraries.
654  {
655    // Use dlinfo() to determine the correct java.library.path.
656    //
657    // If we're launched by the Java launcher, and the user
658    // does not set java.library.path explicitly on the commandline,
659    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
660    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
661    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
662    // /usr/lib), which is exactly what we want.
663    //
664    // If the user does set java.library.path, it completely
665    // overwrites this setting, and always has.
666    //
667    // If we're not launched by the Java launcher, we may
668    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
669    // settings.  Again, dlinfo does exactly what we want.
670
671    Dl_serinfo     info_sz, *info = &info_sz;
672    Dl_serpath     *path;
673    char           *library_path;
674    char           *common_path = buf;
675
676    // Determine search path count and required buffer size.
677    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
678      FREE_C_HEAP_ARRAY(char, buf, mtInternal);
679      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
680    }
681
682    // Allocate new buffer and initialize.
683    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
684    info->dls_size = info_sz.dls_size;
685    info->dls_cnt = info_sz.dls_cnt;
686
687    // Obtain search path information.
688    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
689      FREE_C_HEAP_ARRAY(char, buf, mtInternal);
690      FREE_C_HEAP_ARRAY(char, info, mtInternal);
691      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
692    }
693
694    path = &info->dls_serpath[0];
695
696    // Note: Due to a legacy implementation, most of the library path
697    // is set in the launcher. This was to accomodate linking restrictions
698    // on legacy Solaris implementations (which are no longer supported).
699    // Eventually, all the library path setting will be done here.
700    //
701    // However, to prevent the proliferation of improperly built native
702    // libraries, the new path component /usr/jdk/packages is added here.
703
704    // Determine the actual CPU architecture.
705    sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
706#ifdef _LP64
707    // If we are a 64-bit vm, perform the following translations:
708    //   sparc   -> sparcv9
709    //   i386    -> amd64
710    if (strcmp(cpu_arch, "sparc") == 0) {
711      strcat(cpu_arch, "v9");
712    } else if (strcmp(cpu_arch, "i386") == 0) {
713      strcpy(cpu_arch, "amd64");
714    }
715#endif
716
717    // Construct the invariant part of ld_library_path.
718    sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
719
720    // Struct size is more than sufficient for the path components obtained
721    // through the dlinfo() call, so only add additional space for the path
722    // components explicitly added here.
723    size_t library_path_size = info->dls_size + strlen(common_path);
724    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
725    library_path[0] = '\0';
726
727    // Construct the desired Java library path from the linker's library
728    // search path.
729    //
730    // For compatibility, it is optimal that we insert the additional path
731    // components specific to the Java VM after those components specified
732    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
733    // infrastructure.
734    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
735      strcpy(library_path, common_path);
736    } else {
737      int inserted = 0;
738      int i;
739      for (i = 0; i < info->dls_cnt; i++, path++) {
740        uint_t flags = path->dls_flags & LA_SER_MASK;
741        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
742          strcat(library_path, common_path);
743          strcat(library_path, os::path_separator());
744          inserted = 1;
745        }
746        strcat(library_path, path->dls_name);
747        strcat(library_path, os::path_separator());
748      }
749      // Eliminate trailing path separator.
750      library_path[strlen(library_path)-1] = '\0';
751    }
752
753    // happens before argument parsing - can't use a trace flag
754    // tty->print_raw("init_system_properties_values: native lib path: ");
755    // tty->print_raw_cr(library_path);
756
757    // Callee copies into its own buffer.
758    Arguments::set_library_path(library_path);
759
760    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
761    FREE_C_HEAP_ARRAY(char, info, mtInternal);
762  }
763
764  // Extensions directories.
765  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
766  Arguments::set_ext_dirs(buf);
767
768  // Endorsed standards default directory.
769  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
770  Arguments::set_endorsed_dirs(buf);
771
772  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
773
774#undef SYS_EXT_DIR
775#undef EXTENSIONS_DIR
776#undef ENDORSED_DIR
777}
778
779void os::breakpoint() {
780  BREAKPOINT;
781}
782
783bool os::obsolete_option(const JavaVMOption *option) {
784  if (!strncmp(option->optionString, "-Xt", 3)) {
785    return true;
786  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
787    return true;
788  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
789    return true;
790  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
791    return true;
792  }
793  return false;
794}
795
796bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
797  address  stackStart  = (address)thread->stack_base();
798  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
799  if (sp < stackStart && sp >= stackEnd) return true;
800  return false;
801}
802
803extern "C" void breakpoint() {
804  // use debugger to set breakpoint here
805}
806
807static thread_t main_thread;
808
809// Thread start routine for all new Java threads
810extern "C" void* java_start(void* thread_addr) {
811  // Try to randomize the cache line index of hot stack frames.
812  // This helps when threads of the same stack traces evict each other's
813  // cache lines. The threads can be either from the same JVM instance, or
814  // from different JVM instances. The benefit is especially true for
815  // processors with hyperthreading technology.
816  static int counter = 0;
817  int pid = os::current_process_id();
818  alloca(((pid ^ counter++) & 7) * 128);
819
820  int prio;
821  Thread* thread = (Thread*)thread_addr;
822  OSThread* osthr = thread->osthread();
823
824  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
825  thread->_schedctl = (void *) schedctl_init();
826
827  if (UseNUMA) {
828    int lgrp_id = os::numa_get_group_id();
829    if (lgrp_id != -1) {
830      thread->set_lgrp_id(lgrp_id);
831    }
832  }
833
834  // If the creator called set priority before we started,
835  // we need to call set_native_priority now that we have an lwp.
836  // We used to get the priority from thr_getprio (we called
837  // thr_setprio way back in create_thread) and pass it to
838  // set_native_priority, but Solaris scales the priority
839  // in java_to_os_priority, so when we read it back here,
840  // we pass trash to set_native_priority instead of what's
841  // in java_to_os_priority. So we save the native priority
842  // in the osThread and recall it here.
843
844  if (osthr->thread_id() != -1) {
845    if (UseThreadPriorities) {
846      int prio = osthr->native_priority();
847      if (ThreadPriorityVerbose) {
848        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
849                      INTPTR_FORMAT ", setting priority: %d\n",
850                      osthr->thread_id(), osthr->lwp_id(), prio);
851      }
852      os::set_native_priority(thread, prio);
853    }
854  } else if (ThreadPriorityVerbose) {
855    warning("Can't set priority in _start routine, thread id hasn't been set\n");
856  }
857
858  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
859
860  // initialize signal mask for this thread
861  os::Solaris::hotspot_sigmask(thread);
862
863  thread->run();
864
865  // One less thread is executing
866  // When the VMThread gets here, the main thread may have already exited
867  // which frees the CodeHeap containing the Atomic::dec code
868  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
869    Atomic::dec(&os::Solaris::_os_thread_count);
870  }
871
872  if (UseDetachedThreads) {
873    thr_exit(NULL);
874    ShouldNotReachHere();
875  }
876  return NULL;
877}
878
879static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
880  // Allocate the OSThread object
881  OSThread* osthread = new OSThread(NULL, NULL);
882  if (osthread == NULL) return NULL;
883
884  // Store info on the Solaris thread into the OSThread
885  osthread->set_thread_id(thread_id);
886  osthread->set_lwp_id(_lwp_self());
887  thread->_schedctl = (void *) schedctl_init();
888
889  if (UseNUMA) {
890    int lgrp_id = os::numa_get_group_id();
891    if (lgrp_id != -1) {
892      thread->set_lgrp_id(lgrp_id);
893    }
894  }
895
896  if (ThreadPriorityVerbose) {
897    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
898                  osthread->thread_id(), osthread->lwp_id());
899  }
900
901  // Initial thread state is INITIALIZED, not SUSPENDED
902  osthread->set_state(INITIALIZED);
903
904  return osthread;
905}
906
907void os::Solaris::hotspot_sigmask(Thread* thread) {
908  //Save caller's signal mask
909  sigset_t sigmask;
910  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
911  OSThread *osthread = thread->osthread();
912  osthread->set_caller_sigmask(sigmask);
913
914  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
915  if (!ReduceSignalUsage) {
916    if (thread->is_VM_thread()) {
917      // Only the VM thread handles BREAK_SIGNAL ...
918      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
919    } else {
920      // ... all other threads block BREAK_SIGNAL
921      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
922      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
923    }
924  }
925}
926
927bool os::create_attached_thread(JavaThread* thread) {
928#ifdef ASSERT
929  thread->verify_not_published();
930#endif
931  OSThread* osthread = create_os_thread(thread, thr_self());
932  if (osthread == NULL) {
933    return false;
934  }
935
936  // Initial thread state is RUNNABLE
937  osthread->set_state(RUNNABLE);
938  thread->set_osthread(osthread);
939
940  // initialize signal mask for this thread
941  // and save the caller's signal mask
942  os::Solaris::hotspot_sigmask(thread);
943
944  return true;
945}
946
947bool os::create_main_thread(JavaThread* thread) {
948#ifdef ASSERT
949  thread->verify_not_published();
950#endif
951  if (_starting_thread == NULL) {
952    _starting_thread = create_os_thread(thread, main_thread);
953    if (_starting_thread == NULL) {
954      return false;
955    }
956  }
957
958  // The primodial thread is runnable from the start
959  _starting_thread->set_state(RUNNABLE);
960
961  thread->set_osthread(_starting_thread);
962
963  // initialize signal mask for this thread
964  // and save the caller's signal mask
965  os::Solaris::hotspot_sigmask(thread);
966
967  return true;
968}
969
970
971bool os::create_thread(Thread* thread, ThreadType thr_type,
972                       size_t stack_size) {
973  // Allocate the OSThread object
974  OSThread* osthread = new OSThread(NULL, NULL);
975  if (osthread == NULL) {
976    return false;
977  }
978
979  if (ThreadPriorityVerbose) {
980    char *thrtyp;
981    switch (thr_type) {
982    case vm_thread:
983      thrtyp = (char *)"vm";
984      break;
985    case cgc_thread:
986      thrtyp = (char *)"cgc";
987      break;
988    case pgc_thread:
989      thrtyp = (char *)"pgc";
990      break;
991    case java_thread:
992      thrtyp = (char *)"java";
993      break;
994    case compiler_thread:
995      thrtyp = (char *)"compiler";
996      break;
997    case watcher_thread:
998      thrtyp = (char *)"watcher";
999      break;
1000    default:
1001      thrtyp = (char *)"unknown";
1002      break;
1003    }
1004    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
1005  }
1006
1007  // Calculate stack size if it's not specified by caller.
1008  if (stack_size == 0) {
1009    // The default stack size 1M (2M for LP64).
1010    stack_size = (BytesPerWord >> 2) * K * K;
1011
1012    switch (thr_type) {
1013    case os::java_thread:
1014      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
1015      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
1016      break;
1017    case os::compiler_thread:
1018      if (CompilerThreadStackSize > 0) {
1019        stack_size = (size_t)(CompilerThreadStackSize * K);
1020        break;
1021      } // else fall through:
1022        // use VMThreadStackSize if CompilerThreadStackSize is not defined
1023    case os::vm_thread:
1024    case os::pgc_thread:
1025    case os::cgc_thread:
1026    case os::watcher_thread:
1027      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1028      break;
1029    }
1030  }
1031  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
1032
1033  // Initial state is ALLOCATED but not INITIALIZED
1034  osthread->set_state(ALLOCATED);
1035
1036  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
1037    // We got lots of threads. Check if we still have some address space left.
1038    // Need to be at least 5Mb of unreserved address space. We do check by
1039    // trying to reserve some.
1040    const size_t VirtualMemoryBangSize = 20*K*K;
1041    char* mem = os::reserve_memory(VirtualMemoryBangSize);
1042    if (mem == NULL) {
1043      delete osthread;
1044      return false;
1045    } else {
1046      // Release the memory again
1047      os::release_memory(mem, VirtualMemoryBangSize);
1048    }
1049  }
1050
1051  // Setup osthread because the child thread may need it.
1052  thread->set_osthread(osthread);
1053
1054  // Create the Solaris thread
1055  thread_t tid = 0;
1056  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1057  int      status;
1058
1059  // Mark that we don't have an lwp or thread id yet.
1060  // In case we attempt to set the priority before the thread starts.
1061  osthread->set_lwp_id(-1);
1062  osthread->set_thread_id(-1);
1063
1064  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1065  if (status != 0) {
1066    if (PrintMiscellaneous && (Verbose || WizardMode)) {
1067      perror("os::create_thread");
1068    }
1069    thread->set_osthread(NULL);
1070    // Need to clean up stuff we've allocated so far
1071    delete osthread;
1072    return false;
1073  }
1074
1075  Atomic::inc(&os::Solaris::_os_thread_count);
1076
1077  // Store info on the Solaris thread into the OSThread
1078  osthread->set_thread_id(tid);
1079
1080  // Remember that we created this thread so we can set priority on it
1081  osthread->set_vm_created();
1082
1083  // Initial thread state is INITIALIZED, not SUSPENDED
1084  osthread->set_state(INITIALIZED);
1085
1086  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1087  return true;
1088}
1089
1090// defined for >= Solaris 10. This allows builds on earlier versions
1091// of Solaris to take advantage of the newly reserved Solaris JVM signals
1092// With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
1093// and -XX:+UseAltSigs does nothing since these should have no conflict
1094//
1095#if !defined(SIGJVM1)
1096  #define SIGJVM1 39
1097  #define SIGJVM2 40
1098#endif
1099
1100debug_only(static bool signal_sets_initialized = false);
1101static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1102int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
1103int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1104
1105bool os::Solaris::is_sig_ignored(int sig) {
1106  struct sigaction oact;
1107  sigaction(sig, (struct sigaction*)NULL, &oact);
1108  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1109                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1110  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1111    return true;
1112  } else {
1113    return false;
1114  }
1115}
1116
1117// Note: SIGRTMIN is a macro that calls sysconf() so it will
1118// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1119static bool isJVM1available() {
1120  return SIGJVM1 < SIGRTMIN;
1121}
1122
1123void os::Solaris::signal_sets_init() {
1124  // Should also have an assertion stating we are still single-threaded.
1125  assert(!signal_sets_initialized, "Already initialized");
1126  // Fill in signals that are necessarily unblocked for all threads in
1127  // the VM. Currently, we unblock the following signals:
1128  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1129  //                         by -Xrs (=ReduceSignalUsage));
1130  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1131  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1132  // the dispositions or masks wrt these signals.
1133  // Programs embedding the VM that want to use the above signals for their
1134  // own purposes must, at this time, use the "-Xrs" option to prevent
1135  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1136  // (See bug 4345157, and other related bugs).
1137  // In reality, though, unblocking these signals is really a nop, since
1138  // these signals are not blocked by default.
1139  sigemptyset(&unblocked_sigs);
1140  sigemptyset(&allowdebug_blocked_sigs);
1141  sigaddset(&unblocked_sigs, SIGILL);
1142  sigaddset(&unblocked_sigs, SIGSEGV);
1143  sigaddset(&unblocked_sigs, SIGBUS);
1144  sigaddset(&unblocked_sigs, SIGFPE);
1145
1146  if (isJVM1available) {
1147    os::Solaris::set_SIGinterrupt(SIGJVM1);
1148    os::Solaris::set_SIGasync(SIGJVM2);
1149  } else if (UseAltSigs) {
1150    os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
1151    os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
1152  } else {
1153    os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
1154    os::Solaris::set_SIGasync(ASYNC_SIGNAL);
1155  }
1156
1157  sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
1158  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1159
1160  if (!ReduceSignalUsage) {
1161    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1162      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1163      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1164    }
1165    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1166      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1167      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1168    }
1169    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1170      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1171      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1172    }
1173  }
1174  // Fill in signals that are blocked by all but the VM thread.
1175  sigemptyset(&vm_sigs);
1176  if (!ReduceSignalUsage) {
1177    sigaddset(&vm_sigs, BREAK_SIGNAL);
1178  }
1179  debug_only(signal_sets_initialized = true);
1180
1181  // For diagnostics only used in run_periodic_checks
1182  sigemptyset(&check_signal_done);
1183}
1184
1185// These are signals that are unblocked while a thread is running Java.
1186// (For some reason, they get blocked by default.)
1187sigset_t* os::Solaris::unblocked_signals() {
1188  assert(signal_sets_initialized, "Not initialized");
1189  return &unblocked_sigs;
1190}
1191
1192// These are the signals that are blocked while a (non-VM) thread is
1193// running Java. Only the VM thread handles these signals.
1194sigset_t* os::Solaris::vm_signals() {
1195  assert(signal_sets_initialized, "Not initialized");
1196  return &vm_sigs;
1197}
1198
1199// These are signals that are blocked during cond_wait to allow debugger in
1200sigset_t* os::Solaris::allowdebug_blocked_signals() {
1201  assert(signal_sets_initialized, "Not initialized");
1202  return &allowdebug_blocked_sigs;
1203}
1204
1205
1206void _handle_uncaught_cxx_exception() {
1207  VMError err("An uncaught C++ exception");
1208  err.report_and_die();
1209}
1210
1211
1212// First crack at OS-specific initialization, from inside the new thread.
1213void os::initialize_thread(Thread* thr) {
1214  int r = thr_main();
1215  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1216  if (r) {
1217    JavaThread* jt = (JavaThread *)thr;
1218    assert(jt != NULL, "Sanity check");
1219    size_t stack_size;
1220    address base = jt->stack_base();
1221    if (Arguments::created_by_java_launcher()) {
1222      // Use 2MB to allow for Solaris 7 64 bit mode.
1223      stack_size = JavaThread::stack_size_at_create() == 0
1224        ? 2048*K : JavaThread::stack_size_at_create();
1225
1226      // There are rare cases when we may have already used more than
1227      // the basic stack size allotment before this method is invoked.
1228      // Attempt to allow for a normally sized java_stack.
1229      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1230      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1231    } else {
1232      // 6269555: If we were not created by a Java launcher, i.e. if we are
1233      // running embedded in a native application, treat the primordial thread
1234      // as much like a native attached thread as possible.  This means using
1235      // the current stack size from thr_stksegment(), unless it is too large
1236      // to reliably setup guard pages.  A reasonable max size is 8MB.
1237      size_t current_size = current_stack_size();
1238      // This should never happen, but just in case....
1239      if (current_size == 0) current_size = 2 * K * K;
1240      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1241    }
1242    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1243    stack_size = (size_t)(base - bottom);
1244
1245    assert(stack_size > 0, "Stack size calculation problem");
1246
1247    if (stack_size > jt->stack_size()) {
1248#ifndef PRODUCT
1249      struct rlimit limits;
1250      getrlimit(RLIMIT_STACK, &limits);
1251      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1252      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1253#endif
1254      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1255                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1256                    "See limit(1) to increase the stack size limit.",
1257                    stack_size / K, jt->stack_size() / K);
1258      vm_exit(1);
1259    }
1260    assert(jt->stack_size() >= stack_size,
1261           "Attempt to map more stack than was allocated");
1262    jt->set_stack_size(stack_size);
1263  }
1264
1265  // With the T2 libthread (T1 is no longer supported) threads are always bound
1266  // and we use stackbanging in all cases.
1267
1268  os::Solaris::init_thread_fpu_state();
1269  std::set_terminate(_handle_uncaught_cxx_exception);
1270}
1271
1272
1273
1274// Free Solaris resources related to the OSThread
1275void os::free_thread(OSThread* osthread) {
1276  assert(osthread != NULL, "os::free_thread but osthread not set");
1277
1278
1279  // We are told to free resources of the argument thread,
1280  // but we can only really operate on the current thread.
1281  // The main thread must take the VMThread down synchronously
1282  // before the main thread exits and frees up CodeHeap
1283  guarantee((Thread::current()->osthread() == osthread
1284             || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1285  if (Thread::current()->osthread() == osthread) {
1286    // Restore caller's signal mask
1287    sigset_t sigmask = osthread->caller_sigmask();
1288    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1289  }
1290  delete osthread;
1291}
1292
1293void os::pd_start_thread(Thread* thread) {
1294  int status = thr_continue(thread->osthread()->thread_id());
1295  assert_status(status == 0, status, "thr_continue failed");
1296}
1297
1298
1299intx os::current_thread_id() {
1300  return (intx)thr_self();
1301}
1302
1303static pid_t _initial_pid = 0;
1304
1305int os::current_process_id() {
1306  return (int)(_initial_pid ? _initial_pid : getpid());
1307}
1308
1309int os::allocate_thread_local_storage() {
1310  // %%%       in Win32 this allocates a memory segment pointed to by a
1311  //           register.  Dan Stein can implement a similar feature in
1312  //           Solaris.  Alternatively, the VM can do the same thing
1313  //           explicitly: malloc some storage and keep the pointer in a
1314  //           register (which is part of the thread's context) (or keep it
1315  //           in TLS).
1316  // %%%       In current versions of Solaris, thr_self and TSD can
1317  //           be accessed via short sequences of displaced indirections.
1318  //           The value of thr_self is available as %g7(36).
1319  //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
1320  //           assuming that the current thread already has a value bound to k.
1321  //           It may be worth experimenting with such access patterns,
1322  //           and later having the parameters formally exported from a Solaris
1323  //           interface.  I think, however, that it will be faster to
1324  //           maintain the invariant that %g2 always contains the
1325  //           JavaThread in Java code, and have stubs simply
1326  //           treat %g2 as a caller-save register, preserving it in a %lN.
1327  thread_key_t tk;
1328  if (thr_keycreate(&tk, NULL)) {
1329    fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
1330                  "(%s)", strerror(errno)));
1331  }
1332  return int(tk);
1333}
1334
1335void os::free_thread_local_storage(int index) {
1336  // %%% don't think we need anything here
1337  // if (pthread_key_delete((pthread_key_t) tk)) {
1338  //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
1339  // }
1340}
1341
1342// libthread allocate for tsd_common is a version specific
1343// small number - point is NO swap space available
1344#define SMALLINT 32
1345void os::thread_local_storage_at_put(int index, void* value) {
1346  // %%% this is used only in threadLocalStorage.cpp
1347  if (thr_setspecific((thread_key_t)index, value)) {
1348    if (errno == ENOMEM) {
1349      vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
1350                            "thr_setspecific: out of swap space");
1351    } else {
1352      fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
1353                    "(%s)", strerror(errno)));
1354    }
1355  } else {
1356    ThreadLocalStorage::set_thread_in_slot((Thread *) value);
1357  }
1358}
1359
1360// This function could be called before TLS is initialized, for example, when
1361// VM receives an async signal or when VM causes a fatal error during
1362// initialization. Return NULL if thr_getspecific() fails.
1363void* os::thread_local_storage_at(int index) {
1364  // %%% this is used only in threadLocalStorage.cpp
1365  void* r = NULL;
1366  return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
1367}
1368
1369
1370// gethrtime() should be monotonic according to the documentation,
1371// but some virtualized platforms are known to break this guarantee.
1372// getTimeNanos() must be guaranteed not to move backwards, so we
1373// are forced to add a check here.
1374inline hrtime_t getTimeNanos() {
1375  const hrtime_t now = gethrtime();
1376  const hrtime_t prev = max_hrtime;
1377  if (now <= prev) {
1378    return prev;   // same or retrograde time;
1379  }
1380  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1381  assert(obsv >= prev, "invariant");   // Monotonicity
1382  // If the CAS succeeded then we're done and return "now".
1383  // If the CAS failed and the observed value "obsv" is >= now then
1384  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1385  // some other thread raced this thread and installed a new value, in which case
1386  // we could either (a) retry the entire operation, (b) retry trying to install now
1387  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1388  // we might discard a higher "now" value in deference to a slightly lower but freshly
1389  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1390  // to (a) or (b) -- and greatly reduces coherence traffic.
1391  // We might also condition (c) on the magnitude of the delta between obsv and now.
1392  // Avoiding excessive CAS operations to hot RW locations is critical.
1393  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1394  return (prev == obsv) ? now : obsv;
1395}
1396
1397// Time since start-up in seconds to a fine granularity.
1398// Used by VMSelfDestructTimer and the MemProfiler.
1399double os::elapsedTime() {
1400  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1401}
1402
1403jlong os::elapsed_counter() {
1404  return (jlong)(getTimeNanos() - first_hrtime);
1405}
1406
1407jlong os::elapsed_frequency() {
1408  return hrtime_hz;
1409}
1410
1411// Return the real, user, and system times in seconds from an
1412// arbitrary fixed point in the past.
1413bool os::getTimesSecs(double* process_real_time,
1414                      double* process_user_time,
1415                      double* process_system_time) {
1416  struct tms ticks;
1417  clock_t real_ticks = times(&ticks);
1418
1419  if (real_ticks == (clock_t) (-1)) {
1420    return false;
1421  } else {
1422    double ticks_per_second = (double) clock_tics_per_sec;
1423    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1424    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1425    // For consistency return the real time from getTimeNanos()
1426    // converted to seconds.
1427    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1428
1429    return true;
1430  }
1431}
1432
1433bool os::supports_vtime() { return true; }
1434
1435bool os::enable_vtime() {
1436  int fd = ::open("/proc/self/ctl", O_WRONLY);
1437  if (fd == -1) {
1438    return false;
1439  }
1440
1441  long cmd[] = { PCSET, PR_MSACCT };
1442  int res = ::write(fd, cmd, sizeof(long) * 2);
1443  ::close(fd);
1444  if (res != sizeof(long) * 2) {
1445    return false;
1446  }
1447  return true;
1448}
1449
1450bool os::vtime_enabled() {
1451  int fd = ::open("/proc/self/status", O_RDONLY);
1452  if (fd == -1) {
1453    return false;
1454  }
1455
1456  pstatus_t status;
1457  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1458  ::close(fd);
1459  if (res != sizeof(pstatus_t)) {
1460    return false;
1461  }
1462  return status.pr_flags & PR_MSACCT;
1463}
1464
1465double os::elapsedVTime() {
1466  return (double)gethrvtime() / (double)hrtime_hz;
1467}
1468
1469// Used internally for comparisons only
1470// getTimeMillis guaranteed to not move backwards on Solaris
1471jlong getTimeMillis() {
1472  jlong nanotime = getTimeNanos();
1473  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1474}
1475
1476// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1477jlong os::javaTimeMillis() {
1478  timeval t;
1479  if (gettimeofday(&t, NULL) == -1) {
1480    fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
1481  }
1482  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1483}
1484
1485jlong os::javaTimeNanos() {
1486  return (jlong)getTimeNanos();
1487}
1488
1489void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1490  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1491  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1492  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1493  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1494}
1495
1496char * os::local_time_string(char *buf, size_t buflen) {
1497  struct tm t;
1498  time_t long_time;
1499  time(&long_time);
1500  localtime_r(&long_time, &t);
1501  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1502               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1503               t.tm_hour, t.tm_min, t.tm_sec);
1504  return buf;
1505}
1506
1507// Note: os::shutdown() might be called very early during initialization, or
1508// called from signal handler. Before adding something to os::shutdown(), make
1509// sure it is async-safe and can handle partially initialized VM.
1510void os::shutdown() {
1511
1512  // allow PerfMemory to attempt cleanup of any persistent resources
1513  perfMemory_exit();
1514
1515  // needs to remove object in file system
1516  AttachListener::abort();
1517
1518  // flush buffered output, finish log files
1519  ostream_abort();
1520
1521  // Check for abort hook
1522  abort_hook_t abort_hook = Arguments::abort_hook();
1523  if (abort_hook != NULL) {
1524    abort_hook();
1525  }
1526}
1527
1528// Note: os::abort() might be called very early during initialization, or
1529// called from signal handler. Before adding something to os::abort(), make
1530// sure it is async-safe and can handle partially initialized VM.
1531void os::abort(bool dump_core) {
1532  os::shutdown();
1533  if (dump_core) {
1534#ifndef PRODUCT
1535    fdStream out(defaultStream::output_fd());
1536    out.print_raw("Current thread is ");
1537    char buf[16];
1538    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1539    out.print_raw_cr(buf);
1540    out.print_raw_cr("Dumping core ...");
1541#endif
1542    ::abort(); // dump core (for debugging)
1543  }
1544
1545  ::exit(1);
1546}
1547
1548// Die immediately, no exit hook, no abort hook, no cleanup.
1549void os::die() {
1550  ::abort(); // dump core (for debugging)
1551}
1552
1553// DLL functions
1554
1555const char* os::dll_file_extension() { return ".so"; }
1556
1557// This must be hard coded because it's the system's temporary
1558// directory not the java application's temp directory, ala java.io.tmpdir.
1559const char* os::get_temp_directory() { return "/tmp"; }
1560
1561static bool file_exists(const char* filename) {
1562  struct stat statbuf;
1563  if (filename == NULL || strlen(filename) == 0) {
1564    return false;
1565  }
1566  return os::stat(filename, &statbuf) == 0;
1567}
1568
1569bool os::dll_build_name(char* buffer, size_t buflen,
1570                        const char* pname, const char* fname) {
1571  bool retval = false;
1572  const size_t pnamelen = pname ? strlen(pname) : 0;
1573
1574  // Return error on buffer overflow.
1575  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1576    return retval;
1577  }
1578
1579  if (pnamelen == 0) {
1580    snprintf(buffer, buflen, "lib%s.so", fname);
1581    retval = true;
1582  } else if (strchr(pname, *os::path_separator()) != NULL) {
1583    int n;
1584    char** pelements = split_path(pname, &n);
1585    if (pelements == NULL) {
1586      return false;
1587    }
1588    for (int i = 0; i < n; i++) {
1589      // really shouldn't be NULL but what the heck, check can't hurt
1590      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1591        continue; // skip the empty path values
1592      }
1593      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1594      if (file_exists(buffer)) {
1595        retval = true;
1596        break;
1597      }
1598    }
1599    // release the storage
1600    for (int i = 0; i < n; i++) {
1601      if (pelements[i] != NULL) {
1602        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1603      }
1604    }
1605    if (pelements != NULL) {
1606      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1607    }
1608  } else {
1609    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1610    retval = true;
1611  }
1612  return retval;
1613}
1614
1615// check if addr is inside libjvm.so
1616bool os::address_is_in_vm(address addr) {
1617  static address libjvm_base_addr;
1618  Dl_info dlinfo;
1619
1620  if (libjvm_base_addr == NULL) {
1621    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1622      libjvm_base_addr = (address)dlinfo.dli_fbase;
1623    }
1624    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1625  }
1626
1627  if (dladdr((void *)addr, &dlinfo) != 0) {
1628    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1629  }
1630
1631  return false;
1632}
1633
1634typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1635static dladdr1_func_type dladdr1_func = NULL;
1636
1637bool os::dll_address_to_function_name(address addr, char *buf,
1638                                      int buflen, int * offset) {
1639  // buf is not optional, but offset is optional
1640  assert(buf != NULL, "sanity check");
1641
1642  Dl_info dlinfo;
1643
1644  // dladdr1_func was initialized in os::init()
1645  if (dladdr1_func != NULL) {
1646    // yes, we have dladdr1
1647
1648    // Support for dladdr1 is checked at runtime; it may be
1649    // available even if the vm is built on a machine that does
1650    // not have dladdr1 support.  Make sure there is a value for
1651    // RTLD_DL_SYMENT.
1652#ifndef RTLD_DL_SYMENT
1653  #define RTLD_DL_SYMENT 1
1654#endif
1655#ifdef _LP64
1656    Elf64_Sym * info;
1657#else
1658    Elf32_Sym * info;
1659#endif
1660    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1661                     RTLD_DL_SYMENT) != 0) {
1662      // see if we have a matching symbol that covers our address
1663      if (dlinfo.dli_saddr != NULL &&
1664          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1665        if (dlinfo.dli_sname != NULL) {
1666          if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1667            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1668          }
1669          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1670          return true;
1671        }
1672      }
1673      // no matching symbol so try for just file info
1674      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1675        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1676                            buf, buflen, offset, dlinfo.dli_fname)) {
1677          return true;
1678        }
1679      }
1680    }
1681    buf[0] = '\0';
1682    if (offset != NULL) *offset  = -1;
1683    return false;
1684  }
1685
1686  // no, only dladdr is available
1687  if (dladdr((void *)addr, &dlinfo) != 0) {
1688    // see if we have a matching symbol
1689    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1690      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1691        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1692      }
1693      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1694      return true;
1695    }
1696    // no matching symbol so try for just file info
1697    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1698      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1699                          buf, buflen, offset, dlinfo.dli_fname)) {
1700        return true;
1701      }
1702    }
1703  }
1704  buf[0] = '\0';
1705  if (offset != NULL) *offset  = -1;
1706  return false;
1707}
1708
1709bool os::dll_address_to_library_name(address addr, char* buf,
1710                                     int buflen, int* offset) {
1711  // buf is not optional, but offset is optional
1712  assert(buf != NULL, "sanity check");
1713
1714  Dl_info dlinfo;
1715
1716  if (dladdr((void*)addr, &dlinfo) != 0) {
1717    if (dlinfo.dli_fname != NULL) {
1718      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1719    }
1720    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1721      *offset = addr - (address)dlinfo.dli_fbase;
1722    }
1723    return true;
1724  }
1725
1726  buf[0] = '\0';
1727  if (offset) *offset = -1;
1728  return false;
1729}
1730
1731int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1732  Dl_info dli;
1733  // Sanity check?
1734  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1735      dli.dli_fname == NULL) {
1736    return 1;
1737  }
1738
1739  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1740  if (handle == NULL) {
1741    return 1;
1742  }
1743
1744  Link_map *map;
1745  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1746  if (map == NULL) {
1747    dlclose(handle);
1748    return 1;
1749  }
1750
1751  while (map->l_prev != NULL) {
1752    map = map->l_prev;
1753  }
1754
1755  while (map != NULL) {
1756    // Iterate through all map entries and call callback with fields of interest
1757    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1758      dlclose(handle);
1759      return 1;
1760    }
1761    map = map->l_next;
1762  }
1763
1764  dlclose(handle);
1765  return 0;
1766}
1767
1768int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1769  outputStream * out = (outputStream *) param;
1770  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1771  return 0;
1772}
1773
1774void os::print_dll_info(outputStream * st) {
1775  st->print_cr("Dynamic libraries:"); st->flush();
1776  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1777    st->print_cr("Error: Cannot print dynamic libraries.");
1778  }
1779}
1780
1781// Loads .dll/.so and
1782// in case of error it checks if .dll/.so was built for the
1783// same architecture as Hotspot is running on
1784
1785void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1786  void * result= ::dlopen(filename, RTLD_LAZY);
1787  if (result != NULL) {
1788    // Successful loading
1789    return result;
1790  }
1791
1792  Elf32_Ehdr elf_head;
1793
1794  // Read system error message into ebuf
1795  // It may or may not be overwritten below
1796  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1797  ebuf[ebuflen-1]='\0';
1798  int diag_msg_max_length=ebuflen-strlen(ebuf);
1799  char* diag_msg_buf=ebuf+strlen(ebuf);
1800
1801  if (diag_msg_max_length==0) {
1802    // No more space in ebuf for additional diagnostics message
1803    return NULL;
1804  }
1805
1806
1807  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1808
1809  if (file_descriptor < 0) {
1810    // Can't open library, report dlerror() message
1811    return NULL;
1812  }
1813
1814  bool failed_to_read_elf_head=
1815    (sizeof(elf_head)!=
1816     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1817
1818  ::close(file_descriptor);
1819  if (failed_to_read_elf_head) {
1820    // file i/o error - report dlerror() msg
1821    return NULL;
1822  }
1823
1824  typedef struct {
1825    Elf32_Half  code;         // Actual value as defined in elf.h
1826    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1827    char        elf_class;    // 32 or 64 bit
1828    char        endianess;    // MSB or LSB
1829    char*       name;         // String representation
1830  } arch_t;
1831
1832  static const arch_t arch_array[]={
1833    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1834    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1835    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1836    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1837    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1838    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1839    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1840    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1841    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1842    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1843  };
1844
1845#if  (defined IA32)
1846  static  Elf32_Half running_arch_code=EM_386;
1847#elif   (defined AMD64)
1848  static  Elf32_Half running_arch_code=EM_X86_64;
1849#elif  (defined IA64)
1850  static  Elf32_Half running_arch_code=EM_IA_64;
1851#elif  (defined __sparc) && (defined _LP64)
1852  static  Elf32_Half running_arch_code=EM_SPARCV9;
1853#elif  (defined __sparc) && (!defined _LP64)
1854  static  Elf32_Half running_arch_code=EM_SPARC;
1855#elif  (defined __powerpc64__)
1856  static  Elf32_Half running_arch_code=EM_PPC64;
1857#elif  (defined __powerpc__)
1858  static  Elf32_Half running_arch_code=EM_PPC;
1859#elif (defined ARM)
1860  static  Elf32_Half running_arch_code=EM_ARM;
1861#else
1862  #error Method os::dll_load requires that one of following is defined:\
1863       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1864#endif
1865
1866  // Identify compatability class for VM's architecture and library's architecture
1867  // Obtain string descriptions for architectures
1868
1869  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1870  int running_arch_index=-1;
1871
1872  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1873    if (running_arch_code == arch_array[i].code) {
1874      running_arch_index    = i;
1875    }
1876    if (lib_arch.code == arch_array[i].code) {
1877      lib_arch.compat_class = arch_array[i].compat_class;
1878      lib_arch.name         = arch_array[i].name;
1879    }
1880  }
1881
1882  assert(running_arch_index != -1,
1883         "Didn't find running architecture code (running_arch_code) in arch_array");
1884  if (running_arch_index == -1) {
1885    // Even though running architecture detection failed
1886    // we may still continue with reporting dlerror() message
1887    return NULL;
1888  }
1889
1890  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1891    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1892    return NULL;
1893  }
1894
1895  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1896    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1897    return NULL;
1898  }
1899
1900  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1901    if (lib_arch.name!=NULL) {
1902      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1903                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1904                 lib_arch.name, arch_array[running_arch_index].name);
1905    } else {
1906      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1907                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1908                 lib_arch.code,
1909                 arch_array[running_arch_index].name);
1910    }
1911  }
1912
1913  return NULL;
1914}
1915
1916void* os::dll_lookup(void* handle, const char* name) {
1917  return dlsym(handle, name);
1918}
1919
1920void* os::get_default_process_handle() {
1921  return (void*)::dlopen(NULL, RTLD_LAZY);
1922}
1923
1924int os::stat(const char *path, struct stat *sbuf) {
1925  char pathbuf[MAX_PATH];
1926  if (strlen(path) > MAX_PATH - 1) {
1927    errno = ENAMETOOLONG;
1928    return -1;
1929  }
1930  os::native_path(strcpy(pathbuf, path));
1931  return ::stat(pathbuf, sbuf);
1932}
1933
1934static bool _print_ascii_file(const char* filename, outputStream* st) {
1935  int fd = ::open(filename, O_RDONLY);
1936  if (fd == -1) {
1937    return false;
1938  }
1939
1940  char buf[32];
1941  int bytes;
1942  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1943    st->print_raw(buf, bytes);
1944  }
1945
1946  ::close(fd);
1947
1948  return true;
1949}
1950
1951void os::print_os_info_brief(outputStream* st) {
1952  os::Solaris::print_distro_info(st);
1953
1954  os::Posix::print_uname_info(st);
1955
1956  os::Solaris::print_libversion_info(st);
1957}
1958
1959void os::print_os_info(outputStream* st) {
1960  st->print("OS:");
1961
1962  os::Solaris::print_distro_info(st);
1963
1964  os::Posix::print_uname_info(st);
1965
1966  os::Solaris::print_libversion_info(st);
1967
1968  os::Posix::print_rlimit_info(st);
1969
1970  os::Posix::print_load_average(st);
1971}
1972
1973void os::Solaris::print_distro_info(outputStream* st) {
1974  if (!_print_ascii_file("/etc/release", st)) {
1975    st->print("Solaris");
1976  }
1977  st->cr();
1978}
1979
1980void os::Solaris::print_libversion_info(outputStream* st) {
1981  st->print("  (T2 libthread)");
1982  st->cr();
1983}
1984
1985static bool check_addr0(outputStream* st) {
1986  jboolean status = false;
1987  int fd = ::open("/proc/self/map",O_RDONLY);
1988  if (fd >= 0) {
1989    prmap_t p;
1990    while (::read(fd, &p, sizeof(p)) > 0) {
1991      if (p.pr_vaddr == 0x0) {
1992        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
1993        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
1994        st->print("Access:");
1995        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
1996        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
1997        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
1998        st->cr();
1999        status = true;
2000      }
2001    }
2002    ::close(fd);
2003  }
2004  return status;
2005}
2006
2007void os::pd_print_cpu_info(outputStream* st) {
2008  // Nothing to do for now.
2009}
2010
2011void os::print_memory_info(outputStream* st) {
2012  st->print("Memory:");
2013  st->print(" %dk page", os::vm_page_size()>>10);
2014  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
2015  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
2016  st->cr();
2017  (void) check_addr0(st);
2018}
2019
2020void os::print_siginfo(outputStream* st, void* siginfo) {
2021  const siginfo_t* si = (const siginfo_t*)siginfo;
2022
2023  os::Posix::print_siginfo_brief(st, si);
2024
2025  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2026      UseSharedSpaces) {
2027    FileMapInfo* mapinfo = FileMapInfo::current_info();
2028    if (mapinfo->is_in_shared_space(si->si_addr)) {
2029      st->print("\n\nError accessing class data sharing archive."   \
2030                " Mapped file inaccessible during execution, "      \
2031                " possible disk/network problem.");
2032    }
2033  }
2034  st->cr();
2035}
2036
2037// Moved from whole group, because we need them here for diagnostic
2038// prints.
2039#define OLDMAXSIGNUM 32
2040static int Maxsignum = 0;
2041static int *ourSigFlags = NULL;
2042
2043extern "C" void sigINTRHandler(int, siginfo_t*, void*);
2044
2045int os::Solaris::get_our_sigflags(int sig) {
2046  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2047  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2048  return ourSigFlags[sig];
2049}
2050
2051void os::Solaris::set_our_sigflags(int sig, int flags) {
2052  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2053  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2054  ourSigFlags[sig] = flags;
2055}
2056
2057
2058static const char* get_signal_handler_name(address handler,
2059                                           char* buf, int buflen) {
2060  int offset;
2061  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2062  if (found) {
2063    // skip directory names
2064    const char *p1, *p2;
2065    p1 = buf;
2066    size_t len = strlen(os::file_separator());
2067    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2068    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2069  } else {
2070    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2071  }
2072  return buf;
2073}
2074
2075static void print_signal_handler(outputStream* st, int sig,
2076                                 char* buf, size_t buflen) {
2077  struct sigaction sa;
2078
2079  sigaction(sig, NULL, &sa);
2080
2081  st->print("%s: ", os::exception_name(sig, buf, buflen));
2082
2083  address handler = (sa.sa_flags & SA_SIGINFO)
2084                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2085                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2086
2087  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2088    st->print("SIG_DFL");
2089  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2090    st->print("SIG_IGN");
2091  } else {
2092    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2093  }
2094
2095  st->print(", sa_mask[0]=");
2096  os::Posix::print_signal_set_short(st, &sa.sa_mask);
2097
2098  address rh = VMError::get_resetted_sighandler(sig);
2099  // May be, handler was resetted by VMError?
2100  if (rh != NULL) {
2101    handler = rh;
2102    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2103  }
2104
2105  st->print(", sa_flags=");
2106  os::Posix::print_sa_flags(st, sa.sa_flags);
2107
2108  // Check: is it our handler?
2109  if (handler == CAST_FROM_FN_PTR(address, signalHandler) ||
2110      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
2111    // It is our signal handler
2112    // check for flags
2113    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2114      st->print(
2115                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2116                os::Solaris::get_our_sigflags(sig));
2117    }
2118  }
2119  st->cr();
2120}
2121
2122void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2123  st->print_cr("Signal Handlers:");
2124  print_signal_handler(st, SIGSEGV, buf, buflen);
2125  print_signal_handler(st, SIGBUS , buf, buflen);
2126  print_signal_handler(st, SIGFPE , buf, buflen);
2127  print_signal_handler(st, SIGPIPE, buf, buflen);
2128  print_signal_handler(st, SIGXFSZ, buf, buflen);
2129  print_signal_handler(st, SIGILL , buf, buflen);
2130  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2131  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2132  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2133  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2134  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2135  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2136  print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
2137  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2138}
2139
2140static char saved_jvm_path[MAXPATHLEN] = { 0 };
2141
2142// Find the full path to the current module, libjvm.so
2143void os::jvm_path(char *buf, jint buflen) {
2144  // Error checking.
2145  if (buflen < MAXPATHLEN) {
2146    assert(false, "must use a large-enough buffer");
2147    buf[0] = '\0';
2148    return;
2149  }
2150  // Lazy resolve the path to current module.
2151  if (saved_jvm_path[0] != 0) {
2152    strcpy(buf, saved_jvm_path);
2153    return;
2154  }
2155
2156  Dl_info dlinfo;
2157  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2158  assert(ret != 0, "cannot locate libjvm");
2159  if (ret != 0 && dlinfo.dli_fname != NULL) {
2160    realpath((char *)dlinfo.dli_fname, buf);
2161  } else {
2162    buf[0] = '\0';
2163    return;
2164  }
2165
2166  if (Arguments::sun_java_launcher_is_altjvm()) {
2167    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2168    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2169    // If "/jre/lib/" appears at the right place in the string, then
2170    // assume we are installed in a JDK and we're done.  Otherwise, check
2171    // for a JAVA_HOME environment variable and fix up the path so it
2172    // looks like libjvm.so is installed there (append a fake suffix
2173    // hotspot/libjvm.so).
2174    const char *p = buf + strlen(buf) - 1;
2175    for (int count = 0; p > buf && count < 5; ++count) {
2176      for (--p; p > buf && *p != '/'; --p)
2177        /* empty */ ;
2178    }
2179
2180    if (strncmp(p, "/jre/lib/", 9) != 0) {
2181      // Look for JAVA_HOME in the environment.
2182      char* java_home_var = ::getenv("JAVA_HOME");
2183      if (java_home_var != NULL && java_home_var[0] != 0) {
2184        char cpu_arch[12];
2185        char* jrelib_p;
2186        int   len;
2187        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2188#ifdef _LP64
2189        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2190        if (strcmp(cpu_arch, "sparc") == 0) {
2191          strcat(cpu_arch, "v9");
2192        } else if (strcmp(cpu_arch, "i386") == 0) {
2193          strcpy(cpu_arch, "amd64");
2194        }
2195#endif
2196        // Check the current module name "libjvm.so".
2197        p = strrchr(buf, '/');
2198        assert(strstr(p, "/libjvm") == p, "invalid library name");
2199
2200        realpath(java_home_var, buf);
2201        // determine if this is a legacy image or modules image
2202        // modules image doesn't have "jre" subdirectory
2203        len = strlen(buf);
2204        assert(len < buflen, "Ran out of buffer space");
2205        jrelib_p = buf + len;
2206        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2207        if (0 != access(buf, F_OK)) {
2208          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2209        }
2210
2211        if (0 == access(buf, F_OK)) {
2212          // Use current module name "libjvm.so"
2213          len = strlen(buf);
2214          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2215        } else {
2216          // Go back to path of .so
2217          realpath((char *)dlinfo.dli_fname, buf);
2218        }
2219      }
2220    }
2221  }
2222
2223  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2224  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2225}
2226
2227
2228void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2229  // no prefix required, not even "_"
2230}
2231
2232
2233void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2234  // no suffix required
2235}
2236
2237// This method is a copy of JDK's sysGetLastErrorString
2238// from src/solaris/hpi/src/system_md.c
2239
2240size_t os::lasterror(char *buf, size_t len) {
2241  if (errno == 0)  return 0;
2242
2243  const char *s = ::strerror(errno);
2244  size_t n = ::strlen(s);
2245  if (n >= len) {
2246    n = len - 1;
2247  }
2248  ::strncpy(buf, s, n);
2249  buf[n] = '\0';
2250  return n;
2251}
2252
2253
2254// sun.misc.Signal
2255
2256extern "C" {
2257  static void UserHandler(int sig, void *siginfo, void *context) {
2258    // Ctrl-C is pressed during error reporting, likely because the error
2259    // handler fails to abort. Let VM die immediately.
2260    if (sig == SIGINT && is_error_reported()) {
2261      os::die();
2262    }
2263
2264    os::signal_notify(sig);
2265    // We do not need to reinstate the signal handler each time...
2266  }
2267}
2268
2269void* os::user_handler() {
2270  return CAST_FROM_FN_PTR(void*, UserHandler);
2271}
2272
2273class Semaphore : public StackObj {
2274 public:
2275  Semaphore();
2276  ~Semaphore();
2277  void signal();
2278  void wait();
2279  bool trywait();
2280  bool timedwait(unsigned int sec, int nsec);
2281 private:
2282  sema_t _semaphore;
2283};
2284
2285
2286Semaphore::Semaphore() {
2287  sema_init(&_semaphore, 0, NULL, NULL);
2288}
2289
2290Semaphore::~Semaphore() {
2291  sema_destroy(&_semaphore);
2292}
2293
2294void Semaphore::signal() {
2295  sema_post(&_semaphore);
2296}
2297
2298void Semaphore::wait() {
2299  sema_wait(&_semaphore);
2300}
2301
2302bool Semaphore::trywait() {
2303  return sema_trywait(&_semaphore) == 0;
2304}
2305
2306bool Semaphore::timedwait(unsigned int sec, int nsec) {
2307  struct timespec ts;
2308  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2309
2310  while (1) {
2311    int result = sema_timedwait(&_semaphore, &ts);
2312    if (result == 0) {
2313      return true;
2314    } else if (errno == EINTR) {
2315      continue;
2316    } else if (errno == ETIME) {
2317      return false;
2318    } else {
2319      return false;
2320    }
2321  }
2322}
2323
2324extern "C" {
2325  typedef void (*sa_handler_t)(int);
2326  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2327}
2328
2329void* os::signal(int signal_number, void* handler) {
2330  struct sigaction sigAct, oldSigAct;
2331  sigfillset(&(sigAct.sa_mask));
2332  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2333  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2334
2335  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2336    // -1 means registration failed
2337    return (void *)-1;
2338  }
2339
2340  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2341}
2342
2343void os::signal_raise(int signal_number) {
2344  raise(signal_number);
2345}
2346
2347// The following code is moved from os.cpp for making this
2348// code platform specific, which it is by its very nature.
2349
2350// a counter for each possible signal value
2351static int Sigexit = 0;
2352static int Maxlibjsigsigs;
2353static jint *pending_signals = NULL;
2354static int *preinstalled_sigs = NULL;
2355static struct sigaction *chainedsigactions = NULL;
2356static sema_t sig_sem;
2357typedef int (*version_getting_t)();
2358version_getting_t os::Solaris::get_libjsig_version = NULL;
2359static int libjsigversion = NULL;
2360
2361int os::sigexitnum_pd() {
2362  assert(Sigexit > 0, "signal memory not yet initialized");
2363  return Sigexit;
2364}
2365
2366void os::Solaris::init_signal_mem() {
2367  // Initialize signal structures
2368  Maxsignum = SIGRTMAX;
2369  Sigexit = Maxsignum+1;
2370  assert(Maxsignum >0, "Unable to obtain max signal number");
2371
2372  Maxlibjsigsigs = Maxsignum;
2373
2374  // pending_signals has one int per signal
2375  // The additional signal is for SIGEXIT - exit signal to signal_thread
2376  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2377  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2378
2379  if (UseSignalChaining) {
2380    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2381                                                   * (Maxsignum + 1), mtInternal);
2382    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2383    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2384    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2385  }
2386  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2387  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2388}
2389
2390void os::signal_init_pd() {
2391  int ret;
2392
2393  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2394  assert(ret == 0, "sema_init() failed");
2395}
2396
2397void os::signal_notify(int signal_number) {
2398  int ret;
2399
2400  Atomic::inc(&pending_signals[signal_number]);
2401  ret = ::sema_post(&sig_sem);
2402  assert(ret == 0, "sema_post() failed");
2403}
2404
2405static int check_pending_signals(bool wait_for_signal) {
2406  int ret;
2407  while (true) {
2408    for (int i = 0; i < Sigexit + 1; i++) {
2409      jint n = pending_signals[i];
2410      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2411        return i;
2412      }
2413    }
2414    if (!wait_for_signal) {
2415      return -1;
2416    }
2417    JavaThread *thread = JavaThread::current();
2418    ThreadBlockInVM tbivm(thread);
2419
2420    bool threadIsSuspended;
2421    do {
2422      thread->set_suspend_equivalent();
2423      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2424      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2425        ;
2426      assert(ret == 0, "sema_wait() failed");
2427
2428      // were we externally suspended while we were waiting?
2429      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2430      if (threadIsSuspended) {
2431        // The semaphore has been incremented, but while we were waiting
2432        // another thread suspended us. We don't want to continue running
2433        // while suspended because that would surprise the thread that
2434        // suspended us.
2435        ret = ::sema_post(&sig_sem);
2436        assert(ret == 0, "sema_post() failed");
2437
2438        thread->java_suspend_self();
2439      }
2440    } while (threadIsSuspended);
2441  }
2442}
2443
2444int os::signal_lookup() {
2445  return check_pending_signals(false);
2446}
2447
2448int os::signal_wait() {
2449  return check_pending_signals(true);
2450}
2451
2452////////////////////////////////////////////////////////////////////////////////
2453// Virtual Memory
2454
2455static int page_size = -1;
2456
2457// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2458// clear this var if support is not available.
2459static bool has_map_align = true;
2460
2461int os::vm_page_size() {
2462  assert(page_size != -1, "must call os::init");
2463  return page_size;
2464}
2465
2466// Solaris allocates memory by pages.
2467int os::vm_allocation_granularity() {
2468  assert(page_size != -1, "must call os::init");
2469  return page_size;
2470}
2471
2472static bool recoverable_mmap_error(int err) {
2473  // See if the error is one we can let the caller handle. This
2474  // list of errno values comes from the Solaris mmap(2) man page.
2475  switch (err) {
2476  case EBADF:
2477  case EINVAL:
2478  case ENOTSUP:
2479    // let the caller deal with these errors
2480    return true;
2481
2482  default:
2483    // Any remaining errors on this OS can cause our reserved mapping
2484    // to be lost. That can cause confusion where different data
2485    // structures think they have the same memory mapped. The worst
2486    // scenario is if both the VM and a library think they have the
2487    // same memory mapped.
2488    return false;
2489  }
2490}
2491
2492static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2493                                    int err) {
2494  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2495          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2496          strerror(err), err);
2497}
2498
2499static void warn_fail_commit_memory(char* addr, size_t bytes,
2500                                    size_t alignment_hint, bool exec,
2501                                    int err) {
2502  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2503          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2504          alignment_hint, exec, strerror(err), err);
2505}
2506
2507int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2508  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2509  size_t size = bytes;
2510  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2511  if (res != NULL) {
2512    if (UseNUMAInterleaving) {
2513      numa_make_global(addr, bytes);
2514    }
2515    return 0;
2516  }
2517
2518  int err = errno;  // save errno from mmap() call in mmap_chunk()
2519
2520  if (!recoverable_mmap_error(err)) {
2521    warn_fail_commit_memory(addr, bytes, exec, err);
2522    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2523  }
2524
2525  return err;
2526}
2527
2528bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2529  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2530}
2531
2532void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2533                                  const char* mesg) {
2534  assert(mesg != NULL, "mesg must be specified");
2535  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2536  if (err != 0) {
2537    // the caller wants all commit errors to exit with the specified mesg:
2538    warn_fail_commit_memory(addr, bytes, exec, err);
2539    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2540  }
2541}
2542
2543size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2544  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2545         err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2546                 alignment, (size_t) vm_page_size()));
2547
2548  for (int i = 0; _page_sizes[i] != 0; i++) {
2549    if (is_size_aligned(alignment, _page_sizes[i])) {
2550      return _page_sizes[i];
2551    }
2552  }
2553
2554  return (size_t) vm_page_size();
2555}
2556
2557int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2558                                    size_t alignment_hint, bool exec) {
2559  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2560  if (err == 0 && UseLargePages && alignment_hint > 0) {
2561    assert(is_size_aligned(bytes, alignment_hint),
2562           err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint));
2563
2564    // The syscall memcntl requires an exact page size (see man memcntl for details).
2565    size_t page_size = page_size_for_alignment(alignment_hint);
2566    if (page_size > (size_t) vm_page_size()) {
2567      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2568    }
2569  }
2570  return err;
2571}
2572
2573bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2574                          bool exec) {
2575  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2576}
2577
2578void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2579                                  size_t alignment_hint, bool exec,
2580                                  const char* mesg) {
2581  assert(mesg != NULL, "mesg must be specified");
2582  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2583  if (err != 0) {
2584    // the caller wants all commit errors to exit with the specified mesg:
2585    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2586    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2587  }
2588}
2589
2590// Uncommit the pages in a specified region.
2591void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2592  if (madvise(addr, bytes, MADV_FREE) < 0) {
2593    debug_only(warning("MADV_FREE failed."));
2594    return;
2595  }
2596}
2597
2598bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2599  return os::commit_memory(addr, size, !ExecMem);
2600}
2601
2602bool os::remove_stack_guard_pages(char* addr, size_t size) {
2603  return os::uncommit_memory(addr, size);
2604}
2605
2606// Change the page size in a given range.
2607void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2608  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2609  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2610  if (UseLargePages) {
2611    Solaris::setup_large_pages(addr, bytes, alignment_hint);
2612  }
2613}
2614
2615// Tell the OS to make the range local to the first-touching LWP
2616void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2617  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2618  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2619    debug_only(warning("MADV_ACCESS_LWP failed."));
2620  }
2621}
2622
2623// Tell the OS that this range would be accessed from different LWPs.
2624void os::numa_make_global(char *addr, size_t bytes) {
2625  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2626  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2627    debug_only(warning("MADV_ACCESS_MANY failed."));
2628  }
2629}
2630
2631// Get the number of the locality groups.
2632size_t os::numa_get_groups_num() {
2633  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2634  return n != -1 ? n : 1;
2635}
2636
2637// Get a list of leaf locality groups. A leaf lgroup is group that
2638// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2639// board. An LWP is assigned to one of these groups upon creation.
2640size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2641  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2642    ids[0] = 0;
2643    return 1;
2644  }
2645  int result_size = 0, top = 1, bottom = 0, cur = 0;
2646  for (int k = 0; k < size; k++) {
2647    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2648                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2649    if (r == -1) {
2650      ids[0] = 0;
2651      return 1;
2652    }
2653    if (!r) {
2654      // That's a leaf node.
2655      assert(bottom <= cur, "Sanity check");
2656      // Check if the node has memory
2657      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2658                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2659        ids[bottom++] = ids[cur];
2660      }
2661    }
2662    top += r;
2663    cur++;
2664  }
2665  if (bottom == 0) {
2666    // Handle a situation, when the OS reports no memory available.
2667    // Assume UMA architecture.
2668    ids[0] = 0;
2669    return 1;
2670  }
2671  return bottom;
2672}
2673
2674// Detect the topology change. Typically happens during CPU plugging-unplugging.
2675bool os::numa_topology_changed() {
2676  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2677  if (is_stale != -1 && is_stale) {
2678    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2679    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2680    assert(c != 0, "Failure to initialize LGRP API");
2681    Solaris::set_lgrp_cookie(c);
2682    return true;
2683  }
2684  return false;
2685}
2686
2687// Get the group id of the current LWP.
2688int os::numa_get_group_id() {
2689  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2690  if (lgrp_id == -1) {
2691    return 0;
2692  }
2693  const int size = os::numa_get_groups_num();
2694  int *ids = (int*)alloca(size * sizeof(int));
2695
2696  // Get the ids of all lgroups with memory; r is the count.
2697  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2698                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2699  if (r <= 0) {
2700    return 0;
2701  }
2702  return ids[os::random() % r];
2703}
2704
2705// Request information about the page.
2706bool os::get_page_info(char *start, page_info* info) {
2707  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2708  uint64_t addr = (uintptr_t)start;
2709  uint64_t outdata[2];
2710  uint_t validity = 0;
2711
2712  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2713    return false;
2714  }
2715
2716  info->size = 0;
2717  info->lgrp_id = -1;
2718
2719  if ((validity & 1) != 0) {
2720    if ((validity & 2) != 0) {
2721      info->lgrp_id = outdata[0];
2722    }
2723    if ((validity & 4) != 0) {
2724      info->size = outdata[1];
2725    }
2726    return true;
2727  }
2728  return false;
2729}
2730
2731// Scan the pages from start to end until a page different than
2732// the one described in the info parameter is encountered.
2733char *os::scan_pages(char *start, char* end, page_info* page_expected,
2734                     page_info* page_found) {
2735  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2736  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2737  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2738  uint_t validity[MAX_MEMINFO_CNT];
2739
2740  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2741  uint64_t p = (uint64_t)start;
2742  while (p < (uint64_t)end) {
2743    addrs[0] = p;
2744    size_t addrs_count = 1;
2745    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2746      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2747      addrs_count++;
2748    }
2749
2750    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2751      return NULL;
2752    }
2753
2754    size_t i = 0;
2755    for (; i < addrs_count; i++) {
2756      if ((validity[i] & 1) != 0) {
2757        if ((validity[i] & 4) != 0) {
2758          if (outdata[types * i + 1] != page_expected->size) {
2759            break;
2760          }
2761        } else if (page_expected->size != 0) {
2762          break;
2763        }
2764
2765        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2766          if (outdata[types * i] != page_expected->lgrp_id) {
2767            break;
2768          }
2769        }
2770      } else {
2771        return NULL;
2772      }
2773    }
2774
2775    if (i < addrs_count) {
2776      if ((validity[i] & 2) != 0) {
2777        page_found->lgrp_id = outdata[types * i];
2778      } else {
2779        page_found->lgrp_id = -1;
2780      }
2781      if ((validity[i] & 4) != 0) {
2782        page_found->size = outdata[types * i + 1];
2783      } else {
2784        page_found->size = 0;
2785      }
2786      return (char*)addrs[i];
2787    }
2788
2789    p = addrs[addrs_count - 1] + page_size;
2790  }
2791  return end;
2792}
2793
2794bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2795  size_t size = bytes;
2796  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2797  // uncommitted page. Otherwise, the read/write might succeed if we
2798  // have enough swap space to back the physical page.
2799  return
2800    NULL != Solaris::mmap_chunk(addr, size,
2801                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2802                                PROT_NONE);
2803}
2804
2805char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2806  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2807
2808  if (b == MAP_FAILED) {
2809    return NULL;
2810  }
2811  return b;
2812}
2813
2814char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2815                             size_t alignment_hint, bool fixed) {
2816  char* addr = requested_addr;
2817  int flags = MAP_PRIVATE | MAP_NORESERVE;
2818
2819  assert(!(fixed && (alignment_hint > 0)),
2820         "alignment hint meaningless with fixed mmap");
2821
2822  if (fixed) {
2823    flags |= MAP_FIXED;
2824  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2825    flags |= MAP_ALIGN;
2826    addr = (char*) alignment_hint;
2827  }
2828
2829  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2830  // uncommitted page. Otherwise, the read/write might succeed if we
2831  // have enough swap space to back the physical page.
2832  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2833}
2834
2835char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2836                            size_t alignment_hint) {
2837  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2838                                  (requested_addr != NULL));
2839
2840  guarantee(requested_addr == NULL || requested_addr == addr,
2841            "OS failed to return requested mmap address.");
2842  return addr;
2843}
2844
2845// Reserve memory at an arbitrary address, only if that area is
2846// available (and not reserved for something else).
2847
2848char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2849  const int max_tries = 10;
2850  char* base[max_tries];
2851  size_t size[max_tries];
2852
2853  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2854  // is dependent on the requested size and the MMU.  Our initial gap
2855  // value here is just a guess and will be corrected later.
2856  bool had_top_overlap = false;
2857  bool have_adjusted_gap = false;
2858  size_t gap = 0x400000;
2859
2860  // Assert only that the size is a multiple of the page size, since
2861  // that's all that mmap requires, and since that's all we really know
2862  // about at this low abstraction level.  If we need higher alignment,
2863  // we can either pass an alignment to this method or verify alignment
2864  // in one of the methods further up the call chain.  See bug 5044738.
2865  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2866
2867  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2868  // Give it a try, if the kernel honors the hint we can return immediately.
2869  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2870
2871  volatile int err = errno;
2872  if (addr == requested_addr) {
2873    return addr;
2874  } else if (addr != NULL) {
2875    pd_unmap_memory(addr, bytes);
2876  }
2877
2878  if (PrintMiscellaneous && Verbose) {
2879    char buf[256];
2880    buf[0] = '\0';
2881    if (addr == NULL) {
2882      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2883    }
2884    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2885            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2886            "%s", bytes, requested_addr, addr, buf);
2887  }
2888
2889  // Address hint method didn't work.  Fall back to the old method.
2890  // In theory, once SNV becomes our oldest supported platform, this
2891  // code will no longer be needed.
2892  //
2893  // Repeatedly allocate blocks until the block is allocated at the
2894  // right spot. Give up after max_tries.
2895  int i;
2896  for (i = 0; i < max_tries; ++i) {
2897    base[i] = reserve_memory(bytes);
2898
2899    if (base[i] != NULL) {
2900      // Is this the block we wanted?
2901      if (base[i] == requested_addr) {
2902        size[i] = bytes;
2903        break;
2904      }
2905
2906      // check that the gap value is right
2907      if (had_top_overlap && !have_adjusted_gap) {
2908        size_t actual_gap = base[i-1] - base[i] - bytes;
2909        if (gap != actual_gap) {
2910          // adjust the gap value and retry the last 2 allocations
2911          assert(i > 0, "gap adjustment code problem");
2912          have_adjusted_gap = true;  // adjust the gap only once, just in case
2913          gap = actual_gap;
2914          if (PrintMiscellaneous && Verbose) {
2915            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2916          }
2917          unmap_memory(base[i], bytes);
2918          unmap_memory(base[i-1], size[i-1]);
2919          i-=2;
2920          continue;
2921        }
2922      }
2923
2924      // Does this overlap the block we wanted? Give back the overlapped
2925      // parts and try again.
2926      //
2927      // There is still a bug in this code: if top_overlap == bytes,
2928      // the overlap is offset from requested region by the value of gap.
2929      // In this case giving back the overlapped part will not work,
2930      // because we'll give back the entire block at base[i] and
2931      // therefore the subsequent allocation will not generate a new gap.
2932      // This could be fixed with a new algorithm that used larger
2933      // or variable size chunks to find the requested region -
2934      // but such a change would introduce additional complications.
2935      // It's rare enough that the planets align for this bug,
2936      // so we'll just wait for a fix for 6204603/5003415 which
2937      // will provide a mmap flag to allow us to avoid this business.
2938
2939      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2940      if (top_overlap >= 0 && top_overlap < bytes) {
2941        had_top_overlap = true;
2942        unmap_memory(base[i], top_overlap);
2943        base[i] += top_overlap;
2944        size[i] = bytes - top_overlap;
2945      } else {
2946        size_t bottom_overlap = base[i] + bytes - requested_addr;
2947        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2948          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2949            warning("attempt_reserve_memory_at: possible alignment bug");
2950          }
2951          unmap_memory(requested_addr, bottom_overlap);
2952          size[i] = bytes - bottom_overlap;
2953        } else {
2954          size[i] = bytes;
2955        }
2956      }
2957    }
2958  }
2959
2960  // Give back the unused reserved pieces.
2961
2962  for (int j = 0; j < i; ++j) {
2963    if (base[j] != NULL) {
2964      unmap_memory(base[j], size[j]);
2965    }
2966  }
2967
2968  return (i < max_tries) ? requested_addr : NULL;
2969}
2970
2971bool os::pd_release_memory(char* addr, size_t bytes) {
2972  size_t size = bytes;
2973  return munmap(addr, size) == 0;
2974}
2975
2976static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2977  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2978         "addr must be page aligned");
2979  int retVal = mprotect(addr, bytes, prot);
2980  return retVal == 0;
2981}
2982
2983// Protect memory (Used to pass readonly pages through
2984// JNI GetArray<type>Elements with empty arrays.)
2985// Also, used for serialization page and for compressed oops null pointer
2986// checking.
2987bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2988                        bool is_committed) {
2989  unsigned int p = 0;
2990  switch (prot) {
2991  case MEM_PROT_NONE: p = PROT_NONE; break;
2992  case MEM_PROT_READ: p = PROT_READ; break;
2993  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2994  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2995  default:
2996    ShouldNotReachHere();
2997  }
2998  // is_committed is unused.
2999  return solaris_mprotect(addr, bytes, p);
3000}
3001
3002// guard_memory and unguard_memory only happens within stack guard pages.
3003// Since ISM pertains only to the heap, guard and unguard memory should not
3004/// happen with an ISM region.
3005bool os::guard_memory(char* addr, size_t bytes) {
3006  return solaris_mprotect(addr, bytes, PROT_NONE);
3007}
3008
3009bool os::unguard_memory(char* addr, size_t bytes) {
3010  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
3011}
3012
3013// Large page support
3014static size_t _large_page_size = 0;
3015
3016// Insertion sort for small arrays (descending order).
3017static void insertion_sort_descending(size_t* array, int len) {
3018  for (int i = 0; i < len; i++) {
3019    size_t val = array[i];
3020    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
3021      size_t tmp = array[key];
3022      array[key] = array[key - 1];
3023      array[key - 1] = tmp;
3024    }
3025  }
3026}
3027
3028bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
3029  const unsigned int usable_count = VM_Version::page_size_count();
3030  if (usable_count == 1) {
3031    return false;
3032  }
3033
3034  // Find the right getpagesizes interface.  When solaris 11 is the minimum
3035  // build platform, getpagesizes() (without the '2') can be called directly.
3036  typedef int (*gps_t)(size_t[], int);
3037  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
3038  if (gps_func == NULL) {
3039    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
3040    if (gps_func == NULL) {
3041      if (warn) {
3042        warning("MPSS is not supported by the operating system.");
3043      }
3044      return false;
3045    }
3046  }
3047
3048  // Fill the array of page sizes.
3049  int n = (*gps_func)(_page_sizes, page_sizes_max);
3050  assert(n > 0, "Solaris bug?");
3051
3052  if (n == page_sizes_max) {
3053    // Add a sentinel value (necessary only if the array was completely filled
3054    // since it is static (zeroed at initialization)).
3055    _page_sizes[--n] = 0;
3056    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
3057  }
3058  assert(_page_sizes[n] == 0, "missing sentinel");
3059  trace_page_sizes("available page sizes", _page_sizes, n);
3060
3061  if (n == 1) return false;     // Only one page size available.
3062
3063  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
3064  // select up to usable_count elements.  First sort the array, find the first
3065  // acceptable value, then copy the usable sizes to the top of the array and
3066  // trim the rest.  Make sure to include the default page size :-).
3067  //
3068  // A better policy could get rid of the 4M limit by taking the sizes of the
3069  // important VM memory regions (java heap and possibly the code cache) into
3070  // account.
3071  insertion_sort_descending(_page_sizes, n);
3072  const size_t size_limit =
3073    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
3074  int beg;
3075  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
3076  const int end = MIN2((int)usable_count, n) - 1;
3077  for (int cur = 0; cur < end; ++cur, ++beg) {
3078    _page_sizes[cur] = _page_sizes[beg];
3079  }
3080  _page_sizes[end] = vm_page_size();
3081  _page_sizes[end + 1] = 0;
3082
3083  if (_page_sizes[end] > _page_sizes[end - 1]) {
3084    // Default page size is not the smallest; sort again.
3085    insertion_sort_descending(_page_sizes, end + 1);
3086  }
3087  *page_size = _page_sizes[0];
3088
3089  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
3090  return true;
3091}
3092
3093void os::large_page_init() {
3094  if (UseLargePages) {
3095    // print a warning if any large page related flag is specified on command line
3096    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3097                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3098
3099    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3100  }
3101}
3102
3103bool os::Solaris::is_valid_page_size(size_t bytes) {
3104  for (int i = 0; _page_sizes[i] != 0; i++) {
3105    if (_page_sizes[i] == bytes) {
3106      return true;
3107    }
3108  }
3109  return false;
3110}
3111
3112bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3113  assert(is_valid_page_size(align), err_msg(SIZE_FORMAT " is not a valid page size", align));
3114  assert(is_ptr_aligned((void*) start, align),
3115         err_msg(PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align));
3116  assert(is_size_aligned(bytes, align),
3117         err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align));
3118
3119  // Signal to OS that we want large pages for addresses
3120  // from addr, addr + bytes
3121  struct memcntl_mha mpss_struct;
3122  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3123  mpss_struct.mha_pagesize = align;
3124  mpss_struct.mha_flags = 0;
3125  // Upon successful completion, memcntl() returns 0
3126  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3127    debug_only(warning("Attempt to use MPSS failed."));
3128    return false;
3129  }
3130  return true;
3131}
3132
3133char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3134  fatal("os::reserve_memory_special should not be called on Solaris.");
3135  return NULL;
3136}
3137
3138bool os::release_memory_special(char* base, size_t bytes) {
3139  fatal("os::release_memory_special should not be called on Solaris.");
3140  return false;
3141}
3142
3143size_t os::large_page_size() {
3144  return _large_page_size;
3145}
3146
3147// MPSS allows application to commit large page memory on demand; with ISM
3148// the entire memory region must be allocated as shared memory.
3149bool os::can_commit_large_page_memory() {
3150  return true;
3151}
3152
3153bool os::can_execute_large_page_memory() {
3154  return true;
3155}
3156
3157// Read calls from inside the vm need to perform state transitions
3158size_t os::read(int fd, void *buf, unsigned int nBytes) {
3159  size_t res;
3160  JavaThread* thread = (JavaThread*)Thread::current();
3161  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3162  ThreadBlockInVM tbiv(thread);
3163  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3164  return res;
3165}
3166
3167size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3168  size_t res;
3169  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3170         "Assumed _thread_in_native");
3171  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3172  return res;
3173}
3174
3175void os::naked_short_sleep(jlong ms) {
3176  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3177
3178  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3179  // Solaris requires -lrt for this.
3180  usleep((ms * 1000));
3181
3182  return;
3183}
3184
3185// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3186void os::infinite_sleep() {
3187  while (true) {    // sleep forever ...
3188    ::sleep(100);   // ... 100 seconds at a time
3189  }
3190}
3191
3192// Used to convert frequent JVM_Yield() to nops
3193bool os::dont_yield() {
3194  if (DontYieldALot) {
3195    static hrtime_t last_time = 0;
3196    hrtime_t diff = getTimeNanos() - last_time;
3197
3198    if (diff < DontYieldALotInterval * 1000000) {
3199      return true;
3200    }
3201
3202    last_time += diff;
3203
3204    return false;
3205  } else {
3206    return false;
3207  }
3208}
3209
3210// Note that yield semantics are defined by the scheduling class to which
3211// the thread currently belongs.  Typically, yield will _not yield to
3212// other equal or higher priority threads that reside on the dispatch queues
3213// of other CPUs.
3214
3215void os::naked_yield() {
3216  thr_yield();
3217}
3218
3219// Interface for setting lwp priorities.  If we are using T2 libthread,
3220// which forces the use of BoundThreads or we manually set UseBoundThreads,
3221// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3222// function is meaningless in this mode so we must adjust the real lwp's priority
3223// The routines below implement the getting and setting of lwp priorities.
3224//
3225// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3226//       being deprecated and all threads are now BoundThreads
3227//
3228// Note: There are three priority scales used on Solaris.  Java priotities
3229//       which range from 1 to 10, libthread "thr_setprio" scale which range
3230//       from 0 to 127, and the current scheduling class of the process we
3231//       are running in.  This is typically from -60 to +60.
3232//       The setting of the lwp priorities in done after a call to thr_setprio
3233//       so Java priorities are mapped to libthread priorities and we map from
3234//       the latter to lwp priorities.  We don't keep priorities stored in
3235//       Java priorities since some of our worker threads want to set priorities
3236//       higher than all Java threads.
3237//
3238// For related information:
3239// (1)  man -s 2 priocntl
3240// (2)  man -s 4 priocntl
3241// (3)  man dispadmin
3242// =    librt.so
3243// =    libthread/common/rtsched.c - thrp_setlwpprio().
3244// =    ps -cL <pid> ... to validate priority.
3245// =    sched_get_priority_min and _max
3246//              pthread_create
3247//              sched_setparam
3248//              pthread_setschedparam
3249//
3250// Assumptions:
3251// +    We assume that all threads in the process belong to the same
3252//              scheduling class.   IE. an homogenous process.
3253// +    Must be root or in IA group to change change "interactive" attribute.
3254//              Priocntl() will fail silently.  The only indication of failure is when
3255//              we read-back the value and notice that it hasn't changed.
3256// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3257// +    For RT, change timeslice as well.  Invariant:
3258//              constant "priority integral"
3259//              Konst == TimeSlice * (60-Priority)
3260//              Given a priority, compute appropriate timeslice.
3261// +    Higher numerical values have higher priority.
3262
3263// sched class attributes
3264typedef struct {
3265  int   schedPolicy;              // classID
3266  int   maxPrio;
3267  int   minPrio;
3268} SchedInfo;
3269
3270
3271static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3272
3273#ifdef ASSERT
3274static int  ReadBackValidate = 1;
3275#endif
3276static int  myClass     = 0;
3277static int  myMin       = 0;
3278static int  myMax       = 0;
3279static int  myCur       = 0;
3280static bool priocntl_enable = false;
3281
3282static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
3283static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3284
3285
3286// lwp_priocntl_init
3287//
3288// Try to determine the priority scale for our process.
3289//
3290// Return errno or 0 if OK.
3291//
3292static int lwp_priocntl_init() {
3293  int rslt;
3294  pcinfo_t ClassInfo;
3295  pcparms_t ParmInfo;
3296  int i;
3297
3298  if (!UseThreadPriorities) return 0;
3299
3300  // If ThreadPriorityPolicy is 1, switch tables
3301  if (ThreadPriorityPolicy == 1) {
3302    for (i = 0; i < CriticalPriority+1; i++)
3303      os::java_to_os_priority[i] = prio_policy1[i];
3304  }
3305  if (UseCriticalJavaThreadPriority) {
3306    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3307    // See set_native_priority() and set_lwp_class_and_priority().
3308    // Save original MaxPriority mapping in case attempt to
3309    // use critical priority fails.
3310    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3311    // Set negative to distinguish from other priorities
3312    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3313  }
3314
3315  // Get IDs for a set of well-known scheduling classes.
3316  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3317  // the system.  We should have a loop that iterates over the
3318  // classID values, which are known to be "small" integers.
3319
3320  strcpy(ClassInfo.pc_clname, "TS");
3321  ClassInfo.pc_cid = -1;
3322  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3323  if (rslt < 0) return errno;
3324  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3325  tsLimits.schedPolicy = ClassInfo.pc_cid;
3326  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3327  tsLimits.minPrio = -tsLimits.maxPrio;
3328
3329  strcpy(ClassInfo.pc_clname, "IA");
3330  ClassInfo.pc_cid = -1;
3331  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3332  if (rslt < 0) return errno;
3333  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3334  iaLimits.schedPolicy = ClassInfo.pc_cid;
3335  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3336  iaLimits.minPrio = -iaLimits.maxPrio;
3337
3338  strcpy(ClassInfo.pc_clname, "RT");
3339  ClassInfo.pc_cid = -1;
3340  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3341  if (rslt < 0) return errno;
3342  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3343  rtLimits.schedPolicy = ClassInfo.pc_cid;
3344  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3345  rtLimits.minPrio = 0;
3346
3347  strcpy(ClassInfo.pc_clname, "FX");
3348  ClassInfo.pc_cid = -1;
3349  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3350  if (rslt < 0) return errno;
3351  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3352  fxLimits.schedPolicy = ClassInfo.pc_cid;
3353  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3354  fxLimits.minPrio = 0;
3355
3356  // Query our "current" scheduling class.
3357  // This will normally be IA, TS or, rarely, FX or RT.
3358  memset(&ParmInfo, 0, sizeof(ParmInfo));
3359  ParmInfo.pc_cid = PC_CLNULL;
3360  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3361  if (rslt < 0) return errno;
3362  myClass = ParmInfo.pc_cid;
3363
3364  // We now know our scheduling classId, get specific information
3365  // about the class.
3366  ClassInfo.pc_cid = myClass;
3367  ClassInfo.pc_clname[0] = 0;
3368  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3369  if (rslt < 0) return errno;
3370
3371  if (ThreadPriorityVerbose) {
3372    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3373  }
3374
3375  memset(&ParmInfo, 0, sizeof(pcparms_t));
3376  ParmInfo.pc_cid = PC_CLNULL;
3377  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3378  if (rslt < 0) return errno;
3379
3380  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3381    myMin = rtLimits.minPrio;
3382    myMax = rtLimits.maxPrio;
3383  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3384    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3385    myMin = iaLimits.minPrio;
3386    myMax = iaLimits.maxPrio;
3387    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3388  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3389    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3390    myMin = tsLimits.minPrio;
3391    myMax = tsLimits.maxPrio;
3392    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3393  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3394    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3395    myMin = fxLimits.minPrio;
3396    myMax = fxLimits.maxPrio;
3397    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3398  } else {
3399    // No clue - punt
3400    if (ThreadPriorityVerbose) {
3401      tty->print_cr("Unknown scheduling class: %s ... \n",
3402                    ClassInfo.pc_clname);
3403    }
3404    return EINVAL;      // no clue, punt
3405  }
3406
3407  if (ThreadPriorityVerbose) {
3408    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3409  }
3410
3411  priocntl_enable = true;  // Enable changing priorities
3412  return 0;
3413}
3414
3415#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3416#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3417#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3418#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3419
3420
3421// scale_to_lwp_priority
3422//
3423// Convert from the libthread "thr_setprio" scale to our current
3424// lwp scheduling class scale.
3425//
3426static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3427  int v;
3428
3429  if (x == 127) return rMax;            // avoid round-down
3430  v = (((x*(rMax-rMin)))/128)+rMin;
3431  return v;
3432}
3433
3434
3435// set_lwp_class_and_priority
3436int set_lwp_class_and_priority(int ThreadID, int lwpid,
3437                               int newPrio, int new_class, bool scale) {
3438  int rslt;
3439  int Actual, Expected, prv;
3440  pcparms_t ParmInfo;                   // for GET-SET
3441#ifdef ASSERT
3442  pcparms_t ReadBack;                   // for readback
3443#endif
3444
3445  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3446  // Query current values.
3447  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3448  // Cache "pcparms_t" in global ParmCache.
3449  // TODO: elide set-to-same-value
3450
3451  // If something went wrong on init, don't change priorities.
3452  if (!priocntl_enable) {
3453    if (ThreadPriorityVerbose) {
3454      tty->print_cr("Trying to set priority but init failed, ignoring");
3455    }
3456    return EINVAL;
3457  }
3458
3459  // If lwp hasn't started yet, just return
3460  // the _start routine will call us again.
3461  if (lwpid <= 0) {
3462    if (ThreadPriorityVerbose) {
3463      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3464                    INTPTR_FORMAT " to %d, lwpid not set",
3465                    ThreadID, newPrio);
3466    }
3467    return 0;
3468  }
3469
3470  if (ThreadPriorityVerbose) {
3471    tty->print_cr ("set_lwp_class_and_priority("
3472                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3473                   ThreadID, lwpid, newPrio);
3474  }
3475
3476  memset(&ParmInfo, 0, sizeof(pcparms_t));
3477  ParmInfo.pc_cid = PC_CLNULL;
3478  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3479  if (rslt < 0) return errno;
3480
3481  int cur_class = ParmInfo.pc_cid;
3482  ParmInfo.pc_cid = (id_t)new_class;
3483
3484  if (new_class == rtLimits.schedPolicy) {
3485    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3486    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3487                                                       rtLimits.maxPrio, newPrio)
3488                               : newPrio;
3489    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3490    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3491    if (ThreadPriorityVerbose) {
3492      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3493    }
3494  } else if (new_class == iaLimits.schedPolicy) {
3495    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3496    int maxClamped     = MIN2(iaLimits.maxPrio,
3497                              cur_class == new_class
3498                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3499    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3500                                                       maxClamped, newPrio)
3501                               : newPrio;
3502    iaInfo->ia_uprilim = cur_class == new_class
3503                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3504    iaInfo->ia_mode    = IA_NOCHANGE;
3505    if (ThreadPriorityVerbose) {
3506      tty->print_cr("IA: [%d...%d] %d->%d\n",
3507                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3508    }
3509  } else if (new_class == tsLimits.schedPolicy) {
3510    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3511    int maxClamped     = MIN2(tsLimits.maxPrio,
3512                              cur_class == new_class
3513                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3514    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3515                                                       maxClamped, newPrio)
3516                               : newPrio;
3517    tsInfo->ts_uprilim = cur_class == new_class
3518                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3519    if (ThreadPriorityVerbose) {
3520      tty->print_cr("TS: [%d...%d] %d->%d\n",
3521                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3522    }
3523  } else if (new_class == fxLimits.schedPolicy) {
3524    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3525    int maxClamped     = MIN2(fxLimits.maxPrio,
3526                              cur_class == new_class
3527                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3528    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3529                                                       maxClamped, newPrio)
3530                               : newPrio;
3531    fxInfo->fx_uprilim = cur_class == new_class
3532                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3533    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3534    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3535    if (ThreadPriorityVerbose) {
3536      tty->print_cr("FX: [%d...%d] %d->%d\n",
3537                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3538    }
3539  } else {
3540    if (ThreadPriorityVerbose) {
3541      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3542    }
3543    return EINVAL;    // no clue, punt
3544  }
3545
3546  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3547  if (ThreadPriorityVerbose && rslt) {
3548    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3549  }
3550  if (rslt < 0) return errno;
3551
3552#ifdef ASSERT
3553  // Sanity check: read back what we just attempted to set.
3554  // In theory it could have changed in the interim ...
3555  //
3556  // The priocntl system call is tricky.
3557  // Sometimes it'll validate the priority value argument and
3558  // return EINVAL if unhappy.  At other times it fails silently.
3559  // Readbacks are prudent.
3560
3561  if (!ReadBackValidate) return 0;
3562
3563  memset(&ReadBack, 0, sizeof(pcparms_t));
3564  ReadBack.pc_cid = PC_CLNULL;
3565  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3566  assert(rslt >= 0, "priocntl failed");
3567  Actual = Expected = 0xBAD;
3568  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3569  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3570    Actual   = RTPRI(ReadBack)->rt_pri;
3571    Expected = RTPRI(ParmInfo)->rt_pri;
3572  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3573    Actual   = IAPRI(ReadBack)->ia_upri;
3574    Expected = IAPRI(ParmInfo)->ia_upri;
3575  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3576    Actual   = TSPRI(ReadBack)->ts_upri;
3577    Expected = TSPRI(ParmInfo)->ts_upri;
3578  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3579    Actual   = FXPRI(ReadBack)->fx_upri;
3580    Expected = FXPRI(ParmInfo)->fx_upri;
3581  } else {
3582    if (ThreadPriorityVerbose) {
3583      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3584                    ParmInfo.pc_cid);
3585    }
3586  }
3587
3588  if (Actual != Expected) {
3589    if (ThreadPriorityVerbose) {
3590      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3591                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3592    }
3593  }
3594#endif
3595
3596  return 0;
3597}
3598
3599// Solaris only gives access to 128 real priorities at a time,
3600// so we expand Java's ten to fill this range.  This would be better
3601// if we dynamically adjusted relative priorities.
3602//
3603// The ThreadPriorityPolicy option allows us to select 2 different
3604// priority scales.
3605//
3606// ThreadPriorityPolicy=0
3607// Since the Solaris' default priority is MaximumPriority, we do not
3608// set a priority lower than Max unless a priority lower than
3609// NormPriority is requested.
3610//
3611// ThreadPriorityPolicy=1
3612// This mode causes the priority table to get filled with
3613// linear values.  NormPriority get's mapped to 50% of the
3614// Maximum priority an so on.  This will cause VM threads
3615// to get unfair treatment against other Solaris processes
3616// which do not explicitly alter their thread priorities.
3617
3618int os::java_to_os_priority[CriticalPriority + 1] = {
3619  -99999,         // 0 Entry should never be used
3620
3621  0,              // 1 MinPriority
3622  32,             // 2
3623  64,             // 3
3624
3625  96,             // 4
3626  127,            // 5 NormPriority
3627  127,            // 6
3628
3629  127,            // 7
3630  127,            // 8
3631  127,            // 9 NearMaxPriority
3632
3633  127,            // 10 MaxPriority
3634
3635  -criticalPrio   // 11 CriticalPriority
3636};
3637
3638OSReturn os::set_native_priority(Thread* thread, int newpri) {
3639  OSThread* osthread = thread->osthread();
3640
3641  // Save requested priority in case the thread hasn't been started
3642  osthread->set_native_priority(newpri);
3643
3644  // Check for critical priority request
3645  bool fxcritical = false;
3646  if (newpri == -criticalPrio) {
3647    fxcritical = true;
3648    newpri = criticalPrio;
3649  }
3650
3651  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3652  if (!UseThreadPriorities) return OS_OK;
3653
3654  int status = 0;
3655
3656  if (!fxcritical) {
3657    // Use thr_setprio only if we have a priority that thr_setprio understands
3658    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3659  }
3660
3661  int lwp_status =
3662          set_lwp_class_and_priority(osthread->thread_id(),
3663                                     osthread->lwp_id(),
3664                                     newpri,
3665                                     fxcritical ? fxLimits.schedPolicy : myClass,
3666                                     !fxcritical);
3667  if (lwp_status != 0 && fxcritical) {
3668    // Try again, this time without changing the scheduling class
3669    newpri = java_MaxPriority_to_os_priority;
3670    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3671                                            osthread->lwp_id(),
3672                                            newpri, myClass, false);
3673  }
3674  status |= lwp_status;
3675  return (status == 0) ? OS_OK : OS_ERR;
3676}
3677
3678
3679OSReturn os::get_native_priority(const Thread* const thread,
3680                                 int *priority_ptr) {
3681  int p;
3682  if (!UseThreadPriorities) {
3683    *priority_ptr = NormalPriority;
3684    return OS_OK;
3685  }
3686  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3687  if (status != 0) {
3688    return OS_ERR;
3689  }
3690  *priority_ptr = p;
3691  return OS_OK;
3692}
3693
3694
3695// Hint to the underlying OS that a task switch would not be good.
3696// Void return because it's a hint and can fail.
3697void os::hint_no_preempt() {
3698  schedctl_start(schedctl_init());
3699}
3700
3701static void resume_clear_context(OSThread *osthread) {
3702  osthread->set_ucontext(NULL);
3703}
3704
3705static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3706  osthread->set_ucontext(context);
3707}
3708
3709static Semaphore sr_semaphore;
3710
3711void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3712  // Save and restore errno to avoid confusing native code with EINTR
3713  // after sigsuspend.
3714  int old_errno = errno;
3715
3716  OSThread* osthread = thread->osthread();
3717  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3718
3719  os::SuspendResume::State current = osthread->sr.state();
3720  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3721    suspend_save_context(osthread, uc);
3722
3723    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3724    os::SuspendResume::State state = osthread->sr.suspended();
3725    if (state == os::SuspendResume::SR_SUSPENDED) {
3726      sigset_t suspend_set;  // signals for sigsuspend()
3727
3728      // get current set of blocked signals and unblock resume signal
3729      thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
3730      sigdelset(&suspend_set, os::Solaris::SIGasync());
3731
3732      sr_semaphore.signal();
3733      // wait here until we are resumed
3734      while (1) {
3735        sigsuspend(&suspend_set);
3736
3737        os::SuspendResume::State result = osthread->sr.running();
3738        if (result == os::SuspendResume::SR_RUNNING) {
3739          sr_semaphore.signal();
3740          break;
3741        }
3742      }
3743
3744    } else if (state == os::SuspendResume::SR_RUNNING) {
3745      // request was cancelled, continue
3746    } else {
3747      ShouldNotReachHere();
3748    }
3749
3750    resume_clear_context(osthread);
3751  } else if (current == os::SuspendResume::SR_RUNNING) {
3752    // request was cancelled, continue
3753  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3754    // ignore
3755  } else {
3756    // ignore
3757  }
3758
3759  errno = old_errno;
3760}
3761
3762void os::print_statistics() {
3763}
3764
3765int os::message_box(const char* title, const char* message) {
3766  int i;
3767  fdStream err(defaultStream::error_fd());
3768  for (i = 0; i < 78; i++) err.print_raw("=");
3769  err.cr();
3770  err.print_raw_cr(title);
3771  for (i = 0; i < 78; i++) err.print_raw("-");
3772  err.cr();
3773  err.print_raw_cr(message);
3774  for (i = 0; i < 78; i++) err.print_raw("=");
3775  err.cr();
3776
3777  char buf[16];
3778  // Prevent process from exiting upon "read error" without consuming all CPU
3779  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3780
3781  return buf[0] == 'y' || buf[0] == 'Y';
3782}
3783
3784static int sr_notify(OSThread* osthread) {
3785  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3786  assert_status(status == 0, status, "thr_kill");
3787  return status;
3788}
3789
3790// "Randomly" selected value for how long we want to spin
3791// before bailing out on suspending a thread, also how often
3792// we send a signal to a thread we want to resume
3793static const int RANDOMLY_LARGE_INTEGER = 1000000;
3794static const int RANDOMLY_LARGE_INTEGER2 = 100;
3795
3796static bool do_suspend(OSThread* osthread) {
3797  assert(osthread->sr.is_running(), "thread should be running");
3798  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3799
3800  // mark as suspended and send signal
3801  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3802    // failed to switch, state wasn't running?
3803    ShouldNotReachHere();
3804    return false;
3805  }
3806
3807  if (sr_notify(osthread) != 0) {
3808    ShouldNotReachHere();
3809  }
3810
3811  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3812  while (true) {
3813    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3814      break;
3815    } else {
3816      // timeout
3817      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3818      if (cancelled == os::SuspendResume::SR_RUNNING) {
3819        return false;
3820      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3821        // make sure that we consume the signal on the semaphore as well
3822        sr_semaphore.wait();
3823        break;
3824      } else {
3825        ShouldNotReachHere();
3826        return false;
3827      }
3828    }
3829  }
3830
3831  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3832  return true;
3833}
3834
3835static void do_resume(OSThread* osthread) {
3836  assert(osthread->sr.is_suspended(), "thread should be suspended");
3837  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3838
3839  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3840    // failed to switch to WAKEUP_REQUEST
3841    ShouldNotReachHere();
3842    return;
3843  }
3844
3845  while (true) {
3846    if (sr_notify(osthread) == 0) {
3847      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3848        if (osthread->sr.is_running()) {
3849          return;
3850        }
3851      }
3852    } else {
3853      ShouldNotReachHere();
3854    }
3855  }
3856
3857  guarantee(osthread->sr.is_running(), "Must be running!");
3858}
3859
3860void os::SuspendedThreadTask::internal_do_task() {
3861  if (do_suspend(_thread->osthread())) {
3862    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3863    do_task(context);
3864    do_resume(_thread->osthread());
3865  }
3866}
3867
3868class PcFetcher : public os::SuspendedThreadTask {
3869 public:
3870  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3871  ExtendedPC result();
3872 protected:
3873  void do_task(const os::SuspendedThreadTaskContext& context);
3874 private:
3875  ExtendedPC _epc;
3876};
3877
3878ExtendedPC PcFetcher::result() {
3879  guarantee(is_done(), "task is not done yet.");
3880  return _epc;
3881}
3882
3883void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3884  Thread* thread = context.thread();
3885  OSThread* osthread = thread->osthread();
3886  if (osthread->ucontext() != NULL) {
3887    _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
3888  } else {
3889    // NULL context is unexpected, double-check this is the VMThread
3890    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3891  }
3892}
3893
3894// A lightweight implementation that does not suspend the target thread and
3895// thus returns only a hint. Used for profiling only!
3896ExtendedPC os::get_thread_pc(Thread* thread) {
3897  // Make sure that it is called by the watcher and the Threads lock is owned.
3898  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3899  // For now, is only used to profile the VM Thread
3900  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3901  PcFetcher fetcher(thread);
3902  fetcher.run();
3903  return fetcher.result();
3904}
3905
3906
3907// This does not do anything on Solaris. This is basically a hook for being
3908// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3909void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3910                              methodHandle* method, JavaCallArguments* args,
3911                              Thread* thread) {
3912  f(value, method, args, thread);
3913}
3914
3915// This routine may be used by user applications as a "hook" to catch signals.
3916// The user-defined signal handler must pass unrecognized signals to this
3917// routine, and if it returns true (non-zero), then the signal handler must
3918// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3919// routine will never retun false (zero), but instead will execute a VM panic
3920// routine kill the process.
3921//
3922// If this routine returns false, it is OK to call it again.  This allows
3923// the user-defined signal handler to perform checks either before or after
3924// the VM performs its own checks.  Naturally, the user code would be making
3925// a serious error if it tried to handle an exception (such as a null check
3926// or breakpoint) that the VM was generating for its own correct operation.
3927//
3928// This routine may recognize any of the following kinds of signals:
3929// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3930// os::Solaris::SIGasync
3931// It should be consulted by handlers for any of those signals.
3932// It explicitly does not recognize os::Solaris::SIGinterrupt
3933//
3934// The caller of this routine must pass in the three arguments supplied
3935// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3936// field of the structure passed to sigaction().  This routine assumes that
3937// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3938//
3939// Note that the VM will print warnings if it detects conflicting signal
3940// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3941//
3942extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3943                                                   siginfo_t* siginfo,
3944                                                   void* ucontext,
3945                                                   int abort_if_unrecognized);
3946
3947
3948void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3949  int orig_errno = errno;  // Preserve errno value over signal handler.
3950  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3951  errno = orig_errno;
3952}
3953
3954// Do not delete - if guarantee is ever removed,  a signal handler (even empty)
3955// is needed to provoke threads blocked on IO to return an EINTR
3956// Note: this explicitly does NOT call JVM_handle_solaris_signal and
3957// does NOT participate in signal chaining due to requirement for
3958// NOT setting SA_RESTART to make EINTR work.
3959extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
3960  if (UseSignalChaining) {
3961    struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
3962    if (actp && actp->sa_handler) {
3963      vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
3964    }
3965  }
3966}
3967
3968// This boolean allows users to forward their own non-matching signals
3969// to JVM_handle_solaris_signal, harmlessly.
3970bool os::Solaris::signal_handlers_are_installed = false;
3971
3972// For signal-chaining
3973bool os::Solaris::libjsig_is_loaded = false;
3974typedef struct sigaction *(*get_signal_t)(int);
3975get_signal_t os::Solaris::get_signal_action = NULL;
3976
3977struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3978  struct sigaction *actp = NULL;
3979
3980  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3981    // Retrieve the old signal handler from libjsig
3982    actp = (*get_signal_action)(sig);
3983  }
3984  if (actp == NULL) {
3985    // Retrieve the preinstalled signal handler from jvm
3986    actp = get_preinstalled_handler(sig);
3987  }
3988
3989  return actp;
3990}
3991
3992static bool call_chained_handler(struct sigaction *actp, int sig,
3993                                 siginfo_t *siginfo, void *context) {
3994  // Call the old signal handler
3995  if (actp->sa_handler == SIG_DFL) {
3996    // It's more reasonable to let jvm treat it as an unexpected exception
3997    // instead of taking the default action.
3998    return false;
3999  } else if (actp->sa_handler != SIG_IGN) {
4000    if ((actp->sa_flags & SA_NODEFER) == 0) {
4001      // automaticlly block the signal
4002      sigaddset(&(actp->sa_mask), sig);
4003    }
4004
4005    sa_handler_t hand;
4006    sa_sigaction_t sa;
4007    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4008    // retrieve the chained handler
4009    if (siginfo_flag_set) {
4010      sa = actp->sa_sigaction;
4011    } else {
4012      hand = actp->sa_handler;
4013    }
4014
4015    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4016      actp->sa_handler = SIG_DFL;
4017    }
4018
4019    // try to honor the signal mask
4020    sigset_t oset;
4021    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4022
4023    // call into the chained handler
4024    if (siginfo_flag_set) {
4025      (*sa)(sig, siginfo, context);
4026    } else {
4027      (*hand)(sig);
4028    }
4029
4030    // restore the signal mask
4031    thr_sigsetmask(SIG_SETMASK, &oset, 0);
4032  }
4033  // Tell jvm's signal handler the signal is taken care of.
4034  return true;
4035}
4036
4037bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4038  bool chained = false;
4039  // signal-chaining
4040  if (UseSignalChaining) {
4041    struct sigaction *actp = get_chained_signal_action(sig);
4042    if (actp != NULL) {
4043      chained = call_chained_handler(actp, sig, siginfo, context);
4044    }
4045  }
4046  return chained;
4047}
4048
4049struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
4050  assert((chainedsigactions != (struct sigaction *)NULL) &&
4051         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
4052  if (preinstalled_sigs[sig] != 0) {
4053    return &chainedsigactions[sig];
4054  }
4055  return NULL;
4056}
4057
4058void os::Solaris::save_preinstalled_handler(int sig,
4059                                            struct sigaction& oldAct) {
4060  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
4061  assert((chainedsigactions != (struct sigaction *)NULL) &&
4062         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
4063  chainedsigactions[sig] = oldAct;
4064  preinstalled_sigs[sig] = 1;
4065}
4066
4067void os::Solaris::set_signal_handler(int sig, bool set_installed,
4068                                     bool oktochain) {
4069  // Check for overwrite.
4070  struct sigaction oldAct;
4071  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4072  void* oldhand =
4073      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4074                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4075  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4076      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4077      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
4078    if (AllowUserSignalHandlers || !set_installed) {
4079      // Do not overwrite; user takes responsibility to forward to us.
4080      return;
4081    } else if (UseSignalChaining) {
4082      if (oktochain) {
4083        // save the old handler in jvm
4084        save_preinstalled_handler(sig, oldAct);
4085      } else {
4086        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
4087      }
4088      // libjsig also interposes the sigaction() call below and saves the
4089      // old sigaction on it own.
4090    } else {
4091      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4092                    "%#lx for signal %d.", (long)oldhand, sig));
4093    }
4094  }
4095
4096  struct sigaction sigAct;
4097  sigfillset(&(sigAct.sa_mask));
4098  sigAct.sa_handler = SIG_DFL;
4099
4100  sigAct.sa_sigaction = signalHandler;
4101  // Handle SIGSEGV on alternate signal stack if
4102  // not using stack banging
4103  if (!UseStackBanging && sig == SIGSEGV) {
4104    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4105  } else if (sig == os::Solaris::SIGinterrupt()) {
4106    // Interruptible i/o requires SA_RESTART cleared so EINTR
4107    // is returned instead of restarting system calls
4108    sigemptyset(&sigAct.sa_mask);
4109    sigAct.sa_handler = NULL;
4110    sigAct.sa_flags = SA_SIGINFO;
4111    sigAct.sa_sigaction = sigINTRHandler;
4112  } else {
4113    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4114  }
4115  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4116
4117  sigaction(sig, &sigAct, &oldAct);
4118
4119  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4120                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4121  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4122}
4123
4124
4125#define DO_SIGNAL_CHECK(sig)                      \
4126  do {                                            \
4127    if (!sigismember(&check_signal_done, sig)) {  \
4128      os::Solaris::check_signal_handler(sig);     \
4129    }                                             \
4130  } while (0)
4131
4132// This method is a periodic task to check for misbehaving JNI applications
4133// under CheckJNI, we can add any periodic checks here
4134
4135void os::run_periodic_checks() {
4136  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4137  // thereby preventing a NULL checks.
4138  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
4139
4140  if (check_signals == false) return;
4141
4142  // SEGV and BUS if overridden could potentially prevent
4143  // generation of hs*.log in the event of a crash, debugging
4144  // such a case can be very challenging, so we absolutely
4145  // check for the following for a good measure:
4146  DO_SIGNAL_CHECK(SIGSEGV);
4147  DO_SIGNAL_CHECK(SIGILL);
4148  DO_SIGNAL_CHECK(SIGFPE);
4149  DO_SIGNAL_CHECK(SIGBUS);
4150  DO_SIGNAL_CHECK(SIGPIPE);
4151  DO_SIGNAL_CHECK(SIGXFSZ);
4152
4153  // ReduceSignalUsage allows the user to override these handlers
4154  // see comments at the very top and jvm_solaris.h
4155  if (!ReduceSignalUsage) {
4156    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4157    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4158    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4159    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4160  }
4161
4162  // See comments above for using JVM1/JVM2 and UseAltSigs
4163  DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
4164  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4165
4166}
4167
4168typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4169
4170static os_sigaction_t os_sigaction = NULL;
4171
4172void os::Solaris::check_signal_handler(int sig) {
4173  char buf[O_BUFLEN];
4174  address jvmHandler = NULL;
4175
4176  struct sigaction act;
4177  if (os_sigaction == NULL) {
4178    // only trust the default sigaction, in case it has been interposed
4179    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4180    if (os_sigaction == NULL) return;
4181  }
4182
4183  os_sigaction(sig, (struct sigaction*)NULL, &act);
4184
4185  address thisHandler = (act.sa_flags & SA_SIGINFO)
4186    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4187    : CAST_FROM_FN_PTR(address, act.sa_handler);
4188
4189
4190  switch (sig) {
4191  case SIGSEGV:
4192  case SIGBUS:
4193  case SIGFPE:
4194  case SIGPIPE:
4195  case SIGXFSZ:
4196  case SIGILL:
4197    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4198    break;
4199
4200  case SHUTDOWN1_SIGNAL:
4201  case SHUTDOWN2_SIGNAL:
4202  case SHUTDOWN3_SIGNAL:
4203  case BREAK_SIGNAL:
4204    jvmHandler = (address)user_handler();
4205    break;
4206
4207  default:
4208    int intrsig = os::Solaris::SIGinterrupt();
4209    int asynsig = os::Solaris::SIGasync();
4210
4211    if (sig == intrsig) {
4212      jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
4213    } else if (sig == asynsig) {
4214      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4215    } else {
4216      return;
4217    }
4218    break;
4219  }
4220
4221
4222  if (thisHandler != jvmHandler) {
4223    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4224    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4225    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4226    // No need to check this sig any longer
4227    sigaddset(&check_signal_done, sig);
4228    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4229    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4230      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4231                    exception_name(sig, buf, O_BUFLEN));
4232    }
4233  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4234    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4235    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4236    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4237    // No need to check this sig any longer
4238    sigaddset(&check_signal_done, sig);
4239  }
4240
4241  // Print all the signal handler state
4242  if (sigismember(&check_signal_done, sig)) {
4243    print_signal_handlers(tty, buf, O_BUFLEN);
4244  }
4245
4246}
4247
4248void os::Solaris::install_signal_handlers() {
4249  bool libjsigdone = false;
4250  signal_handlers_are_installed = true;
4251
4252  // signal-chaining
4253  typedef void (*signal_setting_t)();
4254  signal_setting_t begin_signal_setting = NULL;
4255  signal_setting_t end_signal_setting = NULL;
4256  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4257                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4258  if (begin_signal_setting != NULL) {
4259    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4260                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4261    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4262                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4263    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4264                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4265    libjsig_is_loaded = true;
4266    if (os::Solaris::get_libjsig_version != NULL) {
4267      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4268    }
4269    assert(UseSignalChaining, "should enable signal-chaining");
4270  }
4271  if (libjsig_is_loaded) {
4272    // Tell libjsig jvm is setting signal handlers
4273    (*begin_signal_setting)();
4274  }
4275
4276  set_signal_handler(SIGSEGV, true, true);
4277  set_signal_handler(SIGPIPE, true, true);
4278  set_signal_handler(SIGXFSZ, true, true);
4279  set_signal_handler(SIGBUS, true, true);
4280  set_signal_handler(SIGILL, true, true);
4281  set_signal_handler(SIGFPE, true, true);
4282
4283
4284  if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4285
4286    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4287    // can not register overridable signals which might be > 32
4288    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4289      // Tell libjsig jvm has finished setting signal handlers
4290      (*end_signal_setting)();
4291      libjsigdone = true;
4292    }
4293  }
4294
4295  // Never ok to chain our SIGinterrupt
4296  set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
4297  set_signal_handler(os::Solaris::SIGasync(), true, true);
4298
4299  if (libjsig_is_loaded && !libjsigdone) {
4300    // Tell libjsig jvm finishes setting signal handlers
4301    (*end_signal_setting)();
4302  }
4303
4304  // We don't activate signal checker if libjsig is in place, we trust ourselves
4305  // and if UserSignalHandler is installed all bets are off.
4306  // Log that signal checking is off only if -verbose:jni is specified.
4307  if (CheckJNICalls) {
4308    if (libjsig_is_loaded) {
4309      if (PrintJNIResolving) {
4310        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4311      }
4312      check_signals = false;
4313    }
4314    if (AllowUserSignalHandlers) {
4315      if (PrintJNIResolving) {
4316        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4317      }
4318      check_signals = false;
4319    }
4320  }
4321}
4322
4323
4324void report_error(const char* file_name, int line_no, const char* title,
4325                  const char* format, ...);
4326
4327const char * signames[] = {
4328  "SIG0",
4329  "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
4330  "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
4331  "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
4332  "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
4333  "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
4334  "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
4335  "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
4336  "SIGCANCEL", "SIGLOST"
4337};
4338
4339const char* os::exception_name(int exception_code, char* buf, size_t size) {
4340  if (0 < exception_code && exception_code <= SIGRTMAX) {
4341    // signal
4342    if (exception_code < sizeof(signames)/sizeof(const char*)) {
4343      jio_snprintf(buf, size, "%s", signames[exception_code]);
4344    } else {
4345      jio_snprintf(buf, size, "SIG%d", exception_code);
4346    }
4347    return buf;
4348  } else {
4349    return NULL;
4350  }
4351}
4352
4353// (Static) wrapper for getisax(2) call.
4354os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4355
4356// (Static) wrappers for the liblgrp API
4357os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4358os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4359os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4360os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4361os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4362os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4363os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4364os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4365os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4366
4367// (Static) wrapper for meminfo() call.
4368os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4369
4370static address resolve_symbol_lazy(const char* name) {
4371  address addr = (address) dlsym(RTLD_DEFAULT, name);
4372  if (addr == NULL) {
4373    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4374    addr = (address) dlsym(RTLD_NEXT, name);
4375  }
4376  return addr;
4377}
4378
4379static address resolve_symbol(const char* name) {
4380  address addr = resolve_symbol_lazy(name);
4381  if (addr == NULL) {
4382    fatal(dlerror());
4383  }
4384  return addr;
4385}
4386
4387void os::Solaris::libthread_init() {
4388  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4389
4390  lwp_priocntl_init();
4391
4392  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4393  if (func == NULL) {
4394    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4395    // Guarantee that this VM is running on an new enough OS (5.6 or
4396    // later) that it will have a new enough libthread.so.
4397    guarantee(func != NULL, "libthread.so is too old.");
4398  }
4399
4400  int size;
4401  void (*handler_info_func)(address *, int *);
4402  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4403  handler_info_func(&handler_start, &size);
4404  handler_end = handler_start + size;
4405}
4406
4407
4408int_fnP_mutex_tP os::Solaris::_mutex_lock;
4409int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4410int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4411int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4412int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4413int os::Solaris::_mutex_scope = USYNC_THREAD;
4414
4415int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4416int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4417int_fnP_cond_tP os::Solaris::_cond_signal;
4418int_fnP_cond_tP os::Solaris::_cond_broadcast;
4419int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4420int_fnP_cond_tP os::Solaris::_cond_destroy;
4421int os::Solaris::_cond_scope = USYNC_THREAD;
4422
4423void os::Solaris::synchronization_init() {
4424  if (UseLWPSynchronization) {
4425    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4426    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4427    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4428    os::Solaris::set_mutex_init(lwp_mutex_init);
4429    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4430    os::Solaris::set_mutex_scope(USYNC_THREAD);
4431
4432    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4433    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4434    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4435    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4436    os::Solaris::set_cond_init(lwp_cond_init);
4437    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4438    os::Solaris::set_cond_scope(USYNC_THREAD);
4439  } else {
4440    os::Solaris::set_mutex_scope(USYNC_THREAD);
4441    os::Solaris::set_cond_scope(USYNC_THREAD);
4442
4443    if (UsePthreads) {
4444      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4445      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4446      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4447      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4448      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4449
4450      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4451      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4452      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4453      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4454      os::Solaris::set_cond_init(pthread_cond_default_init);
4455      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4456    } else {
4457      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4458      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4459      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4460      os::Solaris::set_mutex_init(::mutex_init);
4461      os::Solaris::set_mutex_destroy(::mutex_destroy);
4462
4463      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4464      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4465      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4466      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4467      os::Solaris::set_cond_init(::cond_init);
4468      os::Solaris::set_cond_destroy(::cond_destroy);
4469    }
4470  }
4471}
4472
4473bool os::Solaris::liblgrp_init() {
4474  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4475  if (handle != NULL) {
4476    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4477    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4478    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4479    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4480    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4481    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4482    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4483    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4484                                                      dlsym(handle, "lgrp_cookie_stale")));
4485
4486    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4487    set_lgrp_cookie(c);
4488    return true;
4489  }
4490  return false;
4491}
4492
4493void os::Solaris::misc_sym_init() {
4494  address func;
4495
4496  // getisax
4497  func = resolve_symbol_lazy("getisax");
4498  if (func != NULL) {
4499    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4500  }
4501
4502  // meminfo
4503  func = resolve_symbol_lazy("meminfo");
4504  if (func != NULL) {
4505    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4506  }
4507}
4508
4509uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4510  assert(_getisax != NULL, "_getisax not set");
4511  return _getisax(array, n);
4512}
4513
4514// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4515typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4516static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4517
4518void init_pset_getloadavg_ptr(void) {
4519  pset_getloadavg_ptr =
4520    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4521  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4522    warning("pset_getloadavg function not found");
4523  }
4524}
4525
4526int os::Solaris::_dev_zero_fd = -1;
4527
4528// this is called _before_ the global arguments have been parsed
4529void os::init(void) {
4530  _initial_pid = getpid();
4531
4532  max_hrtime = first_hrtime = gethrtime();
4533
4534  init_random(1234567);
4535
4536  page_size = sysconf(_SC_PAGESIZE);
4537  if (page_size == -1) {
4538    fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
4539                  strerror(errno)));
4540  }
4541  init_page_sizes((size_t) page_size);
4542
4543  Solaris::initialize_system_info();
4544
4545  // Initialize misc. symbols as soon as possible, so we can use them
4546  // if we need them.
4547  Solaris::misc_sym_init();
4548
4549  int fd = ::open("/dev/zero", O_RDWR);
4550  if (fd < 0) {
4551    fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
4552  } else {
4553    Solaris::set_dev_zero_fd(fd);
4554
4555    // Close on exec, child won't inherit.
4556    fcntl(fd, F_SETFD, FD_CLOEXEC);
4557  }
4558
4559  clock_tics_per_sec = CLK_TCK;
4560
4561  // check if dladdr1() exists; dladdr1 can provide more information than
4562  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4563  // and is available on linker patches for 5.7 and 5.8.
4564  // libdl.so must have been loaded, this call is just an entry lookup
4565  void * hdl = dlopen("libdl.so", RTLD_NOW);
4566  if (hdl) {
4567    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4568  }
4569
4570  // (Solaris only) this switches to calls that actually do locking.
4571  ThreadCritical::initialize();
4572
4573  main_thread = thr_self();
4574
4575  // Constant minimum stack size allowed. It must be at least
4576  // the minimum of what the OS supports (thr_min_stack()), and
4577  // enough to allow the thread to get to user bytecode execution.
4578  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4579  // If the pagesize of the VM is greater than 8K determine the appropriate
4580  // number of initial guard pages.  The user can change this with the
4581  // command line arguments, if needed.
4582  if (vm_page_size() > 8*K) {
4583    StackYellowPages = 1;
4584    StackRedPages = 1;
4585    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
4586  }
4587}
4588
4589// To install functions for atexit system call
4590extern "C" {
4591  static void perfMemory_exit_helper() {
4592    perfMemory_exit();
4593  }
4594}
4595
4596// this is called _after_ the global arguments have been parsed
4597jint os::init_2(void) {
4598  // try to enable extended file IO ASAP, see 6431278
4599  os::Solaris::try_enable_extended_io();
4600
4601  // Allocate a single page and mark it as readable for safepoint polling.  Also
4602  // use this first mmap call to check support for MAP_ALIGN.
4603  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4604                                                      page_size,
4605                                                      MAP_PRIVATE | MAP_ALIGN,
4606                                                      PROT_READ);
4607  if (polling_page == NULL) {
4608    has_map_align = false;
4609    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4610                                                PROT_READ);
4611  }
4612
4613  os::set_polling_page(polling_page);
4614
4615#ifndef PRODUCT
4616  if (Verbose && PrintMiscellaneous) {
4617    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4618               (intptr_t)polling_page);
4619  }
4620#endif
4621
4622  if (!UseMembar) {
4623    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4624    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4625    os::set_memory_serialize_page(mem_serialize_page);
4626
4627#ifndef PRODUCT
4628    if (Verbose && PrintMiscellaneous) {
4629      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4630                 (intptr_t)mem_serialize_page);
4631    }
4632#endif
4633  }
4634
4635  // Check minimum allowable stack size for thread creation and to initialize
4636  // the java system classes, including StackOverflowError - depends on page
4637  // size.  Add a page for compiler2 recursion in main thread.
4638  // Add in 2*BytesPerWord times page size to account for VM stack during
4639  // class initialization depending on 32 or 64 bit VM.
4640  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4641                                        (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4642                                        2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4643
4644  size_t threadStackSizeInBytes = ThreadStackSize * K;
4645  if (threadStackSizeInBytes != 0 &&
4646      threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4647    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4648                  os::Solaris::min_stack_allowed/K);
4649    return JNI_ERR;
4650  }
4651
4652  // For 64kbps there will be a 64kb page size, which makes
4653  // the usable default stack size quite a bit less.  Increase the
4654  // stack for 64kb (or any > than 8kb) pages, this increases
4655  // virtual memory fragmentation (since we're not creating the
4656  // stack on a power of 2 boundary.  The real fix for this
4657  // should be to fix the guard page mechanism.
4658
4659  if (vm_page_size() > 8*K) {
4660    threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4661       ? threadStackSizeInBytes +
4662         ((StackYellowPages + StackRedPages) * vm_page_size())
4663       : 0;
4664    ThreadStackSize = threadStackSizeInBytes/K;
4665  }
4666
4667  // Make the stack size a multiple of the page size so that
4668  // the yellow/red zones can be guarded.
4669  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4670                                                vm_page_size()));
4671
4672  Solaris::libthread_init();
4673
4674  if (UseNUMA) {
4675    if (!Solaris::liblgrp_init()) {
4676      UseNUMA = false;
4677    } else {
4678      size_t lgrp_limit = os::numa_get_groups_num();
4679      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4680      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4681      FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
4682      if (lgrp_num < 2) {
4683        // There's only one locality group, disable NUMA.
4684        UseNUMA = false;
4685      }
4686    }
4687    if (!UseNUMA && ForceNUMA) {
4688      UseNUMA = true;
4689    }
4690  }
4691
4692  Solaris::signal_sets_init();
4693  Solaris::init_signal_mem();
4694  Solaris::install_signal_handlers();
4695
4696  if (libjsigversion < JSIG_VERSION_1_4_1) {
4697    Maxlibjsigsigs = OLDMAXSIGNUM;
4698  }
4699
4700  // initialize synchronization primitives to use either thread or
4701  // lwp synchronization (controlled by UseLWPSynchronization)
4702  Solaris::synchronization_init();
4703
4704  if (MaxFDLimit) {
4705    // set the number of file descriptors to max. print out error
4706    // if getrlimit/setrlimit fails but continue regardless.
4707    struct rlimit nbr_files;
4708    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4709    if (status != 0) {
4710      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4711        perror("os::init_2 getrlimit failed");
4712      }
4713    } else {
4714      nbr_files.rlim_cur = nbr_files.rlim_max;
4715      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4716      if (status != 0) {
4717        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4718          perror("os::init_2 setrlimit failed");
4719        }
4720      }
4721    }
4722  }
4723
4724  // Calculate theoretical max. size of Threads to guard gainst
4725  // artifical out-of-memory situations, where all available address-
4726  // space has been reserved by thread stacks. Default stack size is 1Mb.
4727  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4728    JavaThread::stack_size_at_create() : (1*K*K);
4729  assert(pre_thread_stack_size != 0, "Must have a stack");
4730  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4731  // we should start doing Virtual Memory banging. Currently when the threads will
4732  // have used all but 200Mb of space.
4733  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4734  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4735
4736  // at-exit methods are called in the reverse order of their registration.
4737  // In Solaris 7 and earlier, atexit functions are called on return from
4738  // main or as a result of a call to exit(3C). There can be only 32 of
4739  // these functions registered and atexit() does not set errno. In Solaris
4740  // 8 and later, there is no limit to the number of functions registered
4741  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4742  // functions are called upon dlclose(3DL) in addition to return from main
4743  // and exit(3C).
4744
4745  if (PerfAllowAtExitRegistration) {
4746    // only register atexit functions if PerfAllowAtExitRegistration is set.
4747    // atexit functions can be delayed until process exit time, which
4748    // can be problematic for embedded VM situations. Embedded VMs should
4749    // call DestroyJavaVM() to assure that VM resources are released.
4750
4751    // note: perfMemory_exit_helper atexit function may be removed in
4752    // the future if the appropriate cleanup code can be added to the
4753    // VM_Exit VMOperation's doit method.
4754    if (atexit(perfMemory_exit_helper) != 0) {
4755      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4756    }
4757  }
4758
4759  // Init pset_loadavg function pointer
4760  init_pset_getloadavg_ptr();
4761
4762  return JNI_OK;
4763}
4764
4765void os::init_3(void) {
4766  return;
4767}
4768
4769// Mark the polling page as unreadable
4770void os::make_polling_page_unreadable(void) {
4771  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4772    fatal("Could not disable polling page");
4773  }
4774}
4775
4776// Mark the polling page as readable
4777void os::make_polling_page_readable(void) {
4778  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4779    fatal("Could not enable polling page");
4780  }
4781}
4782
4783// OS interface.
4784
4785bool os::check_heap(bool force) { return true; }
4786
4787// Is a (classpath) directory empty?
4788bool os::dir_is_empty(const char* path) {
4789  DIR *dir = NULL;
4790  struct dirent *ptr;
4791
4792  dir = opendir(path);
4793  if (dir == NULL) return true;
4794
4795  // Scan the directory
4796  bool result = true;
4797  char buf[sizeof(struct dirent) + MAX_PATH];
4798  struct dirent *dbuf = (struct dirent *) buf;
4799  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4800    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4801      result = false;
4802    }
4803  }
4804  closedir(dir);
4805  return result;
4806}
4807
4808// This code originates from JDK's sysOpen and open64_w
4809// from src/solaris/hpi/src/system_md.c
4810
4811int os::open(const char *path, int oflag, int mode) {
4812  if (strlen(path) > MAX_PATH - 1) {
4813    errno = ENAMETOOLONG;
4814    return -1;
4815  }
4816  int fd;
4817
4818  fd = ::open64(path, oflag, mode);
4819  if (fd == -1) return -1;
4820
4821  // If the open succeeded, the file might still be a directory
4822  {
4823    struct stat64 buf64;
4824    int ret = ::fstat64(fd, &buf64);
4825    int st_mode = buf64.st_mode;
4826
4827    if (ret != -1) {
4828      if ((st_mode & S_IFMT) == S_IFDIR) {
4829        errno = EISDIR;
4830        ::close(fd);
4831        return -1;
4832      }
4833    } else {
4834      ::close(fd);
4835      return -1;
4836    }
4837  }
4838
4839  // 32-bit Solaris systems suffer from:
4840  //
4841  // - an historical default soft limit of 256 per-process file
4842  //   descriptors that is too low for many Java programs.
4843  //
4844  // - a design flaw where file descriptors created using stdio
4845  //   fopen must be less than 256, _even_ when the first limit above
4846  //   has been raised.  This can cause calls to fopen (but not calls to
4847  //   open, for example) to fail mysteriously, perhaps in 3rd party
4848  //   native code (although the JDK itself uses fopen).  One can hardly
4849  //   criticize them for using this most standard of all functions.
4850  //
4851  // We attempt to make everything work anyways by:
4852  //
4853  // - raising the soft limit on per-process file descriptors beyond
4854  //   256
4855  //
4856  // - As of Solaris 10u4, we can request that Solaris raise the 256
4857  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4858  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4859  //
4860  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4861  //   workaround the bug by remapping non-stdio file descriptors below
4862  //   256 to ones beyond 256, which is done below.
4863  //
4864  // See:
4865  // 1085341: 32-bit stdio routines should support file descriptors >255
4866  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4867  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4868  //          enable_extended_FILE_stdio() in VM initialisation
4869  // Giri Mandalika's blog
4870  // http://technopark02.blogspot.com/2005_05_01_archive.html
4871  //
4872#ifndef  _LP64
4873  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4874    int newfd = ::fcntl(fd, F_DUPFD, 256);
4875    if (newfd != -1) {
4876      ::close(fd);
4877      fd = newfd;
4878    }
4879  }
4880#endif // 32-bit Solaris
4881
4882  // All file descriptors that are opened in the JVM and not
4883  // specifically destined for a subprocess should have the
4884  // close-on-exec flag set.  If we don't set it, then careless 3rd
4885  // party native code might fork and exec without closing all
4886  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4887  // UNIXProcess.c), and this in turn might:
4888  //
4889  // - cause end-of-file to fail to be detected on some file
4890  //   descriptors, resulting in mysterious hangs, or
4891  //
4892  // - might cause an fopen in the subprocess to fail on a system
4893  //   suffering from bug 1085341.
4894  //
4895  // (Yes, the default setting of the close-on-exec flag is a Unix
4896  // design flaw)
4897  //
4898  // See:
4899  // 1085341: 32-bit stdio routines should support file descriptors >255
4900  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4901  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4902  //
4903#ifdef FD_CLOEXEC
4904  {
4905    int flags = ::fcntl(fd, F_GETFD);
4906    if (flags != -1) {
4907      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4908    }
4909  }
4910#endif
4911
4912  return fd;
4913}
4914
4915// create binary file, rewriting existing file if required
4916int os::create_binary_file(const char* path, bool rewrite_existing) {
4917  int oflags = O_WRONLY | O_CREAT;
4918  if (!rewrite_existing) {
4919    oflags |= O_EXCL;
4920  }
4921  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4922}
4923
4924// return current position of file pointer
4925jlong os::current_file_offset(int fd) {
4926  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4927}
4928
4929// move file pointer to the specified offset
4930jlong os::seek_to_file_offset(int fd, jlong offset) {
4931  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4932}
4933
4934jlong os::lseek(int fd, jlong offset, int whence) {
4935  return (jlong) ::lseek64(fd, offset, whence);
4936}
4937
4938char * os::native_path(char *path) {
4939  return path;
4940}
4941
4942int os::ftruncate(int fd, jlong length) {
4943  return ::ftruncate64(fd, length);
4944}
4945
4946int os::fsync(int fd)  {
4947  RESTARTABLE_RETURN_INT(::fsync(fd));
4948}
4949
4950int os::available(int fd, jlong *bytes) {
4951  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4952         "Assumed _thread_in_native");
4953  jlong cur, end;
4954  int mode;
4955  struct stat64 buf64;
4956
4957  if (::fstat64(fd, &buf64) >= 0) {
4958    mode = buf64.st_mode;
4959    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4960      int n,ioctl_return;
4961
4962      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4963      if (ioctl_return>= 0) {
4964        *bytes = n;
4965        return 1;
4966      }
4967    }
4968  }
4969  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4970    return 0;
4971  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4972    return 0;
4973  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4974    return 0;
4975  }
4976  *bytes = end - cur;
4977  return 1;
4978}
4979
4980// Map a block of memory.
4981char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4982                        char *addr, size_t bytes, bool read_only,
4983                        bool allow_exec) {
4984  int prot;
4985  int flags;
4986
4987  if (read_only) {
4988    prot = PROT_READ;
4989    flags = MAP_SHARED;
4990  } else {
4991    prot = PROT_READ | PROT_WRITE;
4992    flags = MAP_PRIVATE;
4993  }
4994
4995  if (allow_exec) {
4996    prot |= PROT_EXEC;
4997  }
4998
4999  if (addr != NULL) {
5000    flags |= MAP_FIXED;
5001  }
5002
5003  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5004                                     fd, file_offset);
5005  if (mapped_address == MAP_FAILED) {
5006    return NULL;
5007  }
5008  return mapped_address;
5009}
5010
5011
5012// Remap a block of memory.
5013char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5014                          char *addr, size_t bytes, bool read_only,
5015                          bool allow_exec) {
5016  // same as map_memory() on this OS
5017  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5018                        allow_exec);
5019}
5020
5021
5022// Unmap a block of memory.
5023bool os::pd_unmap_memory(char* addr, size_t bytes) {
5024  return munmap(addr, bytes) == 0;
5025}
5026
5027void os::pause() {
5028  char filename[MAX_PATH];
5029  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5030    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5031  } else {
5032    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5033  }
5034
5035  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5036  if (fd != -1) {
5037    struct stat buf;
5038    ::close(fd);
5039    while (::stat(filename, &buf) == 0) {
5040      (void)::poll(NULL, 0, 100);
5041    }
5042  } else {
5043    jio_fprintf(stderr,
5044                "Could not open pause file '%s', continuing immediately.\n", filename);
5045  }
5046}
5047
5048#ifndef PRODUCT
5049#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5050// Turn this on if you need to trace synch operations.
5051// Set RECORD_SYNCH_LIMIT to a large-enough value,
5052// and call record_synch_enable and record_synch_disable
5053// around the computation of interest.
5054
5055void record_synch(char* name, bool returning);  // defined below
5056
5057class RecordSynch {
5058  char* _name;
5059 public:
5060  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
5061  ~RecordSynch()                       { record_synch(_name, true); }
5062};
5063
5064#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
5065extern "C" ret name params {                                    \
5066  typedef ret name##_t params;                                  \
5067  static name##_t* implem = NULL;                               \
5068  static int callcount = 0;                                     \
5069  if (implem == NULL) {                                         \
5070    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
5071    if (implem == NULL)  fatal(dlerror());                      \
5072  }                                                             \
5073  ++callcount;                                                  \
5074  RecordSynch _rs(#name);                                       \
5075  inner;                                                        \
5076  return implem args;                                           \
5077}
5078// in dbx, examine callcounts this way:
5079// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
5080
5081#define CHECK_POINTER_OK(p) \
5082  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
5083#define CHECK_MU \
5084  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
5085#define CHECK_CV \
5086  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
5087#define CHECK_P(p) \
5088  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
5089
5090#define CHECK_MUTEX(mutex_op) \
5091  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
5092
5093CHECK_MUTEX(   mutex_lock)
5094CHECK_MUTEX(  _mutex_lock)
5095CHECK_MUTEX( mutex_unlock)
5096CHECK_MUTEX(_mutex_unlock)
5097CHECK_MUTEX( mutex_trylock)
5098CHECK_MUTEX(_mutex_trylock)
5099
5100#define CHECK_COND(cond_op) \
5101  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
5102
5103CHECK_COND( cond_wait);
5104CHECK_COND(_cond_wait);
5105CHECK_COND(_cond_wait_cancel);
5106
5107#define CHECK_COND2(cond_op) \
5108  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
5109
5110CHECK_COND2( cond_timedwait);
5111CHECK_COND2(_cond_timedwait);
5112CHECK_COND2(_cond_timedwait_cancel);
5113
5114// do the _lwp_* versions too
5115#define mutex_t lwp_mutex_t
5116#define cond_t  lwp_cond_t
5117CHECK_MUTEX(  _lwp_mutex_lock)
5118CHECK_MUTEX(  _lwp_mutex_unlock)
5119CHECK_MUTEX(  _lwp_mutex_trylock)
5120CHECK_MUTEX( __lwp_mutex_lock)
5121CHECK_MUTEX( __lwp_mutex_unlock)
5122CHECK_MUTEX( __lwp_mutex_trylock)
5123CHECK_MUTEX(___lwp_mutex_lock)
5124CHECK_MUTEX(___lwp_mutex_unlock)
5125
5126CHECK_COND(  _lwp_cond_wait);
5127CHECK_COND( __lwp_cond_wait);
5128CHECK_COND(___lwp_cond_wait);
5129
5130CHECK_COND2(  _lwp_cond_timedwait);
5131CHECK_COND2( __lwp_cond_timedwait);
5132#undef mutex_t
5133#undef cond_t
5134
5135CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5136CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5137CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5138CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5139CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5140CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5141CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5142CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5143
5144
5145// recording machinery:
5146
5147enum { RECORD_SYNCH_LIMIT = 200 };
5148char* record_synch_name[RECORD_SYNCH_LIMIT];
5149void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5150bool record_synch_returning[RECORD_SYNCH_LIMIT];
5151thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5152int record_synch_count = 0;
5153bool record_synch_enabled = false;
5154
5155// in dbx, examine recorded data this way:
5156// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5157
5158void record_synch(char* name, bool returning) {
5159  if (record_synch_enabled) {
5160    if (record_synch_count < RECORD_SYNCH_LIMIT) {
5161      record_synch_name[record_synch_count] = name;
5162      record_synch_returning[record_synch_count] = returning;
5163      record_synch_thread[record_synch_count] = thr_self();
5164      record_synch_arg0ptr[record_synch_count] = &name;
5165      record_synch_count++;
5166    }
5167    // put more checking code here:
5168    // ...
5169  }
5170}
5171
5172void record_synch_enable() {
5173  // start collecting trace data, if not already doing so
5174  if (!record_synch_enabled)  record_synch_count = 0;
5175  record_synch_enabled = true;
5176}
5177
5178void record_synch_disable() {
5179  // stop collecting trace data
5180  record_synch_enabled = false;
5181}
5182
5183#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5184#endif // PRODUCT
5185
5186const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5187const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5188                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5189
5190
5191// JVMTI & JVM monitoring and management support
5192// The thread_cpu_time() and current_thread_cpu_time() are only
5193// supported if is_thread_cpu_time_supported() returns true.
5194// They are not supported on Solaris T1.
5195
5196// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5197// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5198// of a thread.
5199//
5200// current_thread_cpu_time() and thread_cpu_time(Thread *)
5201// returns the fast estimate available on the platform.
5202
5203// hrtime_t gethrvtime() return value includes
5204// user time but does not include system time
5205jlong os::current_thread_cpu_time() {
5206  return (jlong) gethrvtime();
5207}
5208
5209jlong os::thread_cpu_time(Thread *thread) {
5210  // return user level CPU time only to be consistent with
5211  // what current_thread_cpu_time returns.
5212  // thread_cpu_time_info() must be changed if this changes
5213  return os::thread_cpu_time(thread, false /* user time only */);
5214}
5215
5216jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5217  if (user_sys_cpu_time) {
5218    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5219  } else {
5220    return os::current_thread_cpu_time();
5221  }
5222}
5223
5224jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5225  char proc_name[64];
5226  int count;
5227  prusage_t prusage;
5228  jlong lwp_time;
5229  int fd;
5230
5231  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5232          getpid(),
5233          thread->osthread()->lwp_id());
5234  fd = ::open(proc_name, O_RDONLY);
5235  if (fd == -1) return -1;
5236
5237  do {
5238    count = ::pread(fd,
5239                    (void *)&prusage.pr_utime,
5240                    thr_time_size,
5241                    thr_time_off);
5242  } while (count < 0 && errno == EINTR);
5243  ::close(fd);
5244  if (count < 0) return -1;
5245
5246  if (user_sys_cpu_time) {
5247    // user + system CPU time
5248    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5249                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5250                 (jlong)prusage.pr_stime.tv_nsec +
5251                 (jlong)prusage.pr_utime.tv_nsec;
5252  } else {
5253    // user level CPU time only
5254    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5255                (jlong)prusage.pr_utime.tv_nsec;
5256  }
5257
5258  return (lwp_time);
5259}
5260
5261void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5262  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5263  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5264  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5265  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5266}
5267
5268void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5269  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5270  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5271  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5272  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5273}
5274
5275bool os::is_thread_cpu_time_supported() {
5276  return true;
5277}
5278
5279// System loadavg support.  Returns -1 if load average cannot be obtained.
5280// Return the load average for our processor set if the primitive exists
5281// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5282int os::loadavg(double loadavg[], int nelem) {
5283  if (pset_getloadavg_ptr != NULL) {
5284    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5285  } else {
5286    return ::getloadavg(loadavg, nelem);
5287  }
5288}
5289
5290//---------------------------------------------------------------------------------
5291
5292bool os::find(address addr, outputStream* st) {
5293  Dl_info dlinfo;
5294  memset(&dlinfo, 0, sizeof(dlinfo));
5295  if (dladdr(addr, &dlinfo) != 0) {
5296    st->print(PTR_FORMAT ": ", addr);
5297    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5298      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5299    } else if (dlinfo.dli_fbase != NULL) {
5300      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5301    } else {
5302      st->print("<absolute address>");
5303    }
5304    if (dlinfo.dli_fname != NULL) {
5305      st->print(" in %s", dlinfo.dli_fname);
5306    }
5307    if (dlinfo.dli_fbase != NULL) {
5308      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5309    }
5310    st->cr();
5311
5312    if (Verbose) {
5313      // decode some bytes around the PC
5314      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5315      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5316      address       lowest = (address) dlinfo.dli_sname;
5317      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5318      if (begin < lowest)  begin = lowest;
5319      Dl_info dlinfo2;
5320      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5321          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5322        end = (address) dlinfo2.dli_saddr;
5323      }
5324      Disassembler::decode(begin, end, st);
5325    }
5326    return true;
5327  }
5328  return false;
5329}
5330
5331// Following function has been added to support HotSparc's libjvm.so running
5332// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5333// src/solaris/hpi/native_threads in the EVM codebase.
5334//
5335// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5336// libraries and should thus be removed. We will leave it behind for a while
5337// until we no longer want to able to run on top of 1.3.0 Solaris production
5338// JDK. See 4341971.
5339
5340#define STACK_SLACK 0x800
5341
5342extern "C" {
5343  intptr_t sysThreadAvailableStackWithSlack() {
5344    stack_t st;
5345    intptr_t retval, stack_top;
5346    retval = thr_stksegment(&st);
5347    assert(retval == 0, "incorrect return value from thr_stksegment");
5348    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5349    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5350    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5351    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5352  }
5353}
5354
5355// ObjectMonitor park-unpark infrastructure ...
5356//
5357// We implement Solaris and Linux PlatformEvents with the
5358// obvious condvar-mutex-flag triple.
5359// Another alternative that works quite well is pipes:
5360// Each PlatformEvent consists of a pipe-pair.
5361// The thread associated with the PlatformEvent
5362// calls park(), which reads from the input end of the pipe.
5363// Unpark() writes into the other end of the pipe.
5364// The write-side of the pipe must be set NDELAY.
5365// Unfortunately pipes consume a large # of handles.
5366// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5367// Using pipes for the 1st few threads might be workable, however.
5368//
5369// park() is permitted to return spuriously.
5370// Callers of park() should wrap the call to park() in
5371// an appropriate loop.  A litmus test for the correct
5372// usage of park is the following: if park() were modified
5373// to immediately return 0 your code should still work,
5374// albeit degenerating to a spin loop.
5375//
5376// In a sense, park()-unpark() just provides more polite spinning
5377// and polling with the key difference over naive spinning being
5378// that a parked thread needs to be explicitly unparked() in order
5379// to wake up and to poll the underlying condition.
5380//
5381// Assumption:
5382//    Only one parker can exist on an event, which is why we allocate
5383//    them per-thread. Multiple unparkers can coexist.
5384//
5385// _Event transitions in park()
5386//   -1 => -1 : illegal
5387//    1 =>  0 : pass - return immediately
5388//    0 => -1 : block; then set _Event to 0 before returning
5389//
5390// _Event transitions in unpark()
5391//    0 => 1 : just return
5392//    1 => 1 : just return
5393//   -1 => either 0 or 1; must signal target thread
5394//         That is, we can safely transition _Event from -1 to either
5395//         0 or 1.
5396//
5397// _Event serves as a restricted-range semaphore.
5398//   -1 : thread is blocked, i.e. there is a waiter
5399//    0 : neutral: thread is running or ready,
5400//        could have been signaled after a wait started
5401//    1 : signaled - thread is running or ready
5402//
5403// Another possible encoding of _Event would be with
5404// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5405//
5406// TODO-FIXME: add DTRACE probes for:
5407// 1.   Tx parks
5408// 2.   Ty unparks Tx
5409// 3.   Tx resumes from park
5410
5411
5412// value determined through experimentation
5413#define ROUNDINGFIX 11
5414
5415// utility to compute the abstime argument to timedwait.
5416// TODO-FIXME: switch from compute_abstime() to unpackTime().
5417
5418static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5419  // millis is the relative timeout time
5420  // abstime will be the absolute timeout time
5421  if (millis < 0)  millis = 0;
5422  struct timeval now;
5423  int status = gettimeofday(&now, NULL);
5424  assert(status == 0, "gettimeofday");
5425  jlong seconds = millis / 1000;
5426  jlong max_wait_period;
5427
5428  if (UseLWPSynchronization) {
5429    // forward port of fix for 4275818 (not sleeping long enough)
5430    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5431    // _lwp_cond_timedwait() used a round_down algorithm rather
5432    // than a round_up. For millis less than our roundfactor
5433    // it rounded down to 0 which doesn't meet the spec.
5434    // For millis > roundfactor we may return a bit sooner, but
5435    // since we can not accurately identify the patch level and
5436    // this has already been fixed in Solaris 9 and 8 we will
5437    // leave it alone rather than always rounding down.
5438
5439    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5440    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5441    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5442    max_wait_period = 21000000;
5443  } else {
5444    max_wait_period = 50000000;
5445  }
5446  millis %= 1000;
5447  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5448    seconds = max_wait_period;
5449  }
5450  abstime->tv_sec = now.tv_sec  + seconds;
5451  long       usec = now.tv_usec + millis * 1000;
5452  if (usec >= 1000000) {
5453    abstime->tv_sec += 1;
5454    usec -= 1000000;
5455  }
5456  abstime->tv_nsec = usec * 1000;
5457  return abstime;
5458}
5459
5460void os::PlatformEvent::park() {           // AKA: down()
5461  // Transitions for _Event:
5462  //   -1 => -1 : illegal
5463  //    1 =>  0 : pass - return immediately
5464  //    0 => -1 : block; then set _Event to 0 before returning
5465
5466  // Invariant: Only the thread associated with the Event/PlatformEvent
5467  // may call park().
5468  assert(_nParked == 0, "invariant");
5469
5470  int v;
5471  for (;;) {
5472    v = _Event;
5473    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5474  }
5475  guarantee(v >= 0, "invariant");
5476  if (v == 0) {
5477    // Do this the hard way by blocking ...
5478    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5479    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5480    // Only for SPARC >= V8PlusA
5481#if defined(__sparc) && defined(COMPILER2)
5482    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5483#endif
5484    int status = os::Solaris::mutex_lock(_mutex);
5485    assert_status(status == 0, status, "mutex_lock");
5486    guarantee(_nParked == 0, "invariant");
5487    ++_nParked;
5488    while (_Event < 0) {
5489      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5490      // Treat this the same as if the wait was interrupted
5491      // With usr/lib/lwp going to kernel, always handle ETIME
5492      status = os::Solaris::cond_wait(_cond, _mutex);
5493      if (status == ETIME) status = EINTR;
5494      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5495    }
5496    --_nParked;
5497    _Event = 0;
5498    status = os::Solaris::mutex_unlock(_mutex);
5499    assert_status(status == 0, status, "mutex_unlock");
5500    // Paranoia to ensure our locked and lock-free paths interact
5501    // correctly with each other.
5502    OrderAccess::fence();
5503  }
5504}
5505
5506int os::PlatformEvent::park(jlong millis) {
5507  // Transitions for _Event:
5508  //   -1 => -1 : illegal
5509  //    1 =>  0 : pass - return immediately
5510  //    0 => -1 : block; then set _Event to 0 before returning
5511
5512  guarantee(_nParked == 0, "invariant");
5513  int v;
5514  for (;;) {
5515    v = _Event;
5516    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5517  }
5518  guarantee(v >= 0, "invariant");
5519  if (v != 0) return OS_OK;
5520
5521  int ret = OS_TIMEOUT;
5522  timestruc_t abst;
5523  compute_abstime(&abst, millis);
5524
5525  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5526  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5527  // Only for SPARC >= V8PlusA
5528#if defined(__sparc) && defined(COMPILER2)
5529  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5530#endif
5531  int status = os::Solaris::mutex_lock(_mutex);
5532  assert_status(status == 0, status, "mutex_lock");
5533  guarantee(_nParked == 0, "invariant");
5534  ++_nParked;
5535  while (_Event < 0) {
5536    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5537    assert_status(status == 0 || status == EINTR ||
5538                  status == ETIME || status == ETIMEDOUT,
5539                  status, "cond_timedwait");
5540    if (!FilterSpuriousWakeups) break;                // previous semantics
5541    if (status == ETIME || status == ETIMEDOUT) break;
5542    // We consume and ignore EINTR and spurious wakeups.
5543  }
5544  --_nParked;
5545  if (_Event >= 0) ret = OS_OK;
5546  _Event = 0;
5547  status = os::Solaris::mutex_unlock(_mutex);
5548  assert_status(status == 0, status, "mutex_unlock");
5549  // Paranoia to ensure our locked and lock-free paths interact
5550  // correctly with each other.
5551  OrderAccess::fence();
5552  return ret;
5553}
5554
5555void os::PlatformEvent::unpark() {
5556  // Transitions for _Event:
5557  //    0 => 1 : just return
5558  //    1 => 1 : just return
5559  //   -1 => either 0 or 1; must signal target thread
5560  //         That is, we can safely transition _Event from -1 to either
5561  //         0 or 1.
5562  // See also: "Semaphores in Plan 9" by Mullender & Cox
5563  //
5564  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5565  // that it will take two back-to-back park() calls for the owning
5566  // thread to block. This has the benefit of forcing a spurious return
5567  // from the first park() call after an unpark() call which will help
5568  // shake out uses of park() and unpark() without condition variables.
5569
5570  if (Atomic::xchg(1, &_Event) >= 0) return;
5571
5572  // If the thread associated with the event was parked, wake it.
5573  // Wait for the thread assoc with the PlatformEvent to vacate.
5574  int status = os::Solaris::mutex_lock(_mutex);
5575  assert_status(status == 0, status, "mutex_lock");
5576  int AnyWaiters = _nParked;
5577  status = os::Solaris::mutex_unlock(_mutex);
5578  assert_status(status == 0, status, "mutex_unlock");
5579  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5580  if (AnyWaiters != 0) {
5581    // Note that we signal() *after* dropping the lock for "immortal" Events.
5582    // This is safe and avoids a common class of  futile wakeups.  In rare
5583    // circumstances this can cause a thread to return prematurely from
5584    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5585    // will simply re-test the condition and re-park itself.
5586    // This provides particular benefit if the underlying platform does not
5587    // provide wait morphing.
5588    status = os::Solaris::cond_signal(_cond);
5589    assert_status(status == 0, status, "cond_signal");
5590  }
5591}
5592
5593// JSR166
5594// -------------------------------------------------------
5595
5596// The solaris and linux implementations of park/unpark are fairly
5597// conservative for now, but can be improved. They currently use a
5598// mutex/condvar pair, plus _counter.
5599// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5600// sets count to 1 and signals condvar.  Only one thread ever waits
5601// on the condvar. Contention seen when trying to park implies that someone
5602// is unparking you, so don't wait. And spurious returns are fine, so there
5603// is no need to track notifications.
5604
5605#define MAX_SECS 100000000
5606
5607// This code is common to linux and solaris and will be moved to a
5608// common place in dolphin.
5609//
5610// The passed in time value is either a relative time in nanoseconds
5611// or an absolute time in milliseconds. Either way it has to be unpacked
5612// into suitable seconds and nanoseconds components and stored in the
5613// given timespec structure.
5614// Given time is a 64-bit value and the time_t used in the timespec is only
5615// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5616// overflow if times way in the future are given. Further on Solaris versions
5617// prior to 10 there is a restriction (see cond_timedwait) that the specified
5618// number of seconds, in abstime, is less than current_time  + 100,000,000.
5619// As it will be 28 years before "now + 100000000" will overflow we can
5620// ignore overflow and just impose a hard-limit on seconds using the value
5621// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5622// years from "now".
5623//
5624static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5625  assert(time > 0, "convertTime");
5626
5627  struct timeval now;
5628  int status = gettimeofday(&now, NULL);
5629  assert(status == 0, "gettimeofday");
5630
5631  time_t max_secs = now.tv_sec + MAX_SECS;
5632
5633  if (isAbsolute) {
5634    jlong secs = time / 1000;
5635    if (secs > max_secs) {
5636      absTime->tv_sec = max_secs;
5637    } else {
5638      absTime->tv_sec = secs;
5639    }
5640    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5641  } else {
5642    jlong secs = time / NANOSECS_PER_SEC;
5643    if (secs >= MAX_SECS) {
5644      absTime->tv_sec = max_secs;
5645      absTime->tv_nsec = 0;
5646    } else {
5647      absTime->tv_sec = now.tv_sec + secs;
5648      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5649      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5650        absTime->tv_nsec -= NANOSECS_PER_SEC;
5651        ++absTime->tv_sec; // note: this must be <= max_secs
5652      }
5653    }
5654  }
5655  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5656  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5657  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5658  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5659}
5660
5661void Parker::park(bool isAbsolute, jlong time) {
5662  // Ideally we'd do something useful while spinning, such
5663  // as calling unpackTime().
5664
5665  // Optional fast-path check:
5666  // Return immediately if a permit is available.
5667  // We depend on Atomic::xchg() having full barrier semantics
5668  // since we are doing a lock-free update to _counter.
5669  if (Atomic::xchg(0, &_counter) > 0) return;
5670
5671  // Optional fast-exit: Check interrupt before trying to wait
5672  Thread* thread = Thread::current();
5673  assert(thread->is_Java_thread(), "Must be JavaThread");
5674  JavaThread *jt = (JavaThread *)thread;
5675  if (Thread::is_interrupted(thread, false)) {
5676    return;
5677  }
5678
5679  // First, demultiplex/decode time arguments
5680  timespec absTime;
5681  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5682    return;
5683  }
5684  if (time > 0) {
5685    // Warning: this code might be exposed to the old Solaris time
5686    // round-down bugs.  Grep "roundingFix" for details.
5687    unpackTime(&absTime, isAbsolute, time);
5688  }
5689
5690  // Enter safepoint region
5691  // Beware of deadlocks such as 6317397.
5692  // The per-thread Parker:: _mutex is a classic leaf-lock.
5693  // In particular a thread must never block on the Threads_lock while
5694  // holding the Parker:: mutex.  If safepoints are pending both the
5695  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5696  ThreadBlockInVM tbivm(jt);
5697
5698  // Don't wait if cannot get lock since interference arises from
5699  // unblocking.  Also. check interrupt before trying wait
5700  if (Thread::is_interrupted(thread, false) ||
5701      os::Solaris::mutex_trylock(_mutex) != 0) {
5702    return;
5703  }
5704
5705  int status;
5706
5707  if (_counter > 0)  { // no wait needed
5708    _counter = 0;
5709    status = os::Solaris::mutex_unlock(_mutex);
5710    assert(status == 0, "invariant");
5711    // Paranoia to ensure our locked and lock-free paths interact
5712    // correctly with each other and Java-level accesses.
5713    OrderAccess::fence();
5714    return;
5715  }
5716
5717#ifdef ASSERT
5718  // Don't catch signals while blocked; let the running threads have the signals.
5719  // (This allows a debugger to break into the running thread.)
5720  sigset_t oldsigs;
5721  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5722  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5723#endif
5724
5725  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5726  jt->set_suspend_equivalent();
5727  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5728
5729  // Do this the hard way by blocking ...
5730  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5731  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5732  // Only for SPARC >= V8PlusA
5733#if defined(__sparc) && defined(COMPILER2)
5734  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5735#endif
5736
5737  if (time == 0) {
5738    status = os::Solaris::cond_wait(_cond, _mutex);
5739  } else {
5740    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5741  }
5742  // Note that an untimed cond_wait() can sometimes return ETIME on older
5743  // versions of the Solaris.
5744  assert_status(status == 0 || status == EINTR ||
5745                status == ETIME || status == ETIMEDOUT,
5746                status, "cond_timedwait");
5747
5748#ifdef ASSERT
5749  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
5750#endif
5751  _counter = 0;
5752  status = os::Solaris::mutex_unlock(_mutex);
5753  assert_status(status == 0, status, "mutex_unlock");
5754  // Paranoia to ensure our locked and lock-free paths interact
5755  // correctly with each other and Java-level accesses.
5756  OrderAccess::fence();
5757
5758  // If externally suspended while waiting, re-suspend
5759  if (jt->handle_special_suspend_equivalent_condition()) {
5760    jt->java_suspend_self();
5761  }
5762}
5763
5764void Parker::unpark() {
5765  int status = os::Solaris::mutex_lock(_mutex);
5766  assert(status == 0, "invariant");
5767  const int s = _counter;
5768  _counter = 1;
5769  status = os::Solaris::mutex_unlock(_mutex);
5770  assert(status == 0, "invariant");
5771
5772  if (s < 1) {
5773    status = os::Solaris::cond_signal(_cond);
5774    assert(status == 0, "invariant");
5775  }
5776}
5777
5778extern char** environ;
5779
5780// Run the specified command in a separate process. Return its exit value,
5781// or -1 on failure (e.g. can't fork a new process).
5782// Unlike system(), this function can be called from signal handler. It
5783// doesn't block SIGINT et al.
5784int os::fork_and_exec(char* cmd) {
5785  char * argv[4];
5786  argv[0] = (char *)"sh";
5787  argv[1] = (char *)"-c";
5788  argv[2] = cmd;
5789  argv[3] = NULL;
5790
5791  // fork is async-safe, fork1 is not so can't use in signal handler
5792  pid_t pid;
5793  Thread* t = ThreadLocalStorage::get_thread_slow();
5794  if (t != NULL && t->is_inside_signal_handler()) {
5795    pid = fork();
5796  } else {
5797    pid = fork1();
5798  }
5799
5800  if (pid < 0) {
5801    // fork failed
5802    warning("fork failed: %s", strerror(errno));
5803    return -1;
5804
5805  } else if (pid == 0) {
5806    // child process
5807
5808    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5809    execve("/usr/bin/sh", argv, environ);
5810
5811    // execve failed
5812    _exit(-1);
5813
5814  } else  {
5815    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5816    // care about the actual exit code, for now.
5817
5818    int status;
5819
5820    // Wait for the child process to exit.  This returns immediately if
5821    // the child has already exited. */
5822    while (waitpid(pid, &status, 0) < 0) {
5823      switch (errno) {
5824      case ECHILD: return 0;
5825      case EINTR: break;
5826      default: return -1;
5827      }
5828    }
5829
5830    if (WIFEXITED(status)) {
5831      // The child exited normally; get its exit code.
5832      return WEXITSTATUS(status);
5833    } else if (WIFSIGNALED(status)) {
5834      // The child exited because of a signal
5835      // The best value to return is 0x80 + signal number,
5836      // because that is what all Unix shells do, and because
5837      // it allows callers to distinguish between process exit and
5838      // process death by signal.
5839      return 0x80 + WTERMSIG(status);
5840    } else {
5841      // Unknown exit code; pass it through
5842      return status;
5843    }
5844  }
5845}
5846
5847// is_headless_jre()
5848//
5849// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5850// in order to report if we are running in a headless jre
5851//
5852// Since JDK8 xawt/libmawt.so was moved into the same directory
5853// as libawt.so, and renamed libawt_xawt.so
5854//
5855bool os::is_headless_jre() {
5856  struct stat statbuf;
5857  char buf[MAXPATHLEN];
5858  char libmawtpath[MAXPATHLEN];
5859  const char *xawtstr  = "/xawt/libmawt.so";
5860  const char *new_xawtstr = "/libawt_xawt.so";
5861  char *p;
5862
5863  // Get path to libjvm.so
5864  os::jvm_path(buf, sizeof(buf));
5865
5866  // Get rid of libjvm.so
5867  p = strrchr(buf, '/');
5868  if (p == NULL) {
5869    return false;
5870  } else {
5871    *p = '\0';
5872  }
5873
5874  // Get rid of client or server
5875  p = strrchr(buf, '/');
5876  if (p == NULL) {
5877    return false;
5878  } else {
5879    *p = '\0';
5880  }
5881
5882  // check xawt/libmawt.so
5883  strcpy(libmawtpath, buf);
5884  strcat(libmawtpath, xawtstr);
5885  if (::stat(libmawtpath, &statbuf) == 0) return false;
5886
5887  // check libawt_xawt.so
5888  strcpy(libmawtpath, buf);
5889  strcat(libmawtpath, new_xawtstr);
5890  if (::stat(libmawtpath, &statbuf) == 0) return false;
5891
5892  return true;
5893}
5894
5895size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5896  size_t res;
5897  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5898         "Assumed _thread_in_native");
5899  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5900  return res;
5901}
5902
5903int os::close(int fd) {
5904  return ::close(fd);
5905}
5906
5907int os::socket_close(int fd) {
5908  return ::close(fd);
5909}
5910
5911int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5912  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5913         "Assumed _thread_in_native");
5914  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5915}
5916
5917int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5918  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5919         "Assumed _thread_in_native");
5920  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5921}
5922
5923int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5924  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5925}
5926
5927// As both poll and select can be interrupted by signals, we have to be
5928// prepared to restart the system call after updating the timeout, unless
5929// a poll() is done with timeout == -1, in which case we repeat with this
5930// "wait forever" value.
5931
5932int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5933  int _result;
5934  _result = ::connect(fd, him, len);
5935
5936  // On Solaris, when a connect() call is interrupted, the connection
5937  // can be established asynchronously (see 6343810). Subsequent calls
5938  // to connect() must check the errno value which has the semantic
5939  // described below (copied from the connect() man page). Handling
5940  // of asynchronously established connections is required for both
5941  // blocking and non-blocking sockets.
5942  //     EINTR            The  connection  attempt  was   interrupted
5943  //                      before  any data arrived by the delivery of
5944  //                      a signal. The connection, however, will  be
5945  //                      established asynchronously.
5946  //
5947  //     EINPROGRESS      The socket is non-blocking, and the connec-
5948  //                      tion  cannot  be completed immediately.
5949  //
5950  //     EALREADY         The socket is non-blocking,  and a previous
5951  //                      connection  attempt  has  not yet been com-
5952  //                      pleted.
5953  //
5954  //     EISCONN          The socket is already connected.
5955  if (_result == OS_ERR && errno == EINTR) {
5956    // restarting a connect() changes its errno semantics
5957    RESTARTABLE(::connect(fd, him, len), _result);
5958    // undo these changes
5959    if (_result == OS_ERR) {
5960      if (errno == EALREADY) {
5961        errno = EINPROGRESS; // fall through
5962      } else if (errno == EISCONN) {
5963        errno = 0;
5964        return OS_OK;
5965      }
5966    }
5967  }
5968  return _result;
5969}
5970
5971// Get the default path to the core file
5972// Returns the length of the string
5973int os::get_core_path(char* buffer, size_t bufferSize) {
5974  const char* p = get_current_directory(buffer, bufferSize);
5975
5976  if (p == NULL) {
5977    assert(p != NULL, "failed to get current directory");
5978    return 0;
5979  }
5980
5981  return strlen(buffer);
5982}
5983
5984#ifndef PRODUCT
5985void TestReserveMemorySpecial_test() {
5986  // No tests available for this platform
5987}
5988#endif
5989