os_solaris.cpp revision 5844:5944dba4badc
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_solaris.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <dlfcn.h>
70# include <errno.h>
71# include <exception>
72# include <link.h>
73# include <poll.h>
74# include <pthread.h>
75# include <pwd.h>
76# include <schedctl.h>
77# include <setjmp.h>
78# include <signal.h>
79# include <stdio.h>
80# include <alloca.h>
81# include <sys/filio.h>
82# include <sys/ipc.h>
83# include <sys/lwp.h>
84# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
85# include <sys/mman.h>
86# include <sys/processor.h>
87# include <sys/procset.h>
88# include <sys/pset.h>
89# include <sys/resource.h>
90# include <sys/shm.h>
91# include <sys/socket.h>
92# include <sys/stat.h>
93# include <sys/systeminfo.h>
94# include <sys/time.h>
95# include <sys/times.h>
96# include <sys/types.h>
97# include <sys/wait.h>
98# include <sys/utsname.h>
99# include <thread.h>
100# include <unistd.h>
101# include <sys/priocntl.h>
102# include <sys/rtpriocntl.h>
103# include <sys/tspriocntl.h>
104# include <sys/iapriocntl.h>
105# include <sys/fxpriocntl.h>
106# include <sys/loadavg.h>
107# include <string.h>
108# include <stdio.h>
109
110# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
111# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
112
113#define MAX_PATH (2 * K)
114
115// for timer info max values which include all bits
116#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
117
118
119// Here are some liblgrp types from sys/lgrp_user.h to be able to
120// compile on older systems without this header file.
121
122#ifndef MADV_ACCESS_LWP
123# define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
124#endif
125#ifndef MADV_ACCESS_MANY
126# define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
127#endif
128
129#ifndef LGRP_RSRC_CPU
130# define LGRP_RSRC_CPU           0       /* CPU resources */
131#endif
132#ifndef LGRP_RSRC_MEM
133# define LGRP_RSRC_MEM           1       /* memory resources */
134#endif
135
136// see thr_setprio(3T) for the basis of these numbers
137#define MinimumPriority 0
138#define NormalPriority  64
139#define MaximumPriority 127
140
141// Values for ThreadPriorityPolicy == 1
142int prio_policy1[CriticalPriority+1] = {
143  -99999,  0, 16,  32,  48,  64,
144          80, 96, 112, 124, 127, 127 };
145
146// System parameters used internally
147static clock_t clock_tics_per_sec = 100;
148
149// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
150static bool enabled_extended_FILE_stdio = false;
151
152// For diagnostics to print a message once. see run_periodic_checks
153static bool check_addr0_done = false;
154static sigset_t check_signal_done;
155static bool check_signals = true;
156
157address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
158address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
159
160address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
161
162
163// "default" initializers for missing libc APIs
164extern "C" {
165  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
166  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
167
168  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
169  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
170}
171
172// "default" initializers for pthread-based synchronization
173extern "C" {
174  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
175  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
176}
177
178static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
179
180// Thread Local Storage
181// This is common to all Solaris platforms so it is defined here,
182// in this common file.
183// The declarations are in the os_cpu threadLS*.hpp files.
184//
185// Static member initialization for TLS
186Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
187
188#ifndef PRODUCT
189#define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
190
191int ThreadLocalStorage::_tcacheHit = 0;
192int ThreadLocalStorage::_tcacheMiss = 0;
193
194void ThreadLocalStorage::print_statistics() {
195  int total = _tcacheMiss+_tcacheHit;
196  tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
197                _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
198}
199#undef _PCT
200#endif // PRODUCT
201
202Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
203                                                        int index) {
204  Thread *thread = get_thread_slow();
205  if (thread != NULL) {
206    address sp = os::current_stack_pointer();
207    guarantee(thread->_stack_base == NULL ||
208              (sp <= thread->_stack_base &&
209                 sp >= thread->_stack_base - thread->_stack_size) ||
210               is_error_reported(),
211              "sp must be inside of selected thread stack");
212
213    thread->set_self_raw_id(raw_id);  // mark for quick retrieval
214    _get_thread_cache[ index ] = thread;
215  }
216  return thread;
217}
218
219
220static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
221#define NO_CACHED_THREAD ((Thread*)all_zero)
222
223void ThreadLocalStorage::pd_set_thread(Thread* thread) {
224
225  // Store the new value before updating the cache to prevent a race
226  // between get_thread_via_cache_slowly() and this store operation.
227  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
228
229  // Update thread cache with new thread if setting on thread create,
230  // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
231  uintptr_t raw = pd_raw_thread_id();
232  int ix = pd_cache_index(raw);
233  _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
234}
235
236void ThreadLocalStorage::pd_init() {
237  for (int i = 0; i < _pd_cache_size; i++) {
238    _get_thread_cache[i] = NO_CACHED_THREAD;
239  }
240}
241
242// Invalidate all the caches (happens to be the same as pd_init).
243void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
244
245#undef NO_CACHED_THREAD
246
247// END Thread Local Storage
248
249static inline size_t adjust_stack_size(address base, size_t size) {
250  if ((ssize_t)size < 0) {
251    // 4759953: Compensate for ridiculous stack size.
252    size = max_intx;
253  }
254  if (size > (size_t)base) {
255    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
256    size = (size_t)base;
257  }
258  return size;
259}
260
261static inline stack_t get_stack_info() {
262  stack_t st;
263  int retval = thr_stksegment(&st);
264  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
265  assert(retval == 0, "incorrect return value from thr_stksegment");
266  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
267  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
268  return st;
269}
270
271address os::current_stack_base() {
272  int r = thr_main() ;
273  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
274  bool is_primordial_thread = r;
275
276  // Workaround 4352906, avoid calls to thr_stksegment by
277  // thr_main after the first one (it looks like we trash
278  // some data, causing the value for ss_sp to be incorrect).
279  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
280    stack_t st = get_stack_info();
281    if (is_primordial_thread) {
282      // cache initial value of stack base
283      os::Solaris::_main_stack_base = (address)st.ss_sp;
284    }
285    return (address)st.ss_sp;
286  } else {
287    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
288    return os::Solaris::_main_stack_base;
289  }
290}
291
292size_t os::current_stack_size() {
293  size_t size;
294
295  int r = thr_main() ;
296  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
297  if(!r) {
298    size = get_stack_info().ss_size;
299  } else {
300    struct rlimit limits;
301    getrlimit(RLIMIT_STACK, &limits);
302    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
303  }
304  // base may not be page aligned
305  address base = current_stack_base();
306  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
307  return (size_t)(base - bottom);
308}
309
310struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
311  return localtime_r(clock, res);
312}
313
314// interruptible infrastructure
315
316// setup_interruptible saves the thread state before going into an
317// interruptible system call.
318// The saved state is used to restore the thread to
319// its former state whether or not an interrupt is received.
320// Used by classloader os::read
321// os::restartable_read calls skip this layer and stay in _thread_in_native
322
323void os::Solaris::setup_interruptible(JavaThread* thread) {
324
325  JavaThreadState thread_state = thread->thread_state();
326
327  assert(thread_state != _thread_blocked, "Coming from the wrong thread");
328  assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
329  OSThread* osthread = thread->osthread();
330  osthread->set_saved_interrupt_thread_state(thread_state);
331  thread->frame_anchor()->make_walkable(thread);
332  ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
333}
334
335// Version of setup_interruptible() for threads that are already in
336// _thread_blocked. Used by os_sleep().
337void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
338  thread->frame_anchor()->make_walkable(thread);
339}
340
341JavaThread* os::Solaris::setup_interruptible() {
342  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
343  setup_interruptible(thread);
344  return thread;
345}
346
347void os::Solaris::try_enable_extended_io() {
348  typedef int (*enable_extended_FILE_stdio_t)(int, int);
349
350  if (!UseExtendedFileIO) {
351    return;
352  }
353
354  enable_extended_FILE_stdio_t enabler =
355    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
356                                         "enable_extended_FILE_stdio");
357  if (enabler) {
358    enabler(-1, -1);
359  }
360}
361
362
363#ifdef ASSERT
364
365JavaThread* os::Solaris::setup_interruptible_native() {
366  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
367  JavaThreadState thread_state = thread->thread_state();
368  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
369  return thread;
370}
371
372void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
373  JavaThreadState thread_state = thread->thread_state();
374  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
375}
376#endif
377
378// cleanup_interruptible reverses the effects of setup_interruptible
379// setup_interruptible_already_blocked() does not need any cleanup.
380
381void os::Solaris::cleanup_interruptible(JavaThread* thread) {
382  OSThread* osthread = thread->osthread();
383
384  ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
385}
386
387// I/O interruption related counters called in _INTERRUPTIBLE
388
389void os::Solaris::bump_interrupted_before_count() {
390  RuntimeService::record_interrupted_before_count();
391}
392
393void os::Solaris::bump_interrupted_during_count() {
394  RuntimeService::record_interrupted_during_count();
395}
396
397static int _processors_online = 0;
398
399         jint os::Solaris::_os_thread_limit = 0;
400volatile jint os::Solaris::_os_thread_count = 0;
401
402julong os::available_memory() {
403  return Solaris::available_memory();
404}
405
406julong os::Solaris::available_memory() {
407  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
408}
409
410julong os::Solaris::_physical_memory = 0;
411
412julong os::physical_memory() {
413   return Solaris::physical_memory();
414}
415
416static hrtime_t first_hrtime = 0;
417static const hrtime_t hrtime_hz = 1000*1000*1000;
418const int LOCK_BUSY = 1;
419const int LOCK_FREE = 0;
420const int LOCK_INVALID = -1;
421static volatile hrtime_t max_hrtime = 0;
422static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
423
424
425void os::Solaris::initialize_system_info() {
426  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
427  _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
428  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
429}
430
431int os::active_processor_count() {
432  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
433  pid_t pid = getpid();
434  psetid_t pset = PS_NONE;
435  // Are we running in a processor set or is there any processor set around?
436  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
437    uint_t pset_cpus;
438    // Query the number of cpus available to us.
439    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
440      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
441      _processors_online = pset_cpus;
442      return pset_cpus;
443    }
444  }
445  // Otherwise return number of online cpus
446  return online_cpus;
447}
448
449static bool find_processors_in_pset(psetid_t        pset,
450                                    processorid_t** id_array,
451                                    uint_t*         id_length) {
452  bool result = false;
453  // Find the number of processors in the processor set.
454  if (pset_info(pset, NULL, id_length, NULL) == 0) {
455    // Make up an array to hold their ids.
456    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
457    // Fill in the array with their processor ids.
458    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
459      result = true;
460    }
461  }
462  return result;
463}
464
465// Callers of find_processors_online() must tolerate imprecise results --
466// the system configuration can change asynchronously because of DR
467// or explicit psradm operations.
468//
469// We also need to take care that the loop (below) terminates as the
470// number of processors online can change between the _SC_NPROCESSORS_ONLN
471// request and the loop that builds the list of processor ids.   Unfortunately
472// there's no reliable way to determine the maximum valid processor id,
473// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
474// man pages, which claim the processor id set is "sparse, but
475// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
476// exit the loop.
477//
478// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
479// not available on S8.0.
480
481static bool find_processors_online(processorid_t** id_array,
482                                   uint*           id_length) {
483  const processorid_t MAX_PROCESSOR_ID = 100000 ;
484  // Find the number of processors online.
485  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
486  // Make up an array to hold their ids.
487  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
488  // Processors need not be numbered consecutively.
489  long found = 0;
490  processorid_t next = 0;
491  while (found < *id_length && next < MAX_PROCESSOR_ID) {
492    processor_info_t info;
493    if (processor_info(next, &info) == 0) {
494      // NB, PI_NOINTR processors are effectively online ...
495      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
496        (*id_array)[found] = next;
497        found += 1;
498      }
499    }
500    next += 1;
501  }
502  if (found < *id_length) {
503      // The loop above didn't identify the expected number of processors.
504      // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
505      // and re-running the loop, above, but there's no guarantee of progress
506      // if the system configuration is in flux.  Instead, we just return what
507      // we've got.  Note that in the worst case find_processors_online() could
508      // return an empty set.  (As a fall-back in the case of the empty set we
509      // could just return the ID of the current processor).
510      *id_length = found ;
511  }
512
513  return true;
514}
515
516static bool assign_distribution(processorid_t* id_array,
517                                uint           id_length,
518                                uint*          distribution,
519                                uint           distribution_length) {
520  // We assume we can assign processorid_t's to uint's.
521  assert(sizeof(processorid_t) == sizeof(uint),
522         "can't convert processorid_t to uint");
523  // Quick check to see if we won't succeed.
524  if (id_length < distribution_length) {
525    return false;
526  }
527  // Assign processor ids to the distribution.
528  // Try to shuffle processors to distribute work across boards,
529  // assuming 4 processors per board.
530  const uint processors_per_board = ProcessDistributionStride;
531  // Find the maximum processor id.
532  processorid_t max_id = 0;
533  for (uint m = 0; m < id_length; m += 1) {
534    max_id = MAX2(max_id, id_array[m]);
535  }
536  // The next id, to limit loops.
537  const processorid_t limit_id = max_id + 1;
538  // Make up markers for available processors.
539  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
540  for (uint c = 0; c < limit_id; c += 1) {
541    available_id[c] = false;
542  }
543  for (uint a = 0; a < id_length; a += 1) {
544    available_id[id_array[a]] = true;
545  }
546  // Step by "boards", then by "slot", copying to "assigned".
547  // NEEDS_CLEANUP: The assignment of processors should be stateful,
548  //                remembering which processors have been assigned by
549  //                previous calls, etc., so as to distribute several
550  //                independent calls of this method.  What we'd like is
551  //                It would be nice to have an API that let us ask
552  //                how many processes are bound to a processor,
553  //                but we don't have that, either.
554  //                In the short term, "board" is static so that
555  //                subsequent distributions don't all start at board 0.
556  static uint board = 0;
557  uint assigned = 0;
558  // Until we've found enough processors ....
559  while (assigned < distribution_length) {
560    // ... find the next available processor in the board.
561    for (uint slot = 0; slot < processors_per_board; slot += 1) {
562      uint try_id = board * processors_per_board + slot;
563      if ((try_id < limit_id) && (available_id[try_id] == true)) {
564        distribution[assigned] = try_id;
565        available_id[try_id] = false;
566        assigned += 1;
567        break;
568      }
569    }
570    board += 1;
571    if (board * processors_per_board + 0 >= limit_id) {
572      board = 0;
573    }
574  }
575  if (available_id != NULL) {
576    FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
577  }
578  return true;
579}
580
581void os::set_native_thread_name(const char *name) {
582  // Not yet implemented.
583  return;
584}
585
586bool os::distribute_processes(uint length, uint* distribution) {
587  bool result = false;
588  // Find the processor id's of all the available CPUs.
589  processorid_t* id_array  = NULL;
590  uint           id_length = 0;
591  // There are some races between querying information and using it,
592  // since processor sets can change dynamically.
593  psetid_t pset = PS_NONE;
594  // Are we running in a processor set?
595  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
596    result = find_processors_in_pset(pset, &id_array, &id_length);
597  } else {
598    result = find_processors_online(&id_array, &id_length);
599  }
600  if (result == true) {
601    if (id_length >= length) {
602      result = assign_distribution(id_array, id_length, distribution, length);
603    } else {
604      result = false;
605    }
606  }
607  if (id_array != NULL) {
608    FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
609  }
610  return result;
611}
612
613bool os::bind_to_processor(uint processor_id) {
614  // We assume that a processorid_t can be stored in a uint.
615  assert(sizeof(uint) == sizeof(processorid_t),
616         "can't convert uint to processorid_t");
617  int bind_result =
618    processor_bind(P_LWPID,                       // bind LWP.
619                   P_MYID,                        // bind current LWP.
620                   (processorid_t) processor_id,  // id.
621                   NULL);                         // don't return old binding.
622  return (bind_result == 0);
623}
624
625bool os::getenv(const char* name, char* buffer, int len) {
626  char* val = ::getenv( name );
627  if ( val == NULL
628  ||   strlen(val) + 1  >  len ) {
629    if (len > 0)  buffer[0] = 0; // return a null string
630    return false;
631  }
632  strcpy( buffer, val );
633  return true;
634}
635
636
637// Return true if user is running as root.
638
639bool os::have_special_privileges() {
640  static bool init = false;
641  static bool privileges = false;
642  if (!init) {
643    privileges = (getuid() != geteuid()) || (getgid() != getegid());
644    init = true;
645  }
646  return privileges;
647}
648
649
650void os::init_system_properties_values() {
651  char arch[12];
652  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
653
654  // The next steps are taken in the product version:
655  //
656  // Obtain the JAVA_HOME value from the location of libjvm.so.
657  // This library should be located at:
658  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
659  //
660  // If "/jre/lib/" appears at the right place in the path, then we
661  // assume libjvm.so is installed in a JDK and we use this path.
662  //
663  // Otherwise exit with message: "Could not create the Java virtual machine."
664  //
665  // The following extra steps are taken in the debugging version:
666  //
667  // If "/jre/lib/" does NOT appear at the right place in the path
668  // instead of exit check for $JAVA_HOME environment variable.
669  //
670  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
671  // then we append a fake suffix "hotspot/libjvm.so" to this path so
672  // it looks like libjvm.so is installed there
673  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
674  //
675  // Otherwise exit.
676  //
677  // Important note: if the location of libjvm.so changes this
678  // code needs to be changed accordingly.
679
680  // The next few definitions allow the code to be verbatim:
681#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
682#define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
683#define getenv(n) ::getenv(n)
684
685#define EXTENSIONS_DIR  "/lib/ext"
686#define ENDORSED_DIR    "/lib/endorsed"
687#define COMMON_DIR      "/usr/jdk/packages"
688
689  {
690    /* sysclasspath, java_home, dll_dir */
691    {
692        char *home_path;
693        char *dll_path;
694        char *pslash;
695        char buf[MAXPATHLEN];
696        os::jvm_path(buf, sizeof(buf));
697
698        // Found the full path to libjvm.so.
699        // Now cut the path to <java_home>/jre if we can.
700        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
701        pslash = strrchr(buf, '/');
702        if (pslash != NULL)
703            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
704        dll_path = malloc(strlen(buf) + 1);
705        if (dll_path == NULL)
706            return;
707        strcpy(dll_path, buf);
708        Arguments::set_dll_dir(dll_path);
709
710        if (pslash != NULL) {
711            pslash = strrchr(buf, '/');
712            if (pslash != NULL) {
713                *pslash = '\0';       /* get rid of /<arch> */
714                pslash = strrchr(buf, '/');
715                if (pslash != NULL)
716                    *pslash = '\0';   /* get rid of /lib */
717            }
718        }
719
720        home_path = malloc(strlen(buf) + 1);
721        if (home_path == NULL)
722            return;
723        strcpy(home_path, buf);
724        Arguments::set_java_home(home_path);
725
726        if (!set_boot_path('/', ':'))
727            return;
728    }
729
730    /*
731     * Where to look for native libraries
732     */
733    {
734      // Use dlinfo() to determine the correct java.library.path.
735      //
736      // If we're launched by the Java launcher, and the user
737      // does not set java.library.path explicitly on the commandline,
738      // the Java launcher sets LD_LIBRARY_PATH for us and unsets
739      // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
740      // dlinfo returns LD_LIBRARY_PATH + crle settings (including
741      // /usr/lib), which is exactly what we want.
742      //
743      // If the user does set java.library.path, it completely
744      // overwrites this setting, and always has.
745      //
746      // If we're not launched by the Java launcher, we may
747      // get here with any/all of the LD_LIBRARY_PATH[_32|64]
748      // settings.  Again, dlinfo does exactly what we want.
749
750      Dl_serinfo     _info, *info = &_info;
751      Dl_serpath     *path;
752      char*          library_path;
753      char           *common_path;
754      int            i;
755
756      // determine search path count and required buffer size
757      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
758        vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
759      }
760
761      // allocate new buffer and initialize
762      info = (Dl_serinfo*)malloc(_info.dls_size);
763      if (info == NULL) {
764        vm_exit_out_of_memory(_info.dls_size, OOM_MALLOC_ERROR,
765                              "init_system_properties_values info");
766      }
767      info->dls_size = _info.dls_size;
768      info->dls_cnt = _info.dls_cnt;
769
770      // obtain search path information
771      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
772        free(info);
773        vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
774      }
775
776      path = &info->dls_serpath[0];
777
778      // Note: Due to a legacy implementation, most of the library path
779      // is set in the launcher.  This was to accomodate linking restrictions
780      // on legacy Solaris implementations (which are no longer supported).
781      // Eventually, all the library path setting will be done here.
782      //
783      // However, to prevent the proliferation of improperly built native
784      // libraries, the new path component /usr/jdk/packages is added here.
785
786      // Determine the actual CPU architecture.
787      char cpu_arch[12];
788      sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
789#ifdef _LP64
790      // If we are a 64-bit vm, perform the following translations:
791      //   sparc   -> sparcv9
792      //   i386    -> amd64
793      if (strcmp(cpu_arch, "sparc") == 0)
794        strcat(cpu_arch, "v9");
795      else if (strcmp(cpu_arch, "i386") == 0)
796        strcpy(cpu_arch, "amd64");
797#endif
798
799      // Construct the invariant part of ld_library_path. Note that the
800      // space for the colon and the trailing null are provided by the
801      // nulls included by the sizeof operator.
802      size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
803      common_path = malloc(bufsize);
804      if (common_path == NULL) {
805        free(info);
806        vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
807                              "init_system_properties_values common_path");
808      }
809      sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
810
811      // struct size is more than sufficient for the path components obtained
812      // through the dlinfo() call, so only add additional space for the path
813      // components explicitly added here.
814      bufsize = info->dls_size + strlen(common_path);
815      library_path = malloc(bufsize);
816      if (library_path == NULL) {
817        free(info);
818        free(common_path);
819        vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
820                              "init_system_properties_values library_path");
821      }
822      library_path[0] = '\0';
823
824      // Construct the desired Java library path from the linker's library
825      // search path.
826      //
827      // For compatibility, it is optimal that we insert the additional path
828      // components specific to the Java VM after those components specified
829      // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
830      // infrastructure.
831      if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
832        strcpy(library_path, common_path);
833      } else {
834        int inserted = 0;
835        for (i = 0; i < info->dls_cnt; i++, path++) {
836          uint_t flags = path->dls_flags & LA_SER_MASK;
837          if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
838            strcat(library_path, common_path);
839            strcat(library_path, os::path_separator());
840            inserted = 1;
841          }
842          strcat(library_path, path->dls_name);
843          strcat(library_path, os::path_separator());
844        }
845        // eliminate trailing path separator
846        library_path[strlen(library_path)-1] = '\0';
847      }
848
849      // happens before argument parsing - can't use a trace flag
850      // tty->print_raw("init_system_properties_values: native lib path: ");
851      // tty->print_raw_cr(library_path);
852
853      // callee copies into its own buffer
854      Arguments::set_library_path(library_path);
855
856      free(common_path);
857      free(library_path);
858      free(info);
859    }
860
861    /*
862     * Extensions directories.
863     *
864     * Note that the space for the colon and the trailing null are provided
865     * by the nulls included by the sizeof operator (so actually one byte more
866     * than necessary is allocated).
867     */
868    {
869        char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
870            sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
871            sizeof(EXTENSIONS_DIR));
872        sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
873            Arguments::get_java_home());
874        Arguments::set_ext_dirs(buf);
875    }
876
877    /* Endorsed standards default directory. */
878    {
879        char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
880        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
881        Arguments::set_endorsed_dirs(buf);
882    }
883  }
884
885#undef malloc
886#undef free
887#undef getenv
888#undef EXTENSIONS_DIR
889#undef ENDORSED_DIR
890#undef COMMON_DIR
891
892}
893
894void os::breakpoint() {
895  BREAKPOINT;
896}
897
898bool os::obsolete_option(const JavaVMOption *option)
899{
900  if (!strncmp(option->optionString, "-Xt", 3)) {
901    return true;
902  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
903    return true;
904  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
905    return true;
906  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
907    return true;
908  }
909  return false;
910}
911
912bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
913  address  stackStart  = (address)thread->stack_base();
914  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
915  if (sp < stackStart && sp >= stackEnd ) return true;
916  return false;
917}
918
919extern "C" void breakpoint() {
920  // use debugger to set breakpoint here
921}
922
923static thread_t main_thread;
924
925// Thread start routine for all new Java threads
926extern "C" void* java_start(void* thread_addr) {
927  // Try to randomize the cache line index of hot stack frames.
928  // This helps when threads of the same stack traces evict each other's
929  // cache lines. The threads can be either from the same JVM instance, or
930  // from different JVM instances. The benefit is especially true for
931  // processors with hyperthreading technology.
932  static int counter = 0;
933  int pid = os::current_process_id();
934  alloca(((pid ^ counter++) & 7) * 128);
935
936  int prio;
937  Thread* thread = (Thread*)thread_addr;
938  OSThread* osthr = thread->osthread();
939
940  osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
941  thread->_schedctl = (void *) schedctl_init () ;
942
943  if (UseNUMA) {
944    int lgrp_id = os::numa_get_group_id();
945    if (lgrp_id != -1) {
946      thread->set_lgrp_id(lgrp_id);
947    }
948  }
949
950  // If the creator called set priority before we started,
951  // we need to call set_native_priority now that we have an lwp.
952  // We used to get the priority from thr_getprio (we called
953  // thr_setprio way back in create_thread) and pass it to
954  // set_native_priority, but Solaris scales the priority
955  // in java_to_os_priority, so when we read it back here,
956  // we pass trash to set_native_priority instead of what's
957  // in java_to_os_priority. So we save the native priority
958  // in the osThread and recall it here.
959
960  if ( osthr->thread_id() != -1 ) {
961    if ( UseThreadPriorities ) {
962      int prio = osthr->native_priority();
963      if (ThreadPriorityVerbose) {
964        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
965                      INTPTR_FORMAT ", setting priority: %d\n",
966                      osthr->thread_id(), osthr->lwp_id(), prio);
967      }
968      os::set_native_priority(thread, prio);
969    }
970  } else if (ThreadPriorityVerbose) {
971    warning("Can't set priority in _start routine, thread id hasn't been set\n");
972  }
973
974  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
975
976  // initialize signal mask for this thread
977  os::Solaris::hotspot_sigmask(thread);
978
979  thread->run();
980
981  // One less thread is executing
982  // When the VMThread gets here, the main thread may have already exited
983  // which frees the CodeHeap containing the Atomic::dec code
984  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
985    Atomic::dec(&os::Solaris::_os_thread_count);
986  }
987
988  if (UseDetachedThreads) {
989    thr_exit(NULL);
990    ShouldNotReachHere();
991  }
992  return NULL;
993}
994
995static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
996  // Allocate the OSThread object
997  OSThread* osthread = new OSThread(NULL, NULL);
998  if (osthread == NULL) return NULL;
999
1000  // Store info on the Solaris thread into the OSThread
1001  osthread->set_thread_id(thread_id);
1002  osthread->set_lwp_id(_lwp_self());
1003  thread->_schedctl = (void *) schedctl_init () ;
1004
1005  if (UseNUMA) {
1006    int lgrp_id = os::numa_get_group_id();
1007    if (lgrp_id != -1) {
1008      thread->set_lgrp_id(lgrp_id);
1009    }
1010  }
1011
1012  if ( ThreadPriorityVerbose ) {
1013    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
1014                  osthread->thread_id(), osthread->lwp_id() );
1015  }
1016
1017  // Initial thread state is INITIALIZED, not SUSPENDED
1018  osthread->set_state(INITIALIZED);
1019
1020  return osthread;
1021}
1022
1023void os::Solaris::hotspot_sigmask(Thread* thread) {
1024
1025  //Save caller's signal mask
1026  sigset_t sigmask;
1027  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
1028  OSThread *osthread = thread->osthread();
1029  osthread->set_caller_sigmask(sigmask);
1030
1031  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
1032  if (!ReduceSignalUsage) {
1033    if (thread->is_VM_thread()) {
1034      // Only the VM thread handles BREAK_SIGNAL ...
1035      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
1036    } else {
1037      // ... all other threads block BREAK_SIGNAL
1038      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
1039      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
1040    }
1041  }
1042}
1043
1044bool os::create_attached_thread(JavaThread* thread) {
1045#ifdef ASSERT
1046  thread->verify_not_published();
1047#endif
1048  OSThread* osthread = create_os_thread(thread, thr_self());
1049  if (osthread == NULL) {
1050     return false;
1051  }
1052
1053  // Initial thread state is RUNNABLE
1054  osthread->set_state(RUNNABLE);
1055  thread->set_osthread(osthread);
1056
1057  // initialize signal mask for this thread
1058  // and save the caller's signal mask
1059  os::Solaris::hotspot_sigmask(thread);
1060
1061  return true;
1062}
1063
1064bool os::create_main_thread(JavaThread* thread) {
1065#ifdef ASSERT
1066  thread->verify_not_published();
1067#endif
1068  if (_starting_thread == NULL) {
1069    _starting_thread = create_os_thread(thread, main_thread);
1070     if (_starting_thread == NULL) {
1071        return false;
1072     }
1073  }
1074
1075  // The primodial thread is runnable from the start
1076  _starting_thread->set_state(RUNNABLE);
1077
1078  thread->set_osthread(_starting_thread);
1079
1080  // initialize signal mask for this thread
1081  // and save the caller's signal mask
1082  os::Solaris::hotspot_sigmask(thread);
1083
1084  return true;
1085}
1086
1087// _T2_libthread is true if we believe we are running with the newer
1088// SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
1089bool os::Solaris::_T2_libthread = false;
1090
1091bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
1092  // Allocate the OSThread object
1093  OSThread* osthread = new OSThread(NULL, NULL);
1094  if (osthread == NULL) {
1095    return false;
1096  }
1097
1098  if ( ThreadPriorityVerbose ) {
1099    char *thrtyp;
1100    switch ( thr_type ) {
1101      case vm_thread:
1102        thrtyp = (char *)"vm";
1103        break;
1104      case cgc_thread:
1105        thrtyp = (char *)"cgc";
1106        break;
1107      case pgc_thread:
1108        thrtyp = (char *)"pgc";
1109        break;
1110      case java_thread:
1111        thrtyp = (char *)"java";
1112        break;
1113      case compiler_thread:
1114        thrtyp = (char *)"compiler";
1115        break;
1116      case watcher_thread:
1117        thrtyp = (char *)"watcher";
1118        break;
1119      default:
1120        thrtyp = (char *)"unknown";
1121        break;
1122    }
1123    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
1124  }
1125
1126  // Calculate stack size if it's not specified by caller.
1127  if (stack_size == 0) {
1128    // The default stack size 1M (2M for LP64).
1129    stack_size = (BytesPerWord >> 2) * K * K;
1130
1131    switch (thr_type) {
1132    case os::java_thread:
1133      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
1134      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
1135      break;
1136    case os::compiler_thread:
1137      if (CompilerThreadStackSize > 0) {
1138        stack_size = (size_t)(CompilerThreadStackSize * K);
1139        break;
1140      } // else fall through:
1141        // use VMThreadStackSize if CompilerThreadStackSize is not defined
1142    case os::vm_thread:
1143    case os::pgc_thread:
1144    case os::cgc_thread:
1145    case os::watcher_thread:
1146      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1147      break;
1148    }
1149  }
1150  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
1151
1152  // Initial state is ALLOCATED but not INITIALIZED
1153  osthread->set_state(ALLOCATED);
1154
1155  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
1156    // We got lots of threads. Check if we still have some address space left.
1157    // Need to be at least 5Mb of unreserved address space. We do check by
1158    // trying to reserve some.
1159    const size_t VirtualMemoryBangSize = 20*K*K;
1160    char* mem = os::reserve_memory(VirtualMemoryBangSize);
1161    if (mem == NULL) {
1162      delete osthread;
1163      return false;
1164    } else {
1165      // Release the memory again
1166      os::release_memory(mem, VirtualMemoryBangSize);
1167    }
1168  }
1169
1170  // Setup osthread because the child thread may need it.
1171  thread->set_osthread(osthread);
1172
1173  // Create the Solaris thread
1174  // explicit THR_BOUND for T2_libthread case in case
1175  // that assumption is not accurate, but our alternate signal stack
1176  // handling is based on it which must have bound threads
1177  thread_t tid = 0;
1178  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
1179                   | ((UseBoundThreads || os::Solaris::T2_libthread() ||
1180                       (thr_type == vm_thread) ||
1181                       (thr_type == cgc_thread) ||
1182                       (thr_type == pgc_thread) ||
1183                       (thr_type == compiler_thread && BackgroundCompilation)) ?
1184                      THR_BOUND : 0);
1185  int      status;
1186
1187  // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
1188  //
1189  // On multiprocessors systems, libthread sometimes under-provisions our
1190  // process with LWPs.  On a 30-way systems, for instance, we could have
1191  // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
1192  // to our process.  This can result in under utilization of PEs.
1193  // I suspect the problem is related to libthread's LWP
1194  // pool management and to the kernel's SIGBLOCKING "last LWP parked"
1195  // upcall policy.
1196  //
1197  // The following code is palliative -- it attempts to ensure that our
1198  // process has sufficient LWPs to take advantage of multiple PEs.
1199  // Proper long-term cures include using user-level threads bound to LWPs
1200  // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
1201  // slight timing window with respect to sampling _os_thread_count, but
1202  // the race is benign.  Also, we should periodically recompute
1203  // _processors_online as the min of SC_NPROCESSORS_ONLN and the
1204  // the number of PEs in our partition.  You might be tempted to use
1205  // THR_NEW_LWP here, but I'd recommend against it as that could
1206  // result in undesirable growth of the libthread's LWP pool.
1207  // The fix below isn't sufficient; for instance, it doesn't take into count
1208  // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
1209  //
1210  // Some pathologies this scheme doesn't handle:
1211  // *  Threads can block, releasing the LWPs.  The LWPs can age out.
1212  //    When a large number of threads become ready again there aren't
1213  //    enough LWPs available to service them.  This can occur when the
1214  //    number of ready threads oscillates.
1215  // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
1216  //
1217  // Finally, we should call thr_setconcurrency() periodically to refresh
1218  // the LWP pool and thwart the LWP age-out mechanism.
1219  // The "+3" term provides a little slop -- we want to slightly overprovision.
1220
1221  if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
1222    if (!(flags & THR_BOUND)) {
1223      thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
1224    }
1225  }
1226  // Although this doesn't hurt, we should warn of undefined behavior
1227  // when using unbound T1 threads with schedctl().  This should never
1228  // happen, as the compiler and VM threads are always created bound
1229  DEBUG_ONLY(
1230      if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
1231          (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
1232          ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
1233           (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
1234         warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
1235      }
1236  );
1237
1238
1239  // Mark that we don't have an lwp or thread id yet.
1240  // In case we attempt to set the priority before the thread starts.
1241  osthread->set_lwp_id(-1);
1242  osthread->set_thread_id(-1);
1243
1244  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1245  if (status != 0) {
1246    if (PrintMiscellaneous && (Verbose || WizardMode)) {
1247      perror("os::create_thread");
1248    }
1249    thread->set_osthread(NULL);
1250    // Need to clean up stuff we've allocated so far
1251    delete osthread;
1252    return false;
1253  }
1254
1255  Atomic::inc(&os::Solaris::_os_thread_count);
1256
1257  // Store info on the Solaris thread into the OSThread
1258  osthread->set_thread_id(tid);
1259
1260  // Remember that we created this thread so we can set priority on it
1261  osthread->set_vm_created();
1262
1263  // Set the default thread priority.  If using bound threads, setting
1264  // lwp priority will be delayed until thread start.
1265  set_native_priority(thread,
1266                      DefaultThreadPriority == -1 ?
1267                        java_to_os_priority[NormPriority] :
1268                        DefaultThreadPriority);
1269
1270  // Initial thread state is INITIALIZED, not SUSPENDED
1271  osthread->set_state(INITIALIZED);
1272
1273  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1274  return true;
1275}
1276
1277/* defined for >= Solaris 10. This allows builds on earlier versions
1278 *  of Solaris to take advantage of the newly reserved Solaris JVM signals
1279 *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
1280 *  and -XX:+UseAltSigs does nothing since these should have no conflict
1281 */
1282#if !defined(SIGJVM1)
1283#define SIGJVM1 39
1284#define SIGJVM2 40
1285#endif
1286
1287debug_only(static bool signal_sets_initialized = false);
1288static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1289int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
1290int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1291
1292bool os::Solaris::is_sig_ignored(int sig) {
1293      struct sigaction oact;
1294      sigaction(sig, (struct sigaction*)NULL, &oact);
1295      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1296                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1297      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
1298           return true;
1299      else
1300           return false;
1301}
1302
1303// Note: SIGRTMIN is a macro that calls sysconf() so it will
1304// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1305static bool isJVM1available() {
1306  return SIGJVM1 < SIGRTMIN;
1307}
1308
1309void os::Solaris::signal_sets_init() {
1310  // Should also have an assertion stating we are still single-threaded.
1311  assert(!signal_sets_initialized, "Already initialized");
1312  // Fill in signals that are necessarily unblocked for all threads in
1313  // the VM. Currently, we unblock the following signals:
1314  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1315  //                         by -Xrs (=ReduceSignalUsage));
1316  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1317  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1318  // the dispositions or masks wrt these signals.
1319  // Programs embedding the VM that want to use the above signals for their
1320  // own purposes must, at this time, use the "-Xrs" option to prevent
1321  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1322  // (See bug 4345157, and other related bugs).
1323  // In reality, though, unblocking these signals is really a nop, since
1324  // these signals are not blocked by default.
1325  sigemptyset(&unblocked_sigs);
1326  sigemptyset(&allowdebug_blocked_sigs);
1327  sigaddset(&unblocked_sigs, SIGILL);
1328  sigaddset(&unblocked_sigs, SIGSEGV);
1329  sigaddset(&unblocked_sigs, SIGBUS);
1330  sigaddset(&unblocked_sigs, SIGFPE);
1331
1332  if (isJVM1available) {
1333    os::Solaris::set_SIGinterrupt(SIGJVM1);
1334    os::Solaris::set_SIGasync(SIGJVM2);
1335  } else if (UseAltSigs) {
1336    os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
1337    os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
1338  } else {
1339    os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
1340    os::Solaris::set_SIGasync(ASYNC_SIGNAL);
1341  }
1342
1343  sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
1344  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1345
1346  if (!ReduceSignalUsage) {
1347   if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1348      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1349      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1350   }
1351   if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1352      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1353      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1354   }
1355   if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1356      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1357      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1358   }
1359  }
1360  // Fill in signals that are blocked by all but the VM thread.
1361  sigemptyset(&vm_sigs);
1362  if (!ReduceSignalUsage)
1363    sigaddset(&vm_sigs, BREAK_SIGNAL);
1364  debug_only(signal_sets_initialized = true);
1365
1366  // For diagnostics only used in run_periodic_checks
1367  sigemptyset(&check_signal_done);
1368}
1369
1370// These are signals that are unblocked while a thread is running Java.
1371// (For some reason, they get blocked by default.)
1372sigset_t* os::Solaris::unblocked_signals() {
1373  assert(signal_sets_initialized, "Not initialized");
1374  return &unblocked_sigs;
1375}
1376
1377// These are the signals that are blocked while a (non-VM) thread is
1378// running Java. Only the VM thread handles these signals.
1379sigset_t* os::Solaris::vm_signals() {
1380  assert(signal_sets_initialized, "Not initialized");
1381  return &vm_sigs;
1382}
1383
1384// These are signals that are blocked during cond_wait to allow debugger in
1385sigset_t* os::Solaris::allowdebug_blocked_signals() {
1386  assert(signal_sets_initialized, "Not initialized");
1387  return &allowdebug_blocked_sigs;
1388}
1389
1390
1391void _handle_uncaught_cxx_exception() {
1392  VMError err("An uncaught C++ exception");
1393  err.report_and_die();
1394}
1395
1396
1397// First crack at OS-specific initialization, from inside the new thread.
1398void os::initialize_thread(Thread* thr) {
1399  int r = thr_main() ;
1400  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
1401  if (r) {
1402    JavaThread* jt = (JavaThread *)thr;
1403    assert(jt != NULL,"Sanity check");
1404    size_t stack_size;
1405    address base = jt->stack_base();
1406    if (Arguments::created_by_java_launcher()) {
1407      // Use 2MB to allow for Solaris 7 64 bit mode.
1408      stack_size = JavaThread::stack_size_at_create() == 0
1409        ? 2048*K : JavaThread::stack_size_at_create();
1410
1411      // There are rare cases when we may have already used more than
1412      // the basic stack size allotment before this method is invoked.
1413      // Attempt to allow for a normally sized java_stack.
1414      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1415      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1416    } else {
1417      // 6269555: If we were not created by a Java launcher, i.e. if we are
1418      // running embedded in a native application, treat the primordial thread
1419      // as much like a native attached thread as possible.  This means using
1420      // the current stack size from thr_stksegment(), unless it is too large
1421      // to reliably setup guard pages.  A reasonable max size is 8MB.
1422      size_t current_size = current_stack_size();
1423      // This should never happen, but just in case....
1424      if (current_size == 0) current_size = 2 * K * K;
1425      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1426    }
1427    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1428    stack_size = (size_t)(base - bottom);
1429
1430    assert(stack_size > 0, "Stack size calculation problem");
1431
1432    if (stack_size > jt->stack_size()) {
1433      NOT_PRODUCT(
1434        struct rlimit limits;
1435        getrlimit(RLIMIT_STACK, &limits);
1436        size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1437        assert(size >= jt->stack_size(), "Stack size problem in main thread");
1438      )
1439      tty->print_cr(
1440        "Stack size of %d Kb exceeds current limit of %d Kb.\n"
1441        "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1442        "See limit(1) to increase the stack size limit.",
1443        stack_size / K, jt->stack_size() / K);
1444      vm_exit(1);
1445    }
1446    assert(jt->stack_size() >= stack_size,
1447          "Attempt to map more stack than was allocated");
1448    jt->set_stack_size(stack_size);
1449  }
1450
1451   // 5/22/01: Right now alternate signal stacks do not handle
1452   // throwing stack overflow exceptions, see bug 4463178
1453   // Until a fix is found for this, T2 will NOT imply alternate signal
1454   // stacks.
1455   // If using T2 libthread threads, install an alternate signal stack.
1456   // Because alternate stacks associate with LWPs on Solaris,
1457   // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
1458   // we prefer to explicitly stack bang.
1459   // If not using T2 libthread, but using UseBoundThreads any threads
1460   // (primordial thread, jni_attachCurrentThread) we do not create,
1461   // probably are not bound, therefore they can not have an alternate
1462   // signal stack. Since our stack banging code is generated and
1463   // is shared across threads, all threads must be bound to allow
1464   // using alternate signal stacks.  The alternative is to interpose
1465   // on _lwp_create to associate an alt sig stack with each LWP,
1466   // and this could be a problem when the JVM is embedded.
1467   // We would prefer to use alternate signal stacks with T2
1468   // Since there is currently no accurate way to detect T2
1469   // we do not. Assuming T2 when running T1 causes sig 11s or assertions
1470   // on installing alternate signal stacks
1471
1472
1473   // 05/09/03: removed alternate signal stack support for Solaris
1474   // The alternate signal stack mechanism is no longer needed to
1475   // handle stack overflow. This is now handled by allocating
1476   // guard pages (red zone) and stackbanging.
1477   // Initially the alternate signal stack mechanism was removed because
1478   // it did not work with T1 llibthread. Alternate
1479   // signal stacks MUST have all threads bound to lwps. Applications
1480   // can create their own threads and attach them without their being
1481   // bound under T1. This is frequently the case for the primordial thread.
1482   // If we were ever to reenable this mechanism we would need to
1483   // use the dynamic check for T2 libthread.
1484
1485  os::Solaris::init_thread_fpu_state();
1486  std::set_terminate(_handle_uncaught_cxx_exception);
1487}
1488
1489
1490
1491// Free Solaris resources related to the OSThread
1492void os::free_thread(OSThread* osthread) {
1493  assert(osthread != NULL, "os::free_thread but osthread not set");
1494
1495
1496  // We are told to free resources of the argument thread,
1497  // but we can only really operate on the current thread.
1498  // The main thread must take the VMThread down synchronously
1499  // before the main thread exits and frees up CodeHeap
1500  guarantee((Thread::current()->osthread() == osthread
1501     || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1502  if (Thread::current()->osthread() == osthread) {
1503    // Restore caller's signal mask
1504    sigset_t sigmask = osthread->caller_sigmask();
1505    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1506  }
1507  delete osthread;
1508}
1509
1510void os::pd_start_thread(Thread* thread) {
1511  int status = thr_continue(thread->osthread()->thread_id());
1512  assert_status(status == 0, status, "thr_continue failed");
1513}
1514
1515
1516intx os::current_thread_id() {
1517  return (intx)thr_self();
1518}
1519
1520static pid_t _initial_pid = 0;
1521
1522int os::current_process_id() {
1523  return (int)(_initial_pid ? _initial_pid : getpid());
1524}
1525
1526int os::allocate_thread_local_storage() {
1527  // %%%       in Win32 this allocates a memory segment pointed to by a
1528  //           register.  Dan Stein can implement a similar feature in
1529  //           Solaris.  Alternatively, the VM can do the same thing
1530  //           explicitly: malloc some storage and keep the pointer in a
1531  //           register (which is part of the thread's context) (or keep it
1532  //           in TLS).
1533  // %%%       In current versions of Solaris, thr_self and TSD can
1534  //           be accessed via short sequences of displaced indirections.
1535  //           The value of thr_self is available as %g7(36).
1536  //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
1537  //           assuming that the current thread already has a value bound to k.
1538  //           It may be worth experimenting with such access patterns,
1539  //           and later having the parameters formally exported from a Solaris
1540  //           interface.  I think, however, that it will be faster to
1541  //           maintain the invariant that %g2 always contains the
1542  //           JavaThread in Java code, and have stubs simply
1543  //           treat %g2 as a caller-save register, preserving it in a %lN.
1544  thread_key_t tk;
1545  if (thr_keycreate( &tk, NULL ) )
1546    fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
1547                  "(%s)", strerror(errno)));
1548  return int(tk);
1549}
1550
1551void os::free_thread_local_storage(int index) {
1552  // %%% don't think we need anything here
1553  // if ( pthread_key_delete((pthread_key_t) tk) )
1554  //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
1555}
1556
1557#define SMALLINT 32   // libthread allocate for tsd_common is a version specific
1558                      // small number - point is NO swap space available
1559void os::thread_local_storage_at_put(int index, void* value) {
1560  // %%% this is used only in threadLocalStorage.cpp
1561  if (thr_setspecific((thread_key_t)index, value)) {
1562    if (errno == ENOMEM) {
1563       vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
1564                             "thr_setspecific: out of swap space");
1565    } else {
1566      fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
1567                    "(%s)", strerror(errno)));
1568    }
1569  } else {
1570      ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
1571  }
1572}
1573
1574// This function could be called before TLS is initialized, for example, when
1575// VM receives an async signal or when VM causes a fatal error during
1576// initialization. Return NULL if thr_getspecific() fails.
1577void* os::thread_local_storage_at(int index) {
1578  // %%% this is used only in threadLocalStorage.cpp
1579  void* r = NULL;
1580  return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
1581}
1582
1583
1584// gethrtime can move backwards if read from one cpu and then a different cpu
1585// getTimeNanos is guaranteed to not move backward on Solaris
1586// local spinloop created as faster for a CAS on an int than
1587// a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
1588// supported on sparc v8 or pre supports_cx8 intel boxes.
1589// oldgetTimeNanos for systems which do not support CAS on 64bit jlong
1590// i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
1591inline hrtime_t oldgetTimeNanos() {
1592  int gotlock = LOCK_INVALID;
1593  hrtime_t newtime = gethrtime();
1594
1595  for (;;) {
1596// grab lock for max_hrtime
1597    int curlock = max_hrtime_lock;
1598    if (curlock & LOCK_BUSY)  continue;
1599    if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
1600    if (newtime > max_hrtime) {
1601      max_hrtime = newtime;
1602    } else {
1603      newtime = max_hrtime;
1604    }
1605    // release lock
1606    max_hrtime_lock = LOCK_FREE;
1607    return newtime;
1608  }
1609}
1610// gethrtime can move backwards if read from one cpu and then a different cpu
1611// getTimeNanos is guaranteed to not move backward on Solaris
1612inline hrtime_t getTimeNanos() {
1613  if (VM_Version::supports_cx8()) {
1614    const hrtime_t now = gethrtime();
1615    // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
1616    const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
1617    if (now <= prev)  return prev;   // same or retrograde time;
1618    const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1619    assert(obsv >= prev, "invariant");   // Monotonicity
1620    // If the CAS succeeded then we're done and return "now".
1621    // If the CAS failed and the observed value "obs" is >= now then
1622    // we should return "obs".  If the CAS failed and now > obs > prv then
1623    // some other thread raced this thread and installed a new value, in which case
1624    // we could either (a) retry the entire operation, (b) retry trying to install now
1625    // or (c) just return obs.  We use (c).   No loop is required although in some cases
1626    // we might discard a higher "now" value in deference to a slightly lower but freshly
1627    // installed obs value.   That's entirely benign -- it admits no new orderings compared
1628    // to (a) or (b) -- and greatly reduces coherence traffic.
1629    // We might also condition (c) on the magnitude of the delta between obs and now.
1630    // Avoiding excessive CAS operations to hot RW locations is critical.
1631    // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
1632    return (prev == obsv) ? now : obsv ;
1633  } else {
1634    return oldgetTimeNanos();
1635  }
1636}
1637
1638// Time since start-up in seconds to a fine granularity.
1639// Used by VMSelfDestructTimer and the MemProfiler.
1640double os::elapsedTime() {
1641  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1642}
1643
1644jlong os::elapsed_counter() {
1645  return (jlong)(getTimeNanos() - first_hrtime);
1646}
1647
1648jlong os::elapsed_frequency() {
1649   return hrtime_hz;
1650}
1651
1652// Return the real, user, and system times in seconds from an
1653// arbitrary fixed point in the past.
1654bool os::getTimesSecs(double* process_real_time,
1655                  double* process_user_time,
1656                  double* process_system_time) {
1657  struct tms ticks;
1658  clock_t real_ticks = times(&ticks);
1659
1660  if (real_ticks == (clock_t) (-1)) {
1661    return false;
1662  } else {
1663    double ticks_per_second = (double) clock_tics_per_sec;
1664    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1665    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1666    // For consistency return the real time from getTimeNanos()
1667    // converted to seconds.
1668    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1669
1670    return true;
1671  }
1672}
1673
1674bool os::supports_vtime() { return true; }
1675
1676bool os::enable_vtime() {
1677  int fd = ::open("/proc/self/ctl", O_WRONLY);
1678  if (fd == -1)
1679    return false;
1680
1681  long cmd[] = { PCSET, PR_MSACCT };
1682  int res = ::write(fd, cmd, sizeof(long) * 2);
1683  ::close(fd);
1684  if (res != sizeof(long) * 2)
1685    return false;
1686
1687  return true;
1688}
1689
1690bool os::vtime_enabled() {
1691  int fd = ::open("/proc/self/status", O_RDONLY);
1692  if (fd == -1)
1693    return false;
1694
1695  pstatus_t status;
1696  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1697  ::close(fd);
1698  if (res != sizeof(pstatus_t))
1699    return false;
1700
1701  return status.pr_flags & PR_MSACCT;
1702}
1703
1704double os::elapsedVTime() {
1705  return (double)gethrvtime() / (double)hrtime_hz;
1706}
1707
1708// Used internally for comparisons only
1709// getTimeMillis guaranteed to not move backwards on Solaris
1710jlong getTimeMillis() {
1711  jlong nanotime = getTimeNanos();
1712  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1713}
1714
1715// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1716jlong os::javaTimeMillis() {
1717  timeval t;
1718  if (gettimeofday( &t, NULL) == -1)
1719    fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
1720  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1721}
1722
1723jlong os::javaTimeNanos() {
1724  return (jlong)getTimeNanos();
1725}
1726
1727void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1728  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1729  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1730  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1731  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1732}
1733
1734char * os::local_time_string(char *buf, size_t buflen) {
1735  struct tm t;
1736  time_t long_time;
1737  time(&long_time);
1738  localtime_r(&long_time, &t);
1739  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1740               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1741               t.tm_hour, t.tm_min, t.tm_sec);
1742  return buf;
1743}
1744
1745// Note: os::shutdown() might be called very early during initialization, or
1746// called from signal handler. Before adding something to os::shutdown(), make
1747// sure it is async-safe and can handle partially initialized VM.
1748void os::shutdown() {
1749
1750  // allow PerfMemory to attempt cleanup of any persistent resources
1751  perfMemory_exit();
1752
1753  // needs to remove object in file system
1754  AttachListener::abort();
1755
1756  // flush buffered output, finish log files
1757  ostream_abort();
1758
1759  // Check for abort hook
1760  abort_hook_t abort_hook = Arguments::abort_hook();
1761  if (abort_hook != NULL) {
1762    abort_hook();
1763  }
1764}
1765
1766// Note: os::abort() might be called very early during initialization, or
1767// called from signal handler. Before adding something to os::abort(), make
1768// sure it is async-safe and can handle partially initialized VM.
1769void os::abort(bool dump_core) {
1770  os::shutdown();
1771  if (dump_core) {
1772#ifndef PRODUCT
1773    fdStream out(defaultStream::output_fd());
1774    out.print_raw("Current thread is ");
1775    char buf[16];
1776    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1777    out.print_raw_cr(buf);
1778    out.print_raw_cr("Dumping core ...");
1779#endif
1780    ::abort(); // dump core (for debugging)
1781  }
1782
1783  ::exit(1);
1784}
1785
1786// Die immediately, no exit hook, no abort hook, no cleanup.
1787void os::die() {
1788  ::abort(); // dump core (for debugging)
1789}
1790
1791// unused
1792void os::set_error_file(const char *logfile) {}
1793
1794// DLL functions
1795
1796const char* os::dll_file_extension() { return ".so"; }
1797
1798// This must be hard coded because it's the system's temporary
1799// directory not the java application's temp directory, ala java.io.tmpdir.
1800const char* os::get_temp_directory() { return "/tmp"; }
1801
1802static bool file_exists(const char* filename) {
1803  struct stat statbuf;
1804  if (filename == NULL || strlen(filename) == 0) {
1805    return false;
1806  }
1807  return os::stat(filename, &statbuf) == 0;
1808}
1809
1810bool os::dll_build_name(char* buffer, size_t buflen,
1811                        const char* pname, const char* fname) {
1812  bool retval = false;
1813  const size_t pnamelen = pname ? strlen(pname) : 0;
1814
1815  // Return error on buffer overflow.
1816  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1817    return retval;
1818  }
1819
1820  if (pnamelen == 0) {
1821    snprintf(buffer, buflen, "lib%s.so", fname);
1822    retval = true;
1823  } else if (strchr(pname, *os::path_separator()) != NULL) {
1824    int n;
1825    char** pelements = split_path(pname, &n);
1826    if (pelements == NULL) {
1827      return false;
1828    }
1829    for (int i = 0 ; i < n ; i++) {
1830      // really shouldn't be NULL but what the heck, check can't hurt
1831      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1832        continue; // skip the empty path values
1833      }
1834      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1835      if (file_exists(buffer)) {
1836        retval = true;
1837        break;
1838      }
1839    }
1840    // release the storage
1841    for (int i = 0 ; i < n ; i++) {
1842      if (pelements[i] != NULL) {
1843        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1844      }
1845    }
1846    if (pelements != NULL) {
1847      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1848    }
1849  } else {
1850    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1851    retval = true;
1852  }
1853  return retval;
1854}
1855
1856// check if addr is inside libjvm.so
1857bool os::address_is_in_vm(address addr) {
1858  static address libjvm_base_addr;
1859  Dl_info dlinfo;
1860
1861  if (libjvm_base_addr == NULL) {
1862    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1863      libjvm_base_addr = (address)dlinfo.dli_fbase;
1864    }
1865    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1866  }
1867
1868  if (dladdr((void *)addr, &dlinfo) != 0) {
1869    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1870  }
1871
1872  return false;
1873}
1874
1875typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
1876static dladdr1_func_type dladdr1_func = NULL;
1877
1878bool os::dll_address_to_function_name(address addr, char *buf,
1879                                      int buflen, int * offset) {
1880  // buf is not optional, but offset is optional
1881  assert(buf != NULL, "sanity check");
1882
1883  Dl_info dlinfo;
1884
1885  // dladdr1_func was initialized in os::init()
1886  if (dladdr1_func != NULL) {
1887    // yes, we have dladdr1
1888
1889    // Support for dladdr1 is checked at runtime; it may be
1890    // available even if the vm is built on a machine that does
1891    // not have dladdr1 support.  Make sure there is a value for
1892    // RTLD_DL_SYMENT.
1893    #ifndef RTLD_DL_SYMENT
1894    #define RTLD_DL_SYMENT 1
1895    #endif
1896#ifdef _LP64
1897    Elf64_Sym * info;
1898#else
1899    Elf32_Sym * info;
1900#endif
1901    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1902                     RTLD_DL_SYMENT) != 0) {
1903      // see if we have a matching symbol that covers our address
1904      if (dlinfo.dli_saddr != NULL &&
1905          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1906        if (dlinfo.dli_sname != NULL) {
1907          if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1908            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1909          }
1910          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1911          return true;
1912        }
1913      }
1914      // no matching symbol so try for just file info
1915      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1916        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1917                            buf, buflen, offset, dlinfo.dli_fname)) {
1918          return true;
1919        }
1920      }
1921    }
1922    buf[0] = '\0';
1923    if (offset != NULL) *offset  = -1;
1924    return false;
1925  }
1926
1927  // no, only dladdr is available
1928  if (dladdr((void *)addr, &dlinfo) != 0) {
1929    // see if we have a matching symbol
1930    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1931      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1932        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1933      }
1934      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1935      return true;
1936    }
1937    // no matching symbol so try for just file info
1938    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1939      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1940                          buf, buflen, offset, dlinfo.dli_fname)) {
1941        return true;
1942      }
1943    }
1944  }
1945  buf[0] = '\0';
1946  if (offset != NULL) *offset  = -1;
1947  return false;
1948}
1949
1950bool os::dll_address_to_library_name(address addr, char* buf,
1951                                     int buflen, int* offset) {
1952  // buf is not optional, but offset is optional
1953  assert(buf != NULL, "sanity check");
1954
1955  Dl_info dlinfo;
1956
1957  if (dladdr((void*)addr, &dlinfo) != 0) {
1958    if (dlinfo.dli_fname != NULL) {
1959      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1960    }
1961    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1962      *offset = addr - (address)dlinfo.dli_fbase;
1963    }
1964    return true;
1965  }
1966
1967  buf[0] = '\0';
1968  if (offset) *offset = -1;
1969  return false;
1970}
1971
1972// Prints the names and full paths of all opened dynamic libraries
1973// for current process
1974void os::print_dll_info(outputStream * st) {
1975  Dl_info dli;
1976  void *handle;
1977  Link_map *map;
1978  Link_map *p;
1979
1980  st->print_cr("Dynamic libraries:"); st->flush();
1981
1982  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1983      dli.dli_fname == NULL) {
1984    st->print_cr("Error: Cannot print dynamic libraries.");
1985    return;
1986  }
1987  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1988  if (handle == NULL) {
1989    st->print_cr("Error: Cannot print dynamic libraries.");
1990    return;
1991  }
1992  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1993  if (map == NULL) {
1994    st->print_cr("Error: Cannot print dynamic libraries.");
1995    return;
1996  }
1997
1998  while (map->l_prev != NULL)
1999    map = map->l_prev;
2000
2001  while (map != NULL) {
2002    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
2003    map = map->l_next;
2004  }
2005
2006  dlclose(handle);
2007}
2008
2009  // Loads .dll/.so and
2010  // in case of error it checks if .dll/.so was built for the
2011  // same architecture as Hotspot is running on
2012
2013void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
2014{
2015  void * result= ::dlopen(filename, RTLD_LAZY);
2016  if (result != NULL) {
2017    // Successful loading
2018    return result;
2019  }
2020
2021  Elf32_Ehdr elf_head;
2022
2023  // Read system error message into ebuf
2024  // It may or may not be overwritten below
2025  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2026  ebuf[ebuflen-1]='\0';
2027  int diag_msg_max_length=ebuflen-strlen(ebuf);
2028  char* diag_msg_buf=ebuf+strlen(ebuf);
2029
2030  if (diag_msg_max_length==0) {
2031    // No more space in ebuf for additional diagnostics message
2032    return NULL;
2033  }
2034
2035
2036  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
2037
2038  if (file_descriptor < 0) {
2039    // Can't open library, report dlerror() message
2040    return NULL;
2041  }
2042
2043  bool failed_to_read_elf_head=
2044    (sizeof(elf_head)!=
2045        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
2046
2047  ::close(file_descriptor);
2048  if (failed_to_read_elf_head) {
2049    // file i/o error - report dlerror() msg
2050    return NULL;
2051  }
2052
2053  typedef struct {
2054    Elf32_Half  code;         // Actual value as defined in elf.h
2055    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
2056    char        elf_class;    // 32 or 64 bit
2057    char        endianess;    // MSB or LSB
2058    char*       name;         // String representation
2059  } arch_t;
2060
2061  static const arch_t arch_array[]={
2062    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2063    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2064    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
2065    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
2066    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2067    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2068    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
2069    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
2070    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
2071    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
2072  };
2073
2074  #if  (defined IA32)
2075    static  Elf32_Half running_arch_code=EM_386;
2076  #elif   (defined AMD64)
2077    static  Elf32_Half running_arch_code=EM_X86_64;
2078  #elif  (defined IA64)
2079    static  Elf32_Half running_arch_code=EM_IA_64;
2080  #elif  (defined __sparc) && (defined _LP64)
2081    static  Elf32_Half running_arch_code=EM_SPARCV9;
2082  #elif  (defined __sparc) && (!defined _LP64)
2083    static  Elf32_Half running_arch_code=EM_SPARC;
2084  #elif  (defined __powerpc64__)
2085    static  Elf32_Half running_arch_code=EM_PPC64;
2086  #elif  (defined __powerpc__)
2087    static  Elf32_Half running_arch_code=EM_PPC;
2088  #elif (defined ARM)
2089    static  Elf32_Half running_arch_code=EM_ARM;
2090  #else
2091    #error Method os::dll_load requires that one of following is defined:\
2092         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
2093  #endif
2094
2095  // Identify compatability class for VM's architecture and library's architecture
2096  // Obtain string descriptions for architectures
2097
2098  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2099  int running_arch_index=-1;
2100
2101  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2102    if (running_arch_code == arch_array[i].code) {
2103      running_arch_index    = i;
2104    }
2105    if (lib_arch.code == arch_array[i].code) {
2106      lib_arch.compat_class = arch_array[i].compat_class;
2107      lib_arch.name         = arch_array[i].name;
2108    }
2109  }
2110
2111  assert(running_arch_index != -1,
2112    "Didn't find running architecture code (running_arch_code) in arch_array");
2113  if (running_arch_index == -1) {
2114    // Even though running architecture detection failed
2115    // we may still continue with reporting dlerror() message
2116    return NULL;
2117  }
2118
2119  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2120    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2121    return NULL;
2122  }
2123
2124  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2125    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2126    return NULL;
2127  }
2128
2129  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2130    if ( lib_arch.name!=NULL ) {
2131      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2132        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2133        lib_arch.name, arch_array[running_arch_index].name);
2134    } else {
2135      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2136      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2137        lib_arch.code,
2138        arch_array[running_arch_index].name);
2139    }
2140  }
2141
2142  return NULL;
2143}
2144
2145void* os::dll_lookup(void* handle, const char* name) {
2146  return dlsym(handle, name);
2147}
2148
2149void* os::get_default_process_handle() {
2150  return (void*)::dlopen(NULL, RTLD_LAZY);
2151}
2152
2153int os::stat(const char *path, struct stat *sbuf) {
2154  char pathbuf[MAX_PATH];
2155  if (strlen(path) > MAX_PATH - 1) {
2156    errno = ENAMETOOLONG;
2157    return -1;
2158  }
2159  os::native_path(strcpy(pathbuf, path));
2160  return ::stat(pathbuf, sbuf);
2161}
2162
2163static bool _print_ascii_file(const char* filename, outputStream* st) {
2164  int fd = ::open(filename, O_RDONLY);
2165  if (fd == -1) {
2166     return false;
2167  }
2168
2169  char buf[32];
2170  int bytes;
2171  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2172    st->print_raw(buf, bytes);
2173  }
2174
2175  ::close(fd);
2176
2177  return true;
2178}
2179
2180void os::print_os_info_brief(outputStream* st) {
2181  os::Solaris::print_distro_info(st);
2182
2183  os::Posix::print_uname_info(st);
2184
2185  os::Solaris::print_libversion_info(st);
2186}
2187
2188void os::print_os_info(outputStream* st) {
2189  st->print("OS:");
2190
2191  os::Solaris::print_distro_info(st);
2192
2193  os::Posix::print_uname_info(st);
2194
2195  os::Solaris::print_libversion_info(st);
2196
2197  os::Posix::print_rlimit_info(st);
2198
2199  os::Posix::print_load_average(st);
2200}
2201
2202void os::Solaris::print_distro_info(outputStream* st) {
2203  if (!_print_ascii_file("/etc/release", st)) {
2204      st->print("Solaris");
2205    }
2206    st->cr();
2207}
2208
2209void os::Solaris::print_libversion_info(outputStream* st) {
2210  if (os::Solaris::T2_libthread()) {
2211    st->print("  (T2 libthread)");
2212  }
2213  else {
2214    st->print("  (T1 libthread)");
2215  }
2216  st->cr();
2217}
2218
2219static bool check_addr0(outputStream* st) {
2220  jboolean status = false;
2221  int fd = ::open("/proc/self/map",O_RDONLY);
2222  if (fd >= 0) {
2223    prmap_t p;
2224    while(::read(fd, &p, sizeof(p)) > 0) {
2225      if (p.pr_vaddr == 0x0) {
2226        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
2227        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
2228        st->print("Access:");
2229        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
2230        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
2231        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
2232        st->cr();
2233        status = true;
2234      }
2235      ::close(fd);
2236    }
2237  }
2238  return status;
2239}
2240
2241void os::pd_print_cpu_info(outputStream* st) {
2242  // Nothing to do for now.
2243}
2244
2245void os::print_memory_info(outputStream* st) {
2246  st->print("Memory:");
2247  st->print(" %dk page", os::vm_page_size()>>10);
2248  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
2249  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
2250  st->cr();
2251  (void) check_addr0(st);
2252}
2253
2254// Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
2255// but they're the same for all the solaris architectures that we support.
2256const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2257                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2258                          "ILL_COPROC", "ILL_BADSTK" };
2259
2260const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2261                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2262                          "FPE_FLTINV", "FPE_FLTSUB" };
2263
2264const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2265
2266const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2267
2268void os::print_siginfo(outputStream* st, void* siginfo) {
2269  st->print("siginfo:");
2270
2271  const int buflen = 100;
2272  char buf[buflen];
2273  siginfo_t *si = (siginfo_t*)siginfo;
2274  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2275  char *err = strerror(si->si_errno);
2276  if (si->si_errno != 0 && err != NULL) {
2277    st->print("si_errno=%s", err);
2278  } else {
2279    st->print("si_errno=%d", si->si_errno);
2280  }
2281  const int c = si->si_code;
2282  assert(c > 0, "unexpected si_code");
2283  switch (si->si_signo) {
2284  case SIGILL:
2285    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2286    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2287    break;
2288  case SIGFPE:
2289    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2290    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2291    break;
2292  case SIGSEGV:
2293    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2294    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2295    break;
2296  case SIGBUS:
2297    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2298    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2299    break;
2300  default:
2301    st->print(", si_code=%d", si->si_code);
2302    // no si_addr
2303  }
2304
2305  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2306      UseSharedSpaces) {
2307    FileMapInfo* mapinfo = FileMapInfo::current_info();
2308    if (mapinfo->is_in_shared_space(si->si_addr)) {
2309      st->print("\n\nError accessing class data sharing archive."   \
2310                " Mapped file inaccessible during execution, "      \
2311                " possible disk/network problem.");
2312    }
2313  }
2314  st->cr();
2315}
2316
2317// Moved from whole group, because we need them here for diagnostic
2318// prints.
2319#define OLDMAXSIGNUM 32
2320static int Maxsignum = 0;
2321static int *ourSigFlags = NULL;
2322
2323extern "C" void sigINTRHandler(int, siginfo_t*, void*);
2324
2325int os::Solaris::get_our_sigflags(int sig) {
2326  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2327  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2328  return ourSigFlags[sig];
2329}
2330
2331void os::Solaris::set_our_sigflags(int sig, int flags) {
2332  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2333  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2334  ourSigFlags[sig] = flags;
2335}
2336
2337
2338static const char* get_signal_handler_name(address handler,
2339                                           char* buf, int buflen) {
2340  int offset;
2341  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2342  if (found) {
2343    // skip directory names
2344    const char *p1, *p2;
2345    p1 = buf;
2346    size_t len = strlen(os::file_separator());
2347    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2348    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2349  } else {
2350    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2351  }
2352  return buf;
2353}
2354
2355static void print_signal_handler(outputStream* st, int sig,
2356                                  char* buf, size_t buflen) {
2357  struct sigaction sa;
2358
2359  sigaction(sig, NULL, &sa);
2360
2361  st->print("%s: ", os::exception_name(sig, buf, buflen));
2362
2363  address handler = (sa.sa_flags & SA_SIGINFO)
2364                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2365                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2366
2367  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2368    st->print("SIG_DFL");
2369  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2370    st->print("SIG_IGN");
2371  } else {
2372    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2373  }
2374
2375  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
2376
2377  address rh = VMError::get_resetted_sighandler(sig);
2378  // May be, handler was resetted by VMError?
2379  if(rh != NULL) {
2380    handler = rh;
2381    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2382  }
2383
2384  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
2385
2386  // Check: is it our handler?
2387  if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
2388     handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
2389    // It is our signal handler
2390    // check for flags
2391    if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2392      st->print(
2393        ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2394        os::Solaris::get_our_sigflags(sig));
2395    }
2396  }
2397  st->cr();
2398}
2399
2400void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2401  st->print_cr("Signal Handlers:");
2402  print_signal_handler(st, SIGSEGV, buf, buflen);
2403  print_signal_handler(st, SIGBUS , buf, buflen);
2404  print_signal_handler(st, SIGFPE , buf, buflen);
2405  print_signal_handler(st, SIGPIPE, buf, buflen);
2406  print_signal_handler(st, SIGXFSZ, buf, buflen);
2407  print_signal_handler(st, SIGILL , buf, buflen);
2408  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2409  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2410  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2411  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2412  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2413  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2414  print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
2415  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2416}
2417
2418static char saved_jvm_path[MAXPATHLEN] = { 0 };
2419
2420// Find the full path to the current module, libjvm.so
2421void os::jvm_path(char *buf, jint buflen) {
2422  // Error checking.
2423  if (buflen < MAXPATHLEN) {
2424    assert(false, "must use a large-enough buffer");
2425    buf[0] = '\0';
2426    return;
2427  }
2428  // Lazy resolve the path to current module.
2429  if (saved_jvm_path[0] != 0) {
2430    strcpy(buf, saved_jvm_path);
2431    return;
2432  }
2433
2434  Dl_info dlinfo;
2435  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2436  assert(ret != 0, "cannot locate libjvm");
2437  if (ret != 0 && dlinfo.dli_fname != NULL) {
2438    realpath((char *)dlinfo.dli_fname, buf);
2439  } else {
2440    buf[0] = '\0';
2441    return;
2442  }
2443
2444  if (Arguments::created_by_gamma_launcher()) {
2445    // Support for the gamma launcher.  Typical value for buf is
2446    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2447    // the right place in the string, then assume we are installed in a JDK and
2448    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2449    // up the path so it looks like libjvm.so is installed there (append a
2450    // fake suffix hotspot/libjvm.so).
2451    const char *p = buf + strlen(buf) - 1;
2452    for (int count = 0; p > buf && count < 5; ++count) {
2453      for (--p; p > buf && *p != '/'; --p)
2454        /* empty */ ;
2455    }
2456
2457    if (strncmp(p, "/jre/lib/", 9) != 0) {
2458      // Look for JAVA_HOME in the environment.
2459      char* java_home_var = ::getenv("JAVA_HOME");
2460      if (java_home_var != NULL && java_home_var[0] != 0) {
2461        char cpu_arch[12];
2462        char* jrelib_p;
2463        int   len;
2464        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2465#ifdef _LP64
2466        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2467        if (strcmp(cpu_arch, "sparc") == 0) {
2468          strcat(cpu_arch, "v9");
2469        } else if (strcmp(cpu_arch, "i386") == 0) {
2470          strcpy(cpu_arch, "amd64");
2471        }
2472#endif
2473        // Check the current module name "libjvm.so".
2474        p = strrchr(buf, '/');
2475        assert(strstr(p, "/libjvm") == p, "invalid library name");
2476
2477        realpath(java_home_var, buf);
2478        // determine if this is a legacy image or modules image
2479        // modules image doesn't have "jre" subdirectory
2480        len = strlen(buf);
2481        jrelib_p = buf + len;
2482        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2483        if (0 != access(buf, F_OK)) {
2484          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2485        }
2486
2487        if (0 == access(buf, F_OK)) {
2488          // Use current module name "libjvm.so"
2489          len = strlen(buf);
2490          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2491        } else {
2492          // Go back to path of .so
2493          realpath((char *)dlinfo.dli_fname, buf);
2494        }
2495      }
2496    }
2497  }
2498
2499  strcpy(saved_jvm_path, buf);
2500}
2501
2502
2503void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2504  // no prefix required, not even "_"
2505}
2506
2507
2508void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2509  // no suffix required
2510}
2511
2512// This method is a copy of JDK's sysGetLastErrorString
2513// from src/solaris/hpi/src/system_md.c
2514
2515size_t os::lasterror(char *buf, size_t len) {
2516
2517  if (errno == 0)  return 0;
2518
2519  const char *s = ::strerror(errno);
2520  size_t n = ::strlen(s);
2521  if (n >= len) {
2522    n = len - 1;
2523  }
2524  ::strncpy(buf, s, n);
2525  buf[n] = '\0';
2526  return n;
2527}
2528
2529
2530// sun.misc.Signal
2531
2532extern "C" {
2533  static void UserHandler(int sig, void *siginfo, void *context) {
2534    // Ctrl-C is pressed during error reporting, likely because the error
2535    // handler fails to abort. Let VM die immediately.
2536    if (sig == SIGINT && is_error_reported()) {
2537       os::die();
2538    }
2539
2540    os::signal_notify(sig);
2541    // We do not need to reinstate the signal handler each time...
2542  }
2543}
2544
2545void* os::user_handler() {
2546  return CAST_FROM_FN_PTR(void*, UserHandler);
2547}
2548
2549class Semaphore : public StackObj {
2550  public:
2551    Semaphore();
2552    ~Semaphore();
2553    void signal();
2554    void wait();
2555    bool trywait();
2556    bool timedwait(unsigned int sec, int nsec);
2557  private:
2558    sema_t _semaphore;
2559};
2560
2561
2562Semaphore::Semaphore() {
2563  sema_init(&_semaphore, 0, NULL, NULL);
2564}
2565
2566Semaphore::~Semaphore() {
2567  sema_destroy(&_semaphore);
2568}
2569
2570void Semaphore::signal() {
2571  sema_post(&_semaphore);
2572}
2573
2574void Semaphore::wait() {
2575  sema_wait(&_semaphore);
2576}
2577
2578bool Semaphore::trywait() {
2579  return sema_trywait(&_semaphore) == 0;
2580}
2581
2582bool Semaphore::timedwait(unsigned int sec, int nsec) {
2583  struct timespec ts;
2584  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2585
2586  while (1) {
2587    int result = sema_timedwait(&_semaphore, &ts);
2588    if (result == 0) {
2589      return true;
2590    } else if (errno == EINTR) {
2591      continue;
2592    } else if (errno == ETIME) {
2593      return false;
2594    } else {
2595      return false;
2596    }
2597  }
2598}
2599
2600extern "C" {
2601  typedef void (*sa_handler_t)(int);
2602  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2603}
2604
2605void* os::signal(int signal_number, void* handler) {
2606  struct sigaction sigAct, oldSigAct;
2607  sigfillset(&(sigAct.sa_mask));
2608  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2609  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2610
2611  if (sigaction(signal_number, &sigAct, &oldSigAct))
2612    // -1 means registration failed
2613    return (void *)-1;
2614
2615  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2616}
2617
2618void os::signal_raise(int signal_number) {
2619  raise(signal_number);
2620}
2621
2622/*
2623 * The following code is moved from os.cpp for making this
2624 * code platform specific, which it is by its very nature.
2625 */
2626
2627// a counter for each possible signal value
2628static int Sigexit = 0;
2629static int Maxlibjsigsigs;
2630static jint *pending_signals = NULL;
2631static int *preinstalled_sigs = NULL;
2632static struct sigaction *chainedsigactions = NULL;
2633static sema_t sig_sem;
2634typedef int (*version_getting_t)();
2635version_getting_t os::Solaris::get_libjsig_version = NULL;
2636static int libjsigversion = NULL;
2637
2638int os::sigexitnum_pd() {
2639  assert(Sigexit > 0, "signal memory not yet initialized");
2640  return Sigexit;
2641}
2642
2643void os::Solaris::init_signal_mem() {
2644  // Initialize signal structures
2645  Maxsignum = SIGRTMAX;
2646  Sigexit = Maxsignum+1;
2647  assert(Maxsignum >0, "Unable to obtain max signal number");
2648
2649  Maxlibjsigsigs = Maxsignum;
2650
2651  // pending_signals has one int per signal
2652  // The additional signal is for SIGEXIT - exit signal to signal_thread
2653  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2654  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2655
2656  if (UseSignalChaining) {
2657     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2658       * (Maxsignum + 1), mtInternal);
2659     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2660     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2661     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2662  }
2663  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
2664  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2665}
2666
2667void os::signal_init_pd() {
2668  int ret;
2669
2670  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2671  assert(ret == 0, "sema_init() failed");
2672}
2673
2674void os::signal_notify(int signal_number) {
2675  int ret;
2676
2677  Atomic::inc(&pending_signals[signal_number]);
2678  ret = ::sema_post(&sig_sem);
2679  assert(ret == 0, "sema_post() failed");
2680}
2681
2682static int check_pending_signals(bool wait_for_signal) {
2683  int ret;
2684  while (true) {
2685    for (int i = 0; i < Sigexit + 1; i++) {
2686      jint n = pending_signals[i];
2687      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2688        return i;
2689      }
2690    }
2691    if (!wait_for_signal) {
2692      return -1;
2693    }
2694    JavaThread *thread = JavaThread::current();
2695    ThreadBlockInVM tbivm(thread);
2696
2697    bool threadIsSuspended;
2698    do {
2699      thread->set_suspend_equivalent();
2700      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2701      while((ret = ::sema_wait(&sig_sem)) == EINTR)
2702          ;
2703      assert(ret == 0, "sema_wait() failed");
2704
2705      // were we externally suspended while we were waiting?
2706      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2707      if (threadIsSuspended) {
2708        //
2709        // The semaphore has been incremented, but while we were waiting
2710        // another thread suspended us. We don't want to continue running
2711        // while suspended because that would surprise the thread that
2712        // suspended us.
2713        //
2714        ret = ::sema_post(&sig_sem);
2715        assert(ret == 0, "sema_post() failed");
2716
2717        thread->java_suspend_self();
2718      }
2719    } while (threadIsSuspended);
2720  }
2721}
2722
2723int os::signal_lookup() {
2724  return check_pending_signals(false);
2725}
2726
2727int os::signal_wait() {
2728  return check_pending_signals(true);
2729}
2730
2731////////////////////////////////////////////////////////////////////////////////
2732// Virtual Memory
2733
2734static int page_size = -1;
2735
2736// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2737// clear this var if support is not available.
2738static bool has_map_align = true;
2739
2740int os::vm_page_size() {
2741  assert(page_size != -1, "must call os::init");
2742  return page_size;
2743}
2744
2745// Solaris allocates memory by pages.
2746int os::vm_allocation_granularity() {
2747  assert(page_size != -1, "must call os::init");
2748  return page_size;
2749}
2750
2751static bool recoverable_mmap_error(int err) {
2752  // See if the error is one we can let the caller handle. This
2753  // list of errno values comes from the Solaris mmap(2) man page.
2754  switch (err) {
2755  case EBADF:
2756  case EINVAL:
2757  case ENOTSUP:
2758    // let the caller deal with these errors
2759    return true;
2760
2761  default:
2762    // Any remaining errors on this OS can cause our reserved mapping
2763    // to be lost. That can cause confusion where different data
2764    // structures think they have the same memory mapped. The worst
2765    // scenario is if both the VM and a library think they have the
2766    // same memory mapped.
2767    return false;
2768  }
2769}
2770
2771static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2772                                    int err) {
2773  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2774          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2775          strerror(err), err);
2776}
2777
2778static void warn_fail_commit_memory(char* addr, size_t bytes,
2779                                    size_t alignment_hint, bool exec,
2780                                    int err) {
2781  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2782          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2783          alignment_hint, exec, strerror(err), err);
2784}
2785
2786int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2787  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2788  size_t size = bytes;
2789  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2790  if (res != NULL) {
2791    if (UseNUMAInterleaving) {
2792      numa_make_global(addr, bytes);
2793    }
2794    return 0;
2795  }
2796
2797  int err = errno;  // save errno from mmap() call in mmap_chunk()
2798
2799  if (!recoverable_mmap_error(err)) {
2800    warn_fail_commit_memory(addr, bytes, exec, err);
2801    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2802  }
2803
2804  return err;
2805}
2806
2807bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2808  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2809}
2810
2811void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2812                                  const char* mesg) {
2813  assert(mesg != NULL, "mesg must be specified");
2814  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2815  if (err != 0) {
2816    // the caller wants all commit errors to exit with the specified mesg:
2817    warn_fail_commit_memory(addr, bytes, exec, err);
2818    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2819  }
2820}
2821
2822int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2823                                    size_t alignment_hint, bool exec) {
2824  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2825  if (err == 0) {
2826    if (UseLargePages && (alignment_hint > (size_t)vm_page_size())) {
2827      // If the large page size has been set and the VM
2828      // is using large pages, use the large page size
2829      // if it is smaller than the alignment hint. This is
2830      // a case where the VM wants to use a larger alignment size
2831      // for its own reasons but still want to use large pages
2832      // (which is what matters to setting the mpss range.
2833      size_t page_size = 0;
2834      if (large_page_size() < alignment_hint) {
2835        assert(UseLargePages, "Expected to be here for large page use only");
2836        page_size = large_page_size();
2837      } else {
2838        // If the alignment hint is less than the large page
2839        // size, the VM wants a particular alignment (thus the hint)
2840        // for internal reasons.  Try to set the mpss range using
2841        // the alignment_hint.
2842        page_size = alignment_hint;
2843      }
2844      // Since this is a hint, ignore any failures.
2845      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2846    }
2847  }
2848  return err;
2849}
2850
2851bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2852                          bool exec) {
2853  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2854}
2855
2856void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2857                                  size_t alignment_hint, bool exec,
2858                                  const char* mesg) {
2859  assert(mesg != NULL, "mesg must be specified");
2860  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2861  if (err != 0) {
2862    // the caller wants all commit errors to exit with the specified mesg:
2863    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2864    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2865  }
2866}
2867
2868// Uncommit the pages in a specified region.
2869void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2870  if (madvise(addr, bytes, MADV_FREE) < 0) {
2871    debug_only(warning("MADV_FREE failed."));
2872    return;
2873  }
2874}
2875
2876bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2877  return os::commit_memory(addr, size, !ExecMem);
2878}
2879
2880bool os::remove_stack_guard_pages(char* addr, size_t size) {
2881  return os::uncommit_memory(addr, size);
2882}
2883
2884// Change the page size in a given range.
2885void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2886  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2887  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2888  if (UseLargePages) {
2889    Solaris::setup_large_pages(addr, bytes, alignment_hint);
2890  }
2891}
2892
2893// Tell the OS to make the range local to the first-touching LWP
2894void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2895  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2896  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2897    debug_only(warning("MADV_ACCESS_LWP failed."));
2898  }
2899}
2900
2901// Tell the OS that this range would be accessed from different LWPs.
2902void os::numa_make_global(char *addr, size_t bytes) {
2903  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2904  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2905    debug_only(warning("MADV_ACCESS_MANY failed."));
2906  }
2907}
2908
2909// Get the number of the locality groups.
2910size_t os::numa_get_groups_num() {
2911  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2912  return n != -1 ? n : 1;
2913}
2914
2915// Get a list of leaf locality groups. A leaf lgroup is group that
2916// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2917// board. An LWP is assigned to one of these groups upon creation.
2918size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2919   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2920     ids[0] = 0;
2921     return 1;
2922   }
2923   int result_size = 0, top = 1, bottom = 0, cur = 0;
2924   for (int k = 0; k < size; k++) {
2925     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2926                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2927     if (r == -1) {
2928       ids[0] = 0;
2929       return 1;
2930     }
2931     if (!r) {
2932       // That's a leaf node.
2933       assert (bottom <= cur, "Sanity check");
2934       // Check if the node has memory
2935       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2936                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2937         ids[bottom++] = ids[cur];
2938       }
2939     }
2940     top += r;
2941     cur++;
2942   }
2943   if (bottom == 0) {
2944     // Handle a situation, when the OS reports no memory available.
2945     // Assume UMA architecture.
2946     ids[0] = 0;
2947     return 1;
2948   }
2949   return bottom;
2950}
2951
2952// Detect the topology change. Typically happens during CPU plugging-unplugging.
2953bool os::numa_topology_changed() {
2954  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2955  if (is_stale != -1 && is_stale) {
2956    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2957    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2958    assert(c != 0, "Failure to initialize LGRP API");
2959    Solaris::set_lgrp_cookie(c);
2960    return true;
2961  }
2962  return false;
2963}
2964
2965// Get the group id of the current LWP.
2966int os::numa_get_group_id() {
2967  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2968  if (lgrp_id == -1) {
2969    return 0;
2970  }
2971  const int size = os::numa_get_groups_num();
2972  int *ids = (int*)alloca(size * sizeof(int));
2973
2974  // Get the ids of all lgroups with memory; r is the count.
2975  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2976                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2977  if (r <= 0) {
2978    return 0;
2979  }
2980  return ids[os::random() % r];
2981}
2982
2983// Request information about the page.
2984bool os::get_page_info(char *start, page_info* info) {
2985  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2986  uint64_t addr = (uintptr_t)start;
2987  uint64_t outdata[2];
2988  uint_t validity = 0;
2989
2990  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2991    return false;
2992  }
2993
2994  info->size = 0;
2995  info->lgrp_id = -1;
2996
2997  if ((validity & 1) != 0) {
2998    if ((validity & 2) != 0) {
2999      info->lgrp_id = outdata[0];
3000    }
3001    if ((validity & 4) != 0) {
3002      info->size = outdata[1];
3003    }
3004    return true;
3005  }
3006  return false;
3007}
3008
3009// Scan the pages from start to end until a page different than
3010// the one described in the info parameter is encountered.
3011char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3012  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
3013  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
3014  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
3015  uint_t validity[MAX_MEMINFO_CNT];
3016
3017  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
3018  uint64_t p = (uint64_t)start;
3019  while (p < (uint64_t)end) {
3020    addrs[0] = p;
3021    size_t addrs_count = 1;
3022    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
3023      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
3024      addrs_count++;
3025    }
3026
3027    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
3028      return NULL;
3029    }
3030
3031    size_t i = 0;
3032    for (; i < addrs_count; i++) {
3033      if ((validity[i] & 1) != 0) {
3034        if ((validity[i] & 4) != 0) {
3035          if (outdata[types * i + 1] != page_expected->size) {
3036            break;
3037          }
3038        } else
3039          if (page_expected->size != 0) {
3040            break;
3041          }
3042
3043        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
3044          if (outdata[types * i] != page_expected->lgrp_id) {
3045            break;
3046          }
3047        }
3048      } else {
3049        return NULL;
3050      }
3051    }
3052
3053    if (i != addrs_count) {
3054      if ((validity[i] & 2) != 0) {
3055        page_found->lgrp_id = outdata[types * i];
3056      } else {
3057        page_found->lgrp_id = -1;
3058      }
3059      if ((validity[i] & 4) != 0) {
3060        page_found->size = outdata[types * i + 1];
3061      } else {
3062        page_found->size = 0;
3063      }
3064      return (char*)addrs[i];
3065    }
3066
3067    p = addrs[addrs_count - 1] + page_size;
3068  }
3069  return end;
3070}
3071
3072bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3073  size_t size = bytes;
3074  // Map uncommitted pages PROT_NONE so we fail early if we touch an
3075  // uncommitted page. Otherwise, the read/write might succeed if we
3076  // have enough swap space to back the physical page.
3077  return
3078    NULL != Solaris::mmap_chunk(addr, size,
3079                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
3080                                PROT_NONE);
3081}
3082
3083char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
3084  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
3085
3086  if (b == MAP_FAILED) {
3087    return NULL;
3088  }
3089  return b;
3090}
3091
3092char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
3093  char* addr = requested_addr;
3094  int flags = MAP_PRIVATE | MAP_NORESERVE;
3095
3096  assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
3097
3098  if (fixed) {
3099    flags |= MAP_FIXED;
3100  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
3101    flags |= MAP_ALIGN;
3102    addr = (char*) alignment_hint;
3103  }
3104
3105  // Map uncommitted pages PROT_NONE so we fail early if we touch an
3106  // uncommitted page. Otherwise, the read/write might succeed if we
3107  // have enough swap space to back the physical page.
3108  return mmap_chunk(addr, bytes, flags, PROT_NONE);
3109}
3110
3111char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
3112  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
3113
3114  guarantee(requested_addr == NULL || requested_addr == addr,
3115            "OS failed to return requested mmap address.");
3116  return addr;
3117}
3118
3119// Reserve memory at an arbitrary address, only if that area is
3120// available (and not reserved for something else).
3121
3122char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3123  const int max_tries = 10;
3124  char* base[max_tries];
3125  size_t size[max_tries];
3126
3127  // Solaris adds a gap between mmap'ed regions.  The size of the gap
3128  // is dependent on the requested size and the MMU.  Our initial gap
3129  // value here is just a guess and will be corrected later.
3130  bool had_top_overlap = false;
3131  bool have_adjusted_gap = false;
3132  size_t gap = 0x400000;
3133
3134  // Assert only that the size is a multiple of the page size, since
3135  // that's all that mmap requires, and since that's all we really know
3136  // about at this low abstraction level.  If we need higher alignment,
3137  // we can either pass an alignment to this method or verify alignment
3138  // in one of the methods further up the call chain.  See bug 5044738.
3139  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3140
3141  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
3142  // Give it a try, if the kernel honors the hint we can return immediately.
3143  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
3144
3145  volatile int err = errno;
3146  if (addr == requested_addr) {
3147    return addr;
3148  } else if (addr != NULL) {
3149    pd_unmap_memory(addr, bytes);
3150  }
3151
3152  if (PrintMiscellaneous && Verbose) {
3153    char buf[256];
3154    buf[0] = '\0';
3155    if (addr == NULL) {
3156      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
3157    }
3158    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
3159            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
3160            "%s", bytes, requested_addr, addr, buf);
3161  }
3162
3163  // Address hint method didn't work.  Fall back to the old method.
3164  // In theory, once SNV becomes our oldest supported platform, this
3165  // code will no longer be needed.
3166  //
3167  // Repeatedly allocate blocks until the block is allocated at the
3168  // right spot. Give up after max_tries.
3169  int i;
3170  for (i = 0; i < max_tries; ++i) {
3171    base[i] = reserve_memory(bytes);
3172
3173    if (base[i] != NULL) {
3174      // Is this the block we wanted?
3175      if (base[i] == requested_addr) {
3176        size[i] = bytes;
3177        break;
3178      }
3179
3180      // check that the gap value is right
3181      if (had_top_overlap && !have_adjusted_gap) {
3182        size_t actual_gap = base[i-1] - base[i] - bytes;
3183        if (gap != actual_gap) {
3184          // adjust the gap value and retry the last 2 allocations
3185          assert(i > 0, "gap adjustment code problem");
3186          have_adjusted_gap = true;  // adjust the gap only once, just in case
3187          gap = actual_gap;
3188          if (PrintMiscellaneous && Verbose) {
3189            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
3190          }
3191          unmap_memory(base[i], bytes);
3192          unmap_memory(base[i-1], size[i-1]);
3193          i-=2;
3194          continue;
3195        }
3196      }
3197
3198      // Does this overlap the block we wanted? Give back the overlapped
3199      // parts and try again.
3200      //
3201      // There is still a bug in this code: if top_overlap == bytes,
3202      // the overlap is offset from requested region by the value of gap.
3203      // In this case giving back the overlapped part will not work,
3204      // because we'll give back the entire block at base[i] and
3205      // therefore the subsequent allocation will not generate a new gap.
3206      // This could be fixed with a new algorithm that used larger
3207      // or variable size chunks to find the requested region -
3208      // but such a change would introduce additional complications.
3209      // It's rare enough that the planets align for this bug,
3210      // so we'll just wait for a fix for 6204603/5003415 which
3211      // will provide a mmap flag to allow us to avoid this business.
3212
3213      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3214      if (top_overlap >= 0 && top_overlap < bytes) {
3215        had_top_overlap = true;
3216        unmap_memory(base[i], top_overlap);
3217        base[i] += top_overlap;
3218        size[i] = bytes - top_overlap;
3219      } else {
3220        size_t bottom_overlap = base[i] + bytes - requested_addr;
3221        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3222          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
3223            warning("attempt_reserve_memory_at: possible alignment bug");
3224          }
3225          unmap_memory(requested_addr, bottom_overlap);
3226          size[i] = bytes - bottom_overlap;
3227        } else {
3228          size[i] = bytes;
3229        }
3230      }
3231    }
3232  }
3233
3234  // Give back the unused reserved pieces.
3235
3236  for (int j = 0; j < i; ++j) {
3237    if (base[j] != NULL) {
3238      unmap_memory(base[j], size[j]);
3239    }
3240  }
3241
3242  return (i < max_tries) ? requested_addr : NULL;
3243}
3244
3245bool os::pd_release_memory(char* addr, size_t bytes) {
3246  size_t size = bytes;
3247  return munmap(addr, size) == 0;
3248}
3249
3250static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
3251  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
3252         "addr must be page aligned");
3253  int retVal = mprotect(addr, bytes, prot);
3254  return retVal == 0;
3255}
3256
3257// Protect memory (Used to pass readonly pages through
3258// JNI GetArray<type>Elements with empty arrays.)
3259// Also, used for serialization page and for compressed oops null pointer
3260// checking.
3261bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3262                        bool is_committed) {
3263  unsigned int p = 0;
3264  switch (prot) {
3265  case MEM_PROT_NONE: p = PROT_NONE; break;
3266  case MEM_PROT_READ: p = PROT_READ; break;
3267  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3268  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3269  default:
3270    ShouldNotReachHere();
3271  }
3272  // is_committed is unused.
3273  return solaris_mprotect(addr, bytes, p);
3274}
3275
3276// guard_memory and unguard_memory only happens within stack guard pages.
3277// Since ISM pertains only to the heap, guard and unguard memory should not
3278/// happen with an ISM region.
3279bool os::guard_memory(char* addr, size_t bytes) {
3280  return solaris_mprotect(addr, bytes, PROT_NONE);
3281}
3282
3283bool os::unguard_memory(char* addr, size_t bytes) {
3284  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
3285}
3286
3287// Large page support
3288static size_t _large_page_size = 0;
3289
3290// Insertion sort for small arrays (descending order).
3291static void insertion_sort_descending(size_t* array, int len) {
3292  for (int i = 0; i < len; i++) {
3293    size_t val = array[i];
3294    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
3295      size_t tmp = array[key];
3296      array[key] = array[key - 1];
3297      array[key - 1] = tmp;
3298    }
3299  }
3300}
3301
3302bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
3303  const unsigned int usable_count = VM_Version::page_size_count();
3304  if (usable_count == 1) {
3305    return false;
3306  }
3307
3308  // Find the right getpagesizes interface.  When solaris 11 is the minimum
3309  // build platform, getpagesizes() (without the '2') can be called directly.
3310  typedef int (*gps_t)(size_t[], int);
3311  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
3312  if (gps_func == NULL) {
3313    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
3314    if (gps_func == NULL) {
3315      if (warn) {
3316        warning("MPSS is not supported by the operating system.");
3317      }
3318      return false;
3319    }
3320  }
3321
3322  // Fill the array of page sizes.
3323  int n = (*gps_func)(_page_sizes, page_sizes_max);
3324  assert(n > 0, "Solaris bug?");
3325
3326  if (n == page_sizes_max) {
3327    // Add a sentinel value (necessary only if the array was completely filled
3328    // since it is static (zeroed at initialization)).
3329    _page_sizes[--n] = 0;
3330    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
3331  }
3332  assert(_page_sizes[n] == 0, "missing sentinel");
3333  trace_page_sizes("available page sizes", _page_sizes, n);
3334
3335  if (n == 1) return false;     // Only one page size available.
3336
3337  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
3338  // select up to usable_count elements.  First sort the array, find the first
3339  // acceptable value, then copy the usable sizes to the top of the array and
3340  // trim the rest.  Make sure to include the default page size :-).
3341  //
3342  // A better policy could get rid of the 4M limit by taking the sizes of the
3343  // important VM memory regions (java heap and possibly the code cache) into
3344  // account.
3345  insertion_sort_descending(_page_sizes, n);
3346  const size_t size_limit =
3347    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
3348  int beg;
3349  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
3350  const int end = MIN2((int)usable_count, n) - 1;
3351  for (int cur = 0; cur < end; ++cur, ++beg) {
3352    _page_sizes[cur] = _page_sizes[beg];
3353  }
3354  _page_sizes[end] = vm_page_size();
3355  _page_sizes[end + 1] = 0;
3356
3357  if (_page_sizes[end] > _page_sizes[end - 1]) {
3358    // Default page size is not the smallest; sort again.
3359    insertion_sort_descending(_page_sizes, end + 1);
3360  }
3361  *page_size = _page_sizes[0];
3362
3363  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
3364  return true;
3365}
3366
3367void os::large_page_init() {
3368  if (UseLargePages) {
3369    // print a warning if any large page related flag is specified on command line
3370    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3371                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3372
3373    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3374  }
3375}
3376
3377bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3378  // Signal to OS that we want large pages for addresses
3379  // from addr, addr + bytes
3380  struct memcntl_mha mpss_struct;
3381  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3382  mpss_struct.mha_pagesize = align;
3383  mpss_struct.mha_flags = 0;
3384  // Upon successful completion, memcntl() returns 0
3385  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3386    debug_only(warning("Attempt to use MPSS failed."));
3387    return false;
3388  }
3389  return true;
3390}
3391
3392char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3393  fatal("os::reserve_memory_special should not be called on Solaris.");
3394  return NULL;
3395}
3396
3397bool os::release_memory_special(char* base, size_t bytes) {
3398  fatal("os::release_memory_special should not be called on Solaris.");
3399  return false;
3400}
3401
3402size_t os::large_page_size() {
3403  return _large_page_size;
3404}
3405
3406// MPSS allows application to commit large page memory on demand; with ISM
3407// the entire memory region must be allocated as shared memory.
3408bool os::can_commit_large_page_memory() {
3409  return true;
3410}
3411
3412bool os::can_execute_large_page_memory() {
3413  return true;
3414}
3415
3416static int os_sleep(jlong millis, bool interruptible) {
3417  const jlong limit = INT_MAX;
3418  jlong prevtime;
3419  int res;
3420
3421  while (millis > limit) {
3422    if ((res = os_sleep(limit, interruptible)) != OS_OK)
3423      return res;
3424    millis -= limit;
3425  }
3426
3427  // Restart interrupted polls with new parameters until the proper delay
3428  // has been completed.
3429
3430  prevtime = getTimeMillis();
3431
3432  while (millis > 0) {
3433    jlong newtime;
3434
3435    if (!interruptible) {
3436      // Following assert fails for os::yield_all:
3437      // assert(!thread->is_Java_thread(), "must not be java thread");
3438      res = poll(NULL, 0, millis);
3439    } else {
3440      JavaThread *jt = JavaThread::current();
3441
3442      INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
3443        os::Solaris::clear_interrupted);
3444    }
3445
3446    // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
3447    // thread.Interrupt.
3448
3449    // See c/r 6751923. Poll can return 0 before time
3450    // has elapsed if time is set via clock_settime (as NTP does).
3451    // res == 0 if poll timed out (see man poll RETURN VALUES)
3452    // using the logic below checks that we really did
3453    // sleep at least "millis" if not we'll sleep again.
3454    if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
3455      newtime = getTimeMillis();
3456      assert(newtime >= prevtime, "time moving backwards");
3457    /* Doing prevtime and newtime in microseconds doesn't help precision,
3458       and trying to round up to avoid lost milliseconds can result in a
3459       too-short delay. */
3460      millis -= newtime - prevtime;
3461      if(millis <= 0)
3462        return OS_OK;
3463      prevtime = newtime;
3464    } else
3465      return res;
3466  }
3467
3468  return OS_OK;
3469}
3470
3471// Read calls from inside the vm need to perform state transitions
3472size_t os::read(int fd, void *buf, unsigned int nBytes) {
3473  INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3474}
3475
3476size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3477  INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3478}
3479
3480int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3481  assert(thread == Thread::current(),  "thread consistency check");
3482
3483  // TODO-FIXME: this should be removed.
3484  // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
3485  // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
3486  // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
3487  // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
3488  // is fooled into believing that the system is making progress. In the code below we block the
3489  // the watcher thread while safepoint is in progress so that it would not appear as though the
3490  // system is making progress.
3491  if (!Solaris::T2_libthread() &&
3492      thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
3493    // We now try to acquire the threads lock. Since this lock is held by the VM thread during
3494    // the entire safepoint, the watcher thread will  line up here during the safepoint.
3495    Threads_lock->lock_without_safepoint_check();
3496    Threads_lock->unlock();
3497  }
3498
3499  if (thread->is_Java_thread()) {
3500    // This is a JavaThread so we honor the _thread_blocked protocol
3501    // even for sleeps of 0 milliseconds. This was originally done
3502    // as a workaround for bug 4338139. However, now we also do it
3503    // to honor the suspend-equivalent protocol.
3504
3505    JavaThread *jt = (JavaThread *) thread;
3506    ThreadBlockInVM tbivm(jt);
3507
3508    jt->set_suspend_equivalent();
3509    // cleared by handle_special_suspend_equivalent_condition() or
3510    // java_suspend_self() via check_and_wait_while_suspended()
3511
3512    int ret_code;
3513    if (millis <= 0) {
3514      thr_yield();
3515      ret_code = 0;
3516    } else {
3517      // The original sleep() implementation did not create an
3518      // OSThreadWaitState helper for sleeps of 0 milliseconds.
3519      // I'm preserving that decision for now.
3520      OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3521
3522      ret_code = os_sleep(millis, interruptible);
3523    }
3524
3525    // were we externally suspended while we were waiting?
3526    jt->check_and_wait_while_suspended();
3527
3528    return ret_code;
3529  }
3530
3531  // non-JavaThread from this point on:
3532
3533  if (millis <= 0) {
3534    thr_yield();
3535    return 0;
3536  }
3537
3538  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3539
3540  return os_sleep(millis, interruptible);
3541}
3542
3543void os::naked_short_sleep(jlong ms) {
3544  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3545
3546  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3547  // Solaris requires -lrt for this.
3548  usleep((ms * 1000));
3549
3550  return;
3551}
3552
3553// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3554void os::infinite_sleep() {
3555  while (true) {    // sleep forever ...
3556    ::sleep(100);   // ... 100 seconds at a time
3557  }
3558}
3559
3560// Used to convert frequent JVM_Yield() to nops
3561bool os::dont_yield() {
3562  if (DontYieldALot) {
3563    static hrtime_t last_time = 0;
3564    hrtime_t diff = getTimeNanos() - last_time;
3565
3566    if (diff < DontYieldALotInterval * 1000000)
3567      return true;
3568
3569    last_time += diff;
3570
3571    return false;
3572  }
3573  else {
3574    return false;
3575  }
3576}
3577
3578// Caveat: Solaris os::yield() causes a thread-state transition whereas
3579// the linux and win32 implementations do not.  This should be checked.
3580
3581void os::yield() {
3582  // Yields to all threads with same or greater priority
3583  os::sleep(Thread::current(), 0, false);
3584}
3585
3586// Note that yield semantics are defined by the scheduling class to which
3587// the thread currently belongs.  Typically, yield will _not yield to
3588// other equal or higher priority threads that reside on the dispatch queues
3589// of other CPUs.
3590
3591os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
3592
3593
3594// On Solaris we found that yield_all doesn't always yield to all other threads.
3595// There have been cases where there is a thread ready to execute but it doesn't
3596// get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
3597// The 1 millisecond wait doesn't seem long enough for the kernel to issue a
3598// SIGWAITING signal which will cause a new lwp to be created. So we count the
3599// number of times yield_all is called in the one loop and increase the sleep
3600// time after 8 attempts. If this fails too we increase the concurrency level
3601// so that the starving thread would get an lwp
3602
3603void os::yield_all(int attempts) {
3604  // Yields to all threads, including threads with lower priorities
3605  if (attempts == 0) {
3606    os::sleep(Thread::current(), 1, false);
3607  } else {
3608    int iterations = attempts % 30;
3609    if (iterations == 0 && !os::Solaris::T2_libthread()) {
3610      // thr_setconcurrency and _getconcurrency make sense only under T1.
3611      int noofLWPS = thr_getconcurrency();
3612      if (noofLWPS < (Threads::number_of_threads() + 2)) {
3613        thr_setconcurrency(thr_getconcurrency() + 1);
3614      }
3615    } else if (iterations < 25) {
3616      os::sleep(Thread::current(), 1, false);
3617    } else {
3618      os::sleep(Thread::current(), 10, false);
3619    }
3620  }
3621}
3622
3623// Called from the tight loops to possibly influence time-sharing heuristics
3624void os::loop_breaker(int attempts) {
3625  os::yield_all(attempts);
3626}
3627
3628
3629// Interface for setting lwp priorities.  If we are using T2 libthread,
3630// which forces the use of BoundThreads or we manually set UseBoundThreads,
3631// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3632// function is meaningless in this mode so we must adjust the real lwp's priority
3633// The routines below implement the getting and setting of lwp priorities.
3634//
3635// Note: There are three priority scales used on Solaris.  Java priotities
3636//       which range from 1 to 10, libthread "thr_setprio" scale which range
3637//       from 0 to 127, and the current scheduling class of the process we
3638//       are running in.  This is typically from -60 to +60.
3639//       The setting of the lwp priorities in done after a call to thr_setprio
3640//       so Java priorities are mapped to libthread priorities and we map from
3641//       the latter to lwp priorities.  We don't keep priorities stored in
3642//       Java priorities since some of our worker threads want to set priorities
3643//       higher than all Java threads.
3644//
3645// For related information:
3646// (1)  man -s 2 priocntl
3647// (2)  man -s 4 priocntl
3648// (3)  man dispadmin
3649// =    librt.so
3650// =    libthread/common/rtsched.c - thrp_setlwpprio().
3651// =    ps -cL <pid> ... to validate priority.
3652// =    sched_get_priority_min and _max
3653//              pthread_create
3654//              sched_setparam
3655//              pthread_setschedparam
3656//
3657// Assumptions:
3658// +    We assume that all threads in the process belong to the same
3659//              scheduling class.   IE. an homogenous process.
3660// +    Must be root or in IA group to change change "interactive" attribute.
3661//              Priocntl() will fail silently.  The only indication of failure is when
3662//              we read-back the value and notice that it hasn't changed.
3663// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3664// +    For RT, change timeslice as well.  Invariant:
3665//              constant "priority integral"
3666//              Konst == TimeSlice * (60-Priority)
3667//              Given a priority, compute appropriate timeslice.
3668// +    Higher numerical values have higher priority.
3669
3670// sched class attributes
3671typedef struct {
3672        int   schedPolicy;              // classID
3673        int   maxPrio;
3674        int   minPrio;
3675} SchedInfo;
3676
3677
3678static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3679
3680#ifdef ASSERT
3681static int  ReadBackValidate = 1;
3682#endif
3683static int  myClass     = 0;
3684static int  myMin       = 0;
3685static int  myMax       = 0;
3686static int  myCur       = 0;
3687static bool priocntl_enable = false;
3688
3689static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
3690static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3691
3692
3693// lwp_priocntl_init
3694//
3695// Try to determine the priority scale for our process.
3696//
3697// Return errno or 0 if OK.
3698//
3699static int lwp_priocntl_init () {
3700  int rslt;
3701  pcinfo_t ClassInfo;
3702  pcparms_t ParmInfo;
3703  int i;
3704
3705  if (!UseThreadPriorities) return 0;
3706
3707  // We are using Bound threads, we need to determine our priority ranges
3708  if (os::Solaris::T2_libthread() || UseBoundThreads) {
3709    // If ThreadPriorityPolicy is 1, switch tables
3710    if (ThreadPriorityPolicy == 1) {
3711      for (i = 0 ; i < CriticalPriority+1; i++)
3712        os::java_to_os_priority[i] = prio_policy1[i];
3713    }
3714    if (UseCriticalJavaThreadPriority) {
3715      // MaxPriority always maps to the FX scheduling class and criticalPrio.
3716      // See set_native_priority() and set_lwp_class_and_priority().
3717      // Save original MaxPriority mapping in case attempt to
3718      // use critical priority fails.
3719      java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3720      // Set negative to distinguish from other priorities
3721      os::java_to_os_priority[MaxPriority] = -criticalPrio;
3722    }
3723  }
3724  // Not using Bound Threads, set to ThreadPolicy 1
3725  else {
3726    for ( i = 0 ; i < CriticalPriority+1; i++ ) {
3727      os::java_to_os_priority[i] = prio_policy1[i];
3728    }
3729    return 0;
3730  }
3731
3732  // Get IDs for a set of well-known scheduling classes.
3733  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3734  // the system.  We should have a loop that iterates over the
3735  // classID values, which are known to be "small" integers.
3736
3737  strcpy(ClassInfo.pc_clname, "TS");
3738  ClassInfo.pc_cid = -1;
3739  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3740  if (rslt < 0) return errno;
3741  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3742  tsLimits.schedPolicy = ClassInfo.pc_cid;
3743  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3744  tsLimits.minPrio = -tsLimits.maxPrio;
3745
3746  strcpy(ClassInfo.pc_clname, "IA");
3747  ClassInfo.pc_cid = -1;
3748  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3749  if (rslt < 0) return errno;
3750  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3751  iaLimits.schedPolicy = ClassInfo.pc_cid;
3752  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3753  iaLimits.minPrio = -iaLimits.maxPrio;
3754
3755  strcpy(ClassInfo.pc_clname, "RT");
3756  ClassInfo.pc_cid = -1;
3757  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3758  if (rslt < 0) return errno;
3759  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3760  rtLimits.schedPolicy = ClassInfo.pc_cid;
3761  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3762  rtLimits.minPrio = 0;
3763
3764  strcpy(ClassInfo.pc_clname, "FX");
3765  ClassInfo.pc_cid = -1;
3766  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3767  if (rslt < 0) return errno;
3768  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3769  fxLimits.schedPolicy = ClassInfo.pc_cid;
3770  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3771  fxLimits.minPrio = 0;
3772
3773  // Query our "current" scheduling class.
3774  // This will normally be IA, TS or, rarely, FX or RT.
3775  memset(&ParmInfo, 0, sizeof(ParmInfo));
3776  ParmInfo.pc_cid = PC_CLNULL;
3777  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3778  if (rslt < 0) return errno;
3779  myClass = ParmInfo.pc_cid;
3780
3781  // We now know our scheduling classId, get specific information
3782  // about the class.
3783  ClassInfo.pc_cid = myClass;
3784  ClassInfo.pc_clname[0] = 0;
3785  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3786  if (rslt < 0) return errno;
3787
3788  if (ThreadPriorityVerbose) {
3789    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3790  }
3791
3792  memset(&ParmInfo, 0, sizeof(pcparms_t));
3793  ParmInfo.pc_cid = PC_CLNULL;
3794  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3795  if (rslt < 0) return errno;
3796
3797  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3798    myMin = rtLimits.minPrio;
3799    myMax = rtLimits.maxPrio;
3800  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3801    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3802    myMin = iaLimits.minPrio;
3803    myMax = iaLimits.maxPrio;
3804    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3805  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3806    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3807    myMin = tsLimits.minPrio;
3808    myMax = tsLimits.maxPrio;
3809    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3810  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3811    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3812    myMin = fxLimits.minPrio;
3813    myMax = fxLimits.maxPrio;
3814    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3815  } else {
3816    // No clue - punt
3817    if (ThreadPriorityVerbose)
3818      tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
3819    return EINVAL;      // no clue, punt
3820  }
3821
3822  if (ThreadPriorityVerbose) {
3823    tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
3824  }
3825
3826  priocntl_enable = true;  // Enable changing priorities
3827  return 0;
3828}
3829
3830#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3831#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3832#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3833#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3834
3835
3836// scale_to_lwp_priority
3837//
3838// Convert from the libthread "thr_setprio" scale to our current
3839// lwp scheduling class scale.
3840//
3841static
3842int     scale_to_lwp_priority (int rMin, int rMax, int x)
3843{
3844  int v;
3845
3846  if (x == 127) return rMax;            // avoid round-down
3847    v = (((x*(rMax-rMin)))/128)+rMin;
3848  return v;
3849}
3850
3851
3852// set_lwp_class_and_priority
3853//
3854// Set the class and priority of the lwp.  This call should only
3855// be made when using bound threads (T2 threads are bound by default).
3856//
3857int set_lwp_class_and_priority(int ThreadID, int lwpid,
3858                               int newPrio, int new_class, bool scale) {
3859  int rslt;
3860  int Actual, Expected, prv;
3861  pcparms_t ParmInfo;                   // for GET-SET
3862#ifdef ASSERT
3863  pcparms_t ReadBack;                   // for readback
3864#endif
3865
3866  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3867  // Query current values.
3868  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3869  // Cache "pcparms_t" in global ParmCache.
3870  // TODO: elide set-to-same-value
3871
3872  // If something went wrong on init, don't change priorities.
3873  if ( !priocntl_enable ) {
3874    if (ThreadPriorityVerbose)
3875      tty->print_cr("Trying to set priority but init failed, ignoring");
3876    return EINVAL;
3877  }
3878
3879  // If lwp hasn't started yet, just return
3880  // the _start routine will call us again.
3881  if ( lwpid <= 0 ) {
3882    if (ThreadPriorityVerbose) {
3883      tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
3884                     INTPTR_FORMAT " to %d, lwpid not set",
3885                     ThreadID, newPrio);
3886    }
3887    return 0;
3888  }
3889
3890  if (ThreadPriorityVerbose) {
3891    tty->print_cr ("set_lwp_class_and_priority("
3892                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3893                   ThreadID, lwpid, newPrio);
3894  }
3895
3896  memset(&ParmInfo, 0, sizeof(pcparms_t));
3897  ParmInfo.pc_cid = PC_CLNULL;
3898  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3899  if (rslt < 0) return errno;
3900
3901  int cur_class = ParmInfo.pc_cid;
3902  ParmInfo.pc_cid = (id_t)new_class;
3903
3904  if (new_class == rtLimits.schedPolicy) {
3905    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3906    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3907                                                       rtLimits.maxPrio, newPrio)
3908                               : newPrio;
3909    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3910    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3911    if (ThreadPriorityVerbose) {
3912      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3913    }
3914  } else if (new_class == iaLimits.schedPolicy) {
3915    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3916    int maxClamped     = MIN2(iaLimits.maxPrio,
3917                              cur_class == new_class
3918                                ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3919    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3920                                                       maxClamped, newPrio)
3921                               : newPrio;
3922    iaInfo->ia_uprilim = cur_class == new_class
3923                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3924    iaInfo->ia_mode    = IA_NOCHANGE;
3925    if (ThreadPriorityVerbose) {
3926      tty->print_cr("IA: [%d...%d] %d->%d\n",
3927                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3928    }
3929  } else if (new_class == tsLimits.schedPolicy) {
3930    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3931    int maxClamped     = MIN2(tsLimits.maxPrio,
3932                              cur_class == new_class
3933                                ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3934    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3935                                                       maxClamped, newPrio)
3936                               : newPrio;
3937    tsInfo->ts_uprilim = cur_class == new_class
3938                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3939    if (ThreadPriorityVerbose) {
3940      tty->print_cr("TS: [%d...%d] %d->%d\n",
3941                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3942    }
3943  } else if (new_class == fxLimits.schedPolicy) {
3944    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3945    int maxClamped     = MIN2(fxLimits.maxPrio,
3946                              cur_class == new_class
3947                                ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3948    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3949                                                       maxClamped, newPrio)
3950                               : newPrio;
3951    fxInfo->fx_uprilim = cur_class == new_class
3952                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3953    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3954    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3955    if (ThreadPriorityVerbose) {
3956      tty->print_cr("FX: [%d...%d] %d->%d\n",
3957                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3958    }
3959  } else {
3960    if (ThreadPriorityVerbose) {
3961      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3962    }
3963    return EINVAL;    // no clue, punt
3964  }
3965
3966  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3967  if (ThreadPriorityVerbose && rslt) {
3968    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3969  }
3970  if (rslt < 0) return errno;
3971
3972#ifdef ASSERT
3973  // Sanity check: read back what we just attempted to set.
3974  // In theory it could have changed in the interim ...
3975  //
3976  // The priocntl system call is tricky.
3977  // Sometimes it'll validate the priority value argument and
3978  // return EINVAL if unhappy.  At other times it fails silently.
3979  // Readbacks are prudent.
3980
3981  if (!ReadBackValidate) return 0;
3982
3983  memset(&ReadBack, 0, sizeof(pcparms_t));
3984  ReadBack.pc_cid = PC_CLNULL;
3985  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3986  assert(rslt >= 0, "priocntl failed");
3987  Actual = Expected = 0xBAD;
3988  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3989  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3990    Actual   = RTPRI(ReadBack)->rt_pri;
3991    Expected = RTPRI(ParmInfo)->rt_pri;
3992  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3993    Actual   = IAPRI(ReadBack)->ia_upri;
3994    Expected = IAPRI(ParmInfo)->ia_upri;
3995  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3996    Actual   = TSPRI(ReadBack)->ts_upri;
3997    Expected = TSPRI(ParmInfo)->ts_upri;
3998  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3999    Actual   = FXPRI(ReadBack)->fx_upri;
4000    Expected = FXPRI(ParmInfo)->fx_upri;
4001  } else {
4002    if (ThreadPriorityVerbose) {
4003      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
4004                    ParmInfo.pc_cid);
4005    }
4006  }
4007
4008  if (Actual != Expected) {
4009    if (ThreadPriorityVerbose) {
4010      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
4011                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
4012    }
4013  }
4014#endif
4015
4016  return 0;
4017}
4018
4019// Solaris only gives access to 128 real priorities at a time,
4020// so we expand Java's ten to fill this range.  This would be better
4021// if we dynamically adjusted relative priorities.
4022//
4023// The ThreadPriorityPolicy option allows us to select 2 different
4024// priority scales.
4025//
4026// ThreadPriorityPolicy=0
4027// Since the Solaris' default priority is MaximumPriority, we do not
4028// set a priority lower than Max unless a priority lower than
4029// NormPriority is requested.
4030//
4031// ThreadPriorityPolicy=1
4032// This mode causes the priority table to get filled with
4033// linear values.  NormPriority get's mapped to 50% of the
4034// Maximum priority an so on.  This will cause VM threads
4035// to get unfair treatment against other Solaris processes
4036// which do not explicitly alter their thread priorities.
4037//
4038
4039int os::java_to_os_priority[CriticalPriority + 1] = {
4040  -99999,         // 0 Entry should never be used
4041
4042  0,              // 1 MinPriority
4043  32,             // 2
4044  64,             // 3
4045
4046  96,             // 4
4047  127,            // 5 NormPriority
4048  127,            // 6
4049
4050  127,            // 7
4051  127,            // 8
4052  127,            // 9 NearMaxPriority
4053
4054  127,            // 10 MaxPriority
4055
4056  -criticalPrio   // 11 CriticalPriority
4057};
4058
4059OSReturn os::set_native_priority(Thread* thread, int newpri) {
4060  OSThread* osthread = thread->osthread();
4061
4062  // Save requested priority in case the thread hasn't been started
4063  osthread->set_native_priority(newpri);
4064
4065  // Check for critical priority request
4066  bool fxcritical = false;
4067  if (newpri == -criticalPrio) {
4068    fxcritical = true;
4069    newpri = criticalPrio;
4070  }
4071
4072  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
4073  if (!UseThreadPriorities) return OS_OK;
4074
4075  int status = 0;
4076
4077  if (!fxcritical) {
4078    // Use thr_setprio only if we have a priority that thr_setprio understands
4079    status = thr_setprio(thread->osthread()->thread_id(), newpri);
4080  }
4081
4082  if (os::Solaris::T2_libthread() ||
4083      (UseBoundThreads && osthread->is_vm_created())) {
4084    int lwp_status =
4085      set_lwp_class_and_priority(osthread->thread_id(),
4086                                 osthread->lwp_id(),
4087                                 newpri,
4088                                 fxcritical ? fxLimits.schedPolicy : myClass,
4089                                 !fxcritical);
4090    if (lwp_status != 0 && fxcritical) {
4091      // Try again, this time without changing the scheduling class
4092      newpri = java_MaxPriority_to_os_priority;
4093      lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
4094                                              osthread->lwp_id(),
4095                                              newpri, myClass, false);
4096    }
4097    status |= lwp_status;
4098  }
4099  return (status == 0) ? OS_OK : OS_ERR;
4100}
4101
4102
4103OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4104  int p;
4105  if ( !UseThreadPriorities ) {
4106    *priority_ptr = NormalPriority;
4107    return OS_OK;
4108  }
4109  int status = thr_getprio(thread->osthread()->thread_id(), &p);
4110  if (status != 0) {
4111    return OS_ERR;
4112  }
4113  *priority_ptr = p;
4114  return OS_OK;
4115}
4116
4117
4118// Hint to the underlying OS that a task switch would not be good.
4119// Void return because it's a hint and can fail.
4120void os::hint_no_preempt() {
4121  schedctl_start(schedctl_init());
4122}
4123
4124static void resume_clear_context(OSThread *osthread) {
4125  osthread->set_ucontext(NULL);
4126}
4127
4128static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
4129  osthread->set_ucontext(context);
4130}
4131
4132static Semaphore sr_semaphore;
4133
4134void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
4135  // Save and restore errno to avoid confusing native code with EINTR
4136  // after sigsuspend.
4137  int old_errno = errno;
4138
4139  OSThread* osthread = thread->osthread();
4140  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4141
4142  os::SuspendResume::State current = osthread->sr.state();
4143  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4144    suspend_save_context(osthread, uc);
4145
4146    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4147    os::SuspendResume::State state = osthread->sr.suspended();
4148    if (state == os::SuspendResume::SR_SUSPENDED) {
4149      sigset_t suspend_set;  // signals for sigsuspend()
4150
4151      // get current set of blocked signals and unblock resume signal
4152      thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
4153      sigdelset(&suspend_set, os::Solaris::SIGasync());
4154
4155      sr_semaphore.signal();
4156      // wait here until we are resumed
4157      while (1) {
4158        sigsuspend(&suspend_set);
4159
4160        os::SuspendResume::State result = osthread->sr.running();
4161        if (result == os::SuspendResume::SR_RUNNING) {
4162          sr_semaphore.signal();
4163          break;
4164        }
4165      }
4166
4167    } else if (state == os::SuspendResume::SR_RUNNING) {
4168      // request was cancelled, continue
4169    } else {
4170      ShouldNotReachHere();
4171    }
4172
4173    resume_clear_context(osthread);
4174  } else if (current == os::SuspendResume::SR_RUNNING) {
4175    // request was cancelled, continue
4176  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4177    // ignore
4178  } else {
4179    // ignore
4180  }
4181
4182  errno = old_errno;
4183}
4184
4185
4186void os::interrupt(Thread* thread) {
4187  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
4188
4189  OSThread* osthread = thread->osthread();
4190
4191  int isInterrupted = osthread->interrupted();
4192  if (!isInterrupted) {
4193      osthread->set_interrupted(true);
4194      OrderAccess::fence();
4195      // os::sleep() is implemented with either poll (NULL,0,timeout) or
4196      // by parking on _SleepEvent.  If the former, thr_kill will unwedge
4197      // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
4198      ParkEvent * const slp = thread->_SleepEvent ;
4199      if (slp != NULL) slp->unpark() ;
4200  }
4201
4202  // For JSR166:  unpark after setting status but before thr_kill -dl
4203  if (thread->is_Java_thread()) {
4204    ((JavaThread*)thread)->parker()->unpark();
4205  }
4206
4207  // Handle interruptible wait() ...
4208  ParkEvent * const ev = thread->_ParkEvent ;
4209  if (ev != NULL) ev->unpark() ;
4210
4211  // When events are used everywhere for os::sleep, then this thr_kill
4212  // will only be needed if UseVMInterruptibleIO is true.
4213
4214  if (!isInterrupted) {
4215    int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
4216    assert_status(status == 0, status, "thr_kill");
4217
4218    // Bump thread interruption counter
4219    RuntimeService::record_thread_interrupt_signaled_count();
4220  }
4221}
4222
4223
4224bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4225  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
4226
4227  OSThread* osthread = thread->osthread();
4228
4229  bool res = osthread->interrupted();
4230
4231  // NOTE that since there is no "lock" around these two operations,
4232  // there is the possibility that the interrupted flag will be
4233  // "false" but that the interrupt event will be set. This is
4234  // intentional. The effect of this is that Object.wait() will appear
4235  // to have a spurious wakeup, which is not harmful, and the
4236  // possibility is so rare that it is not worth the added complexity
4237  // to add yet another lock. It has also been recommended not to put
4238  // the interrupted flag into the os::Solaris::Event structure,
4239  // because it hides the issue.
4240  if (res && clear_interrupted) {
4241    osthread->set_interrupted(false);
4242  }
4243  return res;
4244}
4245
4246
4247void os::print_statistics() {
4248}
4249
4250int os::message_box(const char* title, const char* message) {
4251  int i;
4252  fdStream err(defaultStream::error_fd());
4253  for (i = 0; i < 78; i++) err.print_raw("=");
4254  err.cr();
4255  err.print_raw_cr(title);
4256  for (i = 0; i < 78; i++) err.print_raw("-");
4257  err.cr();
4258  err.print_raw_cr(message);
4259  for (i = 0; i < 78; i++) err.print_raw("=");
4260  err.cr();
4261
4262  char buf[16];
4263  // Prevent process from exiting upon "read error" without consuming all CPU
4264  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4265
4266  return buf[0] == 'y' || buf[0] == 'Y';
4267}
4268
4269static int sr_notify(OSThread* osthread) {
4270  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
4271  assert_status(status == 0, status, "thr_kill");
4272  return status;
4273}
4274
4275// "Randomly" selected value for how long we want to spin
4276// before bailing out on suspending a thread, also how often
4277// we send a signal to a thread we want to resume
4278static const int RANDOMLY_LARGE_INTEGER = 1000000;
4279static const int RANDOMLY_LARGE_INTEGER2 = 100;
4280
4281static bool do_suspend(OSThread* osthread) {
4282  assert(osthread->sr.is_running(), "thread should be running");
4283  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4284
4285  // mark as suspended and send signal
4286  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4287    // failed to switch, state wasn't running?
4288    ShouldNotReachHere();
4289    return false;
4290  }
4291
4292  if (sr_notify(osthread) != 0) {
4293    ShouldNotReachHere();
4294  }
4295
4296  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4297  while (true) {
4298    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
4299      break;
4300    } else {
4301      // timeout
4302      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4303      if (cancelled == os::SuspendResume::SR_RUNNING) {
4304        return false;
4305      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4306        // make sure that we consume the signal on the semaphore as well
4307        sr_semaphore.wait();
4308        break;
4309      } else {
4310        ShouldNotReachHere();
4311        return false;
4312      }
4313    }
4314  }
4315
4316  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4317  return true;
4318}
4319
4320static void do_resume(OSThread* osthread) {
4321  assert(osthread->sr.is_suspended(), "thread should be suspended");
4322  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4323
4324  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4325    // failed to switch to WAKEUP_REQUEST
4326    ShouldNotReachHere();
4327    return;
4328  }
4329
4330  while (true) {
4331    if (sr_notify(osthread) == 0) {
4332      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4333        if (osthread->sr.is_running()) {
4334          return;
4335        }
4336      }
4337    } else {
4338      ShouldNotReachHere();
4339    }
4340  }
4341
4342  guarantee(osthread->sr.is_running(), "Must be running!");
4343}
4344
4345void os::SuspendedThreadTask::internal_do_task() {
4346  if (do_suspend(_thread->osthread())) {
4347    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4348    do_task(context);
4349    do_resume(_thread->osthread());
4350  }
4351}
4352
4353class PcFetcher : public os::SuspendedThreadTask {
4354public:
4355  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4356  ExtendedPC result();
4357protected:
4358  void do_task(const os::SuspendedThreadTaskContext& context);
4359private:
4360  ExtendedPC _epc;
4361};
4362
4363ExtendedPC PcFetcher::result() {
4364  guarantee(is_done(), "task is not done yet.");
4365  return _epc;
4366}
4367
4368void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4369  Thread* thread = context.thread();
4370  OSThread* osthread = thread->osthread();
4371  if (osthread->ucontext() != NULL) {
4372    _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
4373  } else {
4374    // NULL context is unexpected, double-check this is the VMThread
4375    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4376  }
4377}
4378
4379// A lightweight implementation that does not suspend the target thread and
4380// thus returns only a hint. Used for profiling only!
4381ExtendedPC os::get_thread_pc(Thread* thread) {
4382  // Make sure that it is called by the watcher and the Threads lock is owned.
4383  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
4384  // For now, is only used to profile the VM Thread
4385  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4386  PcFetcher fetcher(thread);
4387  fetcher.run();
4388  return fetcher.result();
4389}
4390
4391
4392// This does not do anything on Solaris. This is basically a hook for being
4393// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
4394void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
4395  f(value, method, args, thread);
4396}
4397
4398// This routine may be used by user applications as a "hook" to catch signals.
4399// The user-defined signal handler must pass unrecognized signals to this
4400// routine, and if it returns true (non-zero), then the signal handler must
4401// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4402// routine will never retun false (zero), but instead will execute a VM panic
4403// routine kill the process.
4404//
4405// If this routine returns false, it is OK to call it again.  This allows
4406// the user-defined signal handler to perform checks either before or after
4407// the VM performs its own checks.  Naturally, the user code would be making
4408// a serious error if it tried to handle an exception (such as a null check
4409// or breakpoint) that the VM was generating for its own correct operation.
4410//
4411// This routine may recognize any of the following kinds of signals:
4412// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
4413// os::Solaris::SIGasync
4414// It should be consulted by handlers for any of those signals.
4415// It explicitly does not recognize os::Solaris::SIGinterrupt
4416//
4417// The caller of this routine must pass in the three arguments supplied
4418// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4419// field of the structure passed to sigaction().  This routine assumes that
4420// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4421//
4422// Note that the VM will print warnings if it detects conflicting signal
4423// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4424//
4425extern "C" JNIEXPORT int
4426JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
4427                          int abort_if_unrecognized);
4428
4429
4430void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
4431  int orig_errno = errno;  // Preserve errno value over signal handler.
4432  JVM_handle_solaris_signal(sig, info, ucVoid, true);
4433  errno = orig_errno;
4434}
4435
4436/* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
4437   is needed to provoke threads blocked on IO to return an EINTR
4438   Note: this explicitly does NOT call JVM_handle_solaris_signal and
4439   does NOT participate in signal chaining due to requirement for
4440   NOT setting SA_RESTART to make EINTR work. */
4441extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
4442   if (UseSignalChaining) {
4443      struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
4444      if (actp && actp->sa_handler) {
4445        vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
4446      }
4447   }
4448}
4449
4450// This boolean allows users to forward their own non-matching signals
4451// to JVM_handle_solaris_signal, harmlessly.
4452bool os::Solaris::signal_handlers_are_installed = false;
4453
4454// For signal-chaining
4455bool os::Solaris::libjsig_is_loaded = false;
4456typedef struct sigaction *(*get_signal_t)(int);
4457get_signal_t os::Solaris::get_signal_action = NULL;
4458
4459struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
4460  struct sigaction *actp = NULL;
4461
4462  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
4463    // Retrieve the old signal handler from libjsig
4464    actp = (*get_signal_action)(sig);
4465  }
4466  if (actp == NULL) {
4467    // Retrieve the preinstalled signal handler from jvm
4468    actp = get_preinstalled_handler(sig);
4469  }
4470
4471  return actp;
4472}
4473
4474static bool call_chained_handler(struct sigaction *actp, int sig,
4475                                 siginfo_t *siginfo, void *context) {
4476  // Call the old signal handler
4477  if (actp->sa_handler == SIG_DFL) {
4478    // It's more reasonable to let jvm treat it as an unexpected exception
4479    // instead of taking the default action.
4480    return false;
4481  } else if (actp->sa_handler != SIG_IGN) {
4482    if ((actp->sa_flags & SA_NODEFER) == 0) {
4483      // automaticlly block the signal
4484      sigaddset(&(actp->sa_mask), sig);
4485    }
4486
4487    sa_handler_t hand;
4488    sa_sigaction_t sa;
4489    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4490    // retrieve the chained handler
4491    if (siginfo_flag_set) {
4492      sa = actp->sa_sigaction;
4493    } else {
4494      hand = actp->sa_handler;
4495    }
4496
4497    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4498      actp->sa_handler = SIG_DFL;
4499    }
4500
4501    // try to honor the signal mask
4502    sigset_t oset;
4503    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4504
4505    // call into the chained handler
4506    if (siginfo_flag_set) {
4507      (*sa)(sig, siginfo, context);
4508    } else {
4509      (*hand)(sig);
4510    }
4511
4512    // restore the signal mask
4513    thr_sigsetmask(SIG_SETMASK, &oset, 0);
4514  }
4515  // Tell jvm's signal handler the signal is taken care of.
4516  return true;
4517}
4518
4519bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4520  bool chained = false;
4521  // signal-chaining
4522  if (UseSignalChaining) {
4523    struct sigaction *actp = get_chained_signal_action(sig);
4524    if (actp != NULL) {
4525      chained = call_chained_handler(actp, sig, siginfo, context);
4526    }
4527  }
4528  return chained;
4529}
4530
4531struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
4532  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4533  if (preinstalled_sigs[sig] != 0) {
4534    return &chainedsigactions[sig];
4535  }
4536  return NULL;
4537}
4538
4539void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4540
4541  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
4542  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4543  chainedsigactions[sig] = oldAct;
4544  preinstalled_sigs[sig] = 1;
4545}
4546
4547void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
4548  // Check for overwrite.
4549  struct sigaction oldAct;
4550  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4551  void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4552                                      : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4553  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4554      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4555      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
4556    if (AllowUserSignalHandlers || !set_installed) {
4557      // Do not overwrite; user takes responsibility to forward to us.
4558      return;
4559    } else if (UseSignalChaining) {
4560      if (oktochain) {
4561        // save the old handler in jvm
4562        save_preinstalled_handler(sig, oldAct);
4563      } else {
4564        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
4565      }
4566      // libjsig also interposes the sigaction() call below and saves the
4567      // old sigaction on it own.
4568    } else {
4569      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4570                    "%#lx for signal %d.", (long)oldhand, sig));
4571    }
4572  }
4573
4574  struct sigaction sigAct;
4575  sigfillset(&(sigAct.sa_mask));
4576  sigAct.sa_handler = SIG_DFL;
4577
4578  sigAct.sa_sigaction = signalHandler;
4579  // Handle SIGSEGV on alternate signal stack if
4580  // not using stack banging
4581  if (!UseStackBanging && sig == SIGSEGV) {
4582    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4583  // Interruptible i/o requires SA_RESTART cleared so EINTR
4584  // is returned instead of restarting system calls
4585  } else if (sig == os::Solaris::SIGinterrupt()) {
4586    sigemptyset(&sigAct.sa_mask);
4587    sigAct.sa_handler = NULL;
4588    sigAct.sa_flags = SA_SIGINFO;
4589    sigAct.sa_sigaction = sigINTRHandler;
4590  } else {
4591    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4592  }
4593  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4594
4595  sigaction(sig, &sigAct, &oldAct);
4596
4597  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4598                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4599  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4600}
4601
4602
4603#define DO_SIGNAL_CHECK(sig) \
4604  if (!sigismember(&check_signal_done, sig)) \
4605    os::Solaris::check_signal_handler(sig)
4606
4607// This method is a periodic task to check for misbehaving JNI applications
4608// under CheckJNI, we can add any periodic checks here
4609
4610void os::run_periodic_checks() {
4611  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4612  // thereby preventing a NULL checks.
4613  if(!check_addr0_done) check_addr0_done = check_addr0(tty);
4614
4615  if (check_signals == false) return;
4616
4617  // SEGV and BUS if overridden could potentially prevent
4618  // generation of hs*.log in the event of a crash, debugging
4619  // such a case can be very challenging, so we absolutely
4620  // check for the following for a good measure:
4621  DO_SIGNAL_CHECK(SIGSEGV);
4622  DO_SIGNAL_CHECK(SIGILL);
4623  DO_SIGNAL_CHECK(SIGFPE);
4624  DO_SIGNAL_CHECK(SIGBUS);
4625  DO_SIGNAL_CHECK(SIGPIPE);
4626  DO_SIGNAL_CHECK(SIGXFSZ);
4627
4628  // ReduceSignalUsage allows the user to override these handlers
4629  // see comments at the very top and jvm_solaris.h
4630  if (!ReduceSignalUsage) {
4631    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4632    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4633    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4634    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4635  }
4636
4637  // See comments above for using JVM1/JVM2 and UseAltSigs
4638  DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
4639  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4640
4641}
4642
4643typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4644
4645static os_sigaction_t os_sigaction = NULL;
4646
4647void os::Solaris::check_signal_handler(int sig) {
4648  char buf[O_BUFLEN];
4649  address jvmHandler = NULL;
4650
4651  struct sigaction act;
4652  if (os_sigaction == NULL) {
4653    // only trust the default sigaction, in case it has been interposed
4654    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4655    if (os_sigaction == NULL) return;
4656  }
4657
4658  os_sigaction(sig, (struct sigaction*)NULL, &act);
4659
4660  address thisHandler = (act.sa_flags & SA_SIGINFO)
4661    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4662    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4663
4664
4665  switch(sig) {
4666    case SIGSEGV:
4667    case SIGBUS:
4668    case SIGFPE:
4669    case SIGPIPE:
4670    case SIGXFSZ:
4671    case SIGILL:
4672      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4673      break;
4674
4675    case SHUTDOWN1_SIGNAL:
4676    case SHUTDOWN2_SIGNAL:
4677    case SHUTDOWN3_SIGNAL:
4678    case BREAK_SIGNAL:
4679      jvmHandler = (address)user_handler();
4680      break;
4681
4682    default:
4683      int intrsig = os::Solaris::SIGinterrupt();
4684      int asynsig = os::Solaris::SIGasync();
4685
4686      if (sig == intrsig) {
4687        jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
4688      } else if (sig == asynsig) {
4689        jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4690      } else {
4691        return;
4692      }
4693      break;
4694  }
4695
4696
4697  if (thisHandler != jvmHandler) {
4698    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4699    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4700    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4701    // No need to check this sig any longer
4702    sigaddset(&check_signal_done, sig);
4703  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4704    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4705    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4706    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4707    // No need to check this sig any longer
4708    sigaddset(&check_signal_done, sig);
4709  }
4710
4711  // Print all the signal handler state
4712  if (sigismember(&check_signal_done, sig)) {
4713    print_signal_handlers(tty, buf, O_BUFLEN);
4714  }
4715
4716}
4717
4718void os::Solaris::install_signal_handlers() {
4719  bool libjsigdone = false;
4720  signal_handlers_are_installed = true;
4721
4722  // signal-chaining
4723  typedef void (*signal_setting_t)();
4724  signal_setting_t begin_signal_setting = NULL;
4725  signal_setting_t end_signal_setting = NULL;
4726  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4727                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4728  if (begin_signal_setting != NULL) {
4729    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4730                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4731    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4732                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4733    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4734                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4735    libjsig_is_loaded = true;
4736    if (os::Solaris::get_libjsig_version != NULL) {
4737      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4738    }
4739    assert(UseSignalChaining, "should enable signal-chaining");
4740  }
4741  if (libjsig_is_loaded) {
4742    // Tell libjsig jvm is setting signal handlers
4743    (*begin_signal_setting)();
4744  }
4745
4746  set_signal_handler(SIGSEGV, true, true);
4747  set_signal_handler(SIGPIPE, true, true);
4748  set_signal_handler(SIGXFSZ, true, true);
4749  set_signal_handler(SIGBUS, true, true);
4750  set_signal_handler(SIGILL, true, true);
4751  set_signal_handler(SIGFPE, true, true);
4752
4753
4754  if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4755
4756    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4757    // can not register overridable signals which might be > 32
4758    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4759    // Tell libjsig jvm has finished setting signal handlers
4760      (*end_signal_setting)();
4761      libjsigdone = true;
4762    }
4763  }
4764
4765  // Never ok to chain our SIGinterrupt
4766  set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
4767  set_signal_handler(os::Solaris::SIGasync(), true, true);
4768
4769  if (libjsig_is_loaded && !libjsigdone) {
4770    // Tell libjsig jvm finishes setting signal handlers
4771    (*end_signal_setting)();
4772  }
4773
4774  // We don't activate signal checker if libjsig is in place, we trust ourselves
4775  // and if UserSignalHandler is installed all bets are off.
4776  // Log that signal checking is off only if -verbose:jni is specified.
4777  if (CheckJNICalls) {
4778    if (libjsig_is_loaded) {
4779      if (PrintJNIResolving) {
4780        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4781      }
4782      check_signals = false;
4783    }
4784    if (AllowUserSignalHandlers) {
4785      if (PrintJNIResolving) {
4786        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4787      }
4788      check_signals = false;
4789    }
4790  }
4791}
4792
4793
4794void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
4795
4796const char * signames[] = {
4797  "SIG0",
4798  "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
4799  "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
4800  "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
4801  "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
4802  "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
4803  "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
4804  "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
4805  "SIGCANCEL", "SIGLOST"
4806};
4807
4808const char* os::exception_name(int exception_code, char* buf, size_t size) {
4809  if (0 < exception_code && exception_code <= SIGRTMAX) {
4810    // signal
4811    if (exception_code < sizeof(signames)/sizeof(const char*)) {
4812       jio_snprintf(buf, size, "%s", signames[exception_code]);
4813    } else {
4814       jio_snprintf(buf, size, "SIG%d", exception_code);
4815    }
4816    return buf;
4817  } else {
4818    return NULL;
4819  }
4820}
4821
4822// (Static) wrappers for the new libthread API
4823int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
4824int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
4825int_fnP_thread_t_i os::Solaris::_thr_setmutator;
4826int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
4827int_fnP_thread_t os::Solaris::_thr_continue_mutator;
4828
4829// (Static) wrapper for getisax(2) call.
4830os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4831
4832// (Static) wrappers for the liblgrp API
4833os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4834os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4835os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4836os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4837os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4838os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4839os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4840os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4841os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4842
4843// (Static) wrapper for meminfo() call.
4844os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4845
4846static address resolve_symbol_lazy(const char* name) {
4847  address addr = (address) dlsym(RTLD_DEFAULT, name);
4848  if(addr == NULL) {
4849    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4850    addr = (address) dlsym(RTLD_NEXT, name);
4851  }
4852  return addr;
4853}
4854
4855static address resolve_symbol(const char* name) {
4856  address addr = resolve_symbol_lazy(name);
4857  if(addr == NULL) {
4858    fatal(dlerror());
4859  }
4860  return addr;
4861}
4862
4863
4864
4865// isT2_libthread()
4866//
4867// Routine to determine if we are currently using the new T2 libthread.
4868//
4869// We determine if we are using T2 by reading /proc/self/lstatus and
4870// looking for a thread with the ASLWP bit set.  If we find this status
4871// bit set, we must assume that we are NOT using T2.  The T2 team
4872// has approved this algorithm.
4873//
4874// We need to determine if we are running with the new T2 libthread
4875// since setting native thread priorities is handled differently
4876// when using this library.  All threads created using T2 are bound
4877// threads. Calling thr_setprio is meaningless in this case.
4878//
4879bool isT2_libthread() {
4880  static prheader_t * lwpArray = NULL;
4881  static int lwpSize = 0;
4882  static int lwpFile = -1;
4883  lwpstatus_t * that;
4884  char lwpName [128];
4885  bool isT2 = false;
4886
4887#define ADR(x)  ((uintptr_t)(x))
4888#define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
4889
4890  lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
4891  if (lwpFile < 0) {
4892      if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
4893      return false;
4894  }
4895  lwpSize = 16*1024;
4896  for (;;) {
4897    ::lseek64 (lwpFile, 0, SEEK_SET);
4898    lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
4899    if (::read(lwpFile, lwpArray, lwpSize) < 0) {
4900      if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
4901      break;
4902    }
4903    if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
4904       // We got a good snapshot - now iterate over the list.
4905      int aslwpcount = 0;
4906      for (int i = 0; i < lwpArray->pr_nent; i++ ) {
4907        that = LWPINDEX(lwpArray,i);
4908        if (that->pr_flags & PR_ASLWP) {
4909          aslwpcount++;
4910        }
4911      }
4912      if (aslwpcount == 0) isT2 = true;
4913      break;
4914    }
4915    lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
4916    FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);  // retry.
4917  }
4918
4919  FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
4920  ::close (lwpFile);
4921  if (ThreadPriorityVerbose) {
4922    if (isT2) tty->print_cr("We are running with a T2 libthread\n");
4923    else tty->print_cr("We are not running with a T2 libthread\n");
4924  }
4925  return isT2;
4926}
4927
4928
4929void os::Solaris::libthread_init() {
4930  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4931
4932  // Determine if we are running with the new T2 libthread
4933  os::Solaris::set_T2_libthread(isT2_libthread());
4934
4935  lwp_priocntl_init();
4936
4937  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4938  if(func == NULL) {
4939    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4940    // Guarantee that this VM is running on an new enough OS (5.6 or
4941    // later) that it will have a new enough libthread.so.
4942    guarantee(func != NULL, "libthread.so is too old.");
4943  }
4944
4945  // Initialize the new libthread getstate API wrappers
4946  func = resolve_symbol("thr_getstate");
4947  os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
4948
4949  func = resolve_symbol("thr_setstate");
4950  os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
4951
4952  func = resolve_symbol("thr_setmutator");
4953  os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
4954
4955  func = resolve_symbol("thr_suspend_mutator");
4956  os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4957
4958  func = resolve_symbol("thr_continue_mutator");
4959  os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4960
4961  int size;
4962  void (*handler_info_func)(address *, int *);
4963  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4964  handler_info_func(&handler_start, &size);
4965  handler_end = handler_start + size;
4966}
4967
4968
4969int_fnP_mutex_tP os::Solaris::_mutex_lock;
4970int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4971int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4972int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4973int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4974int os::Solaris::_mutex_scope = USYNC_THREAD;
4975
4976int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4977int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4978int_fnP_cond_tP os::Solaris::_cond_signal;
4979int_fnP_cond_tP os::Solaris::_cond_broadcast;
4980int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4981int_fnP_cond_tP os::Solaris::_cond_destroy;
4982int os::Solaris::_cond_scope = USYNC_THREAD;
4983
4984void os::Solaris::synchronization_init() {
4985  if(UseLWPSynchronization) {
4986    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4987    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4988    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4989    os::Solaris::set_mutex_init(lwp_mutex_init);
4990    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4991    os::Solaris::set_mutex_scope(USYNC_THREAD);
4992
4993    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4994    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4995    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4996    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4997    os::Solaris::set_cond_init(lwp_cond_init);
4998    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4999    os::Solaris::set_cond_scope(USYNC_THREAD);
5000  }
5001  else {
5002    os::Solaris::set_mutex_scope(USYNC_THREAD);
5003    os::Solaris::set_cond_scope(USYNC_THREAD);
5004
5005    if(UsePthreads) {
5006      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
5007      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
5008      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
5009      os::Solaris::set_mutex_init(pthread_mutex_default_init);
5010      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
5011
5012      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
5013      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
5014      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
5015      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
5016      os::Solaris::set_cond_init(pthread_cond_default_init);
5017      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
5018    }
5019    else {
5020      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
5021      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
5022      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
5023      os::Solaris::set_mutex_init(::mutex_init);
5024      os::Solaris::set_mutex_destroy(::mutex_destroy);
5025
5026      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
5027      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
5028      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
5029      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
5030      os::Solaris::set_cond_init(::cond_init);
5031      os::Solaris::set_cond_destroy(::cond_destroy);
5032    }
5033  }
5034}
5035
5036bool os::Solaris::liblgrp_init() {
5037  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
5038  if (handle != NULL) {
5039    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
5040    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
5041    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
5042    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
5043    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
5044    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
5045    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
5046    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
5047                                       dlsym(handle, "lgrp_cookie_stale")));
5048
5049    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
5050    set_lgrp_cookie(c);
5051    return true;
5052  }
5053  return false;
5054}
5055
5056void os::Solaris::misc_sym_init() {
5057  address func;
5058
5059  // getisax
5060  func = resolve_symbol_lazy("getisax");
5061  if (func != NULL) {
5062    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
5063  }
5064
5065  // meminfo
5066  func = resolve_symbol_lazy("meminfo");
5067  if (func != NULL) {
5068    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
5069  }
5070}
5071
5072uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
5073  assert(_getisax != NULL, "_getisax not set");
5074  return _getisax(array, n);
5075}
5076
5077// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
5078typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
5079static pset_getloadavg_type pset_getloadavg_ptr = NULL;
5080
5081void init_pset_getloadavg_ptr(void) {
5082  pset_getloadavg_ptr =
5083    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
5084  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
5085    warning("pset_getloadavg function not found");
5086  }
5087}
5088
5089int os::Solaris::_dev_zero_fd = -1;
5090
5091// this is called _before_ the global arguments have been parsed
5092void os::init(void) {
5093  _initial_pid = getpid();
5094
5095  max_hrtime = first_hrtime = gethrtime();
5096
5097  init_random(1234567);
5098
5099  page_size = sysconf(_SC_PAGESIZE);
5100  if (page_size == -1)
5101    fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
5102                  strerror(errno)));
5103  init_page_sizes((size_t) page_size);
5104
5105  Solaris::initialize_system_info();
5106
5107  // Initialize misc. symbols as soon as possible, so we can use them
5108  // if we need them.
5109  Solaris::misc_sym_init();
5110
5111  int fd = ::open("/dev/zero", O_RDWR);
5112  if (fd < 0) {
5113    fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
5114  } else {
5115    Solaris::set_dev_zero_fd(fd);
5116
5117    // Close on exec, child won't inherit.
5118    fcntl(fd, F_SETFD, FD_CLOEXEC);
5119  }
5120
5121  clock_tics_per_sec = CLK_TCK;
5122
5123  // check if dladdr1() exists; dladdr1 can provide more information than
5124  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
5125  // and is available on linker patches for 5.7 and 5.8.
5126  // libdl.so must have been loaded, this call is just an entry lookup
5127  void * hdl = dlopen("libdl.so", RTLD_NOW);
5128  if (hdl)
5129    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
5130
5131  // (Solaris only) this switches to calls that actually do locking.
5132  ThreadCritical::initialize();
5133
5134  main_thread = thr_self();
5135
5136  // Constant minimum stack size allowed. It must be at least
5137  // the minimum of what the OS supports (thr_min_stack()), and
5138  // enough to allow the thread to get to user bytecode execution.
5139  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
5140  // If the pagesize of the VM is greater than 8K determine the appropriate
5141  // number of initial guard pages.  The user can change this with the
5142  // command line arguments, if needed.
5143  if (vm_page_size() > 8*K) {
5144    StackYellowPages = 1;
5145    StackRedPages = 1;
5146    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
5147  }
5148}
5149
5150// To install functions for atexit system call
5151extern "C" {
5152  static void perfMemory_exit_helper() {
5153    perfMemory_exit();
5154  }
5155}
5156
5157// this is called _after_ the global arguments have been parsed
5158jint os::init_2(void) {
5159  // try to enable extended file IO ASAP, see 6431278
5160  os::Solaris::try_enable_extended_io();
5161
5162  // Allocate a single page and mark it as readable for safepoint polling.  Also
5163  // use this first mmap call to check support for MAP_ALIGN.
5164  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
5165                                                      page_size,
5166                                                      MAP_PRIVATE | MAP_ALIGN,
5167                                                      PROT_READ);
5168  if (polling_page == NULL) {
5169    has_map_align = false;
5170    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
5171                                                PROT_READ);
5172  }
5173
5174  os::set_polling_page(polling_page);
5175
5176#ifndef PRODUCT
5177  if( Verbose && PrintMiscellaneous )
5178    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5179#endif
5180
5181  if (!UseMembar) {
5182    address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
5183    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
5184    os::set_memory_serialize_page( mem_serialize_page );
5185
5186#ifndef PRODUCT
5187    if(Verbose && PrintMiscellaneous)
5188      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5189#endif
5190  }
5191
5192  // Check minimum allowable stack size for thread creation and to initialize
5193  // the java system classes, including StackOverflowError - depends on page
5194  // size.  Add a page for compiler2 recursion in main thread.
5195  // Add in 2*BytesPerWord times page size to account for VM stack during
5196  // class initialization depending on 32 or 64 bit VM.
5197  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
5198            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
5199                    2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
5200
5201  size_t threadStackSizeInBytes = ThreadStackSize * K;
5202  if (threadStackSizeInBytes != 0 &&
5203    threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
5204    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
5205                  os::Solaris::min_stack_allowed/K);
5206    return JNI_ERR;
5207  }
5208
5209  // For 64kbps there will be a 64kb page size, which makes
5210  // the usable default stack size quite a bit less.  Increase the
5211  // stack for 64kb (or any > than 8kb) pages, this increases
5212  // virtual memory fragmentation (since we're not creating the
5213  // stack on a power of 2 boundary.  The real fix for this
5214  // should be to fix the guard page mechanism.
5215
5216  if (vm_page_size() > 8*K) {
5217      threadStackSizeInBytes = (threadStackSizeInBytes != 0)
5218         ? threadStackSizeInBytes +
5219           ((StackYellowPages + StackRedPages) * vm_page_size())
5220         : 0;
5221      ThreadStackSize = threadStackSizeInBytes/K;
5222  }
5223
5224  // Make the stack size a multiple of the page size so that
5225  // the yellow/red zones can be guarded.
5226  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5227        vm_page_size()));
5228
5229  Solaris::libthread_init();
5230
5231  if (UseNUMA) {
5232    if (!Solaris::liblgrp_init()) {
5233      UseNUMA = false;
5234    } else {
5235      size_t lgrp_limit = os::numa_get_groups_num();
5236      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
5237      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
5238      FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
5239      if (lgrp_num < 2) {
5240        // There's only one locality group, disable NUMA.
5241        UseNUMA = false;
5242      }
5243    }
5244    if (!UseNUMA && ForceNUMA) {
5245      UseNUMA = true;
5246    }
5247  }
5248
5249  Solaris::signal_sets_init();
5250  Solaris::init_signal_mem();
5251  Solaris::install_signal_handlers();
5252
5253  if (libjsigversion < JSIG_VERSION_1_4_1) {
5254    Maxlibjsigsigs = OLDMAXSIGNUM;
5255  }
5256
5257  // initialize synchronization primitives to use either thread or
5258  // lwp synchronization (controlled by UseLWPSynchronization)
5259  Solaris::synchronization_init();
5260
5261  if (MaxFDLimit) {
5262    // set the number of file descriptors to max. print out error
5263    // if getrlimit/setrlimit fails but continue regardless.
5264    struct rlimit nbr_files;
5265    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5266    if (status != 0) {
5267      if (PrintMiscellaneous && (Verbose || WizardMode))
5268        perror("os::init_2 getrlimit failed");
5269    } else {
5270      nbr_files.rlim_cur = nbr_files.rlim_max;
5271      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5272      if (status != 0) {
5273        if (PrintMiscellaneous && (Verbose || WizardMode))
5274          perror("os::init_2 setrlimit failed");
5275      }
5276    }
5277  }
5278
5279  // Calculate theoretical max. size of Threads to guard gainst
5280  // artifical out-of-memory situations, where all available address-
5281  // space has been reserved by thread stacks. Default stack size is 1Mb.
5282  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
5283    JavaThread::stack_size_at_create() : (1*K*K);
5284  assert(pre_thread_stack_size != 0, "Must have a stack");
5285  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
5286  // we should start doing Virtual Memory banging. Currently when the threads will
5287  // have used all but 200Mb of space.
5288  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
5289  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
5290
5291  // at-exit methods are called in the reverse order of their registration.
5292  // In Solaris 7 and earlier, atexit functions are called on return from
5293  // main or as a result of a call to exit(3C). There can be only 32 of
5294  // these functions registered and atexit() does not set errno. In Solaris
5295  // 8 and later, there is no limit to the number of functions registered
5296  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
5297  // functions are called upon dlclose(3DL) in addition to return from main
5298  // and exit(3C).
5299
5300  if (PerfAllowAtExitRegistration) {
5301    // only register atexit functions if PerfAllowAtExitRegistration is set.
5302    // atexit functions can be delayed until process exit time, which
5303    // can be problematic for embedded VM situations. Embedded VMs should
5304    // call DestroyJavaVM() to assure that VM resources are released.
5305
5306    // note: perfMemory_exit_helper atexit function may be removed in
5307    // the future if the appropriate cleanup code can be added to the
5308    // VM_Exit VMOperation's doit method.
5309    if (atexit(perfMemory_exit_helper) != 0) {
5310      warning("os::init2 atexit(perfMemory_exit_helper) failed");
5311    }
5312  }
5313
5314  // Init pset_loadavg function pointer
5315  init_pset_getloadavg_ptr();
5316
5317  return JNI_OK;
5318}
5319
5320void os::init_3(void) {
5321  return;
5322}
5323
5324// Mark the polling page as unreadable
5325void os::make_polling_page_unreadable(void) {
5326  if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
5327    fatal("Could not disable polling page");
5328};
5329
5330// Mark the polling page as readable
5331void os::make_polling_page_readable(void) {
5332  if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
5333    fatal("Could not enable polling page");
5334};
5335
5336// OS interface.
5337
5338bool os::check_heap(bool force) { return true; }
5339
5340typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
5341static vsnprintf_t sol_vsnprintf = NULL;
5342
5343int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
5344  if (!sol_vsnprintf) {
5345    //search  for the named symbol in the objects that were loaded after libjvm
5346    void* where = RTLD_NEXT;
5347    if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
5348        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
5349    if (!sol_vsnprintf){
5350      //search  for the named symbol in the objects that were loaded before libjvm
5351      where = RTLD_DEFAULT;
5352      if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
5353        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
5354      assert(sol_vsnprintf != NULL, "vsnprintf not found");
5355    }
5356  }
5357  return (*sol_vsnprintf)(buf, count, fmt, argptr);
5358}
5359
5360
5361// Is a (classpath) directory empty?
5362bool os::dir_is_empty(const char* path) {
5363  DIR *dir = NULL;
5364  struct dirent *ptr;
5365
5366  dir = opendir(path);
5367  if (dir == NULL) return true;
5368
5369  /* Scan the directory */
5370  bool result = true;
5371  char buf[sizeof(struct dirent) + MAX_PATH];
5372  struct dirent *dbuf = (struct dirent *) buf;
5373  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
5374    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5375      result = false;
5376    }
5377  }
5378  closedir(dir);
5379  return result;
5380}
5381
5382// This code originates from JDK's sysOpen and open64_w
5383// from src/solaris/hpi/src/system_md.c
5384
5385#ifndef O_DELETE
5386#define O_DELETE 0x10000
5387#endif
5388
5389// Open a file. Unlink the file immediately after open returns
5390// if the specified oflag has the O_DELETE flag set.
5391// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5392
5393int os::open(const char *path, int oflag, int mode) {
5394  if (strlen(path) > MAX_PATH - 1) {
5395    errno = ENAMETOOLONG;
5396    return -1;
5397  }
5398  int fd;
5399  int o_delete = (oflag & O_DELETE);
5400  oflag = oflag & ~O_DELETE;
5401
5402  fd = ::open64(path, oflag, mode);
5403  if (fd == -1) return -1;
5404
5405  //If the open succeeded, the file might still be a directory
5406  {
5407    struct stat64 buf64;
5408    int ret = ::fstat64(fd, &buf64);
5409    int st_mode = buf64.st_mode;
5410
5411    if (ret != -1) {
5412      if ((st_mode & S_IFMT) == S_IFDIR) {
5413        errno = EISDIR;
5414        ::close(fd);
5415        return -1;
5416      }
5417    } else {
5418      ::close(fd);
5419      return -1;
5420    }
5421  }
5422    /*
5423     * 32-bit Solaris systems suffer from:
5424     *
5425     * - an historical default soft limit of 256 per-process file
5426     *   descriptors that is too low for many Java programs.
5427     *
5428     * - a design flaw where file descriptors created using stdio
5429     *   fopen must be less than 256, _even_ when the first limit above
5430     *   has been raised.  This can cause calls to fopen (but not calls to
5431     *   open, for example) to fail mysteriously, perhaps in 3rd party
5432     *   native code (although the JDK itself uses fopen).  One can hardly
5433     *   criticize them for using this most standard of all functions.
5434     *
5435     * We attempt to make everything work anyways by:
5436     *
5437     * - raising the soft limit on per-process file descriptors beyond
5438     *   256
5439     *
5440     * - As of Solaris 10u4, we can request that Solaris raise the 256
5441     *   stdio fopen limit by calling function enable_extended_FILE_stdio.
5442     *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
5443     *
5444     * - If we are stuck on an old (pre 10u4) Solaris system, we can
5445     *   workaround the bug by remapping non-stdio file descriptors below
5446     *   256 to ones beyond 256, which is done below.
5447     *
5448     * See:
5449     * 1085341: 32-bit stdio routines should support file descriptors >255
5450     * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
5451     * 6431278: Netbeans crash on 32 bit Solaris: need to call
5452     *          enable_extended_FILE_stdio() in VM initialisation
5453     * Giri Mandalika's blog
5454     * http://technopark02.blogspot.com/2005_05_01_archive.html
5455     */
5456#ifndef  _LP64
5457     if ((!enabled_extended_FILE_stdio) && fd < 256) {
5458         int newfd = ::fcntl(fd, F_DUPFD, 256);
5459         if (newfd != -1) {
5460             ::close(fd);
5461             fd = newfd;
5462         }
5463     }
5464#endif // 32-bit Solaris
5465    /*
5466     * All file descriptors that are opened in the JVM and not
5467     * specifically destined for a subprocess should have the
5468     * close-on-exec flag set.  If we don't set it, then careless 3rd
5469     * party native code might fork and exec without closing all
5470     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5471     * UNIXProcess.c), and this in turn might:
5472     *
5473     * - cause end-of-file to fail to be detected on some file
5474     *   descriptors, resulting in mysterious hangs, or
5475     *
5476     * - might cause an fopen in the subprocess to fail on a system
5477     *   suffering from bug 1085341.
5478     *
5479     * (Yes, the default setting of the close-on-exec flag is a Unix
5480     * design flaw)
5481     *
5482     * See:
5483     * 1085341: 32-bit stdio routines should support file descriptors >255
5484     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5485     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5486     */
5487#ifdef FD_CLOEXEC
5488    {
5489        int flags = ::fcntl(fd, F_GETFD);
5490        if (flags != -1)
5491            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5492    }
5493#endif
5494
5495  if (o_delete != 0) {
5496    ::unlink(path);
5497  }
5498  return fd;
5499}
5500
5501// create binary file, rewriting existing file if required
5502int os::create_binary_file(const char* path, bool rewrite_existing) {
5503  int oflags = O_WRONLY | O_CREAT;
5504  if (!rewrite_existing) {
5505    oflags |= O_EXCL;
5506  }
5507  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5508}
5509
5510// return current position of file pointer
5511jlong os::current_file_offset(int fd) {
5512  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5513}
5514
5515// move file pointer to the specified offset
5516jlong os::seek_to_file_offset(int fd, jlong offset) {
5517  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5518}
5519
5520jlong os::lseek(int fd, jlong offset, int whence) {
5521  return (jlong) ::lseek64(fd, offset, whence);
5522}
5523
5524char * os::native_path(char *path) {
5525  return path;
5526}
5527
5528int os::ftruncate(int fd, jlong length) {
5529  return ::ftruncate64(fd, length);
5530}
5531
5532int os::fsync(int fd)  {
5533  RESTARTABLE_RETURN_INT(::fsync(fd));
5534}
5535
5536int os::available(int fd, jlong *bytes) {
5537  jlong cur, end;
5538  int mode;
5539  struct stat64 buf64;
5540
5541  if (::fstat64(fd, &buf64) >= 0) {
5542    mode = buf64.st_mode;
5543    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5544      /*
5545      * XXX: is the following call interruptible? If so, this might
5546      * need to go through the INTERRUPT_IO() wrapper as for other
5547      * blocking, interruptible calls in this file.
5548      */
5549      int n,ioctl_return;
5550
5551      INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
5552      if (ioctl_return>= 0) {
5553          *bytes = n;
5554        return 1;
5555      }
5556    }
5557  }
5558  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5559    return 0;
5560  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5561    return 0;
5562  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5563    return 0;
5564  }
5565  *bytes = end - cur;
5566  return 1;
5567}
5568
5569// Map a block of memory.
5570char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5571                     char *addr, size_t bytes, bool read_only,
5572                     bool allow_exec) {
5573  int prot;
5574  int flags;
5575
5576  if (read_only) {
5577    prot = PROT_READ;
5578    flags = MAP_SHARED;
5579  } else {
5580    prot = PROT_READ | PROT_WRITE;
5581    flags = MAP_PRIVATE;
5582  }
5583
5584  if (allow_exec) {
5585    prot |= PROT_EXEC;
5586  }
5587
5588  if (addr != NULL) {
5589    flags |= MAP_FIXED;
5590  }
5591
5592  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5593                                     fd, file_offset);
5594  if (mapped_address == MAP_FAILED) {
5595    return NULL;
5596  }
5597  return mapped_address;
5598}
5599
5600
5601// Remap a block of memory.
5602char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5603                       char *addr, size_t bytes, bool read_only,
5604                       bool allow_exec) {
5605  // same as map_memory() on this OS
5606  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5607                        allow_exec);
5608}
5609
5610
5611// Unmap a block of memory.
5612bool os::pd_unmap_memory(char* addr, size_t bytes) {
5613  return munmap(addr, bytes) == 0;
5614}
5615
5616void os::pause() {
5617  char filename[MAX_PATH];
5618  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5619    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5620  } else {
5621    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5622  }
5623
5624  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5625  if (fd != -1) {
5626    struct stat buf;
5627    ::close(fd);
5628    while (::stat(filename, &buf) == 0) {
5629      (void)::poll(NULL, 0, 100);
5630    }
5631  } else {
5632    jio_fprintf(stderr,
5633      "Could not open pause file '%s', continuing immediately.\n", filename);
5634  }
5635}
5636
5637#ifndef PRODUCT
5638#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5639// Turn this on if you need to trace synch operations.
5640// Set RECORD_SYNCH_LIMIT to a large-enough value,
5641// and call record_synch_enable and record_synch_disable
5642// around the computation of interest.
5643
5644void record_synch(char* name, bool returning);  // defined below
5645
5646class RecordSynch {
5647  char* _name;
5648 public:
5649  RecordSynch(char* name) :_name(name)
5650                 { record_synch(_name, false); }
5651  ~RecordSynch() { record_synch(_name,   true);  }
5652};
5653
5654#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
5655extern "C" ret name params {                                    \
5656  typedef ret name##_t params;                                  \
5657  static name##_t* implem = NULL;                               \
5658  static int callcount = 0;                                     \
5659  if (implem == NULL) {                                         \
5660    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
5661    if (implem == NULL)  fatal(dlerror());                      \
5662  }                                                             \
5663  ++callcount;                                                  \
5664  RecordSynch _rs(#name);                                       \
5665  inner;                                                        \
5666  return implem args;                                           \
5667}
5668// in dbx, examine callcounts this way:
5669// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
5670
5671#define CHECK_POINTER_OK(p) \
5672  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
5673#define CHECK_MU \
5674  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
5675#define CHECK_CV \
5676  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
5677#define CHECK_P(p) \
5678  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
5679
5680#define CHECK_MUTEX(mutex_op) \
5681CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
5682
5683CHECK_MUTEX(   mutex_lock)
5684CHECK_MUTEX(  _mutex_lock)
5685CHECK_MUTEX( mutex_unlock)
5686CHECK_MUTEX(_mutex_unlock)
5687CHECK_MUTEX( mutex_trylock)
5688CHECK_MUTEX(_mutex_trylock)
5689
5690#define CHECK_COND(cond_op) \
5691CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
5692
5693CHECK_COND( cond_wait);
5694CHECK_COND(_cond_wait);
5695CHECK_COND(_cond_wait_cancel);
5696
5697#define CHECK_COND2(cond_op) \
5698CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
5699
5700CHECK_COND2( cond_timedwait);
5701CHECK_COND2(_cond_timedwait);
5702CHECK_COND2(_cond_timedwait_cancel);
5703
5704// do the _lwp_* versions too
5705#define mutex_t lwp_mutex_t
5706#define cond_t  lwp_cond_t
5707CHECK_MUTEX(  _lwp_mutex_lock)
5708CHECK_MUTEX(  _lwp_mutex_unlock)
5709CHECK_MUTEX(  _lwp_mutex_trylock)
5710CHECK_MUTEX( __lwp_mutex_lock)
5711CHECK_MUTEX( __lwp_mutex_unlock)
5712CHECK_MUTEX( __lwp_mutex_trylock)
5713CHECK_MUTEX(___lwp_mutex_lock)
5714CHECK_MUTEX(___lwp_mutex_unlock)
5715
5716CHECK_COND(  _lwp_cond_wait);
5717CHECK_COND( __lwp_cond_wait);
5718CHECK_COND(___lwp_cond_wait);
5719
5720CHECK_COND2(  _lwp_cond_timedwait);
5721CHECK_COND2( __lwp_cond_timedwait);
5722#undef mutex_t
5723#undef cond_t
5724
5725CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5726CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5727CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5728CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5729CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5730CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5731CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5732CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5733
5734
5735// recording machinery:
5736
5737enum { RECORD_SYNCH_LIMIT = 200 };
5738char* record_synch_name[RECORD_SYNCH_LIMIT];
5739void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5740bool record_synch_returning[RECORD_SYNCH_LIMIT];
5741thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5742int record_synch_count = 0;
5743bool record_synch_enabled = false;
5744
5745// in dbx, examine recorded data this way:
5746// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5747
5748void record_synch(char* name, bool returning) {
5749  if (record_synch_enabled) {
5750    if (record_synch_count < RECORD_SYNCH_LIMIT) {
5751      record_synch_name[record_synch_count] = name;
5752      record_synch_returning[record_synch_count] = returning;
5753      record_synch_thread[record_synch_count] = thr_self();
5754      record_synch_arg0ptr[record_synch_count] = &name;
5755      record_synch_count++;
5756    }
5757    // put more checking code here:
5758    // ...
5759  }
5760}
5761
5762void record_synch_enable() {
5763  // start collecting trace data, if not already doing so
5764  if (!record_synch_enabled)  record_synch_count = 0;
5765  record_synch_enabled = true;
5766}
5767
5768void record_synch_disable() {
5769  // stop collecting trace data
5770  record_synch_enabled = false;
5771}
5772
5773#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5774#endif // PRODUCT
5775
5776const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5777const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5778                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5779
5780
5781// JVMTI & JVM monitoring and management support
5782// The thread_cpu_time() and current_thread_cpu_time() are only
5783// supported if is_thread_cpu_time_supported() returns true.
5784// They are not supported on Solaris T1.
5785
5786// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5787// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5788// of a thread.
5789//
5790// current_thread_cpu_time() and thread_cpu_time(Thread *)
5791// returns the fast estimate available on the platform.
5792
5793// hrtime_t gethrvtime() return value includes
5794// user time but does not include system time
5795jlong os::current_thread_cpu_time() {
5796  return (jlong) gethrvtime();
5797}
5798
5799jlong os::thread_cpu_time(Thread *thread) {
5800  // return user level CPU time only to be consistent with
5801  // what current_thread_cpu_time returns.
5802  // thread_cpu_time_info() must be changed if this changes
5803  return os::thread_cpu_time(thread, false /* user time only */);
5804}
5805
5806jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5807  if (user_sys_cpu_time) {
5808    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5809  } else {
5810    return os::current_thread_cpu_time();
5811  }
5812}
5813
5814jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5815  char proc_name[64];
5816  int count;
5817  prusage_t prusage;
5818  jlong lwp_time;
5819  int fd;
5820
5821  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5822                     getpid(),
5823                     thread->osthread()->lwp_id());
5824  fd = ::open(proc_name, O_RDONLY);
5825  if ( fd == -1 ) return -1;
5826
5827  do {
5828    count = ::pread(fd,
5829                  (void *)&prusage.pr_utime,
5830                  thr_time_size,
5831                  thr_time_off);
5832  } while (count < 0 && errno == EINTR);
5833  ::close(fd);
5834  if ( count < 0 ) return -1;
5835
5836  if (user_sys_cpu_time) {
5837    // user + system CPU time
5838    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5839                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5840                 (jlong)prusage.pr_stime.tv_nsec +
5841                 (jlong)prusage.pr_utime.tv_nsec;
5842  } else {
5843    // user level CPU time only
5844    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5845                (jlong)prusage.pr_utime.tv_nsec;
5846  }
5847
5848  return(lwp_time);
5849}
5850
5851void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5852  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5853  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5854  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5855  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5856}
5857
5858void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5859  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5860  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5861  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5862  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5863}
5864
5865bool os::is_thread_cpu_time_supported() {
5866  if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
5867    return true;
5868  } else {
5869    return false;
5870  }
5871}
5872
5873// System loadavg support.  Returns -1 if load average cannot be obtained.
5874// Return the load average for our processor set if the primitive exists
5875// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5876int os::loadavg(double loadavg[], int nelem) {
5877  if (pset_getloadavg_ptr != NULL) {
5878    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5879  } else {
5880    return ::getloadavg(loadavg, nelem);
5881  }
5882}
5883
5884//---------------------------------------------------------------------------------
5885
5886bool os::find(address addr, outputStream* st) {
5887  Dl_info dlinfo;
5888  memset(&dlinfo, 0, sizeof(dlinfo));
5889  if (dladdr(addr, &dlinfo) != 0) {
5890    st->print(PTR_FORMAT ": ", addr);
5891    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5892      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5893    } else if (dlinfo.dli_fbase != NULL)
5894      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5895    else
5896      st->print("<absolute address>");
5897    if (dlinfo.dli_fname != NULL) {
5898      st->print(" in %s", dlinfo.dli_fname);
5899    }
5900    if (dlinfo.dli_fbase != NULL) {
5901      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5902    }
5903    st->cr();
5904
5905    if (Verbose) {
5906      // decode some bytes around the PC
5907      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5908      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5909      address       lowest = (address) dlinfo.dli_sname;
5910      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5911      if (begin < lowest)  begin = lowest;
5912      Dl_info dlinfo2;
5913      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5914          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5915        end = (address) dlinfo2.dli_saddr;
5916      Disassembler::decode(begin, end, st);
5917    }
5918    return true;
5919  }
5920  return false;
5921}
5922
5923// Following function has been added to support HotSparc's libjvm.so running
5924// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5925// src/solaris/hpi/native_threads in the EVM codebase.
5926//
5927// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5928// libraries and should thus be removed. We will leave it behind for a while
5929// until we no longer want to able to run on top of 1.3.0 Solaris production
5930// JDK. See 4341971.
5931
5932#define STACK_SLACK 0x800
5933
5934extern "C" {
5935  intptr_t sysThreadAvailableStackWithSlack() {
5936    stack_t st;
5937    intptr_t retval, stack_top;
5938    retval = thr_stksegment(&st);
5939    assert(retval == 0, "incorrect return value from thr_stksegment");
5940    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5941    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5942    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5943    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5944  }
5945}
5946
5947// ObjectMonitor park-unpark infrastructure ...
5948//
5949// We implement Solaris and Linux PlatformEvents with the
5950// obvious condvar-mutex-flag triple.
5951// Another alternative that works quite well is pipes:
5952// Each PlatformEvent consists of a pipe-pair.
5953// The thread associated with the PlatformEvent
5954// calls park(), which reads from the input end of the pipe.
5955// Unpark() writes into the other end of the pipe.
5956// The write-side of the pipe must be set NDELAY.
5957// Unfortunately pipes consume a large # of handles.
5958// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5959// Using pipes for the 1st few threads might be workable, however.
5960//
5961// park() is permitted to return spuriously.
5962// Callers of park() should wrap the call to park() in
5963// an appropriate loop.  A litmus test for the correct
5964// usage of park is the following: if park() were modified
5965// to immediately return 0 your code should still work,
5966// albeit degenerating to a spin loop.
5967//
5968// An interesting optimization for park() is to use a trylock()
5969// to attempt to acquire the mutex.  If the trylock() fails
5970// then we know that a concurrent unpark() operation is in-progress.
5971// in that case the park() code could simply set _count to 0
5972// and return immediately.  The subsequent park() operation *might*
5973// return immediately.  That's harmless as the caller of park() is
5974// expected to loop.  By using trylock() we will have avoided a
5975// avoided a context switch caused by contention on the per-thread mutex.
5976//
5977// TODO-FIXME:
5978// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
5979//     objectmonitor implementation.
5980// 2.  Collapse the JSR166 parker event, and the
5981//     objectmonitor ParkEvent into a single "Event" construct.
5982// 3.  In park() and unpark() add:
5983//     assert (Thread::current() == AssociatedWith).
5984// 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
5985//     1-out-of-N park() operations will return immediately.
5986//
5987// _Event transitions in park()
5988//   -1 => -1 : illegal
5989//    1 =>  0 : pass - return immediately
5990//    0 => -1 : block
5991//
5992// _Event serves as a restricted-range semaphore.
5993//
5994// Another possible encoding of _Event would be with
5995// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5996//
5997// TODO-FIXME: add DTRACE probes for:
5998// 1.   Tx parks
5999// 2.   Ty unparks Tx
6000// 3.   Tx resumes from park
6001
6002
6003// value determined through experimentation
6004#define ROUNDINGFIX 11
6005
6006// utility to compute the abstime argument to timedwait.
6007// TODO-FIXME: switch from compute_abstime() to unpackTime().
6008
6009static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
6010  // millis is the relative timeout time
6011  // abstime will be the absolute timeout time
6012  if (millis < 0)  millis = 0;
6013  struct timeval now;
6014  int status = gettimeofday(&now, NULL);
6015  assert(status == 0, "gettimeofday");
6016  jlong seconds = millis / 1000;
6017  jlong max_wait_period;
6018
6019  if (UseLWPSynchronization) {
6020    // forward port of fix for 4275818 (not sleeping long enough)
6021    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
6022    // _lwp_cond_timedwait() used a round_down algorithm rather
6023    // than a round_up. For millis less than our roundfactor
6024    // it rounded down to 0 which doesn't meet the spec.
6025    // For millis > roundfactor we may return a bit sooner, but
6026    // since we can not accurately identify the patch level and
6027    // this has already been fixed in Solaris 9 and 8 we will
6028    // leave it alone rather than always rounding down.
6029
6030    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
6031       // It appears that when we go directly through Solaris _lwp_cond_timedwait()
6032           // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
6033           max_wait_period = 21000000;
6034  } else {
6035    max_wait_period = 50000000;
6036  }
6037  millis %= 1000;
6038  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
6039     seconds = max_wait_period;
6040  }
6041  abstime->tv_sec = now.tv_sec  + seconds;
6042  long       usec = now.tv_usec + millis * 1000;
6043  if (usec >= 1000000) {
6044    abstime->tv_sec += 1;
6045    usec -= 1000000;
6046  }
6047  abstime->tv_nsec = usec * 1000;
6048  return abstime;
6049}
6050
6051// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
6052// Conceptually TryPark() should be equivalent to park(0).
6053
6054int os::PlatformEvent::TryPark() {
6055  for (;;) {
6056    const int v = _Event ;
6057    guarantee ((v == 0) || (v == 1), "invariant") ;
6058    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
6059  }
6060}
6061
6062void os::PlatformEvent::park() {           // AKA: down()
6063  // Invariant: Only the thread associated with the Event/PlatformEvent
6064  // may call park().
6065  int v ;
6066  for (;;) {
6067      v = _Event ;
6068      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6069  }
6070  guarantee (v >= 0, "invariant") ;
6071  if (v == 0) {
6072     // Do this the hard way by blocking ...
6073     // See http://monaco.sfbay/detail.jsf?cr=5094058.
6074     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
6075     // Only for SPARC >= V8PlusA
6076#if defined(__sparc) && defined(COMPILER2)
6077     if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6078#endif
6079     int status = os::Solaris::mutex_lock(_mutex);
6080     assert_status(status == 0, status,  "mutex_lock");
6081     guarantee (_nParked == 0, "invariant") ;
6082     ++ _nParked ;
6083     while (_Event < 0) {
6084        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
6085        // Treat this the same as if the wait was interrupted
6086        // With usr/lib/lwp going to kernel, always handle ETIME
6087        status = os::Solaris::cond_wait(_cond, _mutex);
6088        if (status == ETIME) status = EINTR ;
6089        assert_status(status == 0 || status == EINTR, status, "cond_wait");
6090     }
6091     -- _nParked ;
6092     _Event = 0 ;
6093     status = os::Solaris::mutex_unlock(_mutex);
6094     assert_status(status == 0, status, "mutex_unlock");
6095    // Paranoia to ensure our locked and lock-free paths interact
6096    // correctly with each other.
6097    OrderAccess::fence();
6098  }
6099}
6100
6101int os::PlatformEvent::park(jlong millis) {
6102  guarantee (_nParked == 0, "invariant") ;
6103  int v ;
6104  for (;;) {
6105      v = _Event ;
6106      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6107  }
6108  guarantee (v >= 0, "invariant") ;
6109  if (v != 0) return OS_OK ;
6110
6111  int ret = OS_TIMEOUT;
6112  timestruc_t abst;
6113  compute_abstime (&abst, millis);
6114
6115  // See http://monaco.sfbay/detail.jsf?cr=5094058.
6116  // For Solaris SPARC set fprs.FEF=0 prior to parking.
6117  // Only for SPARC >= V8PlusA
6118#if defined(__sparc) && defined(COMPILER2)
6119 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6120#endif
6121  int status = os::Solaris::mutex_lock(_mutex);
6122  assert_status(status == 0, status, "mutex_lock");
6123  guarantee (_nParked == 0, "invariant") ;
6124  ++ _nParked ;
6125  while (_Event < 0) {
6126     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
6127     assert_status(status == 0 || status == EINTR ||
6128                   status == ETIME || status == ETIMEDOUT,
6129                   status, "cond_timedwait");
6130     if (!FilterSpuriousWakeups) break ;                // previous semantics
6131     if (status == ETIME || status == ETIMEDOUT) break ;
6132     // We consume and ignore EINTR and spurious wakeups.
6133  }
6134  -- _nParked ;
6135  if (_Event >= 0) ret = OS_OK ;
6136  _Event = 0 ;
6137  status = os::Solaris::mutex_unlock(_mutex);
6138  assert_status(status == 0, status, "mutex_unlock");
6139  // Paranoia to ensure our locked and lock-free paths interact
6140  // correctly with each other.
6141  OrderAccess::fence();
6142  return ret;
6143}
6144
6145void os::PlatformEvent::unpark() {
6146  // Transitions for _Event:
6147  //    0 :=> 1
6148  //    1 :=> 1
6149  //   -1 :=> either 0 or 1; must signal target thread
6150  //          That is, we can safely transition _Event from -1 to either
6151  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
6152  //          unpark() calls.
6153  // See also: "Semaphores in Plan 9" by Mullender & Cox
6154  //
6155  // Note: Forcing a transition from "-1" to "1" on an unpark() means
6156  // that it will take two back-to-back park() calls for the owning
6157  // thread to block. This has the benefit of forcing a spurious return
6158  // from the first park() call after an unpark() call which will help
6159  // shake out uses of park() and unpark() without condition variables.
6160
6161  if (Atomic::xchg(1, &_Event) >= 0) return;
6162
6163  // If the thread associated with the event was parked, wake it.
6164  // Wait for the thread assoc with the PlatformEvent to vacate.
6165  int status = os::Solaris::mutex_lock(_mutex);
6166  assert_status(status == 0, status, "mutex_lock");
6167  int AnyWaiters = _nParked;
6168  status = os::Solaris::mutex_unlock(_mutex);
6169  assert_status(status == 0, status, "mutex_unlock");
6170  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
6171  if (AnyWaiters != 0) {
6172    // We intentional signal *after* dropping the lock
6173    // to avoid a common class of futile wakeups.
6174    status = os::Solaris::cond_signal(_cond);
6175    assert_status(status == 0, status, "cond_signal");
6176  }
6177}
6178
6179// JSR166
6180// -------------------------------------------------------
6181
6182/*
6183 * The solaris and linux implementations of park/unpark are fairly
6184 * conservative for now, but can be improved. They currently use a
6185 * mutex/condvar pair, plus _counter.
6186 * Park decrements _counter if > 0, else does a condvar wait.  Unpark
6187 * sets count to 1 and signals condvar.  Only one thread ever waits
6188 * on the condvar. Contention seen when trying to park implies that someone
6189 * is unparking you, so don't wait. And spurious returns are fine, so there
6190 * is no need to track notifications.
6191 */
6192
6193#define MAX_SECS 100000000
6194/*
6195 * This code is common to linux and solaris and will be moved to a
6196 * common place in dolphin.
6197 *
6198 * The passed in time value is either a relative time in nanoseconds
6199 * or an absolute time in milliseconds. Either way it has to be unpacked
6200 * into suitable seconds and nanoseconds components and stored in the
6201 * given timespec structure.
6202 * Given time is a 64-bit value and the time_t used in the timespec is only
6203 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6204 * overflow if times way in the future are given. Further on Solaris versions
6205 * prior to 10 there is a restriction (see cond_timedwait) that the specified
6206 * number of seconds, in abstime, is less than current_time  + 100,000,000.
6207 * As it will be 28 years before "now + 100000000" will overflow we can
6208 * ignore overflow and just impose a hard-limit on seconds using the value
6209 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6210 * years from "now".
6211 */
6212static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6213  assert (time > 0, "convertTime");
6214
6215  struct timeval now;
6216  int status = gettimeofday(&now, NULL);
6217  assert(status == 0, "gettimeofday");
6218
6219  time_t max_secs = now.tv_sec + MAX_SECS;
6220
6221  if (isAbsolute) {
6222    jlong secs = time / 1000;
6223    if (secs > max_secs) {
6224      absTime->tv_sec = max_secs;
6225    }
6226    else {
6227      absTime->tv_sec = secs;
6228    }
6229    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6230  }
6231  else {
6232    jlong secs = time / NANOSECS_PER_SEC;
6233    if (secs >= MAX_SECS) {
6234      absTime->tv_sec = max_secs;
6235      absTime->tv_nsec = 0;
6236    }
6237    else {
6238      absTime->tv_sec = now.tv_sec + secs;
6239      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6240      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6241        absTime->tv_nsec -= NANOSECS_PER_SEC;
6242        ++absTime->tv_sec; // note: this must be <= max_secs
6243      }
6244    }
6245  }
6246  assert(absTime->tv_sec >= 0, "tv_sec < 0");
6247  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6248  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6249  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6250}
6251
6252void Parker::park(bool isAbsolute, jlong time) {
6253  // Ideally we'd do something useful while spinning, such
6254  // as calling unpackTime().
6255
6256  // Optional fast-path check:
6257  // Return immediately if a permit is available.
6258  // We depend on Atomic::xchg() having full barrier semantics
6259  // since we are doing a lock-free update to _counter.
6260  if (Atomic::xchg(0, &_counter) > 0) return;
6261
6262  // Optional fast-exit: Check interrupt before trying to wait
6263  Thread* thread = Thread::current();
6264  assert(thread->is_Java_thread(), "Must be JavaThread");
6265  JavaThread *jt = (JavaThread *)thread;
6266  if (Thread::is_interrupted(thread, false)) {
6267    return;
6268  }
6269
6270  // First, demultiplex/decode time arguments
6271  timespec absTime;
6272  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6273    return;
6274  }
6275  if (time > 0) {
6276    // Warning: this code might be exposed to the old Solaris time
6277    // round-down bugs.  Grep "roundingFix" for details.
6278    unpackTime(&absTime, isAbsolute, time);
6279  }
6280
6281  // Enter safepoint region
6282  // Beware of deadlocks such as 6317397.
6283  // The per-thread Parker:: _mutex is a classic leaf-lock.
6284  // In particular a thread must never block on the Threads_lock while
6285  // holding the Parker:: mutex.  If safepoints are pending both the
6286  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6287  ThreadBlockInVM tbivm(jt);
6288
6289  // Don't wait if cannot get lock since interference arises from
6290  // unblocking.  Also. check interrupt before trying wait
6291  if (Thread::is_interrupted(thread, false) ||
6292      os::Solaris::mutex_trylock(_mutex) != 0) {
6293    return;
6294  }
6295
6296  int status ;
6297
6298  if (_counter > 0)  { // no wait needed
6299    _counter = 0;
6300    status = os::Solaris::mutex_unlock(_mutex);
6301    assert (status == 0, "invariant") ;
6302    // Paranoia to ensure our locked and lock-free paths interact
6303    // correctly with each other and Java-level accesses.
6304    OrderAccess::fence();
6305    return;
6306  }
6307
6308#ifdef ASSERT
6309  // Don't catch signals while blocked; let the running threads have the signals.
6310  // (This allows a debugger to break into the running thread.)
6311  sigset_t oldsigs;
6312  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
6313  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6314#endif
6315
6316  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6317  jt->set_suspend_equivalent();
6318  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6319
6320  // Do this the hard way by blocking ...
6321  // See http://monaco.sfbay/detail.jsf?cr=5094058.
6322  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
6323  // Only for SPARC >= V8PlusA
6324#if defined(__sparc) && defined(COMPILER2)
6325  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6326#endif
6327
6328  if (time == 0) {
6329    status = os::Solaris::cond_wait (_cond, _mutex) ;
6330  } else {
6331    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
6332  }
6333  // Note that an untimed cond_wait() can sometimes return ETIME on older
6334  // versions of the Solaris.
6335  assert_status(status == 0 || status == EINTR ||
6336                status == ETIME || status == ETIMEDOUT,
6337                status, "cond_timedwait");
6338
6339#ifdef ASSERT
6340  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
6341#endif
6342  _counter = 0 ;
6343  status = os::Solaris::mutex_unlock(_mutex);
6344  assert_status(status == 0, status, "mutex_unlock") ;
6345  // Paranoia to ensure our locked and lock-free paths interact
6346  // correctly with each other and Java-level accesses.
6347  OrderAccess::fence();
6348
6349  // If externally suspended while waiting, re-suspend
6350  if (jt->handle_special_suspend_equivalent_condition()) {
6351    jt->java_suspend_self();
6352  }
6353}
6354
6355void Parker::unpark() {
6356  int s, status ;
6357  status = os::Solaris::mutex_lock (_mutex) ;
6358  assert (status == 0, "invariant") ;
6359  s = _counter;
6360  _counter = 1;
6361  status = os::Solaris::mutex_unlock (_mutex) ;
6362  assert (status == 0, "invariant") ;
6363
6364  if (s < 1) {
6365    status = os::Solaris::cond_signal (_cond) ;
6366    assert (status == 0, "invariant") ;
6367  }
6368}
6369
6370extern char** environ;
6371
6372// Run the specified command in a separate process. Return its exit value,
6373// or -1 on failure (e.g. can't fork a new process).
6374// Unlike system(), this function can be called from signal handler. It
6375// doesn't block SIGINT et al.
6376int os::fork_and_exec(char* cmd) {
6377  char * argv[4];
6378  argv[0] = (char *)"sh";
6379  argv[1] = (char *)"-c";
6380  argv[2] = cmd;
6381  argv[3] = NULL;
6382
6383  // fork is async-safe, fork1 is not so can't use in signal handler
6384  pid_t pid;
6385  Thread* t = ThreadLocalStorage::get_thread_slow();
6386  if (t != NULL && t->is_inside_signal_handler()) {
6387    pid = fork();
6388  } else {
6389    pid = fork1();
6390  }
6391
6392  if (pid < 0) {
6393    // fork failed
6394    warning("fork failed: %s", strerror(errno));
6395    return -1;
6396
6397  } else if (pid == 0) {
6398    // child process
6399
6400    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
6401    execve("/usr/bin/sh", argv, environ);
6402
6403    // execve failed
6404    _exit(-1);
6405
6406  } else  {
6407    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6408    // care about the actual exit code, for now.
6409
6410    int status;
6411
6412    // Wait for the child process to exit.  This returns immediately if
6413    // the child has already exited. */
6414    while (waitpid(pid, &status, 0) < 0) {
6415        switch (errno) {
6416        case ECHILD: return 0;
6417        case EINTR: break;
6418        default: return -1;
6419        }
6420    }
6421
6422    if (WIFEXITED(status)) {
6423       // The child exited normally; get its exit code.
6424       return WEXITSTATUS(status);
6425    } else if (WIFSIGNALED(status)) {
6426       // The child exited because of a signal
6427       // The best value to return is 0x80 + signal number,
6428       // because that is what all Unix shells do, and because
6429       // it allows callers to distinguish between process exit and
6430       // process death by signal.
6431       return 0x80 + WTERMSIG(status);
6432    } else {
6433       // Unknown exit code; pass it through
6434       return status;
6435    }
6436  }
6437}
6438
6439// is_headless_jre()
6440//
6441// Test for the existence of xawt/libmawt.so or libawt_xawt.so
6442// in order to report if we are running in a headless jre
6443//
6444// Since JDK8 xawt/libmawt.so was moved into the same directory
6445// as libawt.so, and renamed libawt_xawt.so
6446//
6447bool os::is_headless_jre() {
6448    struct stat statbuf;
6449    char buf[MAXPATHLEN];
6450    char libmawtpath[MAXPATHLEN];
6451    const char *xawtstr  = "/xawt/libmawt.so";
6452    const char *new_xawtstr = "/libawt_xawt.so";
6453    char *p;
6454
6455    // Get path to libjvm.so
6456    os::jvm_path(buf, sizeof(buf));
6457
6458    // Get rid of libjvm.so
6459    p = strrchr(buf, '/');
6460    if (p == NULL) return false;
6461    else *p = '\0';
6462
6463    // Get rid of client or server
6464    p = strrchr(buf, '/');
6465    if (p == NULL) return false;
6466    else *p = '\0';
6467
6468    // check xawt/libmawt.so
6469    strcpy(libmawtpath, buf);
6470    strcat(libmawtpath, xawtstr);
6471    if (::stat(libmawtpath, &statbuf) == 0) return false;
6472
6473    // check libawt_xawt.so
6474    strcpy(libmawtpath, buf);
6475    strcat(libmawtpath, new_xawtstr);
6476    if (::stat(libmawtpath, &statbuf) == 0) return false;
6477
6478    return true;
6479}
6480
6481size_t os::write(int fd, const void *buf, unsigned int nBytes) {
6482  INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
6483}
6484
6485int os::close(int fd) {
6486  return ::close(fd);
6487}
6488
6489int os::socket_close(int fd) {
6490  return ::close(fd);
6491}
6492
6493int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
6494  INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
6495}
6496
6497int os::send(int fd, char* buf, size_t nBytes, uint flags) {
6498  INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
6499}
6500
6501int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
6502  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
6503}
6504
6505// As both poll and select can be interrupted by signals, we have to be
6506// prepared to restart the system call after updating the timeout, unless
6507// a poll() is done with timeout == -1, in which case we repeat with this
6508// "wait forever" value.
6509
6510int os::timeout(int fd, long timeout) {
6511  int res;
6512  struct timeval t;
6513  julong prevtime, newtime;
6514  static const char* aNull = 0;
6515  struct pollfd pfd;
6516  pfd.fd = fd;
6517  pfd.events = POLLIN;
6518
6519  gettimeofday(&t, &aNull);
6520  prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
6521
6522  for(;;) {
6523    INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
6524    if(res == OS_ERR && errno == EINTR) {
6525        if(timeout != -1) {
6526          gettimeofday(&t, &aNull);
6527          newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
6528          timeout -= newtime - prevtime;
6529          if(timeout <= 0)
6530            return OS_OK;
6531          prevtime = newtime;
6532        }
6533    } else return res;
6534  }
6535}
6536
6537int os::connect(int fd, struct sockaddr *him, socklen_t len) {
6538  int _result;
6539  INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
6540                          os::Solaris::clear_interrupted);
6541
6542  // Depending on when thread interruption is reset, _result could be
6543  // one of two values when errno == EINTR
6544
6545  if (((_result == OS_INTRPT) || (_result == OS_ERR))
6546      && (errno == EINTR)) {
6547     /* restarting a connect() changes its errno semantics */
6548     INTERRUPTIBLE(::connect(fd, him, len), _result,\
6549                   os::Solaris::clear_interrupted);
6550     /* undo these changes */
6551     if (_result == OS_ERR) {
6552       if (errno == EALREADY) {
6553         errno = EINPROGRESS; /* fall through */
6554       } else if (errno == EISCONN) {
6555         errno = 0;
6556         return OS_OK;
6557       }
6558     }
6559   }
6560   return _result;
6561 }
6562
6563int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
6564  if (fd < 0) {
6565    return OS_ERR;
6566  }
6567  INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
6568                           os::Solaris::clear_interrupted);
6569}
6570
6571int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
6572                 sockaddr* from, socklen_t* fromlen) {
6573  INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
6574                           os::Solaris::clear_interrupted);
6575}
6576
6577int os::sendto(int fd, char* buf, size_t len, uint flags,
6578               struct sockaddr* to, socklen_t tolen) {
6579  INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
6580                           os::Solaris::clear_interrupted);
6581}
6582
6583int os::socket_available(int fd, jint *pbytes) {
6584  if (fd < 0) {
6585    return OS_OK;
6586  }
6587  int ret;
6588  RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
6589  // note: ioctl can return 0 when successful, JVM_SocketAvailable
6590  // is expected to return 0 on failure and 1 on success to the jdk.
6591  return (ret == OS_ERR) ? 0 : 1;
6592}
6593
6594int os::bind(int fd, struct sockaddr* him, socklen_t len) {
6595   INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
6596                                      os::Solaris::clear_interrupted);
6597}
6598
6599// Get the default path to the core file
6600// Returns the length of the string
6601int os::get_core_path(char* buffer, size_t bufferSize) {
6602  const char* p = get_current_directory(buffer, bufferSize);
6603
6604  if (p == NULL) {
6605    assert(p != NULL, "failed to get current directory");
6606    return 0;
6607  }
6608
6609  return strlen(buffer);
6610}
6611
6612#ifndef PRODUCT
6613void TestReserveMemorySpecial_test() {
6614  // No tests available for this platform
6615}
6616#endif
6617