os_solaris.cpp revision 3644:716e6ef4482a
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_solaris.h"
34#include "memory/allocation.inline.hpp"
35#include "memory/filemap.hpp"
36#include "mutex_solaris.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "os_share_solaris.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/globals.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/objectMonitor.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/perfMemory.hpp"
52#include "runtime/sharedRuntime.hpp"
53#include "runtime/statSampler.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/timer.hpp"
57#include "services/attachListener.hpp"
58#include "services/runtimeService.hpp"
59#include "thread_solaris.inline.hpp"
60#include "utilities/decoder.hpp"
61#include "utilities/defaultStream.hpp"
62#include "utilities/events.hpp"
63#include "utilities/growableArray.hpp"
64#include "utilities/vmError.hpp"
65#ifdef TARGET_ARCH_x86
66# include "assembler_x86.inline.hpp"
67# include "nativeInst_x86.hpp"
68#endif
69#ifdef TARGET_ARCH_sparc
70# include "assembler_sparc.inline.hpp"
71# include "nativeInst_sparc.hpp"
72#endif
73#ifdef COMPILER1
74#include "c1/c1_Runtime1.hpp"
75#endif
76#ifdef COMPILER2
77#include "opto/runtime.hpp"
78#endif
79
80// put OS-includes here
81# include <dlfcn.h>
82# include <errno.h>
83# include <exception>
84# include <link.h>
85# include <poll.h>
86# include <pthread.h>
87# include <pwd.h>
88# include <schedctl.h>
89# include <setjmp.h>
90# include <signal.h>
91# include <stdio.h>
92# include <alloca.h>
93# include <sys/filio.h>
94# include <sys/ipc.h>
95# include <sys/lwp.h>
96# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
97# include <sys/mman.h>
98# include <sys/processor.h>
99# include <sys/procset.h>
100# include <sys/pset.h>
101# include <sys/resource.h>
102# include <sys/shm.h>
103# include <sys/socket.h>
104# include <sys/stat.h>
105# include <sys/systeminfo.h>
106# include <sys/time.h>
107# include <sys/times.h>
108# include <sys/types.h>
109# include <sys/wait.h>
110# include <sys/utsname.h>
111# include <thread.h>
112# include <unistd.h>
113# include <sys/priocntl.h>
114# include <sys/rtpriocntl.h>
115# include <sys/tspriocntl.h>
116# include <sys/iapriocntl.h>
117# include <sys/fxpriocntl.h>
118# include <sys/loadavg.h>
119# include <string.h>
120# include <stdio.h>
121
122# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
123# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
124
125#define MAX_PATH (2 * K)
126
127// for timer info max values which include all bits
128#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
129
130#ifdef _GNU_SOURCE
131// See bug #6514594
132extern "C" int madvise(caddr_t, size_t, int);
133extern "C" int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,
134                       int attr, int mask);
135#endif //_GNU_SOURCE
136
137/*
138  MPSS Changes Start.
139  The JVM binary needs to be built and run on pre-Solaris 9
140  systems, but the constants needed by MPSS are only in Solaris 9
141  header files.  They are textually replicated here to allow
142  building on earlier systems.  Once building on Solaris 8 is
143  no longer a requirement, these #defines can be replaced by ordinary
144  system .h inclusion.
145
146  In earlier versions of the  JDK and Solaris, we used ISM for large pages.
147  But ISM requires shared memory to achieve this and thus has many caveats.
148  MPSS is a fully transparent and is a cleaner way to get large pages.
149  Although we still require keeping ISM for backward compatiblitiy as well as
150  giving the opportunity to use large pages on older systems it is
151  recommended that MPSS be used for Solaris 9 and above.
152
153*/
154
155#ifndef MC_HAT_ADVISE
156
157struct memcntl_mha {
158  uint_t          mha_cmd;        /* command(s) */
159  uint_t          mha_flags;
160  size_t          mha_pagesize;
161};
162#define MC_HAT_ADVISE   7       /* advise hat map size */
163#define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
164#define MAP_ALIGN       0x200   /* addr specifies alignment */
165
166#endif
167// MPSS Changes End.
168
169
170// Here are some liblgrp types from sys/lgrp_user.h to be able to
171// compile on older systems without this header file.
172
173#ifndef MADV_ACCESS_LWP
174# define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
175#endif
176#ifndef MADV_ACCESS_MANY
177# define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
178#endif
179
180#ifndef LGRP_RSRC_CPU
181# define LGRP_RSRC_CPU           0       /* CPU resources */
182#endif
183#ifndef LGRP_RSRC_MEM
184# define LGRP_RSRC_MEM           1       /* memory resources */
185#endif
186
187// Some more macros from sys/mman.h that are not present in Solaris 8.
188
189#ifndef MAX_MEMINFO_CNT
190/*
191 * info_req request type definitions for meminfo
192 * request types starting with MEMINFO_V are used for Virtual addresses
193 * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
194 * addresses
195 */
196# define MEMINFO_SHIFT           16
197# define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
198# define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
199# define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
200# define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
201# define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
202# define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
203# define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
204# define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
205
206/* maximum number of addresses meminfo() can process at a time */
207# define MAX_MEMINFO_CNT 256
208
209/* maximum number of request types */
210# define MAX_MEMINFO_REQ 31
211#endif
212
213// see thr_setprio(3T) for the basis of these numbers
214#define MinimumPriority 0
215#define NormalPriority  64
216#define MaximumPriority 127
217
218// Values for ThreadPriorityPolicy == 1
219int prio_policy1[CriticalPriority+1] = {
220  -99999,  0, 16,  32,  48,  64,
221          80, 96, 112, 124, 127, 127 };
222
223// System parameters used internally
224static clock_t clock_tics_per_sec = 100;
225
226// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
227static bool enabled_extended_FILE_stdio = false;
228
229// For diagnostics to print a message once. see run_periodic_checks
230static bool check_addr0_done = false;
231static sigset_t check_signal_done;
232static bool check_signals = true;
233
234address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
235address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
236
237address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
238
239
240// "default" initializers for missing libc APIs
241extern "C" {
242  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
243  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
244
245  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
246  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
247}
248
249// "default" initializers for pthread-based synchronization
250extern "C" {
251  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
252  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
253}
254
255// Thread Local Storage
256// This is common to all Solaris platforms so it is defined here,
257// in this common file.
258// The declarations are in the os_cpu threadLS*.hpp files.
259//
260// Static member initialization for TLS
261Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
262
263#ifndef PRODUCT
264#define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
265
266int ThreadLocalStorage::_tcacheHit = 0;
267int ThreadLocalStorage::_tcacheMiss = 0;
268
269void ThreadLocalStorage::print_statistics() {
270  int total = _tcacheMiss+_tcacheHit;
271  tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
272                _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
273}
274#undef _PCT
275#endif // PRODUCT
276
277Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
278                                                        int index) {
279  Thread *thread = get_thread_slow();
280  if (thread != NULL) {
281    address sp = os::current_stack_pointer();
282    guarantee(thread->_stack_base == NULL ||
283              (sp <= thread->_stack_base &&
284                 sp >= thread->_stack_base - thread->_stack_size) ||
285               is_error_reported(),
286              "sp must be inside of selected thread stack");
287
288    thread->set_self_raw_id(raw_id);  // mark for quick retrieval
289    _get_thread_cache[ index ] = thread;
290  }
291  return thread;
292}
293
294
295static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
296#define NO_CACHED_THREAD ((Thread*)all_zero)
297
298void ThreadLocalStorage::pd_set_thread(Thread* thread) {
299
300  // Store the new value before updating the cache to prevent a race
301  // between get_thread_via_cache_slowly() and this store operation.
302  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
303
304  // Update thread cache with new thread if setting on thread create,
305  // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
306  uintptr_t raw = pd_raw_thread_id();
307  int ix = pd_cache_index(raw);
308  _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
309}
310
311void ThreadLocalStorage::pd_init() {
312  for (int i = 0; i < _pd_cache_size; i++) {
313    _get_thread_cache[i] = NO_CACHED_THREAD;
314  }
315}
316
317// Invalidate all the caches (happens to be the same as pd_init).
318void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
319
320#undef NO_CACHED_THREAD
321
322// END Thread Local Storage
323
324static inline size_t adjust_stack_size(address base, size_t size) {
325  if ((ssize_t)size < 0) {
326    // 4759953: Compensate for ridiculous stack size.
327    size = max_intx;
328  }
329  if (size > (size_t)base) {
330    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
331    size = (size_t)base;
332  }
333  return size;
334}
335
336static inline stack_t get_stack_info() {
337  stack_t st;
338  int retval = thr_stksegment(&st);
339  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
340  assert(retval == 0, "incorrect return value from thr_stksegment");
341  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
342  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
343  return st;
344}
345
346address os::current_stack_base() {
347  int r = thr_main() ;
348  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
349  bool is_primordial_thread = r;
350
351  // Workaround 4352906, avoid calls to thr_stksegment by
352  // thr_main after the first one (it looks like we trash
353  // some data, causing the value for ss_sp to be incorrect).
354  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
355    stack_t st = get_stack_info();
356    if (is_primordial_thread) {
357      // cache initial value of stack base
358      os::Solaris::_main_stack_base = (address)st.ss_sp;
359    }
360    return (address)st.ss_sp;
361  } else {
362    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
363    return os::Solaris::_main_stack_base;
364  }
365}
366
367size_t os::current_stack_size() {
368  size_t size;
369
370  int r = thr_main() ;
371  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
372  if(!r) {
373    size = get_stack_info().ss_size;
374  } else {
375    struct rlimit limits;
376    getrlimit(RLIMIT_STACK, &limits);
377    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
378  }
379  // base may not be page aligned
380  address base = current_stack_base();
381  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
382  return (size_t)(base - bottom);
383}
384
385struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
386  return localtime_r(clock, res);
387}
388
389// interruptible infrastructure
390
391// setup_interruptible saves the thread state before going into an
392// interruptible system call.
393// The saved state is used to restore the thread to
394// its former state whether or not an interrupt is received.
395// Used by classloader os::read
396// os::restartable_read calls skip this layer and stay in _thread_in_native
397
398void os::Solaris::setup_interruptible(JavaThread* thread) {
399
400  JavaThreadState thread_state = thread->thread_state();
401
402  assert(thread_state != _thread_blocked, "Coming from the wrong thread");
403  assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
404  OSThread* osthread = thread->osthread();
405  osthread->set_saved_interrupt_thread_state(thread_state);
406  thread->frame_anchor()->make_walkable(thread);
407  ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
408}
409
410// Version of setup_interruptible() for threads that are already in
411// _thread_blocked. Used by os_sleep().
412void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
413  thread->frame_anchor()->make_walkable(thread);
414}
415
416JavaThread* os::Solaris::setup_interruptible() {
417  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
418  setup_interruptible(thread);
419  return thread;
420}
421
422void os::Solaris::try_enable_extended_io() {
423  typedef int (*enable_extended_FILE_stdio_t)(int, int);
424
425  if (!UseExtendedFileIO) {
426    return;
427  }
428
429  enable_extended_FILE_stdio_t enabler =
430    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
431                                         "enable_extended_FILE_stdio");
432  if (enabler) {
433    enabler(-1, -1);
434  }
435}
436
437
438#ifdef ASSERT
439
440JavaThread* os::Solaris::setup_interruptible_native() {
441  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
442  JavaThreadState thread_state = thread->thread_state();
443  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
444  return thread;
445}
446
447void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
448  JavaThreadState thread_state = thread->thread_state();
449  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
450}
451#endif
452
453// cleanup_interruptible reverses the effects of setup_interruptible
454// setup_interruptible_already_blocked() does not need any cleanup.
455
456void os::Solaris::cleanup_interruptible(JavaThread* thread) {
457  OSThread* osthread = thread->osthread();
458
459  ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
460}
461
462// I/O interruption related counters called in _INTERRUPTIBLE
463
464void os::Solaris::bump_interrupted_before_count() {
465  RuntimeService::record_interrupted_before_count();
466}
467
468void os::Solaris::bump_interrupted_during_count() {
469  RuntimeService::record_interrupted_during_count();
470}
471
472static int _processors_online = 0;
473
474         jint os::Solaris::_os_thread_limit = 0;
475volatile jint os::Solaris::_os_thread_count = 0;
476
477julong os::available_memory() {
478  return Solaris::available_memory();
479}
480
481julong os::Solaris::available_memory() {
482  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
483}
484
485julong os::Solaris::_physical_memory = 0;
486
487julong os::physical_memory() {
488   return Solaris::physical_memory();
489}
490
491julong os::allocatable_physical_memory(julong size) {
492#ifdef _LP64
493   return size;
494#else
495   julong result = MIN2(size, (julong)3835*M);
496   if (!is_allocatable(result)) {
497     // Memory allocations will be aligned but the alignment
498     // is not known at this point.  Alignments will
499     // be at most to LargePageSizeInBytes.  Protect
500     // allocations from alignments up to illegal
501     // values. If at this point 2G is illegal.
502     julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
503     result =  MIN2(size, reasonable_size);
504   }
505   return result;
506#endif
507}
508
509static hrtime_t first_hrtime = 0;
510static const hrtime_t hrtime_hz = 1000*1000*1000;
511const int LOCK_BUSY = 1;
512const int LOCK_FREE = 0;
513const int LOCK_INVALID = -1;
514static volatile hrtime_t max_hrtime = 0;
515static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
516
517
518void os::Solaris::initialize_system_info() {
519  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
520  _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
521  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
522}
523
524int os::active_processor_count() {
525  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
526  pid_t pid = getpid();
527  psetid_t pset = PS_NONE;
528  // Are we running in a processor set or is there any processor set around?
529  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
530    uint_t pset_cpus;
531    // Query the number of cpus available to us.
532    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
533      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
534      _processors_online = pset_cpus;
535      return pset_cpus;
536    }
537  }
538  // Otherwise return number of online cpus
539  return online_cpus;
540}
541
542static bool find_processors_in_pset(psetid_t        pset,
543                                    processorid_t** id_array,
544                                    uint_t*         id_length) {
545  bool result = false;
546  // Find the number of processors in the processor set.
547  if (pset_info(pset, NULL, id_length, NULL) == 0) {
548    // Make up an array to hold their ids.
549    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
550    // Fill in the array with their processor ids.
551    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
552      result = true;
553    }
554  }
555  return result;
556}
557
558// Callers of find_processors_online() must tolerate imprecise results --
559// the system configuration can change asynchronously because of DR
560// or explicit psradm operations.
561//
562// We also need to take care that the loop (below) terminates as the
563// number of processors online can change between the _SC_NPROCESSORS_ONLN
564// request and the loop that builds the list of processor ids.   Unfortunately
565// there's no reliable way to determine the maximum valid processor id,
566// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
567// man pages, which claim the processor id set is "sparse, but
568// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
569// exit the loop.
570//
571// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
572// not available on S8.0.
573
574static bool find_processors_online(processorid_t** id_array,
575                                   uint*           id_length) {
576  const processorid_t MAX_PROCESSOR_ID = 100000 ;
577  // Find the number of processors online.
578  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
579  // Make up an array to hold their ids.
580  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
581  // Processors need not be numbered consecutively.
582  long found = 0;
583  processorid_t next = 0;
584  while (found < *id_length && next < MAX_PROCESSOR_ID) {
585    processor_info_t info;
586    if (processor_info(next, &info) == 0) {
587      // NB, PI_NOINTR processors are effectively online ...
588      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
589        (*id_array)[found] = next;
590        found += 1;
591      }
592    }
593    next += 1;
594  }
595  if (found < *id_length) {
596      // The loop above didn't identify the expected number of processors.
597      // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
598      // and re-running the loop, above, but there's no guarantee of progress
599      // if the system configuration is in flux.  Instead, we just return what
600      // we've got.  Note that in the worst case find_processors_online() could
601      // return an empty set.  (As a fall-back in the case of the empty set we
602      // could just return the ID of the current processor).
603      *id_length = found ;
604  }
605
606  return true;
607}
608
609static bool assign_distribution(processorid_t* id_array,
610                                uint           id_length,
611                                uint*          distribution,
612                                uint           distribution_length) {
613  // We assume we can assign processorid_t's to uint's.
614  assert(sizeof(processorid_t) == sizeof(uint),
615         "can't convert processorid_t to uint");
616  // Quick check to see if we won't succeed.
617  if (id_length < distribution_length) {
618    return false;
619  }
620  // Assign processor ids to the distribution.
621  // Try to shuffle processors to distribute work across boards,
622  // assuming 4 processors per board.
623  const uint processors_per_board = ProcessDistributionStride;
624  // Find the maximum processor id.
625  processorid_t max_id = 0;
626  for (uint m = 0; m < id_length; m += 1) {
627    max_id = MAX2(max_id, id_array[m]);
628  }
629  // The next id, to limit loops.
630  const processorid_t limit_id = max_id + 1;
631  // Make up markers for available processors.
632  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
633  for (uint c = 0; c < limit_id; c += 1) {
634    available_id[c] = false;
635  }
636  for (uint a = 0; a < id_length; a += 1) {
637    available_id[id_array[a]] = true;
638  }
639  // Step by "boards", then by "slot", copying to "assigned".
640  // NEEDS_CLEANUP: The assignment of processors should be stateful,
641  //                remembering which processors have been assigned by
642  //                previous calls, etc., so as to distribute several
643  //                independent calls of this method.  What we'd like is
644  //                It would be nice to have an API that let us ask
645  //                how many processes are bound to a processor,
646  //                but we don't have that, either.
647  //                In the short term, "board" is static so that
648  //                subsequent distributions don't all start at board 0.
649  static uint board = 0;
650  uint assigned = 0;
651  // Until we've found enough processors ....
652  while (assigned < distribution_length) {
653    // ... find the next available processor in the board.
654    for (uint slot = 0; slot < processors_per_board; slot += 1) {
655      uint try_id = board * processors_per_board + slot;
656      if ((try_id < limit_id) && (available_id[try_id] == true)) {
657        distribution[assigned] = try_id;
658        available_id[try_id] = false;
659        assigned += 1;
660        break;
661      }
662    }
663    board += 1;
664    if (board * processors_per_board + 0 >= limit_id) {
665      board = 0;
666    }
667  }
668  if (available_id != NULL) {
669    FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
670  }
671  return true;
672}
673
674void os::set_native_thread_name(const char *name) {
675  // Not yet implemented.
676  return;
677}
678
679bool os::distribute_processes(uint length, uint* distribution) {
680  bool result = false;
681  // Find the processor id's of all the available CPUs.
682  processorid_t* id_array  = NULL;
683  uint           id_length = 0;
684  // There are some races between querying information and using it,
685  // since processor sets can change dynamically.
686  psetid_t pset = PS_NONE;
687  // Are we running in a processor set?
688  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
689    result = find_processors_in_pset(pset, &id_array, &id_length);
690  } else {
691    result = find_processors_online(&id_array, &id_length);
692  }
693  if (result == true) {
694    if (id_length >= length) {
695      result = assign_distribution(id_array, id_length, distribution, length);
696    } else {
697      result = false;
698    }
699  }
700  if (id_array != NULL) {
701    FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
702  }
703  return result;
704}
705
706bool os::bind_to_processor(uint processor_id) {
707  // We assume that a processorid_t can be stored in a uint.
708  assert(sizeof(uint) == sizeof(processorid_t),
709         "can't convert uint to processorid_t");
710  int bind_result =
711    processor_bind(P_LWPID,                       // bind LWP.
712                   P_MYID,                        // bind current LWP.
713                   (processorid_t) processor_id,  // id.
714                   NULL);                         // don't return old binding.
715  return (bind_result == 0);
716}
717
718bool os::getenv(const char* name, char* buffer, int len) {
719  char* val = ::getenv( name );
720  if ( val == NULL
721  ||   strlen(val) + 1  >  len ) {
722    if (len > 0)  buffer[0] = 0; // return a null string
723    return false;
724  }
725  strcpy( buffer, val );
726  return true;
727}
728
729
730// Return true if user is running as root.
731
732bool os::have_special_privileges() {
733  static bool init = false;
734  static bool privileges = false;
735  if (!init) {
736    privileges = (getuid() != geteuid()) || (getgid() != getegid());
737    init = true;
738  }
739  return privileges;
740}
741
742
743void os::init_system_properties_values() {
744  char arch[12];
745  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
746
747  // The next steps are taken in the product version:
748  //
749  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
750  // This library should be located at:
751  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
752  //
753  // If "/jre/lib/" appears at the right place in the path, then we
754  // assume libjvm[_g].so is installed in a JDK and we use this path.
755  //
756  // Otherwise exit with message: "Could not create the Java virtual machine."
757  //
758  // The following extra steps are taken in the debugging version:
759  //
760  // If "/jre/lib/" does NOT appear at the right place in the path
761  // instead of exit check for $JAVA_HOME environment variable.
762  //
763  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
764  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
765  // it looks like libjvm[_g].so is installed there
766  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
767  //
768  // Otherwise exit.
769  //
770  // Important note: if the location of libjvm.so changes this
771  // code needs to be changed accordingly.
772
773  // The next few definitions allow the code to be verbatim:
774#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
775#define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
776#define getenv(n) ::getenv(n)
777
778#define EXTENSIONS_DIR  "/lib/ext"
779#define ENDORSED_DIR    "/lib/endorsed"
780#define COMMON_DIR      "/usr/jdk/packages"
781
782  {
783    /* sysclasspath, java_home, dll_dir */
784    {
785        char *home_path;
786        char *dll_path;
787        char *pslash;
788        char buf[MAXPATHLEN];
789        os::jvm_path(buf, sizeof(buf));
790
791        // Found the full path to libjvm.so.
792        // Now cut the path to <java_home>/jre if we can.
793        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
794        pslash = strrchr(buf, '/');
795        if (pslash != NULL)
796            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
797        dll_path = malloc(strlen(buf) + 1);
798        if (dll_path == NULL)
799            return;
800        strcpy(dll_path, buf);
801        Arguments::set_dll_dir(dll_path);
802
803        if (pslash != NULL) {
804            pslash = strrchr(buf, '/');
805            if (pslash != NULL) {
806                *pslash = '\0';       /* get rid of /<arch> */
807                pslash = strrchr(buf, '/');
808                if (pslash != NULL)
809                    *pslash = '\0';   /* get rid of /lib */
810            }
811        }
812
813        home_path = malloc(strlen(buf) + 1);
814        if (home_path == NULL)
815            return;
816        strcpy(home_path, buf);
817        Arguments::set_java_home(home_path);
818
819        if (!set_boot_path('/', ':'))
820            return;
821    }
822
823    /*
824     * Where to look for native libraries
825     */
826    {
827      // Use dlinfo() to determine the correct java.library.path.
828      //
829      // If we're launched by the Java launcher, and the user
830      // does not set java.library.path explicitly on the commandline,
831      // the Java launcher sets LD_LIBRARY_PATH for us and unsets
832      // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
833      // dlinfo returns LD_LIBRARY_PATH + crle settings (including
834      // /usr/lib), which is exactly what we want.
835      //
836      // If the user does set java.library.path, it completely
837      // overwrites this setting, and always has.
838      //
839      // If we're not launched by the Java launcher, we may
840      // get here with any/all of the LD_LIBRARY_PATH[_32|64]
841      // settings.  Again, dlinfo does exactly what we want.
842
843      Dl_serinfo     _info, *info = &_info;
844      Dl_serpath     *path;
845      char*          library_path;
846      char           *common_path;
847      int            i;
848
849      // determine search path count and required buffer size
850      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
851        vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
852      }
853
854      // allocate new buffer and initialize
855      info = (Dl_serinfo*)malloc(_info.dls_size);
856      if (info == NULL) {
857        vm_exit_out_of_memory(_info.dls_size,
858                              "init_system_properties_values info");
859      }
860      info->dls_size = _info.dls_size;
861      info->dls_cnt = _info.dls_cnt;
862
863      // obtain search path information
864      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
865        free(info);
866        vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
867      }
868
869      path = &info->dls_serpath[0];
870
871      // Note: Due to a legacy implementation, most of the library path
872      // is set in the launcher.  This was to accomodate linking restrictions
873      // on legacy Solaris implementations (which are no longer supported).
874      // Eventually, all the library path setting will be done here.
875      //
876      // However, to prevent the proliferation of improperly built native
877      // libraries, the new path component /usr/jdk/packages is added here.
878
879      // Determine the actual CPU architecture.
880      char cpu_arch[12];
881      sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
882#ifdef _LP64
883      // If we are a 64-bit vm, perform the following translations:
884      //   sparc   -> sparcv9
885      //   i386    -> amd64
886      if (strcmp(cpu_arch, "sparc") == 0)
887        strcat(cpu_arch, "v9");
888      else if (strcmp(cpu_arch, "i386") == 0)
889        strcpy(cpu_arch, "amd64");
890#endif
891
892      // Construct the invariant part of ld_library_path. Note that the
893      // space for the colon and the trailing null are provided by the
894      // nulls included by the sizeof operator.
895      size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
896      common_path = malloc(bufsize);
897      if (common_path == NULL) {
898        free(info);
899        vm_exit_out_of_memory(bufsize,
900                              "init_system_properties_values common_path");
901      }
902      sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
903
904      // struct size is more than sufficient for the path components obtained
905      // through the dlinfo() call, so only add additional space for the path
906      // components explicitly added here.
907      bufsize = info->dls_size + strlen(common_path);
908      library_path = malloc(bufsize);
909      if (library_path == NULL) {
910        free(info);
911        free(common_path);
912        vm_exit_out_of_memory(bufsize,
913                              "init_system_properties_values library_path");
914      }
915      library_path[0] = '\0';
916
917      // Construct the desired Java library path from the linker's library
918      // search path.
919      //
920      // For compatibility, it is optimal that we insert the additional path
921      // components specific to the Java VM after those components specified
922      // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
923      // infrastructure.
924      if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
925        strcpy(library_path, common_path);
926      } else {
927        int inserted = 0;
928        for (i = 0; i < info->dls_cnt; i++, path++) {
929          uint_t flags = path->dls_flags & LA_SER_MASK;
930          if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
931            strcat(library_path, common_path);
932            strcat(library_path, os::path_separator());
933            inserted = 1;
934          }
935          strcat(library_path, path->dls_name);
936          strcat(library_path, os::path_separator());
937        }
938        // eliminate trailing path separator
939        library_path[strlen(library_path)-1] = '\0';
940      }
941
942      // happens before argument parsing - can't use a trace flag
943      // tty->print_raw("init_system_properties_values: native lib path: ");
944      // tty->print_raw_cr(library_path);
945
946      // callee copies into its own buffer
947      Arguments::set_library_path(library_path);
948
949      free(common_path);
950      free(library_path);
951      free(info);
952    }
953
954    /*
955     * Extensions directories.
956     *
957     * Note that the space for the colon and the trailing null are provided
958     * by the nulls included by the sizeof operator (so actually one byte more
959     * than necessary is allocated).
960     */
961    {
962        char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
963            sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
964            sizeof(EXTENSIONS_DIR));
965        sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
966            Arguments::get_java_home());
967        Arguments::set_ext_dirs(buf);
968    }
969
970    /* Endorsed standards default directory. */
971    {
972        char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
973        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
974        Arguments::set_endorsed_dirs(buf);
975    }
976  }
977
978#undef malloc
979#undef free
980#undef getenv
981#undef EXTENSIONS_DIR
982#undef ENDORSED_DIR
983#undef COMMON_DIR
984
985}
986
987void os::breakpoint() {
988  BREAKPOINT;
989}
990
991bool os::obsolete_option(const JavaVMOption *option)
992{
993  if (!strncmp(option->optionString, "-Xt", 3)) {
994    return true;
995  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
996    return true;
997  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
998    return true;
999  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
1000    return true;
1001  }
1002  return false;
1003}
1004
1005bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
1006  address  stackStart  = (address)thread->stack_base();
1007  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
1008  if (sp < stackStart && sp >= stackEnd ) return true;
1009  return false;
1010}
1011
1012extern "C" void breakpoint() {
1013  // use debugger to set breakpoint here
1014}
1015
1016static thread_t main_thread;
1017
1018// Thread start routine for all new Java threads
1019extern "C" void* java_start(void* thread_addr) {
1020  // Try to randomize the cache line index of hot stack frames.
1021  // This helps when threads of the same stack traces evict each other's
1022  // cache lines. The threads can be either from the same JVM instance, or
1023  // from different JVM instances. The benefit is especially true for
1024  // processors with hyperthreading technology.
1025  static int counter = 0;
1026  int pid = os::current_process_id();
1027  alloca(((pid ^ counter++) & 7) * 128);
1028
1029  int prio;
1030  Thread* thread = (Thread*)thread_addr;
1031  OSThread* osthr = thread->osthread();
1032
1033  osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
1034  thread->_schedctl = (void *) schedctl_init () ;
1035
1036  if (UseNUMA) {
1037    int lgrp_id = os::numa_get_group_id();
1038    if (lgrp_id != -1) {
1039      thread->set_lgrp_id(lgrp_id);
1040    }
1041  }
1042
1043  // If the creator called set priority before we started,
1044  // we need to call set_native_priority now that we have an lwp.
1045  // We used to get the priority from thr_getprio (we called
1046  // thr_setprio way back in create_thread) and pass it to
1047  // set_native_priority, but Solaris scales the priority
1048  // in java_to_os_priority, so when we read it back here,
1049  // we pass trash to set_native_priority instead of what's
1050  // in java_to_os_priority. So we save the native priority
1051  // in the osThread and recall it here.
1052
1053  if ( osthr->thread_id() != -1 ) {
1054    if ( UseThreadPriorities ) {
1055      int prio = osthr->native_priority();
1056      if (ThreadPriorityVerbose) {
1057        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
1058                      INTPTR_FORMAT ", setting priority: %d\n",
1059                      osthr->thread_id(), osthr->lwp_id(), prio);
1060      }
1061      os::set_native_priority(thread, prio);
1062    }
1063  } else if (ThreadPriorityVerbose) {
1064    warning("Can't set priority in _start routine, thread id hasn't been set\n");
1065  }
1066
1067  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
1068
1069  // initialize signal mask for this thread
1070  os::Solaris::hotspot_sigmask(thread);
1071
1072  thread->run();
1073
1074  // One less thread is executing
1075  // When the VMThread gets here, the main thread may have already exited
1076  // which frees the CodeHeap containing the Atomic::dec code
1077  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
1078    Atomic::dec(&os::Solaris::_os_thread_count);
1079  }
1080
1081  if (UseDetachedThreads) {
1082    thr_exit(NULL);
1083    ShouldNotReachHere();
1084  }
1085  return NULL;
1086}
1087
1088static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
1089  // Allocate the OSThread object
1090  OSThread* osthread = new OSThread(NULL, NULL);
1091  if (osthread == NULL) return NULL;
1092
1093  // Store info on the Solaris thread into the OSThread
1094  osthread->set_thread_id(thread_id);
1095  osthread->set_lwp_id(_lwp_self());
1096  thread->_schedctl = (void *) schedctl_init () ;
1097
1098  if (UseNUMA) {
1099    int lgrp_id = os::numa_get_group_id();
1100    if (lgrp_id != -1) {
1101      thread->set_lgrp_id(lgrp_id);
1102    }
1103  }
1104
1105  if ( ThreadPriorityVerbose ) {
1106    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
1107                  osthread->thread_id(), osthread->lwp_id() );
1108  }
1109
1110  // Initial thread state is INITIALIZED, not SUSPENDED
1111  osthread->set_state(INITIALIZED);
1112
1113  return osthread;
1114}
1115
1116void os::Solaris::hotspot_sigmask(Thread* thread) {
1117
1118  //Save caller's signal mask
1119  sigset_t sigmask;
1120  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
1121  OSThread *osthread = thread->osthread();
1122  osthread->set_caller_sigmask(sigmask);
1123
1124  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
1125  if (!ReduceSignalUsage) {
1126    if (thread->is_VM_thread()) {
1127      // Only the VM thread handles BREAK_SIGNAL ...
1128      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
1129    } else {
1130      // ... all other threads block BREAK_SIGNAL
1131      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
1132      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
1133    }
1134  }
1135}
1136
1137bool os::create_attached_thread(JavaThread* thread) {
1138#ifdef ASSERT
1139  thread->verify_not_published();
1140#endif
1141  OSThread* osthread = create_os_thread(thread, thr_self());
1142  if (osthread == NULL) {
1143     return false;
1144  }
1145
1146  // Initial thread state is RUNNABLE
1147  osthread->set_state(RUNNABLE);
1148  thread->set_osthread(osthread);
1149
1150  // initialize signal mask for this thread
1151  // and save the caller's signal mask
1152  os::Solaris::hotspot_sigmask(thread);
1153
1154  return true;
1155}
1156
1157bool os::create_main_thread(JavaThread* thread) {
1158#ifdef ASSERT
1159  thread->verify_not_published();
1160#endif
1161  if (_starting_thread == NULL) {
1162    _starting_thread = create_os_thread(thread, main_thread);
1163     if (_starting_thread == NULL) {
1164        return false;
1165     }
1166  }
1167
1168  // The primodial thread is runnable from the start
1169  _starting_thread->set_state(RUNNABLE);
1170
1171  thread->set_osthread(_starting_thread);
1172
1173  // initialize signal mask for this thread
1174  // and save the caller's signal mask
1175  os::Solaris::hotspot_sigmask(thread);
1176
1177  return true;
1178}
1179
1180// _T2_libthread is true if we believe we are running with the newer
1181// SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
1182bool os::Solaris::_T2_libthread = false;
1183
1184bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
1185  // Allocate the OSThread object
1186  OSThread* osthread = new OSThread(NULL, NULL);
1187  if (osthread == NULL) {
1188    return false;
1189  }
1190
1191  if ( ThreadPriorityVerbose ) {
1192    char *thrtyp;
1193    switch ( thr_type ) {
1194      case vm_thread:
1195        thrtyp = (char *)"vm";
1196        break;
1197      case cgc_thread:
1198        thrtyp = (char *)"cgc";
1199        break;
1200      case pgc_thread:
1201        thrtyp = (char *)"pgc";
1202        break;
1203      case java_thread:
1204        thrtyp = (char *)"java";
1205        break;
1206      case compiler_thread:
1207        thrtyp = (char *)"compiler";
1208        break;
1209      case watcher_thread:
1210        thrtyp = (char *)"watcher";
1211        break;
1212      default:
1213        thrtyp = (char *)"unknown";
1214        break;
1215    }
1216    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
1217  }
1218
1219  // Calculate stack size if it's not specified by caller.
1220  if (stack_size == 0) {
1221    // The default stack size 1M (2M for LP64).
1222    stack_size = (BytesPerWord >> 2) * K * K;
1223
1224    switch (thr_type) {
1225    case os::java_thread:
1226      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
1227      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
1228      break;
1229    case os::compiler_thread:
1230      if (CompilerThreadStackSize > 0) {
1231        stack_size = (size_t)(CompilerThreadStackSize * K);
1232        break;
1233      } // else fall through:
1234        // use VMThreadStackSize if CompilerThreadStackSize is not defined
1235    case os::vm_thread:
1236    case os::pgc_thread:
1237    case os::cgc_thread:
1238    case os::watcher_thread:
1239      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1240      break;
1241    }
1242  }
1243  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
1244
1245  // Initial state is ALLOCATED but not INITIALIZED
1246  osthread->set_state(ALLOCATED);
1247
1248  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
1249    // We got lots of threads. Check if we still have some address space left.
1250    // Need to be at least 5Mb of unreserved address space. We do check by
1251    // trying to reserve some.
1252    const size_t VirtualMemoryBangSize = 20*K*K;
1253    char* mem = os::reserve_memory(VirtualMemoryBangSize);
1254    if (mem == NULL) {
1255      delete osthread;
1256      return false;
1257    } else {
1258      // Release the memory again
1259      os::release_memory(mem, VirtualMemoryBangSize);
1260    }
1261  }
1262
1263  // Setup osthread because the child thread may need it.
1264  thread->set_osthread(osthread);
1265
1266  // Create the Solaris thread
1267  // explicit THR_BOUND for T2_libthread case in case
1268  // that assumption is not accurate, but our alternate signal stack
1269  // handling is based on it which must have bound threads
1270  thread_t tid = 0;
1271  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
1272                   | ((UseBoundThreads || os::Solaris::T2_libthread() ||
1273                       (thr_type == vm_thread) ||
1274                       (thr_type == cgc_thread) ||
1275                       (thr_type == pgc_thread) ||
1276                       (thr_type == compiler_thread && BackgroundCompilation)) ?
1277                      THR_BOUND : 0);
1278  int      status;
1279
1280  // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
1281  //
1282  // On multiprocessors systems, libthread sometimes under-provisions our
1283  // process with LWPs.  On a 30-way systems, for instance, we could have
1284  // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
1285  // to our process.  This can result in under utilization of PEs.
1286  // I suspect the problem is related to libthread's LWP
1287  // pool management and to the kernel's SIGBLOCKING "last LWP parked"
1288  // upcall policy.
1289  //
1290  // The following code is palliative -- it attempts to ensure that our
1291  // process has sufficient LWPs to take advantage of multiple PEs.
1292  // Proper long-term cures include using user-level threads bound to LWPs
1293  // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
1294  // slight timing window with respect to sampling _os_thread_count, but
1295  // the race is benign.  Also, we should periodically recompute
1296  // _processors_online as the min of SC_NPROCESSORS_ONLN and the
1297  // the number of PEs in our partition.  You might be tempted to use
1298  // THR_NEW_LWP here, but I'd recommend against it as that could
1299  // result in undesirable growth of the libthread's LWP pool.
1300  // The fix below isn't sufficient; for instance, it doesn't take into count
1301  // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
1302  //
1303  // Some pathologies this scheme doesn't handle:
1304  // *  Threads can block, releasing the LWPs.  The LWPs can age out.
1305  //    When a large number of threads become ready again there aren't
1306  //    enough LWPs available to service them.  This can occur when the
1307  //    number of ready threads oscillates.
1308  // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
1309  //
1310  // Finally, we should call thr_setconcurrency() periodically to refresh
1311  // the LWP pool and thwart the LWP age-out mechanism.
1312  // The "+3" term provides a little slop -- we want to slightly overprovision.
1313
1314  if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
1315    if (!(flags & THR_BOUND)) {
1316      thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
1317    }
1318  }
1319  // Although this doesn't hurt, we should warn of undefined behavior
1320  // when using unbound T1 threads with schedctl().  This should never
1321  // happen, as the compiler and VM threads are always created bound
1322  DEBUG_ONLY(
1323      if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
1324          (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
1325          ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
1326           (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
1327         warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
1328      }
1329  );
1330
1331
1332  // Mark that we don't have an lwp or thread id yet.
1333  // In case we attempt to set the priority before the thread starts.
1334  osthread->set_lwp_id(-1);
1335  osthread->set_thread_id(-1);
1336
1337  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1338  if (status != 0) {
1339    if (PrintMiscellaneous && (Verbose || WizardMode)) {
1340      perror("os::create_thread");
1341    }
1342    thread->set_osthread(NULL);
1343    // Need to clean up stuff we've allocated so far
1344    delete osthread;
1345    return false;
1346  }
1347
1348  Atomic::inc(&os::Solaris::_os_thread_count);
1349
1350  // Store info on the Solaris thread into the OSThread
1351  osthread->set_thread_id(tid);
1352
1353  // Remember that we created this thread so we can set priority on it
1354  osthread->set_vm_created();
1355
1356  // Set the default thread priority.  If using bound threads, setting
1357  // lwp priority will be delayed until thread start.
1358  set_native_priority(thread,
1359                      DefaultThreadPriority == -1 ?
1360                        java_to_os_priority[NormPriority] :
1361                        DefaultThreadPriority);
1362
1363  // Initial thread state is INITIALIZED, not SUSPENDED
1364  osthread->set_state(INITIALIZED);
1365
1366  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1367  return true;
1368}
1369
1370/* defined for >= Solaris 10. This allows builds on earlier versions
1371 *  of Solaris to take advantage of the newly reserved Solaris JVM signals
1372 *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
1373 *  and -XX:+UseAltSigs does nothing since these should have no conflict
1374 */
1375#if !defined(SIGJVM1)
1376#define SIGJVM1 39
1377#define SIGJVM2 40
1378#endif
1379
1380debug_only(static bool signal_sets_initialized = false);
1381static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1382int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
1383int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1384
1385bool os::Solaris::is_sig_ignored(int sig) {
1386      struct sigaction oact;
1387      sigaction(sig, (struct sigaction*)NULL, &oact);
1388      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1389                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1390      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
1391           return true;
1392      else
1393           return false;
1394}
1395
1396// Note: SIGRTMIN is a macro that calls sysconf() so it will
1397// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1398static bool isJVM1available() {
1399  return SIGJVM1 < SIGRTMIN;
1400}
1401
1402void os::Solaris::signal_sets_init() {
1403  // Should also have an assertion stating we are still single-threaded.
1404  assert(!signal_sets_initialized, "Already initialized");
1405  // Fill in signals that are necessarily unblocked for all threads in
1406  // the VM. Currently, we unblock the following signals:
1407  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1408  //                         by -Xrs (=ReduceSignalUsage));
1409  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1410  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1411  // the dispositions or masks wrt these signals.
1412  // Programs embedding the VM that want to use the above signals for their
1413  // own purposes must, at this time, use the "-Xrs" option to prevent
1414  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1415  // (See bug 4345157, and other related bugs).
1416  // In reality, though, unblocking these signals is really a nop, since
1417  // these signals are not blocked by default.
1418  sigemptyset(&unblocked_sigs);
1419  sigemptyset(&allowdebug_blocked_sigs);
1420  sigaddset(&unblocked_sigs, SIGILL);
1421  sigaddset(&unblocked_sigs, SIGSEGV);
1422  sigaddset(&unblocked_sigs, SIGBUS);
1423  sigaddset(&unblocked_sigs, SIGFPE);
1424
1425  if (isJVM1available) {
1426    os::Solaris::set_SIGinterrupt(SIGJVM1);
1427    os::Solaris::set_SIGasync(SIGJVM2);
1428  } else if (UseAltSigs) {
1429    os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
1430    os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
1431  } else {
1432    os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
1433    os::Solaris::set_SIGasync(ASYNC_SIGNAL);
1434  }
1435
1436  sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
1437  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1438
1439  if (!ReduceSignalUsage) {
1440   if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1441      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1442      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1443   }
1444   if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1445      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1446      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1447   }
1448   if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1449      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1450      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1451   }
1452  }
1453  // Fill in signals that are blocked by all but the VM thread.
1454  sigemptyset(&vm_sigs);
1455  if (!ReduceSignalUsage)
1456    sigaddset(&vm_sigs, BREAK_SIGNAL);
1457  debug_only(signal_sets_initialized = true);
1458
1459  // For diagnostics only used in run_periodic_checks
1460  sigemptyset(&check_signal_done);
1461}
1462
1463// These are signals that are unblocked while a thread is running Java.
1464// (For some reason, they get blocked by default.)
1465sigset_t* os::Solaris::unblocked_signals() {
1466  assert(signal_sets_initialized, "Not initialized");
1467  return &unblocked_sigs;
1468}
1469
1470// These are the signals that are blocked while a (non-VM) thread is
1471// running Java. Only the VM thread handles these signals.
1472sigset_t* os::Solaris::vm_signals() {
1473  assert(signal_sets_initialized, "Not initialized");
1474  return &vm_sigs;
1475}
1476
1477// These are signals that are blocked during cond_wait to allow debugger in
1478sigset_t* os::Solaris::allowdebug_blocked_signals() {
1479  assert(signal_sets_initialized, "Not initialized");
1480  return &allowdebug_blocked_sigs;
1481}
1482
1483
1484void _handle_uncaught_cxx_exception() {
1485  VMError err("An uncaught C++ exception");
1486  err.report_and_die();
1487}
1488
1489
1490// First crack at OS-specific initialization, from inside the new thread.
1491void os::initialize_thread(Thread* thr) {
1492  int r = thr_main() ;
1493  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
1494  if (r) {
1495    JavaThread* jt = (JavaThread *)thr;
1496    assert(jt != NULL,"Sanity check");
1497    size_t stack_size;
1498    address base = jt->stack_base();
1499    if (Arguments::created_by_java_launcher()) {
1500      // Use 2MB to allow for Solaris 7 64 bit mode.
1501      stack_size = JavaThread::stack_size_at_create() == 0
1502        ? 2048*K : JavaThread::stack_size_at_create();
1503
1504      // There are rare cases when we may have already used more than
1505      // the basic stack size allotment before this method is invoked.
1506      // Attempt to allow for a normally sized java_stack.
1507      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1508      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1509    } else {
1510      // 6269555: If we were not created by a Java launcher, i.e. if we are
1511      // running embedded in a native application, treat the primordial thread
1512      // as much like a native attached thread as possible.  This means using
1513      // the current stack size from thr_stksegment(), unless it is too large
1514      // to reliably setup guard pages.  A reasonable max size is 8MB.
1515      size_t current_size = current_stack_size();
1516      // This should never happen, but just in case....
1517      if (current_size == 0) current_size = 2 * K * K;
1518      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1519    }
1520    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1521    stack_size = (size_t)(base - bottom);
1522
1523    assert(stack_size > 0, "Stack size calculation problem");
1524
1525    if (stack_size > jt->stack_size()) {
1526      NOT_PRODUCT(
1527        struct rlimit limits;
1528        getrlimit(RLIMIT_STACK, &limits);
1529        size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1530        assert(size >= jt->stack_size(), "Stack size problem in main thread");
1531      )
1532      tty->print_cr(
1533        "Stack size of %d Kb exceeds current limit of %d Kb.\n"
1534        "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1535        "See limit(1) to increase the stack size limit.",
1536        stack_size / K, jt->stack_size() / K);
1537      vm_exit(1);
1538    }
1539    assert(jt->stack_size() >= stack_size,
1540          "Attempt to map more stack than was allocated");
1541    jt->set_stack_size(stack_size);
1542  }
1543
1544   // 5/22/01: Right now alternate signal stacks do not handle
1545   // throwing stack overflow exceptions, see bug 4463178
1546   // Until a fix is found for this, T2 will NOT imply alternate signal
1547   // stacks.
1548   // If using T2 libthread threads, install an alternate signal stack.
1549   // Because alternate stacks associate with LWPs on Solaris,
1550   // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
1551   // we prefer to explicitly stack bang.
1552   // If not using T2 libthread, but using UseBoundThreads any threads
1553   // (primordial thread, jni_attachCurrentThread) we do not create,
1554   // probably are not bound, therefore they can not have an alternate
1555   // signal stack. Since our stack banging code is generated and
1556   // is shared across threads, all threads must be bound to allow
1557   // using alternate signal stacks.  The alternative is to interpose
1558   // on _lwp_create to associate an alt sig stack with each LWP,
1559   // and this could be a problem when the JVM is embedded.
1560   // We would prefer to use alternate signal stacks with T2
1561   // Since there is currently no accurate way to detect T2
1562   // we do not. Assuming T2 when running T1 causes sig 11s or assertions
1563   // on installing alternate signal stacks
1564
1565
1566   // 05/09/03: removed alternate signal stack support for Solaris
1567   // The alternate signal stack mechanism is no longer needed to
1568   // handle stack overflow. This is now handled by allocating
1569   // guard pages (red zone) and stackbanging.
1570   // Initially the alternate signal stack mechanism was removed because
1571   // it did not work with T1 llibthread. Alternate
1572   // signal stacks MUST have all threads bound to lwps. Applications
1573   // can create their own threads and attach them without their being
1574   // bound under T1. This is frequently the case for the primordial thread.
1575   // If we were ever to reenable this mechanism we would need to
1576   // use the dynamic check for T2 libthread.
1577
1578  os::Solaris::init_thread_fpu_state();
1579  std::set_terminate(_handle_uncaught_cxx_exception);
1580}
1581
1582
1583
1584// Free Solaris resources related to the OSThread
1585void os::free_thread(OSThread* osthread) {
1586  assert(osthread != NULL, "os::free_thread but osthread not set");
1587
1588
1589  // We are told to free resources of the argument thread,
1590  // but we can only really operate on the current thread.
1591  // The main thread must take the VMThread down synchronously
1592  // before the main thread exits and frees up CodeHeap
1593  guarantee((Thread::current()->osthread() == osthread
1594     || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1595  if (Thread::current()->osthread() == osthread) {
1596    // Restore caller's signal mask
1597    sigset_t sigmask = osthread->caller_sigmask();
1598    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1599  }
1600  delete osthread;
1601}
1602
1603void os::pd_start_thread(Thread* thread) {
1604  int status = thr_continue(thread->osthread()->thread_id());
1605  assert_status(status == 0, status, "thr_continue failed");
1606}
1607
1608
1609intx os::current_thread_id() {
1610  return (intx)thr_self();
1611}
1612
1613static pid_t _initial_pid = 0;
1614
1615int os::current_process_id() {
1616  return (int)(_initial_pid ? _initial_pid : getpid());
1617}
1618
1619int os::allocate_thread_local_storage() {
1620  // %%%       in Win32 this allocates a memory segment pointed to by a
1621  //           register.  Dan Stein can implement a similar feature in
1622  //           Solaris.  Alternatively, the VM can do the same thing
1623  //           explicitly: malloc some storage and keep the pointer in a
1624  //           register (which is part of the thread's context) (or keep it
1625  //           in TLS).
1626  // %%%       In current versions of Solaris, thr_self and TSD can
1627  //           be accessed via short sequences of displaced indirections.
1628  //           The value of thr_self is available as %g7(36).
1629  //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
1630  //           assuming that the current thread already has a value bound to k.
1631  //           It may be worth experimenting with such access patterns,
1632  //           and later having the parameters formally exported from a Solaris
1633  //           interface.  I think, however, that it will be faster to
1634  //           maintain the invariant that %g2 always contains the
1635  //           JavaThread in Java code, and have stubs simply
1636  //           treat %g2 as a caller-save register, preserving it in a %lN.
1637  thread_key_t tk;
1638  if (thr_keycreate( &tk, NULL ) )
1639    fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
1640                  "(%s)", strerror(errno)));
1641  return int(tk);
1642}
1643
1644void os::free_thread_local_storage(int index) {
1645  // %%% don't think we need anything here
1646  // if ( pthread_key_delete((pthread_key_t) tk) )
1647  //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
1648}
1649
1650#define SMALLINT 32   // libthread allocate for tsd_common is a version specific
1651                      // small number - point is NO swap space available
1652void os::thread_local_storage_at_put(int index, void* value) {
1653  // %%% this is used only in threadLocalStorage.cpp
1654  if (thr_setspecific((thread_key_t)index, value)) {
1655    if (errno == ENOMEM) {
1656       vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
1657    } else {
1658      fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
1659                    "(%s)", strerror(errno)));
1660    }
1661  } else {
1662      ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
1663  }
1664}
1665
1666// This function could be called before TLS is initialized, for example, when
1667// VM receives an async signal or when VM causes a fatal error during
1668// initialization. Return NULL if thr_getspecific() fails.
1669void* os::thread_local_storage_at(int index) {
1670  // %%% this is used only in threadLocalStorage.cpp
1671  void* r = NULL;
1672  return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
1673}
1674
1675
1676// gethrtime can move backwards if read from one cpu and then a different cpu
1677// getTimeNanos is guaranteed to not move backward on Solaris
1678// local spinloop created as faster for a CAS on an int than
1679// a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
1680// supported on sparc v8 or pre supports_cx8 intel boxes.
1681// oldgetTimeNanos for systems which do not support CAS on 64bit jlong
1682// i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
1683inline hrtime_t oldgetTimeNanos() {
1684  int gotlock = LOCK_INVALID;
1685  hrtime_t newtime = gethrtime();
1686
1687  for (;;) {
1688// grab lock for max_hrtime
1689    int curlock = max_hrtime_lock;
1690    if (curlock & LOCK_BUSY)  continue;
1691    if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
1692    if (newtime > max_hrtime) {
1693      max_hrtime = newtime;
1694    } else {
1695      newtime = max_hrtime;
1696    }
1697    // release lock
1698    max_hrtime_lock = LOCK_FREE;
1699    return newtime;
1700  }
1701}
1702// gethrtime can move backwards if read from one cpu and then a different cpu
1703// getTimeNanos is guaranteed to not move backward on Solaris
1704inline hrtime_t getTimeNanos() {
1705  if (VM_Version::supports_cx8()) {
1706    const hrtime_t now = gethrtime();
1707    // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
1708    const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
1709    if (now <= prev)  return prev;   // same or retrograde time;
1710    const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1711    assert(obsv >= prev, "invariant");   // Monotonicity
1712    // If the CAS succeeded then we're done and return "now".
1713    // If the CAS failed and the observed value "obs" is >= now then
1714    // we should return "obs".  If the CAS failed and now > obs > prv then
1715    // some other thread raced this thread and installed a new value, in which case
1716    // we could either (a) retry the entire operation, (b) retry trying to install now
1717    // or (c) just return obs.  We use (c).   No loop is required although in some cases
1718    // we might discard a higher "now" value in deference to a slightly lower but freshly
1719    // installed obs value.   That's entirely benign -- it admits no new orderings compared
1720    // to (a) or (b) -- and greatly reduces coherence traffic.
1721    // We might also condition (c) on the magnitude of the delta between obs and now.
1722    // Avoiding excessive CAS operations to hot RW locations is critical.
1723    // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
1724    return (prev == obsv) ? now : obsv ;
1725  } else {
1726    return oldgetTimeNanos();
1727  }
1728}
1729
1730// Time since start-up in seconds to a fine granularity.
1731// Used by VMSelfDestructTimer and the MemProfiler.
1732double os::elapsedTime() {
1733  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1734}
1735
1736jlong os::elapsed_counter() {
1737  return (jlong)(getTimeNanos() - first_hrtime);
1738}
1739
1740jlong os::elapsed_frequency() {
1741   return hrtime_hz;
1742}
1743
1744// Return the real, user, and system times in seconds from an
1745// arbitrary fixed point in the past.
1746bool os::getTimesSecs(double* process_real_time,
1747                  double* process_user_time,
1748                  double* process_system_time) {
1749  struct tms ticks;
1750  clock_t real_ticks = times(&ticks);
1751
1752  if (real_ticks == (clock_t) (-1)) {
1753    return false;
1754  } else {
1755    double ticks_per_second = (double) clock_tics_per_sec;
1756    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1757    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1758    // For consistency return the real time from getTimeNanos()
1759    // converted to seconds.
1760    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1761
1762    return true;
1763  }
1764}
1765
1766bool os::supports_vtime() { return true; }
1767
1768bool os::enable_vtime() {
1769  int fd = ::open("/proc/self/ctl", O_WRONLY);
1770  if (fd == -1)
1771    return false;
1772
1773  long cmd[] = { PCSET, PR_MSACCT };
1774  int res = ::write(fd, cmd, sizeof(long) * 2);
1775  ::close(fd);
1776  if (res != sizeof(long) * 2)
1777    return false;
1778
1779  return true;
1780}
1781
1782bool os::vtime_enabled() {
1783  int fd = ::open("/proc/self/status", O_RDONLY);
1784  if (fd == -1)
1785    return false;
1786
1787  pstatus_t status;
1788  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1789  ::close(fd);
1790  if (res != sizeof(pstatus_t))
1791    return false;
1792
1793  return status.pr_flags & PR_MSACCT;
1794}
1795
1796double os::elapsedVTime() {
1797  return (double)gethrvtime() / (double)hrtime_hz;
1798}
1799
1800// Used internally for comparisons only
1801// getTimeMillis guaranteed to not move backwards on Solaris
1802jlong getTimeMillis() {
1803  jlong nanotime = getTimeNanos();
1804  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1805}
1806
1807// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1808jlong os::javaTimeMillis() {
1809  timeval t;
1810  if (gettimeofday( &t, NULL) == -1)
1811    fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
1812  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1813}
1814
1815jlong os::javaTimeNanos() {
1816  return (jlong)getTimeNanos();
1817}
1818
1819void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1820  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1821  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1822  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1823  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1824}
1825
1826char * os::local_time_string(char *buf, size_t buflen) {
1827  struct tm t;
1828  time_t long_time;
1829  time(&long_time);
1830  localtime_r(&long_time, &t);
1831  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1832               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1833               t.tm_hour, t.tm_min, t.tm_sec);
1834  return buf;
1835}
1836
1837// Note: os::shutdown() might be called very early during initialization, or
1838// called from signal handler. Before adding something to os::shutdown(), make
1839// sure it is async-safe and can handle partially initialized VM.
1840void os::shutdown() {
1841
1842  // allow PerfMemory to attempt cleanup of any persistent resources
1843  perfMemory_exit();
1844
1845  // needs to remove object in file system
1846  AttachListener::abort();
1847
1848  // flush buffered output, finish log files
1849  ostream_abort();
1850
1851  // Check for abort hook
1852  abort_hook_t abort_hook = Arguments::abort_hook();
1853  if (abort_hook != NULL) {
1854    abort_hook();
1855  }
1856}
1857
1858// Note: os::abort() might be called very early during initialization, or
1859// called from signal handler. Before adding something to os::abort(), make
1860// sure it is async-safe and can handle partially initialized VM.
1861void os::abort(bool dump_core) {
1862  os::shutdown();
1863  if (dump_core) {
1864#ifndef PRODUCT
1865    fdStream out(defaultStream::output_fd());
1866    out.print_raw("Current thread is ");
1867    char buf[16];
1868    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1869    out.print_raw_cr(buf);
1870    out.print_raw_cr("Dumping core ...");
1871#endif
1872    ::abort(); // dump core (for debugging)
1873  }
1874
1875  ::exit(1);
1876}
1877
1878// Die immediately, no exit hook, no abort hook, no cleanup.
1879void os::die() {
1880  _exit(-1);
1881}
1882
1883// unused
1884void os::set_error_file(const char *logfile) {}
1885
1886// DLL functions
1887
1888const char* os::dll_file_extension() { return ".so"; }
1889
1890// This must be hard coded because it's the system's temporary
1891// directory not the java application's temp directory, ala java.io.tmpdir.
1892const char* os::get_temp_directory() { return "/tmp"; }
1893
1894static bool file_exists(const char* filename) {
1895  struct stat statbuf;
1896  if (filename == NULL || strlen(filename) == 0) {
1897    return false;
1898  }
1899  return os::stat(filename, &statbuf) == 0;
1900}
1901
1902void os::dll_build_name(char* buffer, size_t buflen,
1903                        const char* pname, const char* fname) {
1904  const size_t pnamelen = pname ? strlen(pname) : 0;
1905
1906  // Quietly truncate on buffer overflow.  Should be an error.
1907  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1908    *buffer = '\0';
1909    return;
1910  }
1911
1912  if (pnamelen == 0) {
1913    snprintf(buffer, buflen, "lib%s.so", fname);
1914  } else if (strchr(pname, *os::path_separator()) != NULL) {
1915    int n;
1916    char** pelements = split_path(pname, &n);
1917    for (int i = 0 ; i < n ; i++) {
1918      // really shouldn't be NULL but what the heck, check can't hurt
1919      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1920        continue; // skip the empty path values
1921      }
1922      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1923      if (file_exists(buffer)) {
1924        break;
1925      }
1926    }
1927    // release the storage
1928    for (int i = 0 ; i < n ; i++) {
1929      if (pelements[i] != NULL) {
1930        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1931      }
1932    }
1933    if (pelements != NULL) {
1934      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1935    }
1936  } else {
1937    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1938  }
1939}
1940
1941const char* os::get_current_directory(char *buf, int buflen) {
1942  return getcwd(buf, buflen);
1943}
1944
1945// check if addr is inside libjvm[_g].so
1946bool os::address_is_in_vm(address addr) {
1947  static address libjvm_base_addr;
1948  Dl_info dlinfo;
1949
1950  if (libjvm_base_addr == NULL) {
1951    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1952    libjvm_base_addr = (address)dlinfo.dli_fbase;
1953    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1954  }
1955
1956  if (dladdr((void *)addr, &dlinfo)) {
1957    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1958  }
1959
1960  return false;
1961}
1962
1963typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
1964static dladdr1_func_type dladdr1_func = NULL;
1965
1966bool os::dll_address_to_function_name(address addr, char *buf,
1967                                      int buflen, int * offset) {
1968  Dl_info dlinfo;
1969
1970  // dladdr1_func was initialized in os::init()
1971  if (dladdr1_func){
1972      // yes, we have dladdr1
1973
1974      // Support for dladdr1 is checked at runtime; it may be
1975      // available even if the vm is built on a machine that does
1976      // not have dladdr1 support.  Make sure there is a value for
1977      // RTLD_DL_SYMENT.
1978      #ifndef RTLD_DL_SYMENT
1979      #define RTLD_DL_SYMENT 1
1980      #endif
1981#ifdef _LP64
1982      Elf64_Sym * info;
1983#else
1984      Elf32_Sym * info;
1985#endif
1986      if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1987                       RTLD_DL_SYMENT)) {
1988        if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1989          if (buf != NULL) {
1990            if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
1991              jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1992            }
1993            if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1994            return true;
1995        }
1996      }
1997      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1998        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1999           buf, buflen, offset, dlinfo.dli_fname)) {
2000          return true;
2001        }
2002      }
2003      if (buf != NULL) buf[0] = '\0';
2004      if (offset != NULL) *offset  = -1;
2005      return false;
2006  } else {
2007      // no, only dladdr is available
2008      if (dladdr((void *)addr, &dlinfo)) {
2009        if (buf != NULL) {
2010          if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
2011            jio_snprintf(buf, buflen, dlinfo.dli_sname);
2012        }
2013        if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
2014        return true;
2015      } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
2016        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
2017          buf, buflen, offset, dlinfo.dli_fname)) {
2018          return true;
2019        }
2020      }
2021      if (buf != NULL) buf[0] = '\0';
2022      if (offset != NULL) *offset  = -1;
2023      return false;
2024  }
2025}
2026
2027bool os::dll_address_to_library_name(address addr, char* buf,
2028                                     int buflen, int* offset) {
2029  Dl_info dlinfo;
2030
2031  if (dladdr((void*)addr, &dlinfo)){
2032     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
2033     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
2034     return true;
2035  } else {
2036     if (buf) buf[0] = '\0';
2037     if (offset) *offset = -1;
2038     return false;
2039  }
2040}
2041
2042// Prints the names and full paths of all opened dynamic libraries
2043// for current process
2044void os::print_dll_info(outputStream * st) {
2045    Dl_info dli;
2046    void *handle;
2047    Link_map *map;
2048    Link_map *p;
2049
2050    st->print_cr("Dynamic libraries:"); st->flush();
2051
2052    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
2053        st->print_cr("Error: Cannot print dynamic libraries.");
2054        return;
2055    }
2056    handle = dlopen(dli.dli_fname, RTLD_LAZY);
2057    if (handle == NULL) {
2058        st->print_cr("Error: Cannot print dynamic libraries.");
2059        return;
2060    }
2061    dlinfo(handle, RTLD_DI_LINKMAP, &map);
2062    if (map == NULL) {
2063        st->print_cr("Error: Cannot print dynamic libraries.");
2064        return;
2065    }
2066
2067    while (map->l_prev != NULL)
2068        map = map->l_prev;
2069
2070    while (map != NULL) {
2071        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
2072        map = map->l_next;
2073    }
2074
2075    dlclose(handle);
2076}
2077
2078  // Loads .dll/.so and
2079  // in case of error it checks if .dll/.so was built for the
2080  // same architecture as Hotspot is running on
2081
2082void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
2083{
2084  void * result= ::dlopen(filename, RTLD_LAZY);
2085  if (result != NULL) {
2086    // Successful loading
2087    return result;
2088  }
2089
2090  Elf32_Ehdr elf_head;
2091
2092  // Read system error message into ebuf
2093  // It may or may not be overwritten below
2094  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2095  ebuf[ebuflen-1]='\0';
2096  int diag_msg_max_length=ebuflen-strlen(ebuf);
2097  char* diag_msg_buf=ebuf+strlen(ebuf);
2098
2099  if (diag_msg_max_length==0) {
2100    // No more space in ebuf for additional diagnostics message
2101    return NULL;
2102  }
2103
2104
2105  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
2106
2107  if (file_descriptor < 0) {
2108    // Can't open library, report dlerror() message
2109    return NULL;
2110  }
2111
2112  bool failed_to_read_elf_head=
2113    (sizeof(elf_head)!=
2114        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
2115
2116  ::close(file_descriptor);
2117  if (failed_to_read_elf_head) {
2118    // file i/o error - report dlerror() msg
2119    return NULL;
2120  }
2121
2122  typedef struct {
2123    Elf32_Half  code;         // Actual value as defined in elf.h
2124    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
2125    char        elf_class;    // 32 or 64 bit
2126    char        endianess;    // MSB or LSB
2127    char*       name;         // String representation
2128  } arch_t;
2129
2130  static const arch_t arch_array[]={
2131    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2132    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2133    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
2134    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
2135    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2136    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2137    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
2138    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
2139    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
2140    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
2141  };
2142
2143  #if  (defined IA32)
2144    static  Elf32_Half running_arch_code=EM_386;
2145  #elif   (defined AMD64)
2146    static  Elf32_Half running_arch_code=EM_X86_64;
2147  #elif  (defined IA64)
2148    static  Elf32_Half running_arch_code=EM_IA_64;
2149  #elif  (defined __sparc) && (defined _LP64)
2150    static  Elf32_Half running_arch_code=EM_SPARCV9;
2151  #elif  (defined __sparc) && (!defined _LP64)
2152    static  Elf32_Half running_arch_code=EM_SPARC;
2153  #elif  (defined __powerpc64__)
2154    static  Elf32_Half running_arch_code=EM_PPC64;
2155  #elif  (defined __powerpc__)
2156    static  Elf32_Half running_arch_code=EM_PPC;
2157  #elif (defined ARM)
2158    static  Elf32_Half running_arch_code=EM_ARM;
2159  #else
2160    #error Method os::dll_load requires that one of following is defined:\
2161         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
2162  #endif
2163
2164  // Identify compatability class for VM's architecture and library's architecture
2165  // Obtain string descriptions for architectures
2166
2167  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2168  int running_arch_index=-1;
2169
2170  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2171    if (running_arch_code == arch_array[i].code) {
2172      running_arch_index    = i;
2173    }
2174    if (lib_arch.code == arch_array[i].code) {
2175      lib_arch.compat_class = arch_array[i].compat_class;
2176      lib_arch.name         = arch_array[i].name;
2177    }
2178  }
2179
2180  assert(running_arch_index != -1,
2181    "Didn't find running architecture code (running_arch_code) in arch_array");
2182  if (running_arch_index == -1) {
2183    // Even though running architecture detection failed
2184    // we may still continue with reporting dlerror() message
2185    return NULL;
2186  }
2187
2188  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2189    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2190    return NULL;
2191  }
2192
2193  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2194    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2195    return NULL;
2196  }
2197
2198  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2199    if ( lib_arch.name!=NULL ) {
2200      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2201        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2202        lib_arch.name, arch_array[running_arch_index].name);
2203    } else {
2204      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2205      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2206        lib_arch.code,
2207        arch_array[running_arch_index].name);
2208    }
2209  }
2210
2211  return NULL;
2212}
2213
2214void* os::dll_lookup(void* handle, const char* name) {
2215  return dlsym(handle, name);
2216}
2217
2218int os::stat(const char *path, struct stat *sbuf) {
2219  char pathbuf[MAX_PATH];
2220  if (strlen(path) > MAX_PATH - 1) {
2221    errno = ENAMETOOLONG;
2222    return -1;
2223  }
2224  os::native_path(strcpy(pathbuf, path));
2225  return ::stat(pathbuf, sbuf);
2226}
2227
2228static bool _print_ascii_file(const char* filename, outputStream* st) {
2229  int fd = ::open(filename, O_RDONLY);
2230  if (fd == -1) {
2231     return false;
2232  }
2233
2234  char buf[32];
2235  int bytes;
2236  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2237    st->print_raw(buf, bytes);
2238  }
2239
2240  ::close(fd);
2241
2242  return true;
2243}
2244
2245void os::print_os_info_brief(outputStream* st) {
2246  os::Solaris::print_distro_info(st);
2247
2248  os::Posix::print_uname_info(st);
2249
2250  os::Solaris::print_libversion_info(st);
2251}
2252
2253void os::print_os_info(outputStream* st) {
2254  st->print("OS:");
2255
2256  os::Solaris::print_distro_info(st);
2257
2258  os::Posix::print_uname_info(st);
2259
2260  os::Solaris::print_libversion_info(st);
2261
2262  os::Posix::print_rlimit_info(st);
2263
2264  os::Posix::print_load_average(st);
2265}
2266
2267void os::Solaris::print_distro_info(outputStream* st) {
2268  if (!_print_ascii_file("/etc/release", st)) {
2269      st->print("Solaris");
2270    }
2271    st->cr();
2272}
2273
2274void os::Solaris::print_libversion_info(outputStream* st) {
2275  if (os::Solaris::T2_libthread()) {
2276    st->print("  (T2 libthread)");
2277  }
2278  else {
2279    st->print("  (T1 libthread)");
2280  }
2281  st->cr();
2282}
2283
2284static bool check_addr0(outputStream* st) {
2285  jboolean status = false;
2286  int fd = ::open("/proc/self/map",O_RDONLY);
2287  if (fd >= 0) {
2288    prmap_t p;
2289    while(::read(fd, &p, sizeof(p)) > 0) {
2290      if (p.pr_vaddr == 0x0) {
2291        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
2292        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
2293        st->print("Access:");
2294        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
2295        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
2296        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
2297        st->cr();
2298        status = true;
2299      }
2300      ::close(fd);
2301    }
2302  }
2303  return status;
2304}
2305
2306void os::pd_print_cpu_info(outputStream* st) {
2307  // Nothing to do for now.
2308}
2309
2310void os::print_memory_info(outputStream* st) {
2311  st->print("Memory:");
2312  st->print(" %dk page", os::vm_page_size()>>10);
2313  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
2314  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
2315  st->cr();
2316  (void) check_addr0(st);
2317}
2318
2319// Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
2320// but they're the same for all the solaris architectures that we support.
2321const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2322                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2323                          "ILL_COPROC", "ILL_BADSTK" };
2324
2325const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2326                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2327                          "FPE_FLTINV", "FPE_FLTSUB" };
2328
2329const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2330
2331const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2332
2333void os::print_siginfo(outputStream* st, void* siginfo) {
2334  st->print("siginfo:");
2335
2336  const int buflen = 100;
2337  char buf[buflen];
2338  siginfo_t *si = (siginfo_t*)siginfo;
2339  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2340  char *err = strerror(si->si_errno);
2341  if (si->si_errno != 0 && err != NULL) {
2342    st->print("si_errno=%s", err);
2343  } else {
2344    st->print("si_errno=%d", si->si_errno);
2345  }
2346  const int c = si->si_code;
2347  assert(c > 0, "unexpected si_code");
2348  switch (si->si_signo) {
2349  case SIGILL:
2350    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2351    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2352    break;
2353  case SIGFPE:
2354    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2355    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2356    break;
2357  case SIGSEGV:
2358    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2359    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2360    break;
2361  case SIGBUS:
2362    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2363    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2364    break;
2365  default:
2366    st->print(", si_code=%d", si->si_code);
2367    // no si_addr
2368  }
2369
2370  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2371      UseSharedSpaces) {
2372    FileMapInfo* mapinfo = FileMapInfo::current_info();
2373    if (mapinfo->is_in_shared_space(si->si_addr)) {
2374      st->print("\n\nError accessing class data sharing archive."   \
2375                " Mapped file inaccessible during execution, "      \
2376                " possible disk/network problem.");
2377    }
2378  }
2379  st->cr();
2380}
2381
2382// Moved from whole group, because we need them here for diagnostic
2383// prints.
2384#define OLDMAXSIGNUM 32
2385static int Maxsignum = 0;
2386static int *ourSigFlags = NULL;
2387
2388extern "C" void sigINTRHandler(int, siginfo_t*, void*);
2389
2390int os::Solaris::get_our_sigflags(int sig) {
2391  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2392  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2393  return ourSigFlags[sig];
2394}
2395
2396void os::Solaris::set_our_sigflags(int sig, int flags) {
2397  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2398  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2399  ourSigFlags[sig] = flags;
2400}
2401
2402
2403static const char* get_signal_handler_name(address handler,
2404                                           char* buf, int buflen) {
2405  int offset;
2406  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2407  if (found) {
2408    // skip directory names
2409    const char *p1, *p2;
2410    p1 = buf;
2411    size_t len = strlen(os::file_separator());
2412    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2413    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2414  } else {
2415    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2416  }
2417  return buf;
2418}
2419
2420static void print_signal_handler(outputStream* st, int sig,
2421                                  char* buf, size_t buflen) {
2422  struct sigaction sa;
2423
2424  sigaction(sig, NULL, &sa);
2425
2426  st->print("%s: ", os::exception_name(sig, buf, buflen));
2427
2428  address handler = (sa.sa_flags & SA_SIGINFO)
2429                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2430                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2431
2432  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2433    st->print("SIG_DFL");
2434  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2435    st->print("SIG_IGN");
2436  } else {
2437    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2438  }
2439
2440  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
2441
2442  address rh = VMError::get_resetted_sighandler(sig);
2443  // May be, handler was resetted by VMError?
2444  if(rh != NULL) {
2445    handler = rh;
2446    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2447  }
2448
2449  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
2450
2451  // Check: is it our handler?
2452  if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
2453     handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
2454    // It is our signal handler
2455    // check for flags
2456    if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2457      st->print(
2458        ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2459        os::Solaris::get_our_sigflags(sig));
2460    }
2461  }
2462  st->cr();
2463}
2464
2465void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2466  st->print_cr("Signal Handlers:");
2467  print_signal_handler(st, SIGSEGV, buf, buflen);
2468  print_signal_handler(st, SIGBUS , buf, buflen);
2469  print_signal_handler(st, SIGFPE , buf, buflen);
2470  print_signal_handler(st, SIGPIPE, buf, buflen);
2471  print_signal_handler(st, SIGXFSZ, buf, buflen);
2472  print_signal_handler(st, SIGILL , buf, buflen);
2473  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2474  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2475  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2476  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2477  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2478  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2479  print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
2480  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2481}
2482
2483static char saved_jvm_path[MAXPATHLEN] = { 0 };
2484
2485// Find the full path to the current module, libjvm.so or libjvm_g.so
2486void os::jvm_path(char *buf, jint buflen) {
2487  // Error checking.
2488  if (buflen < MAXPATHLEN) {
2489    assert(false, "must use a large-enough buffer");
2490    buf[0] = '\0';
2491    return;
2492  }
2493  // Lazy resolve the path to current module.
2494  if (saved_jvm_path[0] != 0) {
2495    strcpy(buf, saved_jvm_path);
2496    return;
2497  }
2498
2499  Dl_info dlinfo;
2500  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2501  assert(ret != 0, "cannot locate libjvm");
2502  realpath((char *)dlinfo.dli_fname, buf);
2503
2504  if (Arguments::created_by_gamma_launcher()) {
2505    // Support for the gamma launcher.  Typical value for buf is
2506    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2507    // the right place in the string, then assume we are installed in a JDK and
2508    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2509    // up the path so it looks like libjvm.so is installed there (append a
2510    // fake suffix hotspot/libjvm.so).
2511    const char *p = buf + strlen(buf) - 1;
2512    for (int count = 0; p > buf && count < 5; ++count) {
2513      for (--p; p > buf && *p != '/'; --p)
2514        /* empty */ ;
2515    }
2516
2517    if (strncmp(p, "/jre/lib/", 9) != 0) {
2518      // Look for JAVA_HOME in the environment.
2519      char* java_home_var = ::getenv("JAVA_HOME");
2520      if (java_home_var != NULL && java_home_var[0] != 0) {
2521        char cpu_arch[12];
2522        char* jrelib_p;
2523        int   len;
2524        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2525#ifdef _LP64
2526        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2527        if (strcmp(cpu_arch, "sparc") == 0) {
2528          strcat(cpu_arch, "v9");
2529        } else if (strcmp(cpu_arch, "i386") == 0) {
2530          strcpy(cpu_arch, "amd64");
2531        }
2532#endif
2533        // Check the current module name "libjvm.so" or "libjvm_g.so".
2534        p = strrchr(buf, '/');
2535        assert(strstr(p, "/libjvm") == p, "invalid library name");
2536        p = strstr(p, "_g") ? "_g" : "";
2537
2538        realpath(java_home_var, buf);
2539        // determine if this is a legacy image or modules image
2540        // modules image doesn't have "jre" subdirectory
2541        len = strlen(buf);
2542        jrelib_p = buf + len;
2543        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2544        if (0 != access(buf, F_OK)) {
2545          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2546        }
2547
2548        if (0 == access(buf, F_OK)) {
2549          // Use current module name "libjvm[_g].so" instead of
2550          // "libjvm"debug_only("_g")".so" since for fastdebug version
2551          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2552          len = strlen(buf);
2553          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2554        } else {
2555          // Go back to path of .so
2556          realpath((char *)dlinfo.dli_fname, buf);
2557        }
2558      }
2559    }
2560  }
2561
2562  strcpy(saved_jvm_path, buf);
2563}
2564
2565
2566void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2567  // no prefix required, not even "_"
2568}
2569
2570
2571void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2572  // no suffix required
2573}
2574
2575// This method is a copy of JDK's sysGetLastErrorString
2576// from src/solaris/hpi/src/system_md.c
2577
2578size_t os::lasterror(char *buf, size_t len) {
2579
2580  if (errno == 0)  return 0;
2581
2582  const char *s = ::strerror(errno);
2583  size_t n = ::strlen(s);
2584  if (n >= len) {
2585    n = len - 1;
2586  }
2587  ::strncpy(buf, s, n);
2588  buf[n] = '\0';
2589  return n;
2590}
2591
2592
2593// sun.misc.Signal
2594
2595extern "C" {
2596  static void UserHandler(int sig, void *siginfo, void *context) {
2597    // Ctrl-C is pressed during error reporting, likely because the error
2598    // handler fails to abort. Let VM die immediately.
2599    if (sig == SIGINT && is_error_reported()) {
2600       os::die();
2601    }
2602
2603    os::signal_notify(sig);
2604    // We do not need to reinstate the signal handler each time...
2605  }
2606}
2607
2608void* os::user_handler() {
2609  return CAST_FROM_FN_PTR(void*, UserHandler);
2610}
2611
2612extern "C" {
2613  typedef void (*sa_handler_t)(int);
2614  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2615}
2616
2617void* os::signal(int signal_number, void* handler) {
2618  struct sigaction sigAct, oldSigAct;
2619  sigfillset(&(sigAct.sa_mask));
2620  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2621  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2622
2623  if (sigaction(signal_number, &sigAct, &oldSigAct))
2624    // -1 means registration failed
2625    return (void *)-1;
2626
2627  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2628}
2629
2630void os::signal_raise(int signal_number) {
2631  raise(signal_number);
2632}
2633
2634/*
2635 * The following code is moved from os.cpp for making this
2636 * code platform specific, which it is by its very nature.
2637 */
2638
2639// a counter for each possible signal value
2640static int Sigexit = 0;
2641static int Maxlibjsigsigs;
2642static jint *pending_signals = NULL;
2643static int *preinstalled_sigs = NULL;
2644static struct sigaction *chainedsigactions = NULL;
2645static sema_t sig_sem;
2646typedef int (*version_getting_t)();
2647version_getting_t os::Solaris::get_libjsig_version = NULL;
2648static int libjsigversion = NULL;
2649
2650int os::sigexitnum_pd() {
2651  assert(Sigexit > 0, "signal memory not yet initialized");
2652  return Sigexit;
2653}
2654
2655void os::Solaris::init_signal_mem() {
2656  // Initialize signal structures
2657  Maxsignum = SIGRTMAX;
2658  Sigexit = Maxsignum+1;
2659  assert(Maxsignum >0, "Unable to obtain max signal number");
2660
2661  Maxlibjsigsigs = Maxsignum;
2662
2663  // pending_signals has one int per signal
2664  // The additional signal is for SIGEXIT - exit signal to signal_thread
2665  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2666  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2667
2668  if (UseSignalChaining) {
2669     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2670       * (Maxsignum + 1), mtInternal);
2671     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2672     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2673     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2674  }
2675  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
2676  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2677}
2678
2679void os::signal_init_pd() {
2680  int ret;
2681
2682  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2683  assert(ret == 0, "sema_init() failed");
2684}
2685
2686void os::signal_notify(int signal_number) {
2687  int ret;
2688
2689  Atomic::inc(&pending_signals[signal_number]);
2690  ret = ::sema_post(&sig_sem);
2691  assert(ret == 0, "sema_post() failed");
2692}
2693
2694static int check_pending_signals(bool wait_for_signal) {
2695  int ret;
2696  while (true) {
2697    for (int i = 0; i < Sigexit + 1; i++) {
2698      jint n = pending_signals[i];
2699      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2700        return i;
2701      }
2702    }
2703    if (!wait_for_signal) {
2704      return -1;
2705    }
2706    JavaThread *thread = JavaThread::current();
2707    ThreadBlockInVM tbivm(thread);
2708
2709    bool threadIsSuspended;
2710    do {
2711      thread->set_suspend_equivalent();
2712      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2713      while((ret = ::sema_wait(&sig_sem)) == EINTR)
2714          ;
2715      assert(ret == 0, "sema_wait() failed");
2716
2717      // were we externally suspended while we were waiting?
2718      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2719      if (threadIsSuspended) {
2720        //
2721        // The semaphore has been incremented, but while we were waiting
2722        // another thread suspended us. We don't want to continue running
2723        // while suspended because that would surprise the thread that
2724        // suspended us.
2725        //
2726        ret = ::sema_post(&sig_sem);
2727        assert(ret == 0, "sema_post() failed");
2728
2729        thread->java_suspend_self();
2730      }
2731    } while (threadIsSuspended);
2732  }
2733}
2734
2735int os::signal_lookup() {
2736  return check_pending_signals(false);
2737}
2738
2739int os::signal_wait() {
2740  return check_pending_signals(true);
2741}
2742
2743////////////////////////////////////////////////////////////////////////////////
2744// Virtual Memory
2745
2746static int page_size = -1;
2747
2748// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2749// clear this var if support is not available.
2750static bool has_map_align = true;
2751
2752int os::vm_page_size() {
2753  assert(page_size != -1, "must call os::init");
2754  return page_size;
2755}
2756
2757// Solaris allocates memory by pages.
2758int os::vm_allocation_granularity() {
2759  assert(page_size != -1, "must call os::init");
2760  return page_size;
2761}
2762
2763bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2764  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2765  size_t size = bytes;
2766  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2767  if (res != NULL) {
2768    if (UseNUMAInterleaving) {
2769      numa_make_global(addr, bytes);
2770    }
2771    return true;
2772  }
2773  return false;
2774}
2775
2776bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2777                       bool exec) {
2778  if (commit_memory(addr, bytes, exec)) {
2779    if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
2780      // If the large page size has been set and the VM
2781      // is using large pages, use the large page size
2782      // if it is smaller than the alignment hint. This is
2783      // a case where the VM wants to use a larger alignment size
2784      // for its own reasons but still want to use large pages
2785      // (which is what matters to setting the mpss range.
2786      size_t page_size = 0;
2787      if (large_page_size() < alignment_hint) {
2788        assert(UseLargePages, "Expected to be here for large page use only");
2789        page_size = large_page_size();
2790      } else {
2791        // If the alignment hint is less than the large page
2792        // size, the VM wants a particular alignment (thus the hint)
2793        // for internal reasons.  Try to set the mpss range using
2794        // the alignment_hint.
2795        page_size = alignment_hint;
2796      }
2797      // Since this is a hint, ignore any failures.
2798      (void)Solaris::set_mpss_range(addr, bytes, page_size);
2799    }
2800    return true;
2801  }
2802  return false;
2803}
2804
2805// Uncommit the pages in a specified region.
2806void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2807  if (madvise(addr, bytes, MADV_FREE) < 0) {
2808    debug_only(warning("MADV_FREE failed."));
2809    return;
2810  }
2811}
2812
2813bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2814  return os::commit_memory(addr, size);
2815}
2816
2817bool os::remove_stack_guard_pages(char* addr, size_t size) {
2818  return os::uncommit_memory(addr, size);
2819}
2820
2821// Change the page size in a given range.
2822void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2823  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2824  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2825  if (UseLargePages && UseMPSS) {
2826    Solaris::set_mpss_range(addr, bytes, alignment_hint);
2827  }
2828}
2829
2830// Tell the OS to make the range local to the first-touching LWP
2831void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2832  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2833  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2834    debug_only(warning("MADV_ACCESS_LWP failed."));
2835  }
2836}
2837
2838// Tell the OS that this range would be accessed from different LWPs.
2839void os::numa_make_global(char *addr, size_t bytes) {
2840  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2841  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2842    debug_only(warning("MADV_ACCESS_MANY failed."));
2843  }
2844}
2845
2846// Get the number of the locality groups.
2847size_t os::numa_get_groups_num() {
2848  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2849  return n != -1 ? n : 1;
2850}
2851
2852// Get a list of leaf locality groups. A leaf lgroup is group that
2853// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2854// board. An LWP is assigned to one of these groups upon creation.
2855size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2856   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2857     ids[0] = 0;
2858     return 1;
2859   }
2860   int result_size = 0, top = 1, bottom = 0, cur = 0;
2861   for (int k = 0; k < size; k++) {
2862     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2863                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2864     if (r == -1) {
2865       ids[0] = 0;
2866       return 1;
2867     }
2868     if (!r) {
2869       // That's a leaf node.
2870       assert (bottom <= cur, "Sanity check");
2871       // Check if the node has memory
2872       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2873                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2874         ids[bottom++] = ids[cur];
2875       }
2876     }
2877     top += r;
2878     cur++;
2879   }
2880   if (bottom == 0) {
2881     // Handle a situation, when the OS reports no memory available.
2882     // Assume UMA architecture.
2883     ids[0] = 0;
2884     return 1;
2885   }
2886   return bottom;
2887}
2888
2889// Detect the topology change. Typically happens during CPU plugging-unplugging.
2890bool os::numa_topology_changed() {
2891  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2892  if (is_stale != -1 && is_stale) {
2893    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2894    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2895    assert(c != 0, "Failure to initialize LGRP API");
2896    Solaris::set_lgrp_cookie(c);
2897    return true;
2898  }
2899  return false;
2900}
2901
2902// Get the group id of the current LWP.
2903int os::numa_get_group_id() {
2904  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2905  if (lgrp_id == -1) {
2906    return 0;
2907  }
2908  const int size = os::numa_get_groups_num();
2909  int *ids = (int*)alloca(size * sizeof(int));
2910
2911  // Get the ids of all lgroups with memory; r is the count.
2912  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2913                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2914  if (r <= 0) {
2915    return 0;
2916  }
2917  return ids[os::random() % r];
2918}
2919
2920// Request information about the page.
2921bool os::get_page_info(char *start, page_info* info) {
2922  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2923  uint64_t addr = (uintptr_t)start;
2924  uint64_t outdata[2];
2925  uint_t validity = 0;
2926
2927  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2928    return false;
2929  }
2930
2931  info->size = 0;
2932  info->lgrp_id = -1;
2933
2934  if ((validity & 1) != 0) {
2935    if ((validity & 2) != 0) {
2936      info->lgrp_id = outdata[0];
2937    }
2938    if ((validity & 4) != 0) {
2939      info->size = outdata[1];
2940    }
2941    return true;
2942  }
2943  return false;
2944}
2945
2946// Scan the pages from start to end until a page different than
2947// the one described in the info parameter is encountered.
2948char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2949  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2950  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2951  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
2952  uint_t validity[MAX_MEMINFO_CNT];
2953
2954  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2955  uint64_t p = (uint64_t)start;
2956  while (p < (uint64_t)end) {
2957    addrs[0] = p;
2958    size_t addrs_count = 1;
2959    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
2960      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2961      addrs_count++;
2962    }
2963
2964    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2965      return NULL;
2966    }
2967
2968    size_t i = 0;
2969    for (; i < addrs_count; i++) {
2970      if ((validity[i] & 1) != 0) {
2971        if ((validity[i] & 4) != 0) {
2972          if (outdata[types * i + 1] != page_expected->size) {
2973            break;
2974          }
2975        } else
2976          if (page_expected->size != 0) {
2977            break;
2978          }
2979
2980        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2981          if (outdata[types * i] != page_expected->lgrp_id) {
2982            break;
2983          }
2984        }
2985      } else {
2986        return NULL;
2987      }
2988    }
2989
2990    if (i != addrs_count) {
2991      if ((validity[i] & 2) != 0) {
2992        page_found->lgrp_id = outdata[types * i];
2993      } else {
2994        page_found->lgrp_id = -1;
2995      }
2996      if ((validity[i] & 4) != 0) {
2997        page_found->size = outdata[types * i + 1];
2998      } else {
2999        page_found->size = 0;
3000      }
3001      return (char*)addrs[i];
3002    }
3003
3004    p = addrs[addrs_count - 1] + page_size;
3005  }
3006  return end;
3007}
3008
3009bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3010  size_t size = bytes;
3011  // Map uncommitted pages PROT_NONE so we fail early if we touch an
3012  // uncommitted page. Otherwise, the read/write might succeed if we
3013  // have enough swap space to back the physical page.
3014  return
3015    NULL != Solaris::mmap_chunk(addr, size,
3016                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
3017                                PROT_NONE);
3018}
3019
3020char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
3021  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
3022
3023  if (b == MAP_FAILED) {
3024    return NULL;
3025  }
3026  return b;
3027}
3028
3029char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
3030  char* addr = requested_addr;
3031  int flags = MAP_PRIVATE | MAP_NORESERVE;
3032
3033  assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
3034
3035  if (fixed) {
3036    flags |= MAP_FIXED;
3037  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
3038    flags |= MAP_ALIGN;
3039    addr = (char*) alignment_hint;
3040  }
3041
3042  // Map uncommitted pages PROT_NONE so we fail early if we touch an
3043  // uncommitted page. Otherwise, the read/write might succeed if we
3044  // have enough swap space to back the physical page.
3045  return mmap_chunk(addr, bytes, flags, PROT_NONE);
3046}
3047
3048char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
3049  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
3050
3051  guarantee(requested_addr == NULL || requested_addr == addr,
3052            "OS failed to return requested mmap address.");
3053  return addr;
3054}
3055
3056// Reserve memory at an arbitrary address, only if that area is
3057// available (and not reserved for something else).
3058
3059char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3060  const int max_tries = 10;
3061  char* base[max_tries];
3062  size_t size[max_tries];
3063
3064  // Solaris adds a gap between mmap'ed regions.  The size of the gap
3065  // is dependent on the requested size and the MMU.  Our initial gap
3066  // value here is just a guess and will be corrected later.
3067  bool had_top_overlap = false;
3068  bool have_adjusted_gap = false;
3069  size_t gap = 0x400000;
3070
3071  // Assert only that the size is a multiple of the page size, since
3072  // that's all that mmap requires, and since that's all we really know
3073  // about at this low abstraction level.  If we need higher alignment,
3074  // we can either pass an alignment to this method or verify alignment
3075  // in one of the methods further up the call chain.  See bug 5044738.
3076  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3077
3078  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
3079  // Give it a try, if the kernel honors the hint we can return immediately.
3080  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
3081  volatile int err = errno;
3082  if (addr == requested_addr) {
3083    return addr;
3084  } else if (addr != NULL) {
3085    unmap_memory(addr, bytes);
3086  }
3087
3088  if (PrintMiscellaneous && Verbose) {
3089    char buf[256];
3090    buf[0] = '\0';
3091    if (addr == NULL) {
3092      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
3093    }
3094    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
3095            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
3096            "%s", bytes, requested_addr, addr, buf);
3097  }
3098
3099  // Address hint method didn't work.  Fall back to the old method.
3100  // In theory, once SNV becomes our oldest supported platform, this
3101  // code will no longer be needed.
3102  //
3103  // Repeatedly allocate blocks until the block is allocated at the
3104  // right spot. Give up after max_tries.
3105  int i;
3106  for (i = 0; i < max_tries; ++i) {
3107    base[i] = reserve_memory(bytes);
3108
3109    if (base[i] != NULL) {
3110      // Is this the block we wanted?
3111      if (base[i] == requested_addr) {
3112        size[i] = bytes;
3113        break;
3114      }
3115
3116      // check that the gap value is right
3117      if (had_top_overlap && !have_adjusted_gap) {
3118        size_t actual_gap = base[i-1] - base[i] - bytes;
3119        if (gap != actual_gap) {
3120          // adjust the gap value and retry the last 2 allocations
3121          assert(i > 0, "gap adjustment code problem");
3122          have_adjusted_gap = true;  // adjust the gap only once, just in case
3123          gap = actual_gap;
3124          if (PrintMiscellaneous && Verbose) {
3125            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
3126          }
3127          unmap_memory(base[i], bytes);
3128          unmap_memory(base[i-1], size[i-1]);
3129          i-=2;
3130          continue;
3131        }
3132      }
3133
3134      // Does this overlap the block we wanted? Give back the overlapped
3135      // parts and try again.
3136      //
3137      // There is still a bug in this code: if top_overlap == bytes,
3138      // the overlap is offset from requested region by the value of gap.
3139      // In this case giving back the overlapped part will not work,
3140      // because we'll give back the entire block at base[i] and
3141      // therefore the subsequent allocation will not generate a new gap.
3142      // This could be fixed with a new algorithm that used larger
3143      // or variable size chunks to find the requested region -
3144      // but such a change would introduce additional complications.
3145      // It's rare enough that the planets align for this bug,
3146      // so we'll just wait for a fix for 6204603/5003415 which
3147      // will provide a mmap flag to allow us to avoid this business.
3148
3149      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3150      if (top_overlap >= 0 && top_overlap < bytes) {
3151        had_top_overlap = true;
3152        unmap_memory(base[i], top_overlap);
3153        base[i] += top_overlap;
3154        size[i] = bytes - top_overlap;
3155      } else {
3156        size_t bottom_overlap = base[i] + bytes - requested_addr;
3157        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3158          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
3159            warning("attempt_reserve_memory_at: possible alignment bug");
3160          }
3161          unmap_memory(requested_addr, bottom_overlap);
3162          size[i] = bytes - bottom_overlap;
3163        } else {
3164          size[i] = bytes;
3165        }
3166      }
3167    }
3168  }
3169
3170  // Give back the unused reserved pieces.
3171
3172  for (int j = 0; j < i; ++j) {
3173    if (base[j] != NULL) {
3174      unmap_memory(base[j], size[j]);
3175    }
3176  }
3177
3178  return (i < max_tries) ? requested_addr : NULL;
3179}
3180
3181bool os::pd_release_memory(char* addr, size_t bytes) {
3182  size_t size = bytes;
3183  return munmap(addr, size) == 0;
3184}
3185
3186static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
3187  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
3188         "addr must be page aligned");
3189  int retVal = mprotect(addr, bytes, prot);
3190  return retVal == 0;
3191}
3192
3193// Protect memory (Used to pass readonly pages through
3194// JNI GetArray<type>Elements with empty arrays.)
3195// Also, used for serialization page and for compressed oops null pointer
3196// checking.
3197bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3198                        bool is_committed) {
3199  unsigned int p = 0;
3200  switch (prot) {
3201  case MEM_PROT_NONE: p = PROT_NONE; break;
3202  case MEM_PROT_READ: p = PROT_READ; break;
3203  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3204  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3205  default:
3206    ShouldNotReachHere();
3207  }
3208  // is_committed is unused.
3209  return solaris_mprotect(addr, bytes, p);
3210}
3211
3212// guard_memory and unguard_memory only happens within stack guard pages.
3213// Since ISM pertains only to the heap, guard and unguard memory should not
3214/// happen with an ISM region.
3215bool os::guard_memory(char* addr, size_t bytes) {
3216  return solaris_mprotect(addr, bytes, PROT_NONE);
3217}
3218
3219bool os::unguard_memory(char* addr, size_t bytes) {
3220  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
3221}
3222
3223// Large page support
3224
3225// UseLargePages is the master flag to enable/disable large page memory.
3226// UseMPSS and UseISM are supported for compatibility reasons. Their combined
3227// effects can be described in the following table:
3228//
3229// UseLargePages UseMPSS UseISM
3230//    false         *       *   => UseLargePages is the master switch, turning
3231//                                 it off will turn off both UseMPSS and
3232//                                 UseISM. VM will not use large page memory
3233//                                 regardless the settings of UseMPSS/UseISM.
3234//     true      false    false => Unless future Solaris provides other
3235//                                 mechanism to use large page memory, this
3236//                                 combination is equivalent to -UseLargePages,
3237//                                 VM will not use large page memory
3238//     true      true     false => JVM will use MPSS for large page memory.
3239//                                 This is the default behavior.
3240//     true      false    true  => JVM will use ISM for large page memory.
3241//     true      true     true  => JVM will use ISM if it is available.
3242//                                 Otherwise, JVM will fall back to MPSS.
3243//                                 Becaues ISM is now available on all
3244//                                 supported Solaris versions, this combination
3245//                                 is equivalent to +UseISM -UseMPSS.
3246
3247static size_t _large_page_size = 0;
3248
3249bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
3250  // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
3251  // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
3252  // can support multiple page sizes.
3253
3254  // Don't bother to probe page size because getpagesizes() comes with MPSS.
3255  // ISM is only recommended on old Solaris where there is no MPSS support.
3256  // Simply choose a conservative value as default.
3257  *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
3258               SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M)
3259               ARM_ONLY(2 * M);
3260
3261  // ISM is available on all supported Solaris versions
3262  return true;
3263}
3264
3265// Insertion sort for small arrays (descending order).
3266static void insertion_sort_descending(size_t* array, int len) {
3267  for (int i = 0; i < len; i++) {
3268    size_t val = array[i];
3269    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
3270      size_t tmp = array[key];
3271      array[key] = array[key - 1];
3272      array[key - 1] = tmp;
3273    }
3274  }
3275}
3276
3277bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
3278  const unsigned int usable_count = VM_Version::page_size_count();
3279  if (usable_count == 1) {
3280    return false;
3281  }
3282
3283  // Find the right getpagesizes interface.  When solaris 11 is the minimum
3284  // build platform, getpagesizes() (without the '2') can be called directly.
3285  typedef int (*gps_t)(size_t[], int);
3286  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
3287  if (gps_func == NULL) {
3288    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
3289    if (gps_func == NULL) {
3290      if (warn) {
3291        warning("MPSS is not supported by the operating system.");
3292      }
3293      return false;
3294    }
3295  }
3296
3297  // Fill the array of page sizes.
3298  int n = (*gps_func)(_page_sizes, page_sizes_max);
3299  assert(n > 0, "Solaris bug?");
3300
3301  if (n == page_sizes_max) {
3302    // Add a sentinel value (necessary only if the array was completely filled
3303    // since it is static (zeroed at initialization)).
3304    _page_sizes[--n] = 0;
3305    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
3306  }
3307  assert(_page_sizes[n] == 0, "missing sentinel");
3308  trace_page_sizes("available page sizes", _page_sizes, n);
3309
3310  if (n == 1) return false;     // Only one page size available.
3311
3312  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
3313  // select up to usable_count elements.  First sort the array, find the first
3314  // acceptable value, then copy the usable sizes to the top of the array and
3315  // trim the rest.  Make sure to include the default page size :-).
3316  //
3317  // A better policy could get rid of the 4M limit by taking the sizes of the
3318  // important VM memory regions (java heap and possibly the code cache) into
3319  // account.
3320  insertion_sort_descending(_page_sizes, n);
3321  const size_t size_limit =
3322    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
3323  int beg;
3324  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
3325  const int end = MIN2((int)usable_count, n) - 1;
3326  for (int cur = 0; cur < end; ++cur, ++beg) {
3327    _page_sizes[cur] = _page_sizes[beg];
3328  }
3329  _page_sizes[end] = vm_page_size();
3330  _page_sizes[end + 1] = 0;
3331
3332  if (_page_sizes[end] > _page_sizes[end - 1]) {
3333    // Default page size is not the smallest; sort again.
3334    insertion_sort_descending(_page_sizes, end + 1);
3335  }
3336  *page_size = _page_sizes[0];
3337
3338  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
3339  return true;
3340}
3341
3342void os::large_page_init() {
3343  if (!UseLargePages) {
3344    UseISM = false;
3345    UseMPSS = false;
3346    return;
3347  }
3348
3349  // print a warning if any large page related flag is specified on command line
3350  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3351                         !FLAG_IS_DEFAULT(UseISM)               ||
3352                         !FLAG_IS_DEFAULT(UseMPSS)              ||
3353                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3354  UseISM = UseISM &&
3355           Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
3356  if (UseISM) {
3357    // ISM disables MPSS to be compatible with old JDK behavior
3358    UseMPSS = false;
3359    _page_sizes[0] = _large_page_size;
3360    _page_sizes[1] = vm_page_size();
3361  }
3362
3363  UseMPSS = UseMPSS &&
3364            Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3365
3366  UseLargePages = UseISM || UseMPSS;
3367}
3368
3369bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
3370  // Signal to OS that we want large pages for addresses
3371  // from addr, addr + bytes
3372  struct memcntl_mha mpss_struct;
3373  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3374  mpss_struct.mha_pagesize = align;
3375  mpss_struct.mha_flags = 0;
3376  if (memcntl(start, bytes, MC_HAT_ADVISE,
3377              (caddr_t) &mpss_struct, 0, 0) < 0) {
3378    debug_only(warning("Attempt to use MPSS failed."));
3379    return false;
3380  }
3381  return true;
3382}
3383
3384char* os::reserve_memory_special(size_t size, char* addr, bool exec) {
3385  // "exec" is passed in but not used.  Creating the shared image for
3386  // the code cache doesn't have an SHM_X executable permission to check.
3387  assert(UseLargePages && UseISM, "only for ISM large pages");
3388
3389  char* retAddr = NULL;
3390  int shmid;
3391  key_t ismKey;
3392
3393  bool warn_on_failure = UseISM &&
3394                        (!FLAG_IS_DEFAULT(UseLargePages)         ||
3395                         !FLAG_IS_DEFAULT(UseISM)                ||
3396                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3397                        );
3398  char msg[128];
3399
3400  ismKey = IPC_PRIVATE;
3401
3402  // Create a large shared memory region to attach to based on size.
3403  // Currently, size is the total size of the heap
3404  shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
3405  if (shmid == -1){
3406     if (warn_on_failure) {
3407       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3408       warning(msg);
3409     }
3410     return NULL;
3411  }
3412
3413  // Attach to the region
3414  retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
3415  int err = errno;
3416
3417  // Remove shmid. If shmat() is successful, the actual shared memory segment
3418  // will be deleted when it's detached by shmdt() or when the process
3419  // terminates. If shmat() is not successful this will remove the shared
3420  // segment immediately.
3421  shmctl(shmid, IPC_RMID, NULL);
3422
3423  if (retAddr == (char *) -1) {
3424    if (warn_on_failure) {
3425      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3426      warning(msg);
3427    }
3428    return NULL;
3429  }
3430  if ((retAddr != NULL) && UseNUMAInterleaving) {
3431    numa_make_global(retAddr, size);
3432  }
3433  return retAddr;
3434}
3435
3436bool os::release_memory_special(char* base, size_t bytes) {
3437  // detaching the SHM segment will also delete it, see reserve_memory_special()
3438  int rslt = shmdt(base);
3439  return rslt == 0;
3440}
3441
3442size_t os::large_page_size() {
3443  return _large_page_size;
3444}
3445
3446// MPSS allows application to commit large page memory on demand; with ISM
3447// the entire memory region must be allocated as shared memory.
3448bool os::can_commit_large_page_memory() {
3449  return UseISM ? false : true;
3450}
3451
3452bool os::can_execute_large_page_memory() {
3453  return UseISM ? false : true;
3454}
3455
3456static int os_sleep(jlong millis, bool interruptible) {
3457  const jlong limit = INT_MAX;
3458  jlong prevtime;
3459  int res;
3460
3461  while (millis > limit) {
3462    if ((res = os_sleep(limit, interruptible)) != OS_OK)
3463      return res;
3464    millis -= limit;
3465  }
3466
3467  // Restart interrupted polls with new parameters until the proper delay
3468  // has been completed.
3469
3470  prevtime = getTimeMillis();
3471
3472  while (millis > 0) {
3473    jlong newtime;
3474
3475    if (!interruptible) {
3476      // Following assert fails for os::yield_all:
3477      // assert(!thread->is_Java_thread(), "must not be java thread");
3478      res = poll(NULL, 0, millis);
3479    } else {
3480      JavaThread *jt = JavaThread::current();
3481
3482      INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
3483        os::Solaris::clear_interrupted);
3484    }
3485
3486    // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
3487    // thread.Interrupt.
3488
3489    // See c/r 6751923. Poll can return 0 before time
3490    // has elapsed if time is set via clock_settime (as NTP does).
3491    // res == 0 if poll timed out (see man poll RETURN VALUES)
3492    // using the logic below checks that we really did
3493    // sleep at least "millis" if not we'll sleep again.
3494    if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
3495      newtime = getTimeMillis();
3496      assert(newtime >= prevtime, "time moving backwards");
3497    /* Doing prevtime and newtime in microseconds doesn't help precision,
3498       and trying to round up to avoid lost milliseconds can result in a
3499       too-short delay. */
3500      millis -= newtime - prevtime;
3501      if(millis <= 0)
3502        return OS_OK;
3503      prevtime = newtime;
3504    } else
3505      return res;
3506  }
3507
3508  return OS_OK;
3509}
3510
3511// Read calls from inside the vm need to perform state transitions
3512size_t os::read(int fd, void *buf, unsigned int nBytes) {
3513  INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3514}
3515
3516size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3517  INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3518}
3519
3520int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3521  assert(thread == Thread::current(),  "thread consistency check");
3522
3523  // TODO-FIXME: this should be removed.
3524  // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
3525  // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
3526  // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
3527  // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
3528  // is fooled into believing that the system is making progress. In the code below we block the
3529  // the watcher thread while safepoint is in progress so that it would not appear as though the
3530  // system is making progress.
3531  if (!Solaris::T2_libthread() &&
3532      thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
3533    // We now try to acquire the threads lock. Since this lock is held by the VM thread during
3534    // the entire safepoint, the watcher thread will  line up here during the safepoint.
3535    Threads_lock->lock_without_safepoint_check();
3536    Threads_lock->unlock();
3537  }
3538
3539  if (thread->is_Java_thread()) {
3540    // This is a JavaThread so we honor the _thread_blocked protocol
3541    // even for sleeps of 0 milliseconds. This was originally done
3542    // as a workaround for bug 4338139. However, now we also do it
3543    // to honor the suspend-equivalent protocol.
3544
3545    JavaThread *jt = (JavaThread *) thread;
3546    ThreadBlockInVM tbivm(jt);
3547
3548    jt->set_suspend_equivalent();
3549    // cleared by handle_special_suspend_equivalent_condition() or
3550    // java_suspend_self() via check_and_wait_while_suspended()
3551
3552    int ret_code;
3553    if (millis <= 0) {
3554      thr_yield();
3555      ret_code = 0;
3556    } else {
3557      // The original sleep() implementation did not create an
3558      // OSThreadWaitState helper for sleeps of 0 milliseconds.
3559      // I'm preserving that decision for now.
3560      OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3561
3562      ret_code = os_sleep(millis, interruptible);
3563    }
3564
3565    // were we externally suspended while we were waiting?
3566    jt->check_and_wait_while_suspended();
3567
3568    return ret_code;
3569  }
3570
3571  // non-JavaThread from this point on:
3572
3573  if (millis <= 0) {
3574    thr_yield();
3575    return 0;
3576  }
3577
3578  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3579
3580  return os_sleep(millis, interruptible);
3581}
3582
3583int os::naked_sleep() {
3584  // %% make the sleep time an integer flag. for now use 1 millisec.
3585  return os_sleep(1, false);
3586}
3587
3588// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3589void os::infinite_sleep() {
3590  while (true) {    // sleep forever ...
3591    ::sleep(100);   // ... 100 seconds at a time
3592  }
3593}
3594
3595// Used to convert frequent JVM_Yield() to nops
3596bool os::dont_yield() {
3597  if (DontYieldALot) {
3598    static hrtime_t last_time = 0;
3599    hrtime_t diff = getTimeNanos() - last_time;
3600
3601    if (diff < DontYieldALotInterval * 1000000)
3602      return true;
3603
3604    last_time += diff;
3605
3606    return false;
3607  }
3608  else {
3609    return false;
3610  }
3611}
3612
3613// Caveat: Solaris os::yield() causes a thread-state transition whereas
3614// the linux and win32 implementations do not.  This should be checked.
3615
3616void os::yield() {
3617  // Yields to all threads with same or greater priority
3618  os::sleep(Thread::current(), 0, false);
3619}
3620
3621// Note that yield semantics are defined by the scheduling class to which
3622// the thread currently belongs.  Typically, yield will _not yield to
3623// other equal or higher priority threads that reside on the dispatch queues
3624// of other CPUs.
3625
3626os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
3627
3628
3629// On Solaris we found that yield_all doesn't always yield to all other threads.
3630// There have been cases where there is a thread ready to execute but it doesn't
3631// get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
3632// The 1 millisecond wait doesn't seem long enough for the kernel to issue a
3633// SIGWAITING signal which will cause a new lwp to be created. So we count the
3634// number of times yield_all is called in the one loop and increase the sleep
3635// time after 8 attempts. If this fails too we increase the concurrency level
3636// so that the starving thread would get an lwp
3637
3638void os::yield_all(int attempts) {
3639  // Yields to all threads, including threads with lower priorities
3640  if (attempts == 0) {
3641    os::sleep(Thread::current(), 1, false);
3642  } else {
3643    int iterations = attempts % 30;
3644    if (iterations == 0 && !os::Solaris::T2_libthread()) {
3645      // thr_setconcurrency and _getconcurrency make sense only under T1.
3646      int noofLWPS = thr_getconcurrency();
3647      if (noofLWPS < (Threads::number_of_threads() + 2)) {
3648        thr_setconcurrency(thr_getconcurrency() + 1);
3649      }
3650    } else if (iterations < 25) {
3651      os::sleep(Thread::current(), 1, false);
3652    } else {
3653      os::sleep(Thread::current(), 10, false);
3654    }
3655  }
3656}
3657
3658// Called from the tight loops to possibly influence time-sharing heuristics
3659void os::loop_breaker(int attempts) {
3660  os::yield_all(attempts);
3661}
3662
3663
3664// Interface for setting lwp priorities.  If we are using T2 libthread,
3665// which forces the use of BoundThreads or we manually set UseBoundThreads,
3666// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3667// function is meaningless in this mode so we must adjust the real lwp's priority
3668// The routines below implement the getting and setting of lwp priorities.
3669//
3670// Note: There are three priority scales used on Solaris.  Java priotities
3671//       which range from 1 to 10, libthread "thr_setprio" scale which range
3672//       from 0 to 127, and the current scheduling class of the process we
3673//       are running in.  This is typically from -60 to +60.
3674//       The setting of the lwp priorities in done after a call to thr_setprio
3675//       so Java priorities are mapped to libthread priorities and we map from
3676//       the latter to lwp priorities.  We don't keep priorities stored in
3677//       Java priorities since some of our worker threads want to set priorities
3678//       higher than all Java threads.
3679//
3680// For related information:
3681// (1)  man -s 2 priocntl
3682// (2)  man -s 4 priocntl
3683// (3)  man dispadmin
3684// =    librt.so
3685// =    libthread/common/rtsched.c - thrp_setlwpprio().
3686// =    ps -cL <pid> ... to validate priority.
3687// =    sched_get_priority_min and _max
3688//              pthread_create
3689//              sched_setparam
3690//              pthread_setschedparam
3691//
3692// Assumptions:
3693// +    We assume that all threads in the process belong to the same
3694//              scheduling class.   IE. an homogenous process.
3695// +    Must be root or in IA group to change change "interactive" attribute.
3696//              Priocntl() will fail silently.  The only indication of failure is when
3697//              we read-back the value and notice that it hasn't changed.
3698// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3699// +    For RT, change timeslice as well.  Invariant:
3700//              constant "priority integral"
3701//              Konst == TimeSlice * (60-Priority)
3702//              Given a priority, compute appropriate timeslice.
3703// +    Higher numerical values have higher priority.
3704
3705// sched class attributes
3706typedef struct {
3707        int   schedPolicy;              // classID
3708        int   maxPrio;
3709        int   minPrio;
3710} SchedInfo;
3711
3712
3713static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3714
3715#ifdef ASSERT
3716static int  ReadBackValidate = 1;
3717#endif
3718static int  myClass     = 0;
3719static int  myMin       = 0;
3720static int  myMax       = 0;
3721static int  myCur       = 0;
3722static bool priocntl_enable = false;
3723
3724static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
3725static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3726
3727// Call the version of priocntl suitable for all supported versions
3728// of Solaris. We need to call through this wrapper so that we can
3729// build on Solaris 9 and run on Solaris 8, 9 and 10.
3730//
3731// This code should be removed if we ever stop supporting Solaris 8
3732// and earlier releases.
3733
3734static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
3735typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
3736static priocntl_type priocntl_ptr = priocntl_stub;
3737
3738// Stub to set the value of the real pointer, and then call the real
3739// function.
3740
3741static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
3742  // Try Solaris 8- name only.
3743  priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
3744  guarantee(tmp != NULL, "priocntl function not found.");
3745  priocntl_ptr = tmp;
3746  return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
3747}
3748
3749
3750// lwp_priocntl_init
3751//
3752// Try to determine the priority scale for our process.
3753//
3754// Return errno or 0 if OK.
3755//
3756static
3757int     lwp_priocntl_init ()
3758{
3759  int rslt;
3760  pcinfo_t ClassInfo;
3761  pcparms_t ParmInfo;
3762  int i;
3763
3764  if (!UseThreadPriorities) return 0;
3765
3766  // We are using Bound threads, we need to determine our priority ranges
3767  if (os::Solaris::T2_libthread() || UseBoundThreads) {
3768    // If ThreadPriorityPolicy is 1, switch tables
3769    if (ThreadPriorityPolicy == 1) {
3770      for (i = 0 ; i < CriticalPriority+1; i++)
3771        os::java_to_os_priority[i] = prio_policy1[i];
3772    }
3773    if (UseCriticalJavaThreadPriority) {
3774      // MaxPriority always maps to the FX scheduling class and criticalPrio.
3775      // See set_native_priority() and set_lwp_class_and_priority().
3776      // Save original MaxPriority mapping in case attempt to
3777      // use critical priority fails.
3778      java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3779      // Set negative to distinguish from other priorities
3780      os::java_to_os_priority[MaxPriority] = -criticalPrio;
3781    }
3782  }
3783  // Not using Bound Threads, set to ThreadPolicy 1
3784  else {
3785    for ( i = 0 ; i < CriticalPriority+1; i++ ) {
3786      os::java_to_os_priority[i] = prio_policy1[i];
3787    }
3788    return 0;
3789  }
3790
3791  // Get IDs for a set of well-known scheduling classes.
3792  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3793  // the system.  We should have a loop that iterates over the
3794  // classID values, which are known to be "small" integers.
3795
3796  strcpy(ClassInfo.pc_clname, "TS");
3797  ClassInfo.pc_cid = -1;
3798  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3799  if (rslt < 0) return errno;
3800  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3801  tsLimits.schedPolicy = ClassInfo.pc_cid;
3802  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3803  tsLimits.minPrio = -tsLimits.maxPrio;
3804
3805  strcpy(ClassInfo.pc_clname, "IA");
3806  ClassInfo.pc_cid = -1;
3807  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3808  if (rslt < 0) return errno;
3809  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3810  iaLimits.schedPolicy = ClassInfo.pc_cid;
3811  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3812  iaLimits.minPrio = -iaLimits.maxPrio;
3813
3814  strcpy(ClassInfo.pc_clname, "RT");
3815  ClassInfo.pc_cid = -1;
3816  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3817  if (rslt < 0) return errno;
3818  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3819  rtLimits.schedPolicy = ClassInfo.pc_cid;
3820  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3821  rtLimits.minPrio = 0;
3822
3823  strcpy(ClassInfo.pc_clname, "FX");
3824  ClassInfo.pc_cid = -1;
3825  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3826  if (rslt < 0) return errno;
3827  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3828  fxLimits.schedPolicy = ClassInfo.pc_cid;
3829  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3830  fxLimits.minPrio = 0;
3831
3832  // Query our "current" scheduling class.
3833  // This will normally be IA, TS or, rarely, FX or RT.
3834  memset(&ParmInfo, 0, sizeof(ParmInfo));
3835  ParmInfo.pc_cid = PC_CLNULL;
3836  rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3837  if (rslt < 0) return errno;
3838  myClass = ParmInfo.pc_cid;
3839
3840  // We now know our scheduling classId, get specific information
3841  // about the class.
3842  ClassInfo.pc_cid = myClass;
3843  ClassInfo.pc_clname[0] = 0;
3844  rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3845  if (rslt < 0) return errno;
3846
3847  if (ThreadPriorityVerbose) {
3848    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3849  }
3850
3851  memset(&ParmInfo, 0, sizeof(pcparms_t));
3852  ParmInfo.pc_cid = PC_CLNULL;
3853  rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3854  if (rslt < 0) return errno;
3855
3856  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3857    myMin = rtLimits.minPrio;
3858    myMax = rtLimits.maxPrio;
3859  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3860    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3861    myMin = iaLimits.minPrio;
3862    myMax = iaLimits.maxPrio;
3863    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3864  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3865    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3866    myMin = tsLimits.minPrio;
3867    myMax = tsLimits.maxPrio;
3868    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3869  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3870    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3871    myMin = fxLimits.minPrio;
3872    myMax = fxLimits.maxPrio;
3873    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3874  } else {
3875    // No clue - punt
3876    if (ThreadPriorityVerbose)
3877      tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
3878    return EINVAL;      // no clue, punt
3879  }
3880
3881  if (ThreadPriorityVerbose) {
3882    tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
3883  }
3884
3885  priocntl_enable = true;  // Enable changing priorities
3886  return 0;
3887}
3888
3889#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3890#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3891#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3892#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3893
3894
3895// scale_to_lwp_priority
3896//
3897// Convert from the libthread "thr_setprio" scale to our current
3898// lwp scheduling class scale.
3899//
3900static
3901int     scale_to_lwp_priority (int rMin, int rMax, int x)
3902{
3903  int v;
3904
3905  if (x == 127) return rMax;            // avoid round-down
3906    v = (((x*(rMax-rMin)))/128)+rMin;
3907  return v;
3908}
3909
3910
3911// set_lwp_class_and_priority
3912//
3913// Set the class and priority of the lwp.  This call should only
3914// be made when using bound threads (T2 threads are bound by default).
3915//
3916int set_lwp_class_and_priority(int ThreadID, int lwpid,
3917                               int newPrio, int new_class, bool scale) {
3918  int rslt;
3919  int Actual, Expected, prv;
3920  pcparms_t ParmInfo;                   // for GET-SET
3921#ifdef ASSERT
3922  pcparms_t ReadBack;                   // for readback
3923#endif
3924
3925  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3926  // Query current values.
3927  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3928  // Cache "pcparms_t" in global ParmCache.
3929  // TODO: elide set-to-same-value
3930
3931  // If something went wrong on init, don't change priorities.
3932  if ( !priocntl_enable ) {
3933    if (ThreadPriorityVerbose)
3934      tty->print_cr("Trying to set priority but init failed, ignoring");
3935    return EINVAL;
3936  }
3937
3938  // If lwp hasn't started yet, just return
3939  // the _start routine will call us again.
3940  if ( lwpid <= 0 ) {
3941    if (ThreadPriorityVerbose) {
3942      tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
3943                     INTPTR_FORMAT " to %d, lwpid not set",
3944                     ThreadID, newPrio);
3945    }
3946    return 0;
3947  }
3948
3949  if (ThreadPriorityVerbose) {
3950    tty->print_cr ("set_lwp_class_and_priority("
3951                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3952                   ThreadID, lwpid, newPrio);
3953  }
3954
3955  memset(&ParmInfo, 0, sizeof(pcparms_t));
3956  ParmInfo.pc_cid = PC_CLNULL;
3957  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3958  if (rslt < 0) return errno;
3959
3960  int cur_class = ParmInfo.pc_cid;
3961  ParmInfo.pc_cid = (id_t)new_class;
3962
3963  if (new_class == rtLimits.schedPolicy) {
3964    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3965    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3966                                                       rtLimits.maxPrio, newPrio)
3967                               : newPrio;
3968    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3969    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3970    if (ThreadPriorityVerbose) {
3971      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3972    }
3973  } else if (new_class == iaLimits.schedPolicy) {
3974    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3975    int maxClamped     = MIN2(iaLimits.maxPrio,
3976                              cur_class == new_class
3977                                ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3978    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3979                                                       maxClamped, newPrio)
3980                               : newPrio;
3981    iaInfo->ia_uprilim = cur_class == new_class
3982                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3983    iaInfo->ia_mode    = IA_NOCHANGE;
3984    if (ThreadPriorityVerbose) {
3985      tty->print_cr("IA: [%d...%d] %d->%d\n",
3986                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3987    }
3988  } else if (new_class == tsLimits.schedPolicy) {
3989    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3990    int maxClamped     = MIN2(tsLimits.maxPrio,
3991                              cur_class == new_class
3992                                ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3993    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3994                                                       maxClamped, newPrio)
3995                               : newPrio;
3996    tsInfo->ts_uprilim = cur_class == new_class
3997                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3998    if (ThreadPriorityVerbose) {
3999      tty->print_cr("TS: [%d...%d] %d->%d\n",
4000                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
4001    }
4002  } else if (new_class == fxLimits.schedPolicy) {
4003    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
4004    int maxClamped     = MIN2(fxLimits.maxPrio,
4005                              cur_class == new_class
4006                                ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
4007    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
4008                                                       maxClamped, newPrio)
4009                               : newPrio;
4010    fxInfo->fx_uprilim = cur_class == new_class
4011                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
4012    fxInfo->fx_tqsecs  = FX_NOCHANGE;
4013    fxInfo->fx_tqnsecs = FX_NOCHANGE;
4014    if (ThreadPriorityVerbose) {
4015      tty->print_cr("FX: [%d...%d] %d->%d\n",
4016                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
4017    }
4018  } else {
4019    if (ThreadPriorityVerbose) {
4020      tty->print_cr("Unknown new scheduling class %d\n", new_class);
4021    }
4022    return EINVAL;    // no clue, punt
4023  }
4024
4025  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
4026  if (ThreadPriorityVerbose && rslt) {
4027    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
4028  }
4029  if (rslt < 0) return errno;
4030
4031#ifdef ASSERT
4032  // Sanity check: read back what we just attempted to set.
4033  // In theory it could have changed in the interim ...
4034  //
4035  // The priocntl system call is tricky.
4036  // Sometimes it'll validate the priority value argument and
4037  // return EINVAL if unhappy.  At other times it fails silently.
4038  // Readbacks are prudent.
4039
4040  if (!ReadBackValidate) return 0;
4041
4042  memset(&ReadBack, 0, sizeof(pcparms_t));
4043  ReadBack.pc_cid = PC_CLNULL;
4044  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
4045  assert(rslt >= 0, "priocntl failed");
4046  Actual = Expected = 0xBAD;
4047  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
4048  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
4049    Actual   = RTPRI(ReadBack)->rt_pri;
4050    Expected = RTPRI(ParmInfo)->rt_pri;
4051  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
4052    Actual   = IAPRI(ReadBack)->ia_upri;
4053    Expected = IAPRI(ParmInfo)->ia_upri;
4054  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
4055    Actual   = TSPRI(ReadBack)->ts_upri;
4056    Expected = TSPRI(ParmInfo)->ts_upri;
4057  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
4058    Actual   = FXPRI(ReadBack)->fx_upri;
4059    Expected = FXPRI(ParmInfo)->fx_upri;
4060  } else {
4061    if (ThreadPriorityVerbose) {
4062      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
4063                    ParmInfo.pc_cid);
4064    }
4065  }
4066
4067  if (Actual != Expected) {
4068    if (ThreadPriorityVerbose) {
4069      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
4070                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
4071    }
4072  }
4073#endif
4074
4075  return 0;
4076}
4077
4078// Solaris only gives access to 128 real priorities at a time,
4079// so we expand Java's ten to fill this range.  This would be better
4080// if we dynamically adjusted relative priorities.
4081//
4082// The ThreadPriorityPolicy option allows us to select 2 different
4083// priority scales.
4084//
4085// ThreadPriorityPolicy=0
4086// Since the Solaris' default priority is MaximumPriority, we do not
4087// set a priority lower than Max unless a priority lower than
4088// NormPriority is requested.
4089//
4090// ThreadPriorityPolicy=1
4091// This mode causes the priority table to get filled with
4092// linear values.  NormPriority get's mapped to 50% of the
4093// Maximum priority an so on.  This will cause VM threads
4094// to get unfair treatment against other Solaris processes
4095// which do not explicitly alter their thread priorities.
4096//
4097
4098int os::java_to_os_priority[CriticalPriority + 1] = {
4099  -99999,         // 0 Entry should never be used
4100
4101  0,              // 1 MinPriority
4102  32,             // 2
4103  64,             // 3
4104
4105  96,             // 4
4106  127,            // 5 NormPriority
4107  127,            // 6
4108
4109  127,            // 7
4110  127,            // 8
4111  127,            // 9 NearMaxPriority
4112
4113  127,            // 10 MaxPriority
4114
4115  -criticalPrio   // 11 CriticalPriority
4116};
4117
4118OSReturn os::set_native_priority(Thread* thread, int newpri) {
4119  OSThread* osthread = thread->osthread();
4120
4121  // Save requested priority in case the thread hasn't been started
4122  osthread->set_native_priority(newpri);
4123
4124  // Check for critical priority request
4125  bool fxcritical = false;
4126  if (newpri == -criticalPrio) {
4127    fxcritical = true;
4128    newpri = criticalPrio;
4129  }
4130
4131  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
4132  if (!UseThreadPriorities) return OS_OK;
4133
4134  int status = 0;
4135
4136  if (!fxcritical) {
4137    // Use thr_setprio only if we have a priority that thr_setprio understands
4138    status = thr_setprio(thread->osthread()->thread_id(), newpri);
4139  }
4140
4141  if (os::Solaris::T2_libthread() ||
4142      (UseBoundThreads && osthread->is_vm_created())) {
4143    int lwp_status =
4144      set_lwp_class_and_priority(osthread->thread_id(),
4145                                 osthread->lwp_id(),
4146                                 newpri,
4147                                 fxcritical ? fxLimits.schedPolicy : myClass,
4148                                 !fxcritical);
4149    if (lwp_status != 0 && fxcritical) {
4150      // Try again, this time without changing the scheduling class
4151      newpri = java_MaxPriority_to_os_priority;
4152      lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
4153                                              osthread->lwp_id(),
4154                                              newpri, myClass, false);
4155    }
4156    status |= lwp_status;
4157  }
4158  return (status == 0) ? OS_OK : OS_ERR;
4159}
4160
4161
4162OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4163  int p;
4164  if ( !UseThreadPriorities ) {
4165    *priority_ptr = NormalPriority;
4166    return OS_OK;
4167  }
4168  int status = thr_getprio(thread->osthread()->thread_id(), &p);
4169  if (status != 0) {
4170    return OS_ERR;
4171  }
4172  *priority_ptr = p;
4173  return OS_OK;
4174}
4175
4176
4177// Hint to the underlying OS that a task switch would not be good.
4178// Void return because it's a hint and can fail.
4179void os::hint_no_preempt() {
4180  schedctl_start(schedctl_init());
4181}
4182
4183void os::interrupt(Thread* thread) {
4184  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
4185
4186  OSThread* osthread = thread->osthread();
4187
4188  int isInterrupted = osthread->interrupted();
4189  if (!isInterrupted) {
4190      osthread->set_interrupted(true);
4191      OrderAccess::fence();
4192      // os::sleep() is implemented with either poll (NULL,0,timeout) or
4193      // by parking on _SleepEvent.  If the former, thr_kill will unwedge
4194      // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
4195      ParkEvent * const slp = thread->_SleepEvent ;
4196      if (slp != NULL) slp->unpark() ;
4197  }
4198
4199  // For JSR166:  unpark after setting status but before thr_kill -dl
4200  if (thread->is_Java_thread()) {
4201    ((JavaThread*)thread)->parker()->unpark();
4202  }
4203
4204  // Handle interruptible wait() ...
4205  ParkEvent * const ev = thread->_ParkEvent ;
4206  if (ev != NULL) ev->unpark() ;
4207
4208  // When events are used everywhere for os::sleep, then this thr_kill
4209  // will only be needed if UseVMInterruptibleIO is true.
4210
4211  if (!isInterrupted) {
4212    int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
4213    assert_status(status == 0, status, "thr_kill");
4214
4215    // Bump thread interruption counter
4216    RuntimeService::record_thread_interrupt_signaled_count();
4217  }
4218}
4219
4220
4221bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4222  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
4223
4224  OSThread* osthread = thread->osthread();
4225
4226  bool res = osthread->interrupted();
4227
4228  // NOTE that since there is no "lock" around these two operations,
4229  // there is the possibility that the interrupted flag will be
4230  // "false" but that the interrupt event will be set. This is
4231  // intentional. The effect of this is that Object.wait() will appear
4232  // to have a spurious wakeup, which is not harmful, and the
4233  // possibility is so rare that it is not worth the added complexity
4234  // to add yet another lock. It has also been recommended not to put
4235  // the interrupted flag into the os::Solaris::Event structure,
4236  // because it hides the issue.
4237  if (res && clear_interrupted) {
4238    osthread->set_interrupted(false);
4239  }
4240  return res;
4241}
4242
4243
4244void os::print_statistics() {
4245}
4246
4247int os::message_box(const char* title, const char* message) {
4248  int i;
4249  fdStream err(defaultStream::error_fd());
4250  for (i = 0; i < 78; i++) err.print_raw("=");
4251  err.cr();
4252  err.print_raw_cr(title);
4253  for (i = 0; i < 78; i++) err.print_raw("-");
4254  err.cr();
4255  err.print_raw_cr(message);
4256  for (i = 0; i < 78; i++) err.print_raw("=");
4257  err.cr();
4258
4259  char buf[16];
4260  // Prevent process from exiting upon "read error" without consuming all CPU
4261  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4262
4263  return buf[0] == 'y' || buf[0] == 'Y';
4264}
4265
4266// A lightweight implementation that does not suspend the target thread and
4267// thus returns only a hint. Used for profiling only!
4268ExtendedPC os::get_thread_pc(Thread* thread) {
4269  // Make sure that it is called by the watcher and the Threads lock is owned.
4270  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
4271  // For now, is only used to profile the VM Thread
4272  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4273  ExtendedPC epc;
4274
4275  GetThreadPC_Callback  cb(ProfileVM_lock);
4276  OSThread *osthread = thread->osthread();
4277  const int time_to_wait = 400; // 400ms wait for initial response
4278  int status = cb.interrupt(thread, time_to_wait);
4279
4280  if (cb.is_done() ) {
4281    epc = cb.addr();
4282  } else {
4283    DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
4284                              osthread->thread_id(), status););
4285    // epc is already NULL
4286  }
4287  return epc;
4288}
4289
4290
4291// This does not do anything on Solaris. This is basically a hook for being
4292// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
4293void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
4294  f(value, method, args, thread);
4295}
4296
4297// This routine may be used by user applications as a "hook" to catch signals.
4298// The user-defined signal handler must pass unrecognized signals to this
4299// routine, and if it returns true (non-zero), then the signal handler must
4300// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4301// routine will never retun false (zero), but instead will execute a VM panic
4302// routine kill the process.
4303//
4304// If this routine returns false, it is OK to call it again.  This allows
4305// the user-defined signal handler to perform checks either before or after
4306// the VM performs its own checks.  Naturally, the user code would be making
4307// a serious error if it tried to handle an exception (such as a null check
4308// or breakpoint) that the VM was generating for its own correct operation.
4309//
4310// This routine may recognize any of the following kinds of signals:
4311// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
4312// os::Solaris::SIGasync
4313// It should be consulted by handlers for any of those signals.
4314// It explicitly does not recognize os::Solaris::SIGinterrupt
4315//
4316// The caller of this routine must pass in the three arguments supplied
4317// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4318// field of the structure passed to sigaction().  This routine assumes that
4319// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4320//
4321// Note that the VM will print warnings if it detects conflicting signal
4322// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4323//
4324extern "C" JNIEXPORT int
4325JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
4326                          int abort_if_unrecognized);
4327
4328
4329void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
4330  JVM_handle_solaris_signal(sig, info, ucVoid, true);
4331}
4332
4333/* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
4334   is needed to provoke threads blocked on IO to return an EINTR
4335   Note: this explicitly does NOT call JVM_handle_solaris_signal and
4336   does NOT participate in signal chaining due to requirement for
4337   NOT setting SA_RESTART to make EINTR work. */
4338extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
4339   if (UseSignalChaining) {
4340      struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
4341      if (actp && actp->sa_handler) {
4342        vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
4343      }
4344   }
4345}
4346
4347// This boolean allows users to forward their own non-matching signals
4348// to JVM_handle_solaris_signal, harmlessly.
4349bool os::Solaris::signal_handlers_are_installed = false;
4350
4351// For signal-chaining
4352bool os::Solaris::libjsig_is_loaded = false;
4353typedef struct sigaction *(*get_signal_t)(int);
4354get_signal_t os::Solaris::get_signal_action = NULL;
4355
4356struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
4357  struct sigaction *actp = NULL;
4358
4359  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
4360    // Retrieve the old signal handler from libjsig
4361    actp = (*get_signal_action)(sig);
4362  }
4363  if (actp == NULL) {
4364    // Retrieve the preinstalled signal handler from jvm
4365    actp = get_preinstalled_handler(sig);
4366  }
4367
4368  return actp;
4369}
4370
4371static bool call_chained_handler(struct sigaction *actp, int sig,
4372                                 siginfo_t *siginfo, void *context) {
4373  // Call the old signal handler
4374  if (actp->sa_handler == SIG_DFL) {
4375    // It's more reasonable to let jvm treat it as an unexpected exception
4376    // instead of taking the default action.
4377    return false;
4378  } else if (actp->sa_handler != SIG_IGN) {
4379    if ((actp->sa_flags & SA_NODEFER) == 0) {
4380      // automaticlly block the signal
4381      sigaddset(&(actp->sa_mask), sig);
4382    }
4383
4384    sa_handler_t hand;
4385    sa_sigaction_t sa;
4386    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4387    // retrieve the chained handler
4388    if (siginfo_flag_set) {
4389      sa = actp->sa_sigaction;
4390    } else {
4391      hand = actp->sa_handler;
4392    }
4393
4394    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4395      actp->sa_handler = SIG_DFL;
4396    }
4397
4398    // try to honor the signal mask
4399    sigset_t oset;
4400    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4401
4402    // call into the chained handler
4403    if (siginfo_flag_set) {
4404      (*sa)(sig, siginfo, context);
4405    } else {
4406      (*hand)(sig);
4407    }
4408
4409    // restore the signal mask
4410    thr_sigsetmask(SIG_SETMASK, &oset, 0);
4411  }
4412  // Tell jvm's signal handler the signal is taken care of.
4413  return true;
4414}
4415
4416bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4417  bool chained = false;
4418  // signal-chaining
4419  if (UseSignalChaining) {
4420    struct sigaction *actp = get_chained_signal_action(sig);
4421    if (actp != NULL) {
4422      chained = call_chained_handler(actp, sig, siginfo, context);
4423    }
4424  }
4425  return chained;
4426}
4427
4428struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
4429  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4430  if (preinstalled_sigs[sig] != 0) {
4431    return &chainedsigactions[sig];
4432  }
4433  return NULL;
4434}
4435
4436void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4437
4438  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
4439  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4440  chainedsigactions[sig] = oldAct;
4441  preinstalled_sigs[sig] = 1;
4442}
4443
4444void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
4445  // Check for overwrite.
4446  struct sigaction oldAct;
4447  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4448  void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4449                                      : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4450  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4451      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4452      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
4453    if (AllowUserSignalHandlers || !set_installed) {
4454      // Do not overwrite; user takes responsibility to forward to us.
4455      return;
4456    } else if (UseSignalChaining) {
4457      if (oktochain) {
4458        // save the old handler in jvm
4459        save_preinstalled_handler(sig, oldAct);
4460      } else {
4461        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
4462      }
4463      // libjsig also interposes the sigaction() call below and saves the
4464      // old sigaction on it own.
4465    } else {
4466      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4467                    "%#lx for signal %d.", (long)oldhand, sig));
4468    }
4469  }
4470
4471  struct sigaction sigAct;
4472  sigfillset(&(sigAct.sa_mask));
4473  sigAct.sa_handler = SIG_DFL;
4474
4475  sigAct.sa_sigaction = signalHandler;
4476  // Handle SIGSEGV on alternate signal stack if
4477  // not using stack banging
4478  if (!UseStackBanging && sig == SIGSEGV) {
4479    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4480  // Interruptible i/o requires SA_RESTART cleared so EINTR
4481  // is returned instead of restarting system calls
4482  } else if (sig == os::Solaris::SIGinterrupt()) {
4483    sigemptyset(&sigAct.sa_mask);
4484    sigAct.sa_handler = NULL;
4485    sigAct.sa_flags = SA_SIGINFO;
4486    sigAct.sa_sigaction = sigINTRHandler;
4487  } else {
4488    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4489  }
4490  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4491
4492  sigaction(sig, &sigAct, &oldAct);
4493
4494  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4495                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4496  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4497}
4498
4499
4500#define DO_SIGNAL_CHECK(sig) \
4501  if (!sigismember(&check_signal_done, sig)) \
4502    os::Solaris::check_signal_handler(sig)
4503
4504// This method is a periodic task to check for misbehaving JNI applications
4505// under CheckJNI, we can add any periodic checks here
4506
4507void os::run_periodic_checks() {
4508  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4509  // thereby preventing a NULL checks.
4510  if(!check_addr0_done) check_addr0_done = check_addr0(tty);
4511
4512  if (check_signals == false) return;
4513
4514  // SEGV and BUS if overridden could potentially prevent
4515  // generation of hs*.log in the event of a crash, debugging
4516  // such a case can be very challenging, so we absolutely
4517  // check for the following for a good measure:
4518  DO_SIGNAL_CHECK(SIGSEGV);
4519  DO_SIGNAL_CHECK(SIGILL);
4520  DO_SIGNAL_CHECK(SIGFPE);
4521  DO_SIGNAL_CHECK(SIGBUS);
4522  DO_SIGNAL_CHECK(SIGPIPE);
4523  DO_SIGNAL_CHECK(SIGXFSZ);
4524
4525  // ReduceSignalUsage allows the user to override these handlers
4526  // see comments at the very top and jvm_solaris.h
4527  if (!ReduceSignalUsage) {
4528    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4529    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4530    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4531    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4532  }
4533
4534  // See comments above for using JVM1/JVM2 and UseAltSigs
4535  DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
4536  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4537
4538}
4539
4540typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4541
4542static os_sigaction_t os_sigaction = NULL;
4543
4544void os::Solaris::check_signal_handler(int sig) {
4545  char buf[O_BUFLEN];
4546  address jvmHandler = NULL;
4547
4548  struct sigaction act;
4549  if (os_sigaction == NULL) {
4550    // only trust the default sigaction, in case it has been interposed
4551    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4552    if (os_sigaction == NULL) return;
4553  }
4554
4555  os_sigaction(sig, (struct sigaction*)NULL, &act);
4556
4557  address thisHandler = (act.sa_flags & SA_SIGINFO)
4558    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4559    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4560
4561
4562  switch(sig) {
4563    case SIGSEGV:
4564    case SIGBUS:
4565    case SIGFPE:
4566    case SIGPIPE:
4567    case SIGXFSZ:
4568    case SIGILL:
4569      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4570      break;
4571
4572    case SHUTDOWN1_SIGNAL:
4573    case SHUTDOWN2_SIGNAL:
4574    case SHUTDOWN3_SIGNAL:
4575    case BREAK_SIGNAL:
4576      jvmHandler = (address)user_handler();
4577      break;
4578
4579    default:
4580      int intrsig = os::Solaris::SIGinterrupt();
4581      int asynsig = os::Solaris::SIGasync();
4582
4583      if (sig == intrsig) {
4584        jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
4585      } else if (sig == asynsig) {
4586        jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4587      } else {
4588        return;
4589      }
4590      break;
4591  }
4592
4593
4594  if (thisHandler != jvmHandler) {
4595    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4596    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4597    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4598    // No need to check this sig any longer
4599    sigaddset(&check_signal_done, sig);
4600  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4601    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4602    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4603    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4604    // No need to check this sig any longer
4605    sigaddset(&check_signal_done, sig);
4606  }
4607
4608  // Print all the signal handler state
4609  if (sigismember(&check_signal_done, sig)) {
4610    print_signal_handlers(tty, buf, O_BUFLEN);
4611  }
4612
4613}
4614
4615void os::Solaris::install_signal_handlers() {
4616  bool libjsigdone = false;
4617  signal_handlers_are_installed = true;
4618
4619  // signal-chaining
4620  typedef void (*signal_setting_t)();
4621  signal_setting_t begin_signal_setting = NULL;
4622  signal_setting_t end_signal_setting = NULL;
4623  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4624                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4625  if (begin_signal_setting != NULL) {
4626    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4627                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4628    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4629                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4630    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4631                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4632    libjsig_is_loaded = true;
4633    if (os::Solaris::get_libjsig_version != NULL) {
4634      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4635    }
4636    assert(UseSignalChaining, "should enable signal-chaining");
4637  }
4638  if (libjsig_is_loaded) {
4639    // Tell libjsig jvm is setting signal handlers
4640    (*begin_signal_setting)();
4641  }
4642
4643  set_signal_handler(SIGSEGV, true, true);
4644  set_signal_handler(SIGPIPE, true, true);
4645  set_signal_handler(SIGXFSZ, true, true);
4646  set_signal_handler(SIGBUS, true, true);
4647  set_signal_handler(SIGILL, true, true);
4648  set_signal_handler(SIGFPE, true, true);
4649
4650
4651  if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4652
4653    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4654    // can not register overridable signals which might be > 32
4655    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4656    // Tell libjsig jvm has finished setting signal handlers
4657      (*end_signal_setting)();
4658      libjsigdone = true;
4659    }
4660  }
4661
4662  // Never ok to chain our SIGinterrupt
4663  set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
4664  set_signal_handler(os::Solaris::SIGasync(), true, true);
4665
4666  if (libjsig_is_loaded && !libjsigdone) {
4667    // Tell libjsig jvm finishes setting signal handlers
4668    (*end_signal_setting)();
4669  }
4670
4671  // We don't activate signal checker if libjsig is in place, we trust ourselves
4672  // and if UserSignalHandler is installed all bets are off.
4673  // Log that signal checking is off only if -verbose:jni is specified.
4674  if (CheckJNICalls) {
4675    if (libjsig_is_loaded) {
4676      if (PrintJNIResolving) {
4677        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4678      }
4679      check_signals = false;
4680    }
4681    if (AllowUserSignalHandlers) {
4682      if (PrintJNIResolving) {
4683        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4684      }
4685      check_signals = false;
4686    }
4687  }
4688}
4689
4690
4691void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
4692
4693const char * signames[] = {
4694  "SIG0",
4695  "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
4696  "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
4697  "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
4698  "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
4699  "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
4700  "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
4701  "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
4702  "SIGCANCEL", "SIGLOST"
4703};
4704
4705const char* os::exception_name(int exception_code, char* buf, size_t size) {
4706  if (0 < exception_code && exception_code <= SIGRTMAX) {
4707    // signal
4708    if (exception_code < sizeof(signames)/sizeof(const char*)) {
4709       jio_snprintf(buf, size, "%s", signames[exception_code]);
4710    } else {
4711       jio_snprintf(buf, size, "SIG%d", exception_code);
4712    }
4713    return buf;
4714  } else {
4715    return NULL;
4716  }
4717}
4718
4719// (Static) wrappers for the new libthread API
4720int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
4721int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
4722int_fnP_thread_t_i os::Solaris::_thr_setmutator;
4723int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
4724int_fnP_thread_t os::Solaris::_thr_continue_mutator;
4725
4726// (Static) wrapper for getisax(2) call.
4727os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4728
4729// (Static) wrappers for the liblgrp API
4730os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4731os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4732os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4733os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4734os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4735os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4736os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4737os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4738os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4739
4740// (Static) wrapper for meminfo() call.
4741os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4742
4743static address resolve_symbol_lazy(const char* name) {
4744  address addr = (address) dlsym(RTLD_DEFAULT, name);
4745  if(addr == NULL) {
4746    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4747    addr = (address) dlsym(RTLD_NEXT, name);
4748  }
4749  return addr;
4750}
4751
4752static address resolve_symbol(const char* name) {
4753  address addr = resolve_symbol_lazy(name);
4754  if(addr == NULL) {
4755    fatal(dlerror());
4756  }
4757  return addr;
4758}
4759
4760
4761
4762// isT2_libthread()
4763//
4764// Routine to determine if we are currently using the new T2 libthread.
4765//
4766// We determine if we are using T2 by reading /proc/self/lstatus and
4767// looking for a thread with the ASLWP bit set.  If we find this status
4768// bit set, we must assume that we are NOT using T2.  The T2 team
4769// has approved this algorithm.
4770//
4771// We need to determine if we are running with the new T2 libthread
4772// since setting native thread priorities is handled differently
4773// when using this library.  All threads created using T2 are bound
4774// threads. Calling thr_setprio is meaningless in this case.
4775//
4776bool isT2_libthread() {
4777  static prheader_t * lwpArray = NULL;
4778  static int lwpSize = 0;
4779  static int lwpFile = -1;
4780  lwpstatus_t * that;
4781  char lwpName [128];
4782  bool isT2 = false;
4783
4784#define ADR(x)  ((uintptr_t)(x))
4785#define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
4786
4787  lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
4788  if (lwpFile < 0) {
4789      if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
4790      return false;
4791  }
4792  lwpSize = 16*1024;
4793  for (;;) {
4794    ::lseek64 (lwpFile, 0, SEEK_SET);
4795    lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
4796    if (::read(lwpFile, lwpArray, lwpSize) < 0) {
4797      if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
4798      break;
4799    }
4800    if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
4801       // We got a good snapshot - now iterate over the list.
4802      int aslwpcount = 0;
4803      for (int i = 0; i < lwpArray->pr_nent; i++ ) {
4804        that = LWPINDEX(lwpArray,i);
4805        if (that->pr_flags & PR_ASLWP) {
4806          aslwpcount++;
4807        }
4808      }
4809      if (aslwpcount == 0) isT2 = true;
4810      break;
4811    }
4812    lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
4813    FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);  // retry.
4814  }
4815
4816  FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
4817  ::close (lwpFile);
4818  if (ThreadPriorityVerbose) {
4819    if (isT2) tty->print_cr("We are running with a T2 libthread\n");
4820    else tty->print_cr("We are not running with a T2 libthread\n");
4821  }
4822  return isT2;
4823}
4824
4825
4826void os::Solaris::libthread_init() {
4827  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4828
4829  // Determine if we are running with the new T2 libthread
4830  os::Solaris::set_T2_libthread(isT2_libthread());
4831
4832  lwp_priocntl_init();
4833
4834  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4835  if(func == NULL) {
4836    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4837    // Guarantee that this VM is running on an new enough OS (5.6 or
4838    // later) that it will have a new enough libthread.so.
4839    guarantee(func != NULL, "libthread.so is too old.");
4840  }
4841
4842  // Initialize the new libthread getstate API wrappers
4843  func = resolve_symbol("thr_getstate");
4844  os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
4845
4846  func = resolve_symbol("thr_setstate");
4847  os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
4848
4849  func = resolve_symbol("thr_setmutator");
4850  os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
4851
4852  func = resolve_symbol("thr_suspend_mutator");
4853  os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4854
4855  func = resolve_symbol("thr_continue_mutator");
4856  os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4857
4858  int size;
4859  void (*handler_info_func)(address *, int *);
4860  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4861  handler_info_func(&handler_start, &size);
4862  handler_end = handler_start + size;
4863}
4864
4865
4866int_fnP_mutex_tP os::Solaris::_mutex_lock;
4867int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4868int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4869int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4870int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4871int os::Solaris::_mutex_scope = USYNC_THREAD;
4872
4873int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4874int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4875int_fnP_cond_tP os::Solaris::_cond_signal;
4876int_fnP_cond_tP os::Solaris::_cond_broadcast;
4877int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4878int_fnP_cond_tP os::Solaris::_cond_destroy;
4879int os::Solaris::_cond_scope = USYNC_THREAD;
4880
4881void os::Solaris::synchronization_init() {
4882  if(UseLWPSynchronization) {
4883    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4884    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4885    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4886    os::Solaris::set_mutex_init(lwp_mutex_init);
4887    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4888    os::Solaris::set_mutex_scope(USYNC_THREAD);
4889
4890    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4891    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4892    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4893    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4894    os::Solaris::set_cond_init(lwp_cond_init);
4895    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4896    os::Solaris::set_cond_scope(USYNC_THREAD);
4897  }
4898  else {
4899    os::Solaris::set_mutex_scope(USYNC_THREAD);
4900    os::Solaris::set_cond_scope(USYNC_THREAD);
4901
4902    if(UsePthreads) {
4903      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4904      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4905      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4906      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4907      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4908
4909      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4910      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4911      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4912      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4913      os::Solaris::set_cond_init(pthread_cond_default_init);
4914      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4915    }
4916    else {
4917      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4918      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4919      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4920      os::Solaris::set_mutex_init(::mutex_init);
4921      os::Solaris::set_mutex_destroy(::mutex_destroy);
4922
4923      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4924      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4925      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4926      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4927      os::Solaris::set_cond_init(::cond_init);
4928      os::Solaris::set_cond_destroy(::cond_destroy);
4929    }
4930  }
4931}
4932
4933bool os::Solaris::liblgrp_init() {
4934  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4935  if (handle != NULL) {
4936    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4937    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4938    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4939    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4940    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4941    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4942    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4943    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4944                                       dlsym(handle, "lgrp_cookie_stale")));
4945
4946    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4947    set_lgrp_cookie(c);
4948    return true;
4949  }
4950  return false;
4951}
4952
4953void os::Solaris::misc_sym_init() {
4954  address func;
4955
4956  // getisax
4957  func = resolve_symbol_lazy("getisax");
4958  if (func != NULL) {
4959    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4960  }
4961
4962  // meminfo
4963  func = resolve_symbol_lazy("meminfo");
4964  if (func != NULL) {
4965    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4966  }
4967}
4968
4969uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4970  assert(_getisax != NULL, "_getisax not set");
4971  return _getisax(array, n);
4972}
4973
4974// Symbol doesn't exist in Solaris 8 pset.h
4975#ifndef PS_MYID
4976#define PS_MYID -3
4977#endif
4978
4979// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4980typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4981static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4982
4983void init_pset_getloadavg_ptr(void) {
4984  pset_getloadavg_ptr =
4985    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4986  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4987    warning("pset_getloadavg function not found");
4988  }
4989}
4990
4991int os::Solaris::_dev_zero_fd = -1;
4992
4993// this is called _before_ the global arguments have been parsed
4994void os::init(void) {
4995  _initial_pid = getpid();
4996
4997  max_hrtime = first_hrtime = gethrtime();
4998
4999  init_random(1234567);
5000
5001  page_size = sysconf(_SC_PAGESIZE);
5002  if (page_size == -1)
5003    fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
5004                  strerror(errno)));
5005  init_page_sizes((size_t) page_size);
5006
5007  Solaris::initialize_system_info();
5008
5009  // Initialize misc. symbols as soon as possible, so we can use them
5010  // if we need them.
5011  Solaris::misc_sym_init();
5012
5013  int fd = ::open("/dev/zero", O_RDWR);
5014  if (fd < 0) {
5015    fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
5016  } else {
5017    Solaris::set_dev_zero_fd(fd);
5018
5019    // Close on exec, child won't inherit.
5020    fcntl(fd, F_SETFD, FD_CLOEXEC);
5021  }
5022
5023  clock_tics_per_sec = CLK_TCK;
5024
5025  // check if dladdr1() exists; dladdr1 can provide more information than
5026  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
5027  // and is available on linker patches for 5.7 and 5.8.
5028  // libdl.so must have been loaded, this call is just an entry lookup
5029  void * hdl = dlopen("libdl.so", RTLD_NOW);
5030  if (hdl)
5031    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
5032
5033  // (Solaris only) this switches to calls that actually do locking.
5034  ThreadCritical::initialize();
5035
5036  main_thread = thr_self();
5037
5038  // Constant minimum stack size allowed. It must be at least
5039  // the minimum of what the OS supports (thr_min_stack()), and
5040  // enough to allow the thread to get to user bytecode execution.
5041  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
5042  // If the pagesize of the VM is greater than 8K determine the appropriate
5043  // number of initial guard pages.  The user can change this with the
5044  // command line arguments, if needed.
5045  if (vm_page_size() > 8*K) {
5046    StackYellowPages = 1;
5047    StackRedPages = 1;
5048    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
5049  }
5050}
5051
5052// To install functions for atexit system call
5053extern "C" {
5054  static void perfMemory_exit_helper() {
5055    perfMemory_exit();
5056  }
5057}
5058
5059// this is called _after_ the global arguments have been parsed
5060jint os::init_2(void) {
5061  // try to enable extended file IO ASAP, see 6431278
5062  os::Solaris::try_enable_extended_io();
5063
5064  // Allocate a single page and mark it as readable for safepoint polling.  Also
5065  // use this first mmap call to check support for MAP_ALIGN.
5066  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
5067                                                      page_size,
5068                                                      MAP_PRIVATE | MAP_ALIGN,
5069                                                      PROT_READ);
5070  if (polling_page == NULL) {
5071    has_map_align = false;
5072    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
5073                                                PROT_READ);
5074  }
5075
5076  os::set_polling_page(polling_page);
5077
5078#ifndef PRODUCT
5079  if( Verbose && PrintMiscellaneous )
5080    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5081#endif
5082
5083  if (!UseMembar) {
5084    address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
5085    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
5086    os::set_memory_serialize_page( mem_serialize_page );
5087
5088#ifndef PRODUCT
5089    if(Verbose && PrintMiscellaneous)
5090      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5091#endif
5092}
5093
5094  os::large_page_init();
5095
5096  // Check minimum allowable stack size for thread creation and to initialize
5097  // the java system classes, including StackOverflowError - depends on page
5098  // size.  Add a page for compiler2 recursion in main thread.
5099  // Add in 2*BytesPerWord times page size to account for VM stack during
5100  // class initialization depending on 32 or 64 bit VM.
5101  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
5102            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
5103                    2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
5104
5105  size_t threadStackSizeInBytes = ThreadStackSize * K;
5106  if (threadStackSizeInBytes != 0 &&
5107    threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
5108    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
5109                  os::Solaris::min_stack_allowed/K);
5110    return JNI_ERR;
5111  }
5112
5113  // For 64kbps there will be a 64kb page size, which makes
5114  // the usable default stack size quite a bit less.  Increase the
5115  // stack for 64kb (or any > than 8kb) pages, this increases
5116  // virtual memory fragmentation (since we're not creating the
5117  // stack on a power of 2 boundary.  The real fix for this
5118  // should be to fix the guard page mechanism.
5119
5120  if (vm_page_size() > 8*K) {
5121      threadStackSizeInBytes = (threadStackSizeInBytes != 0)
5122         ? threadStackSizeInBytes +
5123           ((StackYellowPages + StackRedPages) * vm_page_size())
5124         : 0;
5125      ThreadStackSize = threadStackSizeInBytes/K;
5126  }
5127
5128  // Make the stack size a multiple of the page size so that
5129  // the yellow/red zones can be guarded.
5130  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5131        vm_page_size()));
5132
5133  Solaris::libthread_init();
5134
5135  if (UseNUMA) {
5136    if (!Solaris::liblgrp_init()) {
5137      UseNUMA = false;
5138    } else {
5139      size_t lgrp_limit = os::numa_get_groups_num();
5140      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
5141      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
5142      FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
5143      if (lgrp_num < 2) {
5144        // There's only one locality group, disable NUMA.
5145        UseNUMA = false;
5146      }
5147    }
5148    // ISM is not compatible with the NUMA allocator - it always allocates
5149    // pages round-robin across the lgroups.
5150    if (UseNUMA && UseLargePages && UseISM) {
5151      if (!FLAG_IS_DEFAULT(UseNUMA)) {
5152        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseISM)) {
5153          UseLargePages = false;
5154        } else {
5155          warning("UseNUMA is not compatible with ISM large pages, disabling NUMA allocator");
5156          UseNUMA = false;
5157        }
5158      } else {
5159        UseNUMA = false;
5160      }
5161    }
5162    if (!UseNUMA && ForceNUMA) {
5163      UseNUMA = true;
5164    }
5165  }
5166
5167  Solaris::signal_sets_init();
5168  Solaris::init_signal_mem();
5169  Solaris::install_signal_handlers();
5170
5171  if (libjsigversion < JSIG_VERSION_1_4_1) {
5172    Maxlibjsigsigs = OLDMAXSIGNUM;
5173  }
5174
5175  // initialize synchronization primitives to use either thread or
5176  // lwp synchronization (controlled by UseLWPSynchronization)
5177  Solaris::synchronization_init();
5178
5179  if (MaxFDLimit) {
5180    // set the number of file descriptors to max. print out error
5181    // if getrlimit/setrlimit fails but continue regardless.
5182    struct rlimit nbr_files;
5183    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5184    if (status != 0) {
5185      if (PrintMiscellaneous && (Verbose || WizardMode))
5186        perror("os::init_2 getrlimit failed");
5187    } else {
5188      nbr_files.rlim_cur = nbr_files.rlim_max;
5189      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5190      if (status != 0) {
5191        if (PrintMiscellaneous && (Verbose || WizardMode))
5192          perror("os::init_2 setrlimit failed");
5193      }
5194    }
5195  }
5196
5197  // Calculate theoretical max. size of Threads to guard gainst
5198  // artifical out-of-memory situations, where all available address-
5199  // space has been reserved by thread stacks. Default stack size is 1Mb.
5200  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
5201    JavaThread::stack_size_at_create() : (1*K*K);
5202  assert(pre_thread_stack_size != 0, "Must have a stack");
5203  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
5204  // we should start doing Virtual Memory banging. Currently when the threads will
5205  // have used all but 200Mb of space.
5206  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
5207  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
5208
5209  // at-exit methods are called in the reverse order of their registration.
5210  // In Solaris 7 and earlier, atexit functions are called on return from
5211  // main or as a result of a call to exit(3C). There can be only 32 of
5212  // these functions registered and atexit() does not set errno. In Solaris
5213  // 8 and later, there is no limit to the number of functions registered
5214  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
5215  // functions are called upon dlclose(3DL) in addition to return from main
5216  // and exit(3C).
5217
5218  if (PerfAllowAtExitRegistration) {
5219    // only register atexit functions if PerfAllowAtExitRegistration is set.
5220    // atexit functions can be delayed until process exit time, which
5221    // can be problematic for embedded VM situations. Embedded VMs should
5222    // call DestroyJavaVM() to assure that VM resources are released.
5223
5224    // note: perfMemory_exit_helper atexit function may be removed in
5225    // the future if the appropriate cleanup code can be added to the
5226    // VM_Exit VMOperation's doit method.
5227    if (atexit(perfMemory_exit_helper) != 0) {
5228      warning("os::init2 atexit(perfMemory_exit_helper) failed");
5229    }
5230  }
5231
5232  // Init pset_loadavg function pointer
5233  init_pset_getloadavg_ptr();
5234
5235  return JNI_OK;
5236}
5237
5238void os::init_3(void) {
5239  return;
5240}
5241
5242// Mark the polling page as unreadable
5243void os::make_polling_page_unreadable(void) {
5244  if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
5245    fatal("Could not disable polling page");
5246};
5247
5248// Mark the polling page as readable
5249void os::make_polling_page_readable(void) {
5250  if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
5251    fatal("Could not enable polling page");
5252};
5253
5254// OS interface.
5255
5256bool os::check_heap(bool force) { return true; }
5257
5258typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
5259static vsnprintf_t sol_vsnprintf = NULL;
5260
5261int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
5262  if (!sol_vsnprintf) {
5263    //search  for the named symbol in the objects that were loaded after libjvm
5264    void* where = RTLD_NEXT;
5265    if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
5266        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
5267    if (!sol_vsnprintf){
5268      //search  for the named symbol in the objects that were loaded before libjvm
5269      where = RTLD_DEFAULT;
5270      if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
5271        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
5272      assert(sol_vsnprintf != NULL, "vsnprintf not found");
5273    }
5274  }
5275  return (*sol_vsnprintf)(buf, count, fmt, argptr);
5276}
5277
5278
5279// Is a (classpath) directory empty?
5280bool os::dir_is_empty(const char* path) {
5281  DIR *dir = NULL;
5282  struct dirent *ptr;
5283
5284  dir = opendir(path);
5285  if (dir == NULL) return true;
5286
5287  /* Scan the directory */
5288  bool result = true;
5289  char buf[sizeof(struct dirent) + MAX_PATH];
5290  struct dirent *dbuf = (struct dirent *) buf;
5291  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
5292    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5293      result = false;
5294    }
5295  }
5296  closedir(dir);
5297  return result;
5298}
5299
5300// This code originates from JDK's sysOpen and open64_w
5301// from src/solaris/hpi/src/system_md.c
5302
5303#ifndef O_DELETE
5304#define O_DELETE 0x10000
5305#endif
5306
5307// Open a file. Unlink the file immediately after open returns
5308// if the specified oflag has the O_DELETE flag set.
5309// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5310
5311int os::open(const char *path, int oflag, int mode) {
5312  if (strlen(path) > MAX_PATH - 1) {
5313    errno = ENAMETOOLONG;
5314    return -1;
5315  }
5316  int fd;
5317  int o_delete = (oflag & O_DELETE);
5318  oflag = oflag & ~O_DELETE;
5319
5320  fd = ::open64(path, oflag, mode);
5321  if (fd == -1) return -1;
5322
5323  //If the open succeeded, the file might still be a directory
5324  {
5325    struct stat64 buf64;
5326    int ret = ::fstat64(fd, &buf64);
5327    int st_mode = buf64.st_mode;
5328
5329    if (ret != -1) {
5330      if ((st_mode & S_IFMT) == S_IFDIR) {
5331        errno = EISDIR;
5332        ::close(fd);
5333        return -1;
5334      }
5335    } else {
5336      ::close(fd);
5337      return -1;
5338    }
5339  }
5340    /*
5341     * 32-bit Solaris systems suffer from:
5342     *
5343     * - an historical default soft limit of 256 per-process file
5344     *   descriptors that is too low for many Java programs.
5345     *
5346     * - a design flaw where file descriptors created using stdio
5347     *   fopen must be less than 256, _even_ when the first limit above
5348     *   has been raised.  This can cause calls to fopen (but not calls to
5349     *   open, for example) to fail mysteriously, perhaps in 3rd party
5350     *   native code (although the JDK itself uses fopen).  One can hardly
5351     *   criticize them for using this most standard of all functions.
5352     *
5353     * We attempt to make everything work anyways by:
5354     *
5355     * - raising the soft limit on per-process file descriptors beyond
5356     *   256
5357     *
5358     * - As of Solaris 10u4, we can request that Solaris raise the 256
5359     *   stdio fopen limit by calling function enable_extended_FILE_stdio.
5360     *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
5361     *
5362     * - If we are stuck on an old (pre 10u4) Solaris system, we can
5363     *   workaround the bug by remapping non-stdio file descriptors below
5364     *   256 to ones beyond 256, which is done below.
5365     *
5366     * See:
5367     * 1085341: 32-bit stdio routines should support file descriptors >255
5368     * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
5369     * 6431278: Netbeans crash on 32 bit Solaris: need to call
5370     *          enable_extended_FILE_stdio() in VM initialisation
5371     * Giri Mandalika's blog
5372     * http://technopark02.blogspot.com/2005_05_01_archive.html
5373     */
5374#ifndef  _LP64
5375     if ((!enabled_extended_FILE_stdio) && fd < 256) {
5376         int newfd = ::fcntl(fd, F_DUPFD, 256);
5377         if (newfd != -1) {
5378             ::close(fd);
5379             fd = newfd;
5380         }
5381     }
5382#endif // 32-bit Solaris
5383    /*
5384     * All file descriptors that are opened in the JVM and not
5385     * specifically destined for a subprocess should have the
5386     * close-on-exec flag set.  If we don't set it, then careless 3rd
5387     * party native code might fork and exec without closing all
5388     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5389     * UNIXProcess.c), and this in turn might:
5390     *
5391     * - cause end-of-file to fail to be detected on some file
5392     *   descriptors, resulting in mysterious hangs, or
5393     *
5394     * - might cause an fopen in the subprocess to fail on a system
5395     *   suffering from bug 1085341.
5396     *
5397     * (Yes, the default setting of the close-on-exec flag is a Unix
5398     * design flaw)
5399     *
5400     * See:
5401     * 1085341: 32-bit stdio routines should support file descriptors >255
5402     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5403     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5404     */
5405#ifdef FD_CLOEXEC
5406    {
5407        int flags = ::fcntl(fd, F_GETFD);
5408        if (flags != -1)
5409            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5410    }
5411#endif
5412
5413  if (o_delete != 0) {
5414    ::unlink(path);
5415  }
5416  return fd;
5417}
5418
5419// create binary file, rewriting existing file if required
5420int os::create_binary_file(const char* path, bool rewrite_existing) {
5421  int oflags = O_WRONLY | O_CREAT;
5422  if (!rewrite_existing) {
5423    oflags |= O_EXCL;
5424  }
5425  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5426}
5427
5428// return current position of file pointer
5429jlong os::current_file_offset(int fd) {
5430  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5431}
5432
5433// move file pointer to the specified offset
5434jlong os::seek_to_file_offset(int fd, jlong offset) {
5435  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5436}
5437
5438jlong os::lseek(int fd, jlong offset, int whence) {
5439  return (jlong) ::lseek64(fd, offset, whence);
5440}
5441
5442char * os::native_path(char *path) {
5443  return path;
5444}
5445
5446int os::ftruncate(int fd, jlong length) {
5447  return ::ftruncate64(fd, length);
5448}
5449
5450int os::fsync(int fd)  {
5451  RESTARTABLE_RETURN_INT(::fsync(fd));
5452}
5453
5454int os::available(int fd, jlong *bytes) {
5455  jlong cur, end;
5456  int mode;
5457  struct stat64 buf64;
5458
5459  if (::fstat64(fd, &buf64) >= 0) {
5460    mode = buf64.st_mode;
5461    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5462      /*
5463      * XXX: is the following call interruptible? If so, this might
5464      * need to go through the INTERRUPT_IO() wrapper as for other
5465      * blocking, interruptible calls in this file.
5466      */
5467      int n,ioctl_return;
5468
5469      INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
5470      if (ioctl_return>= 0) {
5471          *bytes = n;
5472        return 1;
5473      }
5474    }
5475  }
5476  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5477    return 0;
5478  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5479    return 0;
5480  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5481    return 0;
5482  }
5483  *bytes = end - cur;
5484  return 1;
5485}
5486
5487// Map a block of memory.
5488char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5489                     char *addr, size_t bytes, bool read_only,
5490                     bool allow_exec) {
5491  int prot;
5492  int flags;
5493
5494  if (read_only) {
5495    prot = PROT_READ;
5496    flags = MAP_SHARED;
5497  } else {
5498    prot = PROT_READ | PROT_WRITE;
5499    flags = MAP_PRIVATE;
5500  }
5501
5502  if (allow_exec) {
5503    prot |= PROT_EXEC;
5504  }
5505
5506  if (addr != NULL) {
5507    flags |= MAP_FIXED;
5508  }
5509
5510  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5511                                     fd, file_offset);
5512  if (mapped_address == MAP_FAILED) {
5513    return NULL;
5514  }
5515  return mapped_address;
5516}
5517
5518
5519// Remap a block of memory.
5520char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5521                       char *addr, size_t bytes, bool read_only,
5522                       bool allow_exec) {
5523  // same as map_memory() on this OS
5524  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5525                        allow_exec);
5526}
5527
5528
5529// Unmap a block of memory.
5530bool os::pd_unmap_memory(char* addr, size_t bytes) {
5531  return munmap(addr, bytes) == 0;
5532}
5533
5534void os::pause() {
5535  char filename[MAX_PATH];
5536  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5537    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5538  } else {
5539    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5540  }
5541
5542  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5543  if (fd != -1) {
5544    struct stat buf;
5545    ::close(fd);
5546    while (::stat(filename, &buf) == 0) {
5547      (void)::poll(NULL, 0, 100);
5548    }
5549  } else {
5550    jio_fprintf(stderr,
5551      "Could not open pause file '%s', continuing immediately.\n", filename);
5552  }
5553}
5554
5555#ifndef PRODUCT
5556#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5557// Turn this on if you need to trace synch operations.
5558// Set RECORD_SYNCH_LIMIT to a large-enough value,
5559// and call record_synch_enable and record_synch_disable
5560// around the computation of interest.
5561
5562void record_synch(char* name, bool returning);  // defined below
5563
5564class RecordSynch {
5565  char* _name;
5566 public:
5567  RecordSynch(char* name) :_name(name)
5568                 { record_synch(_name, false); }
5569  ~RecordSynch() { record_synch(_name,   true);  }
5570};
5571
5572#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
5573extern "C" ret name params {                                    \
5574  typedef ret name##_t params;                                  \
5575  static name##_t* implem = NULL;                               \
5576  static int callcount = 0;                                     \
5577  if (implem == NULL) {                                         \
5578    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
5579    if (implem == NULL)  fatal(dlerror());                      \
5580  }                                                             \
5581  ++callcount;                                                  \
5582  RecordSynch _rs(#name);                                       \
5583  inner;                                                        \
5584  return implem args;                                           \
5585}
5586// in dbx, examine callcounts this way:
5587// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
5588
5589#define CHECK_POINTER_OK(p) \
5590  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
5591#define CHECK_MU \
5592  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
5593#define CHECK_CV \
5594  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
5595#define CHECK_P(p) \
5596  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
5597
5598#define CHECK_MUTEX(mutex_op) \
5599CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
5600
5601CHECK_MUTEX(   mutex_lock)
5602CHECK_MUTEX(  _mutex_lock)
5603CHECK_MUTEX( mutex_unlock)
5604CHECK_MUTEX(_mutex_unlock)
5605CHECK_MUTEX( mutex_trylock)
5606CHECK_MUTEX(_mutex_trylock)
5607
5608#define CHECK_COND(cond_op) \
5609CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
5610
5611CHECK_COND( cond_wait);
5612CHECK_COND(_cond_wait);
5613CHECK_COND(_cond_wait_cancel);
5614
5615#define CHECK_COND2(cond_op) \
5616CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
5617
5618CHECK_COND2( cond_timedwait);
5619CHECK_COND2(_cond_timedwait);
5620CHECK_COND2(_cond_timedwait_cancel);
5621
5622// do the _lwp_* versions too
5623#define mutex_t lwp_mutex_t
5624#define cond_t  lwp_cond_t
5625CHECK_MUTEX(  _lwp_mutex_lock)
5626CHECK_MUTEX(  _lwp_mutex_unlock)
5627CHECK_MUTEX(  _lwp_mutex_trylock)
5628CHECK_MUTEX( __lwp_mutex_lock)
5629CHECK_MUTEX( __lwp_mutex_unlock)
5630CHECK_MUTEX( __lwp_mutex_trylock)
5631CHECK_MUTEX(___lwp_mutex_lock)
5632CHECK_MUTEX(___lwp_mutex_unlock)
5633
5634CHECK_COND(  _lwp_cond_wait);
5635CHECK_COND( __lwp_cond_wait);
5636CHECK_COND(___lwp_cond_wait);
5637
5638CHECK_COND2(  _lwp_cond_timedwait);
5639CHECK_COND2( __lwp_cond_timedwait);
5640#undef mutex_t
5641#undef cond_t
5642
5643CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5644CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5645CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5646CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5647CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5648CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5649CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5650CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5651
5652
5653// recording machinery:
5654
5655enum { RECORD_SYNCH_LIMIT = 200 };
5656char* record_synch_name[RECORD_SYNCH_LIMIT];
5657void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5658bool record_synch_returning[RECORD_SYNCH_LIMIT];
5659thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5660int record_synch_count = 0;
5661bool record_synch_enabled = false;
5662
5663// in dbx, examine recorded data this way:
5664// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5665
5666void record_synch(char* name, bool returning) {
5667  if (record_synch_enabled) {
5668    if (record_synch_count < RECORD_SYNCH_LIMIT) {
5669      record_synch_name[record_synch_count] = name;
5670      record_synch_returning[record_synch_count] = returning;
5671      record_synch_thread[record_synch_count] = thr_self();
5672      record_synch_arg0ptr[record_synch_count] = &name;
5673      record_synch_count++;
5674    }
5675    // put more checking code here:
5676    // ...
5677  }
5678}
5679
5680void record_synch_enable() {
5681  // start collecting trace data, if not already doing so
5682  if (!record_synch_enabled)  record_synch_count = 0;
5683  record_synch_enabled = true;
5684}
5685
5686void record_synch_disable() {
5687  // stop collecting trace data
5688  record_synch_enabled = false;
5689}
5690
5691#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5692#endif // PRODUCT
5693
5694const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5695const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5696                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5697
5698
5699// JVMTI & JVM monitoring and management support
5700// The thread_cpu_time() and current_thread_cpu_time() are only
5701// supported if is_thread_cpu_time_supported() returns true.
5702// They are not supported on Solaris T1.
5703
5704// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5705// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5706// of a thread.
5707//
5708// current_thread_cpu_time() and thread_cpu_time(Thread *)
5709// returns the fast estimate available on the platform.
5710
5711// hrtime_t gethrvtime() return value includes
5712// user time but does not include system time
5713jlong os::current_thread_cpu_time() {
5714  return (jlong) gethrvtime();
5715}
5716
5717jlong os::thread_cpu_time(Thread *thread) {
5718  // return user level CPU time only to be consistent with
5719  // what current_thread_cpu_time returns.
5720  // thread_cpu_time_info() must be changed if this changes
5721  return os::thread_cpu_time(thread, false /* user time only */);
5722}
5723
5724jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5725  if (user_sys_cpu_time) {
5726    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5727  } else {
5728    return os::current_thread_cpu_time();
5729  }
5730}
5731
5732jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5733  char proc_name[64];
5734  int count;
5735  prusage_t prusage;
5736  jlong lwp_time;
5737  int fd;
5738
5739  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5740                     getpid(),
5741                     thread->osthread()->lwp_id());
5742  fd = ::open(proc_name, O_RDONLY);
5743  if ( fd == -1 ) return -1;
5744
5745  do {
5746    count = ::pread(fd,
5747                  (void *)&prusage.pr_utime,
5748                  thr_time_size,
5749                  thr_time_off);
5750  } while (count < 0 && errno == EINTR);
5751  ::close(fd);
5752  if ( count < 0 ) return -1;
5753
5754  if (user_sys_cpu_time) {
5755    // user + system CPU time
5756    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5757                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5758                 (jlong)prusage.pr_stime.tv_nsec +
5759                 (jlong)prusage.pr_utime.tv_nsec;
5760  } else {
5761    // user level CPU time only
5762    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5763                (jlong)prusage.pr_utime.tv_nsec;
5764  }
5765
5766  return(lwp_time);
5767}
5768
5769void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5770  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5771  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5772  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5773  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5774}
5775
5776void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5777  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5778  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5779  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5780  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5781}
5782
5783bool os::is_thread_cpu_time_supported() {
5784  if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
5785    return true;
5786  } else {
5787    return false;
5788  }
5789}
5790
5791// System loadavg support.  Returns -1 if load average cannot be obtained.
5792// Return the load average for our processor set if the primitive exists
5793// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5794int os::loadavg(double loadavg[], int nelem) {
5795  if (pset_getloadavg_ptr != NULL) {
5796    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5797  } else {
5798    return ::getloadavg(loadavg, nelem);
5799  }
5800}
5801
5802//---------------------------------------------------------------------------------
5803
5804static address same_page(address x, address y) {
5805  intptr_t page_bits = -os::vm_page_size();
5806  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
5807    return x;
5808  else if (x > y)
5809    return (address)(intptr_t(y) | ~page_bits) + 1;
5810  else
5811    return (address)(intptr_t(y) & page_bits);
5812}
5813
5814bool os::find(address addr, outputStream* st) {
5815  Dl_info dlinfo;
5816  memset(&dlinfo, 0, sizeof(dlinfo));
5817  if (dladdr(addr, &dlinfo)) {
5818#ifdef _LP64
5819    st->print("0x%016lx: ", addr);
5820#else
5821    st->print("0x%08x: ", addr);
5822#endif
5823    if (dlinfo.dli_sname != NULL)
5824      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5825    else if (dlinfo.dli_fname)
5826      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5827    else
5828      st->print("<absolute address>");
5829    if (dlinfo.dli_fname)  st->print(" in %s", dlinfo.dli_fname);
5830#ifdef _LP64
5831    if (dlinfo.dli_fbase)  st->print(" at 0x%016lx", dlinfo.dli_fbase);
5832#else
5833    if (dlinfo.dli_fbase)  st->print(" at 0x%08x", dlinfo.dli_fbase);
5834#endif
5835    st->cr();
5836
5837    if (Verbose) {
5838      // decode some bytes around the PC
5839      address begin = same_page(addr-40, addr);
5840      address end   = same_page(addr+40, addr);
5841      address       lowest = (address) dlinfo.dli_sname;
5842      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5843      if (begin < lowest)  begin = lowest;
5844      Dl_info dlinfo2;
5845      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
5846          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5847        end = (address) dlinfo2.dli_saddr;
5848      Disassembler::decode(begin, end, st);
5849    }
5850    return true;
5851  }
5852  return false;
5853}
5854
5855// Following function has been added to support HotSparc's libjvm.so running
5856// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5857// src/solaris/hpi/native_threads in the EVM codebase.
5858//
5859// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5860// libraries and should thus be removed. We will leave it behind for a while
5861// until we no longer want to able to run on top of 1.3.0 Solaris production
5862// JDK. See 4341971.
5863
5864#define STACK_SLACK 0x800
5865
5866extern "C" {
5867  intptr_t sysThreadAvailableStackWithSlack() {
5868    stack_t st;
5869    intptr_t retval, stack_top;
5870    retval = thr_stksegment(&st);
5871    assert(retval == 0, "incorrect return value from thr_stksegment");
5872    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5873    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5874    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5875    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5876  }
5877}
5878
5879// Just to get the Kernel build to link on solaris for testing.
5880
5881extern "C" {
5882class ASGCT_CallTrace;
5883void AsyncGetCallTrace(ASGCT_CallTrace *trace, jint depth, void* ucontext)
5884  KERNEL_RETURN;
5885}
5886
5887
5888// ObjectMonitor park-unpark infrastructure ...
5889//
5890// We implement Solaris and Linux PlatformEvents with the
5891// obvious condvar-mutex-flag triple.
5892// Another alternative that works quite well is pipes:
5893// Each PlatformEvent consists of a pipe-pair.
5894// The thread associated with the PlatformEvent
5895// calls park(), which reads from the input end of the pipe.
5896// Unpark() writes into the other end of the pipe.
5897// The write-side of the pipe must be set NDELAY.
5898// Unfortunately pipes consume a large # of handles.
5899// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5900// Using pipes for the 1st few threads might be workable, however.
5901//
5902// park() is permitted to return spuriously.
5903// Callers of park() should wrap the call to park() in
5904// an appropriate loop.  A litmus test for the correct
5905// usage of park is the following: if park() were modified
5906// to immediately return 0 your code should still work,
5907// albeit degenerating to a spin loop.
5908//
5909// An interesting optimization for park() is to use a trylock()
5910// to attempt to acquire the mutex.  If the trylock() fails
5911// then we know that a concurrent unpark() operation is in-progress.
5912// in that case the park() code could simply set _count to 0
5913// and return immediately.  The subsequent park() operation *might*
5914// return immediately.  That's harmless as the caller of park() is
5915// expected to loop.  By using trylock() we will have avoided a
5916// avoided a context switch caused by contention on the per-thread mutex.
5917//
5918// TODO-FIXME:
5919// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
5920//     objectmonitor implementation.
5921// 2.  Collapse the JSR166 parker event, and the
5922//     objectmonitor ParkEvent into a single "Event" construct.
5923// 3.  In park() and unpark() add:
5924//     assert (Thread::current() == AssociatedWith).
5925// 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
5926//     1-out-of-N park() operations will return immediately.
5927//
5928// _Event transitions in park()
5929//   -1 => -1 : illegal
5930//    1 =>  0 : pass - return immediately
5931//    0 => -1 : block
5932//
5933// _Event serves as a restricted-range semaphore.
5934//
5935// Another possible encoding of _Event would be with
5936// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5937//
5938// TODO-FIXME: add DTRACE probes for:
5939// 1.   Tx parks
5940// 2.   Ty unparks Tx
5941// 3.   Tx resumes from park
5942
5943
5944// value determined through experimentation
5945#define ROUNDINGFIX 11
5946
5947// utility to compute the abstime argument to timedwait.
5948// TODO-FIXME: switch from compute_abstime() to unpackTime().
5949
5950static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5951  // millis is the relative timeout time
5952  // abstime will be the absolute timeout time
5953  if (millis < 0)  millis = 0;
5954  struct timeval now;
5955  int status = gettimeofday(&now, NULL);
5956  assert(status == 0, "gettimeofday");
5957  jlong seconds = millis / 1000;
5958  jlong max_wait_period;
5959
5960  if (UseLWPSynchronization) {
5961    // forward port of fix for 4275818 (not sleeping long enough)
5962    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5963    // _lwp_cond_timedwait() used a round_down algorithm rather
5964    // than a round_up. For millis less than our roundfactor
5965    // it rounded down to 0 which doesn't meet the spec.
5966    // For millis > roundfactor we may return a bit sooner, but
5967    // since we can not accurately identify the patch level and
5968    // this has already been fixed in Solaris 9 and 8 we will
5969    // leave it alone rather than always rounding down.
5970
5971    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5972       // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5973           // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5974           max_wait_period = 21000000;
5975  } else {
5976    max_wait_period = 50000000;
5977  }
5978  millis %= 1000;
5979  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5980     seconds = max_wait_period;
5981  }
5982  abstime->tv_sec = now.tv_sec  + seconds;
5983  long       usec = now.tv_usec + millis * 1000;
5984  if (usec >= 1000000) {
5985    abstime->tv_sec += 1;
5986    usec -= 1000000;
5987  }
5988  abstime->tv_nsec = usec * 1000;
5989  return abstime;
5990}
5991
5992// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5993// Conceptually TryPark() should be equivalent to park(0).
5994
5995int os::PlatformEvent::TryPark() {
5996  for (;;) {
5997    const int v = _Event ;
5998    guarantee ((v == 0) || (v == 1), "invariant") ;
5999    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
6000  }
6001}
6002
6003void os::PlatformEvent::park() {           // AKA: down()
6004  // Invariant: Only the thread associated with the Event/PlatformEvent
6005  // may call park().
6006  int v ;
6007  for (;;) {
6008      v = _Event ;
6009      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6010  }
6011  guarantee (v >= 0, "invariant") ;
6012  if (v == 0) {
6013     // Do this the hard way by blocking ...
6014     // See http://monaco.sfbay/detail.jsf?cr=5094058.
6015     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
6016     // Only for SPARC >= V8PlusA
6017#if defined(__sparc) && defined(COMPILER2)
6018     if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6019#endif
6020     int status = os::Solaris::mutex_lock(_mutex);
6021     assert_status(status == 0, status,  "mutex_lock");
6022     guarantee (_nParked == 0, "invariant") ;
6023     ++ _nParked ;
6024     while (_Event < 0) {
6025        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
6026        // Treat this the same as if the wait was interrupted
6027        // With usr/lib/lwp going to kernel, always handle ETIME
6028        status = os::Solaris::cond_wait(_cond, _mutex);
6029        if (status == ETIME) status = EINTR ;
6030        assert_status(status == 0 || status == EINTR, status, "cond_wait");
6031     }
6032     -- _nParked ;
6033     _Event = 0 ;
6034     status = os::Solaris::mutex_unlock(_mutex);
6035     assert_status(status == 0, status, "mutex_unlock");
6036  }
6037}
6038
6039int os::PlatformEvent::park(jlong millis) {
6040  guarantee (_nParked == 0, "invariant") ;
6041  int v ;
6042  for (;;) {
6043      v = _Event ;
6044      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6045  }
6046  guarantee (v >= 0, "invariant") ;
6047  if (v != 0) return OS_OK ;
6048
6049  int ret = OS_TIMEOUT;
6050  timestruc_t abst;
6051  compute_abstime (&abst, millis);
6052
6053  // See http://monaco.sfbay/detail.jsf?cr=5094058.
6054  // For Solaris SPARC set fprs.FEF=0 prior to parking.
6055  // Only for SPARC >= V8PlusA
6056#if defined(__sparc) && defined(COMPILER2)
6057 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6058#endif
6059  int status = os::Solaris::mutex_lock(_mutex);
6060  assert_status(status == 0, status, "mutex_lock");
6061  guarantee (_nParked == 0, "invariant") ;
6062  ++ _nParked ;
6063  while (_Event < 0) {
6064     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
6065     assert_status(status == 0 || status == EINTR ||
6066                   status == ETIME || status == ETIMEDOUT,
6067                   status, "cond_timedwait");
6068     if (!FilterSpuriousWakeups) break ;                // previous semantics
6069     if (status == ETIME || status == ETIMEDOUT) break ;
6070     // We consume and ignore EINTR and spurious wakeups.
6071  }
6072  -- _nParked ;
6073  if (_Event >= 0) ret = OS_OK ;
6074  _Event = 0 ;
6075  status = os::Solaris::mutex_unlock(_mutex);
6076  assert_status(status == 0, status, "mutex_unlock");
6077  return ret;
6078}
6079
6080void os::PlatformEvent::unpark() {
6081  int v, AnyWaiters;
6082
6083  // Increment _Event.
6084  // Another acceptable implementation would be to simply swap 1
6085  // into _Event:
6086  //   if (Swap (&_Event, 1) < 0) {
6087  //      mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
6088  //      if (AnyWaiters) cond_signal (_cond) ;
6089  //   }
6090
6091  for (;;) {
6092    v = _Event ;
6093    if (v > 0) {
6094       // The LD of _Event could have reordered or be satisfied
6095       // by a read-aside from this processor's write buffer.
6096       // To avoid problems execute a barrier and then
6097       // ratify the value.  A degenerate CAS() would also work.
6098       // Viz., CAS (v+0, &_Event, v) == v).
6099       OrderAccess::fence() ;
6100       if (_Event == v) return ;
6101       continue ;
6102    }
6103    if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
6104  }
6105
6106  // If the thread associated with the event was parked, wake it.
6107  if (v < 0) {
6108     int status ;
6109     // Wait for the thread assoc with the PlatformEvent to vacate.
6110     status = os::Solaris::mutex_lock(_mutex);
6111     assert_status(status == 0, status, "mutex_lock");
6112     AnyWaiters = _nParked ;
6113     status = os::Solaris::mutex_unlock(_mutex);
6114     assert_status(status == 0, status, "mutex_unlock");
6115     guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
6116     if (AnyWaiters != 0) {
6117       // We intentional signal *after* dropping the lock
6118       // to avoid a common class of futile wakeups.
6119       status = os::Solaris::cond_signal(_cond);
6120       assert_status(status == 0, status, "cond_signal");
6121     }
6122  }
6123}
6124
6125// JSR166
6126// -------------------------------------------------------
6127
6128/*
6129 * The solaris and linux implementations of park/unpark are fairly
6130 * conservative for now, but can be improved. They currently use a
6131 * mutex/condvar pair, plus _counter.
6132 * Park decrements _counter if > 0, else does a condvar wait.  Unpark
6133 * sets count to 1 and signals condvar.  Only one thread ever waits
6134 * on the condvar. Contention seen when trying to park implies that someone
6135 * is unparking you, so don't wait. And spurious returns are fine, so there
6136 * is no need to track notifications.
6137 */
6138
6139#define MAX_SECS 100000000
6140/*
6141 * This code is common to linux and solaris and will be moved to a
6142 * common place in dolphin.
6143 *
6144 * The passed in time value is either a relative time in nanoseconds
6145 * or an absolute time in milliseconds. Either way it has to be unpacked
6146 * into suitable seconds and nanoseconds components and stored in the
6147 * given timespec structure.
6148 * Given time is a 64-bit value and the time_t used in the timespec is only
6149 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6150 * overflow if times way in the future are given. Further on Solaris versions
6151 * prior to 10 there is a restriction (see cond_timedwait) that the specified
6152 * number of seconds, in abstime, is less than current_time  + 100,000,000.
6153 * As it will be 28 years before "now + 100000000" will overflow we can
6154 * ignore overflow and just impose a hard-limit on seconds using the value
6155 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6156 * years from "now".
6157 */
6158static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6159  assert (time > 0, "convertTime");
6160
6161  struct timeval now;
6162  int status = gettimeofday(&now, NULL);
6163  assert(status == 0, "gettimeofday");
6164
6165  time_t max_secs = now.tv_sec + MAX_SECS;
6166
6167  if (isAbsolute) {
6168    jlong secs = time / 1000;
6169    if (secs > max_secs) {
6170      absTime->tv_sec = max_secs;
6171    }
6172    else {
6173      absTime->tv_sec = secs;
6174    }
6175    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6176  }
6177  else {
6178    jlong secs = time / NANOSECS_PER_SEC;
6179    if (secs >= MAX_SECS) {
6180      absTime->tv_sec = max_secs;
6181      absTime->tv_nsec = 0;
6182    }
6183    else {
6184      absTime->tv_sec = now.tv_sec + secs;
6185      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6186      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6187        absTime->tv_nsec -= NANOSECS_PER_SEC;
6188        ++absTime->tv_sec; // note: this must be <= max_secs
6189      }
6190    }
6191  }
6192  assert(absTime->tv_sec >= 0, "tv_sec < 0");
6193  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6194  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6195  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6196}
6197
6198void Parker::park(bool isAbsolute, jlong time) {
6199
6200  // Optional fast-path check:
6201  // Return immediately if a permit is available.
6202  if (_counter > 0) {
6203      _counter = 0 ;
6204      OrderAccess::fence();
6205      return ;
6206  }
6207
6208  // Optional fast-exit: Check interrupt before trying to wait
6209  Thread* thread = Thread::current();
6210  assert(thread->is_Java_thread(), "Must be JavaThread");
6211  JavaThread *jt = (JavaThread *)thread;
6212  if (Thread::is_interrupted(thread, false)) {
6213    return;
6214  }
6215
6216  // First, demultiplex/decode time arguments
6217  timespec absTime;
6218  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6219    return;
6220  }
6221  if (time > 0) {
6222    // Warning: this code might be exposed to the old Solaris time
6223    // round-down bugs.  Grep "roundingFix" for details.
6224    unpackTime(&absTime, isAbsolute, time);
6225  }
6226
6227  // Enter safepoint region
6228  // Beware of deadlocks such as 6317397.
6229  // The per-thread Parker:: _mutex is a classic leaf-lock.
6230  // In particular a thread must never block on the Threads_lock while
6231  // holding the Parker:: mutex.  If safepoints are pending both the
6232  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6233  ThreadBlockInVM tbivm(jt);
6234
6235  // Don't wait if cannot get lock since interference arises from
6236  // unblocking.  Also. check interrupt before trying wait
6237  if (Thread::is_interrupted(thread, false) ||
6238      os::Solaris::mutex_trylock(_mutex) != 0) {
6239    return;
6240  }
6241
6242  int status ;
6243
6244  if (_counter > 0)  { // no wait needed
6245    _counter = 0;
6246    status = os::Solaris::mutex_unlock(_mutex);
6247    assert (status == 0, "invariant") ;
6248    OrderAccess::fence();
6249    return;
6250  }
6251
6252#ifdef ASSERT
6253  // Don't catch signals while blocked; let the running threads have the signals.
6254  // (This allows a debugger to break into the running thread.)
6255  sigset_t oldsigs;
6256  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
6257  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6258#endif
6259
6260  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6261  jt->set_suspend_equivalent();
6262  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6263
6264  // Do this the hard way by blocking ...
6265  // See http://monaco.sfbay/detail.jsf?cr=5094058.
6266  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
6267  // Only for SPARC >= V8PlusA
6268#if defined(__sparc) && defined(COMPILER2)
6269  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6270#endif
6271
6272  if (time == 0) {
6273    status = os::Solaris::cond_wait (_cond, _mutex) ;
6274  } else {
6275    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
6276  }
6277  // Note that an untimed cond_wait() can sometimes return ETIME on older
6278  // versions of the Solaris.
6279  assert_status(status == 0 || status == EINTR ||
6280                status == ETIME || status == ETIMEDOUT,
6281                status, "cond_timedwait");
6282
6283#ifdef ASSERT
6284  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
6285#endif
6286  _counter = 0 ;
6287  status = os::Solaris::mutex_unlock(_mutex);
6288  assert_status(status == 0, status, "mutex_unlock") ;
6289
6290  // If externally suspended while waiting, re-suspend
6291  if (jt->handle_special_suspend_equivalent_condition()) {
6292    jt->java_suspend_self();
6293  }
6294  OrderAccess::fence();
6295}
6296
6297void Parker::unpark() {
6298  int s, status ;
6299  status = os::Solaris::mutex_lock (_mutex) ;
6300  assert (status == 0, "invariant") ;
6301  s = _counter;
6302  _counter = 1;
6303  status = os::Solaris::mutex_unlock (_mutex) ;
6304  assert (status == 0, "invariant") ;
6305
6306  if (s < 1) {
6307    status = os::Solaris::cond_signal (_cond) ;
6308    assert (status == 0, "invariant") ;
6309  }
6310}
6311
6312extern char** environ;
6313
6314// Run the specified command in a separate process. Return its exit value,
6315// or -1 on failure (e.g. can't fork a new process).
6316// Unlike system(), this function can be called from signal handler. It
6317// doesn't block SIGINT et al.
6318int os::fork_and_exec(char* cmd) {
6319  char * argv[4];
6320  argv[0] = (char *)"sh";
6321  argv[1] = (char *)"-c";
6322  argv[2] = cmd;
6323  argv[3] = NULL;
6324
6325  // fork is async-safe, fork1 is not so can't use in signal handler
6326  pid_t pid;
6327  Thread* t = ThreadLocalStorage::get_thread_slow();
6328  if (t != NULL && t->is_inside_signal_handler()) {
6329    pid = fork();
6330  } else {
6331    pid = fork1();
6332  }
6333
6334  if (pid < 0) {
6335    // fork failed
6336    warning("fork failed: %s", strerror(errno));
6337    return -1;
6338
6339  } else if (pid == 0) {
6340    // child process
6341
6342    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
6343    execve("/usr/bin/sh", argv, environ);
6344
6345    // execve failed
6346    _exit(-1);
6347
6348  } else  {
6349    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6350    // care about the actual exit code, for now.
6351
6352    int status;
6353
6354    // Wait for the child process to exit.  This returns immediately if
6355    // the child has already exited. */
6356    while (waitpid(pid, &status, 0) < 0) {
6357        switch (errno) {
6358        case ECHILD: return 0;
6359        case EINTR: break;
6360        default: return -1;
6361        }
6362    }
6363
6364    if (WIFEXITED(status)) {
6365       // The child exited normally; get its exit code.
6366       return WEXITSTATUS(status);
6367    } else if (WIFSIGNALED(status)) {
6368       // The child exited because of a signal
6369       // The best value to return is 0x80 + signal number,
6370       // because that is what all Unix shells do, and because
6371       // it allows callers to distinguish between process exit and
6372       // process death by signal.
6373       return 0x80 + WTERMSIG(status);
6374    } else {
6375       // Unknown exit code; pass it through
6376       return status;
6377    }
6378  }
6379}
6380
6381// is_headless_jre()
6382//
6383// Test for the existence of xawt/libmawt.so or libawt_xawt.so
6384// in order to report if we are running in a headless jre
6385//
6386// Since JDK8 xawt/libmawt.so was moved into the same directory
6387// as libawt.so, and renamed libawt_xawt.so
6388//
6389bool os::is_headless_jre() {
6390    struct stat statbuf;
6391    char buf[MAXPATHLEN];
6392    char libmawtpath[MAXPATHLEN];
6393    const char *xawtstr  = "/xawt/libmawt.so";
6394    const char *new_xawtstr = "/libawt_xawt.so";
6395    char *p;
6396
6397    // Get path to libjvm.so
6398    os::jvm_path(buf, sizeof(buf));
6399
6400    // Get rid of libjvm.so
6401    p = strrchr(buf, '/');
6402    if (p == NULL) return false;
6403    else *p = '\0';
6404
6405    // Get rid of client or server
6406    p = strrchr(buf, '/');
6407    if (p == NULL) return false;
6408    else *p = '\0';
6409
6410    // check xawt/libmawt.so
6411    strcpy(libmawtpath, buf);
6412    strcat(libmawtpath, xawtstr);
6413    if (::stat(libmawtpath, &statbuf) == 0) return false;
6414
6415    // check libawt_xawt.so
6416    strcpy(libmawtpath, buf);
6417    strcat(libmawtpath, new_xawtstr);
6418    if (::stat(libmawtpath, &statbuf) == 0) return false;
6419
6420    return true;
6421}
6422
6423size_t os::write(int fd, const void *buf, unsigned int nBytes) {
6424  INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
6425}
6426
6427int os::close(int fd) {
6428  RESTARTABLE_RETURN_INT(::close(fd));
6429}
6430
6431int os::socket_close(int fd) {
6432  RESTARTABLE_RETURN_INT(::close(fd));
6433}
6434
6435int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
6436  INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
6437}
6438
6439int os::send(int fd, char* buf, size_t nBytes, uint flags) {
6440  INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
6441}
6442
6443int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
6444  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
6445}
6446
6447// As both poll and select can be interrupted by signals, we have to be
6448// prepared to restart the system call after updating the timeout, unless
6449// a poll() is done with timeout == -1, in which case we repeat with this
6450// "wait forever" value.
6451
6452int os::timeout(int fd, long timeout) {
6453  int res;
6454  struct timeval t;
6455  julong prevtime, newtime;
6456  static const char* aNull = 0;
6457  struct pollfd pfd;
6458  pfd.fd = fd;
6459  pfd.events = POLLIN;
6460
6461  gettimeofday(&t, &aNull);
6462  prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
6463
6464  for(;;) {
6465    INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
6466    if(res == OS_ERR && errno == EINTR) {
6467        if(timeout != -1) {
6468          gettimeofday(&t, &aNull);
6469          newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
6470          timeout -= newtime - prevtime;
6471          if(timeout <= 0)
6472            return OS_OK;
6473          prevtime = newtime;
6474        }
6475    } else return res;
6476  }
6477}
6478
6479int os::connect(int fd, struct sockaddr *him, socklen_t len) {
6480  int _result;
6481  INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
6482                          os::Solaris::clear_interrupted);
6483
6484  // Depending on when thread interruption is reset, _result could be
6485  // one of two values when errno == EINTR
6486
6487  if (((_result == OS_INTRPT) || (_result == OS_ERR))
6488      && (errno == EINTR)) {
6489     /* restarting a connect() changes its errno semantics */
6490     INTERRUPTIBLE(::connect(fd, him, len), _result,\
6491                   os::Solaris::clear_interrupted);
6492     /* undo these changes */
6493     if (_result == OS_ERR) {
6494       if (errno == EALREADY) {
6495         errno = EINPROGRESS; /* fall through */
6496       } else if (errno == EISCONN) {
6497         errno = 0;
6498         return OS_OK;
6499       }
6500     }
6501   }
6502   return _result;
6503 }
6504
6505int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
6506  if (fd < 0) {
6507    return OS_ERR;
6508  }
6509  INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
6510                           os::Solaris::clear_interrupted);
6511}
6512
6513int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
6514                 sockaddr* from, socklen_t* fromlen) {
6515  INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
6516                           os::Solaris::clear_interrupted);
6517}
6518
6519int os::sendto(int fd, char* buf, size_t len, uint flags,
6520               struct sockaddr* to, socklen_t tolen) {
6521  INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
6522                           os::Solaris::clear_interrupted);
6523}
6524
6525int os::socket_available(int fd, jint *pbytes) {
6526  if (fd < 0) {
6527    return OS_OK;
6528  }
6529  int ret;
6530  RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
6531  // note: ioctl can return 0 when successful, JVM_SocketAvailable
6532  // is expected to return 0 on failure and 1 on success to the jdk.
6533  return (ret == OS_ERR) ? 0 : 1;
6534}
6535
6536int os::bind(int fd, struct sockaddr* him, socklen_t len) {
6537   INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
6538                                      os::Solaris::clear_interrupted);
6539}
6540
6541// Get the default path to the core file
6542// Returns the length of the string
6543int os::get_core_path(char* buffer, size_t bufferSize) {
6544  const char* p = get_current_directory(buffer, bufferSize);
6545
6546  if (p == NULL) {
6547    assert(p != NULL, "failed to get current directory");
6548    return 0;
6549  }
6550
6551  return strlen(buffer);
6552}
6553