os_solaris.cpp revision 144:e3729351c946
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// do not include  precompiled  header file
26# include "incls/_os_solaris.cpp.incl"
27
28// put OS-includes here
29# include <dlfcn.h>
30# include <errno.h>
31# include <link.h>
32# include <poll.h>
33# include <pthread.h>
34# include <pwd.h>
35# include <schedctl.h>
36# include <setjmp.h>
37# include <signal.h>
38# include <stdio.h>
39# include <alloca.h>
40# include <sys/filio.h>
41# include <sys/ipc.h>
42# include <sys/lwp.h>
43# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
44# include <sys/mman.h>
45# include <sys/processor.h>
46# include <sys/procset.h>
47# include <sys/pset.h>
48# include <sys/resource.h>
49# include <sys/shm.h>
50# include <sys/socket.h>
51# include <sys/stat.h>
52# include <sys/systeminfo.h>
53# include <sys/time.h>
54# include <sys/times.h>
55# include <sys/types.h>
56# include <sys/wait.h>
57# include <sys/utsname.h>
58# include <thread.h>
59# include <unistd.h>
60# include <sys/priocntl.h>
61# include <sys/rtpriocntl.h>
62# include <sys/tspriocntl.h>
63# include <sys/iapriocntl.h>
64# include <sys/loadavg.h>
65# include <string.h>
66
67# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
68# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
69
70#define MAX_PATH (2 * K)
71
72// for timer info max values which include all bits
73#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
74
75#ifdef _GNU_SOURCE
76// See bug #6514594
77extern "C" int madvise(caddr_t, size_t, int);
78extern "C"  int memcntl(caddr_t addr, size_t len, int cmd, caddr_t  arg,
79     int attr, int mask);
80#endif //_GNU_SOURCE
81
82/*
83  MPSS Changes Start.
84  The JVM binary needs to be built and run on pre-Solaris 9
85  systems, but the constants needed by MPSS are only in Solaris 9
86  header files.  They are textually replicated here to allow
87  building on earlier systems.  Once building on Solaris 8 is
88  no longer a requirement, these #defines can be replaced by ordinary
89  system .h inclusion.
90
91  In earlier versions of the  JDK and Solaris, we used ISM for large pages.
92  But ISM requires shared memory to achieve this and thus has many caveats.
93  MPSS is a fully transparent and is a cleaner way to get large pages.
94  Although we still require keeping ISM for backward compatiblitiy as well as
95  giving the opportunity to use large pages on older systems it is
96  recommended that MPSS be used for Solaris 9 and above.
97
98*/
99
100#ifndef MC_HAT_ADVISE
101
102struct memcntl_mha {
103  uint_t          mha_cmd;        /* command(s) */
104  uint_t          mha_flags;
105  size_t          mha_pagesize;
106};
107#define MC_HAT_ADVISE   7       /* advise hat map size */
108#define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
109#define MAP_ALIGN       0x200   /* addr specifies alignment */
110
111#endif
112// MPSS Changes End.
113
114
115// Here are some liblgrp types from sys/lgrp_user.h to be able to
116// compile on older systems without this header file.
117
118#ifndef MADV_ACCESS_LWP
119# define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
120#endif
121#ifndef MADV_ACCESS_MANY
122# define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
123#endif
124
125#ifndef LGRP_RSRC_CPU
126# define LGRP_RSRC_CPU           0       /* CPU resources */
127#endif
128#ifndef LGRP_RSRC_MEM
129# define LGRP_RSRC_MEM           1       /* memory resources */
130#endif
131
132// Some more macros from sys/mman.h that are not present in Solaris 8.
133
134#ifndef MAX_MEMINFO_CNT
135/*
136 * info_req request type definitions for meminfo
137 * request types starting with MEMINFO_V are used for Virtual addresses
138 * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
139 * addresses
140 */
141# define MEMINFO_SHIFT           16
142# define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
143# define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
144# define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
145# define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
146# define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
147# define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
148# define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
149# define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
150
151/* maximum number of addresses meminfo() can process at a time */
152# define MAX_MEMINFO_CNT 256
153
154/* maximum number of request types */
155# define MAX_MEMINFO_REQ 31
156#endif
157
158// see thr_setprio(3T) for the basis of these numbers
159#define MinimumPriority 0
160#define NormalPriority  64
161#define MaximumPriority 127
162
163// Values for ThreadPriorityPolicy == 1
164int prio_policy1[MaxPriority+1] = { -99999, 0, 16, 32, 48, 64,
165                                        80, 96, 112, 124, 127 };
166
167// System parameters used internally
168static clock_t clock_tics_per_sec = 100;
169
170// For diagnostics to print a message once. see run_periodic_checks
171static bool check_addr0_done = false;
172static sigset_t check_signal_done;
173static bool check_signals = true;
174
175address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
176address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
177
178address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
179
180
181// "default" initializers for missing libc APIs
182extern "C" {
183  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
184  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
185
186  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
187  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
188}
189
190// "default" initializers for pthread-based synchronization
191extern "C" {
192  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
193  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
194}
195
196// Thread Local Storage
197// This is common to all Solaris platforms so it is defined here,
198// in this common file.
199// The declarations are in the os_cpu threadLS*.hpp files.
200//
201// Static member initialization for TLS
202Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
203
204#ifndef PRODUCT
205#define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
206
207int ThreadLocalStorage::_tcacheHit = 0;
208int ThreadLocalStorage::_tcacheMiss = 0;
209
210void ThreadLocalStorage::print_statistics() {
211  int total = _tcacheMiss+_tcacheHit;
212  tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
213                _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
214}
215#undef _PCT
216#endif // PRODUCT
217
218Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
219                                                        int index) {
220  Thread *thread = get_thread_slow();
221  if (thread != NULL) {
222    address sp = os::current_stack_pointer();
223    guarantee(thread->_stack_base == NULL ||
224              (sp <= thread->_stack_base &&
225                 sp >= thread->_stack_base - thread->_stack_size) ||
226               is_error_reported(),
227              "sp must be inside of selected thread stack");
228
229    thread->_self_raw_id = raw_id;  // mark for quick retrieval
230    _get_thread_cache[ index ] = thread;
231  }
232  return thread;
233}
234
235
236static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
237#define NO_CACHED_THREAD ((Thread*)all_zero)
238
239void ThreadLocalStorage::pd_set_thread(Thread* thread) {
240
241  // Store the new value before updating the cache to prevent a race
242  // between get_thread_via_cache_slowly() and this store operation.
243  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
244
245  // Update thread cache with new thread if setting on thread create,
246  // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
247  uintptr_t raw = pd_raw_thread_id();
248  int ix = pd_cache_index(raw);
249  _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
250}
251
252void ThreadLocalStorage::pd_init() {
253  for (int i = 0; i < _pd_cache_size; i++) {
254    _get_thread_cache[i] = NO_CACHED_THREAD;
255  }
256}
257
258// Invalidate all the caches (happens to be the same as pd_init).
259void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
260
261#undef NO_CACHED_THREAD
262
263// END Thread Local Storage
264
265static inline size_t adjust_stack_size(address base, size_t size) {
266  if ((ssize_t)size < 0) {
267    // 4759953: Compensate for ridiculous stack size.
268    size = max_intx;
269  }
270  if (size > (size_t)base) {
271    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
272    size = (size_t)base;
273  }
274  return size;
275}
276
277static inline stack_t get_stack_info() {
278  stack_t st;
279  int retval = thr_stksegment(&st);
280  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
281  assert(retval == 0, "incorrect return value from thr_stksegment");
282  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
283  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
284  return st;
285}
286
287address os::current_stack_base() {
288  int r = thr_main() ;
289  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
290  bool is_primordial_thread = r;
291
292  // Workaround 4352906, avoid calls to thr_stksegment by
293  // thr_main after the first one (it looks like we trash
294  // some data, causing the value for ss_sp to be incorrect).
295  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
296    stack_t st = get_stack_info();
297    if (is_primordial_thread) {
298      // cache initial value of stack base
299      os::Solaris::_main_stack_base = (address)st.ss_sp;
300    }
301    return (address)st.ss_sp;
302  } else {
303    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
304    return os::Solaris::_main_stack_base;
305  }
306}
307
308size_t os::current_stack_size() {
309  size_t size;
310
311  int r = thr_main() ;
312  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
313  if(!r) {
314    size = get_stack_info().ss_size;
315  } else {
316    struct rlimit limits;
317    getrlimit(RLIMIT_STACK, &limits);
318    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
319  }
320  // base may not be page aligned
321  address base = current_stack_base();
322  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
323  return (size_t)(base - bottom);
324}
325
326// interruptible infrastructure
327
328// setup_interruptible saves the thread state before going into an
329// interruptible system call.
330// The saved state is used to restore the thread to
331// its former state whether or not an interrupt is received.
332// Used by classloader os::read
333// hpi calls skip this layer and stay in _thread_in_native
334
335void os::Solaris::setup_interruptible(JavaThread* thread) {
336
337  JavaThreadState thread_state = thread->thread_state();
338
339  assert(thread_state != _thread_blocked, "Coming from the wrong thread");
340  assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
341  OSThread* osthread = thread->osthread();
342  osthread->set_saved_interrupt_thread_state(thread_state);
343  thread->frame_anchor()->make_walkable(thread);
344  ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
345}
346
347// Version of setup_interruptible() for threads that are already in
348// _thread_blocked. Used by os_sleep().
349void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
350  thread->frame_anchor()->make_walkable(thread);
351}
352
353JavaThread* os::Solaris::setup_interruptible() {
354  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
355  setup_interruptible(thread);
356  return thread;
357}
358
359void os::Solaris::try_enable_extended_io() {
360  typedef int (*enable_extended_FILE_stdio_t)(int, int);
361
362  if (!UseExtendedFileIO) {
363    return;
364  }
365
366  enable_extended_FILE_stdio_t enabler =
367    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
368                                         "enable_extended_FILE_stdio");
369  if (enabler) {
370    enabler(-1, -1);
371  }
372}
373
374
375#ifdef ASSERT
376
377JavaThread* os::Solaris::setup_interruptible_native() {
378  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
379  JavaThreadState thread_state = thread->thread_state();
380  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
381  return thread;
382}
383
384void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
385  JavaThreadState thread_state = thread->thread_state();
386  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
387}
388#endif
389
390// cleanup_interruptible reverses the effects of setup_interruptible
391// setup_interruptible_already_blocked() does not need any cleanup.
392
393void os::Solaris::cleanup_interruptible(JavaThread* thread) {
394  OSThread* osthread = thread->osthread();
395
396  ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
397}
398
399// I/O interruption related counters called in _INTERRUPTIBLE
400
401void os::Solaris::bump_interrupted_before_count() {
402  RuntimeService::record_interrupted_before_count();
403}
404
405void os::Solaris::bump_interrupted_during_count() {
406  RuntimeService::record_interrupted_during_count();
407}
408
409static int _processors_online = 0;
410
411         jint os::Solaris::_os_thread_limit = 0;
412volatile jint os::Solaris::_os_thread_count = 0;
413
414julong os::available_memory() {
415  return Solaris::available_memory();
416}
417
418julong os::Solaris::available_memory() {
419  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
420}
421
422julong os::Solaris::_physical_memory = 0;
423
424julong os::physical_memory() {
425   return Solaris::physical_memory();
426}
427
428julong os::allocatable_physical_memory(julong size) {
429#ifdef _LP64
430   return size;
431#else
432   julong result = MIN2(size, (julong)3835*M);
433   if (!is_allocatable(result)) {
434     // Memory allocations will be aligned but the alignment
435     // is not known at this point.  Alignments will
436     // be at most to LargePageSizeInBytes.  Protect
437     // allocations from alignments up to illegal
438     // values. If at this point 2G is illegal.
439     julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
440     result =  MIN2(size, reasonable_size);
441   }
442   return result;
443#endif
444}
445
446static hrtime_t first_hrtime = 0;
447static const hrtime_t hrtime_hz = 1000*1000*1000;
448const int LOCK_BUSY = 1;
449const int LOCK_FREE = 0;
450const int LOCK_INVALID = -1;
451static volatile hrtime_t max_hrtime = 0;
452static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
453
454
455void os::Solaris::initialize_system_info() {
456  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
457  _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
458  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
459}
460
461int os::active_processor_count() {
462  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
463  pid_t pid = getpid();
464  psetid_t pset = PS_NONE;
465  // Are we running in a processor set?
466  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
467    if (pset != PS_NONE) {
468      uint_t pset_cpus;
469      // Query number of cpus in processor set
470      if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
471        assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
472        _processors_online = pset_cpus;
473        return pset_cpus;
474      }
475    }
476  }
477  // Otherwise return number of online cpus
478  return online_cpus;
479}
480
481static bool find_processors_in_pset(psetid_t        pset,
482                                    processorid_t** id_array,
483                                    uint_t*         id_length) {
484  bool result = false;
485  // Find the number of processors in the processor set.
486  if (pset_info(pset, NULL, id_length, NULL) == 0) {
487    // Make up an array to hold their ids.
488    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
489    // Fill in the array with their processor ids.
490    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
491      result = true;
492    }
493  }
494  return result;
495}
496
497// Callers of find_processors_online() must tolerate imprecise results --
498// the system configuration can change asynchronously because of DR
499// or explicit psradm operations.
500//
501// We also need to take care that the loop (below) terminates as the
502// number of processors online can change between the _SC_NPROCESSORS_ONLN
503// request and the loop that builds the list of processor ids.   Unfortunately
504// there's no reliable way to determine the maximum valid processor id,
505// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
506// man pages, which claim the processor id set is "sparse, but
507// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
508// exit the loop.
509//
510// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
511// not available on S8.0.
512
513static bool find_processors_online(processorid_t** id_array,
514                                   uint*           id_length) {
515  const processorid_t MAX_PROCESSOR_ID = 100000 ;
516  // Find the number of processors online.
517  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
518  // Make up an array to hold their ids.
519  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
520  // Processors need not be numbered consecutively.
521  long found = 0;
522  processorid_t next = 0;
523  while (found < *id_length && next < MAX_PROCESSOR_ID) {
524    processor_info_t info;
525    if (processor_info(next, &info) == 0) {
526      // NB, PI_NOINTR processors are effectively online ...
527      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
528        (*id_array)[found] = next;
529        found += 1;
530      }
531    }
532    next += 1;
533  }
534  if (found < *id_length) {
535      // The loop above didn't identify the expected number of processors.
536      // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
537      // and re-running the loop, above, but there's no guarantee of progress
538      // if the system configuration is in flux.  Instead, we just return what
539      // we've got.  Note that in the worst case find_processors_online() could
540      // return an empty set.  (As a fall-back in the case of the empty set we
541      // could just return the ID of the current processor).
542      *id_length = found ;
543  }
544
545  return true;
546}
547
548static bool assign_distribution(processorid_t* id_array,
549                                uint           id_length,
550                                uint*          distribution,
551                                uint           distribution_length) {
552  // We assume we can assign processorid_t's to uint's.
553  assert(sizeof(processorid_t) == sizeof(uint),
554         "can't convert processorid_t to uint");
555  // Quick check to see if we won't succeed.
556  if (id_length < distribution_length) {
557    return false;
558  }
559  // Assign processor ids to the distribution.
560  // Try to shuffle processors to distribute work across boards,
561  // assuming 4 processors per board.
562  const uint processors_per_board = ProcessDistributionStride;
563  // Find the maximum processor id.
564  processorid_t max_id = 0;
565  for (uint m = 0; m < id_length; m += 1) {
566    max_id = MAX2(max_id, id_array[m]);
567  }
568  // The next id, to limit loops.
569  const processorid_t limit_id = max_id + 1;
570  // Make up markers for available processors.
571  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id);
572  for (uint c = 0; c < limit_id; c += 1) {
573    available_id[c] = false;
574  }
575  for (uint a = 0; a < id_length; a += 1) {
576    available_id[id_array[a]] = true;
577  }
578  // Step by "boards", then by "slot", copying to "assigned".
579  // NEEDS_CLEANUP: The assignment of processors should be stateful,
580  //                remembering which processors have been assigned by
581  //                previous calls, etc., so as to distribute several
582  //                independent calls of this method.  What we'd like is
583  //                It would be nice to have an API that let us ask
584  //                how many processes are bound to a processor,
585  //                but we don't have that, either.
586  //                In the short term, "board" is static so that
587  //                subsequent distributions don't all start at board 0.
588  static uint board = 0;
589  uint assigned = 0;
590  // Until we've found enough processors ....
591  while (assigned < distribution_length) {
592    // ... find the next available processor in the board.
593    for (uint slot = 0; slot < processors_per_board; slot += 1) {
594      uint try_id = board * processors_per_board + slot;
595      if ((try_id < limit_id) && (available_id[try_id] == true)) {
596        distribution[assigned] = try_id;
597        available_id[try_id] = false;
598        assigned += 1;
599        break;
600      }
601    }
602    board += 1;
603    if (board * processors_per_board + 0 >= limit_id) {
604      board = 0;
605    }
606  }
607  if (available_id != NULL) {
608    FREE_C_HEAP_ARRAY(bool, available_id);
609  }
610  return true;
611}
612
613bool os::distribute_processes(uint length, uint* distribution) {
614  bool result = false;
615  // Find the processor id's of all the available CPUs.
616  processorid_t* id_array  = NULL;
617  uint           id_length = 0;
618  // There are some races between querying information and using it,
619  // since processor sets can change dynamically.
620  psetid_t pset = PS_NONE;
621  // Are we running in a processor set?
622  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
623    result = find_processors_in_pset(pset, &id_array, &id_length);
624  } else {
625    result = find_processors_online(&id_array, &id_length);
626  }
627  if (result == true) {
628    if (id_length >= length) {
629      result = assign_distribution(id_array, id_length, distribution, length);
630    } else {
631      result = false;
632    }
633  }
634  if (id_array != NULL) {
635    FREE_C_HEAP_ARRAY(processorid_t, id_array);
636  }
637  return result;
638}
639
640bool os::bind_to_processor(uint processor_id) {
641  // We assume that a processorid_t can be stored in a uint.
642  assert(sizeof(uint) == sizeof(processorid_t),
643         "can't convert uint to processorid_t");
644  int bind_result =
645    processor_bind(P_LWPID,                       // bind LWP.
646                   P_MYID,                        // bind current LWP.
647                   (processorid_t) processor_id,  // id.
648                   NULL);                         // don't return old binding.
649  return (bind_result == 0);
650}
651
652bool os::getenv(const char* name, char* buffer, int len) {
653  char* val = ::getenv( name );
654  if ( val == NULL
655  ||   strlen(val) + 1  >  len ) {
656    if (len > 0)  buffer[0] = 0; // return a null string
657    return false;
658  }
659  strcpy( buffer, val );
660  return true;
661}
662
663
664// Return true if user is running as root.
665
666bool os::have_special_privileges() {
667  static bool init = false;
668  static bool privileges = false;
669  if (!init) {
670    privileges = (getuid() != geteuid()) || (getgid() != getegid());
671    init = true;
672  }
673  return privileges;
674}
675
676
677static char* get_property(char* name, char* buffer, int buffer_size) {
678  if (os::getenv(name, buffer, buffer_size)) {
679    return buffer;
680  }
681  static char empty[] = "";
682  return empty;
683}
684
685
686void os::init_system_properties_values() {
687  char arch[12];
688  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
689
690  // The next steps are taken in the product version:
691  //
692  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
693  // This library should be located at:
694  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
695  //
696  // If "/jre/lib/" appears at the right place in the path, then we
697  // assume libjvm[_g].so is installed in a JDK and we use this path.
698  //
699  // Otherwise exit with message: "Could not create the Java virtual machine."
700  //
701  // The following extra steps are taken in the debugging version:
702  //
703  // If "/jre/lib/" does NOT appear at the right place in the path
704  // instead of exit check for $JAVA_HOME environment variable.
705  //
706  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
707  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
708  // it looks like libjvm[_g].so is installed there
709  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
710  //
711  // Otherwise exit.
712  //
713  // Important note: if the location of libjvm.so changes this
714  // code needs to be changed accordingly.
715
716  // The next few definitions allow the code to be verbatim:
717#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
718#define free(p) FREE_C_HEAP_ARRAY(char, p)
719#define getenv(n) ::getenv(n)
720
721#define EXTENSIONS_DIR  "/lib/ext"
722#define ENDORSED_DIR    "/lib/endorsed"
723#define COMMON_DIR      "/usr/jdk/packages"
724
725  {
726    /* sysclasspath, java_home, dll_dir */
727    {
728        char *home_path;
729        char *dll_path;
730        char *pslash;
731        char buf[MAXPATHLEN];
732        os::jvm_path(buf, sizeof(buf));
733
734        // Found the full path to libjvm.so.
735        // Now cut the path to <java_home>/jre if we can.
736        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
737        pslash = strrchr(buf, '/');
738        if (pslash != NULL)
739            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
740        dll_path = malloc(strlen(buf) + 1);
741        if (dll_path == NULL)
742            return;
743        strcpy(dll_path, buf);
744        Arguments::set_dll_dir(dll_path);
745
746        if (pslash != NULL) {
747            pslash = strrchr(buf, '/');
748            if (pslash != NULL) {
749                *pslash = '\0';       /* get rid of /<arch> */
750                pslash = strrchr(buf, '/');
751                if (pslash != NULL)
752                    *pslash = '\0';   /* get rid of /lib */
753            }
754        }
755
756        home_path = malloc(strlen(buf) + 1);
757        if (home_path == NULL)
758            return;
759        strcpy(home_path, buf);
760        Arguments::set_java_home(home_path);
761
762        if (!set_boot_path('/', ':'))
763            return;
764    }
765
766    /*
767     * Where to look for native libraries
768     */
769    {
770      // Use dlinfo() to determine the correct java.library.path.
771      //
772      // If we're launched by the Java launcher, and the user
773      // does not set java.library.path explicitly on the commandline,
774      // the Java launcher sets LD_LIBRARY_PATH for us and unsets
775      // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
776      // dlinfo returns LD_LIBRARY_PATH + crle settings (including
777      // /usr/lib), which is exactly what we want.
778      //
779      // If the user does set java.library.path, it completely
780      // overwrites this setting, and always has.
781      //
782      // If we're not launched by the Java launcher, we may
783      // get here with any/all of the LD_LIBRARY_PATH[_32|64]
784      // settings.  Again, dlinfo does exactly what we want.
785
786      Dl_serinfo     _info, *info = &_info;
787      Dl_serpath     *path;
788      char*          library_path;
789      char           *common_path;
790      int            i;
791
792      // determine search path count and required buffer size
793      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
794        vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
795      }
796
797      // allocate new buffer and initialize
798      info = (Dl_serinfo*)malloc(_info.dls_size);
799      if (info == NULL) {
800        vm_exit_out_of_memory(_info.dls_size,
801                              "init_system_properties_values info");
802      }
803      info->dls_size = _info.dls_size;
804      info->dls_cnt = _info.dls_cnt;
805
806      // obtain search path information
807      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
808        free(info);
809        vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
810      }
811
812      path = &info->dls_serpath[0];
813
814      // Note: Due to a legacy implementation, most of the library path
815      // is set in the launcher.  This was to accomodate linking restrictions
816      // on legacy Solaris implementations (which are no longer supported).
817      // Eventually, all the library path setting will be done here.
818      //
819      // However, to prevent the proliferation of improperly built native
820      // libraries, the new path component /usr/jdk/packages is added here.
821
822      // Determine the actual CPU architecture.
823      char cpu_arch[12];
824      sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
825#ifdef _LP64
826      // If we are a 64-bit vm, perform the following translations:
827      //   sparc   -> sparcv9
828      //   i386    -> amd64
829      if (strcmp(cpu_arch, "sparc") == 0)
830        strcat(cpu_arch, "v9");
831      else if (strcmp(cpu_arch, "i386") == 0)
832        strcpy(cpu_arch, "amd64");
833#endif
834
835      // Construct the invariant part of ld_library_path. Note that the
836      // space for the colon and the trailing null are provided by the
837      // nulls included by the sizeof operator.
838      size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
839      common_path = malloc(bufsize);
840      if (common_path == NULL) {
841        free(info);
842        vm_exit_out_of_memory(bufsize,
843                              "init_system_properties_values common_path");
844      }
845      sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
846
847      // struct size is more than sufficient for the path components obtained
848      // through the dlinfo() call, so only add additional space for the path
849      // components explicitly added here.
850      bufsize = info->dls_size + strlen(common_path);
851      library_path = malloc(bufsize);
852      if (library_path == NULL) {
853        free(info);
854        free(common_path);
855        vm_exit_out_of_memory(bufsize,
856                              "init_system_properties_values library_path");
857      }
858      library_path[0] = '\0';
859
860      // Construct the desired Java library path from the linker's library
861      // search path.
862      //
863      // For compatibility, it is optimal that we insert the additional path
864      // components specific to the Java VM after those components specified
865      // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
866      // infrastructure.
867      if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
868        strcpy(library_path, common_path);
869      } else {
870        int inserted = 0;
871        for (i = 0; i < info->dls_cnt; i++, path++) {
872          uint_t flags = path->dls_flags & LA_SER_MASK;
873          if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
874            strcat(library_path, common_path);
875            strcat(library_path, os::path_separator());
876            inserted = 1;
877          }
878          strcat(library_path, path->dls_name);
879          strcat(library_path, os::path_separator());
880        }
881        // eliminate trailing path separator
882        library_path[strlen(library_path)-1] = '\0';
883      }
884
885      // happens before argument parsing - can't use a trace flag
886      // tty->print_raw("init_system_properties_values: native lib path: ");
887      // tty->print_raw_cr(library_path);
888
889      // callee copies into its own buffer
890      Arguments::set_library_path(library_path);
891
892      free(common_path);
893      free(library_path);
894      free(info);
895    }
896
897    /*
898     * Extensions directories.
899     *
900     * Note that the space for the colon and the trailing null are provided
901     * by the nulls included by the sizeof operator (so actually one byte more
902     * than necessary is allocated).
903     */
904    {
905        char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
906            sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
907            sizeof(EXTENSIONS_DIR));
908        sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
909            Arguments::get_java_home());
910        Arguments::set_ext_dirs(buf);
911    }
912
913    /* Endorsed standards default directory. */
914    {
915        char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
916        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
917        Arguments::set_endorsed_dirs(buf);
918    }
919  }
920
921#undef malloc
922#undef free
923#undef getenv
924#undef EXTENSIONS_DIR
925#undef ENDORSED_DIR
926#undef COMMON_DIR
927
928}
929
930void os::breakpoint() {
931  BREAKPOINT;
932}
933
934bool os::obsolete_option(const JavaVMOption *option)
935{
936  if (!strncmp(option->optionString, "-Xt", 3)) {
937    return true;
938  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
939    return true;
940  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
941    return true;
942  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
943    return true;
944  }
945  return false;
946}
947
948bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
949  address  stackStart  = (address)thread->stack_base();
950  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
951  if (sp < stackStart && sp >= stackEnd ) return true;
952  return false;
953}
954
955extern "C" void breakpoint() {
956  // use debugger to set breakpoint here
957}
958
959// Returns an estimate of the current stack pointer. Result must be guaranteed to
960// point into the calling threads stack, and be no lower than the current stack
961// pointer.
962address os::current_stack_pointer() {
963  volatile int dummy;
964  address sp = (address)&dummy + 8;     // %%%% need to confirm if this is right
965  return sp;
966}
967
968static thread_t main_thread;
969
970// Thread start routine for all new Java threads
971extern "C" void* java_start(void* thread_addr) {
972  // Try to randomize the cache line index of hot stack frames.
973  // This helps when threads of the same stack traces evict each other's
974  // cache lines. The threads can be either from the same JVM instance, or
975  // from different JVM instances. The benefit is especially true for
976  // processors with hyperthreading technology.
977  static int counter = 0;
978  int pid = os::current_process_id();
979  alloca(((pid ^ counter++) & 7) * 128);
980
981  int prio;
982  Thread* thread = (Thread*)thread_addr;
983  OSThread* osthr = thread->osthread();
984
985  osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
986  thread->_schedctl = (void *) schedctl_init () ;
987
988  if (UseNUMA) {
989    int lgrp_id = os::numa_get_group_id();
990    if (lgrp_id != -1) {
991      thread->set_lgrp_id(lgrp_id);
992    }
993  }
994
995  // If the creator called set priority before we started,
996  // we need to call set priority now that we have an lwp.
997  // Get the priority from libthread and set the priority
998  // for the new Solaris lwp.
999  if ( osthr->thread_id() != -1 ) {
1000    if ( UseThreadPriorities ) {
1001      thr_getprio(osthr->thread_id(), &prio);
1002      if (ThreadPriorityVerbose) {
1003        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT ", setting priority: %d\n",
1004                      osthr->thread_id(), osthr->lwp_id(), prio );
1005      }
1006      os::set_native_priority(thread, prio);
1007    }
1008  } else if (ThreadPriorityVerbose) {
1009    warning("Can't set priority in _start routine, thread id hasn't been set\n");
1010  }
1011
1012  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
1013
1014  // initialize signal mask for this thread
1015  os::Solaris::hotspot_sigmask(thread);
1016
1017  thread->run();
1018
1019  // One less thread is executing
1020  // When the VMThread gets here, the main thread may have already exited
1021  // which frees the CodeHeap containing the Atomic::dec code
1022  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
1023    Atomic::dec(&os::Solaris::_os_thread_count);
1024  }
1025
1026  if (UseDetachedThreads) {
1027    thr_exit(NULL);
1028    ShouldNotReachHere();
1029  }
1030  return NULL;
1031}
1032
1033static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
1034  // Allocate the OSThread object
1035  OSThread* osthread = new OSThread(NULL, NULL);
1036  if (osthread == NULL) return NULL;
1037
1038  // Store info on the Solaris thread into the OSThread
1039  osthread->set_thread_id(thread_id);
1040  osthread->set_lwp_id(_lwp_self());
1041  thread->_schedctl = (void *) schedctl_init () ;
1042
1043  if (UseNUMA) {
1044    int lgrp_id = os::numa_get_group_id();
1045    if (lgrp_id != -1) {
1046      thread->set_lgrp_id(lgrp_id);
1047    }
1048  }
1049
1050  if ( ThreadPriorityVerbose ) {
1051    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
1052                  osthread->thread_id(), osthread->lwp_id() );
1053  }
1054
1055  // Initial thread state is INITIALIZED, not SUSPENDED
1056  osthread->set_state(INITIALIZED);
1057
1058  return osthread;
1059}
1060
1061void os::Solaris::hotspot_sigmask(Thread* thread) {
1062
1063  //Save caller's signal mask
1064  sigset_t sigmask;
1065  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
1066  OSThread *osthread = thread->osthread();
1067  osthread->set_caller_sigmask(sigmask);
1068
1069  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
1070  if (!ReduceSignalUsage) {
1071    if (thread->is_VM_thread()) {
1072      // Only the VM thread handles BREAK_SIGNAL ...
1073      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
1074    } else {
1075      // ... all other threads block BREAK_SIGNAL
1076      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
1077      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
1078    }
1079  }
1080}
1081
1082bool os::create_attached_thread(JavaThread* thread) {
1083#ifdef ASSERT
1084  thread->verify_not_published();
1085#endif
1086  OSThread* osthread = create_os_thread(thread, thr_self());
1087  if (osthread == NULL) {
1088     return false;
1089  }
1090
1091  // Initial thread state is RUNNABLE
1092  osthread->set_state(RUNNABLE);
1093  thread->set_osthread(osthread);
1094
1095  // initialize signal mask for this thread
1096  // and save the caller's signal mask
1097  os::Solaris::hotspot_sigmask(thread);
1098
1099  return true;
1100}
1101
1102bool os::create_main_thread(JavaThread* thread) {
1103#ifdef ASSERT
1104  thread->verify_not_published();
1105#endif
1106  if (_starting_thread == NULL) {
1107    _starting_thread = create_os_thread(thread, main_thread);
1108     if (_starting_thread == NULL) {
1109        return false;
1110     }
1111  }
1112
1113  // The primodial thread is runnable from the start
1114  _starting_thread->set_state(RUNNABLE);
1115
1116  thread->set_osthread(_starting_thread);
1117
1118  // initialize signal mask for this thread
1119  // and save the caller's signal mask
1120  os::Solaris::hotspot_sigmask(thread);
1121
1122  return true;
1123}
1124
1125// _T2_libthread is true if we believe we are running with the newer
1126// SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
1127bool os::Solaris::_T2_libthread = false;
1128
1129bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
1130  // Allocate the OSThread object
1131  OSThread* osthread = new OSThread(NULL, NULL);
1132  if (osthread == NULL) {
1133    return false;
1134  }
1135
1136  if ( ThreadPriorityVerbose ) {
1137    char *thrtyp;
1138    switch ( thr_type ) {
1139      case vm_thread:
1140        thrtyp = (char *)"vm";
1141        break;
1142      case cgc_thread:
1143        thrtyp = (char *)"cgc";
1144        break;
1145      case pgc_thread:
1146        thrtyp = (char *)"pgc";
1147        break;
1148      case java_thread:
1149        thrtyp = (char *)"java";
1150        break;
1151      case compiler_thread:
1152        thrtyp = (char *)"compiler";
1153        break;
1154      case watcher_thread:
1155        thrtyp = (char *)"watcher";
1156        break;
1157      default:
1158        thrtyp = (char *)"unknown";
1159        break;
1160    }
1161    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
1162  }
1163
1164  // Calculate stack size if it's not specified by caller.
1165  if (stack_size == 0) {
1166    // The default stack size 1M (2M for LP64).
1167    stack_size = (BytesPerWord >> 2) * K * K;
1168
1169    switch (thr_type) {
1170    case os::java_thread:
1171      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
1172      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
1173      break;
1174    case os::compiler_thread:
1175      if (CompilerThreadStackSize > 0) {
1176        stack_size = (size_t)(CompilerThreadStackSize * K);
1177        break;
1178      } // else fall through:
1179        // use VMThreadStackSize if CompilerThreadStackSize is not defined
1180    case os::vm_thread:
1181    case os::pgc_thread:
1182    case os::cgc_thread:
1183    case os::watcher_thread:
1184      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1185      break;
1186    }
1187  }
1188  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
1189
1190  // Initial state is ALLOCATED but not INITIALIZED
1191  osthread->set_state(ALLOCATED);
1192
1193  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
1194    // We got lots of threads. Check if we still have some address space left.
1195    // Need to be at least 5Mb of unreserved address space. We do check by
1196    // trying to reserve some.
1197    const size_t VirtualMemoryBangSize = 20*K*K;
1198    char* mem = os::reserve_memory(VirtualMemoryBangSize);
1199    if (mem == NULL) {
1200      delete osthread;
1201      return false;
1202    } else {
1203      // Release the memory again
1204      os::release_memory(mem, VirtualMemoryBangSize);
1205    }
1206  }
1207
1208  // Setup osthread because the child thread may need it.
1209  thread->set_osthread(osthread);
1210
1211  // Create the Solaris thread
1212  // explicit THR_BOUND for T2_libthread case in case
1213  // that assumption is not accurate, but our alternate signal stack
1214  // handling is based on it which must have bound threads
1215  thread_t tid = 0;
1216  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
1217                   | ((UseBoundThreads || os::Solaris::T2_libthread() ||
1218                       (thr_type == vm_thread) ||
1219                       (thr_type == cgc_thread) ||
1220                       (thr_type == pgc_thread) ||
1221                       (thr_type == compiler_thread && BackgroundCompilation)) ?
1222                      THR_BOUND : 0);
1223  int      status;
1224
1225  // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
1226  //
1227  // On multiprocessors systems, libthread sometimes under-provisions our
1228  // process with LWPs.  On a 30-way systems, for instance, we could have
1229  // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
1230  // to our process.  This can result in under utilization of PEs.
1231  // I suspect the problem is related to libthread's LWP
1232  // pool management and to the kernel's SIGBLOCKING "last LWP parked"
1233  // upcall policy.
1234  //
1235  // The following code is palliative -- it attempts to ensure that our
1236  // process has sufficient LWPs to take advantage of multiple PEs.
1237  // Proper long-term cures include using user-level threads bound to LWPs
1238  // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
1239  // slight timing window with respect to sampling _os_thread_count, but
1240  // the race is benign.  Also, we should periodically recompute
1241  // _processors_online as the min of SC_NPROCESSORS_ONLN and the
1242  // the number of PEs in our partition.  You might be tempted to use
1243  // THR_NEW_LWP here, but I'd recommend against it as that could
1244  // result in undesirable growth of the libthread's LWP pool.
1245  // The fix below isn't sufficient; for instance, it doesn't take into count
1246  // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
1247  //
1248  // Some pathologies this scheme doesn't handle:
1249  // *  Threads can block, releasing the LWPs.  The LWPs can age out.
1250  //    When a large number of threads become ready again there aren't
1251  //    enough LWPs available to service them.  This can occur when the
1252  //    number of ready threads oscillates.
1253  // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
1254  //
1255  // Finally, we should call thr_setconcurrency() periodically to refresh
1256  // the LWP pool and thwart the LWP age-out mechanism.
1257  // The "+3" term provides a little slop -- we want to slightly overprovision.
1258
1259  if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
1260    if (!(flags & THR_BOUND)) {
1261      thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
1262    }
1263  }
1264  // Although this doesn't hurt, we should warn of undefined behavior
1265  // when using unbound T1 threads with schedctl().  This should never
1266  // happen, as the compiler and VM threads are always created bound
1267  DEBUG_ONLY(
1268      if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
1269          (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
1270          ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
1271           (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
1272         warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
1273      }
1274  );
1275
1276
1277  // Mark that we don't have an lwp or thread id yet.
1278  // In case we attempt to set the priority before the thread starts.
1279  osthread->set_lwp_id(-1);
1280  osthread->set_thread_id(-1);
1281
1282  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1283  if (status != 0) {
1284    if (PrintMiscellaneous && (Verbose || WizardMode)) {
1285      perror("os::create_thread");
1286    }
1287    thread->set_osthread(NULL);
1288    // Need to clean up stuff we've allocated so far
1289    delete osthread;
1290    return false;
1291  }
1292
1293  Atomic::inc(&os::Solaris::_os_thread_count);
1294
1295  // Store info on the Solaris thread into the OSThread
1296  osthread->set_thread_id(tid);
1297
1298  // Remember that we created this thread so we can set priority on it
1299  osthread->set_vm_created();
1300
1301  // Set the default thread priority otherwise use NormalPriority
1302
1303  if ( UseThreadPriorities ) {
1304     thr_setprio(tid, (DefaultThreadPriority == -1) ?
1305                        java_to_os_priority[NormPriority] :
1306                        DefaultThreadPriority);
1307  }
1308
1309  // Initial thread state is INITIALIZED, not SUSPENDED
1310  osthread->set_state(INITIALIZED);
1311
1312  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1313  return true;
1314}
1315
1316/* defined for >= Solaris 10. This allows builds on earlier versions
1317 *  of Solaris to take advantage of the newly reserved Solaris JVM signals
1318 *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
1319 *  and -XX:+UseAltSigs does nothing since these should have no conflict
1320 */
1321#if !defined(SIGJVM1)
1322#define SIGJVM1 39
1323#define SIGJVM2 40
1324#endif
1325
1326debug_only(static bool signal_sets_initialized = false);
1327static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1328int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
1329int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1330
1331bool os::Solaris::is_sig_ignored(int sig) {
1332      struct sigaction oact;
1333      sigaction(sig, (struct sigaction*)NULL, &oact);
1334      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1335                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1336      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
1337           return true;
1338      else
1339           return false;
1340}
1341
1342// Note: SIGRTMIN is a macro that calls sysconf() so it will
1343// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1344static bool isJVM1available() {
1345  return SIGJVM1 < SIGRTMIN;
1346}
1347
1348void os::Solaris::signal_sets_init() {
1349  // Should also have an assertion stating we are still single-threaded.
1350  assert(!signal_sets_initialized, "Already initialized");
1351  // Fill in signals that are necessarily unblocked for all threads in
1352  // the VM. Currently, we unblock the following signals:
1353  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1354  //                         by -Xrs (=ReduceSignalUsage));
1355  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1356  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1357  // the dispositions or masks wrt these signals.
1358  // Programs embedding the VM that want to use the above signals for their
1359  // own purposes must, at this time, use the "-Xrs" option to prevent
1360  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1361  // (See bug 4345157, and other related bugs).
1362  // In reality, though, unblocking these signals is really a nop, since
1363  // these signals are not blocked by default.
1364  sigemptyset(&unblocked_sigs);
1365  sigemptyset(&allowdebug_blocked_sigs);
1366  sigaddset(&unblocked_sigs, SIGILL);
1367  sigaddset(&unblocked_sigs, SIGSEGV);
1368  sigaddset(&unblocked_sigs, SIGBUS);
1369  sigaddset(&unblocked_sigs, SIGFPE);
1370
1371  if (isJVM1available) {
1372    os::Solaris::set_SIGinterrupt(SIGJVM1);
1373    os::Solaris::set_SIGasync(SIGJVM2);
1374  } else if (UseAltSigs) {
1375    os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
1376    os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
1377  } else {
1378    os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
1379    os::Solaris::set_SIGasync(ASYNC_SIGNAL);
1380  }
1381
1382  sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
1383  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1384
1385  if (!ReduceSignalUsage) {
1386   if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1387      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1388      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1389   }
1390   if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1391      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1392      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1393   }
1394   if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1395      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1396      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1397   }
1398  }
1399  // Fill in signals that are blocked by all but the VM thread.
1400  sigemptyset(&vm_sigs);
1401  if (!ReduceSignalUsage)
1402    sigaddset(&vm_sigs, BREAK_SIGNAL);
1403  debug_only(signal_sets_initialized = true);
1404
1405  // For diagnostics only used in run_periodic_checks
1406  sigemptyset(&check_signal_done);
1407}
1408
1409// These are signals that are unblocked while a thread is running Java.
1410// (For some reason, they get blocked by default.)
1411sigset_t* os::Solaris::unblocked_signals() {
1412  assert(signal_sets_initialized, "Not initialized");
1413  return &unblocked_sigs;
1414}
1415
1416// These are the signals that are blocked while a (non-VM) thread is
1417// running Java. Only the VM thread handles these signals.
1418sigset_t* os::Solaris::vm_signals() {
1419  assert(signal_sets_initialized, "Not initialized");
1420  return &vm_sigs;
1421}
1422
1423// These are signals that are blocked during cond_wait to allow debugger in
1424sigset_t* os::Solaris::allowdebug_blocked_signals() {
1425  assert(signal_sets_initialized, "Not initialized");
1426  return &allowdebug_blocked_sigs;
1427}
1428
1429// First crack at OS-specific initialization, from inside the new thread.
1430void os::initialize_thread() {
1431  int r = thr_main() ;
1432  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
1433  if (r) {
1434    JavaThread* jt = (JavaThread *)Thread::current();
1435    assert(jt != NULL,"Sanity check");
1436    size_t stack_size;
1437    address base = jt->stack_base();
1438    if (Arguments::created_by_java_launcher()) {
1439      // Use 2MB to allow for Solaris 7 64 bit mode.
1440      stack_size = JavaThread::stack_size_at_create() == 0
1441        ? 2048*K : JavaThread::stack_size_at_create();
1442
1443      // There are rare cases when we may have already used more than
1444      // the basic stack size allotment before this method is invoked.
1445      // Attempt to allow for a normally sized java_stack.
1446      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1447      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1448    } else {
1449      // 6269555: If we were not created by a Java launcher, i.e. if we are
1450      // running embedded in a native application, treat the primordial thread
1451      // as much like a native attached thread as possible.  This means using
1452      // the current stack size from thr_stksegment(), unless it is too large
1453      // to reliably setup guard pages.  A reasonable max size is 8MB.
1454      size_t current_size = current_stack_size();
1455      // This should never happen, but just in case....
1456      if (current_size == 0) current_size = 2 * K * K;
1457      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1458    }
1459    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1460    stack_size = (size_t)(base - bottom);
1461
1462    assert(stack_size > 0, "Stack size calculation problem");
1463
1464    if (stack_size > jt->stack_size()) {
1465      NOT_PRODUCT(
1466        struct rlimit limits;
1467        getrlimit(RLIMIT_STACK, &limits);
1468        size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1469        assert(size >= jt->stack_size(), "Stack size problem in main thread");
1470      )
1471      tty->print_cr(
1472        "Stack size of %d Kb exceeds current limit of %d Kb.\n"
1473        "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1474        "See limit(1) to increase the stack size limit.",
1475        stack_size / K, jt->stack_size() / K);
1476      vm_exit(1);
1477    }
1478    assert(jt->stack_size() >= stack_size,
1479          "Attempt to map more stack than was allocated");
1480    jt->set_stack_size(stack_size);
1481  }
1482
1483   // 5/22/01: Right now alternate signal stacks do not handle
1484   // throwing stack overflow exceptions, see bug 4463178
1485   // Until a fix is found for this, T2 will NOT imply alternate signal
1486   // stacks.
1487   // If using T2 libthread threads, install an alternate signal stack.
1488   // Because alternate stacks associate with LWPs on Solaris,
1489   // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
1490   // we prefer to explicitly stack bang.
1491   // If not using T2 libthread, but using UseBoundThreads any threads
1492   // (primordial thread, jni_attachCurrentThread) we do not create,
1493   // probably are not bound, therefore they can not have an alternate
1494   // signal stack. Since our stack banging code is generated and
1495   // is shared across threads, all threads must be bound to allow
1496   // using alternate signal stacks.  The alternative is to interpose
1497   // on _lwp_create to associate an alt sig stack with each LWP,
1498   // and this could be a problem when the JVM is embedded.
1499   // We would prefer to use alternate signal stacks with T2
1500   // Since there is currently no accurate way to detect T2
1501   // we do not. Assuming T2 when running T1 causes sig 11s or assertions
1502   // on installing alternate signal stacks
1503
1504
1505   // 05/09/03: removed alternate signal stack support for Solaris
1506   // The alternate signal stack mechanism is no longer needed to
1507   // handle stack overflow. This is now handled by allocating
1508   // guard pages (red zone) and stackbanging.
1509   // Initially the alternate signal stack mechanism was removed because
1510   // it did not work with T1 llibthread. Alternate
1511   // signal stacks MUST have all threads bound to lwps. Applications
1512   // can create their own threads and attach them without their being
1513   // bound under T1. This is frequently the case for the primordial thread.
1514   // If we were ever to reenable this mechanism we would need to
1515   // use the dynamic check for T2 libthread.
1516
1517  os::Solaris::init_thread_fpu_state();
1518}
1519
1520
1521
1522// Free Solaris resources related to the OSThread
1523void os::free_thread(OSThread* osthread) {
1524  assert(osthread != NULL, "os::free_thread but osthread not set");
1525
1526
1527  // We are told to free resources of the argument thread,
1528  // but we can only really operate on the current thread.
1529  // The main thread must take the VMThread down synchronously
1530  // before the main thread exits and frees up CodeHeap
1531  guarantee((Thread::current()->osthread() == osthread
1532     || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1533  if (Thread::current()->osthread() == osthread) {
1534    // Restore caller's signal mask
1535    sigset_t sigmask = osthread->caller_sigmask();
1536    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1537  }
1538  delete osthread;
1539}
1540
1541void os::pd_start_thread(Thread* thread) {
1542  int status = thr_continue(thread->osthread()->thread_id());
1543  assert_status(status == 0, status, "thr_continue failed");
1544}
1545
1546
1547intx os::current_thread_id() {
1548  return (intx)thr_self();
1549}
1550
1551static pid_t _initial_pid = 0;
1552
1553int os::current_process_id() {
1554  return (int)(_initial_pid ? _initial_pid : getpid());
1555}
1556
1557int os::allocate_thread_local_storage() {
1558  // %%%       in Win32 this allocates a memory segment pointed to by a
1559  //           register.  Dan Stein can implement a similar feature in
1560  //           Solaris.  Alternatively, the VM can do the same thing
1561  //           explicitly: malloc some storage and keep the pointer in a
1562  //           register (which is part of the thread's context) (or keep it
1563  //           in TLS).
1564  // %%%       In current versions of Solaris, thr_self and TSD can
1565  //           be accessed via short sequences of displaced indirections.
1566  //           The value of thr_self is available as %g7(36).
1567  //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
1568  //           assuming that the current thread already has a value bound to k.
1569  //           It may be worth experimenting with such access patterns,
1570  //           and later having the parameters formally exported from a Solaris
1571  //           interface.  I think, however, that it will be faster to
1572  //           maintain the invariant that %g2 always contains the
1573  //           JavaThread in Java code, and have stubs simply
1574  //           treat %g2 as a caller-save register, preserving it in a %lN.
1575  thread_key_t tk;
1576  if (thr_keycreate( &tk, NULL ) )
1577    fatal1("os::allocate_thread_local_storage: thr_keycreate failed (%s)", strerror(errno));
1578  return int(tk);
1579}
1580
1581void os::free_thread_local_storage(int index) {
1582  // %%% don't think we need anything here
1583  // if ( pthread_key_delete((pthread_key_t) tk) )
1584  //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
1585}
1586
1587#define SMALLINT 32   // libthread allocate for tsd_common is a version specific
1588                      // small number - point is NO swap space available
1589void os::thread_local_storage_at_put(int index, void* value) {
1590  // %%% this is used only in threadLocalStorage.cpp
1591  if (thr_setspecific((thread_key_t)index, value)) {
1592    if (errno == ENOMEM) {
1593       vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
1594    } else {
1595      fatal1("os::thread_local_storage_at_put: thr_setspecific failed (%s)", strerror(errno));
1596    }
1597  } else {
1598      ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
1599  }
1600}
1601
1602// This function could be called before TLS is initialized, for example, when
1603// VM receives an async signal or when VM causes a fatal error during
1604// initialization. Return NULL if thr_getspecific() fails.
1605void* os::thread_local_storage_at(int index) {
1606  // %%% this is used only in threadLocalStorage.cpp
1607  void* r = NULL;
1608  return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
1609}
1610
1611
1612const int NANOSECS_PER_MILLISECS = 1000000;
1613// gethrtime can move backwards if read from one cpu and then a different cpu
1614// getTimeNanos is guaranteed to not move backward on Solaris
1615// local spinloop created as faster for a CAS on an int than
1616// a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
1617// supported on sparc v8 or pre supports_cx8 intel boxes.
1618// oldgetTimeNanos for systems which do not support CAS on 64bit jlong
1619// i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
1620inline hrtime_t oldgetTimeNanos() {
1621  int gotlock = LOCK_INVALID;
1622  hrtime_t newtime = gethrtime();
1623
1624  for (;;) {
1625// grab lock for max_hrtime
1626    int curlock = max_hrtime_lock;
1627    if (curlock & LOCK_BUSY)  continue;
1628    if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
1629    if (newtime > max_hrtime) {
1630      max_hrtime = newtime;
1631    } else {
1632      newtime = max_hrtime;
1633    }
1634    // release lock
1635    max_hrtime_lock = LOCK_FREE;
1636    return newtime;
1637  }
1638}
1639// gethrtime can move backwards if read from one cpu and then a different cpu
1640// getTimeNanos is guaranteed to not move backward on Solaris
1641inline hrtime_t getTimeNanos() {
1642  if (VM_Version::supports_cx8()) {
1643    bool retry = false;
1644    hrtime_t newtime = gethrtime();
1645    hrtime_t oldmaxtime = max_hrtime;
1646    hrtime_t retmaxtime = oldmaxtime;
1647    while ((newtime > retmaxtime) && (retry == false || retmaxtime != oldmaxtime)) {
1648      oldmaxtime = retmaxtime;
1649      retmaxtime = Atomic::cmpxchg(newtime, (volatile jlong *)&max_hrtime, oldmaxtime);
1650      retry = true;
1651    }
1652    return (newtime > retmaxtime) ? newtime : retmaxtime;
1653  } else {
1654    return oldgetTimeNanos();
1655  }
1656}
1657
1658// Time since start-up in seconds to a fine granularity.
1659// Used by VMSelfDestructTimer and the MemProfiler.
1660double os::elapsedTime() {
1661  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1662}
1663
1664jlong os::elapsed_counter() {
1665  return (jlong)(getTimeNanos() - first_hrtime);
1666}
1667
1668jlong os::elapsed_frequency() {
1669   return hrtime_hz;
1670}
1671
1672// Return the real, user, and system times in seconds from an
1673// arbitrary fixed point in the past.
1674bool os::getTimesSecs(double* process_real_time,
1675                  double* process_user_time,
1676                  double* process_system_time) {
1677  struct tms ticks;
1678  clock_t real_ticks = times(&ticks);
1679
1680  if (real_ticks == (clock_t) (-1)) {
1681    return false;
1682  } else {
1683    double ticks_per_second = (double) clock_tics_per_sec;
1684    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1685    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1686    // For consistency return the real time from getTimeNanos()
1687    // converted to seconds.
1688    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1689
1690    return true;
1691  }
1692}
1693
1694// Used internally for comparisons only
1695// getTimeMillis guaranteed to not move backwards on Solaris
1696jlong getTimeMillis() {
1697  jlong nanotime = getTimeNanos();
1698  return (jlong)(nanotime / NANOSECS_PER_MILLISECS);
1699}
1700
1701// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1702jlong os::javaTimeMillis() {
1703  timeval t;
1704  if (gettimeofday( &t, NULL) == -1)
1705    fatal1("os::javaTimeMillis: gettimeofday (%s)", strerror(errno));
1706  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1707}
1708
1709jlong os::javaTimeNanos() {
1710  return (jlong)getTimeNanos();
1711}
1712
1713void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1714  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1715  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1716  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1717  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1718}
1719
1720char * os::local_time_string(char *buf, size_t buflen) {
1721  struct tm t;
1722  time_t long_time;
1723  time(&long_time);
1724  localtime_r(&long_time, &t);
1725  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1726               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1727               t.tm_hour, t.tm_min, t.tm_sec);
1728  return buf;
1729}
1730
1731// Note: os::shutdown() might be called very early during initialization, or
1732// called from signal handler. Before adding something to os::shutdown(), make
1733// sure it is async-safe and can handle partially initialized VM.
1734void os::shutdown() {
1735
1736  // allow PerfMemory to attempt cleanup of any persistent resources
1737  perfMemory_exit();
1738
1739  // needs to remove object in file system
1740  AttachListener::abort();
1741
1742  // flush buffered output, finish log files
1743  ostream_abort();
1744
1745  // Check for abort hook
1746  abort_hook_t abort_hook = Arguments::abort_hook();
1747  if (abort_hook != NULL) {
1748    abort_hook();
1749  }
1750}
1751
1752// Note: os::abort() might be called very early during initialization, or
1753// called from signal handler. Before adding something to os::abort(), make
1754// sure it is async-safe and can handle partially initialized VM.
1755void os::abort(bool dump_core) {
1756  os::shutdown();
1757  if (dump_core) {
1758#ifndef PRODUCT
1759    fdStream out(defaultStream::output_fd());
1760    out.print_raw("Current thread is ");
1761    char buf[16];
1762    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1763    out.print_raw_cr(buf);
1764    out.print_raw_cr("Dumping core ...");
1765#endif
1766    ::abort(); // dump core (for debugging)
1767  }
1768
1769  ::exit(1);
1770}
1771
1772// Die immediately, no exit hook, no abort hook, no cleanup.
1773void os::die() {
1774  _exit(-1);
1775}
1776
1777// unused
1778void os::set_error_file(const char *logfile) {}
1779
1780// DLL functions
1781
1782const char* os::dll_file_extension() { return ".so"; }
1783
1784const char* os::get_temp_directory() { return "/tmp/"; }
1785
1786const char* os::get_current_directory(char *buf, int buflen) {
1787  return getcwd(buf, buflen);
1788}
1789
1790// check if addr is inside libjvm[_g].so
1791bool os::address_is_in_vm(address addr) {
1792  static address libjvm_base_addr;
1793  Dl_info dlinfo;
1794
1795  if (libjvm_base_addr == NULL) {
1796    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1797    libjvm_base_addr = (address)dlinfo.dli_fbase;
1798    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1799  }
1800
1801  if (dladdr((void *)addr, &dlinfo)) {
1802    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1803  }
1804
1805  return false;
1806}
1807
1808typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
1809static dladdr1_func_type dladdr1_func = NULL;
1810
1811bool os::dll_address_to_function_name(address addr, char *buf,
1812                                      int buflen, int * offset) {
1813  Dl_info dlinfo;
1814
1815  // dladdr1_func was initialized in os::init()
1816  if (dladdr1_func){
1817      // yes, we have dladdr1
1818
1819      // Support for dladdr1 is checked at runtime; it may be
1820      // available even if the vm is built on a machine that does
1821      // not have dladdr1 support.  Make sure there is a value for
1822      // RTLD_DL_SYMENT.
1823      #ifndef RTLD_DL_SYMENT
1824      #define RTLD_DL_SYMENT 1
1825      #endif
1826      Sym * info;
1827      if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1828                       RTLD_DL_SYMENT)) {
1829          if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1830          if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1831
1832          // check if the returned symbol really covers addr
1833          return ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr);
1834      } else {
1835          if (buf) buf[0] = '\0';
1836          if (offset) *offset  = -1;
1837          return false;
1838      }
1839  } else {
1840      // no, only dladdr is available
1841      if(dladdr((void *)addr, &dlinfo)) {
1842          if (buf) jio_snprintf(buf, buflen, dlinfo.dli_sname);
1843          if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1844          return true;
1845      } else {
1846          if (buf) buf[0] = '\0';
1847          if (offset) *offset  = -1;
1848          return false;
1849      }
1850  }
1851}
1852
1853bool os::dll_address_to_library_name(address addr, char* buf,
1854                                     int buflen, int* offset) {
1855  Dl_info dlinfo;
1856
1857  if (dladdr((void*)addr, &dlinfo)){
1858     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1859     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1860     return true;
1861  } else {
1862     if (buf) buf[0] = '\0';
1863     if (offset) *offset = -1;
1864     return false;
1865  }
1866}
1867
1868// Prints the names and full paths of all opened dynamic libraries
1869// for current process
1870void os::print_dll_info(outputStream * st) {
1871    Dl_info dli;
1872    void *handle;
1873    Link_map *map;
1874    Link_map *p;
1875
1876    st->print_cr("Dynamic libraries:"); st->flush();
1877
1878    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
1879        st->print_cr("Error: Cannot print dynamic libraries.");
1880        return;
1881    }
1882    handle = dlopen(dli.dli_fname, RTLD_LAZY);
1883    if (handle == NULL) {
1884        st->print_cr("Error: Cannot print dynamic libraries.");
1885        return;
1886    }
1887    dlinfo(handle, RTLD_DI_LINKMAP, &map);
1888    if (map == NULL) {
1889        st->print_cr("Error: Cannot print dynamic libraries.");
1890        return;
1891    }
1892
1893    while (map->l_prev != NULL)
1894        map = map->l_prev;
1895
1896    while (map != NULL) {
1897        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1898        map = map->l_next;
1899    }
1900
1901    dlclose(handle);
1902}
1903
1904  // Loads .dll/.so and
1905  // in case of error it checks if .dll/.so was built for the
1906  // same architecture as Hotspot is running on
1907
1908void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1909{
1910  void * result= ::dlopen(filename, RTLD_LAZY);
1911  if (result != NULL) {
1912    // Successful loading
1913    return result;
1914  }
1915
1916  Elf32_Ehdr elf_head;
1917
1918  // Read system error message into ebuf
1919  // It may or may not be overwritten below
1920  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1921  ebuf[ebuflen-1]='\0';
1922  int diag_msg_max_length=ebuflen-strlen(ebuf);
1923  char* diag_msg_buf=ebuf+strlen(ebuf);
1924
1925  if (diag_msg_max_length==0) {
1926    // No more space in ebuf for additional diagnostics message
1927    return NULL;
1928  }
1929
1930
1931  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1932
1933  if (file_descriptor < 0) {
1934    // Can't open library, report dlerror() message
1935    return NULL;
1936  }
1937
1938  bool failed_to_read_elf_head=
1939    (sizeof(elf_head)!=
1940        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1941
1942  ::close(file_descriptor);
1943  if (failed_to_read_elf_head) {
1944    // file i/o error - report dlerror() msg
1945    return NULL;
1946  }
1947
1948  typedef struct {
1949    Elf32_Half  code;         // Actual value as defined in elf.h
1950    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1951    char        elf_class;    // 32 or 64 bit
1952    char        endianess;    // MSB or LSB
1953    char*       name;         // String representation
1954  } arch_t;
1955
1956  static const arch_t arch_array[]={
1957    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1958    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1959    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1960    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1961    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1962    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1963    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1964    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1965    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1966  };
1967
1968  #if  (defined IA32)
1969    static  Elf32_Half running_arch_code=EM_386;
1970  #elif   (defined AMD64)
1971    static  Elf32_Half running_arch_code=EM_X86_64;
1972  #elif  (defined IA64)
1973    static  Elf32_Half running_arch_code=EM_IA_64;
1974  #elif  (defined __sparc) && (defined _LP64)
1975    static  Elf32_Half running_arch_code=EM_SPARCV9;
1976  #elif  (defined __sparc) && (!defined _LP64)
1977    static  Elf32_Half running_arch_code=EM_SPARC;
1978  #elif  (defined __powerpc64__)
1979    static  Elf32_Half running_arch_code=EM_PPC64;
1980  #elif  (defined __powerpc__)
1981    static  Elf32_Half running_arch_code=EM_PPC;
1982  #else
1983    #error Method os::dll_load requires that one of following is defined:\
1984         IA32, AMD64, IA64, __sparc, __powerpc__
1985  #endif
1986
1987  // Identify compatability class for VM's architecture and library's architecture
1988  // Obtain string descriptions for architectures
1989
1990  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1991  int running_arch_index=-1;
1992
1993  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1994    if (running_arch_code == arch_array[i].code) {
1995      running_arch_index    = i;
1996    }
1997    if (lib_arch.code == arch_array[i].code) {
1998      lib_arch.compat_class = arch_array[i].compat_class;
1999      lib_arch.name         = arch_array[i].name;
2000    }
2001  }
2002
2003  assert(running_arch_index != -1,
2004    "Didn't find running architecture code (running_arch_code) in arch_array");
2005  if (running_arch_index == -1) {
2006    // Even though running architecture detection failed
2007    // we may still continue with reporting dlerror() message
2008    return NULL;
2009  }
2010
2011  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2012    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2013    return NULL;
2014  }
2015
2016  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2017    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2018    return NULL;
2019  }
2020
2021  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2022    if ( lib_arch.name!=NULL ) {
2023      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2024        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2025        lib_arch.name, arch_array[running_arch_index].name);
2026    } else {
2027      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2028      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2029        lib_arch.code,
2030        arch_array[running_arch_index].name);
2031    }
2032  }
2033
2034  return NULL;
2035}
2036
2037
2038
2039bool _print_ascii_file(const char* filename, outputStream* st) {
2040  int fd = open(filename, O_RDONLY);
2041  if (fd == -1) {
2042     return false;
2043  }
2044
2045  char buf[32];
2046  int bytes;
2047  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
2048    st->print_raw(buf, bytes);
2049  }
2050
2051  close(fd);
2052
2053  return true;
2054}
2055
2056void os::print_os_info(outputStream* st) {
2057  st->print("OS:");
2058
2059  if (!_print_ascii_file("/etc/release", st)) {
2060    st->print("Solaris");
2061  }
2062  st->cr();
2063
2064  // kernel
2065  st->print("uname:");
2066  struct utsname name;
2067  uname(&name);
2068  st->print(name.sysname); st->print(" ");
2069  st->print(name.release); st->print(" ");
2070  st->print(name.version); st->print(" ");
2071  st->print(name.machine);
2072
2073  // libthread
2074  if (os::Solaris::T2_libthread()) st->print("  (T2 libthread)");
2075  else st->print("  (T1 libthread)");
2076  st->cr();
2077
2078  // rlimit
2079  st->print("rlimit:");
2080  struct rlimit rlim;
2081
2082  st->print(" STACK ");
2083  getrlimit(RLIMIT_STACK, &rlim);
2084  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2085  else st->print("%uk", rlim.rlim_cur >> 10);
2086
2087  st->print(", CORE ");
2088  getrlimit(RLIMIT_CORE, &rlim);
2089  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2090  else st->print("%uk", rlim.rlim_cur >> 10);
2091
2092  st->print(", NOFILE ");
2093  getrlimit(RLIMIT_NOFILE, &rlim);
2094  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2095  else st->print("%d", rlim.rlim_cur);
2096
2097  st->print(", AS ");
2098  getrlimit(RLIMIT_AS, &rlim);
2099  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2100  else st->print("%uk", rlim.rlim_cur >> 10);
2101  st->cr();
2102
2103  // load average
2104  st->print("load average:");
2105  double loadavg[3];
2106  os::loadavg(loadavg, 3);
2107  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2108  st->cr();
2109}
2110
2111
2112static bool check_addr0(outputStream* st) {
2113  jboolean status = false;
2114  int fd = open("/proc/self/map",O_RDONLY);
2115  if (fd >= 0) {
2116    prmap_t p;
2117    while(read(fd, &p, sizeof(p)) > 0) {
2118      if (p.pr_vaddr == 0x0) {
2119        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
2120        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
2121        st->print("Access:");
2122        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
2123        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
2124        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
2125        st->cr();
2126        status = true;
2127      }
2128      close(fd);
2129    }
2130  }
2131  return status;
2132}
2133
2134void os::print_memory_info(outputStream* st) {
2135  st->print("Memory:");
2136  st->print(" %dk page", os::vm_page_size()>>10);
2137  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
2138  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
2139  st->cr();
2140  (void) check_addr0(st);
2141}
2142
2143// Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
2144// but they're the same for all the solaris architectures that we support.
2145const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2146                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2147                          "ILL_COPROC", "ILL_BADSTK" };
2148
2149const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2150                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2151                          "FPE_FLTINV", "FPE_FLTSUB" };
2152
2153const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2154
2155const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2156
2157void os::print_siginfo(outputStream* st, void* siginfo) {
2158  st->print("siginfo:");
2159
2160  const int buflen = 100;
2161  char buf[buflen];
2162  siginfo_t *si = (siginfo_t*)siginfo;
2163  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2164  char *err = strerror(si->si_errno);
2165  if (si->si_errno != 0 && err != NULL) {
2166    st->print("si_errno=%s", err);
2167  } else {
2168    st->print("si_errno=%d", si->si_errno);
2169  }
2170  const int c = si->si_code;
2171  assert(c > 0, "unexpected si_code");
2172  switch (si->si_signo) {
2173  case SIGILL:
2174    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2175    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2176    break;
2177  case SIGFPE:
2178    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2179    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2180    break;
2181  case SIGSEGV:
2182    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2183    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2184    break;
2185  case SIGBUS:
2186    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2187    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2188    break;
2189  default:
2190    st->print(", si_code=%d", si->si_code);
2191    // no si_addr
2192  }
2193
2194  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2195      UseSharedSpaces) {
2196    FileMapInfo* mapinfo = FileMapInfo::current_info();
2197    if (mapinfo->is_in_shared_space(si->si_addr)) {
2198      st->print("\n\nError accessing class data sharing archive."   \
2199                " Mapped file inaccessible during execution, "      \
2200                " possible disk/network problem.");
2201    }
2202  }
2203  st->cr();
2204}
2205
2206// Moved from whole group, because we need them here for diagnostic
2207// prints.
2208#define OLDMAXSIGNUM 32
2209static int Maxsignum = 0;
2210static int *ourSigFlags = NULL;
2211
2212extern "C" void sigINTRHandler(int, siginfo_t*, void*);
2213
2214int os::Solaris::get_our_sigflags(int sig) {
2215  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2216  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2217  return ourSigFlags[sig];
2218}
2219
2220void os::Solaris::set_our_sigflags(int sig, int flags) {
2221  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2222  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2223  ourSigFlags[sig] = flags;
2224}
2225
2226
2227static const char* get_signal_handler_name(address handler,
2228                                           char* buf, int buflen) {
2229  int offset;
2230  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2231  if (found) {
2232    // skip directory names
2233    const char *p1, *p2;
2234    p1 = buf;
2235    size_t len = strlen(os::file_separator());
2236    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2237    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2238  } else {
2239    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2240  }
2241  return buf;
2242}
2243
2244static void print_signal_handler(outputStream* st, int sig,
2245                                  char* buf, size_t buflen) {
2246  struct sigaction sa;
2247
2248  sigaction(sig, NULL, &sa);
2249
2250  st->print("%s: ", os::exception_name(sig, buf, buflen));
2251
2252  address handler = (sa.sa_flags & SA_SIGINFO)
2253                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2254                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2255
2256  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2257    st->print("SIG_DFL");
2258  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2259    st->print("SIG_IGN");
2260  } else {
2261    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2262  }
2263
2264  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
2265
2266  address rh = VMError::get_resetted_sighandler(sig);
2267  // May be, handler was resetted by VMError?
2268  if(rh != NULL) {
2269    handler = rh;
2270    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2271  }
2272
2273  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
2274
2275  // Check: is it our handler?
2276  if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
2277     handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
2278    // It is our signal handler
2279    // check for flags
2280    if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2281      st->print(
2282        ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2283        os::Solaris::get_our_sigflags(sig));
2284    }
2285  }
2286  st->cr();
2287}
2288
2289void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2290  st->print_cr("Signal Handlers:");
2291  print_signal_handler(st, SIGSEGV, buf, buflen);
2292  print_signal_handler(st, SIGBUS , buf, buflen);
2293  print_signal_handler(st, SIGFPE , buf, buflen);
2294  print_signal_handler(st, SIGPIPE, buf, buflen);
2295  print_signal_handler(st, SIGXFSZ, buf, buflen);
2296  print_signal_handler(st, SIGILL , buf, buflen);
2297  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2298  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2299  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2300  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2301  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2302  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2303  print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
2304  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2305}
2306
2307static char saved_jvm_path[MAXPATHLEN] = { 0 };
2308
2309// Find the full path to the current module, libjvm.so or libjvm_g.so
2310void os::jvm_path(char *buf, jint buflen) {
2311  // Error checking.
2312  if (buflen < MAXPATHLEN) {
2313    assert(false, "must use a large-enough buffer");
2314    buf[0] = '\0';
2315    return;
2316  }
2317  // Lazy resolve the path to current module.
2318  if (saved_jvm_path[0] != 0) {
2319    strcpy(buf, saved_jvm_path);
2320    return;
2321  }
2322
2323  Dl_info dlinfo;
2324  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2325  assert(ret != 0, "cannot locate libjvm");
2326  realpath((char *)dlinfo.dli_fname, buf);
2327
2328  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2329    // Support for the gamma launcher.  Typical value for buf is
2330    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2331    // the right place in the string, then assume we are installed in a JDK and
2332    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2333    // up the path so it looks like libjvm.so is installed there (append a
2334    // fake suffix hotspot/libjvm.so).
2335    const char *p = buf + strlen(buf) - 1;
2336    for (int count = 0; p > buf && count < 5; ++count) {
2337      for (--p; p > buf && *p != '/'; --p)
2338        /* empty */ ;
2339    }
2340
2341    if (strncmp(p, "/jre/lib/", 9) != 0) {
2342      // Look for JAVA_HOME in the environment.
2343      char* java_home_var = ::getenv("JAVA_HOME");
2344      if (java_home_var != NULL && java_home_var[0] != 0) {
2345        char cpu_arch[12];
2346        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2347#ifdef _LP64
2348        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2349        if (strcmp(cpu_arch, "sparc") == 0) {
2350          strcat(cpu_arch, "v9");
2351        } else if (strcmp(cpu_arch, "i386") == 0) {
2352          strcpy(cpu_arch, "amd64");
2353        }
2354#endif
2355        // Check the current module name "libjvm.so" or "libjvm_g.so".
2356        p = strrchr(buf, '/');
2357        assert(strstr(p, "/libjvm") == p, "invalid library name");
2358        p = strstr(p, "_g") ? "_g" : "";
2359
2360        realpath(java_home_var, buf);
2361        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2362        if (0 == access(buf, F_OK)) {
2363          // Use current module name "libjvm[_g].so" instead of
2364          // "libjvm"debug_only("_g")".so" since for fastdebug version
2365          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2366          // It is used when we are choosing the HPI library's name
2367          // "libhpi[_g].so" in hpi::initialize_get_interface().
2368          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2369        } else {
2370          // Go back to path of .so
2371          realpath((char *)dlinfo.dli_fname, buf);
2372        }
2373      }
2374    }
2375  }
2376
2377  strcpy(saved_jvm_path, buf);
2378}
2379
2380
2381void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2382  // no prefix required, not even "_"
2383}
2384
2385
2386void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2387  // no suffix required
2388}
2389
2390
2391// sun.misc.Signal
2392
2393extern "C" {
2394  static void UserHandler(int sig, void *siginfo, void *context) {
2395    // Ctrl-C is pressed during error reporting, likely because the error
2396    // handler fails to abort. Let VM die immediately.
2397    if (sig == SIGINT && is_error_reported()) {
2398       os::die();
2399    }
2400
2401    os::signal_notify(sig);
2402    // We do not need to reinstate the signal handler each time...
2403  }
2404}
2405
2406void* os::user_handler() {
2407  return CAST_FROM_FN_PTR(void*, UserHandler);
2408}
2409
2410extern "C" {
2411  typedef void (*sa_handler_t)(int);
2412  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2413}
2414
2415void* os::signal(int signal_number, void* handler) {
2416  struct sigaction sigAct, oldSigAct;
2417  sigfillset(&(sigAct.sa_mask));
2418  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2419  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2420
2421  if (sigaction(signal_number, &sigAct, &oldSigAct))
2422    // -1 means registration failed
2423    return (void *)-1;
2424
2425  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2426}
2427
2428void os::signal_raise(int signal_number) {
2429  raise(signal_number);
2430}
2431
2432/*
2433 * The following code is moved from os.cpp for making this
2434 * code platform specific, which it is by its very nature.
2435 */
2436
2437// a counter for each possible signal value
2438static int Sigexit = 0;
2439static int Maxlibjsigsigs;
2440static jint *pending_signals = NULL;
2441static int *preinstalled_sigs = NULL;
2442static struct sigaction *chainedsigactions = NULL;
2443static sema_t sig_sem;
2444typedef int (*version_getting_t)();
2445version_getting_t os::Solaris::get_libjsig_version = NULL;
2446static int libjsigversion = NULL;
2447
2448int os::sigexitnum_pd() {
2449  assert(Sigexit > 0, "signal memory not yet initialized");
2450  return Sigexit;
2451}
2452
2453void os::Solaris::init_signal_mem() {
2454  // Initialize signal structures
2455  Maxsignum = SIGRTMAX;
2456  Sigexit = Maxsignum+1;
2457  assert(Maxsignum >0, "Unable to obtain max signal number");
2458
2459  Maxlibjsigsigs = Maxsignum;
2460
2461  // pending_signals has one int per signal
2462  // The additional signal is for SIGEXIT - exit signal to signal_thread
2463  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1));
2464  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2465
2466  if (UseSignalChaining) {
2467     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2468       * (Maxsignum + 1));
2469     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2470     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1));
2471     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2472  }
2473  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ));
2474  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2475}
2476
2477void os::signal_init_pd() {
2478  int ret;
2479
2480  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2481  assert(ret == 0, "sema_init() failed");
2482}
2483
2484void os::signal_notify(int signal_number) {
2485  int ret;
2486
2487  Atomic::inc(&pending_signals[signal_number]);
2488  ret = ::sema_post(&sig_sem);
2489  assert(ret == 0, "sema_post() failed");
2490}
2491
2492static int check_pending_signals(bool wait_for_signal) {
2493  int ret;
2494  while (true) {
2495    for (int i = 0; i < Sigexit + 1; i++) {
2496      jint n = pending_signals[i];
2497      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2498        return i;
2499      }
2500    }
2501    if (!wait_for_signal) {
2502      return -1;
2503    }
2504    JavaThread *thread = JavaThread::current();
2505    ThreadBlockInVM tbivm(thread);
2506
2507    bool threadIsSuspended;
2508    do {
2509      thread->set_suspend_equivalent();
2510      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2511      while((ret = ::sema_wait(&sig_sem)) == EINTR)
2512          ;
2513      assert(ret == 0, "sema_wait() failed");
2514
2515      // were we externally suspended while we were waiting?
2516      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2517      if (threadIsSuspended) {
2518        //
2519        // The semaphore has been incremented, but while we were waiting
2520        // another thread suspended us. We don't want to continue running
2521        // while suspended because that would surprise the thread that
2522        // suspended us.
2523        //
2524        ret = ::sema_post(&sig_sem);
2525        assert(ret == 0, "sema_post() failed");
2526
2527        thread->java_suspend_self();
2528      }
2529    } while (threadIsSuspended);
2530  }
2531}
2532
2533int os::signal_lookup() {
2534  return check_pending_signals(false);
2535}
2536
2537int os::signal_wait() {
2538  return check_pending_signals(true);
2539}
2540
2541////////////////////////////////////////////////////////////////////////////////
2542// Virtual Memory
2543
2544static int page_size = -1;
2545
2546// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2547// clear this var if support is not available.
2548static bool has_map_align = true;
2549
2550int os::vm_page_size() {
2551  assert(page_size != -1, "must call os::init");
2552  return page_size;
2553}
2554
2555// Solaris allocates memory by pages.
2556int os::vm_allocation_granularity() {
2557  assert(page_size != -1, "must call os::init");
2558  return page_size;
2559}
2560
2561bool os::commit_memory(char* addr, size_t bytes) {
2562  size_t size = bytes;
2563  return
2564     NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED,
2565                                 PROT_READ | PROT_WRITE | PROT_EXEC);
2566}
2567
2568bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint) {
2569  if (commit_memory(addr, bytes)) {
2570    if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
2571      // If the large page size has been set and the VM
2572      // is using large pages, use the large page size
2573      // if it is smaller than the alignment hint. This is
2574      // a case where the VM wants to use a larger alignment size
2575      // for its own reasons but still want to use large pages
2576      // (which is what matters to setting the mpss range.
2577      size_t page_size = 0;
2578      if (large_page_size() < alignment_hint) {
2579        assert(UseLargePages, "Expected to be here for large page use only");
2580        page_size = large_page_size();
2581      } else {
2582        // If the alignment hint is less than the large page
2583        // size, the VM wants a particular alignment (thus the hint)
2584        // for internal reasons.  Try to set the mpss range using
2585        // the alignment_hint.
2586        page_size = alignment_hint;
2587      }
2588      // Since this is a hint, ignore any failures.
2589      (void)Solaris::set_mpss_range(addr, bytes, page_size);
2590    }
2591    return true;
2592  }
2593  return false;
2594}
2595
2596// Uncommit the pages in a specified region.
2597void os::free_memory(char* addr, size_t bytes) {
2598  if (madvise(addr, bytes, MADV_FREE) < 0) {
2599    debug_only(warning("MADV_FREE failed."));
2600    return;
2601  }
2602}
2603
2604// Change the page size in a given range.
2605void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2606  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2607  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2608  Solaris::set_mpss_range(addr, bytes, alignment_hint);
2609}
2610
2611// Tell the OS to make the range local to the first-touching LWP
2612void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2613  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2614  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2615    debug_only(warning("MADV_ACCESS_LWP failed."));
2616  }
2617}
2618
2619// Tell the OS that this range would be accessed from different LWPs.
2620void os::numa_make_global(char *addr, size_t bytes) {
2621  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2622  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2623    debug_only(warning("MADV_ACCESS_MANY failed."));
2624  }
2625}
2626
2627// Get the number of the locality groups.
2628size_t os::numa_get_groups_num() {
2629  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2630  return n != -1 ? n : 1;
2631}
2632
2633// Get a list of leaf locality groups. A leaf lgroup is group that
2634// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2635// board. An LWP is assigned to one of these groups upon creation.
2636size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2637   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2638     ids[0] = 0;
2639     return 1;
2640   }
2641   int result_size = 0, top = 1, bottom = 0, cur = 0;
2642   for (int k = 0; k < size; k++) {
2643     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2644                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2645     if (r == -1) {
2646       ids[0] = 0;
2647       return 1;
2648     }
2649     if (!r) {
2650       // That's a leaf node.
2651       assert (bottom <= cur, "Sanity check");
2652       // Check if the node has memory
2653       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2654                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2655         ids[bottom++] = ids[cur];
2656       }
2657     }
2658     top += r;
2659     cur++;
2660   }
2661   return bottom;
2662}
2663
2664// Detect the topology change. Typically happens during CPU pluggin-unplugging.
2665bool os::numa_topology_changed() {
2666  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2667  if (is_stale != -1 && is_stale) {
2668    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2669    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2670    assert(c != 0, "Failure to initialize LGRP API");
2671    Solaris::set_lgrp_cookie(c);
2672    return true;
2673  }
2674  return false;
2675}
2676
2677// Get the group id of the current LWP.
2678int os::numa_get_group_id() {
2679  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2680  if (lgrp_id == -1) {
2681    return 0;
2682  }
2683  const int size = os::numa_get_groups_num();
2684  int *ids = (int*)alloca(size * sizeof(int));
2685
2686  // Get the ids of all lgroups with memory; r is the count.
2687  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2688                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2689  if (r <= 0) {
2690    return 0;
2691  }
2692  return ids[os::random() % r];
2693}
2694
2695// Request information about the page.
2696bool os::get_page_info(char *start, page_info* info) {
2697  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2698  uint64_t addr = (uintptr_t)start;
2699  uint64_t outdata[2];
2700  uint_t validity = 0;
2701
2702  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2703    return false;
2704  }
2705
2706  info->size = 0;
2707  info->lgrp_id = -1;
2708
2709  if ((validity & 1) != 0) {
2710    if ((validity & 2) != 0) {
2711      info->lgrp_id = outdata[0];
2712    }
2713    if ((validity & 4) != 0) {
2714      info->size = outdata[1];
2715    }
2716    return true;
2717  }
2718  return false;
2719}
2720
2721// Scan the pages from start to end until a page different than
2722// the one described in the info parameter is encountered.
2723char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2724  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2725  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2726  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
2727  uint_t validity[MAX_MEMINFO_CNT];
2728
2729  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2730  uint64_t p = (uint64_t)start;
2731  while (p < (uint64_t)end) {
2732    addrs[0] = p;
2733    size_t addrs_count = 1;
2734    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
2735      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2736      addrs_count++;
2737    }
2738
2739    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2740      return NULL;
2741    }
2742
2743    size_t i = 0;
2744    for (; i < addrs_count; i++) {
2745      if ((validity[i] & 1) != 0) {
2746        if ((validity[i] & 4) != 0) {
2747          if (outdata[types * i + 1] != page_expected->size) {
2748            break;
2749          }
2750        } else
2751          if (page_expected->size != 0) {
2752            break;
2753          }
2754
2755        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2756          if (outdata[types * i] != page_expected->lgrp_id) {
2757            break;
2758          }
2759        }
2760      } else {
2761        return NULL;
2762      }
2763    }
2764
2765    if (i != addrs_count) {
2766      if ((validity[i] & 2) != 0) {
2767        page_found->lgrp_id = outdata[types * i];
2768      } else {
2769        page_found->lgrp_id = -1;
2770      }
2771      if ((validity[i] & 4) != 0) {
2772        page_found->size = outdata[types * i + 1];
2773      } else {
2774        page_found->size = 0;
2775      }
2776      return (char*)addrs[i];
2777    }
2778
2779    p = addrs[addrs_count - 1] + page_size;
2780  }
2781  return end;
2782}
2783
2784bool os::uncommit_memory(char* addr, size_t bytes) {
2785  size_t size = bytes;
2786  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2787  // uncommitted page. Otherwise, the read/write might succeed if we
2788  // have enough swap space to back the physical page.
2789  return
2790    NULL != Solaris::mmap_chunk(addr, size,
2791                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2792                                PROT_NONE);
2793}
2794
2795char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2796  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2797
2798  if (b == MAP_FAILED) {
2799    return NULL;
2800  }
2801  return b;
2802}
2803
2804char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
2805  char* addr = requested_addr;
2806  int flags = MAP_PRIVATE | MAP_NORESERVE;
2807
2808  assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
2809
2810  if (fixed) {
2811    flags |= MAP_FIXED;
2812  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2813    flags |= MAP_ALIGN;
2814    addr = (char*) alignment_hint;
2815  }
2816
2817  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2818  // uncommitted page. Otherwise, the read/write might succeed if we
2819  // have enough swap space to back the physical page.
2820  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2821}
2822
2823char* os::reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2824  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
2825
2826  guarantee(requested_addr == NULL || requested_addr == addr,
2827            "OS failed to return requested mmap address.");
2828  return addr;
2829}
2830
2831// Reserve memory at an arbitrary address, only if that area is
2832// available (and not reserved for something else).
2833
2834char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2835  const int max_tries = 10;
2836  char* base[max_tries];
2837  size_t size[max_tries];
2838
2839  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2840  // is dependent on the requested size and the MMU.  Our initial gap
2841  // value here is just a guess and will be corrected later.
2842  bool had_top_overlap = false;
2843  bool have_adjusted_gap = false;
2844  size_t gap = 0x400000;
2845
2846  // Assert only that the size is a multiple of the page size, since
2847  // that's all that mmap requires, and since that's all we really know
2848  // about at this low abstraction level.  If we need higher alignment,
2849  // we can either pass an alignment to this method or verify alignment
2850  // in one of the methods further up the call chain.  See bug 5044738.
2851  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2852
2853  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2854  // Give it a try, if the kernel honors the hint we can return immediately.
2855  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2856  volatile int err = errno;
2857  if (addr == requested_addr) {
2858    return addr;
2859  } else if (addr != NULL) {
2860    unmap_memory(addr, bytes);
2861  }
2862
2863  if (PrintMiscellaneous && Verbose) {
2864    char buf[256];
2865    buf[0] = '\0';
2866    if (addr == NULL) {
2867      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2868    }
2869    warning("attempt_reserve_memory_at: couldn't reserve %d bytes at "
2870            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2871            "%s", bytes, requested_addr, addr, buf);
2872  }
2873
2874  // Address hint method didn't work.  Fall back to the old method.
2875  // In theory, once SNV becomes our oldest supported platform, this
2876  // code will no longer be needed.
2877  //
2878  // Repeatedly allocate blocks until the block is allocated at the
2879  // right spot. Give up after max_tries.
2880  int i;
2881  for (i = 0; i < max_tries; ++i) {
2882    base[i] = reserve_memory(bytes);
2883
2884    if (base[i] != NULL) {
2885      // Is this the block we wanted?
2886      if (base[i] == requested_addr) {
2887        size[i] = bytes;
2888        break;
2889      }
2890
2891      // check that the gap value is right
2892      if (had_top_overlap && !have_adjusted_gap) {
2893        size_t actual_gap = base[i-1] - base[i] - bytes;
2894        if (gap != actual_gap) {
2895          // adjust the gap value and retry the last 2 allocations
2896          assert(i > 0, "gap adjustment code problem");
2897          have_adjusted_gap = true;  // adjust the gap only once, just in case
2898          gap = actual_gap;
2899          if (PrintMiscellaneous && Verbose) {
2900            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2901          }
2902          unmap_memory(base[i], bytes);
2903          unmap_memory(base[i-1], size[i-1]);
2904          i-=2;
2905          continue;
2906        }
2907      }
2908
2909      // Does this overlap the block we wanted? Give back the overlapped
2910      // parts and try again.
2911      //
2912      // There is still a bug in this code: if top_overlap == bytes,
2913      // the overlap is offset from requested region by the value of gap.
2914      // In this case giving back the overlapped part will not work,
2915      // because we'll give back the entire block at base[i] and
2916      // therefore the subsequent allocation will not generate a new gap.
2917      // This could be fixed with a new algorithm that used larger
2918      // or variable size chunks to find the requested region -
2919      // but such a change would introduce additional complications.
2920      // It's rare enough that the planets align for this bug,
2921      // so we'll just wait for a fix for 6204603/5003415 which
2922      // will provide a mmap flag to allow us to avoid this business.
2923
2924      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2925      if (top_overlap >= 0 && top_overlap < bytes) {
2926        had_top_overlap = true;
2927        unmap_memory(base[i], top_overlap);
2928        base[i] += top_overlap;
2929        size[i] = bytes - top_overlap;
2930      } else {
2931        size_t bottom_overlap = base[i] + bytes - requested_addr;
2932        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2933          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2934            warning("attempt_reserve_memory_at: possible alignment bug");
2935          }
2936          unmap_memory(requested_addr, bottom_overlap);
2937          size[i] = bytes - bottom_overlap;
2938        } else {
2939          size[i] = bytes;
2940        }
2941      }
2942    }
2943  }
2944
2945  // Give back the unused reserved pieces.
2946
2947  for (int j = 0; j < i; ++j) {
2948    if (base[j] != NULL) {
2949      unmap_memory(base[j], size[j]);
2950    }
2951  }
2952
2953  return (i < max_tries) ? requested_addr : NULL;
2954}
2955
2956bool os::release_memory(char* addr, size_t bytes) {
2957  size_t size = bytes;
2958  return munmap(addr, size) == 0;
2959}
2960
2961static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2962  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2963         "addr must be page aligned");
2964  int retVal = mprotect(addr, bytes, prot);
2965  return retVal == 0;
2966}
2967
2968// Protect memory (make it read-only. (Used to pass readonly pages through
2969// JNI GetArray<type>Elements with empty arrays.)
2970bool os::protect_memory(char* addr, size_t bytes) {
2971  return solaris_mprotect(addr, bytes, PROT_READ);
2972}
2973
2974// guard_memory and unguard_memory only happens within stack guard pages.
2975// Since ISM pertains only to the heap, guard and unguard memory should not
2976/// happen with an ISM region.
2977bool os::guard_memory(char* addr, size_t bytes) {
2978  return solaris_mprotect(addr, bytes, PROT_NONE);
2979}
2980
2981bool os::unguard_memory(char* addr, size_t bytes) {
2982  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC);
2983}
2984
2985// Large page support
2986
2987// UseLargePages is the master flag to enable/disable large page memory.
2988// UseMPSS and UseISM are supported for compatibility reasons. Their combined
2989// effects can be described in the following table:
2990//
2991// UseLargePages UseMPSS UseISM
2992//    false         *       *   => UseLargePages is the master switch, turning
2993//                                 it off will turn off both UseMPSS and
2994//                                 UseISM. VM will not use large page memory
2995//                                 regardless the settings of UseMPSS/UseISM.
2996//     true      false    false => Unless future Solaris provides other
2997//                                 mechanism to use large page memory, this
2998//                                 combination is equivalent to -UseLargePages,
2999//                                 VM will not use large page memory
3000//     true      true     false => JVM will use MPSS for large page memory.
3001//                                 This is the default behavior.
3002//     true      false    true  => JVM will use ISM for large page memory.
3003//     true      true     true  => JVM will use ISM if it is available.
3004//                                 Otherwise, JVM will fall back to MPSS.
3005//                                 Becaues ISM is now available on all
3006//                                 supported Solaris versions, this combination
3007//                                 is equivalent to +UseISM -UseMPSS.
3008
3009typedef int (*getpagesizes_func_type) (size_t[], int);
3010static size_t _large_page_size = 0;
3011
3012bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
3013  // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
3014  // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
3015  // can support multiple page sizes.
3016
3017  // Don't bother to probe page size because getpagesizes() comes with MPSS.
3018  // ISM is only recommended on old Solaris where there is no MPSS support.
3019  // Simply choose a conservative value as default.
3020  *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
3021               SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M);
3022
3023  // ISM is available on all supported Solaris versions
3024  return true;
3025}
3026
3027// Insertion sort for small arrays (descending order).
3028static void insertion_sort_descending(size_t* array, int len) {
3029  for (int i = 0; i < len; i++) {
3030    size_t val = array[i];
3031    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
3032      size_t tmp = array[key];
3033      array[key] = array[key - 1];
3034      array[key - 1] = tmp;
3035    }
3036  }
3037}
3038
3039bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
3040  getpagesizes_func_type getpagesizes_func =
3041    CAST_TO_FN_PTR(getpagesizes_func_type, dlsym(RTLD_DEFAULT, "getpagesizes"));
3042  if (getpagesizes_func == NULL) {
3043    if (warn) {
3044      warning("MPSS is not supported by the operating system.");
3045    }
3046    return false;
3047  }
3048
3049  const unsigned int usable_count = VM_Version::page_size_count();
3050  if (usable_count == 1) {
3051    return false;
3052  }
3053
3054  // Fill the array of page sizes.
3055  int n = getpagesizes_func(_page_sizes, page_sizes_max);
3056  assert(n > 0, "Solaris bug?");
3057  if (n == page_sizes_max) {
3058    // Add a sentinel value (necessary only if the array was completely filled
3059    // since it is static (zeroed at initialization)).
3060    _page_sizes[--n] = 0;
3061    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
3062  }
3063  assert(_page_sizes[n] == 0, "missing sentinel");
3064
3065  if (n == 1) return false;     // Only one page size available.
3066
3067  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
3068  // select up to usable_count elements.  First sort the array, find the first
3069  // acceptable value, then copy the usable sizes to the top of the array and
3070  // trim the rest.  Make sure to include the default page size :-).
3071  //
3072  // A better policy could get rid of the 4M limit by taking the sizes of the
3073  // important VM memory regions (java heap and possibly the code cache) into
3074  // account.
3075  insertion_sort_descending(_page_sizes, n);
3076  const size_t size_limit =
3077    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
3078  int beg;
3079  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
3080  const int end = MIN2((int)usable_count, n) - 1;
3081  for (int cur = 0; cur < end; ++cur, ++beg) {
3082    _page_sizes[cur] = _page_sizes[beg];
3083  }
3084  _page_sizes[end] = vm_page_size();
3085  _page_sizes[end + 1] = 0;
3086
3087  if (_page_sizes[end] > _page_sizes[end - 1]) {
3088    // Default page size is not the smallest; sort again.
3089    insertion_sort_descending(_page_sizes, end + 1);
3090  }
3091  *page_size = _page_sizes[0];
3092
3093  return true;
3094}
3095
3096bool os::large_page_init() {
3097  if (!UseLargePages) {
3098    UseISM = false;
3099    UseMPSS = false;
3100    return false;
3101  }
3102
3103  // print a warning if any large page related flag is specified on command line
3104  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3105                         !FLAG_IS_DEFAULT(UseISM)               ||
3106                         !FLAG_IS_DEFAULT(UseMPSS)              ||
3107                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3108  UseISM = UseISM &&
3109           Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
3110  if (UseISM) {
3111    // ISM disables MPSS to be compatible with old JDK behavior
3112    UseMPSS = false;
3113    _page_sizes[0] = _large_page_size;
3114    _page_sizes[1] = vm_page_size();
3115  }
3116
3117  UseMPSS = UseMPSS &&
3118            Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3119
3120  UseLargePages = UseISM || UseMPSS;
3121  return UseLargePages;
3122}
3123
3124bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
3125  // Signal to OS that we want large pages for addresses
3126  // from addr, addr + bytes
3127  struct memcntl_mha mpss_struct;
3128  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3129  mpss_struct.mha_pagesize = align;
3130  mpss_struct.mha_flags = 0;
3131  if (memcntl(start, bytes, MC_HAT_ADVISE,
3132              (caddr_t) &mpss_struct, 0, 0) < 0) {
3133    debug_only(warning("Attempt to use MPSS failed."));
3134    return false;
3135  }
3136  return true;
3137}
3138
3139char* os::reserve_memory_special(size_t bytes) {
3140  assert(UseLargePages && UseISM, "only for ISM large pages");
3141
3142  size_t size = bytes;
3143  char* retAddr = NULL;
3144  int shmid;
3145  key_t ismKey;
3146
3147  bool warn_on_failure = UseISM &&
3148                        (!FLAG_IS_DEFAULT(UseLargePages)         ||
3149                         !FLAG_IS_DEFAULT(UseISM)                ||
3150                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3151                        );
3152  char msg[128];
3153
3154  ismKey = IPC_PRIVATE;
3155
3156  // Create a large shared memory region to attach to based on size.
3157  // Currently, size is the total size of the heap
3158  shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
3159  if (shmid == -1){
3160     if (warn_on_failure) {
3161       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3162       warning(msg);
3163     }
3164     return NULL;
3165  }
3166
3167  // Attach to the region
3168  retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
3169  int err = errno;
3170
3171  // Remove shmid. If shmat() is successful, the actual shared memory segment
3172  // will be deleted when it's detached by shmdt() or when the process
3173  // terminates. If shmat() is not successful this will remove the shared
3174  // segment immediately.
3175  shmctl(shmid, IPC_RMID, NULL);
3176
3177  if (retAddr == (char *) -1) {
3178    if (warn_on_failure) {
3179      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3180      warning(msg);
3181    }
3182    return NULL;
3183  }
3184
3185  return retAddr;
3186}
3187
3188bool os::release_memory_special(char* base, size_t bytes) {
3189  // detaching the SHM segment will also delete it, see reserve_memory_special()
3190  int rslt = shmdt(base);
3191  return rslt == 0;
3192}
3193
3194size_t os::large_page_size() {
3195  return _large_page_size;
3196}
3197
3198// MPSS allows application to commit large page memory on demand; with ISM
3199// the entire memory region must be allocated as shared memory.
3200bool os::can_commit_large_page_memory() {
3201  return UseISM ? false : true;
3202}
3203
3204bool os::can_execute_large_page_memory() {
3205  return UseISM ? false : true;
3206}
3207
3208static int os_sleep(jlong millis, bool interruptible) {
3209  const jlong limit = INT_MAX;
3210  jlong prevtime;
3211  int res;
3212
3213  while (millis > limit) {
3214    if ((res = os_sleep(limit, interruptible)) != OS_OK)
3215      return res;
3216    millis -= limit;
3217  }
3218
3219  // Restart interrupted polls with new parameters until the proper delay
3220  // has been completed.
3221
3222  prevtime = getTimeMillis();
3223
3224  while (millis > 0) {
3225    jlong newtime;
3226
3227    if (!interruptible) {
3228      // Following assert fails for os::yield_all:
3229      // assert(!thread->is_Java_thread(), "must not be java thread");
3230      res = poll(NULL, 0, millis);
3231    } else {
3232      JavaThread *jt = JavaThread::current();
3233
3234      INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
3235        os::Solaris::clear_interrupted);
3236    }
3237
3238    // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
3239    // thread.Interrupt.
3240
3241    if((res == OS_ERR) && (errno == EINTR)) {
3242      newtime = getTimeMillis();
3243      assert(newtime >= prevtime, "time moving backwards");
3244    /* Doing prevtime and newtime in microseconds doesn't help precision,
3245       and trying to round up to avoid lost milliseconds can result in a
3246       too-short delay. */
3247      millis -= newtime - prevtime;
3248      if(millis <= 0)
3249        return OS_OK;
3250      prevtime = newtime;
3251    } else
3252      return res;
3253  }
3254
3255  return OS_OK;
3256}
3257
3258// Read calls from inside the vm need to perform state transitions
3259size_t os::read(int fd, void *buf, unsigned int nBytes) {
3260  INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3261}
3262
3263int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3264  assert(thread == Thread::current(),  "thread consistency check");
3265
3266  // TODO-FIXME: this should be removed.
3267  // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
3268  // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
3269  // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
3270  // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
3271  // is fooled into believing that the system is making progress. In the code below we block the
3272  // the watcher thread while safepoint is in progress so that it would not appear as though the
3273  // system is making progress.
3274  if (!Solaris::T2_libthread() &&
3275      thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
3276    // We now try to acquire the threads lock. Since this lock is held by the VM thread during
3277    // the entire safepoint, the watcher thread will  line up here during the safepoint.
3278    Threads_lock->lock_without_safepoint_check();
3279    Threads_lock->unlock();
3280  }
3281
3282  if (thread->is_Java_thread()) {
3283    // This is a JavaThread so we honor the _thread_blocked protocol
3284    // even for sleeps of 0 milliseconds. This was originally done
3285    // as a workaround for bug 4338139. However, now we also do it
3286    // to honor the suspend-equivalent protocol.
3287
3288    JavaThread *jt = (JavaThread *) thread;
3289    ThreadBlockInVM tbivm(jt);
3290
3291    jt->set_suspend_equivalent();
3292    // cleared by handle_special_suspend_equivalent_condition() or
3293    // java_suspend_self() via check_and_wait_while_suspended()
3294
3295    int ret_code;
3296    if (millis <= 0) {
3297      thr_yield();
3298      ret_code = 0;
3299    } else {
3300      // The original sleep() implementation did not create an
3301      // OSThreadWaitState helper for sleeps of 0 milliseconds.
3302      // I'm preserving that decision for now.
3303      OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3304
3305      ret_code = os_sleep(millis, interruptible);
3306    }
3307
3308    // were we externally suspended while we were waiting?
3309    jt->check_and_wait_while_suspended();
3310
3311    return ret_code;
3312  }
3313
3314  // non-JavaThread from this point on:
3315
3316  if (millis <= 0) {
3317    thr_yield();
3318    return 0;
3319  }
3320
3321  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3322
3323  return os_sleep(millis, interruptible);
3324}
3325
3326int os::naked_sleep() {
3327  // %% make the sleep time an integer flag. for now use 1 millisec.
3328  return os_sleep(1, false);
3329}
3330
3331// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3332void os::infinite_sleep() {
3333  while (true) {    // sleep forever ...
3334    ::sleep(100);   // ... 100 seconds at a time
3335  }
3336}
3337
3338// Used to convert frequent JVM_Yield() to nops
3339bool os::dont_yield() {
3340  if (DontYieldALot) {
3341    static hrtime_t last_time = 0;
3342    hrtime_t diff = getTimeNanos() - last_time;
3343
3344    if (diff < DontYieldALotInterval * 1000000)
3345      return true;
3346
3347    last_time += diff;
3348
3349    return false;
3350  }
3351  else {
3352    return false;
3353  }
3354}
3355
3356// Caveat: Solaris os::yield() causes a thread-state transition whereas
3357// the linux and win32 implementations do not.  This should be checked.
3358
3359void os::yield() {
3360  // Yields to all threads with same or greater priority
3361  os::sleep(Thread::current(), 0, false);
3362}
3363
3364// Note that yield semantics are defined by the scheduling class to which
3365// the thread currently belongs.  Typically, yield will _not yield to
3366// other equal or higher priority threads that reside on the dispatch queues
3367// of other CPUs.
3368
3369os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
3370
3371
3372// On Solaris we found that yield_all doesn't always yield to all other threads.
3373// There have been cases where there is a thread ready to execute but it doesn't
3374// get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
3375// The 1 millisecond wait doesn't seem long enough for the kernel to issue a
3376// SIGWAITING signal which will cause a new lwp to be created. So we count the
3377// number of times yield_all is called in the one loop and increase the sleep
3378// time after 8 attempts. If this fails too we increase the concurrency level
3379// so that the starving thread would get an lwp
3380
3381void os::yield_all(int attempts) {
3382  // Yields to all threads, including threads with lower priorities
3383  if (attempts == 0) {
3384    os::sleep(Thread::current(), 1, false);
3385  } else {
3386    int iterations = attempts % 30;
3387    if (iterations == 0 && !os::Solaris::T2_libthread()) {
3388      // thr_setconcurrency and _getconcurrency make sense only under T1.
3389      int noofLWPS = thr_getconcurrency();
3390      if (noofLWPS < (Threads::number_of_threads() + 2)) {
3391        thr_setconcurrency(thr_getconcurrency() + 1);
3392      }
3393    } else if (iterations < 25) {
3394      os::sleep(Thread::current(), 1, false);
3395    } else {
3396      os::sleep(Thread::current(), 10, false);
3397    }
3398  }
3399}
3400
3401// Called from the tight loops to possibly influence time-sharing heuristics
3402void os::loop_breaker(int attempts) {
3403  os::yield_all(attempts);
3404}
3405
3406
3407// Interface for setting lwp priorities.  If we are using T2 libthread,
3408// which forces the use of BoundThreads or we manually set UseBoundThreads,
3409// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3410// function is meaningless in this mode so we must adjust the real lwp's priority
3411// The routines below implement the getting and setting of lwp priorities.
3412//
3413// Note: There are three priority scales used on Solaris.  Java priotities
3414//       which range from 1 to 10, libthread "thr_setprio" scale which range
3415//       from 0 to 127, and the current scheduling class of the process we
3416//       are running in.  This is typically from -60 to +60.
3417//       The setting of the lwp priorities in done after a call to thr_setprio
3418//       so Java priorities are mapped to libthread priorities and we map from
3419//       the latter to lwp priorities.  We don't keep priorities stored in
3420//       Java priorities since some of our worker threads want to set priorities
3421//       higher than all Java threads.
3422//
3423// For related information:
3424// (1)  man -s 2 priocntl
3425// (2)  man -s 4 priocntl
3426// (3)  man dispadmin
3427// =    librt.so
3428// =    libthread/common/rtsched.c - thrp_setlwpprio().
3429// =    ps -cL <pid> ... to validate priority.
3430// =    sched_get_priority_min and _max
3431//              pthread_create
3432//              sched_setparam
3433//              pthread_setschedparam
3434//
3435// Assumptions:
3436// +    We assume that all threads in the process belong to the same
3437//              scheduling class.   IE. an homogenous process.
3438// +    Must be root or in IA group to change change "interactive" attribute.
3439//              Priocntl() will fail silently.  The only indication of failure is when
3440//              we read-back the value and notice that it hasn't changed.
3441// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3442// +    For RT, change timeslice as well.  Invariant:
3443//              constant "priority integral"
3444//              Konst == TimeSlice * (60-Priority)
3445//              Given a priority, compute appropriate timeslice.
3446// +    Higher numerical values have higher priority.
3447
3448// sched class attributes
3449typedef struct {
3450        int   schedPolicy;              // classID
3451        int   maxPrio;
3452        int   minPrio;
3453} SchedInfo;
3454
3455
3456static SchedInfo tsLimits, iaLimits, rtLimits;
3457
3458#ifdef ASSERT
3459static int  ReadBackValidate = 1;
3460#endif
3461static int  myClass     = 0;
3462static int  myMin       = 0;
3463static int  myMax       = 0;
3464static int  myCur       = 0;
3465static bool priocntl_enable = false;
3466
3467
3468// Call the version of priocntl suitable for all supported versions
3469// of Solaris. We need to call through this wrapper so that we can
3470// build on Solaris 9 and run on Solaris 8, 9 and 10.
3471//
3472// This code should be removed if we ever stop supporting Solaris 8
3473// and earlier releases.
3474
3475static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
3476typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
3477static priocntl_type priocntl_ptr = priocntl_stub;
3478
3479// Stub to set the value of the real pointer, and then call the real
3480// function.
3481
3482static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
3483  // Try Solaris 8- name only.
3484  priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
3485  guarantee(tmp != NULL, "priocntl function not found.");
3486  priocntl_ptr = tmp;
3487  return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
3488}
3489
3490
3491// lwp_priocntl_init
3492//
3493// Try to determine the priority scale for our process.
3494//
3495// Return errno or 0 if OK.
3496//
3497static
3498int     lwp_priocntl_init ()
3499{
3500  int rslt;
3501  pcinfo_t ClassInfo;
3502  pcparms_t ParmInfo;
3503  int i;
3504
3505  if (!UseThreadPriorities) return 0;
3506
3507  // We are using Bound threads, we need to determine our priority ranges
3508  if (os::Solaris::T2_libthread() || UseBoundThreads) {
3509    // If ThreadPriorityPolicy is 1, switch tables
3510    if (ThreadPriorityPolicy == 1) {
3511      for (i = 0 ; i < MaxPriority+1; i++)
3512        os::java_to_os_priority[i] = prio_policy1[i];
3513    }
3514  }
3515  // Not using Bound Threads, set to ThreadPolicy 1
3516  else {
3517    for ( i = 0 ; i < MaxPriority+1; i++ ) {
3518      os::java_to_os_priority[i] = prio_policy1[i];
3519    }
3520    return 0;
3521  }
3522
3523
3524  // Get IDs for a set of well-known scheduling classes.
3525  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3526  // the system.  We should have a loop that iterates over the
3527  // classID values, which are known to be "small" integers.
3528
3529  strcpy(ClassInfo.pc_clname, "TS");
3530  ClassInfo.pc_cid = -1;
3531  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3532  if (rslt < 0) return errno;
3533  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3534  tsLimits.schedPolicy = ClassInfo.pc_cid;
3535  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3536  tsLimits.minPrio = -tsLimits.maxPrio;
3537
3538  strcpy(ClassInfo.pc_clname, "IA");
3539  ClassInfo.pc_cid = -1;
3540  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3541  if (rslt < 0) return errno;
3542  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3543  iaLimits.schedPolicy = ClassInfo.pc_cid;
3544  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3545  iaLimits.minPrio = -iaLimits.maxPrio;
3546
3547  strcpy(ClassInfo.pc_clname, "RT");
3548  ClassInfo.pc_cid = -1;
3549  rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3550  if (rslt < 0) return errno;
3551  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3552  rtLimits.schedPolicy = ClassInfo.pc_cid;
3553  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3554  rtLimits.minPrio = 0;
3555
3556
3557  // Query our "current" scheduling class.
3558  // This will normally be IA,TS or, rarely, RT.
3559  memset (&ParmInfo, 0, sizeof(ParmInfo));
3560  ParmInfo.pc_cid = PC_CLNULL;
3561  rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo );
3562  if ( rslt < 0 ) return errno;
3563  myClass = ParmInfo.pc_cid;
3564
3565  // We now know our scheduling classId, get specific information
3566  // the class.
3567  ClassInfo.pc_cid = myClass;
3568  ClassInfo.pc_clname[0] = 0;
3569  rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo );
3570  if ( rslt < 0 ) return errno;
3571
3572  if (ThreadPriorityVerbose)
3573    tty->print_cr ("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3574
3575  memset(&ParmInfo, 0, sizeof(pcparms_t));
3576  ParmInfo.pc_cid = PC_CLNULL;
3577  rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3578  if (rslt < 0) return errno;
3579
3580  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3581    myMin = rtLimits.minPrio;
3582    myMax = rtLimits.maxPrio;
3583  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3584    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3585    myMin = iaLimits.minPrio;
3586    myMax = iaLimits.maxPrio;
3587    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3588  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3589    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3590    myMin = tsLimits.minPrio;
3591    myMax = tsLimits.maxPrio;
3592    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3593  } else {
3594    // No clue - punt
3595    if (ThreadPriorityVerbose)
3596      tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
3597    return EINVAL;      // no clue, punt
3598  }
3599
3600  if (ThreadPriorityVerbose)
3601        tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
3602
3603  priocntl_enable = true;  // Enable changing priorities
3604  return 0;
3605}
3606
3607#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3608#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3609#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3610
3611
3612// scale_to_lwp_priority
3613//
3614// Convert from the libthread "thr_setprio" scale to our current
3615// lwp scheduling class scale.
3616//
3617static
3618int     scale_to_lwp_priority (int rMin, int rMax, int x)
3619{
3620  int v;
3621
3622  if (x == 127) return rMax;            // avoid round-down
3623    v = (((x*(rMax-rMin)))/128)+rMin;
3624  return v;
3625}
3626
3627
3628// set_lwp_priority
3629//
3630// Set the priority of the lwp.  This call should only be made
3631// when using bound threads (T2 threads are bound by default).
3632//
3633int     set_lwp_priority (int ThreadID, int lwpid, int newPrio )
3634{
3635  int rslt;
3636  int Actual, Expected, prv;
3637  pcparms_t ParmInfo;                   // for GET-SET
3638#ifdef ASSERT
3639  pcparms_t ReadBack;                   // for readback
3640#endif
3641
3642  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3643  // Query current values.
3644  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3645  // Cache "pcparms_t" in global ParmCache.
3646  // TODO: elide set-to-same-value
3647
3648  // If something went wrong on init, don't change priorities.
3649  if ( !priocntl_enable ) {
3650    if (ThreadPriorityVerbose)
3651      tty->print_cr("Trying to set priority but init failed, ignoring");
3652    return EINVAL;
3653  }
3654
3655
3656  // If lwp hasn't started yet, just return
3657  // the _start routine will call us again.
3658  if ( lwpid <= 0 ) {
3659    if (ThreadPriorityVerbose) {
3660      tty->print_cr ("deferring the set_lwp_priority of thread " INTPTR_FORMAT " to %d, lwpid not set",
3661                     ThreadID, newPrio);
3662    }
3663    return 0;
3664  }
3665
3666  if (ThreadPriorityVerbose) {
3667    tty->print_cr ("set_lwp_priority(" INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3668                   ThreadID, lwpid, newPrio);
3669  }
3670
3671  memset(&ParmInfo, 0, sizeof(pcparms_t));
3672  ParmInfo.pc_cid = PC_CLNULL;
3673  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3674  if (rslt < 0) return errno;
3675
3676  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3677    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3678    rtInfo->rt_pri     = scale_to_lwp_priority (rtLimits.minPrio, rtLimits.maxPrio, newPrio);
3679    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3680    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3681    if (ThreadPriorityVerbose) {
3682      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3683    }
3684  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3685    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3686    int maxClamped     = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
3687    iaInfo->ia_upri    = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
3688    iaInfo->ia_uprilim = IA_NOCHANGE;
3689    iaInfo->ia_nice    = IA_NOCHANGE;
3690    iaInfo->ia_mode    = IA_NOCHANGE;
3691    if (ThreadPriorityVerbose) {
3692      tty->print_cr ("IA: [%d...%d] %d->%d\n",
3693               iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3694    }
3695  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3696    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3697    int maxClamped     = MIN2(tsLimits.maxPrio, (int)tsInfo->ts_uprilim);
3698    prv                = tsInfo->ts_upri;
3699    tsInfo->ts_upri    = scale_to_lwp_priority(tsLimits.minPrio, maxClamped, newPrio);
3700    tsInfo->ts_uprilim = IA_NOCHANGE;
3701    if (ThreadPriorityVerbose) {
3702      tty->print_cr ("TS: %d [%d...%d] %d->%d\n",
3703               prv, tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3704    }
3705    if (prv == tsInfo->ts_upri) return 0;
3706  } else {
3707    if ( ThreadPriorityVerbose ) {
3708      tty->print_cr ("Unknown scheduling class\n");
3709    }
3710      return EINVAL;    // no clue, punt
3711  }
3712
3713  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3714  if (ThreadPriorityVerbose && rslt) {
3715    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3716  }
3717  if (rslt < 0) return errno;
3718
3719#ifdef ASSERT
3720  // Sanity check: read back what we just attempted to set.
3721  // In theory it could have changed in the interim ...
3722  //
3723  // The priocntl system call is tricky.
3724  // Sometimes it'll validate the priority value argument and
3725  // return EINVAL if unhappy.  At other times it fails silently.
3726  // Readbacks are prudent.
3727
3728  if (!ReadBackValidate) return 0;
3729
3730  memset(&ReadBack, 0, sizeof(pcparms_t));
3731  ReadBack.pc_cid = PC_CLNULL;
3732  rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3733  assert(rslt >= 0, "priocntl failed");
3734  Actual = Expected = 0xBAD;
3735  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3736  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3737    Actual   = RTPRI(ReadBack)->rt_pri;
3738    Expected = RTPRI(ParmInfo)->rt_pri;
3739  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3740    Actual   = IAPRI(ReadBack)->ia_upri;
3741    Expected = IAPRI(ParmInfo)->ia_upri;
3742  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3743    Actual   = TSPRI(ReadBack)->ts_upri;
3744    Expected = TSPRI(ParmInfo)->ts_upri;
3745  } else {
3746    if ( ThreadPriorityVerbose ) {
3747      tty->print_cr("set_lwp_priority: unexpected class in readback: %d\n", ParmInfo.pc_cid);
3748    }
3749  }
3750
3751  if (Actual != Expected) {
3752    if ( ThreadPriorityVerbose ) {
3753      tty->print_cr ("set_lwp_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3754             lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3755    }
3756  }
3757#endif
3758
3759  return 0;
3760}
3761
3762
3763
3764// Solaris only gives access to 128 real priorities at a time,
3765// so we expand Java's ten to fill this range.  This would be better
3766// if we dynamically adjusted relative priorities.
3767//
3768// The ThreadPriorityPolicy option allows us to select 2 different
3769// priority scales.
3770//
3771// ThreadPriorityPolicy=0
3772// Since the Solaris' default priority is MaximumPriority, we do not
3773// set a priority lower than Max unless a priority lower than
3774// NormPriority is requested.
3775//
3776// ThreadPriorityPolicy=1
3777// This mode causes the priority table to get filled with
3778// linear values.  NormPriority get's mapped to 50% of the
3779// Maximum priority an so on.  This will cause VM threads
3780// to get unfair treatment against other Solaris processes
3781// which do not explicitly alter their thread priorities.
3782//
3783
3784
3785int os::java_to_os_priority[MaxPriority + 1] = {
3786  -99999,         // 0 Entry should never be used
3787
3788  0,              // 1 MinPriority
3789  32,             // 2
3790  64,             // 3
3791
3792  96,             // 4
3793  127,            // 5 NormPriority
3794  127,            // 6
3795
3796  127,            // 7
3797  127,            // 8
3798  127,            // 9 NearMaxPriority
3799
3800  127             // 10 MaxPriority
3801};
3802
3803
3804OSReturn os::set_native_priority(Thread* thread, int newpri) {
3805  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3806  if ( !UseThreadPriorities ) return OS_OK;
3807  int status = thr_setprio(thread->osthread()->thread_id(), newpri);
3808  if ( os::Solaris::T2_libthread() || (UseBoundThreads && thread->osthread()->is_vm_created()) )
3809    status |= (set_lwp_priority (thread->osthread()->thread_id(),
3810                    thread->osthread()->lwp_id(), newpri ));
3811  return (status == 0) ? OS_OK : OS_ERR;
3812}
3813
3814
3815OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3816  int p;
3817  if ( !UseThreadPriorities ) {
3818    *priority_ptr = NormalPriority;
3819    return OS_OK;
3820  }
3821  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3822  if (status != 0) {
3823    return OS_ERR;
3824  }
3825  *priority_ptr = p;
3826  return OS_OK;
3827}
3828
3829
3830// Hint to the underlying OS that a task switch would not be good.
3831// Void return because it's a hint and can fail.
3832void os::hint_no_preempt() {
3833  schedctl_start(schedctl_init());
3834}
3835
3836void os::interrupt(Thread* thread) {
3837  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
3838
3839  OSThread* osthread = thread->osthread();
3840
3841  int isInterrupted = osthread->interrupted();
3842  if (!isInterrupted) {
3843      osthread->set_interrupted(true);
3844      OrderAccess::fence();
3845      // os::sleep() is implemented with either poll (NULL,0,timeout) or
3846      // by parking on _SleepEvent.  If the former, thr_kill will unwedge
3847      // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
3848      ParkEvent * const slp = thread->_SleepEvent ;
3849      if (slp != NULL) slp->unpark() ;
3850  }
3851
3852  // For JSR166:  unpark after setting status but before thr_kill -dl
3853  if (thread->is_Java_thread()) {
3854    ((JavaThread*)thread)->parker()->unpark();
3855  }
3856
3857  // Handle interruptible wait() ...
3858  ParkEvent * const ev = thread->_ParkEvent ;
3859  if (ev != NULL) ev->unpark() ;
3860
3861  // When events are used everywhere for os::sleep, then this thr_kill
3862  // will only be needed if UseVMInterruptibleIO is true.
3863
3864  if (!isInterrupted) {
3865    int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
3866    assert_status(status == 0, status, "thr_kill");
3867
3868    // Bump thread interruption counter
3869    RuntimeService::record_thread_interrupt_signaled_count();
3870  }
3871}
3872
3873
3874bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3875  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
3876
3877  OSThread* osthread = thread->osthread();
3878
3879  bool res = osthread->interrupted();
3880
3881  // NOTE that since there is no "lock" around these two operations,
3882  // there is the possibility that the interrupted flag will be
3883  // "false" but that the interrupt event will be set. This is
3884  // intentional. The effect of this is that Object.wait() will appear
3885  // to have a spurious wakeup, which is not harmful, and the
3886  // possibility is so rare that it is not worth the added complexity
3887  // to add yet another lock. It has also been recommended not to put
3888  // the interrupted flag into the os::Solaris::Event structure,
3889  // because it hides the issue.
3890  if (res && clear_interrupted) {
3891    osthread->set_interrupted(false);
3892  }
3893  return res;
3894}
3895
3896
3897void os::print_statistics() {
3898}
3899
3900int os::message_box(const char* title, const char* message) {
3901  int i;
3902  fdStream err(defaultStream::error_fd());
3903  for (i = 0; i < 78; i++) err.print_raw("=");
3904  err.cr();
3905  err.print_raw_cr(title);
3906  for (i = 0; i < 78; i++) err.print_raw("-");
3907  err.cr();
3908  err.print_raw_cr(message);
3909  for (i = 0; i < 78; i++) err.print_raw("=");
3910  err.cr();
3911
3912  char buf[16];
3913  // Prevent process from exiting upon "read error" without consuming all CPU
3914  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3915
3916  return buf[0] == 'y' || buf[0] == 'Y';
3917}
3918
3919// A lightweight implementation that does not suspend the target thread and
3920// thus returns only a hint. Used for profiling only!
3921ExtendedPC os::get_thread_pc(Thread* thread) {
3922  // Make sure that it is called by the watcher and the Threads lock is owned.
3923  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3924  // For now, is only used to profile the VM Thread
3925  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3926  ExtendedPC epc;
3927
3928  GetThreadPC_Callback  cb(ProfileVM_lock);
3929  OSThread *osthread = thread->osthread();
3930  const int time_to_wait = 400; // 400ms wait for initial response
3931  int status = cb.interrupt(thread, time_to_wait);
3932
3933  if (cb.is_done() ) {
3934    epc = cb.addr();
3935  } else {
3936    DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
3937                              osthread->thread_id(), status););
3938    // epc is already NULL
3939  }
3940  return epc;
3941}
3942
3943
3944// This does not do anything on Solaris. This is basically a hook for being
3945// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3946void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
3947  f(value, method, args, thread);
3948}
3949
3950// This routine may be used by user applications as a "hook" to catch signals.
3951// The user-defined signal handler must pass unrecognized signals to this
3952// routine, and if it returns true (non-zero), then the signal handler must
3953// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3954// routine will never retun false (zero), but instead will execute a VM panic
3955// routine kill the process.
3956//
3957// If this routine returns false, it is OK to call it again.  This allows
3958// the user-defined signal handler to perform checks either before or after
3959// the VM performs its own checks.  Naturally, the user code would be making
3960// a serious error if it tried to handle an exception (such as a null check
3961// or breakpoint) that the VM was generating for its own correct operation.
3962//
3963// This routine may recognize any of the following kinds of signals:
3964// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3965// os::Solaris::SIGasync
3966// It should be consulted by handlers for any of those signals.
3967// It explicitly does not recognize os::Solaris::SIGinterrupt
3968//
3969// The caller of this routine must pass in the three arguments supplied
3970// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3971// field of the structure passed to sigaction().  This routine assumes that
3972// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3973//
3974// Note that the VM will print warnings if it detects conflicting signal
3975// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3976//
3977extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
3978
3979
3980void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3981  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3982}
3983
3984/* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
3985   is needed to provoke threads blocked on IO to return an EINTR
3986   Note: this explicitly does NOT call JVM_handle_solaris_signal and
3987   does NOT participate in signal chaining due to requirement for
3988   NOT setting SA_RESTART to make EINTR work. */
3989extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
3990   if (UseSignalChaining) {
3991      struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
3992      if (actp && actp->sa_handler) {
3993        vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
3994      }
3995   }
3996}
3997
3998// This boolean allows users to forward their own non-matching signals
3999// to JVM_handle_solaris_signal, harmlessly.
4000bool os::Solaris::signal_handlers_are_installed = false;
4001
4002// For signal-chaining
4003bool os::Solaris::libjsig_is_loaded = false;
4004typedef struct sigaction *(*get_signal_t)(int);
4005get_signal_t os::Solaris::get_signal_action = NULL;
4006
4007struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
4008  struct sigaction *actp = NULL;
4009
4010  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
4011    // Retrieve the old signal handler from libjsig
4012    actp = (*get_signal_action)(sig);
4013  }
4014  if (actp == NULL) {
4015    // Retrieve the preinstalled signal handler from jvm
4016    actp = get_preinstalled_handler(sig);
4017  }
4018
4019  return actp;
4020}
4021
4022static bool call_chained_handler(struct sigaction *actp, int sig,
4023                                 siginfo_t *siginfo, void *context) {
4024  // Call the old signal handler
4025  if (actp->sa_handler == SIG_DFL) {
4026    // It's more reasonable to let jvm treat it as an unexpected exception
4027    // instead of taking the default action.
4028    return false;
4029  } else if (actp->sa_handler != SIG_IGN) {
4030    if ((actp->sa_flags & SA_NODEFER) == 0) {
4031      // automaticlly block the signal
4032      sigaddset(&(actp->sa_mask), sig);
4033    }
4034
4035    sa_handler_t hand;
4036    sa_sigaction_t sa;
4037    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4038    // retrieve the chained handler
4039    if (siginfo_flag_set) {
4040      sa = actp->sa_sigaction;
4041    } else {
4042      hand = actp->sa_handler;
4043    }
4044
4045    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4046      actp->sa_handler = SIG_DFL;
4047    }
4048
4049    // try to honor the signal mask
4050    sigset_t oset;
4051    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4052
4053    // call into the chained handler
4054    if (siginfo_flag_set) {
4055      (*sa)(sig, siginfo, context);
4056    } else {
4057      (*hand)(sig);
4058    }
4059
4060    // restore the signal mask
4061    thr_sigsetmask(SIG_SETMASK, &oset, 0);
4062  }
4063  // Tell jvm's signal handler the signal is taken care of.
4064  return true;
4065}
4066
4067bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4068  bool chained = false;
4069  // signal-chaining
4070  if (UseSignalChaining) {
4071    struct sigaction *actp = get_chained_signal_action(sig);
4072    if (actp != NULL) {
4073      chained = call_chained_handler(actp, sig, siginfo, context);
4074    }
4075  }
4076  return chained;
4077}
4078
4079struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
4080  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4081  if (preinstalled_sigs[sig] != 0) {
4082    return &chainedsigactions[sig];
4083  }
4084  return NULL;
4085}
4086
4087void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4088
4089  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
4090  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4091  chainedsigactions[sig] = oldAct;
4092  preinstalled_sigs[sig] = 1;
4093}
4094
4095void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
4096  // Check for overwrite.
4097  struct sigaction oldAct;
4098  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4099  void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4100                                      : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4101  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4102      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4103      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
4104    if (AllowUserSignalHandlers || !set_installed) {
4105      // Do not overwrite; user takes responsibility to forward to us.
4106      return;
4107    } else if (UseSignalChaining) {
4108      if (oktochain) {
4109        // save the old handler in jvm
4110        save_preinstalled_handler(sig, oldAct);
4111      } else {
4112        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
4113      }
4114      // libjsig also interposes the sigaction() call below and saves the
4115      // old sigaction on it own.
4116    } else {
4117      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
4118    }
4119  }
4120
4121  struct sigaction sigAct;
4122  sigfillset(&(sigAct.sa_mask));
4123  sigAct.sa_handler = SIG_DFL;
4124
4125  sigAct.sa_sigaction = signalHandler;
4126  // Handle SIGSEGV on alternate signal stack if
4127  // not using stack banging
4128  if (!UseStackBanging && sig == SIGSEGV) {
4129    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4130  // Interruptible i/o requires SA_RESTART cleared so EINTR
4131  // is returned instead of restarting system calls
4132  } else if (sig == os::Solaris::SIGinterrupt()) {
4133    sigemptyset(&sigAct.sa_mask);
4134    sigAct.sa_handler = NULL;
4135    sigAct.sa_flags = SA_SIGINFO;
4136    sigAct.sa_sigaction = sigINTRHandler;
4137  } else {
4138    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4139  }
4140  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4141
4142  sigaction(sig, &sigAct, &oldAct);
4143
4144  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4145                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4146  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4147}
4148
4149
4150#define DO_SIGNAL_CHECK(sig) \
4151  if (!sigismember(&check_signal_done, sig)) \
4152    os::Solaris::check_signal_handler(sig)
4153
4154// This method is a periodic task to check for misbehaving JNI applications
4155// under CheckJNI, we can add any periodic checks here
4156
4157void os::run_periodic_checks() {
4158  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4159  // thereby preventing a NULL checks.
4160  if(!check_addr0_done) check_addr0_done = check_addr0(tty);
4161
4162  if (check_signals == false) return;
4163
4164  // SEGV and BUS if overridden could potentially prevent
4165  // generation of hs*.log in the event of a crash, debugging
4166  // such a case can be very challenging, so we absolutely
4167  // check for the following for a good measure:
4168  DO_SIGNAL_CHECK(SIGSEGV);
4169  DO_SIGNAL_CHECK(SIGILL);
4170  DO_SIGNAL_CHECK(SIGFPE);
4171  DO_SIGNAL_CHECK(SIGBUS);
4172  DO_SIGNAL_CHECK(SIGPIPE);
4173  DO_SIGNAL_CHECK(SIGXFSZ);
4174
4175  // ReduceSignalUsage allows the user to override these handlers
4176  // see comments at the very top and jvm_solaris.h
4177  if (!ReduceSignalUsage) {
4178    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4179    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4180    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4181    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4182  }
4183
4184  // See comments above for using JVM1/JVM2 and UseAltSigs
4185  DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
4186  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4187
4188}
4189
4190typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4191
4192static os_sigaction_t os_sigaction = NULL;
4193
4194void os::Solaris::check_signal_handler(int sig) {
4195  char buf[O_BUFLEN];
4196  address jvmHandler = NULL;
4197
4198  struct sigaction act;
4199  if (os_sigaction == NULL) {
4200    // only trust the default sigaction, in case it has been interposed
4201    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4202    if (os_sigaction == NULL) return;
4203  }
4204
4205  os_sigaction(sig, (struct sigaction*)NULL, &act);
4206
4207  address thisHandler = (act.sa_flags & SA_SIGINFO)
4208    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4209    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4210
4211
4212  switch(sig) {
4213    case SIGSEGV:
4214    case SIGBUS:
4215    case SIGFPE:
4216    case SIGPIPE:
4217    case SIGXFSZ:
4218    case SIGILL:
4219      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4220      break;
4221
4222    case SHUTDOWN1_SIGNAL:
4223    case SHUTDOWN2_SIGNAL:
4224    case SHUTDOWN3_SIGNAL:
4225    case BREAK_SIGNAL:
4226      jvmHandler = (address)user_handler();
4227      break;
4228
4229    default:
4230      int intrsig = os::Solaris::SIGinterrupt();
4231      int asynsig = os::Solaris::SIGasync();
4232
4233      if (sig == intrsig) {
4234        jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
4235      } else if (sig == asynsig) {
4236        jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4237      } else {
4238        return;
4239      }
4240      break;
4241  }
4242
4243
4244  if (thisHandler != jvmHandler) {
4245    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4246    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4247    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4248    // No need to check this sig any longer
4249    sigaddset(&check_signal_done, sig);
4250  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4251    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4252    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4253    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4254    // No need to check this sig any longer
4255    sigaddset(&check_signal_done, sig);
4256  }
4257
4258  // Print all the signal handler state
4259  if (sigismember(&check_signal_done, sig)) {
4260    print_signal_handlers(tty, buf, O_BUFLEN);
4261  }
4262
4263}
4264
4265void os::Solaris::install_signal_handlers() {
4266  bool libjsigdone = false;
4267  signal_handlers_are_installed = true;
4268
4269  // signal-chaining
4270  typedef void (*signal_setting_t)();
4271  signal_setting_t begin_signal_setting = NULL;
4272  signal_setting_t end_signal_setting = NULL;
4273  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4274                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4275  if (begin_signal_setting != NULL) {
4276    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4277                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4278    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4279                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4280    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4281                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4282    libjsig_is_loaded = true;
4283    if (os::Solaris::get_libjsig_version != NULL) {
4284      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4285    }
4286    assert(UseSignalChaining, "should enable signal-chaining");
4287  }
4288  if (libjsig_is_loaded) {
4289    // Tell libjsig jvm is setting signal handlers
4290    (*begin_signal_setting)();
4291  }
4292
4293  set_signal_handler(SIGSEGV, true, true);
4294  set_signal_handler(SIGPIPE, true, true);
4295  set_signal_handler(SIGXFSZ, true, true);
4296  set_signal_handler(SIGBUS, true, true);
4297  set_signal_handler(SIGILL, true, true);
4298  set_signal_handler(SIGFPE, true, true);
4299
4300
4301  if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4302
4303    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4304    // can not register overridable signals which might be > 32
4305    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4306    // Tell libjsig jvm has finished setting signal handlers
4307      (*end_signal_setting)();
4308      libjsigdone = true;
4309    }
4310  }
4311
4312  // Never ok to chain our SIGinterrupt
4313  set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
4314  set_signal_handler(os::Solaris::SIGasync(), true, true);
4315
4316  if (libjsig_is_loaded && !libjsigdone) {
4317    // Tell libjsig jvm finishes setting signal handlers
4318    (*end_signal_setting)();
4319  }
4320
4321  // We don't activate signal checker if libjsig is in place, we trust ourselves
4322  // and if UserSignalHandler is installed all bets are off
4323  if (CheckJNICalls) {
4324    if (libjsig_is_loaded) {
4325      tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4326      check_signals = false;
4327    }
4328    if (AllowUserSignalHandlers) {
4329      tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4330      check_signals = false;
4331    }
4332  }
4333}
4334
4335
4336void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
4337
4338const char * signames[] = {
4339  "SIG0",
4340  "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
4341  "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
4342  "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
4343  "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
4344  "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
4345  "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
4346  "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
4347  "SIGCANCEL", "SIGLOST"
4348};
4349
4350const char* os::exception_name(int exception_code, char* buf, size_t size) {
4351  if (0 < exception_code && exception_code <= SIGRTMAX) {
4352    // signal
4353    if (exception_code < sizeof(signames)/sizeof(const char*)) {
4354       jio_snprintf(buf, size, "%s", signames[exception_code]);
4355    } else {
4356       jio_snprintf(buf, size, "SIG%d", exception_code);
4357    }
4358    return buf;
4359  } else {
4360    return NULL;
4361  }
4362}
4363
4364// (Static) wrappers for the new libthread API
4365int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
4366int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
4367int_fnP_thread_t_i os::Solaris::_thr_setmutator;
4368int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
4369int_fnP_thread_t os::Solaris::_thr_continue_mutator;
4370
4371// (Static) wrappers for the liblgrp API
4372os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4373os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4374os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4375os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4376os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4377os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4378os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4379os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4380os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4381
4382// (Static) wrapper for meminfo() call.
4383os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4384
4385static address resolve_symbol(const char *name) {
4386  address addr;
4387
4388  addr = (address) dlsym(RTLD_DEFAULT, name);
4389  if(addr == NULL) {
4390    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4391    addr = (address) dlsym(RTLD_NEXT, name);
4392    if(addr == NULL) {
4393      fatal(dlerror());
4394    }
4395  }
4396  return addr;
4397}
4398
4399
4400
4401// isT2_libthread()
4402//
4403// Routine to determine if we are currently using the new T2 libthread.
4404//
4405// We determine if we are using T2 by reading /proc/self/lstatus and
4406// looking for a thread with the ASLWP bit set.  If we find this status
4407// bit set, we must assume that we are NOT using T2.  The T2 team
4408// has approved this algorithm.
4409//
4410// We need to determine if we are running with the new T2 libthread
4411// since setting native thread priorities is handled differently
4412// when using this library.  All threads created using T2 are bound
4413// threads. Calling thr_setprio is meaningless in this case.
4414//
4415bool isT2_libthread() {
4416  static prheader_t * lwpArray = NULL;
4417  static int lwpSize = 0;
4418  static int lwpFile = -1;
4419  lwpstatus_t * that;
4420  char lwpName [128];
4421  bool isT2 = false;
4422
4423#define ADR(x)  ((uintptr_t)(x))
4424#define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
4425
4426  lwpFile = open("/proc/self/lstatus", O_RDONLY, 0);
4427  if (lwpFile < 0) {
4428      if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
4429      return false;
4430  }
4431  lwpSize = 16*1024;
4432  for (;;) {
4433    lseek (lwpFile, 0, SEEK_SET);
4434    lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize);
4435    if (read(lwpFile, lwpArray, lwpSize) < 0) {
4436      if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
4437      break;
4438    }
4439    if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
4440       // We got a good snapshot - now iterate over the list.
4441      int aslwpcount = 0;
4442      for (int i = 0; i < lwpArray->pr_nent; i++ ) {
4443        that = LWPINDEX(lwpArray,i);
4444        if (that->pr_flags & PR_ASLWP) {
4445          aslwpcount++;
4446        }
4447      }
4448      if (aslwpcount == 0) isT2 = true;
4449      break;
4450    }
4451    lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
4452    FREE_C_HEAP_ARRAY(char, lwpArray);  // retry.
4453  }
4454
4455  FREE_C_HEAP_ARRAY(char, lwpArray);
4456  close (lwpFile);
4457  if (ThreadPriorityVerbose) {
4458    if (isT2) tty->print_cr("We are running with a T2 libthread\n");
4459    else tty->print_cr("We are not running with a T2 libthread\n");
4460  }
4461  return isT2;
4462}
4463
4464
4465void os::Solaris::libthread_init() {
4466  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4467
4468  // Determine if we are running with the new T2 libthread
4469  os::Solaris::set_T2_libthread(isT2_libthread());
4470
4471  lwp_priocntl_init();
4472
4473  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4474  if(func == NULL) {
4475    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4476    // Guarantee that this VM is running on an new enough OS (5.6 or
4477    // later) that it will have a new enough libthread.so.
4478    guarantee(func != NULL, "libthread.so is too old.");
4479  }
4480
4481  // Initialize the new libthread getstate API wrappers
4482  func = resolve_symbol("thr_getstate");
4483  os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
4484
4485  func = resolve_symbol("thr_setstate");
4486  os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
4487
4488  func = resolve_symbol("thr_setmutator");
4489  os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
4490
4491  func = resolve_symbol("thr_suspend_mutator");
4492  os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4493
4494  func = resolve_symbol("thr_continue_mutator");
4495  os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4496
4497  int size;
4498  void (*handler_info_func)(address *, int *);
4499  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4500  handler_info_func(&handler_start, &size);
4501  handler_end = handler_start + size;
4502}
4503
4504
4505int_fnP_mutex_tP os::Solaris::_mutex_lock;
4506int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4507int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4508int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4509int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4510int os::Solaris::_mutex_scope = USYNC_THREAD;
4511
4512int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4513int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4514int_fnP_cond_tP os::Solaris::_cond_signal;
4515int_fnP_cond_tP os::Solaris::_cond_broadcast;
4516int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4517int_fnP_cond_tP os::Solaris::_cond_destroy;
4518int os::Solaris::_cond_scope = USYNC_THREAD;
4519
4520void os::Solaris::synchronization_init() {
4521  if(UseLWPSynchronization) {
4522    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4523    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4524    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4525    os::Solaris::set_mutex_init(lwp_mutex_init);
4526    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4527    os::Solaris::set_mutex_scope(USYNC_THREAD);
4528
4529    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4530    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4531    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4532    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4533    os::Solaris::set_cond_init(lwp_cond_init);
4534    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4535    os::Solaris::set_cond_scope(USYNC_THREAD);
4536  }
4537  else {
4538    os::Solaris::set_mutex_scope(USYNC_THREAD);
4539    os::Solaris::set_cond_scope(USYNC_THREAD);
4540
4541    if(UsePthreads) {
4542      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4543      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4544      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4545      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4546      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4547
4548      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4549      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4550      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4551      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4552      os::Solaris::set_cond_init(pthread_cond_default_init);
4553      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4554    }
4555    else {
4556      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4557      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4558      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4559      os::Solaris::set_mutex_init(::mutex_init);
4560      os::Solaris::set_mutex_destroy(::mutex_destroy);
4561
4562      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4563      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4564      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4565      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4566      os::Solaris::set_cond_init(::cond_init);
4567      os::Solaris::set_cond_destroy(::cond_destroy);
4568    }
4569  }
4570}
4571
4572void os::Solaris::liblgrp_init() {
4573  void *handle = dlopen("liblgrp.so", RTLD_LAZY);
4574  if (handle != NULL) {
4575    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4576    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4577    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4578    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4579    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4580    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4581    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4582    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4583                                       dlsym(handle, "lgrp_cookie_stale")));
4584
4585    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4586    set_lgrp_cookie(c);
4587  } else {
4588    warning("your OS does not support NUMA");
4589  }
4590}
4591
4592void os::Solaris::misc_sym_init() {
4593  address func = (address)dlsym(RTLD_DEFAULT, "meminfo");
4594  if(func == NULL) {
4595    func = (address) dlsym(RTLD_NEXT, "meminfo");
4596  }
4597  if (func != NULL) {
4598    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4599  }
4600}
4601
4602// Symbol doesn't exist in Solaris 8 pset.h
4603#ifndef PS_MYID
4604#define PS_MYID -3
4605#endif
4606
4607// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4608typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4609static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4610
4611void init_pset_getloadavg_ptr(void) {
4612  pset_getloadavg_ptr =
4613    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4614  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4615    warning("pset_getloadavg function not found");
4616  }
4617}
4618
4619int os::Solaris::_dev_zero_fd = -1;
4620
4621// this is called _before_ the global arguments have been parsed
4622void os::init(void) {
4623  _initial_pid = getpid();
4624
4625  max_hrtime = first_hrtime = gethrtime();
4626
4627  init_random(1234567);
4628
4629  page_size = sysconf(_SC_PAGESIZE);
4630  if (page_size == -1)
4631    fatal1("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno));
4632  init_page_sizes((size_t) page_size);
4633
4634  Solaris::initialize_system_info();
4635
4636  int fd = open("/dev/zero", O_RDWR);
4637  if (fd < 0) {
4638    fatal1("os::init: cannot open /dev/zero (%s)", strerror(errno));
4639  } else {
4640    Solaris::set_dev_zero_fd(fd);
4641
4642    // Close on exec, child won't inherit.
4643    fcntl(fd, F_SETFD, FD_CLOEXEC);
4644  }
4645
4646  clock_tics_per_sec = CLK_TCK;
4647
4648  // check if dladdr1() exists; dladdr1 can provide more information than
4649  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4650  // and is available on linker patches for 5.7 and 5.8.
4651  // libdl.so must have been loaded, this call is just an entry lookup
4652  void * hdl = dlopen("libdl.so", RTLD_NOW);
4653  if (hdl)
4654    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4655
4656  // (Solaris only) this switches to calls that actually do locking.
4657  ThreadCritical::initialize();
4658
4659  main_thread = thr_self();
4660
4661  // Constant minimum stack size allowed. It must be at least
4662  // the minimum of what the OS supports (thr_min_stack()), and
4663  // enough to allow the thread to get to user bytecode execution.
4664  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4665  // If the pagesize of the VM is greater than 8K determine the appropriate
4666  // number of initial guard pages.  The user can change this with the
4667  // command line arguments, if needed.
4668  if (vm_page_size() > 8*K) {
4669    StackYellowPages = 1;
4670    StackRedPages = 1;
4671    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
4672  }
4673}
4674
4675// To install functions for atexit system call
4676extern "C" {
4677  static void perfMemory_exit_helper() {
4678    perfMemory_exit();
4679  }
4680}
4681
4682// this is called _after_ the global arguments have been parsed
4683jint os::init_2(void) {
4684  // try to enable extended file IO ASAP, see 6431278
4685  os::Solaris::try_enable_extended_io();
4686
4687  // Allocate a single page and mark it as readable for safepoint polling.  Also
4688  // use this first mmap call to check support for MAP_ALIGN.
4689  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4690                                                      page_size,
4691                                                      MAP_PRIVATE | MAP_ALIGN,
4692                                                      PROT_READ);
4693  if (polling_page == NULL) {
4694    has_map_align = false;
4695    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4696                                                PROT_READ);
4697  }
4698
4699  os::set_polling_page(polling_page);
4700
4701#ifndef PRODUCT
4702  if( Verbose && PrintMiscellaneous )
4703    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4704#endif
4705
4706  if (!UseMembar) {
4707    address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
4708    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4709    os::set_memory_serialize_page( mem_serialize_page );
4710
4711#ifndef PRODUCT
4712    if(Verbose && PrintMiscellaneous)
4713      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4714#endif
4715}
4716
4717  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
4718
4719  // Check minimum allowable stack size for thread creation and to initialize
4720  // the java system classes, including StackOverflowError - depends on page
4721  // size.  Add a page for compiler2 recursion in main thread.
4722  // Add in BytesPerWord times page size to account for VM stack during
4723  // class initialization depending on 32 or 64 bit VM.
4724  guarantee((Solaris::min_stack_allowed >=
4725    (StackYellowPages+StackRedPages+StackShadowPages+BytesPerWord
4726     COMPILER2_PRESENT(+1)) * page_size),
4727    "need to increase Solaris::min_stack_allowed on this platform");
4728
4729  size_t threadStackSizeInBytes = ThreadStackSize * K;
4730  if (threadStackSizeInBytes != 0 &&
4731    threadStackSizeInBytes < Solaris::min_stack_allowed) {
4732    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4733                  Solaris::min_stack_allowed/K);
4734    return JNI_ERR;
4735  }
4736
4737  // For 64kbps there will be a 64kb page size, which makes
4738  // the usable default stack size quite a bit less.  Increase the
4739  // stack for 64kb (or any > than 8kb) pages, this increases
4740  // virtual memory fragmentation (since we're not creating the
4741  // stack on a power of 2 boundary.  The real fix for this
4742  // should be to fix the guard page mechanism.
4743
4744  if (vm_page_size() > 8*K) {
4745      threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4746         ? threadStackSizeInBytes +
4747           ((StackYellowPages + StackRedPages) * vm_page_size())
4748         : 0;
4749      ThreadStackSize = threadStackSizeInBytes/K;
4750  }
4751
4752  // Make the stack size a multiple of the page size so that
4753  // the yellow/red zones can be guarded.
4754  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4755        vm_page_size()));
4756
4757  Solaris::libthread_init();
4758  if (UseNUMA) {
4759    Solaris::liblgrp_init();
4760  }
4761  Solaris::misc_sym_init();
4762  Solaris::signal_sets_init();
4763  Solaris::init_signal_mem();
4764  Solaris::install_signal_handlers();
4765
4766  if (libjsigversion < JSIG_VERSION_1_4_1) {
4767    Maxlibjsigsigs = OLDMAXSIGNUM;
4768  }
4769
4770  // initialize synchronization primitives to use either thread or
4771  // lwp synchronization (controlled by UseLWPSynchronization)
4772  Solaris::synchronization_init();
4773
4774  if (MaxFDLimit) {
4775    // set the number of file descriptors to max. print out error
4776    // if getrlimit/setrlimit fails but continue regardless.
4777    struct rlimit nbr_files;
4778    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4779    if (status != 0) {
4780      if (PrintMiscellaneous && (Verbose || WizardMode))
4781        perror("os::init_2 getrlimit failed");
4782    } else {
4783      nbr_files.rlim_cur = nbr_files.rlim_max;
4784      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4785      if (status != 0) {
4786        if (PrintMiscellaneous && (Verbose || WizardMode))
4787          perror("os::init_2 setrlimit failed");
4788      }
4789    }
4790  }
4791
4792  // Initialize HPI.
4793  jint hpi_result = hpi::initialize();
4794  if (hpi_result != JNI_OK) {
4795    tty->print_cr("There was an error trying to initialize the HPI library.");
4796    return hpi_result;
4797  }
4798
4799  // Calculate theoretical max. size of Threads to guard gainst
4800  // artifical out-of-memory situations, where all available address-
4801  // space has been reserved by thread stacks. Default stack size is 1Mb.
4802  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4803    JavaThread::stack_size_at_create() : (1*K*K);
4804  assert(pre_thread_stack_size != 0, "Must have a stack");
4805  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4806  // we should start doing Virtual Memory banging. Currently when the threads will
4807  // have used all but 200Mb of space.
4808  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4809  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4810
4811  // at-exit methods are called in the reverse order of their registration.
4812  // In Solaris 7 and earlier, atexit functions are called on return from
4813  // main or as a result of a call to exit(3C). There can be only 32 of
4814  // these functions registered and atexit() does not set errno. In Solaris
4815  // 8 and later, there is no limit to the number of functions registered
4816  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4817  // functions are called upon dlclose(3DL) in addition to return from main
4818  // and exit(3C).
4819
4820  if (PerfAllowAtExitRegistration) {
4821    // only register atexit functions if PerfAllowAtExitRegistration is set.
4822    // atexit functions can be delayed until process exit time, which
4823    // can be problematic for embedded VM situations. Embedded VMs should
4824    // call DestroyJavaVM() to assure that VM resources are released.
4825
4826    // note: perfMemory_exit_helper atexit function may be removed in
4827    // the future if the appropriate cleanup code can be added to the
4828    // VM_Exit VMOperation's doit method.
4829    if (atexit(perfMemory_exit_helper) != 0) {
4830      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4831    }
4832  }
4833
4834  // Init pset_loadavg function pointer
4835  init_pset_getloadavg_ptr();
4836
4837  return JNI_OK;
4838}
4839
4840
4841// Mark the polling page as unreadable
4842void os::make_polling_page_unreadable(void) {
4843  if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
4844    fatal("Could not disable polling page");
4845};
4846
4847// Mark the polling page as readable
4848void os::make_polling_page_readable(void) {
4849  if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
4850    fatal("Could not enable polling page");
4851};
4852
4853// OS interface.
4854
4855int os::stat(const char *path, struct stat *sbuf) {
4856  char pathbuf[MAX_PATH];
4857  if (strlen(path) > MAX_PATH - 1) {
4858    errno = ENAMETOOLONG;
4859    return -1;
4860  }
4861  hpi::native_path(strcpy(pathbuf, path));
4862  return ::stat(pathbuf, sbuf);
4863}
4864
4865
4866bool os::check_heap(bool force) { return true; }
4867
4868typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
4869static vsnprintf_t sol_vsnprintf = NULL;
4870
4871int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
4872  if (!sol_vsnprintf) {
4873    //search  for the named symbol in the objects that were loaded after libjvm
4874    void* where = RTLD_NEXT;
4875    if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
4876        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
4877    if (!sol_vsnprintf){
4878      //search  for the named symbol in the objects that were loaded before libjvm
4879      where = RTLD_DEFAULT;
4880      if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
4881        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
4882      assert(sol_vsnprintf != NULL, "vsnprintf not found");
4883    }
4884  }
4885  return (*sol_vsnprintf)(buf, count, fmt, argptr);
4886}
4887
4888
4889// Is a (classpath) directory empty?
4890bool os::dir_is_empty(const char* path) {
4891  DIR *dir = NULL;
4892  struct dirent *ptr;
4893
4894  dir = opendir(path);
4895  if (dir == NULL) return true;
4896
4897  /* Scan the directory */
4898  bool result = true;
4899  char buf[sizeof(struct dirent) + MAX_PATH];
4900  struct dirent *dbuf = (struct dirent *) buf;
4901  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4902    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4903      result = false;
4904    }
4905  }
4906  closedir(dir);
4907  return result;
4908}
4909
4910// create binary file, rewriting existing file if required
4911int os::create_binary_file(const char* path, bool rewrite_existing) {
4912  int oflags = O_WRONLY | O_CREAT;
4913  if (!rewrite_existing) {
4914    oflags |= O_EXCL;
4915  }
4916  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4917}
4918
4919// return current position of file pointer
4920jlong os::current_file_offset(int fd) {
4921  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4922}
4923
4924// move file pointer to the specified offset
4925jlong os::seek_to_file_offset(int fd, jlong offset) {
4926  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4927}
4928
4929// Map a block of memory.
4930char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4931                     char *addr, size_t bytes, bool read_only,
4932                     bool allow_exec) {
4933  int prot;
4934  int flags;
4935
4936  if (read_only) {
4937    prot = PROT_READ;
4938    flags = MAP_SHARED;
4939  } else {
4940    prot = PROT_READ | PROT_WRITE;
4941    flags = MAP_PRIVATE;
4942  }
4943
4944  if (allow_exec) {
4945    prot |= PROT_EXEC;
4946  }
4947
4948  if (addr != NULL) {
4949    flags |= MAP_FIXED;
4950  }
4951
4952  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4953                                     fd, file_offset);
4954  if (mapped_address == MAP_FAILED) {
4955    return NULL;
4956  }
4957  return mapped_address;
4958}
4959
4960
4961// Remap a block of memory.
4962char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4963                       char *addr, size_t bytes, bool read_only,
4964                       bool allow_exec) {
4965  // same as map_memory() on this OS
4966  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4967                        allow_exec);
4968}
4969
4970
4971// Unmap a block of memory.
4972bool os::unmap_memory(char* addr, size_t bytes) {
4973  return munmap(addr, bytes) == 0;
4974}
4975
4976void os::pause() {
4977  char filename[MAX_PATH];
4978  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4979    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4980  } else {
4981    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4982  }
4983
4984  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4985  if (fd != -1) {
4986    struct stat buf;
4987    close(fd);
4988    while (::stat(filename, &buf) == 0) {
4989      (void)::poll(NULL, 0, 100);
4990    }
4991  } else {
4992    jio_fprintf(stderr,
4993      "Could not open pause file '%s', continuing immediately.\n", filename);
4994  }
4995}
4996
4997#ifndef PRODUCT
4998#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4999// Turn this on if you need to trace synch operations.
5000// Set RECORD_SYNCH_LIMIT to a large-enough value,
5001// and call record_synch_enable and record_synch_disable
5002// around the computation of interest.
5003
5004void record_synch(char* name, bool returning);  // defined below
5005
5006class RecordSynch {
5007  char* _name;
5008 public:
5009  RecordSynch(char* name) :_name(name)
5010                 { record_synch(_name, false); }
5011  ~RecordSynch() { record_synch(_name,   true);  }
5012};
5013
5014#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
5015extern "C" ret name params {                                    \
5016  typedef ret name##_t params;                                  \
5017  static name##_t* implem = NULL;                               \
5018  static int callcount = 0;                                     \
5019  if (implem == NULL) {                                         \
5020    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
5021    if (implem == NULL)  fatal(dlerror());                      \
5022  }                                                             \
5023  ++callcount;                                                  \
5024  RecordSynch _rs(#name);                                       \
5025  inner;                                                        \
5026  return implem args;                                           \
5027}
5028// in dbx, examine callcounts this way:
5029// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
5030
5031#define CHECK_POINTER_OK(p) \
5032  (Universe::perm_gen() == NULL || !Universe::is_reserved_heap((oop)(p)))
5033#define CHECK_MU \
5034  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
5035#define CHECK_CV \
5036  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
5037#define CHECK_P(p) \
5038  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
5039
5040#define CHECK_MUTEX(mutex_op) \
5041CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
5042
5043CHECK_MUTEX(   mutex_lock)
5044CHECK_MUTEX(  _mutex_lock)
5045CHECK_MUTEX( mutex_unlock)
5046CHECK_MUTEX(_mutex_unlock)
5047CHECK_MUTEX( mutex_trylock)
5048CHECK_MUTEX(_mutex_trylock)
5049
5050#define CHECK_COND(cond_op) \
5051CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
5052
5053CHECK_COND( cond_wait);
5054CHECK_COND(_cond_wait);
5055CHECK_COND(_cond_wait_cancel);
5056
5057#define CHECK_COND2(cond_op) \
5058CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
5059
5060CHECK_COND2( cond_timedwait);
5061CHECK_COND2(_cond_timedwait);
5062CHECK_COND2(_cond_timedwait_cancel);
5063
5064// do the _lwp_* versions too
5065#define mutex_t lwp_mutex_t
5066#define cond_t  lwp_cond_t
5067CHECK_MUTEX(  _lwp_mutex_lock)
5068CHECK_MUTEX(  _lwp_mutex_unlock)
5069CHECK_MUTEX(  _lwp_mutex_trylock)
5070CHECK_MUTEX( __lwp_mutex_lock)
5071CHECK_MUTEX( __lwp_mutex_unlock)
5072CHECK_MUTEX( __lwp_mutex_trylock)
5073CHECK_MUTEX(___lwp_mutex_lock)
5074CHECK_MUTEX(___lwp_mutex_unlock)
5075
5076CHECK_COND(  _lwp_cond_wait);
5077CHECK_COND( __lwp_cond_wait);
5078CHECK_COND(___lwp_cond_wait);
5079
5080CHECK_COND2(  _lwp_cond_timedwait);
5081CHECK_COND2( __lwp_cond_timedwait);
5082#undef mutex_t
5083#undef cond_t
5084
5085CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5086CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5087CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5088CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5089CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5090CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5091CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5092CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5093
5094
5095// recording machinery:
5096
5097enum { RECORD_SYNCH_LIMIT = 200 };
5098char* record_synch_name[RECORD_SYNCH_LIMIT];
5099void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5100bool record_synch_returning[RECORD_SYNCH_LIMIT];
5101thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5102int record_synch_count = 0;
5103bool record_synch_enabled = false;
5104
5105// in dbx, examine recorded data this way:
5106// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5107
5108void record_synch(char* name, bool returning) {
5109  if (record_synch_enabled) {
5110    if (record_synch_count < RECORD_SYNCH_LIMIT) {
5111      record_synch_name[record_synch_count] = name;
5112      record_synch_returning[record_synch_count] = returning;
5113      record_synch_thread[record_synch_count] = thr_self();
5114      record_synch_arg0ptr[record_synch_count] = &name;
5115      record_synch_count++;
5116    }
5117    // put more checking code here:
5118    // ...
5119  }
5120}
5121
5122void record_synch_enable() {
5123  // start collecting trace data, if not already doing so
5124  if (!record_synch_enabled)  record_synch_count = 0;
5125  record_synch_enabled = true;
5126}
5127
5128void record_synch_disable() {
5129  // stop collecting trace data
5130  record_synch_enabled = false;
5131}
5132
5133#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5134#endif // PRODUCT
5135
5136const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5137const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5138                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5139
5140
5141// JVMTI & JVM monitoring and management support
5142// The thread_cpu_time() and current_thread_cpu_time() are only
5143// supported if is_thread_cpu_time_supported() returns true.
5144// They are not supported on Solaris T1.
5145
5146// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5147// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5148// of a thread.
5149//
5150// current_thread_cpu_time() and thread_cpu_time(Thread *)
5151// returns the fast estimate available on the platform.
5152
5153// hrtime_t gethrvtime() return value includes
5154// user time but does not include system time
5155jlong os::current_thread_cpu_time() {
5156  return (jlong) gethrvtime();
5157}
5158
5159jlong os::thread_cpu_time(Thread *thread) {
5160  // return user level CPU time only to be consistent with
5161  // what current_thread_cpu_time returns.
5162  // thread_cpu_time_info() must be changed if this changes
5163  return os::thread_cpu_time(thread, false /* user time only */);
5164}
5165
5166jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5167  if (user_sys_cpu_time) {
5168    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5169  } else {
5170    return os::current_thread_cpu_time();
5171  }
5172}
5173
5174jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5175  char proc_name[64];
5176  int count;
5177  prusage_t prusage;
5178  jlong lwp_time;
5179  int fd;
5180
5181  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5182                     getpid(),
5183                     thread->osthread()->lwp_id());
5184  fd = open(proc_name, O_RDONLY);
5185  if ( fd == -1 ) return -1;
5186
5187  do {
5188    count = pread(fd,
5189                  (void *)&prusage.pr_utime,
5190                  thr_time_size,
5191                  thr_time_off);
5192  } while (count < 0 && errno == EINTR);
5193  close(fd);
5194  if ( count < 0 ) return -1;
5195
5196  if (user_sys_cpu_time) {
5197    // user + system CPU time
5198    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5199                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5200                 (jlong)prusage.pr_stime.tv_nsec +
5201                 (jlong)prusage.pr_utime.tv_nsec;
5202  } else {
5203    // user level CPU time only
5204    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5205                (jlong)prusage.pr_utime.tv_nsec;
5206  }
5207
5208  return(lwp_time);
5209}
5210
5211void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5212  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5213  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5214  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5215  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5216}
5217
5218void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5219  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5220  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5221  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5222  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5223}
5224
5225bool os::is_thread_cpu_time_supported() {
5226  if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
5227    return true;
5228  } else {
5229    return false;
5230  }
5231}
5232
5233// System loadavg support.  Returns -1 if load average cannot be obtained.
5234// Return the load average for our processor set if the primitive exists
5235// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5236int os::loadavg(double loadavg[], int nelem) {
5237  if (pset_getloadavg_ptr != NULL) {
5238    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5239  } else {
5240    return ::getloadavg(loadavg, nelem);
5241  }
5242}
5243
5244//---------------------------------------------------------------------------------
5245#ifndef PRODUCT
5246
5247static address same_page(address x, address y) {
5248  intptr_t page_bits = -os::vm_page_size();
5249  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
5250    return x;
5251  else if (x > y)
5252    return (address)(intptr_t(y) | ~page_bits) + 1;
5253  else
5254    return (address)(intptr_t(y) & page_bits);
5255}
5256
5257bool os::find(address addr) {
5258  Dl_info dlinfo;
5259  memset(&dlinfo, 0, sizeof(dlinfo));
5260  if (dladdr(addr, &dlinfo)) {
5261#ifdef _LP64
5262    tty->print("0x%016lx: ", addr);
5263#else
5264    tty->print("0x%08x: ", addr);
5265#endif
5266    if (dlinfo.dli_sname != NULL)
5267      tty->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5268    else if (dlinfo.dli_fname)
5269      tty->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5270    else
5271      tty->print("<absolute address>");
5272    if (dlinfo.dli_fname)  tty->print(" in %s", dlinfo.dli_fname);
5273#ifdef _LP64
5274    if (dlinfo.dli_fbase)  tty->print(" at 0x%016lx", dlinfo.dli_fbase);
5275#else
5276    if (dlinfo.dli_fbase)  tty->print(" at 0x%08x", dlinfo.dli_fbase);
5277#endif
5278    tty->cr();
5279
5280    if (Verbose) {
5281      // decode some bytes around the PC
5282      address begin = same_page(addr-40, addr);
5283      address end   = same_page(addr+40, addr);
5284      address       lowest = (address) dlinfo.dli_sname;
5285      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5286      if (begin < lowest)  begin = lowest;
5287      Dl_info dlinfo2;
5288      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
5289          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5290        end = (address) dlinfo2.dli_saddr;
5291      Disassembler::decode(begin, end);
5292    }
5293    return true;
5294  }
5295  return false;
5296}
5297
5298#endif
5299
5300
5301// Following function has been added to support HotSparc's libjvm.so running
5302// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5303// src/solaris/hpi/native_threads in the EVM codebase.
5304//
5305// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5306// libraries and should thus be removed. We will leave it behind for a while
5307// until we no longer want to able to run on top of 1.3.0 Solaris production
5308// JDK. See 4341971.
5309
5310#define STACK_SLACK 0x800
5311
5312extern "C" {
5313  intptr_t sysThreadAvailableStackWithSlack() {
5314    stack_t st;
5315    intptr_t retval, stack_top;
5316    retval = thr_stksegment(&st);
5317    assert(retval == 0, "incorrect return value from thr_stksegment");
5318    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5319    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5320    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5321    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5322  }
5323}
5324
5325// Just to get the Kernel build to link on solaris for testing.
5326
5327extern "C" {
5328class ASGCT_CallTrace;
5329void AsyncGetCallTrace(ASGCT_CallTrace *trace, jint depth, void* ucontext)
5330  KERNEL_RETURN;
5331}
5332
5333
5334// ObjectMonitor park-unpark infrastructure ...
5335//
5336// We implement Solaris and Linux PlatformEvents with the
5337// obvious condvar-mutex-flag triple.
5338// Another alternative that works quite well is pipes:
5339// Each PlatformEvent consists of a pipe-pair.
5340// The thread associated with the PlatformEvent
5341// calls park(), which reads from the input end of the pipe.
5342// Unpark() writes into the other end of the pipe.
5343// The write-side of the pipe must be set NDELAY.
5344// Unfortunately pipes consume a large # of handles.
5345// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5346// Using pipes for the 1st few threads might be workable, however.
5347//
5348// park() is permitted to return spuriously.
5349// Callers of park() should wrap the call to park() in
5350// an appropriate loop.  A litmus test for the correct
5351// usage of park is the following: if park() were modified
5352// to immediately return 0 your code should still work,
5353// albeit degenerating to a spin loop.
5354//
5355// An interesting optimization for park() is to use a trylock()
5356// to attempt to acquire the mutex.  If the trylock() fails
5357// then we know that a concurrent unpark() operation is in-progress.
5358// in that case the park() code could simply set _count to 0
5359// and return immediately.  The subsequent park() operation *might*
5360// return immediately.  That's harmless as the caller of park() is
5361// expected to loop.  By using trylock() we will have avoided a
5362// avoided a context switch caused by contention on the per-thread mutex.
5363//
5364// TODO-FIXME:
5365// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
5366//     objectmonitor implementation.
5367// 2.  Collapse the JSR166 parker event, and the
5368//     objectmonitor ParkEvent into a single "Event" construct.
5369// 3.  In park() and unpark() add:
5370//     assert (Thread::current() == AssociatedWith).
5371// 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
5372//     1-out-of-N park() operations will return immediately.
5373//
5374// _Event transitions in park()
5375//   -1 => -1 : illegal
5376//    1 =>  0 : pass - return immediately
5377//    0 => -1 : block
5378//
5379// _Event serves as a restricted-range semaphore.
5380//
5381// Another possible encoding of _Event would be with
5382// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5383//
5384// TODO-FIXME: add DTRACE probes for:
5385// 1.   Tx parks
5386// 2.   Ty unparks Tx
5387// 3.   Tx resumes from park
5388
5389
5390// value determined through experimentation
5391#define ROUNDINGFIX 11
5392
5393// utility to compute the abstime argument to timedwait.
5394// TODO-FIXME: switch from compute_abstime() to unpackTime().
5395
5396static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5397  // millis is the relative timeout time
5398  // abstime will be the absolute timeout time
5399  if (millis < 0)  millis = 0;
5400  struct timeval now;
5401  int status = gettimeofday(&now, NULL);
5402  assert(status == 0, "gettimeofday");
5403  jlong seconds = millis / 1000;
5404  jlong max_wait_period;
5405
5406  if (UseLWPSynchronization) {
5407    // forward port of fix for 4275818 (not sleeping long enough)
5408    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5409    // _lwp_cond_timedwait() used a round_down algorithm rather
5410    // than a round_up. For millis less than our roundfactor
5411    // it rounded down to 0 which doesn't meet the spec.
5412    // For millis > roundfactor we may return a bit sooner, but
5413    // since we can not accurately identify the patch level and
5414    // this has already been fixed in Solaris 9 and 8 we will
5415    // leave it alone rather than always rounding down.
5416
5417    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5418       // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5419           // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5420           max_wait_period = 21000000;
5421  } else {
5422    max_wait_period = 50000000;
5423  }
5424  millis %= 1000;
5425  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5426     seconds = max_wait_period;
5427  }
5428  abstime->tv_sec = now.tv_sec  + seconds;
5429  long       usec = now.tv_usec + millis * 1000;
5430  if (usec >= 1000000) {
5431    abstime->tv_sec += 1;
5432    usec -= 1000000;
5433  }
5434  abstime->tv_nsec = usec * 1000;
5435  return abstime;
5436}
5437
5438// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5439// Conceptually TryPark() should be equivalent to park(0).
5440
5441int os::PlatformEvent::TryPark() {
5442  for (;;) {
5443    const int v = _Event ;
5444    guarantee ((v == 0) || (v == 1), "invariant") ;
5445    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5446  }
5447}
5448
5449void os::PlatformEvent::park() {           // AKA: down()
5450  // Invariant: Only the thread associated with the Event/PlatformEvent
5451  // may call park().
5452  int v ;
5453  for (;;) {
5454      v = _Event ;
5455      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5456  }
5457  guarantee (v >= 0, "invariant") ;
5458  if (v == 0) {
5459     // Do this the hard way by blocking ...
5460     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5461     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5462     // Only for SPARC >= V8PlusA
5463#if defined(__sparc) && defined(COMPILER2)
5464     if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
5465#endif
5466     int status = os::Solaris::mutex_lock(_mutex);
5467     assert_status(status == 0, status,  "mutex_lock");
5468     guarantee (_nParked == 0, "invariant") ;
5469     ++ _nParked ;
5470     while (_Event < 0) {
5471        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5472        // Treat this the same as if the wait was interrupted
5473        // With usr/lib/lwp going to kernel, always handle ETIME
5474        status = os::Solaris::cond_wait(_cond, _mutex);
5475        if (status == ETIME) status = EINTR ;
5476        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5477     }
5478     -- _nParked ;
5479     _Event = 0 ;
5480     status = os::Solaris::mutex_unlock(_mutex);
5481     assert_status(status == 0, status, "mutex_unlock");
5482  }
5483}
5484
5485int os::PlatformEvent::park(jlong millis) {
5486  guarantee (_nParked == 0, "invariant") ;
5487  int v ;
5488  for (;;) {
5489      v = _Event ;
5490      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5491  }
5492  guarantee (v >= 0, "invariant") ;
5493  if (v != 0) return OS_OK ;
5494
5495  int ret = OS_TIMEOUT;
5496  timestruc_t abst;
5497  compute_abstime (&abst, millis);
5498
5499  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5500  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5501  // Only for SPARC >= V8PlusA
5502#if defined(__sparc) && defined(COMPILER2)
5503 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
5504#endif
5505  int status = os::Solaris::mutex_lock(_mutex);
5506  assert_status(status == 0, status, "mutex_lock");
5507  guarantee (_nParked == 0, "invariant") ;
5508  ++ _nParked ;
5509  while (_Event < 0) {
5510     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5511     assert_status(status == 0 || status == EINTR ||
5512                   status == ETIME || status == ETIMEDOUT,
5513                   status, "cond_timedwait");
5514     if (!FilterSpuriousWakeups) break ;                // previous semantics
5515     if (status == ETIME || status == ETIMEDOUT) break ;
5516     // We consume and ignore EINTR and spurious wakeups.
5517  }
5518  -- _nParked ;
5519  if (_Event >= 0) ret = OS_OK ;
5520  _Event = 0 ;
5521  status = os::Solaris::mutex_unlock(_mutex);
5522  assert_status(status == 0, status, "mutex_unlock");
5523  return ret;
5524}
5525
5526void os::PlatformEvent::unpark() {
5527  int v, AnyWaiters;
5528
5529  // Increment _Event.
5530  // Another acceptable implementation would be to simply swap 1
5531  // into _Event:
5532  //   if (Swap (&_Event, 1) < 0) {
5533  //      mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
5534  //      if (AnyWaiters) cond_signal (_cond) ;
5535  //   }
5536
5537  for (;;) {
5538    v = _Event ;
5539    if (v > 0) {
5540       // The LD of _Event could have reordered or be satisfied
5541       // by a read-aside from this processor's write buffer.
5542       // To avoid problems execute a barrier and then
5543       // ratify the value.  A degenerate CAS() would also work.
5544       // Viz., CAS (v+0, &_Event, v) == v).
5545       OrderAccess::fence() ;
5546       if (_Event == v) return ;
5547       continue ;
5548    }
5549    if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5550  }
5551
5552  // If the thread associated with the event was parked, wake it.
5553  if (v < 0) {
5554     int status ;
5555     // Wait for the thread assoc with the PlatformEvent to vacate.
5556     status = os::Solaris::mutex_lock(_mutex);
5557     assert_status(status == 0, status, "mutex_lock");
5558     AnyWaiters = _nParked ;
5559     status = os::Solaris::mutex_unlock(_mutex);
5560     assert_status(status == 0, status, "mutex_unlock");
5561     guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5562     if (AnyWaiters != 0) {
5563       // We intentional signal *after* dropping the lock
5564       // to avoid a common class of futile wakeups.
5565       status = os::Solaris::cond_signal(_cond);
5566       assert_status(status == 0, status, "cond_signal");
5567     }
5568  }
5569}
5570
5571// JSR166
5572// -------------------------------------------------------
5573
5574/*
5575 * The solaris and linux implementations of park/unpark are fairly
5576 * conservative for now, but can be improved. They currently use a
5577 * mutex/condvar pair, plus _counter.
5578 * Park decrements _counter if > 0, else does a condvar wait.  Unpark
5579 * sets count to 1 and signals condvar.  Only one thread ever waits
5580 * on the condvar. Contention seen when trying to park implies that someone
5581 * is unparking you, so don't wait. And spurious returns are fine, so there
5582 * is no need to track notifications.
5583 */
5584
5585#define NANOSECS_PER_SEC 1000000000
5586#define NANOSECS_PER_MILLISEC 1000000
5587#define MAX_SECS 100000000
5588
5589/*
5590 * This code is common to linux and solaris and will be moved to a
5591 * common place in dolphin.
5592 *
5593 * The passed in time value is either a relative time in nanoseconds
5594 * or an absolute time in milliseconds. Either way it has to be unpacked
5595 * into suitable seconds and nanoseconds components and stored in the
5596 * given timespec structure.
5597 * Given time is a 64-bit value and the time_t used in the timespec is only
5598 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5599 * overflow if times way in the future are given. Further on Solaris versions
5600 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5601 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5602 * As it will be 28 years before "now + 100000000" will overflow we can
5603 * ignore overflow and just impose a hard-limit on seconds using the value
5604 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5605 * years from "now".
5606 */
5607static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5608  assert (time > 0, "convertTime");
5609
5610  struct timeval now;
5611  int status = gettimeofday(&now, NULL);
5612  assert(status == 0, "gettimeofday");
5613
5614  time_t max_secs = now.tv_sec + MAX_SECS;
5615
5616  if (isAbsolute) {
5617    jlong secs = time / 1000;
5618    if (secs > max_secs) {
5619      absTime->tv_sec = max_secs;
5620    }
5621    else {
5622      absTime->tv_sec = secs;
5623    }
5624    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5625  }
5626  else {
5627    jlong secs = time / NANOSECS_PER_SEC;
5628    if (secs >= MAX_SECS) {
5629      absTime->tv_sec = max_secs;
5630      absTime->tv_nsec = 0;
5631    }
5632    else {
5633      absTime->tv_sec = now.tv_sec + secs;
5634      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5635      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5636        absTime->tv_nsec -= NANOSECS_PER_SEC;
5637        ++absTime->tv_sec; // note: this must be <= max_secs
5638      }
5639    }
5640  }
5641  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5642  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5643  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5644  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5645}
5646
5647void Parker::park(bool isAbsolute, jlong time) {
5648
5649  // Optional fast-path check:
5650  // Return immediately if a permit is available.
5651  if (_counter > 0) {
5652      _counter = 0 ;
5653      return ;
5654  }
5655
5656  // Optional fast-exit: Check interrupt before trying to wait
5657  Thread* thread = Thread::current();
5658  assert(thread->is_Java_thread(), "Must be JavaThread");
5659  JavaThread *jt = (JavaThread *)thread;
5660  if (Thread::is_interrupted(thread, false)) {
5661    return;
5662  }
5663
5664  // First, demultiplex/decode time arguments
5665  timespec absTime;
5666  if (time < 0) { // don't wait at all
5667    return;
5668  }
5669  if (time > 0) {
5670    // Warning: this code might be exposed to the old Solaris time
5671    // round-down bugs.  Grep "roundingFix" for details.
5672    unpackTime(&absTime, isAbsolute, time);
5673  }
5674
5675  // Enter safepoint region
5676  // Beware of deadlocks such as 6317397.
5677  // The per-thread Parker:: _mutex is a classic leaf-lock.
5678  // In particular a thread must never block on the Threads_lock while
5679  // holding the Parker:: mutex.  If safepoints are pending both the
5680  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5681  ThreadBlockInVM tbivm(jt);
5682
5683  // Don't wait if cannot get lock since interference arises from
5684  // unblocking.  Also. check interrupt before trying wait
5685  if (Thread::is_interrupted(thread, false) ||
5686      os::Solaris::mutex_trylock(_mutex) != 0) {
5687    return;
5688  }
5689
5690  int status ;
5691
5692  if (_counter > 0)  { // no wait needed
5693    _counter = 0;
5694    status = os::Solaris::mutex_unlock(_mutex);
5695    assert (status == 0, "invariant") ;
5696    return;
5697  }
5698
5699#ifdef ASSERT
5700  // Don't catch signals while blocked; let the running threads have the signals.
5701  // (This allows a debugger to break into the running thread.)
5702  sigset_t oldsigs;
5703  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5704  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5705#endif
5706
5707  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5708  jt->set_suspend_equivalent();
5709  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5710
5711  // Do this the hard way by blocking ...
5712  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5713  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5714  // Only for SPARC >= V8PlusA
5715#if defined(__sparc) && defined(COMPILER2)
5716  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
5717#endif
5718
5719  if (time == 0) {
5720    status = os::Solaris::cond_wait (_cond, _mutex) ;
5721  } else {
5722    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5723  }
5724  // Note that an untimed cond_wait() can sometimes return ETIME on older
5725  // versions of the Solaris.
5726  assert_status(status == 0 || status == EINTR ||
5727                status == ETIME || status == ETIMEDOUT,
5728                status, "cond_timedwait");
5729
5730#ifdef ASSERT
5731  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
5732#endif
5733  _counter = 0 ;
5734  status = os::Solaris::mutex_unlock(_mutex);
5735  assert_status(status == 0, status, "mutex_unlock") ;
5736
5737  // If externally suspended while waiting, re-suspend
5738  if (jt->handle_special_suspend_equivalent_condition()) {
5739    jt->java_suspend_self();
5740  }
5741
5742}
5743
5744void Parker::unpark() {
5745  int s, status ;
5746  status = os::Solaris::mutex_lock (_mutex) ;
5747  assert (status == 0, "invariant") ;
5748  s = _counter;
5749  _counter = 1;
5750  status = os::Solaris::mutex_unlock (_mutex) ;
5751  assert (status == 0, "invariant") ;
5752
5753  if (s < 1) {
5754    status = os::Solaris::cond_signal (_cond) ;
5755    assert (status == 0, "invariant") ;
5756  }
5757}
5758
5759extern char** environ;
5760
5761// Run the specified command in a separate process. Return its exit value,
5762// or -1 on failure (e.g. can't fork a new process).
5763// Unlike system(), this function can be called from signal handler. It
5764// doesn't block SIGINT et al.
5765int os::fork_and_exec(char* cmd) {
5766  char * argv[4];
5767  argv[0] = (char *)"sh";
5768  argv[1] = (char *)"-c";
5769  argv[2] = cmd;
5770  argv[3] = NULL;
5771
5772  // fork is async-safe, fork1 is not so can't use in signal handler
5773  pid_t pid;
5774  Thread* t = ThreadLocalStorage::get_thread_slow();
5775  if (t != NULL && t->is_inside_signal_handler()) {
5776    pid = fork();
5777  } else {
5778    pid = fork1();
5779  }
5780
5781  if (pid < 0) {
5782    // fork failed
5783    warning("fork failed: %s", strerror(errno));
5784    return -1;
5785
5786  } else if (pid == 0) {
5787    // child process
5788
5789    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5790    execve("/usr/bin/sh", argv, environ);
5791
5792    // execve failed
5793    _exit(-1);
5794
5795  } else  {
5796    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5797    // care about the actual exit code, for now.
5798
5799    int status;
5800
5801    // Wait for the child process to exit.  This returns immediately if
5802    // the child has already exited. */
5803    while (waitpid(pid, &status, 0) < 0) {
5804        switch (errno) {
5805        case ECHILD: return 0;
5806        case EINTR: break;
5807        default: return -1;
5808        }
5809    }
5810
5811    if (WIFEXITED(status)) {
5812       // The child exited normally; get its exit code.
5813       return WEXITSTATUS(status);
5814    } else if (WIFSIGNALED(status)) {
5815       // The child exited because of a signal
5816       // The best value to return is 0x80 + signal number,
5817       // because that is what all Unix shells do, and because
5818       // it allows callers to distinguish between process exit and
5819       // process death by signal.
5820       return 0x80 + WTERMSIG(status);
5821    } else {
5822       // Unknown exit code; pass it through
5823       return status;
5824    }
5825  }
5826}
5827