os_solaris.cpp revision 13527:5cd4495a3efa
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "os_solaris.inline.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "runtime/vm_version.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/align.hpp"
68#include "utilities/decoder.hpp"
69#include "utilities/defaultStream.hpp"
70#include "utilities/events.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <dlfcn.h>
77# include <errno.h>
78# include <exception>
79# include <link.h>
80# include <poll.h>
81# include <pthread.h>
82# include <schedctl.h>
83# include <setjmp.h>
84# include <signal.h>
85# include <stdio.h>
86# include <alloca.h>
87# include <sys/filio.h>
88# include <sys/ipc.h>
89# include <sys/lwp.h>
90# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
91# include <sys/mman.h>
92# include <sys/processor.h>
93# include <sys/procset.h>
94# include <sys/pset.h>
95# include <sys/resource.h>
96# include <sys/shm.h>
97# include <sys/socket.h>
98# include <sys/stat.h>
99# include <sys/systeminfo.h>
100# include <sys/time.h>
101# include <sys/times.h>
102# include <sys/types.h>
103# include <sys/wait.h>
104# include <sys/utsname.h>
105# include <thread.h>
106# include <unistd.h>
107# include <sys/priocntl.h>
108# include <sys/rtpriocntl.h>
109# include <sys/tspriocntl.h>
110# include <sys/iapriocntl.h>
111# include <sys/fxpriocntl.h>
112# include <sys/loadavg.h>
113# include <string.h>
114# include <stdio.h>
115
116# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
117# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
118
119#define MAX_PATH (2 * K)
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124
125// Here are some liblgrp types from sys/lgrp_user.h to be able to
126// compile on older systems without this header file.
127
128#ifndef MADV_ACCESS_LWP
129  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
130#endif
131#ifndef MADV_ACCESS_MANY
132  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
133#endif
134
135#ifndef LGRP_RSRC_CPU
136  #define LGRP_RSRC_CPU      0       /* CPU resources */
137#endif
138#ifndef LGRP_RSRC_MEM
139  #define LGRP_RSRC_MEM      1       /* memory resources */
140#endif
141
142// Values for ThreadPriorityPolicy == 1
143int prio_policy1[CriticalPriority+1] = {
144  -99999,  0, 16,  32,  48,  64,
145          80, 96, 112, 124, 127, 127 };
146
147// System parameters used internally
148static clock_t clock_tics_per_sec = 100;
149
150// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
151static bool enabled_extended_FILE_stdio = false;
152
153// For diagnostics to print a message once. see run_periodic_checks
154static bool check_addr0_done = false;
155static sigset_t check_signal_done;
156static bool check_signals = true;
157
158address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
159address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
160
161address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
162
163os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
164
165// "default" initializers for missing libc APIs
166extern "C" {
167  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
168  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
169
170  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
171  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
172}
173
174// "default" initializers for pthread-based synchronization
175extern "C" {
176  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
177  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
178}
179
180static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
181
182static inline size_t adjust_stack_size(address base, size_t size) {
183  if ((ssize_t)size < 0) {
184    // 4759953: Compensate for ridiculous stack size.
185    size = max_intx;
186  }
187  if (size > (size_t)base) {
188    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
189    size = (size_t)base;
190  }
191  return size;
192}
193
194static inline stack_t get_stack_info() {
195  stack_t st;
196  int retval = thr_stksegment(&st);
197  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
198  assert(retval == 0, "incorrect return value from thr_stksegment");
199  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
200  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
201  return st;
202}
203
204address os::current_stack_base() {
205  int r = thr_main();
206  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
207  bool is_primordial_thread = r;
208
209  // Workaround 4352906, avoid calls to thr_stksegment by
210  // thr_main after the first one (it looks like we trash
211  // some data, causing the value for ss_sp to be incorrect).
212  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
213    stack_t st = get_stack_info();
214    if (is_primordial_thread) {
215      // cache initial value of stack base
216      os::Solaris::_main_stack_base = (address)st.ss_sp;
217    }
218    return (address)st.ss_sp;
219  } else {
220    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
221    return os::Solaris::_main_stack_base;
222  }
223}
224
225size_t os::current_stack_size() {
226  size_t size;
227
228  int r = thr_main();
229  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
230  if (!r) {
231    size = get_stack_info().ss_size;
232  } else {
233    struct rlimit limits;
234    getrlimit(RLIMIT_STACK, &limits);
235    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
236  }
237  // base may not be page aligned
238  address base = current_stack_base();
239  address bottom = align_up(base - size, os::vm_page_size());;
240  return (size_t)(base - bottom);
241}
242
243struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
244  return localtime_r(clock, res);
245}
246
247void os::Solaris::try_enable_extended_io() {
248  typedef int (*enable_extended_FILE_stdio_t)(int, int);
249
250  if (!UseExtendedFileIO) {
251    return;
252  }
253
254  enable_extended_FILE_stdio_t enabler =
255    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
256                                         "enable_extended_FILE_stdio");
257  if (enabler) {
258    enabler(-1, -1);
259  }
260}
261
262static int _processors_online = 0;
263
264jint os::Solaris::_os_thread_limit = 0;
265volatile jint os::Solaris::_os_thread_count = 0;
266
267julong os::available_memory() {
268  return Solaris::available_memory();
269}
270
271julong os::Solaris::available_memory() {
272  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
273}
274
275julong os::Solaris::_physical_memory = 0;
276
277julong os::physical_memory() {
278  return Solaris::physical_memory();
279}
280
281static hrtime_t first_hrtime = 0;
282static const hrtime_t hrtime_hz = 1000*1000*1000;
283static volatile hrtime_t max_hrtime = 0;
284
285
286void os::Solaris::initialize_system_info() {
287  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
288  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
289  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
290                                     (julong)sysconf(_SC_PAGESIZE);
291}
292
293int os::active_processor_count() {
294  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
295  pid_t pid = getpid();
296  psetid_t pset = PS_NONE;
297  // Are we running in a processor set or is there any processor set around?
298  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
299    uint_t pset_cpus;
300    // Query the number of cpus available to us.
301    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
302      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
303      _processors_online = pset_cpus;
304      return pset_cpus;
305    }
306  }
307  // Otherwise return number of online cpus
308  return online_cpus;
309}
310
311static bool find_processors_in_pset(psetid_t        pset,
312                                    processorid_t** id_array,
313                                    uint_t*         id_length) {
314  bool result = false;
315  // Find the number of processors in the processor set.
316  if (pset_info(pset, NULL, id_length, NULL) == 0) {
317    // Make up an array to hold their ids.
318    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
319    // Fill in the array with their processor ids.
320    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
321      result = true;
322    }
323  }
324  return result;
325}
326
327// Callers of find_processors_online() must tolerate imprecise results --
328// the system configuration can change asynchronously because of DR
329// or explicit psradm operations.
330//
331// We also need to take care that the loop (below) terminates as the
332// number of processors online can change between the _SC_NPROCESSORS_ONLN
333// request and the loop that builds the list of processor ids.   Unfortunately
334// there's no reliable way to determine the maximum valid processor id,
335// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
336// man pages, which claim the processor id set is "sparse, but
337// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
338// exit the loop.
339//
340// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
341// not available on S8.0.
342
343static bool find_processors_online(processorid_t** id_array,
344                                   uint*           id_length) {
345  const processorid_t MAX_PROCESSOR_ID = 100000;
346  // Find the number of processors online.
347  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
348  // Make up an array to hold their ids.
349  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
350  // Processors need not be numbered consecutively.
351  long found = 0;
352  processorid_t next = 0;
353  while (found < *id_length && next < MAX_PROCESSOR_ID) {
354    processor_info_t info;
355    if (processor_info(next, &info) == 0) {
356      // NB, PI_NOINTR processors are effectively online ...
357      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
358        (*id_array)[found] = next;
359        found += 1;
360      }
361    }
362    next += 1;
363  }
364  if (found < *id_length) {
365    // The loop above didn't identify the expected number of processors.
366    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
367    // and re-running the loop, above, but there's no guarantee of progress
368    // if the system configuration is in flux.  Instead, we just return what
369    // we've got.  Note that in the worst case find_processors_online() could
370    // return an empty set.  (As a fall-back in the case of the empty set we
371    // could just return the ID of the current processor).
372    *id_length = found;
373  }
374
375  return true;
376}
377
378static bool assign_distribution(processorid_t* id_array,
379                                uint           id_length,
380                                uint*          distribution,
381                                uint           distribution_length) {
382  // We assume we can assign processorid_t's to uint's.
383  assert(sizeof(processorid_t) == sizeof(uint),
384         "can't convert processorid_t to uint");
385  // Quick check to see if we won't succeed.
386  if (id_length < distribution_length) {
387    return false;
388  }
389  // Assign processor ids to the distribution.
390  // Try to shuffle processors to distribute work across boards,
391  // assuming 4 processors per board.
392  const uint processors_per_board = ProcessDistributionStride;
393  // Find the maximum processor id.
394  processorid_t max_id = 0;
395  for (uint m = 0; m < id_length; m += 1) {
396    max_id = MAX2(max_id, id_array[m]);
397  }
398  // The next id, to limit loops.
399  const processorid_t limit_id = max_id + 1;
400  // Make up markers for available processors.
401  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
402  for (uint c = 0; c < limit_id; c += 1) {
403    available_id[c] = false;
404  }
405  for (uint a = 0; a < id_length; a += 1) {
406    available_id[id_array[a]] = true;
407  }
408  // Step by "boards", then by "slot", copying to "assigned".
409  // NEEDS_CLEANUP: The assignment of processors should be stateful,
410  //                remembering which processors have been assigned by
411  //                previous calls, etc., so as to distribute several
412  //                independent calls of this method.  What we'd like is
413  //                It would be nice to have an API that let us ask
414  //                how many processes are bound to a processor,
415  //                but we don't have that, either.
416  //                In the short term, "board" is static so that
417  //                subsequent distributions don't all start at board 0.
418  static uint board = 0;
419  uint assigned = 0;
420  // Until we've found enough processors ....
421  while (assigned < distribution_length) {
422    // ... find the next available processor in the board.
423    for (uint slot = 0; slot < processors_per_board; slot += 1) {
424      uint try_id = board * processors_per_board + slot;
425      if ((try_id < limit_id) && (available_id[try_id] == true)) {
426        distribution[assigned] = try_id;
427        available_id[try_id] = false;
428        assigned += 1;
429        break;
430      }
431    }
432    board += 1;
433    if (board * processors_per_board + 0 >= limit_id) {
434      board = 0;
435    }
436  }
437  if (available_id != NULL) {
438    FREE_C_HEAP_ARRAY(bool, available_id);
439  }
440  return true;
441}
442
443void os::set_native_thread_name(const char *name) {
444  if (Solaris::_pthread_setname_np != NULL) {
445    // Only the first 31 bytes of 'name' are processed by pthread_setname_np
446    // but we explicitly copy into a size-limited buffer to avoid any
447    // possible overflow.
448    char buf[32];
449    snprintf(buf, sizeof(buf), "%s", name);
450    buf[sizeof(buf) - 1] = '\0';
451    Solaris::_pthread_setname_np(pthread_self(), buf);
452  }
453}
454
455bool os::distribute_processes(uint length, uint* distribution) {
456  bool result = false;
457  // Find the processor id's of all the available CPUs.
458  processorid_t* id_array  = NULL;
459  uint           id_length = 0;
460  // There are some races between querying information and using it,
461  // since processor sets can change dynamically.
462  psetid_t pset = PS_NONE;
463  // Are we running in a processor set?
464  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
465    result = find_processors_in_pset(pset, &id_array, &id_length);
466  } else {
467    result = find_processors_online(&id_array, &id_length);
468  }
469  if (result == true) {
470    if (id_length >= length) {
471      result = assign_distribution(id_array, id_length, distribution, length);
472    } else {
473      result = false;
474    }
475  }
476  if (id_array != NULL) {
477    FREE_C_HEAP_ARRAY(processorid_t, id_array);
478  }
479  return result;
480}
481
482bool os::bind_to_processor(uint processor_id) {
483  // We assume that a processorid_t can be stored in a uint.
484  assert(sizeof(uint) == sizeof(processorid_t),
485         "can't convert uint to processorid_t");
486  int bind_result =
487    processor_bind(P_LWPID,                       // bind LWP.
488                   P_MYID,                        // bind current LWP.
489                   (processorid_t) processor_id,  // id.
490                   NULL);                         // don't return old binding.
491  return (bind_result == 0);
492}
493
494// Return true if user is running as root.
495
496bool os::have_special_privileges() {
497  static bool init = false;
498  static bool privileges = false;
499  if (!init) {
500    privileges = (getuid() != geteuid()) || (getgid() != getegid());
501    init = true;
502  }
503  return privileges;
504}
505
506
507void os::init_system_properties_values() {
508  // The next steps are taken in the product version:
509  //
510  // Obtain the JAVA_HOME value from the location of libjvm.so.
511  // This library should be located at:
512  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
513  //
514  // If "/jre/lib/" appears at the right place in the path, then we
515  // assume libjvm.so is installed in a JDK and we use this path.
516  //
517  // Otherwise exit with message: "Could not create the Java virtual machine."
518  //
519  // The following extra steps are taken in the debugging version:
520  //
521  // If "/jre/lib/" does NOT appear at the right place in the path
522  // instead of exit check for $JAVA_HOME environment variable.
523  //
524  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
525  // then we append a fake suffix "hotspot/libjvm.so" to this path so
526  // it looks like libjvm.so is installed there
527  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
528  //
529  // Otherwise exit.
530  //
531  // Important note: if the location of libjvm.so changes this
532  // code needs to be changed accordingly.
533
534// Base path of extensions installed on the system.
535#define SYS_EXT_DIR     "/usr/jdk/packages"
536#define EXTENSIONS_DIR  "/lib/ext"
537
538  // Buffer that fits several sprintfs.
539  // Note that the space for the colon and the trailing null are provided
540  // by the nulls included by the sizeof operator.
541  const size_t bufsize =
542    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
543         sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
544         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
545  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
546
547  // sysclasspath, java_home, dll_dir
548  {
549    char *pslash;
550    os::jvm_path(buf, bufsize);
551
552    // Found the full path to libjvm.so.
553    // Now cut the path to <java_home>/jre if we can.
554    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
555    pslash = strrchr(buf, '/');
556    if (pslash != NULL) {
557      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
558    }
559    Arguments::set_dll_dir(buf);
560
561    if (pslash != NULL) {
562      pslash = strrchr(buf, '/');
563      if (pslash != NULL) {
564        *pslash = '\0';        // Get rid of /lib.
565      }
566    }
567    Arguments::set_java_home(buf);
568    set_boot_path('/', ':');
569  }
570
571  // Where to look for native libraries.
572  {
573    // Use dlinfo() to determine the correct java.library.path.
574    //
575    // If we're launched by the Java launcher, and the user
576    // does not set java.library.path explicitly on the commandline,
577    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
578    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
579    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
580    // /usr/lib), which is exactly what we want.
581    //
582    // If the user does set java.library.path, it completely
583    // overwrites this setting, and always has.
584    //
585    // If we're not launched by the Java launcher, we may
586    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
587    // settings.  Again, dlinfo does exactly what we want.
588
589    Dl_serinfo     info_sz, *info = &info_sz;
590    Dl_serpath     *path;
591    char           *library_path;
592    char           *common_path = buf;
593
594    // Determine search path count and required buffer size.
595    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
596      FREE_C_HEAP_ARRAY(char, buf);
597      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
598    }
599
600    // Allocate new buffer and initialize.
601    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
602    info->dls_size = info_sz.dls_size;
603    info->dls_cnt = info_sz.dls_cnt;
604
605    // Obtain search path information.
606    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
607      FREE_C_HEAP_ARRAY(char, buf);
608      FREE_C_HEAP_ARRAY(char, info);
609      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
610    }
611
612    path = &info->dls_serpath[0];
613
614    // Note: Due to a legacy implementation, most of the library path
615    // is set in the launcher. This was to accomodate linking restrictions
616    // on legacy Solaris implementations (which are no longer supported).
617    // Eventually, all the library path setting will be done here.
618    //
619    // However, to prevent the proliferation of improperly built native
620    // libraries, the new path component /usr/jdk/packages is added here.
621
622    // Construct the invariant part of ld_library_path.
623    sprintf(common_path, SYS_EXT_DIR "/lib");
624
625    // Struct size is more than sufficient for the path components obtained
626    // through the dlinfo() call, so only add additional space for the path
627    // components explicitly added here.
628    size_t library_path_size = info->dls_size + strlen(common_path);
629    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
630    library_path[0] = '\0';
631
632    // Construct the desired Java library path from the linker's library
633    // search path.
634    //
635    // For compatibility, it is optimal that we insert the additional path
636    // components specific to the Java VM after those components specified
637    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
638    // infrastructure.
639    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
640      strcpy(library_path, common_path);
641    } else {
642      int inserted = 0;
643      int i;
644      for (i = 0; i < info->dls_cnt; i++, path++) {
645        uint_t flags = path->dls_flags & LA_SER_MASK;
646        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
647          strcat(library_path, common_path);
648          strcat(library_path, os::path_separator());
649          inserted = 1;
650        }
651        strcat(library_path, path->dls_name);
652        strcat(library_path, os::path_separator());
653      }
654      // Eliminate trailing path separator.
655      library_path[strlen(library_path)-1] = '\0';
656    }
657
658    // happens before argument parsing - can't use a trace flag
659    // tty->print_raw("init_system_properties_values: native lib path: ");
660    // tty->print_raw_cr(library_path);
661
662    // Callee copies into its own buffer.
663    Arguments::set_library_path(library_path);
664
665    FREE_C_HEAP_ARRAY(char, library_path);
666    FREE_C_HEAP_ARRAY(char, info);
667  }
668
669  // Extensions directories.
670  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
671  Arguments::set_ext_dirs(buf);
672
673  FREE_C_HEAP_ARRAY(char, buf);
674
675#undef SYS_EXT_DIR
676#undef EXTENSIONS_DIR
677}
678
679void os::breakpoint() {
680  BREAKPOINT;
681}
682
683bool os::obsolete_option(const JavaVMOption *option) {
684  if (!strncmp(option->optionString, "-Xt", 3)) {
685    return true;
686  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
687    return true;
688  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
689    return true;
690  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
691    return true;
692  }
693  return false;
694}
695
696bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
697  address  stackStart  = (address)thread->stack_base();
698  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
699  if (sp < stackStart && sp >= stackEnd) return true;
700  return false;
701}
702
703extern "C" void breakpoint() {
704  // use debugger to set breakpoint here
705}
706
707static thread_t main_thread;
708
709// Thread start routine for all newly created threads
710extern "C" void* thread_native_entry(void* thread_addr) {
711  // Try to randomize the cache line index of hot stack frames.
712  // This helps when threads of the same stack traces evict each other's
713  // cache lines. The threads can be either from the same JVM instance, or
714  // from different JVM instances. The benefit is especially true for
715  // processors with hyperthreading technology.
716  static int counter = 0;
717  int pid = os::current_process_id();
718  alloca(((pid ^ counter++) & 7) * 128);
719
720  int prio;
721  Thread* thread = (Thread*)thread_addr;
722
723  thread->initialize_thread_current();
724
725  OSThread* osthr = thread->osthread();
726
727  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
728  thread->_schedctl = (void *) schedctl_init();
729
730  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
731    os::current_thread_id());
732
733  if (UseNUMA) {
734    int lgrp_id = os::numa_get_group_id();
735    if (lgrp_id != -1) {
736      thread->set_lgrp_id(lgrp_id);
737    }
738  }
739
740  // Our priority was set when we were created, and stored in the
741  // osthread, but couldn't be passed through to our LWP until now.
742  // So read back the priority and set it again.
743
744  if (osthr->thread_id() != -1) {
745    if (UseThreadPriorities) {
746      int prio = osthr->native_priority();
747      if (ThreadPriorityVerbose) {
748        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
749                      INTPTR_FORMAT ", setting priority: %d\n",
750                      osthr->thread_id(), osthr->lwp_id(), prio);
751      }
752      os::set_native_priority(thread, prio);
753    }
754  } else if (ThreadPriorityVerbose) {
755    warning("Can't set priority in _start routine, thread id hasn't been set\n");
756  }
757
758  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
759
760  // initialize signal mask for this thread
761  os::Solaris::hotspot_sigmask(thread);
762
763  thread->run();
764
765  // One less thread is executing
766  // When the VMThread gets here, the main thread may have already exited
767  // which frees the CodeHeap containing the Atomic::dec code
768  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
769    Atomic::dec(&os::Solaris::_os_thread_count);
770  }
771
772  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
773
774  // If a thread has not deleted itself ("delete this") as part of its
775  // termination sequence, we have to ensure thread-local-storage is
776  // cleared before we actually terminate. No threads should ever be
777  // deleted asynchronously with respect to their termination.
778  if (Thread::current_or_null_safe() != NULL) {
779    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
780    thread->clear_thread_current();
781  }
782
783  if (UseDetachedThreads) {
784    thr_exit(NULL);
785    ShouldNotReachHere();
786  }
787  return NULL;
788}
789
790static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
791  // Allocate the OSThread object
792  OSThread* osthread = new OSThread(NULL, NULL);
793  if (osthread == NULL) return NULL;
794
795  // Store info on the Solaris thread into the OSThread
796  osthread->set_thread_id(thread_id);
797  osthread->set_lwp_id(_lwp_self());
798  thread->_schedctl = (void *) schedctl_init();
799
800  if (UseNUMA) {
801    int lgrp_id = os::numa_get_group_id();
802    if (lgrp_id != -1) {
803      thread->set_lgrp_id(lgrp_id);
804    }
805  }
806
807  if (ThreadPriorityVerbose) {
808    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
809                  osthread->thread_id(), osthread->lwp_id());
810  }
811
812  // Initial thread state is INITIALIZED, not SUSPENDED
813  osthread->set_state(INITIALIZED);
814
815  return osthread;
816}
817
818void os::Solaris::hotspot_sigmask(Thread* thread) {
819  //Save caller's signal mask
820  sigset_t sigmask;
821  pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
822  OSThread *osthread = thread->osthread();
823  osthread->set_caller_sigmask(sigmask);
824
825  pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
826  if (!ReduceSignalUsage) {
827    if (thread->is_VM_thread()) {
828      // Only the VM thread handles BREAK_SIGNAL ...
829      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
830    } else {
831      // ... all other threads block BREAK_SIGNAL
832      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
833      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
834    }
835  }
836}
837
838bool os::create_attached_thread(JavaThread* thread) {
839#ifdef ASSERT
840  thread->verify_not_published();
841#endif
842  OSThread* osthread = create_os_thread(thread, thr_self());
843  if (osthread == NULL) {
844    return false;
845  }
846
847  // Initial thread state is RUNNABLE
848  osthread->set_state(RUNNABLE);
849  thread->set_osthread(osthread);
850
851  // initialize signal mask for this thread
852  // and save the caller's signal mask
853  os::Solaris::hotspot_sigmask(thread);
854
855  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
856    os::current_thread_id());
857
858  return true;
859}
860
861bool os::create_main_thread(JavaThread* thread) {
862#ifdef ASSERT
863  thread->verify_not_published();
864#endif
865  if (_starting_thread == NULL) {
866    _starting_thread = create_os_thread(thread, main_thread);
867    if (_starting_thread == NULL) {
868      return false;
869    }
870  }
871
872  // The primodial thread is runnable from the start
873  _starting_thread->set_state(RUNNABLE);
874
875  thread->set_osthread(_starting_thread);
876
877  // initialize signal mask for this thread
878  // and save the caller's signal mask
879  os::Solaris::hotspot_sigmask(thread);
880
881  return true;
882}
883
884// Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
885static char* describe_thr_create_attributes(char* buf, size_t buflen,
886                                            size_t stacksize, long flags) {
887  stringStream ss(buf, buflen);
888  ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
889  ss.print("flags: ");
890  #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
891  #define ALL(X) \
892    X(THR_SUSPENDED) \
893    X(THR_DETACHED) \
894    X(THR_BOUND) \
895    X(THR_NEW_LWP) \
896    X(THR_DAEMON)
897  ALL(PRINT_FLAG)
898  #undef ALL
899  #undef PRINT_FLAG
900  return buf;
901}
902
903// return default stack size for thr_type
904size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
905  // default stack size when not specified by caller is 1M (2M for LP64)
906  size_t s = (BytesPerWord >> 2) * K * K;
907  return s;
908}
909
910bool os::create_thread(Thread* thread, ThreadType thr_type,
911                       size_t req_stack_size) {
912  // Allocate the OSThread object
913  OSThread* osthread = new OSThread(NULL, NULL);
914  if (osthread == NULL) {
915    return false;
916  }
917
918  if (ThreadPriorityVerbose) {
919    char *thrtyp;
920    switch (thr_type) {
921    case vm_thread:
922      thrtyp = (char *)"vm";
923      break;
924    case cgc_thread:
925      thrtyp = (char *)"cgc";
926      break;
927    case pgc_thread:
928      thrtyp = (char *)"pgc";
929      break;
930    case java_thread:
931      thrtyp = (char *)"java";
932      break;
933    case compiler_thread:
934      thrtyp = (char *)"compiler";
935      break;
936    case watcher_thread:
937      thrtyp = (char *)"watcher";
938      break;
939    default:
940      thrtyp = (char *)"unknown";
941      break;
942    }
943    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
944  }
945
946  // calculate stack size if it's not specified by caller
947  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
948
949  // Initial state is ALLOCATED but not INITIALIZED
950  osthread->set_state(ALLOCATED);
951
952  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
953    // We got lots of threads. Check if we still have some address space left.
954    // Need to be at least 5Mb of unreserved address space. We do check by
955    // trying to reserve some.
956    const size_t VirtualMemoryBangSize = 20*K*K;
957    char* mem = os::reserve_memory(VirtualMemoryBangSize);
958    if (mem == NULL) {
959      delete osthread;
960      return false;
961    } else {
962      // Release the memory again
963      os::release_memory(mem, VirtualMemoryBangSize);
964    }
965  }
966
967  // Setup osthread because the child thread may need it.
968  thread->set_osthread(osthread);
969
970  // Create the Solaris thread
971  thread_t tid = 0;
972  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
973  int      status;
974
975  // Mark that we don't have an lwp or thread id yet.
976  // In case we attempt to set the priority before the thread starts.
977  osthread->set_lwp_id(-1);
978  osthread->set_thread_id(-1);
979
980  status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
981
982  char buf[64];
983  if (status == 0) {
984    log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
985      (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
986  } else {
987    log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
988      os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
989  }
990
991  if (status != 0) {
992    thread->set_osthread(NULL);
993    // Need to clean up stuff we've allocated so far
994    delete osthread;
995    return false;
996  }
997
998  Atomic::inc(&os::Solaris::_os_thread_count);
999
1000  // Store info on the Solaris thread into the OSThread
1001  osthread->set_thread_id(tid);
1002
1003  // Remember that we created this thread so we can set priority on it
1004  osthread->set_vm_created();
1005
1006  // Most thread types will set an explicit priority before starting the thread,
1007  // but for those that don't we need a valid value to read back in thread_native_entry.
1008  osthread->set_native_priority(NormPriority);
1009
1010  // Initial thread state is INITIALIZED, not SUSPENDED
1011  osthread->set_state(INITIALIZED);
1012
1013  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1014  return true;
1015}
1016
1017debug_only(static bool signal_sets_initialized = false);
1018static sigset_t unblocked_sigs, vm_sigs;
1019
1020bool os::Solaris::is_sig_ignored(int sig) {
1021  struct sigaction oact;
1022  sigaction(sig, (struct sigaction*)NULL, &oact);
1023  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1024                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1025  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1026    return true;
1027  } else {
1028    return false;
1029  }
1030}
1031
1032void os::Solaris::signal_sets_init() {
1033  // Should also have an assertion stating we are still single-threaded.
1034  assert(!signal_sets_initialized, "Already initialized");
1035  // Fill in signals that are necessarily unblocked for all threads in
1036  // the VM. Currently, we unblock the following signals:
1037  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1038  //                         by -Xrs (=ReduceSignalUsage));
1039  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1040  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1041  // the dispositions or masks wrt these signals.
1042  // Programs embedding the VM that want to use the above signals for their
1043  // own purposes must, at this time, use the "-Xrs" option to prevent
1044  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1045  // (See bug 4345157, and other related bugs).
1046  // In reality, though, unblocking these signals is really a nop, since
1047  // these signals are not blocked by default.
1048  sigemptyset(&unblocked_sigs);
1049  sigaddset(&unblocked_sigs, SIGILL);
1050  sigaddset(&unblocked_sigs, SIGSEGV);
1051  sigaddset(&unblocked_sigs, SIGBUS);
1052  sigaddset(&unblocked_sigs, SIGFPE);
1053  sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
1054
1055  if (!ReduceSignalUsage) {
1056    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1057      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1058    }
1059    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1060      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1061    }
1062    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1063      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1064    }
1065  }
1066  // Fill in signals that are blocked by all but the VM thread.
1067  sigemptyset(&vm_sigs);
1068  if (!ReduceSignalUsage) {
1069    sigaddset(&vm_sigs, BREAK_SIGNAL);
1070  }
1071  debug_only(signal_sets_initialized = true);
1072
1073  // For diagnostics only used in run_periodic_checks
1074  sigemptyset(&check_signal_done);
1075}
1076
1077// These are signals that are unblocked while a thread is running Java.
1078// (For some reason, they get blocked by default.)
1079sigset_t* os::Solaris::unblocked_signals() {
1080  assert(signal_sets_initialized, "Not initialized");
1081  return &unblocked_sigs;
1082}
1083
1084// These are the signals that are blocked while a (non-VM) thread is
1085// running Java. Only the VM thread handles these signals.
1086sigset_t* os::Solaris::vm_signals() {
1087  assert(signal_sets_initialized, "Not initialized");
1088  return &vm_sigs;
1089}
1090
1091void _handle_uncaught_cxx_exception() {
1092  VMError::report_and_die("An uncaught C++ exception");
1093}
1094
1095
1096// First crack at OS-specific initialization, from inside the new thread.
1097void os::initialize_thread(Thread* thr) {
1098  int r = thr_main();
1099  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1100  if (r) {
1101    JavaThread* jt = (JavaThread *)thr;
1102    assert(jt != NULL, "Sanity check");
1103    size_t stack_size;
1104    address base = jt->stack_base();
1105    if (Arguments::created_by_java_launcher()) {
1106      // Use 2MB to allow for Solaris 7 64 bit mode.
1107      stack_size = JavaThread::stack_size_at_create() == 0
1108        ? 2048*K : JavaThread::stack_size_at_create();
1109
1110      // There are rare cases when we may have already used more than
1111      // the basic stack size allotment before this method is invoked.
1112      // Attempt to allow for a normally sized java_stack.
1113      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1114      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1115    } else {
1116      // 6269555: If we were not created by a Java launcher, i.e. if we are
1117      // running embedded in a native application, treat the primordial thread
1118      // as much like a native attached thread as possible.  This means using
1119      // the current stack size from thr_stksegment(), unless it is too large
1120      // to reliably setup guard pages.  A reasonable max size is 8MB.
1121      size_t current_size = current_stack_size();
1122      // This should never happen, but just in case....
1123      if (current_size == 0) current_size = 2 * K * K;
1124      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1125    }
1126    address bottom = align_up(base - stack_size, os::vm_page_size());;
1127    stack_size = (size_t)(base - bottom);
1128
1129    assert(stack_size > 0, "Stack size calculation problem");
1130
1131    if (stack_size > jt->stack_size()) {
1132#ifndef PRODUCT
1133      struct rlimit limits;
1134      getrlimit(RLIMIT_STACK, &limits);
1135      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1136      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1137#endif
1138      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1139                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1140                    "See limit(1) to increase the stack size limit.",
1141                    stack_size / K, jt->stack_size() / K);
1142      vm_exit(1);
1143    }
1144    assert(jt->stack_size() >= stack_size,
1145           "Attempt to map more stack than was allocated");
1146    jt->set_stack_size(stack_size);
1147  }
1148
1149  // With the T2 libthread (T1 is no longer supported) threads are always bound
1150  // and we use stackbanging in all cases.
1151
1152  os::Solaris::init_thread_fpu_state();
1153  std::set_terminate(_handle_uncaught_cxx_exception);
1154}
1155
1156
1157
1158// Free Solaris resources related to the OSThread
1159void os::free_thread(OSThread* osthread) {
1160  assert(osthread != NULL, "os::free_thread but osthread not set");
1161
1162  // We are told to free resources of the argument thread,
1163  // but we can only really operate on the current thread.
1164  assert(Thread::current()->osthread() == osthread,
1165         "os::free_thread but not current thread");
1166
1167  // Restore caller's signal mask
1168  sigset_t sigmask = osthread->caller_sigmask();
1169  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1170
1171  delete osthread;
1172}
1173
1174void os::pd_start_thread(Thread* thread) {
1175  int status = thr_continue(thread->osthread()->thread_id());
1176  assert_status(status == 0, status, "thr_continue failed");
1177}
1178
1179
1180intx os::current_thread_id() {
1181  return (intx)thr_self();
1182}
1183
1184static pid_t _initial_pid = 0;
1185
1186int os::current_process_id() {
1187  return (int)(_initial_pid ? _initial_pid : getpid());
1188}
1189
1190// gethrtime() should be monotonic according to the documentation,
1191// but some virtualized platforms are known to break this guarantee.
1192// getTimeNanos() must be guaranteed not to move backwards, so we
1193// are forced to add a check here.
1194inline hrtime_t getTimeNanos() {
1195  const hrtime_t now = gethrtime();
1196  const hrtime_t prev = max_hrtime;
1197  if (now <= prev) {
1198    return prev;   // same or retrograde time;
1199  }
1200  const hrtime_t obsv = Atomic::cmpxchg(now, &max_hrtime, prev);
1201  assert(obsv >= prev, "invariant");   // Monotonicity
1202  // If the CAS succeeded then we're done and return "now".
1203  // If the CAS failed and the observed value "obsv" is >= now then
1204  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1205  // some other thread raced this thread and installed a new value, in which case
1206  // we could either (a) retry the entire operation, (b) retry trying to install now
1207  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1208  // we might discard a higher "now" value in deference to a slightly lower but freshly
1209  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1210  // to (a) or (b) -- and greatly reduces coherence traffic.
1211  // We might also condition (c) on the magnitude of the delta between obsv and now.
1212  // Avoiding excessive CAS operations to hot RW locations is critical.
1213  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1214  return (prev == obsv) ? now : obsv;
1215}
1216
1217// Time since start-up in seconds to a fine granularity.
1218// Used by VMSelfDestructTimer and the MemProfiler.
1219double os::elapsedTime() {
1220  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1221}
1222
1223jlong os::elapsed_counter() {
1224  return (jlong)(getTimeNanos() - first_hrtime);
1225}
1226
1227jlong os::elapsed_frequency() {
1228  return hrtime_hz;
1229}
1230
1231// Return the real, user, and system times in seconds from an
1232// arbitrary fixed point in the past.
1233bool os::getTimesSecs(double* process_real_time,
1234                      double* process_user_time,
1235                      double* process_system_time) {
1236  struct tms ticks;
1237  clock_t real_ticks = times(&ticks);
1238
1239  if (real_ticks == (clock_t) (-1)) {
1240    return false;
1241  } else {
1242    double ticks_per_second = (double) clock_tics_per_sec;
1243    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1244    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1245    // For consistency return the real time from getTimeNanos()
1246    // converted to seconds.
1247    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1248
1249    return true;
1250  }
1251}
1252
1253bool os::supports_vtime() { return true; }
1254bool os::enable_vtime() { return false; }
1255bool os::vtime_enabled() { return false; }
1256
1257double os::elapsedVTime() {
1258  return (double)gethrvtime() / (double)hrtime_hz;
1259}
1260
1261// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1262jlong os::javaTimeMillis() {
1263  timeval t;
1264  if (gettimeofday(&t, NULL) == -1) {
1265    fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1266  }
1267  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1268}
1269
1270// Must return seconds+nanos since Jan 1 1970. This must use the same
1271// time source as javaTimeMillis and can't use get_nsec_fromepoch as
1272// we need better than 1ms accuracy
1273void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1274  timeval t;
1275  if (gettimeofday(&t, NULL) == -1) {
1276    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1277  }
1278  seconds = jlong(t.tv_sec);
1279  nanos = jlong(t.tv_usec) * 1000;
1280}
1281
1282
1283jlong os::javaTimeNanos() {
1284  return (jlong)getTimeNanos();
1285}
1286
1287void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1288  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1289  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1290  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1291  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1292}
1293
1294char * os::local_time_string(char *buf, size_t buflen) {
1295  struct tm t;
1296  time_t long_time;
1297  time(&long_time);
1298  localtime_r(&long_time, &t);
1299  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1300               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1301               t.tm_hour, t.tm_min, t.tm_sec);
1302  return buf;
1303}
1304
1305// Note: os::shutdown() might be called very early during initialization, or
1306// called from signal handler. Before adding something to os::shutdown(), make
1307// sure it is async-safe and can handle partially initialized VM.
1308void os::shutdown() {
1309
1310  // allow PerfMemory to attempt cleanup of any persistent resources
1311  perfMemory_exit();
1312
1313  // needs to remove object in file system
1314  AttachListener::abort();
1315
1316  // flush buffered output, finish log files
1317  ostream_abort();
1318
1319  // Check for abort hook
1320  abort_hook_t abort_hook = Arguments::abort_hook();
1321  if (abort_hook != NULL) {
1322    abort_hook();
1323  }
1324}
1325
1326// Note: os::abort() might be called very early during initialization, or
1327// called from signal handler. Before adding something to os::abort(), make
1328// sure it is async-safe and can handle partially initialized VM.
1329void os::abort(bool dump_core, void* siginfo, const void* context) {
1330  os::shutdown();
1331  if (dump_core) {
1332#ifndef PRODUCT
1333    fdStream out(defaultStream::output_fd());
1334    out.print_raw("Current thread is ");
1335    char buf[16];
1336    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1337    out.print_raw_cr(buf);
1338    out.print_raw_cr("Dumping core ...");
1339#endif
1340    ::abort(); // dump core (for debugging)
1341  }
1342
1343  ::exit(1);
1344}
1345
1346// Die immediately, no exit hook, no abort hook, no cleanup.
1347void os::die() {
1348  ::abort(); // dump core (for debugging)
1349}
1350
1351// DLL functions
1352
1353const char* os::dll_file_extension() { return ".so"; }
1354
1355// This must be hard coded because it's the system's temporary
1356// directory not the java application's temp directory, ala java.io.tmpdir.
1357const char* os::get_temp_directory() { return "/tmp"; }
1358
1359// check if addr is inside libjvm.so
1360bool os::address_is_in_vm(address addr) {
1361  static address libjvm_base_addr;
1362  Dl_info dlinfo;
1363
1364  if (libjvm_base_addr == NULL) {
1365    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1366      libjvm_base_addr = (address)dlinfo.dli_fbase;
1367    }
1368    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1369  }
1370
1371  if (dladdr((void *)addr, &dlinfo) != 0) {
1372    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1373  }
1374
1375  return false;
1376}
1377
1378typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1379static dladdr1_func_type dladdr1_func = NULL;
1380
1381bool os::dll_address_to_function_name(address addr, char *buf,
1382                                      int buflen, int * offset,
1383                                      bool demangle) {
1384  // buf is not optional, but offset is optional
1385  assert(buf != NULL, "sanity check");
1386
1387  Dl_info dlinfo;
1388
1389  // dladdr1_func was initialized in os::init()
1390  if (dladdr1_func != NULL) {
1391    // yes, we have dladdr1
1392
1393    // Support for dladdr1 is checked at runtime; it may be
1394    // available even if the vm is built on a machine that does
1395    // not have dladdr1 support.  Make sure there is a value for
1396    // RTLD_DL_SYMENT.
1397#ifndef RTLD_DL_SYMENT
1398  #define RTLD_DL_SYMENT 1
1399#endif
1400#ifdef _LP64
1401    Elf64_Sym * info;
1402#else
1403    Elf32_Sym * info;
1404#endif
1405    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1406                     RTLD_DL_SYMENT) != 0) {
1407      // see if we have a matching symbol that covers our address
1408      if (dlinfo.dli_saddr != NULL &&
1409          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1410        if (dlinfo.dli_sname != NULL) {
1411          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1412            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1413          }
1414          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1415          return true;
1416        }
1417      }
1418      // no matching symbol so try for just file info
1419      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1420        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1421                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1422          return true;
1423        }
1424      }
1425    }
1426    buf[0] = '\0';
1427    if (offset != NULL) *offset  = -1;
1428    return false;
1429  }
1430
1431  // no, only dladdr is available
1432  if (dladdr((void *)addr, &dlinfo) != 0) {
1433    // see if we have a matching symbol
1434    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1435      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1436        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1437      }
1438      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1439      return true;
1440    }
1441    // no matching symbol so try for just file info
1442    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1443      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1444                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1445        return true;
1446      }
1447    }
1448  }
1449  buf[0] = '\0';
1450  if (offset != NULL) *offset  = -1;
1451  return false;
1452}
1453
1454bool os::dll_address_to_library_name(address addr, char* buf,
1455                                     int buflen, int* offset) {
1456  // buf is not optional, but offset is optional
1457  assert(buf != NULL, "sanity check");
1458
1459  Dl_info dlinfo;
1460
1461  if (dladdr((void*)addr, &dlinfo) != 0) {
1462    if (dlinfo.dli_fname != NULL) {
1463      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1464    }
1465    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1466      *offset = addr - (address)dlinfo.dli_fbase;
1467    }
1468    return true;
1469  }
1470
1471  buf[0] = '\0';
1472  if (offset) *offset = -1;
1473  return false;
1474}
1475
1476int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1477  Dl_info dli;
1478  // Sanity check?
1479  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1480      dli.dli_fname == NULL) {
1481    return 1;
1482  }
1483
1484  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1485  if (handle == NULL) {
1486    return 1;
1487  }
1488
1489  Link_map *map;
1490  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1491  if (map == NULL) {
1492    dlclose(handle);
1493    return 1;
1494  }
1495
1496  while (map->l_prev != NULL) {
1497    map = map->l_prev;
1498  }
1499
1500  while (map != NULL) {
1501    // Iterate through all map entries and call callback with fields of interest
1502    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1503      dlclose(handle);
1504      return 1;
1505    }
1506    map = map->l_next;
1507  }
1508
1509  dlclose(handle);
1510  return 0;
1511}
1512
1513int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1514  outputStream * out = (outputStream *) param;
1515  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1516  return 0;
1517}
1518
1519void os::print_dll_info(outputStream * st) {
1520  st->print_cr("Dynamic libraries:"); st->flush();
1521  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1522    st->print_cr("Error: Cannot print dynamic libraries.");
1523  }
1524}
1525
1526// Loads .dll/.so and
1527// in case of error it checks if .dll/.so was built for the
1528// same architecture as Hotspot is running on
1529
1530void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1531  void * result= ::dlopen(filename, RTLD_LAZY);
1532  if (result != NULL) {
1533    // Successful loading
1534    return result;
1535  }
1536
1537  Elf32_Ehdr elf_head;
1538
1539  // Read system error message into ebuf
1540  // It may or may not be overwritten below
1541  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1542  ebuf[ebuflen-1]='\0';
1543  int diag_msg_max_length=ebuflen-strlen(ebuf);
1544  char* diag_msg_buf=ebuf+strlen(ebuf);
1545
1546  if (diag_msg_max_length==0) {
1547    // No more space in ebuf for additional diagnostics message
1548    return NULL;
1549  }
1550
1551
1552  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1553
1554  if (file_descriptor < 0) {
1555    // Can't open library, report dlerror() message
1556    return NULL;
1557  }
1558
1559  bool failed_to_read_elf_head=
1560    (sizeof(elf_head)!=
1561     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1562
1563  ::close(file_descriptor);
1564  if (failed_to_read_elf_head) {
1565    // file i/o error - report dlerror() msg
1566    return NULL;
1567  }
1568
1569  typedef struct {
1570    Elf32_Half  code;         // Actual value as defined in elf.h
1571    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1572    char        elf_class;    // 32 or 64 bit
1573    char        endianess;    // MSB or LSB
1574    char*       name;         // String representation
1575  } arch_t;
1576
1577  static const arch_t arch_array[]={
1578    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1579    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1580    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1581    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1582    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1583    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1584    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1585    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1586    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1587    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1588  };
1589
1590#if  (defined IA32)
1591  static  Elf32_Half running_arch_code=EM_386;
1592#elif   (defined AMD64)
1593  static  Elf32_Half running_arch_code=EM_X86_64;
1594#elif  (defined IA64)
1595  static  Elf32_Half running_arch_code=EM_IA_64;
1596#elif  (defined __sparc) && (defined _LP64)
1597  static  Elf32_Half running_arch_code=EM_SPARCV9;
1598#elif  (defined __sparc) && (!defined _LP64)
1599  static  Elf32_Half running_arch_code=EM_SPARC;
1600#elif  (defined __powerpc64__)
1601  static  Elf32_Half running_arch_code=EM_PPC64;
1602#elif  (defined __powerpc__)
1603  static  Elf32_Half running_arch_code=EM_PPC;
1604#elif (defined ARM)
1605  static  Elf32_Half running_arch_code=EM_ARM;
1606#else
1607  #error Method os::dll_load requires that one of following is defined:\
1608       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1609#endif
1610
1611  // Identify compatability class for VM's architecture and library's architecture
1612  // Obtain string descriptions for architectures
1613
1614  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1615  int running_arch_index=-1;
1616
1617  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1618    if (running_arch_code == arch_array[i].code) {
1619      running_arch_index    = i;
1620    }
1621    if (lib_arch.code == arch_array[i].code) {
1622      lib_arch.compat_class = arch_array[i].compat_class;
1623      lib_arch.name         = arch_array[i].name;
1624    }
1625  }
1626
1627  assert(running_arch_index != -1,
1628         "Didn't find running architecture code (running_arch_code) in arch_array");
1629  if (running_arch_index == -1) {
1630    // Even though running architecture detection failed
1631    // we may still continue with reporting dlerror() message
1632    return NULL;
1633  }
1634
1635  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1636    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1637    return NULL;
1638  }
1639
1640  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1641    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1642    return NULL;
1643  }
1644
1645  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1646    if (lib_arch.name!=NULL) {
1647      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1648                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1649                 lib_arch.name, arch_array[running_arch_index].name);
1650    } else {
1651      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1652                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1653                 lib_arch.code,
1654                 arch_array[running_arch_index].name);
1655    }
1656  }
1657
1658  return NULL;
1659}
1660
1661void* os::dll_lookup(void* handle, const char* name) {
1662  return dlsym(handle, name);
1663}
1664
1665void* os::get_default_process_handle() {
1666  return (void*)::dlopen(NULL, RTLD_LAZY);
1667}
1668
1669int os::stat(const char *path, struct stat *sbuf) {
1670  char pathbuf[MAX_PATH];
1671  if (strlen(path) > MAX_PATH - 1) {
1672    errno = ENAMETOOLONG;
1673    return -1;
1674  }
1675  os::native_path(strcpy(pathbuf, path));
1676  return ::stat(pathbuf, sbuf);
1677}
1678
1679static inline time_t get_mtime(const char* filename) {
1680  struct stat st;
1681  int ret = os::stat(filename, &st);
1682  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1683  return st.st_mtime;
1684}
1685
1686int os::compare_file_modified_times(const char* file1, const char* file2) {
1687  time_t t1 = get_mtime(file1);
1688  time_t t2 = get_mtime(file2);
1689  return t1 - t2;
1690}
1691
1692static bool _print_ascii_file(const char* filename, outputStream* st) {
1693  int fd = ::open(filename, O_RDONLY);
1694  if (fd == -1) {
1695    return false;
1696  }
1697
1698  char buf[32];
1699  int bytes;
1700  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1701    st->print_raw(buf, bytes);
1702  }
1703
1704  ::close(fd);
1705
1706  return true;
1707}
1708
1709void os::print_os_info_brief(outputStream* st) {
1710  os::Solaris::print_distro_info(st);
1711
1712  os::Posix::print_uname_info(st);
1713
1714  os::Solaris::print_libversion_info(st);
1715}
1716
1717void os::print_os_info(outputStream* st) {
1718  st->print("OS:");
1719
1720  os::Solaris::print_distro_info(st);
1721
1722  os::Posix::print_uname_info(st);
1723
1724  os::Solaris::print_libversion_info(st);
1725
1726  os::Posix::print_rlimit_info(st);
1727
1728  os::Posix::print_load_average(st);
1729}
1730
1731void os::Solaris::print_distro_info(outputStream* st) {
1732  if (!_print_ascii_file("/etc/release", st)) {
1733    st->print("Solaris");
1734  }
1735  st->cr();
1736}
1737
1738void os::get_summary_os_info(char* buf, size_t buflen) {
1739  strncpy(buf, "Solaris", buflen);  // default to plain solaris
1740  FILE* fp = fopen("/etc/release", "r");
1741  if (fp != NULL) {
1742    char tmp[256];
1743    // Only get the first line and chop out everything but the os name.
1744    if (fgets(tmp, sizeof(tmp), fp)) {
1745      char* ptr = tmp;
1746      // skip past whitespace characters
1747      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1748      if (*ptr != '\0') {
1749        char* nl = strchr(ptr, '\n');
1750        if (nl != NULL) *nl = '\0';
1751        strncpy(buf, ptr, buflen);
1752      }
1753    }
1754    fclose(fp);
1755  }
1756}
1757
1758void os::Solaris::print_libversion_info(outputStream* st) {
1759  st->print("  (T2 libthread)");
1760  st->cr();
1761}
1762
1763static bool check_addr0(outputStream* st) {
1764  jboolean status = false;
1765  const int read_chunk = 200;
1766  int ret = 0;
1767  int nmap = 0;
1768  int fd = ::open("/proc/self/map",O_RDONLY);
1769  if (fd >= 0) {
1770    prmap_t *p = NULL;
1771    char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1772    if (NULL == mbuff) {
1773      ::close(fd);
1774      return status;
1775    }
1776    while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1777      //check if read() has not read partial data
1778      if( 0 != ret % sizeof(prmap_t)){
1779        break;
1780      }
1781      nmap = ret / sizeof(prmap_t);
1782      p = (prmap_t *)mbuff;
1783      for(int i = 0; i < nmap; i++){
1784        if (p->pr_vaddr == 0x0) {
1785          st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1786          st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1787          st->print("Access: ");
1788          st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1789          st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1790          st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1791          st->cr();
1792          status = true;
1793        }
1794        p++;
1795      }
1796    }
1797    free(mbuff);
1798    ::close(fd);
1799  }
1800  return status;
1801}
1802
1803void os::get_summary_cpu_info(char* buf, size_t buflen) {
1804  // Get MHz with system call. We don't seem to already have this.
1805  processor_info_t stats;
1806  processorid_t id = getcpuid();
1807  int clock = 0;
1808  if (processor_info(id, &stats) != -1) {
1809    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1810  }
1811#ifdef AMD64
1812  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1813#else
1814  // must be sparc
1815  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1816#endif
1817}
1818
1819void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1820  // Nothing to do for now.
1821}
1822
1823void os::print_memory_info(outputStream* st) {
1824  st->print("Memory:");
1825  st->print(" %dk page", os::vm_page_size()>>10);
1826  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1827  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1828  st->cr();
1829  (void) check_addr0(st);
1830}
1831
1832// Moved from whole group, because we need them here for diagnostic
1833// prints.
1834static int Maxsignum = 0;
1835static int *ourSigFlags = NULL;
1836
1837int os::Solaris::get_our_sigflags(int sig) {
1838  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1839  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1840  return ourSigFlags[sig];
1841}
1842
1843void os::Solaris::set_our_sigflags(int sig, int flags) {
1844  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1845  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1846  ourSigFlags[sig] = flags;
1847}
1848
1849
1850static const char* get_signal_handler_name(address handler,
1851                                           char* buf, int buflen) {
1852  int offset;
1853  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1854  if (found) {
1855    // skip directory names
1856    const char *p1, *p2;
1857    p1 = buf;
1858    size_t len = strlen(os::file_separator());
1859    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1860    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1861  } else {
1862    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1863  }
1864  return buf;
1865}
1866
1867static void print_signal_handler(outputStream* st, int sig,
1868                                 char* buf, size_t buflen) {
1869  struct sigaction sa;
1870
1871  sigaction(sig, NULL, &sa);
1872
1873  st->print("%s: ", os::exception_name(sig, buf, buflen));
1874
1875  address handler = (sa.sa_flags & SA_SIGINFO)
1876                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1877                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
1878
1879  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1880    st->print("SIG_DFL");
1881  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1882    st->print("SIG_IGN");
1883  } else {
1884    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1885  }
1886
1887  st->print(", sa_mask[0]=");
1888  os::Posix::print_signal_set_short(st, &sa.sa_mask);
1889
1890  address rh = VMError::get_resetted_sighandler(sig);
1891  // May be, handler was resetted by VMError?
1892  if (rh != NULL) {
1893    handler = rh;
1894    sa.sa_flags = VMError::get_resetted_sigflags(sig);
1895  }
1896
1897  st->print(", sa_flags=");
1898  os::Posix::print_sa_flags(st, sa.sa_flags);
1899
1900  // Check: is it our handler?
1901  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1902    // It is our signal handler
1903    // check for flags
1904    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1905      st->print(
1906                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1907                os::Solaris::get_our_sigflags(sig));
1908    }
1909  }
1910  st->cr();
1911}
1912
1913void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1914  st->print_cr("Signal Handlers:");
1915  print_signal_handler(st, SIGSEGV, buf, buflen);
1916  print_signal_handler(st, SIGBUS , buf, buflen);
1917  print_signal_handler(st, SIGFPE , buf, buflen);
1918  print_signal_handler(st, SIGPIPE, buf, buflen);
1919  print_signal_handler(st, SIGXFSZ, buf, buflen);
1920  print_signal_handler(st, SIGILL , buf, buflen);
1921  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1922  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1923  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1924  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1925  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1926}
1927
1928static char saved_jvm_path[MAXPATHLEN] = { 0 };
1929
1930// Find the full path to the current module, libjvm.so
1931void os::jvm_path(char *buf, jint buflen) {
1932  // Error checking.
1933  if (buflen < MAXPATHLEN) {
1934    assert(false, "must use a large-enough buffer");
1935    buf[0] = '\0';
1936    return;
1937  }
1938  // Lazy resolve the path to current module.
1939  if (saved_jvm_path[0] != 0) {
1940    strcpy(buf, saved_jvm_path);
1941    return;
1942  }
1943
1944  Dl_info dlinfo;
1945  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1946  assert(ret != 0, "cannot locate libjvm");
1947  if (ret != 0 && dlinfo.dli_fname != NULL) {
1948    if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1949      return;
1950    }
1951  } else {
1952    buf[0] = '\0';
1953    return;
1954  }
1955
1956  if (Arguments::sun_java_launcher_is_altjvm()) {
1957    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1958    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
1959    // If "/jre/lib/" appears at the right place in the string, then
1960    // assume we are installed in a JDK and we're done.  Otherwise, check
1961    // for a JAVA_HOME environment variable and fix up the path so it
1962    // looks like libjvm.so is installed there (append a fake suffix
1963    // hotspot/libjvm.so).
1964    const char *p = buf + strlen(buf) - 1;
1965    for (int count = 0; p > buf && count < 5; ++count) {
1966      for (--p; p > buf && *p != '/'; --p)
1967        /* empty */ ;
1968    }
1969
1970    if (strncmp(p, "/jre/lib/", 9) != 0) {
1971      // Look for JAVA_HOME in the environment.
1972      char* java_home_var = ::getenv("JAVA_HOME");
1973      if (java_home_var != NULL && java_home_var[0] != 0) {
1974        char* jrelib_p;
1975        int   len;
1976
1977        // Check the current module name "libjvm.so".
1978        p = strrchr(buf, '/');
1979        assert(strstr(p, "/libjvm") == p, "invalid library name");
1980
1981        if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
1982          return;
1983        }
1984        // determine if this is a legacy image or modules image
1985        // modules image doesn't have "jre" subdirectory
1986        len = strlen(buf);
1987        assert(len < buflen, "Ran out of buffer space");
1988        jrelib_p = buf + len;
1989        snprintf(jrelib_p, buflen-len, "/jre/lib");
1990        if (0 != access(buf, F_OK)) {
1991          snprintf(jrelib_p, buflen-len, "/lib");
1992        }
1993
1994        if (0 == access(buf, F_OK)) {
1995          // Use current module name "libjvm.so"
1996          len = strlen(buf);
1997          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1998        } else {
1999          // Go back to path of .so
2000          if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
2001            return;
2002          }
2003        }
2004      }
2005    }
2006  }
2007
2008  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2009  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2010}
2011
2012
2013void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2014  // no prefix required, not even "_"
2015}
2016
2017
2018void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2019  // no suffix required
2020}
2021
2022// This method is a copy of JDK's sysGetLastErrorString
2023// from src/solaris/hpi/src/system_md.c
2024
2025size_t os::lasterror(char *buf, size_t len) {
2026  if (errno == 0)  return 0;
2027
2028  const char *s = os::strerror(errno);
2029  size_t n = ::strlen(s);
2030  if (n >= len) {
2031    n = len - 1;
2032  }
2033  ::strncpy(buf, s, n);
2034  buf[n] = '\0';
2035  return n;
2036}
2037
2038
2039// sun.misc.Signal
2040
2041extern "C" {
2042  static void UserHandler(int sig, void *siginfo, void *context) {
2043    // Ctrl-C is pressed during error reporting, likely because the error
2044    // handler fails to abort. Let VM die immediately.
2045    if (sig == SIGINT && VMError::is_error_reported()) {
2046      os::die();
2047    }
2048
2049    os::signal_notify(sig);
2050    // We do not need to reinstate the signal handler each time...
2051  }
2052}
2053
2054void* os::user_handler() {
2055  return CAST_FROM_FN_PTR(void*, UserHandler);
2056}
2057
2058struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2059  struct timespec ts;
2060  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2061
2062  return ts;
2063}
2064
2065extern "C" {
2066  typedef void (*sa_handler_t)(int);
2067  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2068}
2069
2070void* os::signal(int signal_number, void* handler) {
2071  struct sigaction sigAct, oldSigAct;
2072  sigfillset(&(sigAct.sa_mask));
2073  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2074  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2075
2076  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2077    // -1 means registration failed
2078    return (void *)-1;
2079  }
2080
2081  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2082}
2083
2084void os::signal_raise(int signal_number) {
2085  raise(signal_number);
2086}
2087
2088// The following code is moved from os.cpp for making this
2089// code platform specific, which it is by its very nature.
2090
2091// a counter for each possible signal value
2092static int Sigexit = 0;
2093static jint *pending_signals = NULL;
2094static int *preinstalled_sigs = NULL;
2095static struct sigaction *chainedsigactions = NULL;
2096static sema_t sig_sem;
2097typedef int (*version_getting_t)();
2098version_getting_t os::Solaris::get_libjsig_version = NULL;
2099
2100int os::sigexitnum_pd() {
2101  assert(Sigexit > 0, "signal memory not yet initialized");
2102  return Sigexit;
2103}
2104
2105void os::Solaris::init_signal_mem() {
2106  // Initialize signal structures
2107  Maxsignum = SIGRTMAX;
2108  Sigexit = Maxsignum+1;
2109  assert(Maxsignum >0, "Unable to obtain max signal number");
2110
2111  // pending_signals has one int per signal
2112  // The additional signal is for SIGEXIT - exit signal to signal_thread
2113  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2114  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2115
2116  if (UseSignalChaining) {
2117    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2118                                                   * (Maxsignum + 1), mtInternal);
2119    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2120    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2121    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2122  }
2123  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2124  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2125}
2126
2127void os::signal_init_pd() {
2128  int ret;
2129
2130  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2131  assert(ret == 0, "sema_init() failed");
2132}
2133
2134void os::signal_notify(int signal_number) {
2135  int ret;
2136
2137  Atomic::inc(&pending_signals[signal_number]);
2138  ret = ::sema_post(&sig_sem);
2139  assert(ret == 0, "sema_post() failed");
2140}
2141
2142static int check_pending_signals(bool wait_for_signal) {
2143  int ret;
2144  while (true) {
2145    for (int i = 0; i < Sigexit + 1; i++) {
2146      jint n = pending_signals[i];
2147      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2148        return i;
2149      }
2150    }
2151    if (!wait_for_signal) {
2152      return -1;
2153    }
2154    JavaThread *thread = JavaThread::current();
2155    ThreadBlockInVM tbivm(thread);
2156
2157    bool threadIsSuspended;
2158    do {
2159      thread->set_suspend_equivalent();
2160      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2161      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2162        ;
2163      assert(ret == 0, "sema_wait() failed");
2164
2165      // were we externally suspended while we were waiting?
2166      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2167      if (threadIsSuspended) {
2168        // The semaphore has been incremented, but while we were waiting
2169        // another thread suspended us. We don't want to continue running
2170        // while suspended because that would surprise the thread that
2171        // suspended us.
2172        ret = ::sema_post(&sig_sem);
2173        assert(ret == 0, "sema_post() failed");
2174
2175        thread->java_suspend_self();
2176      }
2177    } while (threadIsSuspended);
2178  }
2179}
2180
2181int os::signal_lookup() {
2182  return check_pending_signals(false);
2183}
2184
2185int os::signal_wait() {
2186  return check_pending_signals(true);
2187}
2188
2189////////////////////////////////////////////////////////////////////////////////
2190// Virtual Memory
2191
2192static int page_size = -1;
2193
2194// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2195// clear this var if support is not available.
2196static bool has_map_align = true;
2197
2198int os::vm_page_size() {
2199  assert(page_size != -1, "must call os::init");
2200  return page_size;
2201}
2202
2203// Solaris allocates memory by pages.
2204int os::vm_allocation_granularity() {
2205  assert(page_size != -1, "must call os::init");
2206  return page_size;
2207}
2208
2209static bool recoverable_mmap_error(int err) {
2210  // See if the error is one we can let the caller handle. This
2211  // list of errno values comes from the Solaris mmap(2) man page.
2212  switch (err) {
2213  case EBADF:
2214  case EINVAL:
2215  case ENOTSUP:
2216    // let the caller deal with these errors
2217    return true;
2218
2219  default:
2220    // Any remaining errors on this OS can cause our reserved mapping
2221    // to be lost. That can cause confusion where different data
2222    // structures think they have the same memory mapped. The worst
2223    // scenario is if both the VM and a library think they have the
2224    // same memory mapped.
2225    return false;
2226  }
2227}
2228
2229static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2230                                    int err) {
2231  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2232          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2233          os::strerror(err), err);
2234}
2235
2236static void warn_fail_commit_memory(char* addr, size_t bytes,
2237                                    size_t alignment_hint, bool exec,
2238                                    int err) {
2239  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2240          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2241          alignment_hint, exec, os::strerror(err), err);
2242}
2243
2244int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2245  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2246  size_t size = bytes;
2247  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2248  if (res != NULL) {
2249    if (UseNUMAInterleaving) {
2250      numa_make_global(addr, bytes);
2251    }
2252    return 0;
2253  }
2254
2255  int err = errno;  // save errno from mmap() call in mmap_chunk()
2256
2257  if (!recoverable_mmap_error(err)) {
2258    warn_fail_commit_memory(addr, bytes, exec, err);
2259    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2260  }
2261
2262  return err;
2263}
2264
2265bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2266  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2267}
2268
2269void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2270                                  const char* mesg) {
2271  assert(mesg != NULL, "mesg must be specified");
2272  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2273  if (err != 0) {
2274    // the caller wants all commit errors to exit with the specified mesg:
2275    warn_fail_commit_memory(addr, bytes, exec, err);
2276    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2277  }
2278}
2279
2280size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2281  assert(is_aligned(alignment, (size_t) vm_page_size()),
2282         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2283         alignment, (size_t) vm_page_size());
2284
2285  for (int i = 0; _page_sizes[i] != 0; i++) {
2286    if (is_aligned(alignment, _page_sizes[i])) {
2287      return _page_sizes[i];
2288    }
2289  }
2290
2291  return (size_t) vm_page_size();
2292}
2293
2294int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2295                                    size_t alignment_hint, bool exec) {
2296  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2297  if (err == 0 && UseLargePages && alignment_hint > 0) {
2298    assert(is_aligned(bytes, alignment_hint),
2299           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2300
2301    // The syscall memcntl requires an exact page size (see man memcntl for details).
2302    size_t page_size = page_size_for_alignment(alignment_hint);
2303    if (page_size > (size_t) vm_page_size()) {
2304      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2305    }
2306  }
2307  return err;
2308}
2309
2310bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2311                          bool exec) {
2312  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2313}
2314
2315void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2316                                  size_t alignment_hint, bool exec,
2317                                  const char* mesg) {
2318  assert(mesg != NULL, "mesg must be specified");
2319  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2320  if (err != 0) {
2321    // the caller wants all commit errors to exit with the specified mesg:
2322    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2323    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2324  }
2325}
2326
2327// Uncommit the pages in a specified region.
2328void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2329  if (madvise(addr, bytes, MADV_FREE) < 0) {
2330    debug_only(warning("MADV_FREE failed."));
2331    return;
2332  }
2333}
2334
2335bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2336  return os::commit_memory(addr, size, !ExecMem);
2337}
2338
2339bool os::remove_stack_guard_pages(char* addr, size_t size) {
2340  return os::uncommit_memory(addr, size);
2341}
2342
2343// Change the page size in a given range.
2344void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2345  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2346  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2347  if (UseLargePages) {
2348    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2349    if (page_size > (size_t) vm_page_size()) {
2350      Solaris::setup_large_pages(addr, bytes, page_size);
2351    }
2352  }
2353}
2354
2355// Tell the OS to make the range local to the first-touching LWP
2356void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2357  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2358  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2359    debug_only(warning("MADV_ACCESS_LWP failed."));
2360  }
2361}
2362
2363// Tell the OS that this range would be accessed from different LWPs.
2364void os::numa_make_global(char *addr, size_t bytes) {
2365  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2366  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2367    debug_only(warning("MADV_ACCESS_MANY failed."));
2368  }
2369}
2370
2371// Get the number of the locality groups.
2372size_t os::numa_get_groups_num() {
2373  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2374  return n != -1 ? n : 1;
2375}
2376
2377// Get a list of leaf locality groups. A leaf lgroup is group that
2378// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2379// board. An LWP is assigned to one of these groups upon creation.
2380size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2381  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2382    ids[0] = 0;
2383    return 1;
2384  }
2385  int result_size = 0, top = 1, bottom = 0, cur = 0;
2386  for (int k = 0; k < size; k++) {
2387    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2388                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2389    if (r == -1) {
2390      ids[0] = 0;
2391      return 1;
2392    }
2393    if (!r) {
2394      // That's a leaf node.
2395      assert(bottom <= cur, "Sanity check");
2396      // Check if the node has memory
2397      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2398                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2399        ids[bottom++] = ids[cur];
2400      }
2401    }
2402    top += r;
2403    cur++;
2404  }
2405  if (bottom == 0) {
2406    // Handle a situation, when the OS reports no memory available.
2407    // Assume UMA architecture.
2408    ids[0] = 0;
2409    return 1;
2410  }
2411  return bottom;
2412}
2413
2414// Detect the topology change. Typically happens during CPU plugging-unplugging.
2415bool os::numa_topology_changed() {
2416  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2417  if (is_stale != -1 && is_stale) {
2418    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2419    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2420    assert(c != 0, "Failure to initialize LGRP API");
2421    Solaris::set_lgrp_cookie(c);
2422    return true;
2423  }
2424  return false;
2425}
2426
2427// Get the group id of the current LWP.
2428int os::numa_get_group_id() {
2429  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2430  if (lgrp_id == -1) {
2431    return 0;
2432  }
2433  const int size = os::numa_get_groups_num();
2434  int *ids = (int*)alloca(size * sizeof(int));
2435
2436  // Get the ids of all lgroups with memory; r is the count.
2437  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2438                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2439  if (r <= 0) {
2440    return 0;
2441  }
2442  return ids[os::random() % r];
2443}
2444
2445// Request information about the page.
2446bool os::get_page_info(char *start, page_info* info) {
2447  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2448  uint64_t addr = (uintptr_t)start;
2449  uint64_t outdata[2];
2450  uint_t validity = 0;
2451
2452  if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2453    return false;
2454  }
2455
2456  info->size = 0;
2457  info->lgrp_id = -1;
2458
2459  if ((validity & 1) != 0) {
2460    if ((validity & 2) != 0) {
2461      info->lgrp_id = outdata[0];
2462    }
2463    if ((validity & 4) != 0) {
2464      info->size = outdata[1];
2465    }
2466    return true;
2467  }
2468  return false;
2469}
2470
2471// Scan the pages from start to end until a page different than
2472// the one described in the info parameter is encountered.
2473char *os::scan_pages(char *start, char* end, page_info* page_expected,
2474                     page_info* page_found) {
2475  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2476  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2477  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2478  uint_t validity[MAX_MEMINFO_CNT];
2479
2480  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2481  uint64_t p = (uint64_t)start;
2482  while (p < (uint64_t)end) {
2483    addrs[0] = p;
2484    size_t addrs_count = 1;
2485    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2486      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2487      addrs_count++;
2488    }
2489
2490    if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2491      return NULL;
2492    }
2493
2494    size_t i = 0;
2495    for (; i < addrs_count; i++) {
2496      if ((validity[i] & 1) != 0) {
2497        if ((validity[i] & 4) != 0) {
2498          if (outdata[types * i + 1] != page_expected->size) {
2499            break;
2500          }
2501        } else if (page_expected->size != 0) {
2502          break;
2503        }
2504
2505        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2506          if (outdata[types * i] != page_expected->lgrp_id) {
2507            break;
2508          }
2509        }
2510      } else {
2511        return NULL;
2512      }
2513    }
2514
2515    if (i < addrs_count) {
2516      if ((validity[i] & 2) != 0) {
2517        page_found->lgrp_id = outdata[types * i];
2518      } else {
2519        page_found->lgrp_id = -1;
2520      }
2521      if ((validity[i] & 4) != 0) {
2522        page_found->size = outdata[types * i + 1];
2523      } else {
2524        page_found->size = 0;
2525      }
2526      return (char*)addrs[i];
2527    }
2528
2529    p = addrs[addrs_count - 1] + page_size;
2530  }
2531  return end;
2532}
2533
2534bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2535  size_t size = bytes;
2536  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2537  // uncommitted page. Otherwise, the read/write might succeed if we
2538  // have enough swap space to back the physical page.
2539  return
2540    NULL != Solaris::mmap_chunk(addr, size,
2541                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2542                                PROT_NONE);
2543}
2544
2545char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2546  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2547
2548  if (b == MAP_FAILED) {
2549    return NULL;
2550  }
2551  return b;
2552}
2553
2554char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2555                             size_t alignment_hint, bool fixed) {
2556  char* addr = requested_addr;
2557  int flags = MAP_PRIVATE | MAP_NORESERVE;
2558
2559  assert(!(fixed && (alignment_hint > 0)),
2560         "alignment hint meaningless with fixed mmap");
2561
2562  if (fixed) {
2563    flags |= MAP_FIXED;
2564  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2565    flags |= MAP_ALIGN;
2566    addr = (char*) alignment_hint;
2567  }
2568
2569  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2570  // uncommitted page. Otherwise, the read/write might succeed if we
2571  // have enough swap space to back the physical page.
2572  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2573}
2574
2575char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2576                            size_t alignment_hint) {
2577  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2578                                  (requested_addr != NULL));
2579
2580  guarantee(requested_addr == NULL || requested_addr == addr,
2581            "OS failed to return requested mmap address.");
2582  return addr;
2583}
2584
2585// Reserve memory at an arbitrary address, only if that area is
2586// available (and not reserved for something else).
2587
2588char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2589  const int max_tries = 10;
2590  char* base[max_tries];
2591  size_t size[max_tries];
2592
2593  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2594  // is dependent on the requested size and the MMU.  Our initial gap
2595  // value here is just a guess and will be corrected later.
2596  bool had_top_overlap = false;
2597  bool have_adjusted_gap = false;
2598  size_t gap = 0x400000;
2599
2600  // Assert only that the size is a multiple of the page size, since
2601  // that's all that mmap requires, and since that's all we really know
2602  // about at this low abstraction level.  If we need higher alignment,
2603  // we can either pass an alignment to this method or verify alignment
2604  // in one of the methods further up the call chain.  See bug 5044738.
2605  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2606
2607  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2608  // Give it a try, if the kernel honors the hint we can return immediately.
2609  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2610
2611  volatile int err = errno;
2612  if (addr == requested_addr) {
2613    return addr;
2614  } else if (addr != NULL) {
2615    pd_unmap_memory(addr, bytes);
2616  }
2617
2618  if (log_is_enabled(Warning, os)) {
2619    char buf[256];
2620    buf[0] = '\0';
2621    if (addr == NULL) {
2622      jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2623    }
2624    log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2625            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2626            "%s", bytes, requested_addr, addr, buf);
2627  }
2628
2629  // Address hint method didn't work.  Fall back to the old method.
2630  // In theory, once SNV becomes our oldest supported platform, this
2631  // code will no longer be needed.
2632  //
2633  // Repeatedly allocate blocks until the block is allocated at the
2634  // right spot. Give up after max_tries.
2635  int i;
2636  for (i = 0; i < max_tries; ++i) {
2637    base[i] = reserve_memory(bytes);
2638
2639    if (base[i] != NULL) {
2640      // Is this the block we wanted?
2641      if (base[i] == requested_addr) {
2642        size[i] = bytes;
2643        break;
2644      }
2645
2646      // check that the gap value is right
2647      if (had_top_overlap && !have_adjusted_gap) {
2648        size_t actual_gap = base[i-1] - base[i] - bytes;
2649        if (gap != actual_gap) {
2650          // adjust the gap value and retry the last 2 allocations
2651          assert(i > 0, "gap adjustment code problem");
2652          have_adjusted_gap = true;  // adjust the gap only once, just in case
2653          gap = actual_gap;
2654          log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2655          unmap_memory(base[i], bytes);
2656          unmap_memory(base[i-1], size[i-1]);
2657          i-=2;
2658          continue;
2659        }
2660      }
2661
2662      // Does this overlap the block we wanted? Give back the overlapped
2663      // parts and try again.
2664      //
2665      // There is still a bug in this code: if top_overlap == bytes,
2666      // the overlap is offset from requested region by the value of gap.
2667      // In this case giving back the overlapped part will not work,
2668      // because we'll give back the entire block at base[i] and
2669      // therefore the subsequent allocation will not generate a new gap.
2670      // This could be fixed with a new algorithm that used larger
2671      // or variable size chunks to find the requested region -
2672      // but such a change would introduce additional complications.
2673      // It's rare enough that the planets align for this bug,
2674      // so we'll just wait for a fix for 6204603/5003415 which
2675      // will provide a mmap flag to allow us to avoid this business.
2676
2677      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2678      if (top_overlap >= 0 && top_overlap < bytes) {
2679        had_top_overlap = true;
2680        unmap_memory(base[i], top_overlap);
2681        base[i] += top_overlap;
2682        size[i] = bytes - top_overlap;
2683      } else {
2684        size_t bottom_overlap = base[i] + bytes - requested_addr;
2685        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2686          if (bottom_overlap == 0) {
2687            log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2688          }
2689          unmap_memory(requested_addr, bottom_overlap);
2690          size[i] = bytes - bottom_overlap;
2691        } else {
2692          size[i] = bytes;
2693        }
2694      }
2695    }
2696  }
2697
2698  // Give back the unused reserved pieces.
2699
2700  for (int j = 0; j < i; ++j) {
2701    if (base[j] != NULL) {
2702      unmap_memory(base[j], size[j]);
2703    }
2704  }
2705
2706  return (i < max_tries) ? requested_addr : NULL;
2707}
2708
2709bool os::pd_release_memory(char* addr, size_t bytes) {
2710  size_t size = bytes;
2711  return munmap(addr, size) == 0;
2712}
2713
2714static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2715  assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2716         "addr must be page aligned");
2717  int retVal = mprotect(addr, bytes, prot);
2718  return retVal == 0;
2719}
2720
2721// Protect memory (Used to pass readonly pages through
2722// JNI GetArray<type>Elements with empty arrays.)
2723// Also, used for serialization page and for compressed oops null pointer
2724// checking.
2725bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2726                        bool is_committed) {
2727  unsigned int p = 0;
2728  switch (prot) {
2729  case MEM_PROT_NONE: p = PROT_NONE; break;
2730  case MEM_PROT_READ: p = PROT_READ; break;
2731  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2732  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2733  default:
2734    ShouldNotReachHere();
2735  }
2736  // is_committed is unused.
2737  return solaris_mprotect(addr, bytes, p);
2738}
2739
2740// guard_memory and unguard_memory only happens within stack guard pages.
2741// Since ISM pertains only to the heap, guard and unguard memory should not
2742/// happen with an ISM region.
2743bool os::guard_memory(char* addr, size_t bytes) {
2744  return solaris_mprotect(addr, bytes, PROT_NONE);
2745}
2746
2747bool os::unguard_memory(char* addr, size_t bytes) {
2748  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2749}
2750
2751// Large page support
2752static size_t _large_page_size = 0;
2753
2754// Insertion sort for small arrays (descending order).
2755static void insertion_sort_descending(size_t* array, int len) {
2756  for (int i = 0; i < len; i++) {
2757    size_t val = array[i];
2758    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2759      size_t tmp = array[key];
2760      array[key] = array[key - 1];
2761      array[key - 1] = tmp;
2762    }
2763  }
2764}
2765
2766bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2767  const unsigned int usable_count = VM_Version::page_size_count();
2768  if (usable_count == 1) {
2769    return false;
2770  }
2771
2772  // Find the right getpagesizes interface.  When solaris 11 is the minimum
2773  // build platform, getpagesizes() (without the '2') can be called directly.
2774  typedef int (*gps_t)(size_t[], int);
2775  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2776  if (gps_func == NULL) {
2777    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2778    if (gps_func == NULL) {
2779      if (warn) {
2780        warning("MPSS is not supported by the operating system.");
2781      }
2782      return false;
2783    }
2784  }
2785
2786  // Fill the array of page sizes.
2787  int n = (*gps_func)(_page_sizes, page_sizes_max);
2788  assert(n > 0, "Solaris bug?");
2789
2790  if (n == page_sizes_max) {
2791    // Add a sentinel value (necessary only if the array was completely filled
2792    // since it is static (zeroed at initialization)).
2793    _page_sizes[--n] = 0;
2794    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2795  }
2796  assert(_page_sizes[n] == 0, "missing sentinel");
2797  trace_page_sizes("available page sizes", _page_sizes, n);
2798
2799  if (n == 1) return false;     // Only one page size available.
2800
2801  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2802  // select up to usable_count elements.  First sort the array, find the first
2803  // acceptable value, then copy the usable sizes to the top of the array and
2804  // trim the rest.  Make sure to include the default page size :-).
2805  //
2806  // A better policy could get rid of the 4M limit by taking the sizes of the
2807  // important VM memory regions (java heap and possibly the code cache) into
2808  // account.
2809  insertion_sort_descending(_page_sizes, n);
2810  const size_t size_limit =
2811    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2812  int beg;
2813  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2814  const int end = MIN2((int)usable_count, n) - 1;
2815  for (int cur = 0; cur < end; ++cur, ++beg) {
2816    _page_sizes[cur] = _page_sizes[beg];
2817  }
2818  _page_sizes[end] = vm_page_size();
2819  _page_sizes[end + 1] = 0;
2820
2821  if (_page_sizes[end] > _page_sizes[end - 1]) {
2822    // Default page size is not the smallest; sort again.
2823    insertion_sort_descending(_page_sizes, end + 1);
2824  }
2825  *page_size = _page_sizes[0];
2826
2827  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2828  return true;
2829}
2830
2831void os::large_page_init() {
2832  if (UseLargePages) {
2833    // print a warning if any large page related flag is specified on command line
2834    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2835                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2836
2837    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2838  }
2839}
2840
2841bool os::Solaris::is_valid_page_size(size_t bytes) {
2842  for (int i = 0; _page_sizes[i] != 0; i++) {
2843    if (_page_sizes[i] == bytes) {
2844      return true;
2845    }
2846  }
2847  return false;
2848}
2849
2850bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2851  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2852  assert(is_aligned((void*) start, align),
2853         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2854  assert(is_aligned(bytes, align),
2855         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2856
2857  // Signal to OS that we want large pages for addresses
2858  // from addr, addr + bytes
2859  struct memcntl_mha mpss_struct;
2860  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2861  mpss_struct.mha_pagesize = align;
2862  mpss_struct.mha_flags = 0;
2863  // Upon successful completion, memcntl() returns 0
2864  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2865    debug_only(warning("Attempt to use MPSS failed."));
2866    return false;
2867  }
2868  return true;
2869}
2870
2871char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2872  fatal("os::reserve_memory_special should not be called on Solaris.");
2873  return NULL;
2874}
2875
2876bool os::release_memory_special(char* base, size_t bytes) {
2877  fatal("os::release_memory_special should not be called on Solaris.");
2878  return false;
2879}
2880
2881size_t os::large_page_size() {
2882  return _large_page_size;
2883}
2884
2885// MPSS allows application to commit large page memory on demand; with ISM
2886// the entire memory region must be allocated as shared memory.
2887bool os::can_commit_large_page_memory() {
2888  return true;
2889}
2890
2891bool os::can_execute_large_page_memory() {
2892  return true;
2893}
2894
2895// Read calls from inside the vm need to perform state transitions
2896size_t os::read(int fd, void *buf, unsigned int nBytes) {
2897  size_t res;
2898  JavaThread* thread = (JavaThread*)Thread::current();
2899  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2900  ThreadBlockInVM tbiv(thread);
2901  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2902  return res;
2903}
2904
2905size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2906  size_t res;
2907  JavaThread* thread = (JavaThread*)Thread::current();
2908  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2909  ThreadBlockInVM tbiv(thread);
2910  RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
2911  return res;
2912}
2913
2914size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
2915  size_t res;
2916  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
2917         "Assumed _thread_in_native");
2918  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2919  return res;
2920}
2921
2922void os::naked_short_sleep(jlong ms) {
2923  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2924
2925  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
2926  // Solaris requires -lrt for this.
2927  usleep((ms * 1000));
2928
2929  return;
2930}
2931
2932// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2933void os::infinite_sleep() {
2934  while (true) {    // sleep forever ...
2935    ::sleep(100);   // ... 100 seconds at a time
2936  }
2937}
2938
2939// Used to convert frequent JVM_Yield() to nops
2940bool os::dont_yield() {
2941  if (DontYieldALot) {
2942    static hrtime_t last_time = 0;
2943    hrtime_t diff = getTimeNanos() - last_time;
2944
2945    if (diff < DontYieldALotInterval * 1000000) {
2946      return true;
2947    }
2948
2949    last_time += diff;
2950
2951    return false;
2952  } else {
2953    return false;
2954  }
2955}
2956
2957// Note that yield semantics are defined by the scheduling class to which
2958// the thread currently belongs.  Typically, yield will _not yield to
2959// other equal or higher priority threads that reside on the dispatch queues
2960// of other CPUs.
2961
2962void os::naked_yield() {
2963  thr_yield();
2964}
2965
2966// Interface for setting lwp priorities.  We are using T2 libthread,
2967// which forces the use of bound threads, so all of our threads will
2968// be assigned to real lwp's.  Using the thr_setprio function is
2969// meaningless in this mode so we must adjust the real lwp's priority.
2970// The routines below implement the getting and setting of lwp priorities.
2971//
2972// Note: There are three priority scales used on Solaris.  Java priotities
2973//       which range from 1 to 10, libthread "thr_setprio" scale which range
2974//       from 0 to 127, and the current scheduling class of the process we
2975//       are running in.  This is typically from -60 to +60.
2976//       The setting of the lwp priorities in done after a call to thr_setprio
2977//       so Java priorities are mapped to libthread priorities and we map from
2978//       the latter to lwp priorities.  We don't keep priorities stored in
2979//       Java priorities since some of our worker threads want to set priorities
2980//       higher than all Java threads.
2981//
2982// For related information:
2983// (1)  man -s 2 priocntl
2984// (2)  man -s 4 priocntl
2985// (3)  man dispadmin
2986// =    librt.so
2987// =    libthread/common/rtsched.c - thrp_setlwpprio().
2988// =    ps -cL <pid> ... to validate priority.
2989// =    sched_get_priority_min and _max
2990//              pthread_create
2991//              sched_setparam
2992//              pthread_setschedparam
2993//
2994// Assumptions:
2995// +    We assume that all threads in the process belong to the same
2996//              scheduling class.   IE. an homogenous process.
2997// +    Must be root or in IA group to change change "interactive" attribute.
2998//              Priocntl() will fail silently.  The only indication of failure is when
2999//              we read-back the value and notice that it hasn't changed.
3000// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3001// +    For RT, change timeslice as well.  Invariant:
3002//              constant "priority integral"
3003//              Konst == TimeSlice * (60-Priority)
3004//              Given a priority, compute appropriate timeslice.
3005// +    Higher numerical values have higher priority.
3006
3007// sched class attributes
3008typedef struct {
3009  int   schedPolicy;              // classID
3010  int   maxPrio;
3011  int   minPrio;
3012} SchedInfo;
3013
3014
3015static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3016
3017#ifdef ASSERT
3018static int  ReadBackValidate = 1;
3019#endif
3020static int  myClass     = 0;
3021static int  myMin       = 0;
3022static int  myMax       = 0;
3023static int  myCur       = 0;
3024static bool priocntl_enable = false;
3025
3026static const int criticalPrio = FXCriticalPriority;
3027static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3028
3029
3030// lwp_priocntl_init
3031//
3032// Try to determine the priority scale for our process.
3033//
3034// Return errno or 0 if OK.
3035//
3036static int lwp_priocntl_init() {
3037  int rslt;
3038  pcinfo_t ClassInfo;
3039  pcparms_t ParmInfo;
3040  int i;
3041
3042  if (!UseThreadPriorities) return 0;
3043
3044  // If ThreadPriorityPolicy is 1, switch tables
3045  if (ThreadPriorityPolicy == 1) {
3046    for (i = 0; i < CriticalPriority+1; i++)
3047      os::java_to_os_priority[i] = prio_policy1[i];
3048  }
3049  if (UseCriticalJavaThreadPriority) {
3050    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3051    // See set_native_priority() and set_lwp_class_and_priority().
3052    // Save original MaxPriority mapping in case attempt to
3053    // use critical priority fails.
3054    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3055    // Set negative to distinguish from other priorities
3056    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3057  }
3058
3059  // Get IDs for a set of well-known scheduling classes.
3060  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3061  // the system.  We should have a loop that iterates over the
3062  // classID values, which are known to be "small" integers.
3063
3064  strcpy(ClassInfo.pc_clname, "TS");
3065  ClassInfo.pc_cid = -1;
3066  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3067  if (rslt < 0) return errno;
3068  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3069  tsLimits.schedPolicy = ClassInfo.pc_cid;
3070  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3071  tsLimits.minPrio = -tsLimits.maxPrio;
3072
3073  strcpy(ClassInfo.pc_clname, "IA");
3074  ClassInfo.pc_cid = -1;
3075  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3076  if (rslt < 0) return errno;
3077  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3078  iaLimits.schedPolicy = ClassInfo.pc_cid;
3079  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3080  iaLimits.minPrio = -iaLimits.maxPrio;
3081
3082  strcpy(ClassInfo.pc_clname, "RT");
3083  ClassInfo.pc_cid = -1;
3084  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3085  if (rslt < 0) return errno;
3086  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3087  rtLimits.schedPolicy = ClassInfo.pc_cid;
3088  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3089  rtLimits.minPrio = 0;
3090
3091  strcpy(ClassInfo.pc_clname, "FX");
3092  ClassInfo.pc_cid = -1;
3093  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3094  if (rslt < 0) return errno;
3095  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3096  fxLimits.schedPolicy = ClassInfo.pc_cid;
3097  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3098  fxLimits.minPrio = 0;
3099
3100  // Query our "current" scheduling class.
3101  // This will normally be IA, TS or, rarely, FX or RT.
3102  memset(&ParmInfo, 0, sizeof(ParmInfo));
3103  ParmInfo.pc_cid = PC_CLNULL;
3104  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3105  if (rslt < 0) return errno;
3106  myClass = ParmInfo.pc_cid;
3107
3108  // We now know our scheduling classId, get specific information
3109  // about the class.
3110  ClassInfo.pc_cid = myClass;
3111  ClassInfo.pc_clname[0] = 0;
3112  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3113  if (rslt < 0) return errno;
3114
3115  if (ThreadPriorityVerbose) {
3116    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3117  }
3118
3119  memset(&ParmInfo, 0, sizeof(pcparms_t));
3120  ParmInfo.pc_cid = PC_CLNULL;
3121  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3122  if (rslt < 0) return errno;
3123
3124  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3125    myMin = rtLimits.minPrio;
3126    myMax = rtLimits.maxPrio;
3127  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3128    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3129    myMin = iaLimits.minPrio;
3130    myMax = iaLimits.maxPrio;
3131    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3132  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3133    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3134    myMin = tsLimits.minPrio;
3135    myMax = tsLimits.maxPrio;
3136    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3137  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3138    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3139    myMin = fxLimits.minPrio;
3140    myMax = fxLimits.maxPrio;
3141    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3142  } else {
3143    // No clue - punt
3144    if (ThreadPriorityVerbose) {
3145      tty->print_cr("Unknown scheduling class: %s ... \n",
3146                    ClassInfo.pc_clname);
3147    }
3148    return EINVAL;      // no clue, punt
3149  }
3150
3151  if (ThreadPriorityVerbose) {
3152    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3153  }
3154
3155  priocntl_enable = true;  // Enable changing priorities
3156  return 0;
3157}
3158
3159#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3160#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3161#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3162#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3163
3164
3165// scale_to_lwp_priority
3166//
3167// Convert from the libthread "thr_setprio" scale to our current
3168// lwp scheduling class scale.
3169//
3170static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3171  int v;
3172
3173  if (x == 127) return rMax;            // avoid round-down
3174  v = (((x*(rMax-rMin)))/128)+rMin;
3175  return v;
3176}
3177
3178
3179// set_lwp_class_and_priority
3180int set_lwp_class_and_priority(int ThreadID, int lwpid,
3181                               int newPrio, int new_class, bool scale) {
3182  int rslt;
3183  int Actual, Expected, prv;
3184  pcparms_t ParmInfo;                   // for GET-SET
3185#ifdef ASSERT
3186  pcparms_t ReadBack;                   // for readback
3187#endif
3188
3189  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3190  // Query current values.
3191  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3192  // Cache "pcparms_t" in global ParmCache.
3193  // TODO: elide set-to-same-value
3194
3195  // If something went wrong on init, don't change priorities.
3196  if (!priocntl_enable) {
3197    if (ThreadPriorityVerbose) {
3198      tty->print_cr("Trying to set priority but init failed, ignoring");
3199    }
3200    return EINVAL;
3201  }
3202
3203  // If lwp hasn't started yet, just return
3204  // the _start routine will call us again.
3205  if (lwpid <= 0) {
3206    if (ThreadPriorityVerbose) {
3207      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3208                    INTPTR_FORMAT " to %d, lwpid not set",
3209                    ThreadID, newPrio);
3210    }
3211    return 0;
3212  }
3213
3214  if (ThreadPriorityVerbose) {
3215    tty->print_cr ("set_lwp_class_and_priority("
3216                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3217                   ThreadID, lwpid, newPrio);
3218  }
3219
3220  memset(&ParmInfo, 0, sizeof(pcparms_t));
3221  ParmInfo.pc_cid = PC_CLNULL;
3222  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3223  if (rslt < 0) return errno;
3224
3225  int cur_class = ParmInfo.pc_cid;
3226  ParmInfo.pc_cid = (id_t)new_class;
3227
3228  if (new_class == rtLimits.schedPolicy) {
3229    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3230    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3231                                                       rtLimits.maxPrio, newPrio)
3232                               : newPrio;
3233    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3234    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3235    if (ThreadPriorityVerbose) {
3236      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3237    }
3238  } else if (new_class == iaLimits.schedPolicy) {
3239    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3240    int maxClamped     = MIN2(iaLimits.maxPrio,
3241                              cur_class == new_class
3242                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3243    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3244                                                       maxClamped, newPrio)
3245                               : newPrio;
3246    iaInfo->ia_uprilim = cur_class == new_class
3247                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3248    iaInfo->ia_mode    = IA_NOCHANGE;
3249    if (ThreadPriorityVerbose) {
3250      tty->print_cr("IA: [%d...%d] %d->%d\n",
3251                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3252    }
3253  } else if (new_class == tsLimits.schedPolicy) {
3254    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3255    int maxClamped     = MIN2(tsLimits.maxPrio,
3256                              cur_class == new_class
3257                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3258    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3259                                                       maxClamped, newPrio)
3260                               : newPrio;
3261    tsInfo->ts_uprilim = cur_class == new_class
3262                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3263    if (ThreadPriorityVerbose) {
3264      tty->print_cr("TS: [%d...%d] %d->%d\n",
3265                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3266    }
3267  } else if (new_class == fxLimits.schedPolicy) {
3268    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3269    int maxClamped     = MIN2(fxLimits.maxPrio,
3270                              cur_class == new_class
3271                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3272    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3273                                                       maxClamped, newPrio)
3274                               : newPrio;
3275    fxInfo->fx_uprilim = cur_class == new_class
3276                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3277    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3278    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3279    if (ThreadPriorityVerbose) {
3280      tty->print_cr("FX: [%d...%d] %d->%d\n",
3281                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3282    }
3283  } else {
3284    if (ThreadPriorityVerbose) {
3285      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3286    }
3287    return EINVAL;    // no clue, punt
3288  }
3289
3290  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3291  if (ThreadPriorityVerbose && rslt) {
3292    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3293  }
3294  if (rslt < 0) return errno;
3295
3296#ifdef ASSERT
3297  // Sanity check: read back what we just attempted to set.
3298  // In theory it could have changed in the interim ...
3299  //
3300  // The priocntl system call is tricky.
3301  // Sometimes it'll validate the priority value argument and
3302  // return EINVAL if unhappy.  At other times it fails silently.
3303  // Readbacks are prudent.
3304
3305  if (!ReadBackValidate) return 0;
3306
3307  memset(&ReadBack, 0, sizeof(pcparms_t));
3308  ReadBack.pc_cid = PC_CLNULL;
3309  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3310  assert(rslt >= 0, "priocntl failed");
3311  Actual = Expected = 0xBAD;
3312  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3313  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3314    Actual   = RTPRI(ReadBack)->rt_pri;
3315    Expected = RTPRI(ParmInfo)->rt_pri;
3316  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3317    Actual   = IAPRI(ReadBack)->ia_upri;
3318    Expected = IAPRI(ParmInfo)->ia_upri;
3319  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3320    Actual   = TSPRI(ReadBack)->ts_upri;
3321    Expected = TSPRI(ParmInfo)->ts_upri;
3322  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3323    Actual   = FXPRI(ReadBack)->fx_upri;
3324    Expected = FXPRI(ParmInfo)->fx_upri;
3325  } else {
3326    if (ThreadPriorityVerbose) {
3327      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3328                    ParmInfo.pc_cid);
3329    }
3330  }
3331
3332  if (Actual != Expected) {
3333    if (ThreadPriorityVerbose) {
3334      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3335                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3336    }
3337  }
3338#endif
3339
3340  return 0;
3341}
3342
3343// Solaris only gives access to 128 real priorities at a time,
3344// so we expand Java's ten to fill this range.  This would be better
3345// if we dynamically adjusted relative priorities.
3346//
3347// The ThreadPriorityPolicy option allows us to select 2 different
3348// priority scales.
3349//
3350// ThreadPriorityPolicy=0
3351// Since the Solaris' default priority is MaximumPriority, we do not
3352// set a priority lower than Max unless a priority lower than
3353// NormPriority is requested.
3354//
3355// ThreadPriorityPolicy=1
3356// This mode causes the priority table to get filled with
3357// linear values.  NormPriority get's mapped to 50% of the
3358// Maximum priority an so on.  This will cause VM threads
3359// to get unfair treatment against other Solaris processes
3360// which do not explicitly alter their thread priorities.
3361
3362int os::java_to_os_priority[CriticalPriority + 1] = {
3363  -99999,         // 0 Entry should never be used
3364
3365  0,              // 1 MinPriority
3366  32,             // 2
3367  64,             // 3
3368
3369  96,             // 4
3370  127,            // 5 NormPriority
3371  127,            // 6
3372
3373  127,            // 7
3374  127,            // 8
3375  127,            // 9 NearMaxPriority
3376
3377  127,            // 10 MaxPriority
3378
3379  -criticalPrio   // 11 CriticalPriority
3380};
3381
3382OSReturn os::set_native_priority(Thread* thread, int newpri) {
3383  OSThread* osthread = thread->osthread();
3384
3385  // Save requested priority in case the thread hasn't been started
3386  osthread->set_native_priority(newpri);
3387
3388  // Check for critical priority request
3389  bool fxcritical = false;
3390  if (newpri == -criticalPrio) {
3391    fxcritical = true;
3392    newpri = criticalPrio;
3393  }
3394
3395  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3396  if (!UseThreadPriorities) return OS_OK;
3397
3398  int status = 0;
3399
3400  if (!fxcritical) {
3401    // Use thr_setprio only if we have a priority that thr_setprio understands
3402    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3403  }
3404
3405  int lwp_status =
3406          set_lwp_class_and_priority(osthread->thread_id(),
3407                                     osthread->lwp_id(),
3408                                     newpri,
3409                                     fxcritical ? fxLimits.schedPolicy : myClass,
3410                                     !fxcritical);
3411  if (lwp_status != 0 && fxcritical) {
3412    // Try again, this time without changing the scheduling class
3413    newpri = java_MaxPriority_to_os_priority;
3414    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3415                                            osthread->lwp_id(),
3416                                            newpri, myClass, false);
3417  }
3418  status |= lwp_status;
3419  return (status == 0) ? OS_OK : OS_ERR;
3420}
3421
3422
3423OSReturn os::get_native_priority(const Thread* const thread,
3424                                 int *priority_ptr) {
3425  int p;
3426  if (!UseThreadPriorities) {
3427    *priority_ptr = NormalPriority;
3428    return OS_OK;
3429  }
3430  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3431  if (status != 0) {
3432    return OS_ERR;
3433  }
3434  *priority_ptr = p;
3435  return OS_OK;
3436}
3437
3438
3439// Hint to the underlying OS that a task switch would not be good.
3440// Void return because it's a hint and can fail.
3441void os::hint_no_preempt() {
3442  schedctl_start(schedctl_init());
3443}
3444
3445static void resume_clear_context(OSThread *osthread) {
3446  osthread->set_ucontext(NULL);
3447}
3448
3449static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3450  osthread->set_ucontext(context);
3451}
3452
3453static PosixSemaphore sr_semaphore;
3454
3455void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3456  // Save and restore errno to avoid confusing native code with EINTR
3457  // after sigsuspend.
3458  int old_errno = errno;
3459
3460  OSThread* osthread = thread->osthread();
3461  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3462
3463  os::SuspendResume::State current = osthread->sr.state();
3464  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3465    suspend_save_context(osthread, uc);
3466
3467    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3468    os::SuspendResume::State state = osthread->sr.suspended();
3469    if (state == os::SuspendResume::SR_SUSPENDED) {
3470      sigset_t suspend_set;  // signals for sigsuspend()
3471
3472      // get current set of blocked signals and unblock resume signal
3473      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3474      sigdelset(&suspend_set, ASYNC_SIGNAL);
3475
3476      sr_semaphore.signal();
3477      // wait here until we are resumed
3478      while (1) {
3479        sigsuspend(&suspend_set);
3480
3481        os::SuspendResume::State result = osthread->sr.running();
3482        if (result == os::SuspendResume::SR_RUNNING) {
3483          sr_semaphore.signal();
3484          break;
3485        }
3486      }
3487
3488    } else if (state == os::SuspendResume::SR_RUNNING) {
3489      // request was cancelled, continue
3490    } else {
3491      ShouldNotReachHere();
3492    }
3493
3494    resume_clear_context(osthread);
3495  } else if (current == os::SuspendResume::SR_RUNNING) {
3496    // request was cancelled, continue
3497  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3498    // ignore
3499  } else {
3500    // ignore
3501  }
3502
3503  errno = old_errno;
3504}
3505
3506void os::print_statistics() {
3507}
3508
3509bool os::message_box(const char* title, const char* message) {
3510  int i;
3511  fdStream err(defaultStream::error_fd());
3512  for (i = 0; i < 78; i++) err.print_raw("=");
3513  err.cr();
3514  err.print_raw_cr(title);
3515  for (i = 0; i < 78; i++) err.print_raw("-");
3516  err.cr();
3517  err.print_raw_cr(message);
3518  for (i = 0; i < 78; i++) err.print_raw("=");
3519  err.cr();
3520
3521  char buf[16];
3522  // Prevent process from exiting upon "read error" without consuming all CPU
3523  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3524
3525  return buf[0] == 'y' || buf[0] == 'Y';
3526}
3527
3528static int sr_notify(OSThread* osthread) {
3529  int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3530  assert_status(status == 0, status, "thr_kill");
3531  return status;
3532}
3533
3534// "Randomly" selected value for how long we want to spin
3535// before bailing out on suspending a thread, also how often
3536// we send a signal to a thread we want to resume
3537static const int RANDOMLY_LARGE_INTEGER = 1000000;
3538static const int RANDOMLY_LARGE_INTEGER2 = 100;
3539
3540static bool do_suspend(OSThread* osthread) {
3541  assert(osthread->sr.is_running(), "thread should be running");
3542  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3543
3544  // mark as suspended and send signal
3545  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3546    // failed to switch, state wasn't running?
3547    ShouldNotReachHere();
3548    return false;
3549  }
3550
3551  if (sr_notify(osthread) != 0) {
3552    ShouldNotReachHere();
3553  }
3554
3555  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3556  while (true) {
3557    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3558      break;
3559    } else {
3560      // timeout
3561      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3562      if (cancelled == os::SuspendResume::SR_RUNNING) {
3563        return false;
3564      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3565        // make sure that we consume the signal on the semaphore as well
3566        sr_semaphore.wait();
3567        break;
3568      } else {
3569        ShouldNotReachHere();
3570        return false;
3571      }
3572    }
3573  }
3574
3575  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3576  return true;
3577}
3578
3579static void do_resume(OSThread* osthread) {
3580  assert(osthread->sr.is_suspended(), "thread should be suspended");
3581  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3582
3583  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3584    // failed to switch to WAKEUP_REQUEST
3585    ShouldNotReachHere();
3586    return;
3587  }
3588
3589  while (true) {
3590    if (sr_notify(osthread) == 0) {
3591      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3592        if (osthread->sr.is_running()) {
3593          return;
3594        }
3595      }
3596    } else {
3597      ShouldNotReachHere();
3598    }
3599  }
3600
3601  guarantee(osthread->sr.is_running(), "Must be running!");
3602}
3603
3604void os::SuspendedThreadTask::internal_do_task() {
3605  if (do_suspend(_thread->osthread())) {
3606    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3607    do_task(context);
3608    do_resume(_thread->osthread());
3609  }
3610}
3611
3612class PcFetcher : public os::SuspendedThreadTask {
3613 public:
3614  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3615  ExtendedPC result();
3616 protected:
3617  void do_task(const os::SuspendedThreadTaskContext& context);
3618 private:
3619  ExtendedPC _epc;
3620};
3621
3622ExtendedPC PcFetcher::result() {
3623  guarantee(is_done(), "task is not done yet.");
3624  return _epc;
3625}
3626
3627void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3628  Thread* thread = context.thread();
3629  OSThread* osthread = thread->osthread();
3630  if (osthread->ucontext() != NULL) {
3631    _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3632  } else {
3633    // NULL context is unexpected, double-check this is the VMThread
3634    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3635  }
3636}
3637
3638// A lightweight implementation that does not suspend the target thread and
3639// thus returns only a hint. Used for profiling only!
3640ExtendedPC os::get_thread_pc(Thread* thread) {
3641  // Make sure that it is called by the watcher and the Threads lock is owned.
3642  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3643  // For now, is only used to profile the VM Thread
3644  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3645  PcFetcher fetcher(thread);
3646  fetcher.run();
3647  return fetcher.result();
3648}
3649
3650
3651// This does not do anything on Solaris. This is basically a hook for being
3652// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3653void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3654                              const methodHandle& method, JavaCallArguments* args,
3655                              Thread* thread) {
3656  f(value, method, args, thread);
3657}
3658
3659// This routine may be used by user applications as a "hook" to catch signals.
3660// The user-defined signal handler must pass unrecognized signals to this
3661// routine, and if it returns true (non-zero), then the signal handler must
3662// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3663// routine will never retun false (zero), but instead will execute a VM panic
3664// routine kill the process.
3665//
3666// If this routine returns false, it is OK to call it again.  This allows
3667// the user-defined signal handler to perform checks either before or after
3668// the VM performs its own checks.  Naturally, the user code would be making
3669// a serious error if it tried to handle an exception (such as a null check
3670// or breakpoint) that the VM was generating for its own correct operation.
3671//
3672// This routine may recognize any of the following kinds of signals:
3673// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3674// ASYNC_SIGNAL.
3675// It should be consulted by handlers for any of those signals.
3676//
3677// The caller of this routine must pass in the three arguments supplied
3678// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3679// field of the structure passed to sigaction().  This routine assumes that
3680// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3681//
3682// Note that the VM will print warnings if it detects conflicting signal
3683// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3684//
3685extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3686                                                   siginfo_t* siginfo,
3687                                                   void* ucontext,
3688                                                   int abort_if_unrecognized);
3689
3690
3691void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3692  int orig_errno = errno;  // Preserve errno value over signal handler.
3693  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3694  errno = orig_errno;
3695}
3696
3697// This boolean allows users to forward their own non-matching signals
3698// to JVM_handle_solaris_signal, harmlessly.
3699bool os::Solaris::signal_handlers_are_installed = false;
3700
3701// For signal-chaining
3702bool os::Solaris::libjsig_is_loaded = false;
3703typedef struct sigaction *(*get_signal_t)(int);
3704get_signal_t os::Solaris::get_signal_action = NULL;
3705
3706struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3707  struct sigaction *actp = NULL;
3708
3709  if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3710    // Retrieve the old signal handler from libjsig
3711    actp = (*get_signal_action)(sig);
3712  }
3713  if (actp == NULL) {
3714    // Retrieve the preinstalled signal handler from jvm
3715    actp = get_preinstalled_handler(sig);
3716  }
3717
3718  return actp;
3719}
3720
3721static bool call_chained_handler(struct sigaction *actp, int sig,
3722                                 siginfo_t *siginfo, void *context) {
3723  // Call the old signal handler
3724  if (actp->sa_handler == SIG_DFL) {
3725    // It's more reasonable to let jvm treat it as an unexpected exception
3726    // instead of taking the default action.
3727    return false;
3728  } else if (actp->sa_handler != SIG_IGN) {
3729    if ((actp->sa_flags & SA_NODEFER) == 0) {
3730      // automaticlly block the signal
3731      sigaddset(&(actp->sa_mask), sig);
3732    }
3733
3734    sa_handler_t hand;
3735    sa_sigaction_t sa;
3736    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3737    // retrieve the chained handler
3738    if (siginfo_flag_set) {
3739      sa = actp->sa_sigaction;
3740    } else {
3741      hand = actp->sa_handler;
3742    }
3743
3744    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3745      actp->sa_handler = SIG_DFL;
3746    }
3747
3748    // try to honor the signal mask
3749    sigset_t oset;
3750    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3751
3752    // call into the chained handler
3753    if (siginfo_flag_set) {
3754      (*sa)(sig, siginfo, context);
3755    } else {
3756      (*hand)(sig);
3757    }
3758
3759    // restore the signal mask
3760    pthread_sigmask(SIG_SETMASK, &oset, 0);
3761  }
3762  // Tell jvm's signal handler the signal is taken care of.
3763  return true;
3764}
3765
3766bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3767  bool chained = false;
3768  // signal-chaining
3769  if (UseSignalChaining) {
3770    struct sigaction *actp = get_chained_signal_action(sig);
3771    if (actp != NULL) {
3772      chained = call_chained_handler(actp, sig, siginfo, context);
3773    }
3774  }
3775  return chained;
3776}
3777
3778struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3779  assert((chainedsigactions != (struct sigaction *)NULL) &&
3780         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3781  if (preinstalled_sigs[sig] != 0) {
3782    return &chainedsigactions[sig];
3783  }
3784  return NULL;
3785}
3786
3787void os::Solaris::save_preinstalled_handler(int sig,
3788                                            struct sigaction& oldAct) {
3789  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3790  assert((chainedsigactions != (struct sigaction *)NULL) &&
3791         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3792  chainedsigactions[sig] = oldAct;
3793  preinstalled_sigs[sig] = 1;
3794}
3795
3796void os::Solaris::set_signal_handler(int sig, bool set_installed,
3797                                     bool oktochain) {
3798  // Check for overwrite.
3799  struct sigaction oldAct;
3800  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3801  void* oldhand =
3802      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3803                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3804  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3805      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3806      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3807    if (AllowUserSignalHandlers || !set_installed) {
3808      // Do not overwrite; user takes responsibility to forward to us.
3809      return;
3810    } else if (UseSignalChaining) {
3811      if (oktochain) {
3812        // save the old handler in jvm
3813        save_preinstalled_handler(sig, oldAct);
3814      } else {
3815        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3816      }
3817      // libjsig also interposes the sigaction() call below and saves the
3818      // old sigaction on it own.
3819    } else {
3820      fatal("Encountered unexpected pre-existing sigaction handler "
3821            "%#lx for signal %d.", (long)oldhand, sig);
3822    }
3823  }
3824
3825  struct sigaction sigAct;
3826  sigfillset(&(sigAct.sa_mask));
3827  sigAct.sa_handler = SIG_DFL;
3828
3829  sigAct.sa_sigaction = signalHandler;
3830  // Handle SIGSEGV on alternate signal stack if
3831  // not using stack banging
3832  if (!UseStackBanging && sig == SIGSEGV) {
3833    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3834  } else {
3835    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3836  }
3837  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3838
3839  sigaction(sig, &sigAct, &oldAct);
3840
3841  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3842                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3843  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3844}
3845
3846
3847#define DO_SIGNAL_CHECK(sig)                      \
3848  do {                                            \
3849    if (!sigismember(&check_signal_done, sig)) {  \
3850      os::Solaris::check_signal_handler(sig);     \
3851    }                                             \
3852  } while (0)
3853
3854// This method is a periodic task to check for misbehaving JNI applications
3855// under CheckJNI, we can add any periodic checks here
3856
3857void os::run_periodic_checks() {
3858  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3859  // thereby preventing a NULL checks.
3860  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3861
3862  if (check_signals == false) return;
3863
3864  // SEGV and BUS if overridden could potentially prevent
3865  // generation of hs*.log in the event of a crash, debugging
3866  // such a case can be very challenging, so we absolutely
3867  // check for the following for a good measure:
3868  DO_SIGNAL_CHECK(SIGSEGV);
3869  DO_SIGNAL_CHECK(SIGILL);
3870  DO_SIGNAL_CHECK(SIGFPE);
3871  DO_SIGNAL_CHECK(SIGBUS);
3872  DO_SIGNAL_CHECK(SIGPIPE);
3873  DO_SIGNAL_CHECK(SIGXFSZ);
3874  DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3875
3876  // ReduceSignalUsage allows the user to override these handlers
3877  // see comments at the very top and jvm_solaris.h
3878  if (!ReduceSignalUsage) {
3879    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3880    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3881    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3882    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3883  }
3884}
3885
3886typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3887
3888static os_sigaction_t os_sigaction = NULL;
3889
3890void os::Solaris::check_signal_handler(int sig) {
3891  char buf[O_BUFLEN];
3892  address jvmHandler = NULL;
3893
3894  struct sigaction act;
3895  if (os_sigaction == NULL) {
3896    // only trust the default sigaction, in case it has been interposed
3897    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3898    if (os_sigaction == NULL) return;
3899  }
3900
3901  os_sigaction(sig, (struct sigaction*)NULL, &act);
3902
3903  address thisHandler = (act.sa_flags & SA_SIGINFO)
3904    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3905    : CAST_FROM_FN_PTR(address, act.sa_handler);
3906
3907
3908  switch (sig) {
3909  case SIGSEGV:
3910  case SIGBUS:
3911  case SIGFPE:
3912  case SIGPIPE:
3913  case SIGXFSZ:
3914  case SIGILL:
3915  case ASYNC_SIGNAL:
3916    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3917    break;
3918
3919  case SHUTDOWN1_SIGNAL:
3920  case SHUTDOWN2_SIGNAL:
3921  case SHUTDOWN3_SIGNAL:
3922  case BREAK_SIGNAL:
3923    jvmHandler = (address)user_handler();
3924    break;
3925
3926  default:
3927      return;
3928  }
3929
3930  if (thisHandler != jvmHandler) {
3931    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3932    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3933    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3934    // No need to check this sig any longer
3935    sigaddset(&check_signal_done, sig);
3936    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3937    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3938      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3939                    exception_name(sig, buf, O_BUFLEN));
3940    }
3941  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3942    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3943    tty->print("expected:");
3944    os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3945    tty->cr();
3946    tty->print("  found:");
3947    os::Posix::print_sa_flags(tty, act.sa_flags);
3948    tty->cr();
3949    // No need to check this sig any longer
3950    sigaddset(&check_signal_done, sig);
3951  }
3952
3953  // Print all the signal handler state
3954  if (sigismember(&check_signal_done, sig)) {
3955    print_signal_handlers(tty, buf, O_BUFLEN);
3956  }
3957
3958}
3959
3960void os::Solaris::install_signal_handlers() {
3961  signal_handlers_are_installed = true;
3962
3963  // signal-chaining
3964  typedef void (*signal_setting_t)();
3965  signal_setting_t begin_signal_setting = NULL;
3966  signal_setting_t end_signal_setting = NULL;
3967  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3968                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3969  if (begin_signal_setting != NULL) {
3970    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3971                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3972    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3973                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3974    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
3975                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
3976    libjsig_is_loaded = true;
3977    if (os::Solaris::get_libjsig_version != NULL) {
3978      int libjsigversion =  (*os::Solaris::get_libjsig_version)();
3979      assert(libjsigversion == JSIG_VERSION_1_4_1, "libjsig version mismatch");
3980    }
3981    assert(UseSignalChaining, "should enable signal-chaining");
3982  }
3983  if (libjsig_is_loaded) {
3984    // Tell libjsig jvm is setting signal handlers
3985    (*begin_signal_setting)();
3986  }
3987
3988  set_signal_handler(SIGSEGV, true, true);
3989  set_signal_handler(SIGPIPE, true, true);
3990  set_signal_handler(SIGXFSZ, true, true);
3991  set_signal_handler(SIGBUS, true, true);
3992  set_signal_handler(SIGILL, true, true);
3993  set_signal_handler(SIGFPE, true, true);
3994  set_signal_handler(ASYNC_SIGNAL, true, true);
3995
3996  if (libjsig_is_loaded) {
3997    // Tell libjsig jvm finishes setting signal handlers
3998    (*end_signal_setting)();
3999  }
4000
4001  // We don't activate signal checker if libjsig is in place, we trust ourselves
4002  // and if UserSignalHandler is installed all bets are off.
4003  // Log that signal checking is off only if -verbose:jni is specified.
4004  if (CheckJNICalls) {
4005    if (libjsig_is_loaded) {
4006      if (PrintJNIResolving) {
4007        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4008      }
4009      check_signals = false;
4010    }
4011    if (AllowUserSignalHandlers) {
4012      if (PrintJNIResolving) {
4013        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4014      }
4015      check_signals = false;
4016    }
4017  }
4018}
4019
4020
4021void report_error(const char* file_name, int line_no, const char* title,
4022                  const char* format, ...);
4023
4024// (Static) wrappers for the liblgrp API
4025os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4026os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4027os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4028os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4029os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4030os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4031os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4032os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4033os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4034
4035static address resolve_symbol_lazy(const char* name) {
4036  address addr = (address) dlsym(RTLD_DEFAULT, name);
4037  if (addr == NULL) {
4038    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4039    addr = (address) dlsym(RTLD_NEXT, name);
4040  }
4041  return addr;
4042}
4043
4044static address resolve_symbol(const char* name) {
4045  address addr = resolve_symbol_lazy(name);
4046  if (addr == NULL) {
4047    fatal(dlerror());
4048  }
4049  return addr;
4050}
4051
4052void os::Solaris::libthread_init() {
4053  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4054
4055  lwp_priocntl_init();
4056
4057  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4058  if (func == NULL) {
4059    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4060    // Guarantee that this VM is running on an new enough OS (5.6 or
4061    // later) that it will have a new enough libthread.so.
4062    guarantee(func != NULL, "libthread.so is too old.");
4063  }
4064
4065  int size;
4066  void (*handler_info_func)(address *, int *);
4067  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4068  handler_info_func(&handler_start, &size);
4069  handler_end = handler_start + size;
4070}
4071
4072
4073int_fnP_mutex_tP os::Solaris::_mutex_lock;
4074int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4075int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4076int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4077int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4078int os::Solaris::_mutex_scope = USYNC_THREAD;
4079
4080int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4081int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4082int_fnP_cond_tP os::Solaris::_cond_signal;
4083int_fnP_cond_tP os::Solaris::_cond_broadcast;
4084int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4085int_fnP_cond_tP os::Solaris::_cond_destroy;
4086int os::Solaris::_cond_scope = USYNC_THREAD;
4087
4088void os::Solaris::synchronization_init() {
4089  if (UseLWPSynchronization) {
4090    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4091    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4092    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4093    os::Solaris::set_mutex_init(lwp_mutex_init);
4094    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4095    os::Solaris::set_mutex_scope(USYNC_THREAD);
4096
4097    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4098    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4099    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4100    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4101    os::Solaris::set_cond_init(lwp_cond_init);
4102    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4103    os::Solaris::set_cond_scope(USYNC_THREAD);
4104  } else {
4105    os::Solaris::set_mutex_scope(USYNC_THREAD);
4106    os::Solaris::set_cond_scope(USYNC_THREAD);
4107
4108    if (UsePthreads) {
4109      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4110      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4111      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4112      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4113      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4114
4115      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4116      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4117      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4118      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4119      os::Solaris::set_cond_init(pthread_cond_default_init);
4120      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4121    } else {
4122      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4123      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4124      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4125      os::Solaris::set_mutex_init(::mutex_init);
4126      os::Solaris::set_mutex_destroy(::mutex_destroy);
4127
4128      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4129      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4130      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4131      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4132      os::Solaris::set_cond_init(::cond_init);
4133      os::Solaris::set_cond_destroy(::cond_destroy);
4134    }
4135  }
4136}
4137
4138bool os::Solaris::liblgrp_init() {
4139  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4140  if (handle != NULL) {
4141    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4142    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4143    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4144    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4145    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4146    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4147    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4148    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4149                                                      dlsym(handle, "lgrp_cookie_stale")));
4150
4151    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4152    set_lgrp_cookie(c);
4153    return true;
4154  }
4155  return false;
4156}
4157
4158// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4159typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4160static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4161
4162void init_pset_getloadavg_ptr(void) {
4163  pset_getloadavg_ptr =
4164    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4165  if (pset_getloadavg_ptr == NULL) {
4166    log_warning(os)("pset_getloadavg function not found");
4167  }
4168}
4169
4170int os::Solaris::_dev_zero_fd = -1;
4171
4172// this is called _before_ the global arguments have been parsed
4173void os::init(void) {
4174  _initial_pid = getpid();
4175
4176  max_hrtime = first_hrtime = gethrtime();
4177
4178  init_random(1234567);
4179
4180  page_size = sysconf(_SC_PAGESIZE);
4181  if (page_size == -1) {
4182    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4183  }
4184  init_page_sizes((size_t) page_size);
4185
4186  Solaris::initialize_system_info();
4187
4188  int fd = ::open("/dev/zero", O_RDWR);
4189  if (fd < 0) {
4190    fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4191  } else {
4192    Solaris::set_dev_zero_fd(fd);
4193
4194    // Close on exec, child won't inherit.
4195    fcntl(fd, F_SETFD, FD_CLOEXEC);
4196  }
4197
4198  clock_tics_per_sec = CLK_TCK;
4199
4200  // check if dladdr1() exists; dladdr1 can provide more information than
4201  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4202  // and is available on linker patches for 5.7 and 5.8.
4203  // libdl.so must have been loaded, this call is just an entry lookup
4204  void * hdl = dlopen("libdl.so", RTLD_NOW);
4205  if (hdl) {
4206    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4207  }
4208
4209  // (Solaris only) this switches to calls that actually do locking.
4210  ThreadCritical::initialize();
4211
4212  main_thread = thr_self();
4213
4214  // dynamic lookup of functions that may not be available in our lowest
4215  // supported Solaris release
4216  void * handle = dlopen("libc.so.1", RTLD_LAZY);
4217  if (handle != NULL) {
4218    Solaris::_pthread_setname_np =  // from 11.3
4219        (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4220  }
4221}
4222
4223// To install functions for atexit system call
4224extern "C" {
4225  static void perfMemory_exit_helper() {
4226    perfMemory_exit();
4227  }
4228}
4229
4230// this is called _after_ the global arguments have been parsed
4231jint os::init_2(void) {
4232  // try to enable extended file IO ASAP, see 6431278
4233  os::Solaris::try_enable_extended_io();
4234
4235  // Allocate a single page and mark it as readable for safepoint polling.  Also
4236  // use this first mmap call to check support for MAP_ALIGN.
4237  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4238                                                      page_size,
4239                                                      MAP_PRIVATE | MAP_ALIGN,
4240                                                      PROT_READ);
4241  if (polling_page == NULL) {
4242    has_map_align = false;
4243    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4244                                                PROT_READ);
4245  }
4246
4247  os::set_polling_page(polling_page);
4248  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4249
4250  if (!UseMembar) {
4251    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4252    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4253    os::set_memory_serialize_page(mem_serialize_page);
4254    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4255  }
4256
4257  // Check and sets minimum stack sizes against command line options
4258  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4259    return JNI_ERR;
4260  }
4261
4262  Solaris::libthread_init();
4263
4264  if (UseNUMA) {
4265    if (!Solaris::liblgrp_init()) {
4266      UseNUMA = false;
4267    } else {
4268      size_t lgrp_limit = os::numa_get_groups_num();
4269      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4270      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4271      FREE_C_HEAP_ARRAY(int, lgrp_ids);
4272      if (lgrp_num < 2) {
4273        // There's only one locality group, disable NUMA.
4274        UseNUMA = false;
4275      }
4276    }
4277    if (!UseNUMA && ForceNUMA) {
4278      UseNUMA = true;
4279    }
4280  }
4281
4282  Solaris::signal_sets_init();
4283  Solaris::init_signal_mem();
4284  Solaris::install_signal_handlers();
4285
4286  // initialize synchronization primitives to use either thread or
4287  // lwp synchronization (controlled by UseLWPSynchronization)
4288  Solaris::synchronization_init();
4289
4290  if (MaxFDLimit) {
4291    // set the number of file descriptors to max. print out error
4292    // if getrlimit/setrlimit fails but continue regardless.
4293    struct rlimit nbr_files;
4294    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4295    if (status != 0) {
4296      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4297    } else {
4298      nbr_files.rlim_cur = nbr_files.rlim_max;
4299      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4300      if (status != 0) {
4301        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4302      }
4303    }
4304  }
4305
4306  // Calculate theoretical max. size of Threads to guard gainst
4307  // artifical out-of-memory situations, where all available address-
4308  // space has been reserved by thread stacks. Default stack size is 1Mb.
4309  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4310    JavaThread::stack_size_at_create() : (1*K*K);
4311  assert(pre_thread_stack_size != 0, "Must have a stack");
4312  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4313  // we should start doing Virtual Memory banging. Currently when the threads will
4314  // have used all but 200Mb of space.
4315  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4316  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4317
4318  // at-exit methods are called in the reverse order of their registration.
4319  // In Solaris 7 and earlier, atexit functions are called on return from
4320  // main or as a result of a call to exit(3C). There can be only 32 of
4321  // these functions registered and atexit() does not set errno. In Solaris
4322  // 8 and later, there is no limit to the number of functions registered
4323  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4324  // functions are called upon dlclose(3DL) in addition to return from main
4325  // and exit(3C).
4326
4327  if (PerfAllowAtExitRegistration) {
4328    // only register atexit functions if PerfAllowAtExitRegistration is set.
4329    // atexit functions can be delayed until process exit time, which
4330    // can be problematic for embedded VM situations. Embedded VMs should
4331    // call DestroyJavaVM() to assure that VM resources are released.
4332
4333    // note: perfMemory_exit_helper atexit function may be removed in
4334    // the future if the appropriate cleanup code can be added to the
4335    // VM_Exit VMOperation's doit method.
4336    if (atexit(perfMemory_exit_helper) != 0) {
4337      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4338    }
4339  }
4340
4341  // Init pset_loadavg function pointer
4342  init_pset_getloadavg_ptr();
4343
4344  return JNI_OK;
4345}
4346
4347// Mark the polling page as unreadable
4348void os::make_polling_page_unreadable(void) {
4349  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4350    fatal("Could not disable polling page");
4351  }
4352}
4353
4354// Mark the polling page as readable
4355void os::make_polling_page_readable(void) {
4356  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4357    fatal("Could not enable polling page");
4358  }
4359}
4360
4361// Is a (classpath) directory empty?
4362bool os::dir_is_empty(const char* path) {
4363  DIR *dir = NULL;
4364  struct dirent *ptr;
4365
4366  dir = opendir(path);
4367  if (dir == NULL) return true;
4368
4369  // Scan the directory
4370  bool result = true;
4371  char buf[sizeof(struct dirent) + MAX_PATH];
4372  struct dirent *dbuf = (struct dirent *) buf;
4373  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4374    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4375      result = false;
4376    }
4377  }
4378  closedir(dir);
4379  return result;
4380}
4381
4382// This code originates from JDK's sysOpen and open64_w
4383// from src/solaris/hpi/src/system_md.c
4384
4385int os::open(const char *path, int oflag, int mode) {
4386  if (strlen(path) > MAX_PATH - 1) {
4387    errno = ENAMETOOLONG;
4388    return -1;
4389  }
4390  int fd;
4391
4392  fd = ::open64(path, oflag, mode);
4393  if (fd == -1) return -1;
4394
4395  // If the open succeeded, the file might still be a directory
4396  {
4397    struct stat64 buf64;
4398    int ret = ::fstat64(fd, &buf64);
4399    int st_mode = buf64.st_mode;
4400
4401    if (ret != -1) {
4402      if ((st_mode & S_IFMT) == S_IFDIR) {
4403        errno = EISDIR;
4404        ::close(fd);
4405        return -1;
4406      }
4407    } else {
4408      ::close(fd);
4409      return -1;
4410    }
4411  }
4412
4413  // 32-bit Solaris systems suffer from:
4414  //
4415  // - an historical default soft limit of 256 per-process file
4416  //   descriptors that is too low for many Java programs.
4417  //
4418  // - a design flaw where file descriptors created using stdio
4419  //   fopen must be less than 256, _even_ when the first limit above
4420  //   has been raised.  This can cause calls to fopen (but not calls to
4421  //   open, for example) to fail mysteriously, perhaps in 3rd party
4422  //   native code (although the JDK itself uses fopen).  One can hardly
4423  //   criticize them for using this most standard of all functions.
4424  //
4425  // We attempt to make everything work anyways by:
4426  //
4427  // - raising the soft limit on per-process file descriptors beyond
4428  //   256
4429  //
4430  // - As of Solaris 10u4, we can request that Solaris raise the 256
4431  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4432  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4433  //
4434  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4435  //   workaround the bug by remapping non-stdio file descriptors below
4436  //   256 to ones beyond 256, which is done below.
4437  //
4438  // See:
4439  // 1085341: 32-bit stdio routines should support file descriptors >255
4440  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4441  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4442  //          enable_extended_FILE_stdio() in VM initialisation
4443  // Giri Mandalika's blog
4444  // http://technopark02.blogspot.com/2005_05_01_archive.html
4445  //
4446#ifndef  _LP64
4447  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4448    int newfd = ::fcntl(fd, F_DUPFD, 256);
4449    if (newfd != -1) {
4450      ::close(fd);
4451      fd = newfd;
4452    }
4453  }
4454#endif // 32-bit Solaris
4455
4456  // All file descriptors that are opened in the JVM and not
4457  // specifically destined for a subprocess should have the
4458  // close-on-exec flag set.  If we don't set it, then careless 3rd
4459  // party native code might fork and exec without closing all
4460  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4461  // UNIXProcess.c), and this in turn might:
4462  //
4463  // - cause end-of-file to fail to be detected on some file
4464  //   descriptors, resulting in mysterious hangs, or
4465  //
4466  // - might cause an fopen in the subprocess to fail on a system
4467  //   suffering from bug 1085341.
4468  //
4469  // (Yes, the default setting of the close-on-exec flag is a Unix
4470  // design flaw)
4471  //
4472  // See:
4473  // 1085341: 32-bit stdio routines should support file descriptors >255
4474  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4475  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4476  //
4477#ifdef FD_CLOEXEC
4478  {
4479    int flags = ::fcntl(fd, F_GETFD);
4480    if (flags != -1) {
4481      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4482    }
4483  }
4484#endif
4485
4486  return fd;
4487}
4488
4489// create binary file, rewriting existing file if required
4490int os::create_binary_file(const char* path, bool rewrite_existing) {
4491  int oflags = O_WRONLY | O_CREAT;
4492  if (!rewrite_existing) {
4493    oflags |= O_EXCL;
4494  }
4495  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4496}
4497
4498// return current position of file pointer
4499jlong os::current_file_offset(int fd) {
4500  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4501}
4502
4503// move file pointer to the specified offset
4504jlong os::seek_to_file_offset(int fd, jlong offset) {
4505  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4506}
4507
4508jlong os::lseek(int fd, jlong offset, int whence) {
4509  return (jlong) ::lseek64(fd, offset, whence);
4510}
4511
4512char * os::native_path(char *path) {
4513  return path;
4514}
4515
4516int os::ftruncate(int fd, jlong length) {
4517  return ::ftruncate64(fd, length);
4518}
4519
4520int os::fsync(int fd)  {
4521  RESTARTABLE_RETURN_INT(::fsync(fd));
4522}
4523
4524int os::available(int fd, jlong *bytes) {
4525  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4526         "Assumed _thread_in_native");
4527  jlong cur, end;
4528  int mode;
4529  struct stat64 buf64;
4530
4531  if (::fstat64(fd, &buf64) >= 0) {
4532    mode = buf64.st_mode;
4533    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4534      int n,ioctl_return;
4535
4536      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4537      if (ioctl_return>= 0) {
4538        *bytes = n;
4539        return 1;
4540      }
4541    }
4542  }
4543  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4544    return 0;
4545  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4546    return 0;
4547  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4548    return 0;
4549  }
4550  *bytes = end - cur;
4551  return 1;
4552}
4553
4554// Map a block of memory.
4555char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4556                        char *addr, size_t bytes, bool read_only,
4557                        bool allow_exec) {
4558  int prot;
4559  int flags;
4560
4561  if (read_only) {
4562    prot = PROT_READ;
4563    flags = MAP_SHARED;
4564  } else {
4565    prot = PROT_READ | PROT_WRITE;
4566    flags = MAP_PRIVATE;
4567  }
4568
4569  if (allow_exec) {
4570    prot |= PROT_EXEC;
4571  }
4572
4573  if (addr != NULL) {
4574    flags |= MAP_FIXED;
4575  }
4576
4577  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4578                                     fd, file_offset);
4579  if (mapped_address == MAP_FAILED) {
4580    return NULL;
4581  }
4582  return mapped_address;
4583}
4584
4585
4586// Remap a block of memory.
4587char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4588                          char *addr, size_t bytes, bool read_only,
4589                          bool allow_exec) {
4590  // same as map_memory() on this OS
4591  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4592                        allow_exec);
4593}
4594
4595
4596// Unmap a block of memory.
4597bool os::pd_unmap_memory(char* addr, size_t bytes) {
4598  return munmap(addr, bytes) == 0;
4599}
4600
4601void os::pause() {
4602  char filename[MAX_PATH];
4603  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4604    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4605  } else {
4606    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4607  }
4608
4609  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4610  if (fd != -1) {
4611    struct stat buf;
4612    ::close(fd);
4613    while (::stat(filename, &buf) == 0) {
4614      (void)::poll(NULL, 0, 100);
4615    }
4616  } else {
4617    jio_fprintf(stderr,
4618                "Could not open pause file '%s', continuing immediately.\n", filename);
4619  }
4620}
4621
4622#ifndef PRODUCT
4623#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4624// Turn this on if you need to trace synch operations.
4625// Set RECORD_SYNCH_LIMIT to a large-enough value,
4626// and call record_synch_enable and record_synch_disable
4627// around the computation of interest.
4628
4629void record_synch(char* name, bool returning);  // defined below
4630
4631class RecordSynch {
4632  char* _name;
4633 public:
4634  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4635  ~RecordSynch()                       { record_synch(_name, true); }
4636};
4637
4638#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4639extern "C" ret name params {                                    \
4640  typedef ret name##_t params;                                  \
4641  static name##_t* implem = NULL;                               \
4642  static int callcount = 0;                                     \
4643  if (implem == NULL) {                                         \
4644    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4645    if (implem == NULL)  fatal(dlerror());                      \
4646  }                                                             \
4647  ++callcount;                                                  \
4648  RecordSynch _rs(#name);                                       \
4649  inner;                                                        \
4650  return implem args;                                           \
4651}
4652// in dbx, examine callcounts this way:
4653// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4654
4655#define CHECK_POINTER_OK(p) \
4656  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4657#define CHECK_MU \
4658  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4659#define CHECK_CV \
4660  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4661#define CHECK_P(p) \
4662  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4663
4664#define CHECK_MUTEX(mutex_op) \
4665  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4666
4667CHECK_MUTEX(   mutex_lock)
4668CHECK_MUTEX(  _mutex_lock)
4669CHECK_MUTEX( mutex_unlock)
4670CHECK_MUTEX(_mutex_unlock)
4671CHECK_MUTEX( mutex_trylock)
4672CHECK_MUTEX(_mutex_trylock)
4673
4674#define CHECK_COND(cond_op) \
4675  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4676
4677CHECK_COND( cond_wait);
4678CHECK_COND(_cond_wait);
4679CHECK_COND(_cond_wait_cancel);
4680
4681#define CHECK_COND2(cond_op) \
4682  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4683
4684CHECK_COND2( cond_timedwait);
4685CHECK_COND2(_cond_timedwait);
4686CHECK_COND2(_cond_timedwait_cancel);
4687
4688// do the _lwp_* versions too
4689#define mutex_t lwp_mutex_t
4690#define cond_t  lwp_cond_t
4691CHECK_MUTEX(  _lwp_mutex_lock)
4692CHECK_MUTEX(  _lwp_mutex_unlock)
4693CHECK_MUTEX(  _lwp_mutex_trylock)
4694CHECK_MUTEX( __lwp_mutex_lock)
4695CHECK_MUTEX( __lwp_mutex_unlock)
4696CHECK_MUTEX( __lwp_mutex_trylock)
4697CHECK_MUTEX(___lwp_mutex_lock)
4698CHECK_MUTEX(___lwp_mutex_unlock)
4699
4700CHECK_COND(  _lwp_cond_wait);
4701CHECK_COND( __lwp_cond_wait);
4702CHECK_COND(___lwp_cond_wait);
4703
4704CHECK_COND2(  _lwp_cond_timedwait);
4705CHECK_COND2( __lwp_cond_timedwait);
4706#undef mutex_t
4707#undef cond_t
4708
4709CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4710CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4711CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4712CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4713CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4714CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4715CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4716CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4717
4718
4719// recording machinery:
4720
4721enum { RECORD_SYNCH_LIMIT = 200 };
4722char* record_synch_name[RECORD_SYNCH_LIMIT];
4723void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4724bool record_synch_returning[RECORD_SYNCH_LIMIT];
4725thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4726int record_synch_count = 0;
4727bool record_synch_enabled = false;
4728
4729// in dbx, examine recorded data this way:
4730// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4731
4732void record_synch(char* name, bool returning) {
4733  if (record_synch_enabled) {
4734    if (record_synch_count < RECORD_SYNCH_LIMIT) {
4735      record_synch_name[record_synch_count] = name;
4736      record_synch_returning[record_synch_count] = returning;
4737      record_synch_thread[record_synch_count] = thr_self();
4738      record_synch_arg0ptr[record_synch_count] = &name;
4739      record_synch_count++;
4740    }
4741    // put more checking code here:
4742    // ...
4743  }
4744}
4745
4746void record_synch_enable() {
4747  // start collecting trace data, if not already doing so
4748  if (!record_synch_enabled)  record_synch_count = 0;
4749  record_synch_enabled = true;
4750}
4751
4752void record_synch_disable() {
4753  // stop collecting trace data
4754  record_synch_enabled = false;
4755}
4756
4757#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4758#endif // PRODUCT
4759
4760const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4761const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4762                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4763
4764
4765// JVMTI & JVM monitoring and management support
4766// The thread_cpu_time() and current_thread_cpu_time() are only
4767// supported if is_thread_cpu_time_supported() returns true.
4768// They are not supported on Solaris T1.
4769
4770// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4771// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4772// of a thread.
4773//
4774// current_thread_cpu_time() and thread_cpu_time(Thread *)
4775// returns the fast estimate available on the platform.
4776
4777// hrtime_t gethrvtime() return value includes
4778// user time but does not include system time
4779jlong os::current_thread_cpu_time() {
4780  return (jlong) gethrvtime();
4781}
4782
4783jlong os::thread_cpu_time(Thread *thread) {
4784  // return user level CPU time only to be consistent with
4785  // what current_thread_cpu_time returns.
4786  // thread_cpu_time_info() must be changed if this changes
4787  return os::thread_cpu_time(thread, false /* user time only */);
4788}
4789
4790jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4791  if (user_sys_cpu_time) {
4792    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4793  } else {
4794    return os::current_thread_cpu_time();
4795  }
4796}
4797
4798jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4799  char proc_name[64];
4800  int count;
4801  prusage_t prusage;
4802  jlong lwp_time;
4803  int fd;
4804
4805  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4806          getpid(),
4807          thread->osthread()->lwp_id());
4808  fd = ::open(proc_name, O_RDONLY);
4809  if (fd == -1) return -1;
4810
4811  do {
4812    count = ::pread(fd,
4813                    (void *)&prusage.pr_utime,
4814                    thr_time_size,
4815                    thr_time_off);
4816  } while (count < 0 && errno == EINTR);
4817  ::close(fd);
4818  if (count < 0) return -1;
4819
4820  if (user_sys_cpu_time) {
4821    // user + system CPU time
4822    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4823                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4824                 (jlong)prusage.pr_stime.tv_nsec +
4825                 (jlong)prusage.pr_utime.tv_nsec;
4826  } else {
4827    // user level CPU time only
4828    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4829                (jlong)prusage.pr_utime.tv_nsec;
4830  }
4831
4832  return (lwp_time);
4833}
4834
4835void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4836  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4837  info_ptr->may_skip_backward = false;    // elapsed time not wall time
4838  info_ptr->may_skip_forward = false;     // elapsed time not wall time
4839  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4840}
4841
4842void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4843  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4844  info_ptr->may_skip_backward = false;    // elapsed time not wall time
4845  info_ptr->may_skip_forward = false;     // elapsed time not wall time
4846  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4847}
4848
4849bool os::is_thread_cpu_time_supported() {
4850  return true;
4851}
4852
4853// System loadavg support.  Returns -1 if load average cannot be obtained.
4854// Return the load average for our processor set if the primitive exists
4855// (Solaris 9 and later).  Otherwise just return system wide loadavg.
4856int os::loadavg(double loadavg[], int nelem) {
4857  if (pset_getloadavg_ptr != NULL) {
4858    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4859  } else {
4860    return ::getloadavg(loadavg, nelem);
4861  }
4862}
4863
4864//---------------------------------------------------------------------------------
4865
4866bool os::find(address addr, outputStream* st) {
4867  Dl_info dlinfo;
4868  memset(&dlinfo, 0, sizeof(dlinfo));
4869  if (dladdr(addr, &dlinfo) != 0) {
4870    st->print(PTR_FORMAT ": ", addr);
4871    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4872      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4873    } else if (dlinfo.dli_fbase != NULL) {
4874      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4875    } else {
4876      st->print("<absolute address>");
4877    }
4878    if (dlinfo.dli_fname != NULL) {
4879      st->print(" in %s", dlinfo.dli_fname);
4880    }
4881    if (dlinfo.dli_fbase != NULL) {
4882      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4883    }
4884    st->cr();
4885
4886    if (Verbose) {
4887      // decode some bytes around the PC
4888      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4889      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4890      address       lowest = (address) dlinfo.dli_sname;
4891      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4892      if (begin < lowest)  begin = lowest;
4893      Dl_info dlinfo2;
4894      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4895          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4896        end = (address) dlinfo2.dli_saddr;
4897      }
4898      Disassembler::decode(begin, end, st);
4899    }
4900    return true;
4901  }
4902  return false;
4903}
4904
4905// Following function has been added to support HotSparc's libjvm.so running
4906// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4907// src/solaris/hpi/native_threads in the EVM codebase.
4908//
4909// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4910// libraries and should thus be removed. We will leave it behind for a while
4911// until we no longer want to able to run on top of 1.3.0 Solaris production
4912// JDK. See 4341971.
4913
4914#define STACK_SLACK 0x800
4915
4916extern "C" {
4917  intptr_t sysThreadAvailableStackWithSlack() {
4918    stack_t st;
4919    intptr_t retval, stack_top;
4920    retval = thr_stksegment(&st);
4921    assert(retval == 0, "incorrect return value from thr_stksegment");
4922    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4923    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4924    stack_top=(intptr_t)st.ss_sp-st.ss_size;
4925    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4926  }
4927}
4928
4929// ObjectMonitor park-unpark infrastructure ...
4930//
4931// We implement Solaris and Linux PlatformEvents with the
4932// obvious condvar-mutex-flag triple.
4933// Another alternative that works quite well is pipes:
4934// Each PlatformEvent consists of a pipe-pair.
4935// The thread associated with the PlatformEvent
4936// calls park(), which reads from the input end of the pipe.
4937// Unpark() writes into the other end of the pipe.
4938// The write-side of the pipe must be set NDELAY.
4939// Unfortunately pipes consume a large # of handles.
4940// Native solaris lwp_park() and lwp_unpark() work nicely, too.
4941// Using pipes for the 1st few threads might be workable, however.
4942//
4943// park() is permitted to return spuriously.
4944// Callers of park() should wrap the call to park() in
4945// an appropriate loop.  A litmus test for the correct
4946// usage of park is the following: if park() were modified
4947// to immediately return 0 your code should still work,
4948// albeit degenerating to a spin loop.
4949//
4950// In a sense, park()-unpark() just provides more polite spinning
4951// and polling with the key difference over naive spinning being
4952// that a parked thread needs to be explicitly unparked() in order
4953// to wake up and to poll the underlying condition.
4954//
4955// Assumption:
4956//    Only one parker can exist on an event, which is why we allocate
4957//    them per-thread. Multiple unparkers can coexist.
4958//
4959// _Event transitions in park()
4960//   -1 => -1 : illegal
4961//    1 =>  0 : pass - return immediately
4962//    0 => -1 : block; then set _Event to 0 before returning
4963//
4964// _Event transitions in unpark()
4965//    0 => 1 : just return
4966//    1 => 1 : just return
4967//   -1 => either 0 or 1; must signal target thread
4968//         That is, we can safely transition _Event from -1 to either
4969//         0 or 1.
4970//
4971// _Event serves as a restricted-range semaphore.
4972//   -1 : thread is blocked, i.e. there is a waiter
4973//    0 : neutral: thread is running or ready,
4974//        could have been signaled after a wait started
4975//    1 : signaled - thread is running or ready
4976//
4977// Another possible encoding of _Event would be with
4978// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4979//
4980// TODO-FIXME: add DTRACE probes for:
4981// 1.   Tx parks
4982// 2.   Ty unparks Tx
4983// 3.   Tx resumes from park
4984
4985
4986// value determined through experimentation
4987#define ROUNDINGFIX 11
4988
4989// utility to compute the abstime argument to timedwait.
4990// TODO-FIXME: switch from compute_abstime() to unpackTime().
4991
4992static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
4993  // millis is the relative timeout time
4994  // abstime will be the absolute timeout time
4995  if (millis < 0)  millis = 0;
4996  struct timeval now;
4997  int status = gettimeofday(&now, NULL);
4998  assert(status == 0, "gettimeofday");
4999  jlong seconds = millis / 1000;
5000  jlong max_wait_period;
5001
5002  if (UseLWPSynchronization) {
5003    // forward port of fix for 4275818 (not sleeping long enough)
5004    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5005    // _lwp_cond_timedwait() used a round_down algorithm rather
5006    // than a round_up. For millis less than our roundfactor
5007    // it rounded down to 0 which doesn't meet the spec.
5008    // For millis > roundfactor we may return a bit sooner, but
5009    // since we can not accurately identify the patch level and
5010    // this has already been fixed in Solaris 9 and 8 we will
5011    // leave it alone rather than always rounding down.
5012
5013    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5014    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5015    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5016    max_wait_period = 21000000;
5017  } else {
5018    max_wait_period = 50000000;
5019  }
5020  millis %= 1000;
5021  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5022    seconds = max_wait_period;
5023  }
5024  abstime->tv_sec = now.tv_sec  + seconds;
5025  long       usec = now.tv_usec + millis * 1000;
5026  if (usec >= 1000000) {
5027    abstime->tv_sec += 1;
5028    usec -= 1000000;
5029  }
5030  abstime->tv_nsec = usec * 1000;
5031  return abstime;
5032}
5033
5034void os::PlatformEvent::park() {           // AKA: down()
5035  // Transitions for _Event:
5036  //   -1 => -1 : illegal
5037  //    1 =>  0 : pass - return immediately
5038  //    0 => -1 : block; then set _Event to 0 before returning
5039
5040  // Invariant: Only the thread associated with the Event/PlatformEvent
5041  // may call park().
5042  assert(_nParked == 0, "invariant");
5043
5044  int v;
5045  for (;;) {
5046    v = _Event;
5047    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5048  }
5049  guarantee(v >= 0, "invariant");
5050  if (v == 0) {
5051    // Do this the hard way by blocking ...
5052    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5053    int status = os::Solaris::mutex_lock(_mutex);
5054    assert_status(status == 0, status, "mutex_lock");
5055    guarantee(_nParked == 0, "invariant");
5056    ++_nParked;
5057    while (_Event < 0) {
5058      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5059      // Treat this the same as if the wait was interrupted
5060      // With usr/lib/lwp going to kernel, always handle ETIME
5061      status = os::Solaris::cond_wait(_cond, _mutex);
5062      if (status == ETIME) status = EINTR;
5063      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5064    }
5065    --_nParked;
5066    _Event = 0;
5067    status = os::Solaris::mutex_unlock(_mutex);
5068    assert_status(status == 0, status, "mutex_unlock");
5069    // Paranoia to ensure our locked and lock-free paths interact
5070    // correctly with each other.
5071    OrderAccess::fence();
5072  }
5073}
5074
5075int os::PlatformEvent::park(jlong millis) {
5076  // Transitions for _Event:
5077  //   -1 => -1 : illegal
5078  //    1 =>  0 : pass - return immediately
5079  //    0 => -1 : block; then set _Event to 0 before returning
5080
5081  guarantee(_nParked == 0, "invariant");
5082  int v;
5083  for (;;) {
5084    v = _Event;
5085    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5086  }
5087  guarantee(v >= 0, "invariant");
5088  if (v != 0) return OS_OK;
5089
5090  int ret = OS_TIMEOUT;
5091  timestruc_t abst;
5092  compute_abstime(&abst, millis);
5093
5094  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5095  int status = os::Solaris::mutex_lock(_mutex);
5096  assert_status(status == 0, status, "mutex_lock");
5097  guarantee(_nParked == 0, "invariant");
5098  ++_nParked;
5099  while (_Event < 0) {
5100    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5101    assert_status(status == 0 || status == EINTR ||
5102                  status == ETIME || status == ETIMEDOUT,
5103                  status, "cond_timedwait");
5104    if (!FilterSpuriousWakeups) break;                // previous semantics
5105    if (status == ETIME || status == ETIMEDOUT) break;
5106    // We consume and ignore EINTR and spurious wakeups.
5107  }
5108  --_nParked;
5109  if (_Event >= 0) ret = OS_OK;
5110  _Event = 0;
5111  status = os::Solaris::mutex_unlock(_mutex);
5112  assert_status(status == 0, status, "mutex_unlock");
5113  // Paranoia to ensure our locked and lock-free paths interact
5114  // correctly with each other.
5115  OrderAccess::fence();
5116  return ret;
5117}
5118
5119void os::PlatformEvent::unpark() {
5120  // Transitions for _Event:
5121  //    0 => 1 : just return
5122  //    1 => 1 : just return
5123  //   -1 => either 0 or 1; must signal target thread
5124  //         That is, we can safely transition _Event from -1 to either
5125  //         0 or 1.
5126  // See also: "Semaphores in Plan 9" by Mullender & Cox
5127  //
5128  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5129  // that it will take two back-to-back park() calls for the owning
5130  // thread to block. This has the benefit of forcing a spurious return
5131  // from the first park() call after an unpark() call which will help
5132  // shake out uses of park() and unpark() without condition variables.
5133
5134  if (Atomic::xchg(1, &_Event) >= 0) return;
5135
5136  // If the thread associated with the event was parked, wake it.
5137  // Wait for the thread assoc with the PlatformEvent to vacate.
5138  int status = os::Solaris::mutex_lock(_mutex);
5139  assert_status(status == 0, status, "mutex_lock");
5140  int AnyWaiters = _nParked;
5141  status = os::Solaris::mutex_unlock(_mutex);
5142  assert_status(status == 0, status, "mutex_unlock");
5143  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5144  if (AnyWaiters != 0) {
5145    // Note that we signal() *after* dropping the lock for "immortal" Events.
5146    // This is safe and avoids a common class of  futile wakeups.  In rare
5147    // circumstances this can cause a thread to return prematurely from
5148    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5149    // will simply re-test the condition and re-park itself.
5150    // This provides particular benefit if the underlying platform does not
5151    // provide wait morphing.
5152    status = os::Solaris::cond_signal(_cond);
5153    assert_status(status == 0, status, "cond_signal");
5154  }
5155}
5156
5157// JSR166
5158// -------------------------------------------------------
5159
5160// The solaris and linux implementations of park/unpark are fairly
5161// conservative for now, but can be improved. They currently use a
5162// mutex/condvar pair, plus _counter.
5163// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5164// sets count to 1 and signals condvar.  Only one thread ever waits
5165// on the condvar. Contention seen when trying to park implies that someone
5166// is unparking you, so don't wait. And spurious returns are fine, so there
5167// is no need to track notifications.
5168
5169#define MAX_SECS 100000000
5170
5171// This code is common to linux and solaris and will be moved to a
5172// common place in dolphin.
5173//
5174// The passed in time value is either a relative time in nanoseconds
5175// or an absolute time in milliseconds. Either way it has to be unpacked
5176// into suitable seconds and nanoseconds components and stored in the
5177// given timespec structure.
5178// Given time is a 64-bit value and the time_t used in the timespec is only
5179// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5180// overflow if times way in the future are given. Further on Solaris versions
5181// prior to 10 there is a restriction (see cond_timedwait) that the specified
5182// number of seconds, in abstime, is less than current_time  + 100,000,000.
5183// As it will be 28 years before "now + 100000000" will overflow we can
5184// ignore overflow and just impose a hard-limit on seconds using the value
5185// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5186// years from "now".
5187//
5188static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5189  assert(time > 0, "convertTime");
5190
5191  struct timeval now;
5192  int status = gettimeofday(&now, NULL);
5193  assert(status == 0, "gettimeofday");
5194
5195  time_t max_secs = now.tv_sec + MAX_SECS;
5196
5197  if (isAbsolute) {
5198    jlong secs = time / 1000;
5199    if (secs > max_secs) {
5200      absTime->tv_sec = max_secs;
5201    } else {
5202      absTime->tv_sec = secs;
5203    }
5204    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5205  } else {
5206    jlong secs = time / NANOSECS_PER_SEC;
5207    if (secs >= MAX_SECS) {
5208      absTime->tv_sec = max_secs;
5209      absTime->tv_nsec = 0;
5210    } else {
5211      absTime->tv_sec = now.tv_sec + secs;
5212      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5213      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5214        absTime->tv_nsec -= NANOSECS_PER_SEC;
5215        ++absTime->tv_sec; // note: this must be <= max_secs
5216      }
5217    }
5218  }
5219  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5220  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5221  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5222  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5223}
5224
5225void Parker::park(bool isAbsolute, jlong time) {
5226  // Ideally we'd do something useful while spinning, such
5227  // as calling unpackTime().
5228
5229  // Optional fast-path check:
5230  // Return immediately if a permit is available.
5231  // We depend on Atomic::xchg() having full barrier semantics
5232  // since we are doing a lock-free update to _counter.
5233  if (Atomic::xchg(0, &_counter) > 0) return;
5234
5235  // Optional fast-exit: Check interrupt before trying to wait
5236  Thread* thread = Thread::current();
5237  assert(thread->is_Java_thread(), "Must be JavaThread");
5238  JavaThread *jt = (JavaThread *)thread;
5239  if (Thread::is_interrupted(thread, false)) {
5240    return;
5241  }
5242
5243  // First, demultiplex/decode time arguments
5244  timespec absTime;
5245  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5246    return;
5247  }
5248  if (time > 0) {
5249    // Warning: this code might be exposed to the old Solaris time
5250    // round-down bugs.  Grep "roundingFix" for details.
5251    unpackTime(&absTime, isAbsolute, time);
5252  }
5253
5254  // Enter safepoint region
5255  // Beware of deadlocks such as 6317397.
5256  // The per-thread Parker:: _mutex is a classic leaf-lock.
5257  // In particular a thread must never block on the Threads_lock while
5258  // holding the Parker:: mutex.  If safepoints are pending both the
5259  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5260  ThreadBlockInVM tbivm(jt);
5261
5262  // Don't wait if cannot get lock since interference arises from
5263  // unblocking.  Also. check interrupt before trying wait
5264  if (Thread::is_interrupted(thread, false) ||
5265      os::Solaris::mutex_trylock(_mutex) != 0) {
5266    return;
5267  }
5268
5269  int status;
5270
5271  if (_counter > 0)  { // no wait needed
5272    _counter = 0;
5273    status = os::Solaris::mutex_unlock(_mutex);
5274    assert(status == 0, "invariant");
5275    // Paranoia to ensure our locked and lock-free paths interact
5276    // correctly with each other and Java-level accesses.
5277    OrderAccess::fence();
5278    return;
5279  }
5280
5281  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5282  jt->set_suspend_equivalent();
5283  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5284
5285  // Do this the hard way by blocking ...
5286  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5287  if (time == 0) {
5288    status = os::Solaris::cond_wait(_cond, _mutex);
5289  } else {
5290    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5291  }
5292  // Note that an untimed cond_wait() can sometimes return ETIME on older
5293  // versions of the Solaris.
5294  assert_status(status == 0 || status == EINTR ||
5295                status == ETIME || status == ETIMEDOUT,
5296                status, "cond_timedwait");
5297
5298  _counter = 0;
5299  status = os::Solaris::mutex_unlock(_mutex);
5300  assert_status(status == 0, status, "mutex_unlock");
5301  // Paranoia to ensure our locked and lock-free paths interact
5302  // correctly with each other and Java-level accesses.
5303  OrderAccess::fence();
5304
5305  // If externally suspended while waiting, re-suspend
5306  if (jt->handle_special_suspend_equivalent_condition()) {
5307    jt->java_suspend_self();
5308  }
5309}
5310
5311void Parker::unpark() {
5312  int status = os::Solaris::mutex_lock(_mutex);
5313  assert(status == 0, "invariant");
5314  const int s = _counter;
5315  _counter = 1;
5316  status = os::Solaris::mutex_unlock(_mutex);
5317  assert(status == 0, "invariant");
5318
5319  if (s < 1) {
5320    status = os::Solaris::cond_signal(_cond);
5321    assert(status == 0, "invariant");
5322  }
5323}
5324
5325extern char** environ;
5326
5327// Run the specified command in a separate process. Return its exit value,
5328// or -1 on failure (e.g. can't fork a new process).
5329// Unlike system(), this function can be called from signal handler. It
5330// doesn't block SIGINT et al.
5331int os::fork_and_exec(char* cmd) {
5332  char * argv[4];
5333  argv[0] = (char *)"sh";
5334  argv[1] = (char *)"-c";
5335  argv[2] = cmd;
5336  argv[3] = NULL;
5337
5338  // fork is async-safe, fork1 is not so can't use in signal handler
5339  pid_t pid;
5340  Thread* t = Thread::current_or_null_safe();
5341  if (t != NULL && t->is_inside_signal_handler()) {
5342    pid = fork();
5343  } else {
5344    pid = fork1();
5345  }
5346
5347  if (pid < 0) {
5348    // fork failed
5349    warning("fork failed: %s", os::strerror(errno));
5350    return -1;
5351
5352  } else if (pid == 0) {
5353    // child process
5354
5355    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5356    execve("/usr/bin/sh", argv, environ);
5357
5358    // execve failed
5359    _exit(-1);
5360
5361  } else  {
5362    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5363    // care about the actual exit code, for now.
5364
5365    int status;
5366
5367    // Wait for the child process to exit.  This returns immediately if
5368    // the child has already exited. */
5369    while (waitpid(pid, &status, 0) < 0) {
5370      switch (errno) {
5371      case ECHILD: return 0;
5372      case EINTR: break;
5373      default: return -1;
5374      }
5375    }
5376
5377    if (WIFEXITED(status)) {
5378      // The child exited normally; get its exit code.
5379      return WEXITSTATUS(status);
5380    } else if (WIFSIGNALED(status)) {
5381      // The child exited because of a signal
5382      // The best value to return is 0x80 + signal number,
5383      // because that is what all Unix shells do, and because
5384      // it allows callers to distinguish between process exit and
5385      // process death by signal.
5386      return 0x80 + WTERMSIG(status);
5387    } else {
5388      // Unknown exit code; pass it through
5389      return status;
5390    }
5391  }
5392}
5393
5394// is_headless_jre()
5395//
5396// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5397// in order to report if we are running in a headless jre
5398//
5399// Since JDK8 xawt/libmawt.so was moved into the same directory
5400// as libawt.so, and renamed libawt_xawt.so
5401//
5402bool os::is_headless_jre() {
5403  struct stat statbuf;
5404  char buf[MAXPATHLEN];
5405  char libmawtpath[MAXPATHLEN];
5406  const char *xawtstr  = "/xawt/libmawt.so";
5407  const char *new_xawtstr = "/libawt_xawt.so";
5408  char *p;
5409
5410  // Get path to libjvm.so
5411  os::jvm_path(buf, sizeof(buf));
5412
5413  // Get rid of libjvm.so
5414  p = strrchr(buf, '/');
5415  if (p == NULL) {
5416    return false;
5417  } else {
5418    *p = '\0';
5419  }
5420
5421  // Get rid of client or server
5422  p = strrchr(buf, '/');
5423  if (p == NULL) {
5424    return false;
5425  } else {
5426    *p = '\0';
5427  }
5428
5429  // check xawt/libmawt.so
5430  strcpy(libmawtpath, buf);
5431  strcat(libmawtpath, xawtstr);
5432  if (::stat(libmawtpath, &statbuf) == 0) return false;
5433
5434  // check libawt_xawt.so
5435  strcpy(libmawtpath, buf);
5436  strcat(libmawtpath, new_xawtstr);
5437  if (::stat(libmawtpath, &statbuf) == 0) return false;
5438
5439  return true;
5440}
5441
5442size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5443  size_t res;
5444  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5445  return res;
5446}
5447
5448int os::close(int fd) {
5449  return ::close(fd);
5450}
5451
5452int os::socket_close(int fd) {
5453  return ::close(fd);
5454}
5455
5456int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5457  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5458         "Assumed _thread_in_native");
5459  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5460}
5461
5462int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5463  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5464         "Assumed _thread_in_native");
5465  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5466}
5467
5468int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5469  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5470}
5471
5472// As both poll and select can be interrupted by signals, we have to be
5473// prepared to restart the system call after updating the timeout, unless
5474// a poll() is done with timeout == -1, in which case we repeat with this
5475// "wait forever" value.
5476
5477int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5478  int _result;
5479  _result = ::connect(fd, him, len);
5480
5481  // On Solaris, when a connect() call is interrupted, the connection
5482  // can be established asynchronously (see 6343810). Subsequent calls
5483  // to connect() must check the errno value which has the semantic
5484  // described below (copied from the connect() man page). Handling
5485  // of asynchronously established connections is required for both
5486  // blocking and non-blocking sockets.
5487  //     EINTR            The  connection  attempt  was   interrupted
5488  //                      before  any data arrived by the delivery of
5489  //                      a signal. The connection, however, will  be
5490  //                      established asynchronously.
5491  //
5492  //     EINPROGRESS      The socket is non-blocking, and the connec-
5493  //                      tion  cannot  be completed immediately.
5494  //
5495  //     EALREADY         The socket is non-blocking,  and a previous
5496  //                      connection  attempt  has  not yet been com-
5497  //                      pleted.
5498  //
5499  //     EISCONN          The socket is already connected.
5500  if (_result == OS_ERR && errno == EINTR) {
5501    // restarting a connect() changes its errno semantics
5502    RESTARTABLE(::connect(fd, him, len), _result);
5503    // undo these changes
5504    if (_result == OS_ERR) {
5505      if (errno == EALREADY) {
5506        errno = EINPROGRESS; // fall through
5507      } else if (errno == EISCONN) {
5508        errno = 0;
5509        return OS_OK;
5510      }
5511    }
5512  }
5513  return _result;
5514}
5515
5516// Get the default path to the core file
5517// Returns the length of the string
5518int os::get_core_path(char* buffer, size_t bufferSize) {
5519  const char* p = get_current_directory(buffer, bufferSize);
5520
5521  if (p == NULL) {
5522    assert(p != NULL, "failed to get current directory");
5523    return 0;
5524  }
5525
5526  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5527                                              p, current_process_id());
5528
5529  return strlen(buffer);
5530}
5531
5532#ifndef PRODUCT
5533void TestReserveMemorySpecial_test() {
5534  // No tests available for this platform
5535}
5536#endif
5537
5538bool os::start_debugging(char *buf, int buflen) {
5539  int len = (int)strlen(buf);
5540  char *p = &buf[len];
5541
5542  jio_snprintf(p, buflen-len,
5543               "\n\n"
5544               "Do you want to debug the problem?\n\n"
5545               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5546               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5547               "Otherwise, press RETURN to abort...",
5548               os::current_process_id(), os::current_thread_id());
5549
5550  bool yes = os::message_box("Unexpected Error", buf);
5551
5552  if (yes) {
5553    // yes, user asked VM to launch debugger
5554    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5555
5556    os::fork_and_exec(buf);
5557    yes = false;
5558  }
5559  return yes;
5560}
5561